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The Public Interest Energy Research (PIER) Program supports public interest
energy research and development that will help improve the quality of life in
California by bringing environmentally safe, affordable, and reliable energy
services and products to the marketplace.

The Program’s final report and its attachments are intended to provide a complete
record of the objectives, methods, findings and accomplishments of the Energy
Efficient and Affordable Commercial and Residential Buildings Program. This
attachment is a compilation of reports from Project 2.1, Fault Detection and
Diagnostics for Rooftop Air Conditioners, providing supplemental information to
the final report (Commission publication #P500-03-096). The reports, and
particularly the attachments, are highly applicable to architects, designers,
contractors, building owners and operators, manufacturers, researchers, and the
energy efficiency community.

This document is one of 17 technical attachments to the final report,
consolidating five research reports from Project 2.1:

= Description of Field Test Sites (Feb 2003, rev.)

= Description of FDD Modeling Approach For Normal
Performance Expectation (Dec 2001)

= Description And Evaluation Of An Improved FDD Method For
Rooftop Air Conditioners (Aug 2002)

= Decoupling-Based FDD Approach For Multiple Simultaneous
Faults (June 2003)

»  Automated Fault Detection and Diagnostics of Rooftop Air
Conditioners For California, Final Report and Economic
Assessment (Aug 2003)

The Buildings Program Area within the Public Interest Energy Research (PIER)
Program produced this document as part of a multi-project programmatic
contract (#400-99-011). The Buildings Program includes new and existing
buildings in both the residential and the nonresidential sectors. The program
seeks to decrease building energy use through research that will develop or
improve energy-efficient technologies, strategies, tools, and building
performance evaluation methods.

For the final report, other attachments or reports produced within this contract, or
to obtain more information on the PIER Program, please visit
www.energy.ca.gov/pier/buildings or contact the Commission’s Publications
Unit at 916-654-5200. The reports and attachments, as well as the individual
research reports, are is also available at www.archenergy.com.
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Project 2.1, Fault Detection and Diagnostics for Rooftop Air
Conditioners.

Packaged air conditioners are the most poorly maintained type of HVAC
system. In California, they use about 54% of the HVAC energy in the
commercial sector. The Purdue research team developed thermo-fluids
based fault detection methods that can pinpoint five common maintenance
problems.

= This project was highly successful, resulting in a cost-effective method
to detect simultaneous faults using only temperature sensors and
models of normal operations.

= Controllers that embed these diagnostics methods will save energy and
maintenance costs by providing alerts only when maintenance is
needed and giving the mechanic better information.

= The historical data from the diagnostic system will also serve as a
database for manufacturers to improve the reliability of components.

This document is a compilation of five technical reports from the research.
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1. INTRODUCTION

Purdue University is under contract to Architectural Energy Corporation on behalf of the
California Energy Commission (CEC) to conduct several research projects. This work is
being done under the Building Energy Efficiency Program as part of the CEC’s Public
Interest Energy Research (PIER) Program.

1.1 Purdue Research Projects under this Program

The work at Purdue is focused on four specific projects and is being coordinated under
the direction of Dr. James Braun, P.E. Each project covers different technologies or
concepts that have shown promise for improving energy efficiency in building heating,
ventilation and air conditioning (HVAC) systems. Specifically, the four projects that
Purdue is working on include evaluations and studies of the following. (1) fault detection
and diagnostics (FDD) of rooftop air conditioning units (Project 2.1); (2) demand
controlled ventilation (DCV) assessment (Project 3.1); (3) assessment and field testing of
ventilation recovery heat pumps (Project 4.2); and (4) night ventilation with building

thermal mass (Project 3.2).

The first three of these projects are currently active, with the Project 3.2 scheduled to
start in September of 2001. All four of the projects involve both theoretical analysis and
field demonstration and evaluation. This report describes the field test sites selected for
use in projects 2.1 and 3.1. Monitoring equipment has been installed at modular school
room and restaurant field sites in Northern California. We have an agreement with the
Walgreens Company to allow use of retail store sites in the Los Angeles metropolitan
area, and installation is expected to being in August of 2001. An update to this report

will be issued when the retail store installations are finalized.
1.2 Related Reports

This report describes the field test sites selected for use with the CEC PIER project.
Other related reports submitted in parallel with this report are: (1) “Description of
Laboratory Setup” and (2) “Modeling And Testing Strategies for Evaluating Ventilation

Load Reduction Technologies.



The report “Description of Laboratory Setup” provides a description of the York rooftop
unit and Honeywell Demand Controlled Ventilation system that are installed outside the
Purdue Herrick Laboratory and the instrumentation used for monitoring the setup.. This
setup follows closely the field site setups in California. The instrumentation includes
measurement of system temperatures, pressures, relative humidities and carbon dioxide
concentrations. The Laboratory Setup report covers in detail the setup and operation of
the Virtual Mechanic hardware and ACRx ServiceTool Suite of monitoring software,
both provided by Field Diagnostic Services. Finally, the report describes the general

process for collecting and retrieving data downloaded from the field test sites.

The “Ventilation Strategy Analysis” report presents an overview of the modeling
approach and input data to be used in evaluating the energy savings associated with
several ventilation load reduction technologies. In addition, an overview of the
preliminary test plan and field site monitoring setup for the heat pump heat recovery unit

is given.



2. SELECTION OF FIELD TEST SITES

Projects 2.1 and 3.1 involve the use of 12 common field sites for evaluation of FDD and
demand-controlled ventilation. In these two projects, field performance data will be
obtained from heating/cooling units. Three different building types are being utilized in

two different climate zones.

2.1 Criteria for selection of the building types

All of the Purdue projects are focused on small commercial buildings that utilize
packaged air conditioning and heating equipment. The criteria used for selecting the
types of buildings to include as field test sites focused on the typical building occupancy
schedule, the building size and typical HVAC system installed, and the ability to identify
multiple sites of similar design and construction within the same climate region. To
reduce costs, the same test buildings are being used for the field studies in Projects 2.1
(fault detection and diagnostics) and 3.5 (demand-controlled ventilation). Earlier studies
on demand-controlled ventilation indicated that the greatest benefits (in terms of energy
savings) are possible with buildings that have variable occupancy schedules. Thus, the
three building types selected for the field test sites are smaller retail stores, restaurants
and schools. For each type of building, two nearly identical sites will be used in two
different climates. This will allow comparative analysis of the energy savings associated
with demand-controlled ventilation in terms of building type and climate. The fault
detection and diagnostics project is focused strictly on small commercial packaged air
conditioning units, so the field sites provide a range of equipment for demonstration and
evaluation of this technology. A single site will be used to demonstrate a heat pump heat
recovery unit. However, the data obtained from the demand-controlled ventilation sites
can also be used to estimate savings for the heat pump heat recovery unit if it were

installed in these additional sites.

A large number of modular schoolrooms are installed throughout the state of California.

These rooms are all very similar in design and construction, and all typically use wall



mounted heat pumps for heating and cooling. One advantage of the modular schoolroom

for this study is that essentially identical rooms can be monitored side-by-side.

For the restaurant building type, the systems used to condition the children’s play areas
that are common in many fast food chains will be monitored. These rooms typically are
self-contained, or nearly so, and only require one or two rooftop units for cooling and
heating. By monitoring only the play areas in these restaurants, the study can gather data
on spaces that have the greatest variability in occupancy, and also will eliminate the

effects of the kitchen area and its associated ventilation systems.

The third building type selected is a small retail store. Small retail stores can have an
extremely wide variation in occupancy patterns. Chain stores were considered for the

study since essentially identical buildings can be found.

2.2 California Climate Types

Although California has a wide range of climate types, much of the state can be
characterized as a Mediterranean climate. This climate type experiences warm, dry
summers and temperate moist winters. The state also includes desert regions in southern
California (such as Palm Springs) and coastal regions. The specific climate type for a
given locality may vary significantly within a small distance due to the influence of
factors such as topology and the proximity to the ocean. Some of the best examples of
these variations occur in the San Francisco Bay area where the distance of just a few

miles can lead to significant variations in rainfall patterns and sky conditions

2.3 Method for selecting sites

It is not possible within the scope of this project to evaluate the new technologies for all
possible climate regions in California using field data. However, it will be possible to
perform more extensive evaluations through simulation. For the field studies,

representative buildings were selected in two different macroclimate types (coastal and



inland). In addition, some of the selected sites are in northern California and some are in
southern California, which gives as wide a range of location and climate type as practical
within the context of these projects. The inland sites vary from the Mediterranean
climate type of the Central Valley around Sacramento to the desert regions around Palm
Springs. Although it was not possible to have field sites for all technologies in all climate
regions, the areas selected for study represent those with the greatest concentration of

population and commercial development.

Before the projects officially started, contacts were made with the owners of potential
building sites within the school, restaurant and retail store categories. The identification
of sites has been a time consuming process that has required the help of several of the
participating organizations, including Honeywell, Schiller Associates, Carrier

Corporation, Southern California Edison, and Architectural Energy Corporation.

The first buildings identified were schools. During the summer of 2000, contacts were
made and meetings held with representatives of the Oakland Unified School District and
the Woodland Joint Unified School District. Woodland is approximately 20 miles west
of Sacramento and represents an inland climate type. The monitoring systems were
installed at two rooms located side-by-side at each of the two school districts in

December of 2000. More details on these sites are contained later in this report.

The restaurant building type is represented by two franchisee owned McDonald’s stores
in the Sacramento area and by two corporate owned stores on the southeastern San
Francisco Bay area. These stores have PlayPlace areas with similar construction and
HVAC system installations, although it was not possible to find stores with identical
design and sun orientation. Sun orientation can be particularly important for the
PlayPlace areas, since they typically include a large percentage of glass area.
Monitoring equipment was installed in the Sacramento McDonalds during the middle of
March, 2001. In the San Francisco Bay Area, a representative of McDonalds corporate
office identified two stores for inclusion in our study that will be the best fit for our
needs. Monitoring equipment were installed in May of 2001 at these two stores. More

details on these sites are also given in the later sections of this report.



The retail stores are in Southern California. The Walgreens corporation has agreed to our
using their stores as part of this program. Monitoring systems are installed at stores
located in Rialto (near Riverside) and Anaheim. The Rialto store is located in a near

desert climate, while Anaheim is a more coastal climate type.



3. DESCRIPTION OF FIELD TEST SITES

Figure 1 presents a general overview of how data are monitored and collected from the
field sites. Proprietary equipment from Honeywell controls ventilation dampers using
economizer and demand-control ventilation algorithms. The Honeywell controller
incorporates sensors to measure ambient temperature and humidity, return air
temperature and carbon-dioxide concentration, and mixed air temperature. Additional
sensors are installed to monitor other air state variables, refrigerant states, power
consumption, and operational status. The primary data acquisition is accomplished using
hardware from Field Diagnostics Services (FDS) called the Virtual Mechanic (VM). The
VM communicates with the Honeywell controller across an RS485 network to obtain
sensor information and to change control strategies. The additional sensors are wired
directly to the VM. Data are sampled at approximately 5-minute intervals and are stored
in the VM. For some field sites, multiple VMs are employed for multiple packaged air
conditioners. Data are downloaded each day using cell phones connected to the master

Virtual Mechanic at each test site.

A detailed description of the field test sites is provided in the following subsections.
Some of the detailed technical information needed to simulate the performance of the
different technologies for these buildings will be compiled later in the project. This

section contains information on the following test sites:
e Modular School Rooms — Inland Climate Type
e Modular School Rooms — Coastal Climate Type
e Fast Food Restaurants — Inland Climate Type
e Fast Food Restaurants — Coastal Climate Type
e Retail Stores — Inland Climate

e Retail Stores — Coastal Climate



Fioure 1 — Field Test Sites Data Collection and Communication Overview
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BUILDING TYPE:

Inland Climate Locations

ADDRESS:

Modular School Rooms

Gibson Elementary School
312 Gibson Road
Woodland, CA 95695
(530) 662-3944

EQUIPMENT INSTALLATION DATE: December 14-19, 2000

CELL PHONE NUMBER:

(765) 427-0311

DETAILED BUILDING DESCRIPTION:

Floor Area

20 feet by 40 feet (800 sq. ft.)

Building Orientation

East — West

Wall Construction

Walls are 2x4 stud construction with R-11 insulation.
Internal walls have %2 vinyl covered fiberboard over
°/s” gypsum wallboard.

Windows/ Shading

Wood panel exterior with no windows on south or
north sides. East and west sides have one 4’ x 8’
window, with door on east side. Two-foot overhang
on west wall and three-foot overhang on east wall
entrance area.

Windows are double-pane with %4 air gap.

Roof/Ceiling Construction

Flat roof with reflective paint coating. Roof has R-19
insulation. Interior drop ceiling is 8 above occupied
space with t-bar 18” below the roof.

Floor Crawl space below is ventilated with R-11 insulation
below floor.
Lighting 10 sets of fluorescent lights, 120 W each with

magnetic ballast.

Other Loads and
Equipment

One desktop computer and one small refrigerator.

Occupancy Patterns

8:30 am to 3:00 pm weekdays. Usually one or two
hours on Saturday mornings.

The rooms are occupied by 15-20 small children per
room, plus teacher. (These are kindergarten — first
grade rooms.)




Gibson School (Cont’d)

Woodland School Site — Woodland School Site —
Rear View Looking East Front View Looking West

Each building (modular school room) has its own packaged air conditioner/heat pump.
Two side-by-side units have been retrofit with the Honeywell economizer and demand
control ventilation system and fully instrumented. Two VMs are networked together
with one of units linked to a cell phone. The heat pump units were originally set up for
fixed percentage of outdoor air, and did not have outdoor air flow control dampers. It
was estimated that, based on the installation configuration, the airflow control was set up

for approximately 15% outdoor air at these sites before the retrofit.
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HEATING / AIR CONDITIONING EQUIPMENT:

Each building (room) has a sidewall-mounted heat pump as described in the table below.

Manufacturer Bard Manufacturing

Model WH 421-A

Nominal Cooling Capacity | 3’2 Tons

Number of Stages 1

SEER / HSPF 10.0/6.8

Supplemental Heating 10 kW nominal electric resistance heater.
Capacity

Electrical Single phase, 220 V

Supply Fan Rating 1400 cfm @ 0.3”

TEST INSTRUMENTATION:

Table 1 lists the input data channels used at the modular schoolrooms. The same data list

1s used at both the Woodland and Oakland school sites.
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Table 1 — Data List for Modular School Room Field Test Sites

Channel # Data Point
Power Transducer Channels

1 Unit voltage

2 Compressor 1 voltage
3 Common

4 Unit total current

5 Compressor 1 current

6-8 Spare - Not Used

Other Analog Input Data

9 Suction line pressure, Stage 1

10 Liquid line pressure, Stage 1

11-14 Spare - Not Used

15 Mixed air temperature

16 Return air temperature

17 Supply air temperature, before heater

18 Supply air temperature, after heater

19 Condenser inlet air temperature

20 Condenser outlet air temperature

21 Suction line temperature, Stage 1

22 Discharge line temperature, Stage 1

23 SPARE - Used as additional ambient T
24 SPARE - Used as additional ambient T
25 Evaporation temperature, Stage 1
26 Condensation temperature, Stage 1

27- 32 Spare - Not Used

Calculated Data Channels

33-50 NOT USED
51 Honeywell DCV indoor (and outdoor) CO2 conc.
52 Honeywell DCV mixed air temperature
53 Honeywell DCV return air temperature
54 Honeywell DCV return / outdoor humidity
55 Honeywell DCV outdoor air temp & damper position
56 Honeywell DCV minimum damper position
57 superheat, stage 1
58 subcooling, stage 1
59 evaporating temperature, stage 1
60 condensing temperature, stage 1
61 condensing temperature over ambient (CT-AIC), stage 1
62 superheat, stage 2
63 subcooling, stage 2
64 evaporating temperature, stage 2
65 condensing temperature, stage 2
66 condensing temperature over ambient (CT-AIC), stage 2

12



Table 1 — Data List for Inland Modular School Room Field Test Site (Cont’d)

Channel Data Point

67 evaporator temperature difference (RA-SA)

68 NOT USED

69 NOT USED

70 unit power (kW)

71 unit KWh

72 unit MWh

73 compressor 1 power (kW)

74 compressor 1 KWh

75 compressor 1 MWh

76 compressor 2 power (kW)

77 compressor 2 KWh

78 compressor 2 MWh

79 digital input 1, supply fan, run time (8 hours)

80 digital input 1, supply fan, run time (seconds)

81 digital input 2, cooling 1, run time (8 hours)

82 digital input 2, cooling 1, run time (seconds)

83 digital input 3, cooling 2, run time (8 hours)

84 digital input 3, cooling 2, run time (seconds)

85 digital input 4, heat 1, run time (8 hours)

86 digital input 4, heat 1, run time (seconds)

(
87 digital input 5, heat 2, run time (8 hours)
88 digital input 5, heat 2, run time (seconds)

89 digital input 6 run time (8 hours)

90 digital input 6 run time (seconds)

91 time since reset accumulators (8 hours)

92 time since reset accumulators (seconds)

93 up time (8 hours)

94 up time (seconds)

05 board temperature (F)

96 board battery voltage (V)

Digital Channels
Supply fan contact (fan on / fan off)

Low voltage control signal for compressor contact

Spare

Heat on

Electric heat

DA R WN -
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BUILDING TYPE:

Coastal Climate Location

ADDRESS:

Modular School Rooms

Fremont High School
4610 Foothill Blvd.
Oakland, CA

(510) 879-3020

EQUIPMENT INSTALLATION DATE: December 19-21, 2000

CELL PHONE NUMBER:

DEtAILED DESCRIPTION:

(765) 427-0325

Floor Area

20 feet by 40 feet (800 sq. ft.)

Building Orientation

East — West

Wall Construction

Walls are 2x4 stud construction with R-11 insulation.
Internal walls have %2 vinyl covered fiberboard over
°/s” gypsum wallboard.

Windows/ Shading

Wood panel exterior with no windows on south or
north sides. East and west sides have one 4’ x 8’
window, with door on east side. Two-foot overhang
on west wall and three-foot overhang on east wall
entrance area.

Windows are double-pane with %4 air gap.

Roof/Ceiling Construction

Flat roof with reflective paint coating. Roof has R-19
insulation. Interior drop ceiling is 8” above occupied
space with t-bar 18” below the roof.

Floor Crawl space below is ventilated with R-11 insulation
below floor.
Lighting Approximately 10 sets of fluorescent lights, 120 W

each with magnetic ballast.

Other Loads and
Equipment

One desktop computer. (To be verified)

Occupancy Patterns

8:30 am to 3:00 pm weekdays.

The rooms are occupied by 15-20 high school
students per classroom.

14




Fremont High School (Cont’d)

Oakland School Site (Fremont High

School) - View Looking Along North Walls

Each building (modular school room) has its own packaged air conditioner/heat pump.
Two side-by-side units have been retrofit with the Honeywell economizer and demand
control ventilation system and fully instrumented. Two VMs are networked together
with one of units linked to a cell phone. The heat pump units were originally set up for
fixed percentage of outdoor air, and did not have outdoor air flow control dampers. It
was estimated that, based on the installation configuration, the airflow control was set up

for approximately 15% outdoor air at these sites before the retrofit.
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HEATING / AIR CONDITIONING EQUIPMENT:

Each building (room) has a sidewall-mounted heat pump manufactured by Bard
Industries, Model WH 421A. These are the same units as used at the Woodland school

site. The units are contained within a fenced off area on the north end of the buildings.

Nominal Cooling Capacity | 3’2 Tons

SEER / HSPF 10.0/6.8

Heating Capacity 10 kW nominal electric resistance heater. Note: The
electrical resistance heaters are not functioning for
these rooms.

Electrical Single phase, 220 V

Supply Fan Performance 1400 cfm @ 0.3”

TEST INSTRUMENTATION:

The Fremont school site uses the same data point list given in Table 1 for the Woodland

schools.
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BUILDING TYPE: Fast Food Restaurants

Inland Climate Locations

ADDRESS: McDonalds Restaurant
2434 Watt Ave.
Sacramento, CA 95821
(916) 971-0244

3560 Bradshaw Road
Sacramento, CA 95827
(916) 361-8186

CONTACT: Mike Godlove (Owner)
2508 Garfield Ave
Carmichael, CA 95608
(916) 483-6065

EQUIPMENT INSTALLATION DATE: March 12-14, 2001

CELL PHONE NUMBERS: (765) 427-7714 and 427-7919

DEtAILED DESCRIPTION:

Equipment at two nearly identical McDonald’s PlayPlaces in Sacramento have been
retrofit with the Honeywell economizer and demand control ventilation system and fully
instrumented. Each system has its own dedicated VM with a cell phone for data
transmission. The Watt Avenue site has a slightly smaller floor area (approximately 20
square feet less take from two corners). The following subsections give some details on

the building construction and operation. Additional details will be obtained later.

17



Sacramento Area McDonalds PlayPlace Construction (Watt Avenue and Bradshaw

Road)

Floor Area

Approximately 20 feet by 30 feet (600 sq. ft.) that is
for the most part isolated from the dining and
cooking areas.

Building Orientation

Primary axis for this room is North - South.

Major glass surfaces on the East and South walls.
West face is interior wall shared with the dining area.

Wall Construction

“Stucco” exterior covering.

Windows/ Shading

Major glass surfaces on the East and South walls.
West face is interior wall shared with the dining area.
Some window area on North wall. No exterior
shading. Windows are tinted with double pane, '4”
air gap construction.

Roof/Ceiling Construction

Flat roof with light colored asphalt coating.

Floor

Tile on slab construction.

Lighting

Approximately six sets of fluorescent lights, with
four bulbs each with magnetic ballast.

Other Loads and
Equipment

Some air exchange with dining area and outdoor air
via door in the common vestibule.

Ceiling fans keep air in motion.

Occupancy Patterns

PlayPlace hours are: 9 am to 9:30 pm.

Occupancy varies from 0 to a maximum of
approximately 40.

18




Watt Avenue (Sacramento Area) McDonalds PlayPlace Pictures

Watt Avenue McDonalds —
View Looking Southwest

Interior view of Watt Avenue
McDonalds PlayPlace Area showing
location of return air and supply air
ducts.

- > A - < -‘ &;ZI-'-
Watt Avenue McDonalds —
Rooftop Units Undergoing Equipment Installation
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Bradshaw Road (Sacramento Area) McDonalds PlayPlace Pictures

Bradshaw Road McDonalds —

View I .ankino Narthwest

Rooftop Units Undergoing Equipment Installation

HEATING / AIR CONDITIONING EQUIPMENT:

Each PlayPlace uses rooftop-mounted units for providing heating, cooling and ventilation
air to the room. The two sites differ in the number of rooftop units used, with the Watt
Avenue building using one two-stage unit and the Bradshaw Road building using two
smaller single-stage units. According to York International's regional support
representative, the units are custom designed for supply to McDonalds Corporation for

the PlayPlace areas. The following tables describe the units used at each site. Since they

20



are custom designs, published performance ratings and other technical details were not

readily available. This information will be obtained later.

Watt Avenue

Manufacturer York International

Model D3CGI120N20025MKD
Nominal Cooling Capacity | 10 Tons

Number of Stages 2

SEER / HSPF TBD

Heating Capacity 200,000 Btu/hr nominal output
Electrical Three phase, 220 V

Supply Fan Performance

4,000 cfm manufacture rated

Bradshaw Road

Manufacturer York International

Model DICGO072N07925ECC
Nominal Cooling Capacity | 6 Tons

Number of Stages 1

SEER / HSPF TBD

Heating Capacity 100,000 Btu/hr nominal output
Electrical Three phase, 220 V

Supply Fan Performance

2,400 cfm manufacture rated (each)

21




TEST INSTRUMENTATION:

Tables 2 and 3 list the data channels used at the restaurants. A slightly different list is
required for each site since the HVAC equipment setup is different. In particular, the
Watt Avenue site has one larger (10 ton) unit with 2-stage cooling to condition the entire
room. The Bradshaw Road site, on the other hand, has two smaller (6 ton) single-stage
cooling units operating in parallel. Instrumentation for fault detection and diagnostics
and monitoring was set-up for one rooftop unit per site, as originally planned in the
project proposal stage. Therefore, one unit at the Bradshaw Road site was fully
instrumented for both FDD and DCV purposes, while the second unit was instrumented
only for the purposes of collecting data for the DCV project. The Watt Avenue site has
only one rooftop unit and was fully instrumented according to the standard data list. All

data will be collected using one Virtual Mechanic at each site.
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Table 2 — Data List for Inland Restaurant Field Test Site (Watt Avenue)

Channel # Data Point
SENSOR CHANNELS
Power Transducer Channels
1 Unit voltage
2 Compressor 1 voltage
3 Compressor 2 voltage
4 Unit total current
5 Compressor 1 current
6 Compressor 2 current
Other Analog Input Data
7 SPARE - Not used
8 SPARE - Not used

9 Suction line pressure, Stage 1
10 Discharge pressure, Stage 1
11 Suction line pressure, Stage 2

12 Discharge pressure, Stage 2
13 SPARE - Not used
14 SPARE - Not used
15 Mixed air temperature
16 Return air temperature
17 Supply air temperature, before heater
18 Supply air temperature, after heater
19 Condenser inlet air temperature
20 Condenser outlet air temperature
21 Suction line temperature, Stage 1
22 Discharge line temperature, Stage 1
23 Liquid line temperature before filter/drier, Stage 1
24 Liquid line temperature after filter/drier, Stage 1
25 Evaporation temperature, Stage 1
26 Condensation temperature, Stage 1
27 Suction line temperature, Stage 2
28 Discharge line temperature, Stage 2
29 Liquid line temperature before filter/drier, Stage 2
30 Liquid line temperature after filter/drier, Stage 2
31 Evaporation temperature, Stage 2
32 Condensation temperature, Stage 2
Calculated Data Channels
33-50 NOT USED
51 Honeywell DCV indoor (and outdoor) CO2 conc.
52 Honeywell DCV mixed air temperature
53 Honeywell DCV return air temperature
54 Honeywell DCV return / outdoor humidity
55 Honeywell DCV outdoor air temp & damper position
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Table 2 — Data List for Inland Restaurant Field Test Site (Watt Avenue) — Cont’d

Channel Data Point

56 Honeywell DCV minimum damper position
57 superheat, stage 1

58 subcooling, stage 1

59 evaporating temperature, stage 1

60 condensing temperature, stage 1

61 condensing temperature over ambient (CT-AIC), stage 1
62 superheat, stage 2

63 subcooling, stage 2

64 evaporating temperature, stage 2

65 condensing temperature, stage 2

66 condensing temperature over ambient (CT-AIC), stage 2
67 evaporator temperature difference (RA-SA)
68 NOT USED

69 NOT USED

70 unit power (kW)

71 unit KWh

72 unit MWh

73 compressor 1 power (kW)

74 compressor 1 KWh

75 compressor 1 MWh

76 compressor 2 power (kW)

77 compressor 2 KWh

78 compressor 2 MWh

79 digital input 1, supply fan, run time (8 hours)
80 digital input 1, supply fan, run time (seconds)
81 digital input 2, cooling 1, run time (8 hours)
82 digital input 2, cooling 1, run time (seconds)
83 digital input 3, cooling 2, run time (8 hours)
84 digital input 3, cooling 2, run time (seconds)
85 digital input 4, heat 1, run time (8 hours)

86 digital input 4, heat 1, run time (seconds)
87 digital input 5, heat 2, run time (8 hours)

88 digital input 5, heat 2, run time (seconds)
89 digital input 6 run time (8 hours)

90 digital input 6 run time (seconds)

9 time since reset accumulators (8 hours)

92 time since reset accumulators (seconds)
93 up time (8 hours)

94 up time (seconds)

95 board temperature (F)

96 board battery voltage (V)
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Table 2 — Data List for Inland Restaurant Field Test Site (Watt Avenue) — Cont’d

Digital Channels

Supply fan contact (fan om / fan off)

Low voltage control signal for compressor 1 contact
Low voltage control signal for compressor 2 contact
Heating 1

Heating 2

DR WN -~
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Table 3 — Data List for Inland Restaurant Field Test Site (Bradshaw Road)

Channel # Data Point
SENSOR CHANNELS
Power Transducer Channels
1 Unit 1 input voltage
2 Compressor voltage, Unit 1
3 Unit 2 input voltage
4 Unit 1 total current
5 Compressor current, Unit 1
6 Unit 2 total current
Other Analog Input Data
7 SPARE - Not used
8 SPARE - Not used
9 Suction line pressure, Unit 1
10 Discharge pressure, Unit 1
11 SPARE - Not used
12 SPARE - Not used
13 SPARE - Not used
14 SPARE - Not used
15 Mixed air temperature - Unit 1
16 Return air temperature - Unit 1
17 Supply air temperature, before heater - Unit 1
18 Supply air temperature, after heater - Unit 1
19 Condenser inlet air temperature - Unit 1
20 Condenser outlet air temperature - Unit 1
21 Suction line temperature - Unit 1
22 Discharge line temperature - Unit 1
23 Liquid line temperature before filter/drier - Unit 1
24 Liquid line temperature after filter/drier - Unit 1
25 Evaporation temperature - Unit 1
26 Condensation temperature - Unit 1
27 SPARE - Not used
28 SPARE - Not used
29 Mixed air temperature - Unit 2
30 Mixed air humidity - Unit 2
31 Supply air temperature - Unit 2
32 Supply air humidity - Unit 2
CALCULATED DATA CHANNELS
33-50 NOT USED
51 Honeywell DCV indoor (and outdoor) CO2 conc.
52 Honeywell DCV mixed air temperature
53 Honeywell DCV return air temperature
54 Honeywell DCV return / outdoor humidity
55 Honeywell DCV outdoor air temp & damper position
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Table 3 — Data List for Inland Restaurant Field Test Site (Bradshaw Road) — Cont’d

Channel Data Point

56 Honeywell DCV minimum damper position
57 superheat, stage 1

58 subcooling, stage 1

59 evaporating temperature, stage 1

60 condensing temperature, stage 1

61 condensing temperature over ambient (CT-AIC), stage 1
62 NOT USED

63 NOT USED

64 NOT USED

65 NOT USED

66 NOT USED

67 NOT USED

68 NOT USED

69 NOT USED

70 unit power (kW)

71 unit KWh

72 unit MWh

73 compressor 1 power (kW)

74 compressor 1 KWh

75 compressor 1 MWh

76 compressor 2 power (kW)

77 compressor 2 KWh

78 compressor 2 MWh

79 digital input 1, supply fan, run time (8 hours)
80 digital input 1, supply fan, run time (seconds)
81 digital input 2, cooling 1, run time (8 hours)
82 digital input 2, cooling 1, run time (seconds)
83 digital input 3, cooling 2, run time (8 hours)
84 digital input 3, cooling 2, run time (seconds)
85 digital input 4, heat 1, run time (8 hours)

86 digital input 4, heat 1, run time (seconds)
87 digital input 5, heat 2, run time (8 hours)

88 digital input 5, heat 2, run time (seconds)
89 digital input 6 run time (8 hours)

90 digital input 6 run time (seconds)

91 time since reset accumulators (8 hours)

92 time since reset accumulators (seconds)
93 up time (8 hours)

94 up time (seconds)

95 board temperature (F)

96 board battery voltage (V)
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Table 3 — Data List for Inland Restaurant Field Test Site (Bradshaw Road) — Cont’d

Digital Channels

Supply fan contact (fan om / fan off)

Low voltage control signal for compressor contact
Spare

Heating

Spare

DB WN -~
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BUILDING TYPE: Fast Food Restaurants

Coastal Climate Locations

ADDRESS: 99 N. Milpitas Blvd.
Milpitas, CA 95035
(408) 263-0181

1620 Storbridge Ave.
Castro Valley, CA 94546
(510) 537-9566

CONTACT: Paul Martin
(408) 422-2339

EQUIPMENT INSTALLATION DATE: May 2001

CELL PHONE NUMBERS: (765) 427-2988
(765) 427-3052

DETAILED DESCRIPTION:

The PlayPlace areas at these two sites are not as close in design and orientation as are the
two Sacramento sites. This is a compromise in order to get two sites that are reasonably
close together and in a similar coastal climate zone. Both restaurants are located south of
Oakland on the east edge of the San Francisco Bay and have a floor space of around 1300
square feet, which is larger than the PlayPlace areas at the two Sacramento stores. The
Castro Valley restaurant is oriented with its main glass area facing west. The Milpitas
store, however, contains a larger glass area and is oriented facing north. The following
subsections contain some descriptions of the room construction and heating/cooling
equipment for these two coast climate restaurant sites. Additional details of the

construction and building operation will be obtained later.
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Castro Valley (San Francisco Bay Area) McDonalds PlayPlace Construction

Floor Area

Approximately 26 feet by 50 feet (1300 sq. ft.) that is
isolated from the dining and cooking areas by an
interior glass wall with two doors.

Building Orientation

Primary axis for this room is northwest - southeast.

The long axis glass surface area faces southwest, with
the smaller sides facing northwest and southeast.
Northeast wall is interior wall shared with the dining
area.

Wall Construction

“Stucco” exterior covering.

Windows/ Shading

Windows are tinted with double pane, /4” air gap
construction. Overhang of 24” at top that provides
minimal shading.

Total glass area of about 490 sq. ft. on southwest wall
and 195 sq. ft. each on the northwest and southeast
walls.

Roof/Ceiling Construction

Flat roof with light colored asphalt coating.

Floor

Tile on slab construction.

Lighting

Total of 26 fixtures of 48” fluorescent lights, with
four bulbs each with magnetic ballast. Several had
missing bulbs, only approximately 80% of bulbs in
place.

Other Loads and
Equipment

One TV and four video games.

Ceiling fans keep air in motion.

Occupancy Patterns

PlayPlace operating hours are 9am — 9pm.

During visit on a Sunday afternoon, occupied by
approximately 70 children and adults.
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Milpitas (San Francisco Bay Area) McDonalds PlayPlace Construction

Floor Area

Approximately 24 feet by 50 feet with 6’ by 6’ corner
that shares internal wall with kitchen storage. Total
floor is approximately 1170 sq. ft. Zone is isolated
from the dining and cooking areas by an interior glass
wall with two doors.

Building Orientation

Primary axis for this room is east - west.

The long axis glass surface area faces north, with the
smaller sides facing west and east. South wall is
interior wall shared with the dining area.

Wall Construction

“Stucco” exterior covering.

Windows/ Shading

Windows are tinted with double pane, %4 air gap
construction. Overhang of 24” at top that provides
minimal shading.

Exterior walls are essentially floor to ceiling covered
in glass. Total glass area of about 1000 sq. ft. on
north wall, 480 sq. ft. on the east wall and 360 sq. ft.
on the west wall.

Roof/Ceiling Construction

Flat roof with light colored asphalt coating.

Floor

Tile on slab construction.

Lighting

Total of 19 fixtures of 48” fluorescent lights, with
four bulbs each with magnetic ballast.

Other Loads and
Equipment

No TVs or video games.

Ceiling fans keep air in motion.

Occupancy Patterns

PlayPlace operating hours are 8am — 9pm.
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Castro Valley McDonalds PlayPlace Pictures

Interior view of Castro Valley McDonalds
PlayPlace Area.

Castro Valley McDonalds —
View Looking Southeast

T g~

Castro zﬁléy McDonalds PlayPlace e
York Rooftop Unit
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Milpitas McDonalds PlayPlace Pictures

Milpitas McDonalds —
View Looking Southeast

Interior view of Milpitas McDonalds
PlayPlace Area (NW Corner)

Milpitas McDonalds PlayPlace Area.
Two York Rooftop Units

HEATING / AIR CONDITIONING EQUIPMENT:

Each building (room) uses rooftop-mounted units for providing heating, cooling and
ventilation air to the room. The two sites differ in the number of rooftop units used. Just
like the two restaurants in Sacramento, one restaurant uses one two-stage Y ork rooftop
unit (Castro Valley) and the other (Milpitas) uses two smaller single-stage units. The
units are of the same series that were designed and built specifically for the McDonalds

PlayPlace areas. The following tables describe the units used at each site. Since they are
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more or less custom design, published performance ratings and other technical details

were not readily available.

Castro Valley

Manufacturer York International

Model D4CGI150N16525MDB
Nominal Cooling Capacity | 12 Tons

Number of Stages 2

SEER / HSPF TBD

Heating Capacity 204,000 Btu/hr nominal output
Electrical Three phase, 220 V

Supply Fan Performance

4,000 cfm manufacture rated

Milpitas

Manufacturer York International

Model D1CG072N09925C

Nominal Cooling Capacity | 6 Tons

Number of Stages 1

SEER / HSPF TBD

Heating Capacity 125,000 Btu/hr nominal output
Electrical Three phase, 220 V

Supply Fan Performance

2,400 cfm manufacture rated (each)
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TEST INSTRUMENTATION:

Similar test instrumentation will be used as for the Sacramento McDonalds. The system
at the restaurant with only one rooftop unit (Castro Valley) will be fully instrumented for
both FDD and DCV studies, like the Watt Avenue site in Sacramento. The data list is
presented in Table 2. The Milpitas site is analogous to the Bradshaw Road store in
Sacramento, whereby one unit will be fully instrumented for both FDD and DCV
purposes, while the second unit will be instrumented only for the purposes of collecting
data for the DCV project. Table 3 provides this data list. All data will be collected using

one VM at each site.
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BUILDING TYPE: Retail Store

ADDRESS:

Inland Climate Location Walgreens
550 S. Riverside
Rialto, CA
Contact: Gabriel Reyes (Store Manager)
(709) 874-6600

Coastal Climate Location Walgreens
946 S. Brookhurst
Anaheim, CA
Contact: Lee Anderson (Store Manager)
(714) 520-5444

EQUIPMENT INSTALLATION DATES:
Rialto Store: VM Monitoring Equipment: August 1-5, 2001
Functioning Honeywell Controls: June, 2002

Anaheim Store: VM Monitoring Equipment: June, 2002
Functioning Honeywell Controls: Fall 2002

CELL PHONE NUMBERS: Dedicated land phone lines were installed in August
2002 to replace the cell phone arrangement.

DETAILED BUILDING DESCRIPTION: Rialto Store (Common Design)

Floor Area 100 feet by 90 feet (9,000 sq. ft.) in retail store space,
40 feet by 20 feet in the pharmacy. An additional 35
feet by 90 feet of backroom storage and 20 feet by
100 feet for office and equipment that is not part of

the DCV study.

Building Orientation Generally north - south, with front door on northeast
corner.

Wall Construction Brick and stucco exterior.

Windows/ Shading A total of 20 windows on the two exterior walls to

the retail store area. Windows are 5 feet by 8 feet,
tinted, double-pane with %4 air gap. Windows are
on the east and north walls.

A five-foot overhang covers the sidewalk and shades
the exterior windows.
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Roof/Ceiling Construction | Flat roof with light store coating.

Floor Floor tiles over concrete slab.

Lighting Retail store has total of 170 fixtures with 2 bulbs, 8-
foot long fluorescent lights.

Pharmacy has 33 fixtures of 2 bulb, four-foot long

fixtures.
Other Loads and Refrigerated drink and food open to store, 25 feet
Equipment linear feet.

Freezer section with doors, 20 feet long.

Photo processing machine plus two cash registers.

Occupancy Patterns Store hours are 8 am to 10 pm, seven days a week.

HEATING / AIR CONDITIONING EQUIPMENT:

Four rooftop heat pumps condition the retail store space and one additional unit is
dedicated to the pharmacy area. A separate unit is installed at the store to condition the
storage room, but since this is an isolated area not normally occupied, it is not part of the

DCYV installation study. The rooftop units are manufactured by Trane.

Manufacturer Trane

Model WFDO090C30BBC - Retail Store
WFDO075C30BBC - Pharmacy

Nominal Cooling Capacity | Retail store units - 7% tons

Retail store units - 6% tons

Number of Stages 1
SEER / HSPF 8.9 EER
Electrical Three phase, 208 V

Supply Fan Performance 2,500 nominal supply airflow @ 0.5 in. w.c. - 6%
tons

3,000 nominal supply airflow @ 0.5 in. w.c. - 7%
tons
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TEST INSTRUMENTATION:

Similar test instrumentation is used as for the McDonalds sites. Individual VM
monitoring systems are installed for each rooftop unit, and networked together to one
master VM that communicates via the cell phone. These rooftop units are single stage

compressor systems, and the same monitoring data as listed in Table 3 are used.

Trane rooftop heat pump installed on Walgreens Rialto store

38



4. TESTING PLAN
This test plan as outlined below was set up during the initial phases of the project.

The test plan has changed as the result of equipment installation schedules and
problems. The field sites were rotated more regularly between demand control
ventilation ON and OFF remotely using procedures developed by Field Diagnostic

Services.

Data is downloaded on a daily basis using cell phones connected to the master Virtual
Mechanic at each test site. The data monitoring and collection process was outlined

earlier in this report in Figure 1.
There are separate test plans for the two projects that share the 12 field test site buildings.

Project 2.1: Fault Detection and Diagnostics

A testing plan for this project is included in a separate report being submitted by Purdue
for deliverable 2.1.1b. This report is titled, “Description of Laboratory Setup” and was

described in Section 1.2 above.

Project 3.1: Demand Controlled Ventilation

The following is a general overview of the testing plan for Project 3.1. The separate
report titled “Modeling and Testing Strategies for Evaluating Ventilation Load Recovery
Technologies” being submitted by Purdue describes how the data being collected will be

analyzed.
Key parameters to measure for this project are:

= Unit power consumption for the compressors and fans.

* Energy input during heating mode. This will be expressed either in terms of
compressor and electrical resistance heater power for the sites with heat pump

heating, or in terms of natural gas usage for rooftop units with heating.
= Total cycle time for compressor (and heater) operation.

= Levels of carbon dioxide in the occupied space.
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* Temperature and humidity levels for the ambient air, mixed air, supply air and the

conditioned space.
The following is a general outline of the data gathering and test plan.
SCHOOQOLS:

March — May 2001: Monitor building performance for each of the four schoolrooms.

Use this data to build baseline data for each room.

May — June, 2001: For the remaining part of this school year, set up one building at each
site to run in Demand Controlled Ventilation (DCV) mode and the other building with the
standard economizer mode. During this time visit each room and characterize the

nominal usage patterns, etc.

Summer, 2001 (June-August): If the rooms are not to be occupied regularly during the
summer months when regular school is not in session (mid-June to early September),
then set up each room to operate in one common mode. Since the units at both school
sites were setup for fixed outdoor air ventilation rates originally, we will duplicate that
situation with the same percentage of outdoor air for each room. This will allow for a full
characterization of the building thermal performance and any baseline differences

between rooms at each site.

Fall, 2001: Around the beginning of the new school year, the control strategy will be
changed to include one building on DCV and the other on a fixed ventilation rate. The
fixed ventilation rate will be for the maximum setting required for schoolroom occupancy
as determined by ASHRAE Standard 62. The control strategies will be reversed from

that during the initial cooling season monitoring time (May to June).

November 2001 — January 2002: Maintain the same control strategy for each building for

the beginning of the heating season.

January 2002 — March 2002: Reverse ventilation control strategies between the buildings

at each climate type. Do this during a site visit in late December 2001 or early January

40



2002, or remotely if possible. Change back to the same settings for each room as with

the first cooling season phase of May-June, 2001.

RESTAURANTS:

March — May 2001: Monitor building performance for each of the restaurants using one
common ventilation control strategy. This will likely be the use of the existing
economizer control. Use this time to build baseline data for each building. During this

time, visit each site (March and/or May) and characterize the nominal usage patterns, etc.

June-July, 2001: For each climate type, set up one building with DCV mode and the other
with normal economizer mode. (Sacramento sites have Honeywell economizers

currently installed.)

August-Fall, 2001: At each climate type, reverse the ventilation control strategies, with

one building using DCV and the other set-up for fixed position dampers.

November 2001 — December/January 2002: Maintain the same control strategy for each

building for the beginning of the heating season.

December 2001 — February 2002: Reverse ventilation control strategies between the
buildings at each climate type. (Do this during a site visit in December 2001 or January
2002.) Change back to the same settings for each room as with the first cooling season

phase of June-July, 2001.

RETAIL STORES

The detailed plan for monitoring the retail stores will be finalized after completion of the

equipment installation. The plan will likely be as follows.

August-Fall, 2001: After the initial installation and checkout of the control equipment,
begin to monitor the buildings at the inland and coastal climate sites with one building in

DCV mode and the other using normal economizer control mode.
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November 2001 — December/January 2002: Maintain the same control strategy for each

building for the beginning of the heating season.

December 2001 — February 2002: Reverse ventilation control strategies between the

buildings at each climate type. (Do this during a site visit in December 2001 or January

2002.)

Spring 2002: Reverse the ventilation control strategies from the cooling season data

gathered during August and the fall of 2001.
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1. Introduction

All the thermodynamic states of a rooftop air conditioning unit (RTU) are functions of
external driving conditions and various faults, as is shown in figure 1.1. It is important for
fault detection and diagnosis (FDD) not to misinterpret vatiations in thermodynamic states
caused by changes in the driving conditions for faults. If measurements are classified
directly, the classification rules have to be complicated to consider the effect of external

driving conditions.

Faults
External Driving conditions: All thermodynamic states,
=T RT U o
Toa’TmaﬁWma El’ﬂond’Y-'evap’Tdis’Tsc’Tsa

Figure 1.1 Rooftop system

In order to simplify classification and improve overall FDD performance, model-based
FDD techniques usually use some type of model to predict expected values (normal
behavior) of measured performance indices using measured external driving conditions for
the equipment which is being monitored. Often, the difference between expected and
actual measurement values (residuals) will always be zero mean when there are no faults.
The probability distribution of residuals is a weak function of driving conditions and is
strongly dependent on faults. So if residuals are used to detect and diagnose faults, the

classifier may not need to consider driving conditions and is simplified considerably.

There are three general types of models: physical, black box and gray box. Physical models,
whose parameters and structures have some physical significance, are derived from
fundamental physical laws. An accurate physical model is capable of extrapolating
performance expectations well in case of limited training data. However, it is difficult and
expensive to develop an accurate physical model. Also, a complex physical model involves
large collections of nonlinear equations which are difficult to solve. In addition, physical

models are not accurate enough for a given system and require detailed data for training.
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Figure 1.2 Rooftop system with a normal performance model

Gray-box modeling approaches use lumped system parameters and some semi-empirical
expressions. Strictly speaking, there are no pure physical models in engineering; most of so-
called physical models are gray-box models. Although easier to build and faster to solve
than a physical model, a gray-box model may not be practical for commercial HVAC

FDD.

Black-box models, which can overcome the shortcomings of physical models, use
empirical input/output relationships that are fit to training data. There are many black-box
modeling approaches. Different approaches have different characteristics and interpolating
abilities. Generally speaking, in the mathematical point of view a black-box model can not
be expected to have good extrapolating ability. However, in the physical point of view,
most real systems normally would not change dramatically and have major linear
components, so black-box models can have some extrapolating abilities near the training
data range. What’s more, different approaches have different extrapolating abilities and
different parameters and structure of the same approach have different interpolating and
extrapolating abilities. This report reviews some relevant literature, and then documents
comparisons between several modeling approaches, and proposes an improved modeling

approach.



Table 1.1 Comparisons of Three Modeling Approaches

Characteristics Advantages Disadvantages
Physical [Derived from fundamental [Model parameters are  [Difficult to develop and solve
models physical laws; Large meaningful; the model;
collections of nonlinear . . .
Extrapolates well in case [Need more detailed physical
cquations of limited training data  [description and data
Black-  [Input/output relationship [Easy to develop and [Poor extrapolation;
box to fit the train data by realize; Accurate fits Model parameters have no
models optimizing performance  |within the training data meaning
index range; Computational
simplicity
Gray-box|Combination of physical [Easier to develop than  [A little difficult and expensive
models [and black box model; physical model and has  |to develop
Use semi-empirical good interpolating and
expressions extrapolating
performance




2. Background work

There are a lot of literature on modeling of vapor compression systems. The following

sections contain a review some models that were developed for FDD.
2.1 Physical modeling and gray-box modeling

Rossi and Braun (1995) developed a steady-state physical model, known as ACMODEL,
which simulates the operation of vapor compression cycles. The model solves the mass,
momentum, and energy balances for each component and performs a charge inventory for
the entire system. This model was used to aid in the original development and evaluation
of an FDD method. ACMODEL is a modular toolkit. Individual components are
modeled as subroutines (e.g., compressor, condenser, evaporator, expansion device) with
specified inputs and outputs. A robust numerical equation solver capable of converging to
the operating state with a tight tolerance is included. A tuning program adjusts less well
known model parameters based on simple measurements at an operating point to provide

for more accurate perfomance predictions at different operating conditions.

The compressor of the ACMODEL is semi-empirical and uses empirical curve fits to
manufacturer’s performance data for compressor volumetric efficiency (to calculate mass
flow rate) and power. The outlet enthalpy is calculated assuming a polytropic compression

process with a constant polytropic efficiency.

The condenser and evaporator models use physically based tube-by-tube analyses where
each tube is broken into small segments. Mass, momentum, and energy balance are applied
to each tube segment, and the heat transfer, pressure drop, and refrigerant mass are
calculated for the segment. However, there are some differences between the condenser
and evaporator models. The condenser model considers only heat transfer whereas the
evaporator model considers both heat transfer and mass transfer. The condenser and
evaporator coil models are built from functions which are provided for a finned tube,
return bend and manifold. Geometric information about the tubes and fins are entered in

an input file.

The throttling valve is modeled as a fixed orifice expansion device which is assumed to

have two-phase Fanno flow (one-dimensional, adiabatic, compressible, with friction).

The equations for each of these components as well as a charge inventory must be solved

simultaneously to find the steady-state operating point for the air conditioning unit. The



solution procedure involves the non-linear solution of three residual equations in the cycle.
The effect of all five of the operating faults which are being studied can be simulated with

ACMODEL.

Except for Rossi and Braun, the problem of developing a physical model for a rooftop air

conditioning unit for FDD purposes has not been specifically addressed in the literature.

Stylianou and Nikanpour (1996) considered two different models for a reciprocating chiller
to use with a model-based FDD technique. For the problem of fault detection, a gray-box
model was used. This model, developed from first principles and first introduced by
Gordon and Ng (1994), correlated the equipment COP with the condenser and evaporator
inlet water temperatures. This performance index is used to decide when the impact of a
fault is significant enough to warrant repair. The other model is a black-box model which

will be discussed in the next section.

2.2 Black-box modeling

Since black-box models are easy to develop, accurately fit training data, and are
computationally simple, they are popular for engineering use. Several kinds of black-box

modeling approaches will be discussed here.

2.2.1 Polynomials

Linear regression polynomials are the easiest and most frequently used black-box
models. Grimmelius et al. (1995) used steady-state linear models with three input
variables to predict a number of output states of a vapor compression chiller. The
predicted variables included the temperatures and pressures at the inlet and outlet of
each component in the refrigeration cycle, suction superheat, liquid subcooling, oil
pressure, temperature, and level, the pressure ratio across the compressor, temperature
changes of the water across the evaporator and condenser, filter pressure drop, and
compressor power. The three input variables were the chiller water inlet temperature,
the cooling water temperature into the condenser, and the number of compressor

cylinders in operation. The model form which was used is

Vi = :Bo,i + A,iTchwi + lgz,iTcwi + ﬂ},izl + ﬂél,iZZ + ﬂs,iZ3 + :Bs,i log(7,,.:)
+ ﬂ7,i(Tchwi )71 + /Bx,i log(7.,,)+ ﬂf),i(Tcwi )71



where the i output variable y,is the calculated value, B ;- 43, are the regression

coefficients, T

chwi

is the chiller water inlet temperature, 7

cwi

is the cooling water

temperature into the condenser, and Z are variables indicating the number of cylinders
in operation. Regression coefficients were determined using a multivariate least-
squares method applied to 8000 operating data points which were assumed to be fault-
free. The R” statistic of the regression indicated that the fit to the data was quite

accurate for almost all of the variables which were used in the FDD routine.

To create residuals to use in fault diagnosis, a black box model was used by Stylianou
and Nikanpour (1996) to predict values for internal temperatures and pressures. The
model uses two input variables, the water inlet temperature into the condenser and

evaporator, and a simple linear equation for all of the output variables as given by
Vi = 180,1' + IBI,iTchwi + ﬂ2,iTcwi

where the i output y;is the calculated value, £ -/, are the regression coefficients,

T

"mi 18 the chiller water inlet temperature, and 7, .is the cooling water temperature
into the condenser. The parameters of the model were determined using a
multivariate least-squares analysis. The results showed an excellent fit to the
experimental data, although the data only covered a relatively small range of
evaporator inlet water temperatures (50°-59°F) and condenser inlet water temperatures

(72°-93° F).

In addition to developing the FDD method considered in his thesis, Rossi (1995) also
suggested some models for rooftop air conditioning units for use with his method.
The performance of a rooftop air conditioner with fixed flow rates is a function of the
condenser and evaporator inlet air temperatures and the moisture content of the
evaporator inlet air. The moisture content can be represented using a relative
humidity, dew point temperature, or wet bulb temperature. There are two modes of
operation for a typical cooling coil, wet and dry. The coil is defined as wet when
water is being removed from the air stream in addition to heat. When the coil is wet,
the energy transfer to the coil is driven primarily by the difference between the
temperature of the evaporating refrigerant and the wet bulb temperature of the air,
independent of dry bulb temperature alone. When the coil is dry, the heat transfer is
driven by the difference between the coil and the dry bulb temperature of the air,



independent of the moisture content in the air. Thus, if the operation between these
two regimes can be separated, the problem of developing a model for the rooftop unit
can be expressed as a function of two independent variables instead of three. To
separate wet coil operation from dry coil operation, Rossi (1995) suggested using the

following form for the models

f( amb > ra’va):fwet(pot evap)*gwet( amb’wa)
+(1_fwet(pot evap))*gdrv( amb > ra)

where f(T,,.T,,T,) is any state in the vapor compression cycle dependent on all

three inputs, T, is the dew point temperature of the evaporator inlet air,
STy = T,,,,) 1s @ function which returns a value of 0 when the coil is dry and 1

T ) are models for individual

when the coil is wet, and g,,(7,,.T,,) and g, (T,,,.T,
properties for the wet and dry operating regimes. Using data generated by the

simulation model, Rossi found that the function 1, (7, —

wet

) can be approximated

evap

as a step function with a threshold value of 2.7° C. Thus, when T, is greater than

by more than 2.7° C, the coil is considered to be wet, and when this difference is

evap

less than 2.7° C the coil is considered to be dry.

Using this form, Rossi (1995) developed models for the total capacity of the rooftop
unit as a function of the driving conditions. In the dry coil region, he found that the
capacity could be approximated by a linear function of the two independent variables.
In the wet region, a much more complex non-linear function was developed to fit the
shape of the data which appeared to saturate at high wet bulb temperatures. Although
Rossi did suggest that these model forms could be used to model the temperatures

required by his FDD method, he did not attempt to fit any of the temperatures.

Breuker and Braun (1998) did extensive research on polynomial modeling for a
rooftop unit with a fixed orifice expansion device. They examined the form of the
experimental data over a range of driving conditions and compared different order
polynomial models. The polynomial orders necessary to produce a satisfactory fit to
both simulation and experimental data are given in table 2.1 shows. Three-inputs and
two-inputs model were compared also. It was concluded that a polynomial model with
three independent variables (three-inputs) provides the most accurate predictions of

the test data, given a large set of training data.
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Table 2.1 Best model orders for 3D polynomial fits for experimental data

Variable Best Model to Use RMS Error (F) Maximum Error (F)
T 1% order 0.49 0.99
T, 3" order with cross terms 1.39 3.03
T, 3" order with cross terms 1.00 3.24
T 1" order 0.31 0.61
T, 2™ order with cross terms 0.46 1.39
AT, 1* order 0.18 0.48
AT, 2" order with cross terms 0.23 0.56

2.2.2 General Regression Neural Network

Donald [1991] described a memory-based network, general regression neural network
(GRNN), which is a one-pass learning algorithm with a highly parallel structure. This
approach eliminates the necessity of assuming a specific functional form of the model.
Rather, it allows the appropriate form to be expressed as a probability density function
(pdf) which is empirically determined from the observed data using nonparametric
estimators. Thus, this approach is not limited to any particular form and requires no prior
knowledge of the appropriate form. Secondly, the resulting regression equation can be
implemented in a parallel, neural-network-like structure. Since the parameters of the
structure are determined directly from examples rather than iteratively, the structure
“learns” and can begin to generalize immediately. Considering that the idea and algorithm
of GRNN is adopted in our FDD modeling, the derivation of GRNN is repeated and in
order to better understand the original derivation some omitted intermediate derivation is

added.

Assume that f(X,y) represents the known joint continuous probability density function

of a vector random variable, X', and a scalar random variable, y . The conditional mean of
v given X (also called the regression of y on X') is given by

[ wrx, ydy
E[y| X]==2 M

[ rx.pay

When the density f(X,y) is not known, it should usually be estimated from a sample of
observations of X and y. Here the consistent estimators proposed by Parzen (1962) are

adopted. These estimators are a good choice for estimating the probability density

11



function, f(X,y), if it can be assumed that the undetlying density is continuous and that
the first partial derivatives of the function evaluated at any X are small. The probability
estimator ]A( (X,y) is based upon sample values X' and )’ of the random variables
X and y, where n is the number of sample observations, p is the dimension of the
vector variable X and o is sample probability width:

. 1 1L X -X)Y (X -X)+(-y)
f(X’y):(27T)(p+l)/2o_(p+l);;exp[_ 202 S ] @)

A physical interpretation of the probability estimate f (X,y) is that it assigns sample
probability of width ¢ for each sample X' and y', and the probability estimate is the
sum of those sample probabilities. Substituting the joint probability estimate f (X,y) in

equation (2) into the conditional mean, equation (1), gives the desired conditional mean of

y given X . In particular, combining equations (1) and (2) and interchanging the order of

integration and summation yields the desired conditional mean, designated y(X):

S~ XA AN g 07 g
50 = 2 e o
S enp- XA (XX )]j_mexp[——(y 2

Perform the following integration:

[ yexpr- 02 g,
—0 20°
iN2
= [ (y=y"expl- (yzgy) Jd(y—y")+[" ¥ exp[- %]dy
r—»")’

[ e YD) =D y)
=0’ | expl—-— 5l

1+ ex d

V[ expl- Sy
iN2 iN2

=52 dexol— P Y ) 1 i ek YY)

[, dexpl=2 21y [ expl 2 1y
(y—y')
202
(y—y')’
2 2

=0+y' f; exp[— ldy
)

=y exp[—=—51dy
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Define the scalar function D},
D’ =(X-X)'(X-X). 6)

Substituting equtions (4) and (5) into equation (3), yields the following:

2

S yiexpl- X XV X=X $ - Py

$(x) = 20 - = 2d ©
n X - XHVY(Xx-X' T on 2
Sewpl- ) T Sen- )

Because the particular estimator, equation (3), is readily decomposed into X and y

factors, the integrations were accomplished analytically. The resulting regression, equation
(6), which involves summations over the observations, is directly applicable to problems
involving numerical data. Parzen and Cacoullos (1966) have shown that density estimators
of the form of equation (2) used in estimating equation (1) by equation (6) are consistent
estimators (asymptotically converging to the underlying probability density function

f(X,p) at all points (X,y) at which the density function is continuous. Provided that

o = o(n) is chosen as a decreasing function of n such that

limo(n)=0

n—>00

and

limno”(n) = 7

n—0

The estimate J(X') can be visualized as a weighted average of all of the observed values,

¥', where each observed value is weighted exponentially according to its BEuclidean

distance from X . When the smoothing parameter ¢ is made large, the estimated density

is forced to be smooth and in the limit becomes a multivariate Gaussian with

covariance °1 . On the other hand, a smaller value of ¢ allows the estimated density to
assume non-Gaussian shapes, but with the hazard that wild points may have too great an

effect on the estimate. As o becomes very large, J(X) assumes the value of the sample
mean of the 3’ and as & goes to 0, P(X) assumes the value of the y' associate with the

observation closest to X . For intermediate values of o , all values of y' are taken into

account, but those corresponding to points closer to X are given heavier weight.
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Output
Units

(layer)

Figure 2.1 Neural-Network Implementation of GRNN

The above GRNN algorithm can be implemented in an artificial neural-network structure
(shown as figure 2.1), which usually defined as a network composed of a large number of
simple processors (neurons) that are massively interconnected, operate in parallel and learn
from experience (training data). The input units are merely distribution units, which
provide all of the (scaled) measurement variables X to all of the neurons on the second
layer, the pattern units. The pattern unit is dedicated to on exemplar or one cluster center.
The summation units perform a dot product between a weight vector and a vector
composed of the signals from the pattern units. The output unit merely performs the

operation of division to get the desired estimate of P(X).

When estimation of a vector Y is desired, each component is estimated using one extra
summation unit, which uses as its multipliers sums of samples of the component of ¥’
associated with each cluster center. There may be many pattern units (one for each
exemplar or cluster center); however, the addition of one element in the output vector

requires only one summation neuron and one output neuron.
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2.2.3 Back-propagation neural network

Neural networks are composed of simple elements operating in parallel. These elements
are inspired by biological nervous systems. As in nature, the network function is
determined largely by the connections between elements. A neural network can be trained
to perform a particular function by adjusting the values of the connections between
elements. Commonly neural networks are adjusted, or trained, so that a particular input

leads to a specific target output.

Back-propagation (BP) neural networks are used most often and were created by
generalizing the Widrow-Hoff learning rule to multiple-layer networks and nonlinear
differentiable transfer functions. Input vectors and the corresponding output vectors are
used to train a network until it can approximate a function or associate input vectors with
specific output vectors. Networks with biases, a sigmoid layer, and a linear output layer are
capable of approximating any function with a finite number of discontinuities. Standard
backpropagation is a gradient descent algorithm, as is the Widrow-Hoff learning rule. The
term backpropagation refers to the manner in which the gradient is computed for
nonlinear multilayer networks. Properly trained backpropagation networks tend to give
reasonable answers when presented with inputs that they have never seen. Typically, a new
input will lead to an output similar to the correct output for input vectors used in training
that are similar to the new input being presented. This generalization property makes it

possible to train a network on a representative set of input/output pairs.

The oldest algorithm is a gradient descent algorithm, for which the weights and biases are
moved in the direction of the negative gradient of the performance function. However, this
algorithm is often too slow for practical problems. So many improved algorithms such as
variable learning rate, resilient backpropagation, conjugate gradient and reduced memory
Levenberg-marquardt, have been proposed to increase training speed and reduce the
memory requirements. Another problem that occurs during neural network training is
called overfitting. The error on the training set is driven to a very small value, but when
new data is presented to the network the error is large. The network has memorized the

training examples, but it has not learned to generalize to new situations.

Since BP artificial neural networks can be used to build classifiers that directly classify input

vectors, they are often used to build both the model and classifier as a whole for FDD use.

In a paper by Li, X., H. Hvaezi-Nejad (1996), an artificial neural network (ANN) prototype

for fault detection and diagnosis (FDD) in complex heating systems was presented. The
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prototype was developed by using the simulation data of a reference heating system. The
prototype was then applied to four heating systems not used during the training phase. Six
categories of fault modes and a reference normal mode were modeled. The paper
demonstrated the feasibility of using ANNs for detecting and diagnosing faults in heating
systems, provided that training data are available which are representative of the behavior
of the system with and without faults. Although the ANN prototype was trained using only
one simulated heating system, it showed good capacity for generalization. Two proposed
structures of network were trained, tested and compared. In their study, a single artificial
neural network performed better than multiple artificial neural networks. This is probably
because a structure composed of a single network learns global knowledge easier than one
composed of two multiple networks. So far, this FDD prototype has been studied only
using simulation data. However, this paper gave no information about the severity of the

faults detected.

Lee, House and Shin (1997) described the architecture for a two-stage artificial neural
network for fault diagnosis in a simulated air handling unit (AHU), and the use of
regression equations for sensor recovery of failed temperature sensors. To simply the
ANN, the AHU was divided into several subsystems. The stage-one ANN was trained to
classify the subsystems in which faults occurt, and the stage-two ANN was trained to
diagnose the cause of faults at the subsystem level. The trained ANNs were applied to
simulation data and shown to be able to identify eleven faults. A regression equation was
used to recover the estimate for the supply air temperature when the supply air
temperature sensor yielded erroneous measurements. The estimates of the sensor

measurement could be used for control purposes during a fault.

2.2.4 Radial basis function

Another black-box modeling technique uses radial basis functions (RBF) that work directly

from data as described by Mees [1992]. The main idea is as follows:

Suppose that by experiment, values y,, ..., »,, of yhave been found at x,, ..., x,,. The

radial basis approximation f(x) fitting the expetimental data is defined by

(=2 Ad(x=x,) ®
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where the radial basis function ¢ can be almost any scalar function of one vatiable we care

to choose, and the A, ’s are computed so that all the known values fit exactly. That is,

¥ =2 A% =%, ) 0

Writing the matrix @ with elements
Dy =(|x; —x; ) (10)
we can rewrite equation (9) as m linear equations in m unknowns:
A=y 1D

where y and A are the vectors with elements y, and A, i=1,---,m . Solving equation
(11), therefore, determines f completely.

Computationally, the significant part of the problem is that of solving the linear equations
(11) for A . The size of the matrix @ is the number m of data points and so the
computational effort, which is of order m’, may be large. Fortunately, this calculation is
only performed once for a particular set of data points and ¢. The work involved to

interpolate for any given point is then considerably less, of order m .

As well as the difficulty of long computation time, there is a risk that as m grows, @ will
become ill-conditioned. Fortunately, Dyn and Levin (1983) found some well-conditioned

@ results form choices of ¢.
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3. Comparison of black-box modeling approaches using

laboratory data

3.1 Laboratory experimental data

Breuker (1997) gathered data under controlled conditions in a laboratory on a test unit
at a number of controlled operating conditions and used the data to test the ability of
several model types to produce accurate estimates of unit performance. This test unit
is a three ton packaged rooftop unit (Carrier Model 48DJE004610) which has a
constant speed and hermetically-sealed reciprocating compressor (Copeland Model
CRH3-0275-TFD) and uses fixed-orifice type expansion devices for refrigerant flow
control. The grid of indoor conditions used in the testing is shown in figure 3.1. The
larger set of data, labeled "Training Data" in the figure, was gathered at indoor dry
bulb temperatures of 70, 73, 76, 79, and 82 F, indoor wet bulb temperatures of 55, 58,
61, 64, and 67 F, and ambient temperatures (not shown in figure) of 60, 70, 80, 90,
and 100 F. The smaller set of data, or "Test Data", was gathered at indoor dry bulb
temperatures of 71.5, 74.5, 77.5, and 80.5 F, indoor wet bulb temperatures of 56.5,
59.5, 62.5, and 65.5 F, and ambient temperatures of 65, 75, 85, and 95 F. As the
figure shows, however, not all dry bulb conditions were simulated at all wet bulb
conditions. A total of 40 distinct combinations were simulated in the "Test Data" and
94 combinations were simulated in the "Training Data" set. The conditions were
selected because they completely cover the normal comfort region defined by
ASHRAE (1993). The reason for gathering the data in two distinct sets was to allow
for training and testing on separate sets of data. Training on the large set and testing
on the small set of data tests the ability of the model to interpolate accurately.
Training on the small set will test the ability of the model to extrapolate beyond the

training data.
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Indoor Conditions for Testing

0.025

o Training Data 0-80
o Test Data

0.020 [-
0.60

0.015 |-

0.40

64 F o

o

0.000 s 1 s 1
60 70 80

T[F]
Figure 3.1 Indoor conditions simulated for training and testing steady-state models

The training data were gathered by running the rooftop unit with no faults. Data was
gathered over the course of three weeks of testing. To ensure that there were no faults
developing in the test unit over this time period and to test the experimental noise
which is present in the operation of the test unit, a test condition at Toy, = 85 F, Ty =
76 F, @, = 42% was retested every few days. The results of this repeatability test for
all of the measurements used by the FDD technique are shown in table 3.1. The most
noisy measurements, as expected, are the suction superheat and hot gas temperatures.
This level of experimental noise is already considerably above the measurement error
levels which were used in the steady-state analysis of the FDD technique performed
by Rossi. Figure 2.2 shows the level of suction superheat during the repeatability test.
The fact that the graph is not increasing during the test indicates that the level of
charge in the system is not decreasing, since suction superheat is particularly

dependent on the charge level in the system. One cannot expect to develop a model
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which is more accurate than the experimental noise of the measurements which are

used in learning the model.

Table 3.1 Repeatability analysis during steady-state model testing

Property | T, Ty, Ty, Teona T, AT, AT,
of Data

(deg. F)

Mean 43.76 8.42 195.11 108.69 7.05 11.72 19.14
Std. Dev. | 0.39 1.73 1.25 0.40 0.25 0.09 0.17
Spread 1.21 4.80 4.04 1.28 0.60 0.26 0.64

Suction Superheat vs. Time During Repeatability Test

Suction Superheat (F)
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Figure 3.2 Suction superheat during repeatability test
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3.2 Comparisons

Four black-box modeling approaches: polynomials, GRNN, RBF and BP neural networks

were investigated using the laboratory data. Seven characteristic parameters (evaporating

temperature 1, condensing temperature 7,

evap » compressor discharge temperature

ond >

T dis » suction line superheat Tsh , liquid line subcooling TSC , condenser air temperature

difference AT, evaporator air temperature difference AT,,) for FDD wete modeled.

ca’
Since the gathered data are very limited (94 points for large set data and 40 points for small
set data), when testing interpolation, the large data set were used to train models and both

the small and large data set were used to test models. When testing extraplation, the core of

the total data (7, from 73 to 79 F, T, , from 70 to 90 F, T’ , from 58 to 64 F) were used

a

to train models and the remaining data were used to test models.

To get a visual feeling of the modeling performance, figure 3.3 and figure 3.4 show the
training performance and testing performance for evaporating temperature. Table 3.2 and
figure 3.5 show the RMS error for the polynomial models. Polynomial models have good
interpolating ability when the order is high enough (e.g. third order) and the interpolating
performance increases as the order increases. However, low-order polynomial models have
good extrapolating performance, while the extrapolating performance will be very poor
when the polynomial order is too high (e.g. the third order). So there exists a conflict

between interpolating and extrapolating performance.

Table 3.2 and figure 3.6 show that the GRNN models have very good interpolating ability
but poor extrapolating performance. The spread has a significant influence on the
interpolating performance but little influence on extrapolating performance. The smaller
the spread, the better the interpolating performance. Another advantage of GRNN is that
training is very fast. The disadvantage of GRNN is that large memory is required to record

the nodes when the number of nodes is large.

From table 3.3, it can be seen that the BP neural network has very good interpolating
ability when the number of neurons is appropriate, but extrapolating performance is poor.
Also the performance is a little random, because the initial condition is random. The

weakness of the BP neural network is that it takes a little long time to train.
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Similar to GRNN, RBF has very good interpolating performance but poor extrapolating

performance, which is shown in table 3.2. Table 3.4 summarizes the comparison among

polynomial , GRNN, BP and RBF modeling approaches.
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Figure 3.3 Training performance of third order polynomials for evaporating temperature
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Figure 3.4 Testing interpolating performance of third-order polynomials for evaporating

temperature

22



O interpolation(polynomials) B extrapolation(polynomials) ‘

3

2.5

RMS error (F)
PN

o
[¢)]
|

o

1 2 3

Polynomials order

Figure 3.5 Polynomial regression performance (7, ap model)

B interpolation(GRNN) B extrapolation(GRNN) |
25
2 |
m
§ 1.5
.
Q
w 1
=
14
0.5 |
0
1 2 3
GRNN spread*10

Figure 3.6 GRNN petformance (7, model)

23



Table 3.2 RMS error (Polynomial, GRNN and RBF fitting for laboratory data)

RMS error (F) Polynomial Order GRNN Spread
1 2 3 01 |02 |03 |RBF
Interpolation | tralning | a0, | 0.4006 | 0.3044 0 | 0.1148 | 0.5034 0
T tCSUNE | 07275 | 0.434 | 04301 | 0.2188 | 0.2393 | 0.4827 | 0.4717
evap - e
Bxtrapolation | training |  eges | 0303 | 0.2734 0 | 0.0003 | 0.0541 0
Interpolation | training 0521 | 0336 | 0.3252 0| 0269 | 1.2985 0
T, teSUNg | 04877 | 0.3506 | 0.3449 | 02033 | 0.3047 | 1.1282 | 0.4366
CON : 11
Fxtrapolation | traling | 4 5537 | 03136 | 0.2673 0 | 0.0006 | 0.1316 0
Interpolation | trAINING | ) 4o0s | 4 3056 | 4355 0| 03035 | 1.3126 0
T, tCSUNE | 52856 | 1.3583 | 1.3092 | 0.5659 | 0.6217 | 1.2627 | 0.8922
; . —
Extrapolation | traling | , 159 | (9145 | 0.900 0 | 0.0005 | 0.113 0
Interpolation | tralNINg |  aeq | 03026 | 0.384 0 | 00872 | 0.386 0
T tCSUNE | 08237 | 04223 | 04238 | 0.2205 | 0.2409 | 0.4 | 0.4442
5¢ Extrapolation training
Interpolation | traININgG | , 4065 | 47555 | 17013 0 | 0.3005 | 1.1706 0
T, teSUNg | 23956 | 1.7524 | 1.6646 | 0.7254 | 0.7699 | 1.2635 | 1.1423
s Extrapolation | training
Interpolation | EralNINgG | 204 | 0.1402 | 0.1353 0 | 00292 | 0.1165 0
AT teSUNE | 02113 | 0.1525 | 01532 | 0.0828 | 0.0865 | 0.1306 | 0.1532
ca . 1411
Extrapolation | traling | 546 | 1055 | 0.095 0 | 0.0001 | 0.0119 0
Interpolation | tralNINgG |  g44g | 02197 | 0.2172 0| 0.1193 | 0.5324 0
AT teSUNE | 0.8066 | 0.2269 | 0.2278 | 01375 | 01711 | 0.4831 | 0.1666
ea . 111
Bxtrapolation | training | 4 6325 | ¢.4067 | 0.1022 0 | 0.0002 | 0.0413 0

testing
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Table 3.3 RMS(BP fitting for laboratory data)

Number of Neurons(First trial)

Number of Neurons (Second trial)

RMS error (F)
6 12 18 6 12 18
Interpolation | UaINING | 3514 | 02068 | 02283 | 02387 0227 | 02043
T (eSUNg | 4707 | 0495 | 04956 | 04918 | 04933 | 05218
evap . i
Bxtrapolation | tralning | o 1o | 6149 | 12108
Interpolation | taINING | 3305 | 02643 | 02544 | 03537 | 02668 | 02621
T, CSUNS | 03893 | 04555 | 04591 | 03483 | 04515 | 04549
COn . 11
Extrapolation | training 0.2336 0.2285 0.2289
Interpolation | tralnINg | 6005 | 05502 | 08923 | 0.6043 | 06319 | 07424
T, teSUNS | 09934 | 09984 | 10172 | 09935 0934 | 09473
IAY . 11
Extrapolation | taltINg | 4763 | 07584 | 04777 0478 | 05168 | 19844
Interpolation | UAlNING | 4545 | 0305 | 0325 | 03543 | 03543 |  0.3542
T TCSUNS | 04362 | 04363 | 04363 | 04646 | 04644 |  0.4643
sc : 11
Bxtrapolation | training | 1655 | 041902 | 02503 | 01992 | o0.%82 |  0.1992
Interpolation | taINING | o975 | 10046 | 10024 | 09984 | 07823 | 10118
T, (CSUNS | 40464 | 1.0519 | 1.0422 1045 | 10605 |  1.0531
. : —
Extrapolation | WAINING | 7033 | 10702 | 07257 | 07248 | 08625 | 07276
Interpolation | training |, 17, 007 | 00768 |  0.0829 0.074 | 00716
AT teSUNS | 01426 | 01408 | 01377 | 01412 | 01406 |  0.1459
cd Extrapolation | training
Interpolation | WG | 1413 | 041389 | 0.1372 0441 | 041375 |  0.1424
AT testng | o1ge7 | 0.1855 | 0.1824 |  0.1905 |  0.1831 0.1974
ed Extrapolation | training

testing
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Table 3.4 Contrast of Black-box modeling approaches

Characteristics [Advantages Disadvantages
Polynomials [Assume polynomial  [Easy to build Conflict between

functional form of the I ow-order model has mterpolatl'on and

model extrapolation

reasonable extrapolating
performance

GRNN Memory-based Very fast training Need to cluster the data to
network . . reduce nodes and memo
tw Very good interpolating y
. when data are large
One-pass learning performance
aloorithm . Poor extrapolatin
& No conflict between f xtrap )
A ) ) erformance
Parallel structure interpolation and extrapolation P
Free from the Parallel ANN-like structure,
necessity of assuming [not iterative, able to operate in
a specific functional  [parallel
form of the model; . .
> [Takes noise and disturbances
into account
Easy to be adaptive
Every additional output needs
only two additional units
Back- Weights and biases | Very good interpolating Need long time to train
Propagation [are moved in the erformance; .
pag o P ’ Poor extrapolating
direction of
. performance
minimizing the
network error
Radial basis [Use radial basis Very good interpolating Poor extrapolating
interpolationffunction as basis performance performance;
function to
interpolate

Strictly speaking, most real systems are nonlinear and can be expanded by Taylor series.

Wide use of the first order approximation of Taylor series in engineering shows that most

real systems have a low-order dominant component, so low-order polynomials which

capture the system performance will have reasonable extrapolating performance far outside

their training data range while high-order polynomials will extrapolate very pootly.

However, the interpolating performance is normally proportional to the polynomial order.
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So the interpolating performance of polynomials conflicts with their extrapolating

performance.

Other black box modeling approaches such as GRNN, RBF and BP ANN can have very
good interpolating performance and but can not be expected to extrapolate very well far

outside the training data range.

3.3 Polynomial plus GRNN model

Low-order polynomials have good extrapolating ability but poor interpolating ability,
whereas, GRNN, BP ANN and RBF have very good interpolating ability, so the
combination of polynomials with one of GRNN, BP or RBF modeling approaches could
have both good interpolating ability and good extrapolating ability. The result can be seen
from the table 3.5.

GRNN was selected in ombination with polynomials since GRNN is easy to adapt. Nodes

can be added to or deleted from the network to improve the accuracy.

First, a low-order polynomial model is regressed with the training data and then the
residuals between the polynomial output and the training data are fit with a GRNN as
shown in figure 3.7. After training, the model can be used to generalize as shown in figure

3.8.

The order of the low-order polynomial model depends on the characteristic of the system
modeled. Different systems and different variables of the same system have a different
“dominant order”. Usually the “dominant order” is not greater than two. Before modeling,
the “dominant order” of the system is not known so the “dominant order” is determined

by evaluating the extrapolating performance. Table 3.5 shows that first-order for

Tevap ,Tcond ,T dis and Tsh and second-order for Tsc, ATca and AT, ea work well and are

best for polynomial models. The purpose of the low-order polynomial model is to
optimize the extrapolating performance, whereas the GRNN compensates and improves
the interpolating performance, which is sacrificed by the choice of a low-order polynomial
model. The GRNN may improve also the extrapolating performance somewhat (figure
3.9). The interpolating and extrapolating performance of the various approaches are

summatized in table 3.6.
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Polynomial plus GRNN Training

- Residuals
Desired GRNN
_>
output v + model  + Output
Low-order 4 +
Polynomial
A
Driving
conditions
Figure 3.7 Polynomial plus GRNN training blcck diagrams
Polynomial plus GRNN Generalization
Low-order
Measurements Polynomial + Output
of Driving  —
conditions .. GRNN +
model

Figure 3.8 Polynomial plus GRNN generalization block diagrams
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Table 3.5 RMS(Polynomial plus GRNN, BP and RBF fitting for laboratory data)

Al ial+ ial+
S etror () Polynomial+GRNN Polynomial+BP | Polynomial+RBF
1 2 3 1 2 1 2
Interpolation | training 0 0 0| 08002 | 0.6931 0 0
T esung | oo1gs | 02233 | 02242 | 05152 | 04719 | 04858 | 04826
evap . s
Extrapolation | training 0 0 0| 06895 0.579 0 0
Interpolation | training 0 0 0 0.521 | 0.4269 0 0
T, esung | 55033 | 02059 | 02089 | 03974 | 03734 | 0.4241 0.4205
con - b
Extrapolation | training 0 0 0| 05237 | 04216 0 0
Interpolation | training 0 0 0| 23693 | 2.2698 0 0
T, tesung | oseso | 0582 | 05706 | 20733 | 20486 | 0.9199 0.941
; : —
Extrapolation | training 0 0 0| 20129 1.919 0 0
Interpolation | training 0 0 0| 08489 | 06177 0 0
T eSUg | 02005 | 02404 | 02447 | 07606 | 05003 | 04427 | 04519
s¢ Extrapolation | training 0
Interpolation | training 0 0 0| 24055 | 22945 0 0
T, eSUNg | o 7o54 | 07464 | 07331 | 23721 | 23807 | 11347 | 11524
s Extrapolation | training 0
Interpolation | training 0 0 0| 02004 o0.1846 0 0
AT tesung | 90828 | 00823 | 0.0858 0.188 | 0.1647 |  0.1561 0.1574
ca . L
Extrapolation | training 0 0 0 0.1516 0.1463 0 0
Interpolation | training 0 0 0| 08448 | 0.6804 0 0
AT esung | o375 | 01244 | 0427 | orore | 05133 | 04925 | 02049
ea . 11
Extrapolation | training 0 0 0| 06322 05634 0 0
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Figure 3.9 Polynomial plus GRNN modeling performance (Tevap Model)

Table 3.6 interpolating and extrapolating performance

Performance fitting interpolation extrapolation
Method
+++ +++ +++
Polynomials ++++ ++++ ++
+++++ +++++ +
BP +++++ +++++ ++
BP+Polynomials +++++ +++++ +++(+)
GRNN +++++ +++++ ++
GRNN+Polynomials | +++++ +++++ +++(+)
BRF +++++ +4++++ ++
BRF+Polynomials +++++ +++++ +4++(+)
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4. Modeling field site data

Polynomial plus GRNN models had good performance when tested with laboratory data.
However, some factors, which will affect the actual field operations of rooftop units, were
not considered in the experimental tests. Examples include unmeasured ambient weather
conditions, such as solar radiation, rain, and strong wind on the condenser. Also the
damper position changes the air flow rate. The laboratory experimental data was collected
with a constant air flow rate. Since the mixing chamber is small, outdoor air and return air
are not mixed well and different damper positions also have some impact on mixing. So it

is necessary to investigate the impact on the model of these different factors.

4.1 Impact of unmeasured weather variables

4.1.1 Solar radiation impact on the system

Solar radiation has an impact on the whole system, which will absorb different amounts of
radiation when the intensity of sunshine is varied. The most significant and direct impact is
on the condenser. Fortunately, the solar radiation impact on the system is also reflected in
the temperature sensor readings exposed to the solar radiation. However, whether the solar
radiation impact on the whole system is properly reflected in the sensor’s readings needs to
be investigated. Solar radiation impact on the whole system will be analyzed inversely by

modeling. It is necessary to investigate the impact on the sensor’s reading before the data

are used to build 2 model.

There are two temperature sensors, condenser inlet and outlet air temperature sensors, that
are exposed to solar radiation. From the data gathered during August 13 to August 17 at
Purdue field site (figure 4.1) when the solar radiation was not very intense, it is apparent
that the solar radiation impact on the condenser inlet air temperature sensor is as much as

15F.

From figure 4.2, it is clear that the solar radiation impact on the condenser outlet air
temperature sensor readings depends on whether the condenser fan is on or off. When the
condenser fan is off, the solar radiation impact is up to 15 F. However, when the
condenser fan is on, the solar radiation impact on the condenser outlet air temperature

sensor readings is less than 1 F. Fortunately, the data when the condenser fan is off is not
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used to build the steady-state model and the solar radiation impact on the condenser outlet

air temperature sensor readings can been ignored.

110
—— 12:Condenser inlet air temperature
—— 21:Condenser inlet air temperature (shielded)
100
T 90
()
S
2
s 80
S
[
Q
€ 70
-
60
50

13:00 23:06 9:06 19:06 5:06 15:06 1:10 11:10 21:10 7:10
Time (From August 13 to 17)

Figure 4.1 Solar radiation impact on condenser inlet air temperature readings (Purdue field

site)
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Figure 4.2 Solar radiation impact on condenser outlet air temperature readings (Purdue

field site)

The process of solar-heat gain for the sensor is illustrated schematically in Figure 4.3. Since
the sensor surface is opaque, transmittance 7 is zero and a portion of the solar energy is
reflected and the remainder absorbed. Since the sensot’s thermal capacity is small it reaches

steady-state very quickly.

According to steady-state energy balance on the sensor,
Aal, = Ah,(t,—t,)

where, A =sensor surface area, o =absorptance, /, =irradiation on sensor exterior surface,

t, =ambient air temperature, f, =sensor surface temperature (sensor’s reading), and

h, =heat transfer coefficient between sensor and ambient ait.
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a, p,T

Figure 4.3 Solar radiation impact on the temperature sensor reading

Rearrange the above equation to get

al . . .
Note that h—’ + 1, is also the sol-air temperature for any surface having the same « , 1, ,h

>Tt> o

o

and 7,. The sol-air temperature of HVAC equipment surfaces is an equivalent outside air

temperature increased by an amount to account for the solar radiation when the heat
transfer is calculated between outside air with the opaque HVAC equipment surfaces.
However, only the form is the same, since different surfaces have different absorptances
and incident radiation. HVAC equipment have surface absorptances that are different from
the absorptance of temperature sensor and also different components of the HVAC
equipment have different absorptances. The condenser can be considered a black body
with an absorptance of 1. What’s more, in deriving the above so called sol-air temperature,
thermal balance is assumed and thermal storage is neglected, which is well satisfied by the
temperature sensor but not by the HVAC equipment whose thermal storage is more
significant. So the unshielded temperature sensor’s reading is not exactly the sol-air

temperature of the HVAC equipment.
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For the condenser outlet air temperature sensor, the air flow rate is very high when the

. . al, .
condenser fan is on, and thus £, is large and h—’1s small.

o

As a result,

al
When condenser fan is off, the air flow rate is very low and A, is very small and h—’is

o

relatively large.. However, the data when unit is off is not used to build the model.

In order to decide whether the unshielded or shielded sensor’s reading should be used to

build the HVAC system models, both options were evaluated.

4.1.2 Rainfall impact on the system

Rainfall on the condenser will cause evaporative cooling and will increase energy transfer
rates. Rainfall will also influence the readings of exposed temperature sensor, Figure 4.4
shows that an unshielded sensor’s reading will be about 2 F lower than a shielded
temperature sensor in rainfall. The shielded sensot’s reading is the dry bulb temperature of
the ambient air and the unshielded sensor’s reading approaches the wet bulb temperature
of the ambient air, since the unshielded sensor is exposed to the rain and the rain water on
the sensor will evaporate and cool the rain water on the sensor. Although, this temperature
is not exactly the same as wet bulb temperature of the air, it is near to the wet bulb
temperature. So the difference between the shielded sensor and unshielded sensor is
dependent on the relative humidity of the air. However, normally the relative humidity of

air in rain will be high enough to make the difference within 2-3 F.
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Figure 4.4 Rainfall impacts on temperature sensor readings (Purdue field site)
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4.2 Data Processing
4.2.1 Driving condition problems

Of the three driving conditions, only outdoor air temperature and mixed air temperature
are measured directly at the California field sites. One way to get mixed air humidity is to
compute it from return air temperature and humidity and outdoor air temperature and
humidity. The mixing process for outdoor air (0a) with return air (ra) is shown as figure

4.5.

0.050

L | ) | L | L l L | L L
Pressure = 101.3 [kPa]

0.040

0.030

0.020

Humidity Ratio

0.010

0000 1 | 1 | 1 | 1 | 1 | 1 | 1
10 15 20 25 30 35 40 45

T[°C]

Figure 4.5 Outdoor air and return air mixing process

Tma _Tm — Wma _Wra
TO(J - Tma Woa - Wma

T ma > T va Toa , VVm and WO , are knowns, from the above equation Wm , 1s obtained and

thus the state of ma is settled. However, there are some problems with this scheme.

First, when 7, and 1|, are equal (T, should be equal to T, and T, ,), the state of ma

can not be determined, as depicted in figure 4.6.
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Figure 4.6 ma state cannot be determined when 7,, =T,

Second, when there is some uncertainty in the ra and oa states, the calculation according to
the above equation will amplify the uncertainty in the mixed air state, which is shown in

figure 4.7 schematically.
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Figure 4.7 Uncertainty analysis for MAW

Assume that the oa and ra uncertainties are within a circle with radius 7 and there is no

uncertainty in 7, ,, then the uncertainty for W, propagated and amplified by the oa and

ma >

ra uncertainties will be,

AW =2 o
sin@

It is obvious that the uncertainties will be propagated and amplified when 6 is less than
90°.
So it is necessary to add a mixed air humidity sensor to fix the ma state and avoid

uncertainty propagation and amplification.

However, there is another way to get mixed air humidity by computing it from return air

temperature and humidity, outdoor air temperature and humidity and ratio of return and

outdoor air mass flow rate f by following equation,
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ma ra

T.-T. W, -W,. m

oa ma

r..-T, W.,-W, m

Oa:f

ra

If the speed of the evaporator blower is constant, f approximates the ratio of return and

outdoor air duct damper positions, which can be readily obtained from Honeywell DCV

controllers. Although, unlike the first method, the ma state can be determined for any

case, uncertainties will be propagated and amplified when € is less than 90°.

In view of performance, it is still desirable to add a mixed air humidity sensor to avoid
uncertainty propagation and amplification. However, since the humidity sensor is relatively
expensive further work should be done to decide whether the extra expense is warranted

by the improved accuracy.

4.2.2 Steady-State Detector

In order to apply a steady-state model to a system, which spends considerable time in
transient operation, a steady-state detector is necessary. Thus, the error in the ability of the
model to fit the training data is added to the error introduced by the fact that the system is
almost never actually operating in steady-state. There are a number of desirable properties
of a steady-state detector method. It should be computationally efficient, require a small
amount of memory for storing values, be responsive to quick changes in operation, and be
able to distinguish between changes in measurements caused by transient operation and

measurement and system noise.

Three methods were studied by Davis (1995) through simulation for simple first-order
responses with artificial noise introduced. The three steady-state detector methods all
generate outputs which decrease as the system approaches steady-state. When the output
of the steady-state preprocessor drops below a threshold value, the system is determined to
be in steady-state. The first algorithm computes the slope of the best-fit line through a
fixed-length sliding window of recent measurements. The other two algorithms compute
the variance of recent measurements. One uses a fixed length sliding window of recent
measurements. The other method, introduced by reseachers at Landis and Gyr (Glass,
1995), recursively computes a weighted standard-deviation where more recent
measurements are weighted more heavily. Based on his analysis, Davis concluded that the

weighted standard-deviation method was the best of the three methods in terms of
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efficiency and performance for the simulated data that he studied. These methods,
however, have not been compared using real operating data. Breuker (1997) compared the
performance of the methods using actual transient data recorded for the FDD

demonstration shown in figure 4.8.

Each of the methods has design parameters that affect its performance. For the slope and
variance methods based on measurements in a fixed-length sliding window of recent
values, the number of measurements in the fixed-length window, the frequency with which
new measurements are taken, and the steady-state detector threshold are the design
parameters. Instead of using a fixed window length, the exponentially weighted variance
method uses a forgetting factor to reduce the contribution of successively older

measurements on the variance calculated at each step.

In order to compare the performance of the three methods, each was applied to a transient
start-up profile for hot gas temperature from a rooftop air conditioning unit. This analysis
used a fixed window length of 10 measurements and a forgetting factor of 0.7 with
measurements being taken from the test unit every 5 seconds. The forgetting factor of 0.7
was chosen to give similar outputs between the variance calculated from the sliding
window and the exponentially weighted variance. The first observation which can be made
about the slope method with the two variance methods is that the slope can assume both
positive and negative values, while the variance is only positive. This could lead to a
problem with the slope method, since an overshoot could be interpreted as steady-state
operation. For this reason, the methods which utilize variance rather than slope are more
reliable. Figure 4.8 shows that the two methods which utilize variance as an indicator of
steady-state operation have almost identical outputs during their transient startup. Since
the exponentially weighted method is more computationally efficient than the fixed-

window method, this method was selected for further study.
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Figure 4.8 Output of three steady-state detectors on Ty, measurement (Breuker,1997)

Finding the right forgetting factor is important in tuning the exponentially weighted
variance method for a particular application. As the forgetting factor increases, the
response of the steady-state detector becomes more stable and more sluggish. It appears
that a forgetting factor range of 0.6 - 0.8 provides reasonably quick response without

introducing too much short-term noise.

Figure 4.9 shows transient data and output of a steady-state detector during August 21 to
24 for the Purdue field site. An exponentially weighted steady-state detector with a
forgetting factor of 0.7 was used. The zero values of the detector output mean the system

was not considered to be at steady state. The steady-state detector appears to work well.
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Figure 4.9 Steady-state detection

4.2.3 Clustering of steady-state data

For some problems, the number of data points may be small enough that all of the data
available can be used directly in learning a model. In other problems, the number of data
obtained can become sufficiently large that it is no longer practical to assign a separate
node to each data. Clustering techniques can be used to group data so that the group can
be represented by only one data point. Clustering of steady-state data is necessary for the

following two reasons:

Firstly, there are measurement noise and system disturbances, so clustering will act

as a filter.

Secondly, clustering will reduce the large number of steady state data to much a
smaller set of steady state data. This will greatly reduce the nodes of the GRNN
and memory to realize the GRNN algorithm.

First, establish a single radius of influence, r . Starting with the first point (X,Y),
establish a cluster center, X', at X . All future data for which the distance ‘X -X i‘ is less

than the distance to any other cluster center and is also <7 would be grouped into cluster
I . A data point for which the distance to the nearest cluster is larger than » would become

the center for a new cluster. After clustering, the expectation (average) of each group data
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will be calculated to represent the whole group. The radius 7 is an important parameter for
the performance of clustering algorithm. For example, there are 256 of steady-state data
points after steady-state detection for the data taken during August 13 to 17 at Purdue field

site; there are 54 clusters after it is clustered.

4.3 Purdue Field Site Results

The interpolating performance of the polynomial plus GRNN model is very good, as
shown with laboratory data. The interpolating performance for field site data (partially
shielded condenser inlet air temperature) is also good, as shown in figures 4.10, 4.11 and

4.12.

To test extrapolating performance, three cases were considered, one using a partially
shielded condenser inlet air temperature, one using a fully shielded condenser inlet air
temperature and one using an unshielded condenser inlet air temperature. Since shields 1,
2 and 3 (figure 4.13) do not isolate the temperature sensors completely from solar
radiation, rainfall and wind the way the outdoor air duct does, “partially shielded” refers to
sensors shielded by shields 1, 2 and 3 and “full shielded” refers to the sensor in the
outdoor air duct (figure 4.13) which is totally isolated from the environment. Figures 4.14
to 4.22 show that models built with partially shielded condenser inlet air temperature have
reasonably good extrapolating ability which is the best among the three kinds of model.
Models built using unshielded condenser inlet air temperature extrapolate poorly. The
model that uses fully shielded condenser inlet air temperature data also extrapolates well
but a little worse than the partially shielded condenser inlet air temperature model except
that evaporating temperature is extrapolated better than with partially shielded model. So it
can be concluded that the solar radiation impact on the whole system is not so significant
as on the unshielded condenser inlet air temperature sensor. The readings of the
unshielded condenser outlet air temperature sensor exaggerate the solar radiation impact
on the system. In addition, the fully shielded sensor readings also underestimate the solar
radiation impact on the whole system. The exception is for the evaporating temperature
because the solar radiation and outdoor air temperature have very little impact on the

evaporator, which is mainly driven by mixed air temperature and humidity. In summary,

figure 4.23 shows an overview of the environmental factor impacts on modeling

performance.
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Figure 4.12 Interpolating performance for discharge temperature

Figure 4.13 Purdue field site setup
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Figure 4.15 Extrapolation performance of condenser temperature model using partially
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Figure 4.21 Extrapolation performance of condenser temperature model using fully
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4.4 California field site results

Since there are some problems with data collection in California, there is not enough data
to train models for every site. In this section, results are presented for one site, Milpitas.
The rooftop unit has one stage and is installed in a McDonalds. This rooftoop unit is a
little different from the unit at Purdue field site. First, there is no mixed air humidity
sensor available, so the damper position reading is used to calculate the mixed air humidity.
Second, from the data collected during August 28 to September 26 (Figures 4.24 and 4.25),
this unit kept cycling very frequently and seems that it never reached steady-state, so the
steady-state detector parameters were modified to get some “steady-state” data (Figure
4.26). A moving window steady-state detector with a fixed window width of 2 was used.
Figures 4.27 and 4.28 show the interpolation and extrapolation performance for
condensing temperature, respectively. The interpolation performance was evaluated by
randomly selecting two-thirds of the total data during August 28 to September 26 to train
the model and one-third of the total data to test the model. For figure 4.28, the data
collected during August 28 to September 15 was used to train the model and the data of
September 15 to 26 was used to test the extrapolation performance. These two figures
show that condensing temperature models worked reasonably well. Evaporating
temperature models had RMS errors of 0.7528 I for interpolation and 1.1152 F for
extrapolation. However, discharge line temperature models worked poorly and their RMS
errors were 2.345 I for interpolation and about 4 I for extrapolation. The discharge line

temperature takes the largest time to reach steady-state.

90

80

70

60

50

40

Evaporating Temperature (F)

30

8/28/2001  9/1/2001 9/6/2001  9/11/2001  9/16/2001 9/20/2001 9/26/2001
0:00 15:20 18:50 12:25 2:31 19:31 8:56

Time

Figrue 4.24 Frequent cycling of Milpitas site during August 28 to September 26

52



90

80

) I

60 -

LTV I

Evaporating Temperature (F)

30 T T T T T T T T T T T T T T T T T T T T T T T T I T T T T T T T T T T T T T T T T T TIT T T

8/28/2001 11:00 8/28/2001 14:45 8/28/2001 16:51 8/28/2001 18:58

Time

Figrue 4.25 Frequent cycling of Milpitas site on August 28

L 120 4

q!_,) Transient Data

= Output of steady-state detector (Steady-state=1,Transient-state=0) 5

m -—t

g 90 38

o

£ 2

(0]

— 60 | 22

o) )

£ 7

© >

5 30 13

ot 2

LIJ 0 (T 0

8/28/_2001 9/2/2001  9/8/2001 9/14/2001 9/20/2001 9/26/2001

0 15:25 21:05 13:05 6:21 17:53

Time

Figure 4.26 Steady-state detection for Milpitas site

53



105
105

95
cond (F)

90
Measured T

85

RMS

105
100 F-------

105

puoo

(4) 1 psjoipaid

1 pspipald

puoo
)

(4

Figure 4.27 Interpolation performance of TC ond Model for Milpitas site

54

I

cond(F)
Figure 4.28 Extrapolation performance of ~ cond model for Milpitas site

Measured T



5. Adaptive Polynomial plus GRNN

Although the polynomial plus GRNN model has excellent interpolating performance and
good extrapolating performance in the range of the training data, the extrapolating

performance far outside the range of the training data is not guarantied, especially for,
1. Noisy training data, which is a characteristic of measurement data
2. Sparse training data, which is normal when FDD is first commissioned
3. Range-limited training data, which is a normal case for field data
4. Strong nonlinear area where dry conditions change to wet conditions
5. Limited nodes, which will reduce memory greatly and reduce computing time

It is obvious that the interpolating ability is always far better than extrapolating ability. And
the nearer the data to training data, the better the extrapolation ability. So the model
perfomance can be improved greatly by enlarging the range of training data and changing
the model extrapolation issue into an model interpolation issue, which can be realized by
changing the fault free outside data into training data online. So it is advisable for a

modeling approach to be adaptive to improve the robustness of the FDD method.

In addition to extrapolating performance improvement, adaptive modeling also will
improve interpolating performance. The interpolating performance will be improved
further if some more nodes are added when the training data is very sparse and where it is

highly nonlinear, say, in the dry/wet area.

To realize the adaptability, modeling and FDD should be considered as a whole, because
fault free data should be guarantied in order to make use of the newly coming data. The
adaptive modeling scheme is shown as figure 5.1. After the model is trained using limited
original data, the model and the FDD system are commissioned. While the model and

FDD system are being commissioned, the measurements will be processed as follows:

Firstly, measurements will be feeded into a steady-state detector to obtain steady state data.
Secondly, steady state data are inputed to the preprocessor, where the model is embeded,
to decide whether the data are “ inside or near the training data” or not. If yes, the model
will generalize the measurements, and then feed the expected value to the classifier to
decide whether there is a fault or not, and if there is no fault, the new data will be recruited
into new training data and used to refine the original model . If the data are not  inside or

near the training data”, the incoming data will not be processed further but will be stored.

55



Since air conditioners always cycle, there is no doubt that some data which are “inside or
near the range of training data” will appear. Using these coming “inside or near the training
data” data, the FDD system can decide whether the system has a fault or not. If not, it can
be said safely that the stored data also are free of a fault, so they can be recruited into the

new training data and used to adapt the model.

Since so far the FDD is not developed, here only modeling adaptability is discussed and
the combination of FDD and modeling will be not discussed here. The benefit of
modeling adaptability can be simulated by adjusting the number of training data with the
total number of data points being constant. The simulation results are shown in figure 5.2
using laboratory data collected by Breuker (1997) which are organized as table 5.1. Figure
5.2 shows that the model performance is improved considerably with the expanding range

of training data.

Inside o
State near the

Detector training
processor

Measurements

Figure 5.1 Adaptive modeling scheme block diagram
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Table 5.1 Data organization for adaptive modeling

Training data set

Driving conditions range

Training data

number T.,® T, (F) T,,® amount
1 73-71.5 70-85 58-62.5 16
2 73-79 70-90 58-64 35
3 71.5-79 065-90 56.5-64 48
4 71.5-80.5 05-95 56.5-65.5 67
5 70-80.5 60-95 55-65.5 96
0 70-82 60-100 55-67 135
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6. Conclusions and future work

So far,
[

Some literature about FDD modeling has been reviewed

Four black-box modeling approaches: polynomial, BP neural network, RBF
and GRNN, were compared using laboratory data

A polynomial plus GRNN modeling approach was proposed in order to
improve modeling perfomance and was tested using Purdue field site and one
california field site data. Some environmental facors have been investigated in
field modeling,

In order to further improve the robustness of FDD modeling, an idea of
adaptive FDD modeling was proposed and was simulated using laboratory data

Future work will be to,

Continue to complete the modeling work for California sites
Develop and implement a prototype FDD System

Develop an improved FDD method for handling multiple faults that occur
simultaneously

Implement improved FDD method in the field sites

Perform an economic assessment of the FDD system for California
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NOMENCLATURE

AHU = Air handling unit

o = False alarm threshold

B = Fault diagnosis threshold

d’ = Normalized distance square

EER = Equipment efficiency ratio

ATca = Condenser air temperature difference
AT,, = Evaporator air temperature difference
n, = Compressor volumetric efficiency

FDD = Fault detection and diagnosis

GRNN = General regression neural network
HVAC = Heating, Ventilating, and Air-Conditioning
M = Mean vector of residuals

m, = Refrigerant mass flow rate

y7i = Mean

N = Number of suction strokes per unit time
P = Relative humidity of return air

P, = Discharge pressure

= Suction pressure

Qcap = Cooling capacity

RBF = Radial basis function

RMS = Root mean square

RTU = Rooftop unit

o = Standard deviation

XY = Covariance matrix of residuals
Tamb = Ambient temperature

T.,. = Condensing temperature

T, = Discharge line temperature
Temp = Evaporating temperature

T, = Liquid line temperature

T, = Mixed air temperature

T, = Outdoor air temperature

T, = Return air temperature

Tsc = Sub-cooling

T, = Superheat

v, = Specific volume of compressor inlet refrigerant
VAV = Variable air volume

W = Compressor power consumption



1 Introduction

HVAC systems often do not function as well as expected due to faults introduced during
initial installation or developed in routine operation. Rooftop air conditioners are used
extensively throughout small commercial and institutional buildings, but compared to larger
systems, they tend to be not well maintained. As a result, widespread application of
automated fault detection and diagnosis (FDD), which has been used widely in critical
systems, will significantly reduce energy use & peak electrical demand, down time and

maintenance costs.

Unlike critical systems, FDD for HVAC systems, especially for rooftop air conditioners, is
subject to economic constraints. Economic constraints bring special difficulties and issues,

which do not need to be considered in critical systems.

First, since a rooftop AC is relatively inexpensive, the cost to realize FDD for HVAC
systems in terms of software and hardware should be low. Therefore some relatively
expensive measurements such as flow rate, pressure or even humidity, cannot be used. This
is a particular problem in fault diagnosis since some faults may have similar symptoms and
more sensors can help in distinguishing them. On the one hand, features as sensitive as
possible should be extracted from limited available measurements, and on the other hand,
the diagnosis method should be as sensitive as possible to isolate several faults with similar
symptoms and insensitive features. Computation should be small enough to be

implementable within a microprocessor.

Second, since HVAC equipment are used in diverse weather and climates, the behavior of
the HVAC plant will vary drastically. In addition, since single-point sensor placement is
generally used, many measurements often are biased and noisy. So the FDD should be able
to handle biased measurements and be robust to different operating modes and against noise

and disturbances.

Third, unlike critical systems in which faults have zero tolerance, a fault evaluation and
decision step should be added to assess the impact of a fault on overall system performance

and make a decision whether the benefit of servicing the fault justifies its expense.



Finally, unlike a critical FDD system which is engineered for a specific large system, FDD
for HVAC systems needs to be adaptive and generic to the same type of system, or at least
to similar models from the same product family. This would reduce the per-unit costs, which

need to be low compared to the HVAC equipment price.

So, FDD for HVAC systems should have analytical redundancy. That means the
information from system measurements should be preprocessed extensively before it is used
to detect and diagnose fault. In addition, the characteristic of being adaptive and generic

should be emphasized when developing FDD for HVAC systems.

This progress report first presents a literature review about FDD for HVAC systems,
especially for rooftop air conditioners, and then describes an improved FDD prototype for
rooftop air conditioning systems. Finally, the performance of the improved FDD method is

evaluated and compared with results of Breuker and Braun (1998b).



2 Literature review of HVAC system FDD

2.1 Overview

In the late of 1980’s, some researchers investigated common faults and methods for fault
detection and diagnosis in simple vapor compression cycles, such as a household
refrigerator. With the growing realization of the benefits brought by FDD, many more
papers about HVAC FDD have appeared in the recent ten years. Figures 2-1 and 2-2 show
the paper statistics in HVAC FDD over the past 15 years.

From these two figures, it can be seen that the number of papers significantly increased since
1996 and most of the papers focused on variable air volume (VAV) air handling units
(AHU). Since Comstock, Chen, and Braun (1999) did a very detailed and comprehensive
literature review in 1999, the next section of this report will briefly refer to some significant

contributions before 1999 and concentrate on up-to-date progress after that.
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2.2 Latest progress

Since 1999, about 30 papers have been published. According to IEA ANNEX 34 edited by
Dexter and Pakanen (2001),

® Twenty-three prototype FDD performance monitoring tools and three validation tools
have been developed.

® Thirty demonstrations have been taken place in twenty buildings.
® Twenty-six FDD tools have been tested in real buildings.

® Tour performance monitoring schemes have been jointly evaluated on three documented
data sets from real buildings.

® A test shell has been developed to simplify the comparative testing of the FDD tools.

2.2.1 Packaged air conditioning systems

Rossi and Braun (1995, 1997) modified the general FDD supervision methodology first
described by Isermann (1984) for non-critical HVAC system as shown in Figure 2-1 and
developed a statistical rule-based FDD technique for vapor compression air conditioners.

This technique uses only nine temperatures and one relative humidity. Among the ten

return air temperature I, and return air

measurements, ambient air temperature Ta >

mb >



relative humidity ®,, (or wet-bulb temperature 7,,) are considered to be driving

conditions. The other seven measurements (evaporating temperature Tevap, condensing

temperature 1, suction line superheat T, , liquid line subcooling 7., comptessor

ond > sc?o

air temperature rise across the condenserAT, , and air

discharge temperature T, ca>

is >
temperature drop across the evaporator AT, ) are used to specify the system operating state.
A steady-state model is used to describe the relationship between the driving conditions and
the expected output states in a normally operating condition. By comparing the
measurements of the output states with those predicted by the steady-state model, residuals
are generated. These residuals are statistically evaluated to perform fault detection and
compared with a set of rules based on directional changes to identify the most likely cause of
the faulty behavior (diagnosis). In addition, fault impact evaluation criteria based upon
economic and operational constraints were developed. This research laid a blueprint for

later research, whose strengths and weaknesses will be discussed in a later part of the report.

Measurements

”| Fault Evaluation
1. Comfort
Ec onomics

Fault Detection 2
—> 1. Preprocessor 3. Safety
2. Classifier 4.  Environment

l

Decision
Fault Diagnosis 1. Tolerate
» 1.  Preprocessor 2. Repair ASAP
2. Classifier 3. Adapt Control
4.  Stop, Repair

HVAC Equipment

Figure 2-1 Supervision approach of HVAC&R equipment.

Following this research, Breuker and Braun (1997, 1998a, 1998b) first identified important
faults and their impacts on rooftop air conditioners through interactions with industry

personnel, and then did a detailed evaluation of the performance of the FDD technique



presented by Rossi and Braun (1997). It was found that by the frequency of occurrence,
approximately 40% of the failure incidents of "No air conditioning" were electrical or
controls related and the other 60% were mechanical. By the service occurrences, refrigerant
leakage (12%) dominated among the mechanical faults while the occurrences of faults
relating to condenser (7%), air handling (7%), evaporator (6%), and compressor (5%) are
similar. By the service costs, the faults related to compressor failure dominated with 24% of
total service costs. Controls related faults were the second-rated class of high cost fault,
accounting for 10% of total service costs. Further analysis showed that, although most
failures in hermetic compressors are diagnosed as a failure in the motor, those failures
usually result from mechanical problems such as overload or liquid refrigerant in the
compressor. Based on their survey and analysis, Breuker and Braun concluded that five fault
types should be considered for systems with fixed expansion devices: (1) refrigerant leakage;
(2) condenser fouling; (3) evaporator filter fouling; (4) liquid line restriction; and (5)

compressor valve leakage.

To evaluate the FDD technique presented by Rossi and Braun, the above five faults were
introduced within a 3-ton fixed orifice air conditioner in well-controlled environmental
chambers under various fault levels and cooling load levels. Results showed that refrigerant
leakage, condenser fouling, and liquid line restriction faults could be detected and diagnosed
before an 8% reduction in COP occurred; compressor valve leakage was detected and
diagnosed before a 12% reduction occurred; and the least sensitivity was evaporator fouling

at 20%. These results are compared with the improved FDD technique later in the report.

To keep track of the up-to-date research, Comstock, Chen, and Braun (1999) performed an
exhaustive literature review of FDD in HVAC. This review provided a solid background and

guide for later research.

The fault characteristics on a system with a TXV are different from those with a fixed orifice
for which Rossi and Braun originally developed the statistical rule-based technique. Chen
and Braun (2000, 2001) modified and evaluated the original FDD technique for a 5-ton
rooftop unit with a TXV as the expansion device. To simplify the FDD method, two
innovative and easy-to-implement methods were proposed. The first method, termed the

“Sensitivity Ratio Method”, used measurements and model predictions of temperatures for
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normal system operation to compute ratios that are sensitive to individual faults. The second
method, termed the “Simple Rule-Based Method”, dispensed with any on-line model but
used performance indices computed from raw measurements that are relatively independent
of operating state but are sensitive to faults. Both methods were tested using experimental
data for different fault types and fault levels at different operation conditions. Also, a 7.5-ton

unit from the same product family as the 5-ton unit was used for a robustness test.

Ghiaus (1999) presented a bond graph method for a packaged air conditioning system. The
bond graph is a graph in which nodes represent conservation of energy equations, and
terminal nodes represent either system elements (such as resistance, capacitance, inertia) or
sources. A bond is a power connection between two parts of the system: A and B. The
power is the product of power variables: effort and flow. Effort represents force, torque,
pressure, voltage, or absolute temperature, while flow represents velocity, rotational
frequency, volume flow rate, current, or entropy flow rate. For the air conditioning system, a
thermal bond graph used temperature as effort and entropy flow rate as flow. Two faults:
reducing the heat removed by the evaporator (by slowing the evaporator fan) and reducing
the heat rejected by the condenser (by slowing the condenser fan) were considered. The
advantage of the method is that it could diagnose a fault without any a priori knowledge of
the possible faults and implementation of the fault inference algorithm is fast and simple due
to its recursive nature. However, there are several drawbacks for this method. Firstly, the
method does not consider impact of variation in driving conditions on the bond graph, so it
cannot tell driving condition effects from faulty effects. Secondly, only two simple faults
were considered. If there is a refrigerant fault such as leakage or flow restriction, the
technique described in the paper could not make the correct diagnosis, due to the

assumption of constant refrigerant flow rate.

2.2.2 Other HVAC systems

There is a large body of literature on other HVAC systems, especially variable air volume
(VAV) air handling units (AHU) and chillers. Since this project is focused on rooftop air

conditioners, only recent and representative research is discussed here.
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Shaw and Norford (2002) presented two techniques for using electrical power data for
detecting and diagnosing a number of faults in AHUs. One technique relies on gray-box
correlations of electrical power with such exogenous variables as airflow or motor speed.
This technique was developed to detect and diagnose a limited number of air handler faults
and was shown to work well with data taken from a test building. The other method relies
on physical models of the electromechanical dynamics that occur immediately after a motor
is turned on. This technique has been demonstrated with sub-metered data for a pump and
for a fan. Tests showed that several faults could be successfully detected from motor startup
data alone. While the method relies solely on generally stable and accurate voltage and
current sensors, thereby avoiding problems with flow and temperature sensors used in other
fault detection methods, it requires electrical data taken directly at the motor, down-stream
of variable-speed drives, where current sensors would not normally be installed for control
or load-monitoring purposes. Later Norford and Wright (2002) presented some results from
controlled field tests and concluded that: the first-principles-based method misdiagnosed
several faults and required a larger number of sensors than the electrical power correlation
models, while the latter method demonstrated greater success in diagnosis (limited number
of faults addressed in the tests may have contributed to this success) but required power

meters that were not typically installed.

Yoshida and Kumar (1999) presented a model-based methodology for online fault detection
for VAV HVAC systems. Two models, Auto Regressive Exogenous (ARX) and Adaptive
Forgetting Through Multiple Models (AFMM), were trained and validated on data obtained
from a real building. Based on the results, it was concluded that the variation of parameters
rather than the difference between the predicted and actual output is more prominent and
reflective of a sudden fault in the system. The AFMM could detect any change in the system
but required a long window length and therefore may not detect faults of low magnitude.
The ARX model, on the other hand, could be used with very short window length and was
more robust. Yoshida and Kumar (2001a) further put forth an off-line analysis based on
ARX method. It was concluded that off-line analysis of data by this model was likely to
detect most of the faults. To evaluate the robustness of this technique, Yoshida and Kunmar

(2001b) developed a recursive autoregressive exogenous algorithm (RARX) to build the
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frequency response dynamic model for VAV AHUs. It was concluded that the method was

quite robust against sensor error and could detect and diagnose several types of faults.

Carling (2002) presented a comparison of three fault detection methods for AHUs. The
three methods were: a qualitative method that compares controller outputs and model-based
predictions, a rule-based method that examines measured temperatures and controller
outputs, and a model-based method that analyzes residuals based on steady-state models.
The author concluded that the first method was easy to set up and generated few false
alarms. However, it detected only a few faults of those introduced. The second method is
straightforward and detected more faults while requiring some analysis during setup. The
third method also detected more faults but it also generated more false alarms and
demanded considerably more time for setup. The third method may have generated more
false alarms because of poor steady-state detector performance and a bad detection and
diagnosis threshold. In this paper, an exponentially weighted variance steady-state detector
was used. Our investigation, which will be discussed in a later part of the report shows that
the variance method, either the exponentially weighted method or fixed moving window
method, is not robust enough and should be used together with a slope method for steady-

state detection.

Dexter and Ngo (2001) proposed a multi-step fuzzy model-based approach to improve their
earlier diagnosis results for AHUs. A computer simulation study demonstrated that a more
precise diagnosis can be obtained and experimental results also showed that the proposed
scheme does not generate false alarms. This method was based on the use of two kinds of
reference models, the fault-free reference model and one of the reference models describing
faulty behavior, to perform multiple-diagnosis. Although this new technique overcame some
weaknesses of the fuzzy method, the difficulty to summarize or generate fuzzy rules when

the number of fault types and levels and load levels increased could not be eliminated.

In addition to fuzzy methods, several investigators (Lee & Park, 1996, Li & Vaezi 1997)
attempted to use artificial neural network (ANN) directly to do FDD for AHUs. The
common feature of ANN FDD is to use an ANN to map the symptoms to the fault
indicators. The network must first be trained to recognize the symptoms of the possible

faults, which requires tremendous data for different load levels, fault levels and types. For
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complicated problems with many fault types and levels and operating conditions, it is
difficult, if not possible, to gather so much data. So recently there seems to be no research
on ANN for HVAC FDD. It should be clarified that although it is difficult to directly use
ANN to do FDD, it is very useful to use ANN to build fault-free reference models for
model-based FDD.

Finally, in the literature of HVAC FDD, some researchers (Salsbury & Diamond 2001, Liu
& Dexter 2001) attempted to deal with the FDD in control loop problems or use the

information from the controller to do FDD.

2.3 Future prospects

So far, FDD is at the laboratory or field demonstration stage, with most of the effort on
improving FDD performance with little concern about how to reduce the cost of FDD
techniques and at the same time to improve performance. Commercialization of FDD is a
big challenge, since many practical and economical issues should be addressed. The goal of
keeping the costs low while improving performance has guided the development of the
improved FDD method presented in this report. The only literature to address multiple
simultaneous faults in HVAC equipment was presented by Breuker (1997), who investigated
two simultaneous faults using simulation. However multiple simultaneous faults are possible.
For instance, evaporators and condensers foul at the same time. Breuker found that the
FDD technique of Rossi and Braun (1997) would detect and diagnose one of the two faults
that were implemented. However, in general, the presence of multiple simultaneous faults
could change the system behavior: produce compensated or exaggerated effects or even
trigger another symptom, which is normally not covered by existing rules. Existing
diagnostic classifiers are not capable of making multiple diagnoses. So the ability of the
system to respond to multiple simultaneous faults warrants further investigation. This issue

will be addressed at a later stage of this project.

There are two kinds of investigators conducting FDD research in the HVAC field,
mechanical and electrical engineers. Most of the research in HVAC FDD has been

conducted by the former, who have addressed the problem mainly from a physical point of
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view. The electrical engineering investigators normally lack physical knowledge about the
HVAC system and often approach the problem from a mathematical or empirical point of
view (such as fuzzy logic, neural network, wavelet, and etc.). Both kinds of investigators
claim their own methods are better than those of others. So it would be a good contribution
to attempt to make some contrasts and comparisons between these two kinds of methods.

Later research may address this issue.
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3 Description of FDD technique

3.1 Overview

The statistical rule-based FDD method, developed by Rossi and Braun (1997) and evaluated
by Breuker and Braun (1998b), is the basis for the method presented in this report and is
reviewed in Appendix 1. The method only uses low-cost temperature measurements to do
automated FDD, which is important for commercialization. The paper also introduced fault

evaluation to HVAC equipment FDD and developed four fault evaluation criteria.

One of the difficulties in applying the method is evaluating the probabilities associated with
the different faults that are possible. The method requires evaluation and integration of a 7-
dimensional probability distribution for the detection and diagnostic steps. In order to
simplify the calculations, the 7 temperature residuals are assumed to be independent.
However, our recent research indicates that it is possible to sacrifice fault detection
sensitivity and introduce false alarms with this independence assumption. So we have
improved on this technique by eliminating the independence assumption and developing an
improved FDD technique, which does not utilize a probability distribution for fault
detection or diagnosis. The improved FDD technique also incorporates an improved steady-
state detector, and improved models for the normal states used to calculate residuals and

overall performance models useful in the evaluation step.

To make the supervision approach for HVAC equipment clearer, Figure 2-1 is detailed and
modified as Figure 3-1. In Figure 3-1, there are two kind of signals, one indicated by bold
(red) lines and the other indicated by regular (black) lines, both of which begin and end at
the HVAC equipment. Bold (red) lines trigger the processing blocks, while the signals
associated with regular (black) lines are necessary for processing the blocks. The signals
associated with dotted (red) lines are used to adapt the model. The processing procedures

start from the HVAC equipment and follow the bold (red) lines.
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Figure 3-1 A generalized HVAC FDD system scheme

Data (including system driving conditions and state variables) gathered from HVAC
equipment are fed into the preprocessor, which includes at least two parts: a filter and
steady-state detector. The filter detects the HVAC equipment operating status and eliminates
the data when the HVAC equipment is off, and reduces some measurement noise. The
steady-state detector determines whether the system is considered to be at steady-state and

thus filters the transient data.

After preprocessing, measurements are split into driving conditions and measured current
operating variables. Driving conditions are first fed into the normal state models to produce
predictions of normal operating state variables. The residuals between current measured and
predicted normal operating states are used to detect whether the system is operating with a
fault. If the system operation is normal, the current measurements are used to adapt and
refine the normal state models. However, if the system is operating with a fault, residuals

are further used to diagnose the fault

Using driving conditions and fault information, the overall performance models estimate the

cooling capacity and power consumption associated with both the current and normal
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operating states. The residuals of these performance indices are used in the fault evaluation

step.

According to the fault name and level and performance residuals, a fault evaluation
algorithm evaluates the impact of the fault according to comfort, economic, safety, and
environmental criteria. Using estimated impacts, the FDD system will make a decision on

how to respond to the fault: tolerate, repair ASAP, adapt control, or stop to repait.

The next five sections discuss various aspects of the technique: measurement preprocessing,
steady-state models for normal states and overall performance, fault detection classifiers,
diagnostic classifiers, and fault evaluator and decision-maker. The focus is on the
development and evaluation of improvements in these elements. For the most part, the

evaluation has occurred using laboratory data obtained by Breuker (1998b).

3.2 Measurement Preprocessing

Because the proposed FDD systems are based on steady-state data with the compressor on,

the first step is to abstract steady-state measurements from real-time sampling data.
3.2.1 Measurement filter

The measurement filter is used to filter out data when the compressor is off or when there is
a communication error. The pressure difference between the compressor suction line and
discharge line can be used to detect whether the compressor is on or not. Sometimes there is
electrical noise or a disturbance in the data acquisition equipment, which makes the collected

data meaningless. This data cannot be used to do FDD and should be filtered out.
3.2.2 Steady-state detector

If there is no drift in the driving conditions, no noise and no other disturbances, all the state
variables will be constant. In practice, driving condition drift will make state variables vary
deterministically while noise and other disturbances will make state variables have random

variations. Two kinds of detection methods, a slope method and two variance methods, have
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been proposed to decide whether the system has approached steady-state (see Breuker
(1998b). If the variance threshold is set low enough, variance methods can filter out data
with both deterministic and random variations. Although the slope method can filter out
data with deterministic variations, it has difficulty distinguishing data with pure large
oscillating magnitude from those with pure small oscillating magnitude. The combination of

the slope and variance methods can improve the overall performance.

Figure 3-2 shows example behavior for three steady-state detectors using suction line
superheat as the measurement. Suction line superheat increases very quickly after the
compressor turns on. After reaching a peak, it drops slowly for a while and then oscillates
with decreased amplitude. For overall FDD, only those data after 450 seconds work well.

There would be false alarms if data before 450 second were used for FDD.

If only the moving window slope was used for detection and the slope threshold was set at
0.02 F/s, data at the beginning would be filtered out and all the oscillating data, with large
and small amplitude, would be classified as steady-state data. Consequently, this steady-state
detector cannot distinguish data with small oscillating amplitude from that with large
oscillating amplitude. If all oscillating data were used for FDD, false alarms or even wrong
detection and diagnosis would arise. So a moving window slope method itself cannot

guarantee good performance.

It is obvious from Figure 3-2 that the outputs of the exponentially weighted variance

method and moving window variance method are almost identical. If the variance threshold

were set at 0.3 F?, either of these two methods would filter out the data before 620 second

and thus the overall FDD system would have no false alarms and wrong diagnosis.

However, the cost to set the variance threshold at 0.3 F* is too high, because it filters out

the steady-state data between 450 second and 620 second. Thus, the overall FDD system

would delay its decision for 3 minutes. However, if the variance threshold were set at 0.7 F >
all the good performance data between 450 and 620 would be kept but the bad performance

data between 50 second and 200 second would be introduced. The combination of the

variance and slope methods is more robust. If the variance threshold were set at 0.7 F 2 and
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the slope threshold at 0.02F /s, then the use of both criteria would filter out all bad

performance data and keep all good performance data.
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Figure 3-2 Three steady-state detectors’ performance

3.3 Steady-state models

The proposed automated FDD technique relies on the use of steady-state models for
expected values of operating states under hypothetically normal operating conditions.
Furthermore, some on-line measurements such as power consumption and some overall
performance indices such as cooling capacity and EER are useful in evaluating whether
faults are severe enough for service to be performed. Calculation of cooling capacity

involves refrigerant or air flow rate. However, it is not economic to directly measure power
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consumption and flow rate. So a model (virtual sensor) for estimating refrigerant flow rate,

compressor power consumption and cooling capacity is very useful.
3.3.1 Normal state models

The last deliverable described a modeling approach for operating temperatures that
combines a low-order polynomial with a general regression neural network (GRNN) to

achieve both good interpolating and extrapolating performance.
3.3.2 Overall performance models

Overall system performance indices such as EER, power and capacity are useful for
monitoring and making decisions regarding the need for service. Direct online determination
of these indices requires flow rate and power measurements and would be too expensive for
a commercial product. However, it is possible to estimate these quantities using low-cost
on-line measurements and a compressor map, which is available from the compressor

manufacturetr.

Compressor maps give refrigerant mass flow rate and compressor power consumption as
functions of suction and discharge pressures (or temperatures) for a specified suction
superheat. These data can be correlated and used with on-line suction and discharge
measurements to estimate cooling capacity and EER. Since the compressor map covers
almost all the operating conditions, this model should be reasonably accurate unless the

compressor is not operating propetly.

The compressor map can be obtained from the manufacturer. Rather than correlating mass

flow rate directly, the compressor map data are used to calculate the volumetric efficiency of
the compressor and then volumetric efficiency is correlated. Volumetric efficiency (77,) is

defined as the ratio of volumetric flow rate at the suction of the compressor to the

volumetric displacement rate of the compressor. With this definition, the mass flow rate is
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where N is the number of suction strokes per unit time, V' is the displacement volume, and
v,is the inlet specific volume. After several trials, the following form for correlating

volumetric efficiency was adopted

Pdix

P,
+a, (ﬂ)2 +a,(T,

suc suc

a
ﬂv = aO + al - Tsuc') !

mb

where a,, a,, a,, a,, a,are empirical coefficients, P, is suction pressure, P, is discharge

pressure, T,

b

is compressor ambient temperature, T, is suction temperature. The cooling

Suc

capacity of the unit is estimated according to

Qcap = mr(hl - h3)

where h, is refrigerant enthalpy leaving the evaporator and h; is the refrigerant enthalpy

entering the evaporator. The refrigerant enthalpy entering the evaporator is assumed to be
the same as the enthalpy exiting the condenser and is calculated using refrigerant property
correlations with pressure and temperature as inputs. The refrigerant enthalpy leaving the

evaporator is evaluated with pressure and temperature as inputs.

Similar to mass flow rate, compressor power consumption, W, is correlated using the
following equation
NV Pdis

W =—"—(b, +b,
Vi

P,
+ b2 (i)z + b3 (Tumb - Tvuc )bA )

suc suc
where b, b,, b,, b; and b, are empirical coefficients.

EER s calculated from the estimated cooling capacity and power as

gER = 2o
W

where the units of EER are Btu/h-W.
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3.4 Fault detection

With the statistical rule-based FDD technique, faults can be detected and separated in one
step by calculating the probabilities that the current operating mode belongs to different
fault modes. However, to simplify the diagnosis procedure and improve the overall

performance, it is advisable to separate fault detection from fault diagnosis.

The fault detection classifier uses the residuals between the measurements and the model
expectation to detect the possible presence of faults in the system. When the system is
running under normal conditions (no faults), the residual(s) are assumed to be normally
distributed with a mean of zero (see two-dimensional example in Figure 3-3). When a fault
becomes severe, the distribution of the residual(s) should drift from the zero mean (see
Figure 3-4). A fault is detected if a significant difference in the residual distribution is
detected. That is, when the overlap of the actual distribution and the expected distribution
of the residual(s) decreases to a preset value (the classification error threshold), a fault is

considered to be at present.
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Figure 3-3 2-dimensional residual distribution when system is running in a normal mode
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Figure 3-4 2-dimensional residual distribution when system is running in a fault mode

The residual distributions can be characterized in terms of the covariance matrix ¥ . and

mean vector M, . and depicted in the residual space plane as in Figure 3-5. In the residual

space plane, any operating state (point) outside the normal operating region is classified as
pace plane, any operating stat t) outside th | operating reg lassified

faulty. The normal operating ellipse is the fault detection boundary.
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Figure 3-5 2-dimensional residual distribution
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The probability that the current operation is normal can be estimated by calculating the
overlapping area between the current and normal residual distributions. Direct calculation of
this overlap for high dimensional (e.g., 7-dimensional for our case) probability distributions
cannot be performed in real time on a microcomputer. Therefore, some simplifications are
necessary. The following sections consider simplifications to calculate fault probabilities and

a new method that does not require probability calculations.

3.41 Probability method

3.4.1.1 Independence assumption

The proposed FDD technique uses 7 temperature residuals to detect and diagnose 5 possible
faults for systems with a fixed expansion device. To calculate the overlap of two 7-
dimensional distributions, a seven-dimensional integral should be computed. Rossi and
Braun (1997) simplified the calculation by assuming that each dimension is independent.
However, by checking the normal operation data gathered by Breuker (1997), it has been

found that the covariance matrix in normal operation is far from diagonal (see Figure 3-6).

0.0185 0.0115 0.0556 -0.0041 0.0271 0.0005 -0.0100 |
0.0115 0.0120 0.0185 0.0021 -0.0068 0.0016 -0.0113
0.0556 0.0185 1.0544 0.1108 0.9209 0.0106 -0.1390
-0.0041 0.0021 0.1108 0.0596 0.1794 0.0001 -0.0530
0.0271 -0.0068 0.9209 0.1794 1.6472 -0.0086 -0.2350
0.0005 0.0016 0.0106 0.0001 -0.0086 0.0025 -0.0021
1-0.0100 -0.0113 -0.1390 -0.0530 -0.2350 -0.0021  0.0700

Figure 3-6 Covariance matrix X, of residuals at normal operation

Although Rossi and Braun (1997) and Breuker and Braun (1998b) obtained some good
results using this assumption, in theory, it is possible to sacrifice fault detection sensitivity

(see Figure 3-7) or introduce false alarms (see Figure 3-8) with this assumption.
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Figure 3-7 Fault detection sensitivity sacrificed by independence assumption
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Figure 3-8 False alarm introduced by independence assumption

Figure 3-7 illustrates a situation where fault detection sensitivity will be sacrificed if
independence is assumed. In this case, there is no overlap between the current and normal
operating modes with confidence of 0.999 (using the “true” covariance matrix), so the
current operation is indicated as faulty if the detection threshold is set at 0.001. However if

independence is assumed (using the “assumed” covariance matrix), there is a large
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overlapping region, about a quarter of the ellipse (probability equal to 0.25), between the
current and normal operating mode. The fault detection classifier will consider the current
operating mode as normal with the same threshold of 0.001. Consequently, fault detection

sensitivity is sacrificed (later calculation results in chapter 4 show this also).

In Figure 3-8, there is a small overlapping region between the normal and current
distributions, whose probability is more than 0.001, so that the current operation would be
considered as normal. However, the assumption of independence would lead to
classification of a fault and a false alarm. Although false alarms can be avoided by setting a

high threshold, this will reduce sensitivity.

3.4.1.2 Monte-Carlo (MC) simulation method

An alternative to the independence assumption is to use Monte-Carlo simulation to calculate

overlapping areas for high-dimensional probability distributions.

Given a general normal distribution Ny (M y,X ), whose characteristic parameters are

mean vector M yand covariance matrix2 y, the probability P, within area £, is

calculated with the following steps:
1. From the givenX , of X — space, find the whitening transformation of

-1/2 . .. ..
Y =AN"""®X , where X is any point in the original space, A and P are the
eigenvalue matrix and eigenvector matrix of X , respectively, and Y is the
corresponding point in the transformed space.

2. In the transformed Y — space withX, = I , generate N (>10.000 ) independent and
normally distributed samples, ¥, Y,, ---, ¥, , with zero expected vector and unit

covariance matrix.

3. Transform back the generated samples to the X — space by
X, =®A"?Y,  (i=12,..,N).

4. Add MX to the samples in the X — space as Xi +M (i=12,..,N).
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5. Calculate the number of points N within £, and then calculate the frequency of

N Q
f=-2
N
6. Repeat previous five steps K (>10) times and approximate the probability P, by

averaging the frequencies fj (j=12,..K).

This method cannot only approximate the theoretical value at any accuracy but can also be
implemented using a microcomputer. Although the Monte-Carlo simulation method is
accurate and provides a good way to check other probability methods, it requires relatively
large memory and computation time. So it is a good off-line analysis tool but still not
computationally efficient enough for on-line fault detection and diagnosis. Section 4

compares results of the Monte-Carlo simulation and the independence assumption methods.

3.4.2 Normalized distance method

This section presents a simpler approach, termed the normalized distance method, to do

fault detection.

For a 1-dimensional normal distribution N (,,,.u1> O normat ) > 1t 18 Well-known that

|'x - ﬂnormal

<30 ,,ma) =99.713%  or  prob( <3)=99.73%

prOb(|x - ﬂnormal

normal

|x - ﬂnormal

normal

where, can be seen as the distance between X and the mean £, . normalized

by the standard deviation O

normal *

The probability for all X whose normalized distance from

the mean g, is less than 3 is about 99.73% . This can be used for fault detection with

the following procedure:

1. Set a threshold & for false alarms. Normally @is a very small value, say 0.0027,
which means the probability for false alarm is 0.0027 .
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2. Calculate the maximum normalized distance dmax corresponding to the given false
alarming threshold & by referring to a normal distribution table. For a =0.0027,

the cortesponding maximum normalized distance d . is equal to 3.

|xi - /’lnormal

o

normal

3. Given a measurement X, , calculate the normalized distance by d, = If

d; <d,,,, the supervised system is considered to be normal with a confidence of

l-¢a. On the contrary, if d; >d then a fault is assumed with a false alarm

max >

probability of ¢&¥.

This method eliminates the need for the probability calculation and requires very little

computation and memory.

Inspired by the 1-dimensional case, the idea for one dimension can be extended to the

multi-dimensional case. The condition for normal operation can be rewritten as

|x - /’lnormal

prob( <d l-a

max ) -
normal

=

prOb((X - /’lnormal )(Gnarmal2 )_1 ('x - ﬂnormal) < drzlax) = 1 -

For a multi-dimensional case, the statistical parameters became vectors or matrices: X

2 )
and O becomes matrix X

normal

becomes a vector X , 4, becomes vector M

normal > normal *

Therefore,

prOb((X _Mnormal)TZ _I(X _Mnormal)) <diax) :1_a

normal

The key to generalizing from the 1-dimensional to a multi-dimensional case is determining

diax for given 1— . It can be proven that (X —-M, )Y (X - M, ) satisfies

normal

a ¥y 2 (n) distribution (see Appendix 2), where 7 is the dimension of the given distribution.

So the procedure to apply the normalized distance method to a multi-dimensional case is

almost identical to the 1-dimensional case:
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1.

2.

Set a threshold & for false alarms.

Calculate diax by referring to a } 2(7’1) distribution table or some software for a
given 1—@ and dimension 7. Table 3-1 shows some @ and corresponding

2 . . _
d max Values for dimension 1 = 7.

Given a measurement X, calculate the normalized distance squated by

d’=(X,-M,, )X _I(Xi -M, ). 1f dl.z <d? then the supervised

normal max >

system is assumed normal with a confidence of 1—@. On the contrary, if

d i2 >d?  then a faultis assumed with a false alarming probability of & .

max >

Table 3-1 & and corresponding diax for dimension n =7

Q 0.1 0.01 0.001 | 0.0001 | 0.00001 | 0.000001

l-a 0.9 0.99 0.999 | 0.9999 | 0.99999 | 0.999999

d2 12.0170 | 18.4753 | 24.3219 | 29.8775 | 35.2585 | 40.5218

3.5 Fault diagnosis

After a fault is detected it is important to determine which component of the system is

faulty.
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3.5.1 Fault diagnosis rules

To identify the detected fault from known fault types, it is important to know the
characteristics of each fault type expressed as a set of diagnostic rules. For example, when a

system with a fixed expansion device has a refrigerant leak,

® cvaporating temperature will decrease;

® suction line superheat will increase;

® condensing temperature will decrease;

® liquid line subcooling will decrease;

® discharge line temperature will increase;

® the temperature difference between condenser inlet and outlet air will decrease;

® the temperature difference between evaporator inlet and outlet air will decrease.

When a fault is detected and the above phenomena appear, it can be concluded that the
system has a refrigerant leakage fault. The evaluation of whether the states increase or
decrease must be done relative to the values under normal operation, which depend upon
the driving conditions. The normal state models provide the estimates of the normal states
as a function of driving conditions. However, there is uncertainty in both the current
measurements and the model predictions. Therefore, it is necessary to utilize a classifier to
identify which rule has the greatest probability of being correct and to evaluate whether the

evidence is strong enough to make a diagnosis.
3.5.2 Fault diagnosis classification

The diagnostic rules are expressed as positive and negative changes in residuals, so that each
fault type corresponds to a unique quadrant of a multi-dimensional residual space. To decide
which fault is the most probable is equivalent to identifying which quadrant the current
measurement belongs to. Combined with the normal operating ellipse, coordinate axes form

the fault diagnosis boundary (see Figure 3-9).
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Figure 3-9 Fault Detection and Diagnosis boundaries
Two methods were considered in this study: the probability and distance methods.

3.5.2.1 Probability Method
The probability method is based on statistical parameters associated with current operation.

According to the sampling data, the covatiance matrix X and mean M are

current current

estimated. The probabilities of different faults occurring is then estimated by calculating the

overlap of the probability distribution within each fault quadrant.

Ideally, the residuals reside at the origin of the multi-dimensional space at normal operating
states. As the fault develops, the probability of the current distribution within each fault
quadrant is calculated. To simplify calculation of probability within each fault quadrant,
Rossi and Braun (1997) assumed that the distributions of all measurements are independent.

The following equation was re-derived by Chen (2000):

Wj — anI %|:1 + Cjke’f‘(Mcurrent (k) - Mnormal (k)J]

k=1 \/22L‘urrent (k’ k)

where

j is the index of fault type j,
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w; is the probability of fault type j,
M is the sample mean vector,

Y. is the covariance matrix,

C,=1itM,,,,. (k)-M,, (k) has the same signas d , ; C,, = -1, otherwise.

Jko =
Subscript normal is for normal distribution
Subscript current is for current distribution

k is the index of the measurement.

When the probability of the most likely fault class exceeds that of the second most likely

class by a preset threshold (fault probability ratio threshold), a diagnosis is made.

It has been shown that the 7 residuals are not truly independent. So it is necessary to validate
the assumption of independence. Similar to fault detection, Monte-Carlo simulation can be
used to evaluate the probability for each fault. Table 3-2 shows the results of the two
different methods for refrigerant leakage at 20% load using the data collected by Breuker
(1997). Appendix 3 lists all the other results. From the results, it can be seen that the
probability values are different but the trends are the same. The probability of refrigerant
leakage increases with the level of this fault. At low fault levels, a liquid-line restriction has
the highest probability for both methods. However, the fault detection threshold would not
be sufficient to allow diagnosis at this level. Both methods would diagnose the correct fault
at higher levels. However, the evidence for refrigerant leakage is much stronger when the
probabilities are estimated with the Monte-Carlo approach. This leads to better FDD

sensitivity and a lower risk of false alarms.
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Table 3-2 Refrigerant Leak at 20% load

Fault Refrigerant Comp. Liquid Line Cond. Evap.
Level Method Leak Valve Leak | Restriction Foul Foul
Monte-Carlo 0 0.0010 0 0 0
Normal Independent 0.0008 0.0007 0.0015 0.0009 0.0004
Monte-Carlo 0 0 0.0034 0 0
3.5% | Independent | 0.0016 0.0004 0.0028 0.0004 0.0002
Monte-Carlo 0.0318 0. 0.0135 0 0
7% Independent 0.0039 0.0002 0.0027 0.0002 0.0001
Monte-Carlo 0.0803 0 0.0041 0 0
10% | Independent | 0.0067 0.0001 0.0017 0 0
Monte-Carlo 0.1037 0 0.0004 0 0
14% Independent 0.0023 0.0001 0.0008 0.0001 0.0001

3.5.2.2 Distance method

The probability methods require estimates of the covariance matrices for normal and current

X

operation, “normal and  urrent , and integration of the overlapping areas within each of the
fault quadrants. To perform these calculations without the assumption of independence is
not practical within a microprocessor controller. Figure 3-10 depicts a 2-dimensional
example of a simpler approach to fault diagnosis that does not require integration of the

probability distributions.

This method is called the simple distance method. In figure 3-10, there are two Cartesian
coordinates: one for the residual space with dashed coordinate axes and the other for the
double residual space with solid coordinate axes. This is because residuals, the difference
between measurements and model predictions, are not distributed with zero mean value

when the system operates normally because of modeling error. Assuming that the residual

mean value of normal operation is M which can be calculated before the FDD system

normal >

is commissioned, the residual of current operation can be denoted in the double residual

space by subtracting M from it. Later discussion is based on the double residual space.

normal
As shown in Figure 3-10, there are two possible faults occupying two different quadrants in
the 2-dimensional space with 4 quadrants (this assumption will make FDD more difficult

because in our case there are only 5 faults for a 7-dimensional space with 128 quadrants).
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Figure 3-10 Distance method for fault diagnosis

The distance method can be described as follows:

1.

Predefine a fault point for each fault quadrant. All the distances of the fault point

from all the axes should have the same magnitude and the magnitude should not be
less than the largest expected residual (e.g., 20 F). In Figure 3-10, F; and F,

represent fault quadrant I and fault quadrant II, respectively.

Calculate the distance from the current operating point to each fault point, for

example, the distance from P, to Fj, |P1Fl||:||Fl_Pl" and fromP, to F,,

|25 =|F. - £l

Find the two lines with the smallest distance (”Ple” in Figure 3-10) and the second

smallest distance ("PlFl” in Figure 3-10).
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4, Calculate the distance ratio of the smallest distance to the second smallest distance

(ratio :”PIFZM in Figure 3-10
dist > gure )

|PF,

5. When the distance ratio is less than a preset threshold £, then a fault corresponding
to the minimum distance will be indicated. In Figure 3-10, the fault point with the
minimal distance for P, is F,, and if the distance ratio is lower than a preset

threshold, fault II would be indicated.

Establishing a fault point at the largest expected residual makes the distance ratio inversely

related to fault level. For a 2-dimensional space, appendix 4 proves that all the points with
the same distance ratio, ratio,,, , are on a circle characterized with:

c(1+ ratio,*)

2ratio . ¢
2 2 _ dist 2
—) (-0 =—"5

(x+

. . 2
1 - ratio,, 1—-ratio,,

where x and y are the coordinates in the double residual space and cis the distance of the

fault point from each of axes. Given a value of c, a distance ratio corresponds to a circle in a

cluster of circles (see Figure 3-10), whose centers have the same y coordinate, ¢. Since
ratio,, is always less than 1, the scale of the magnitude of x coordinates of the center is

larger than ¢ and increases with increasing distance ratio, and the radius of the circles will

increase with increasing distance ratio but with larger magnitude than the former. In Figure

3-10, points B, P, and P, are on the same circle and thus have the same distance ratio,
while their distance ratios are smaller than that of pointP,. It is obvious that the fault

associated withpoint P, is less serious than those of points P, P, and P,.

It is important, but not critical, to have a reasonable estimate of the largest expected residual

in order to locate the fault points. For the example of Figure 3-10, point F, has a
significantly higher fault level than points P, P, P, P,, F, and P, and yet has the same

distance ratio as points F, P, and P, and a lower distance ratio than points F, and P,,.

However, if only correct diagnosis of fault type is necessary and diagnosis of relative fault
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level is not strictly considered, the standard of selecting the parameter ¢ associated with the
largest expected residual can be loosened. The choice for c¢is not critical and the actual fault

level can be more severe without any loss in accuracy for diagnosing a particular fault type.

For example, in Figure 3-10, if fault point P,, is the most severe fault level expected, F; and

F, will be reasonably good fault points.

From Figure 3-10, it can be seen that points P, F, and P, will be classified to fault type 1.
Points P, and P, are two special cases. They are actually not in any fault quadrant but
considering the statistical uncertainty, point P, would be classified to fault type 1I and point

P, to fault type 1. It should be pointed out that there is a risk of classifying points in other

non-fault quadrants to some predefined fault type, but the risk to make wrong diagnoses is
very low because of the following reasons: 1) The fault detection classifier filters all the
normal operating points. In Figure 3-10, although the ellipse normal region covers all 4
quadrants, it is classified as normal through the fault detection step; 2) The probability of
faulty operation appearing in other non-fault quadrants is very small, if the important faults
are considered and predefined by corresponding quadrants. It is very important to consider

as many faults as possible, at least those occurring frequently.

The risk of making wrong diagnoses for non-defined faults is not unique to the distance
diagnosis method. The only way to avoid this risk is to calculate the probability or distance in
all quadrants, fault and non-fault quadrants. For the probability method, it is not economical
to consider all 128 quadrants for a 7-dimensional case. Although probably not necessary, all
quadrants could be considered for the distance method because of low memory and

computational requirements.

3.6 Fault evaluation and decision

Fault evaluation is particularly important when the performance of a component is
degrading slowly over time, such as occurs for heat exchanger fouling. In this case, it is

possible to detect a fault well before it is severe enough to justify the service expense. In
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contrast, abrupt failures such as broken belts would not require the evaluation step when it is

obvious that the fault should be repaired (e.g., the system no longer maintains comfort).

In principle, fault evaluation could be achieved by minimizing lifetime operating costs. An
optimal service scheduler would purchase service when it contributes to reducing overall
costs. Important costs to consider are: maintenance, energy, equipment down time (i.e. the
cost of not maintaining comfort or refrigeration set point), premature component wear
(avoidable service costs), and liability costs associated with injury to people, damaged
facilities, or pollution of the environment. With the exception of maintenance and energy,
the other costs are difficult to quantify. The optimization problem could be simplified by
assuming that the comfort, premature wear, and liability costs are much larger than the
service cost to repair them. This is equivalent to assigning an infinite economic penalty for
these conditions (i.e. treating them as constraints) and minimizing the combined costs of
energy and service. With these considerations in mind, the following four fault evaluation

criteria are proposed for HVAC systems.

1. ECONOMIC CRITERIA - Service is required when it contributes to the reduction

of the combined costs of energy and service over the lifetime of the unit.

2. COMFORT CRITERIA - Service is required when the equipment is not capable of

maintaining building comfort.

3. SAFETY CRITERIA - Service is required when the operating state of the equipment
could lead to damage or injury (e.g. liquid entering a compressor or head pressure

above the tube burst pressure).

4. ENVIRONMENTAL CRITERIA - Service is required when the equipment is

polluting the environment. This criteria is included for refrigerant leaks.

Criteria 3 and 4 are relatively straightforward to apply. Service should be performed
whenever a fault within these categories is detected and diagnosed. The second criteria
could be handled in the same fashion: wait until the equipment could not maintain comfort
conditions and use the output of the diagnostic classifier to identify the required service.

However, this approach would lead to some loss in productivity. A better approach would

38



be to evaluate the cooling capacity online and compare it to the peak required cooling

capacity. Using this information, service could be scheduled in advance of a loss in comfort.

The first criterion is based upon trading off service and energy costs. Rossi and Braun
(1996) developed a method for determining optimal service times for cleaning condensers
and replacing evaporator filters that balances service and energy costs. The method requires
a measurement of power and is relatively straightforward to apply. Inputs to the method are
the residual between the current power and power associated with normal operation and the

ratio of service cost to the unit energy cost.

Online cooling capacity and power measurements are expensive and not practical for
implementation within an FDD system for HVAC&R at this time. However, these

measurements can be estimated using the approach described eatlier in this report.
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4 Case study and method comparisons

The last report (2001) described normal operating data gathered by Breuker (1997) under
controlled conditions in a laboratory and described their use in training the normal state
models. In addition, five types of artificial faults were introduced at different fault levels and
the unit was tested at different load levels in order to evaluate the performance of the FDD
technique. The fives types of faults are refrigerant leakage, compressor valve leakage,
condenser fouling, evaporator fouling and liquid line restriction. Each fault was introduced
at four or five different levels and tested at five different load levels: 20%, 40%, 60%, 80%
and 100%. In all, there are 120 sets of fault data available to test the proposed FDD method.
Appendix 5 describes how the faults were introduced. For each of the different load levels,
the unit was on for different amounts of time. The total cycle time was held constant at 45
minutes and the on time was varied for the different load levels. For example at 20% load,
the unit ran for 9 minutes and was off for 36 minutes. Two consecutive transient start-up
responses were generated and data were recorded at 5-second intervals at each of the
conditions and fault levels. Measurements from the second transient were used to evaluate

the FDD performance.

Since transient states were recorded when the faults were introduced, data was fed to the

FDD prototype at the sampling frequency in order to imitate on-line FDD.
4.1 Measurement preprocessing

Since only transient-state data with the compressor on were recorded, there was no need to
use a measurement filter to detect whether the compressor is on or not. The steady-state
detector uses both the slope and variance methods. The length of the moving window was
set at 24 sampling data points (sampling time of 5 seconds). To make sure the system
reaches steady state, all the three driving conditions and 7 state variables were used for

steady state detection . The detector thresholds for the 10 variables are listed in table 4-1.
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Table 4-1 Thresholds for steady-state detector’s variables

T. |T D T T

at ra evap cond

T, T T AT | AT,

hg sc sh ca ea

Slope 0.028 | 0.028 | 0.0025 | 0.028 | 0.028 | 0.055 | 0.058 | 0.095 | 0.025 | 0.025
Threshold

(F1/s)

Variance
Threshold 0.28 |0.28 |0.05 0.58 [0.28 |0.58 |058 |1.085|0.25 |0.25

(F?)

4.2 Normal state and overall performance models
4.2.1 Normal state models

Inputs of the normal state models are ambient air temperature T,

ai’

return air temperature

T

ra

and return air relative humidity @ . As outlined in a previous report, the polynomial

plus GRNN approach is used to predict evaporating temperature 7, condensing

evap >

temperature 7,

cond >

discharge line or hot gas temperature 7, , liquid line subcooling T,

sc 2

suction line superheat T, , condenser air temperature increase AT, , and evaporator air

a

temperature decrease AT,, . In addition, another four variables: discharge line pressure P, ,

suction line pressure P

suct

suction line temperature T,

wer and liquid line temperature T, were
added in order to provide inputs for the overall performance (cooling capacity and power
consumption). The parameters of polynomial plus GRNN are listed in Table 4-2. Steady-
state training data with 95 normal operating conditions were used to train the model and

steady-state testing data with 35 normal operating conditions were used to test the model.

Results of the model performance were presented in the last report for this project.
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Table 4-2 Polynomial plus GRNN model parameters

T

evap cond

T, | T, | T, | AT, | AT, | T

g sc ca ea suct g suct

Polynomial order | 1 1 2 2 1 1 2 1 2 |2 2

GRNN Spread 0.1 |01 0.1 10.1]0.1 ]0.1 0.1 0.1 101]01 |01

4.2.2  Overall petrformance models

Opverall performance models (virtual sensors) include refrigerant flow rate, cooling capacity,
compressor power consumption and EER. The compressor map data for the test unit are
shown in Table 4-3. The models for volumetric efficiency and power were fit using the
manufacturer’s compressor maps and then used to estimate mass flow rate, cooling capacity,
power consumption, and EER for test conditions with the system operating normally.
Direct measurements of flow rate and compressor power consumption were also available
for these test conditions and used to evaluate the performance of this simple estimation
approach. Figures 4-1 and 4-2 show comparisons between measurements and estimates for
mass flow rate and cooling capacity. Predictions of mass flow rate and cooling capacity
based upon the compressor map were about 8% higher than those determined directly from
measurements. This difference may be within the normal range of expected performance of
this compressor model or possibly, this compressor deteriorated after extensive laboratory

testing.

As shown in Figure 4-3, the agreement between measured and estimated power
consumption was somewhat better and the overall bias in the predictions was much smaller.
The model overpredicts compressor power for high values and underpredicts for low values.
This could result from compressor deterioration. A deteriorated compressor would produce
lower mass flow rate with a lower isentropic efficiency. However, power consumption is
proportional to flow rate and inversely proportional to efficiency. Thus, there is a tradeoff

between these two factors. Furthermore, mass flow rate and efficiency depend upon the
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operating conditions so that the tradeoffs vary between conditions associated with low and

high power consumption.

Figure 4-4 shows comparisons of EER, where EER is the ratio of cooling capacity to power
consumption. At conditions associated with high values of EER (cooler ambients), the
model overpredicts cooling capacity and underpredicts compressor power leading to
relatively large errors in EER. For lower values of EER (warmer ambients), the cooling
capacity and power consumption error have the same sign and are of similar magnitude,

resulting in smaller errors in EER.

Other results for system performance when the system operates at fault conditions are given

in a later section (see evaluation section).
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Table 4-3 Compressor map data
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Figure 4-1 Refrigerant flow rate prediction and measurement

3 6 T T T T

N

%

3.2

o el '
26| ﬁﬁ

2.6—g

Qcap,predict (tons)

2.4

22 1 1 1 1 1 1 1
2.2 2.4 2.6 2.8 3 3.2 3.4 3.6

Qcap,measure (tons)
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4.3 Fault detection and diagnosis

4.3.1 Fault detection

The technique used for fault detection is the normalized distance method. Three necessary

parameters are the covariance matrix and mean vector associated with normal operation,

Y ooma and M and the false alarm threshold @ . The former two parameters are

normal >

calculated from normal operating residuals. The covariance matrix X, .~ was shown in

Figure 3-5 for the test unitand M, ., is

norma.

M =[0.6255 0.6963 —1.3140 0.6544 —1.1815 0.1798 —0.1060]"

normal

To make the false alarm rate as small as possible, the false alarm threshold & was set at

0.0000001.

4.3.2 Fault diagnosis rules

Based on theoretical analysis, Rossi and Braun (1995) summarized the residual direction
change of five faults. Breuker and Braun (1997) confirmed all rules using laboratory tests
except for the compressor valve leakage fault rule. These modified rules are summarized in
Table 4-4 (+ indicates an increase in the residual, - decrease). The modification made was
that the hot gas temperature should increase with the occurrence of compressor valve
leakage. The simulation model Rossi and Braun used to generate the diagnostic rules did not
consider the energy of the refrigerant which leaks back into the suction line from the
discharge side when a compressor valve leaks. This refrigerant increases the compression
chamber temperature and tends to increase the discharge temperature. These rules were
intended to be generic for all similar types of air conditioners and should not require on-line

learning.

Ideally, the residuals reside at the origin of the multi-dimensional space at normal operating
states. However, practically there is measurement noise, system disturbances and modeling

error. Typically, residuals will be distributed with non-zero M, .., and X even at

normal
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normal operating conditions. The set of rules, M and X define a multi-

normal normal

dimensional space where each class (fault type) occupies a unique fault space. This means

that the Cartesian axes and normal operation ellipse form the classification boundaries.

Table 4-4 Fault diagnosis rules

Fault type 71evap th cond ]-;c 71hg AY;a AY;Q
Refrigerant leakage - + - - + - -
Comp. Valve Leak + - - - - - _
Liguid Restriction - + - + + - -
Condenser Fouling + - + + + -
Evaporator Fouling - - - - - +

4.3.3 Fault diagnosis method

The distance method is used to do fault diagnosis. The only two parameters are the distance

of fault points from the axes (c) and the diagnosis threshold ( ). For this case study, ¢ was

setat 10 F and B was set at 0.99 to avoid wrong diagnosis.

4.4 FDD results and comparisons with previous method

The FDD results are shown in Tables 4-5 to 4-20. For each fault, there are three tables. The
first table contains information about the detection results. Each entry in these tables gives
three pieces of data: the number of data points for each transient when the unit is on, the
number of points that were considered normal, and the number of points that were
classified as a fault. The number of data points increases with load level because the unit is
on a longer portion of the total cycle time. The second table in each set of three gives
diagnostic results. Each entry in these tables also gives three pieces of data: the number of
steady state points, the number of correct diagnoses, and the number of false diagnoses.
The third table in each set of three gives average diagnostic ratios for both the correct and

incorrect diagnoses.
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In reviewing the results of Tables 4-5 through 4-20, it is apparent that all faults, except
refrigerant leakage, were detected and diagnosed correctly at all fault levels for all the load
levels. Refrigerant leakage was detected and diagnosed at all fault levels greater than the
lowest level and at all load levels. There were no incorrect diagnoses for any faults. If the
diagnosis threshold were set at 0.9995, refrigerant leakage would be detected and diagnosed
at the lowest fault level and all load levels. However, this change would lead to two incorrect
diagnoses for liquid line restriction at the lowest fault level with the 20% and 40% load
levels. The only difference between the rules for refrigerant leakage and liquid line
restriction is associated with liquid line subcooling. Furthermore, liquid line subcooling is

very noisy and experiences a relatively small change when there is a fault. To avoid incorrect

diagnoses, the diagnosis threshold should be set to 0.99.

Compared with the previous results obtained by Breuker and Braun (1998b), the proposed
FDD prototype has superior performance. Breuker and Braun (1998b) presented results in
terms of a “1" Detected” and “All Detected” level. The “1% Detected” level is the level at
which the fault was first successfully detected and diagnosed throughout the data set. The “All
Detected” level is the level at which the fault was detected and diagnosed during all steady-
state operating conditions. Table 4-21 gives comparative results for the two methods in terms
of these performance indices. As an example, the “1% Detected” refrigerant leakage fault level
is 3.5% for this proposed prototype and 7.8% for Breuker and Braun’s result, and “All
Detected” refrigerant leakage fault level is 7% for the proposed prototype and 9.5% for
Breuker and Braun’s result. Similar results occur for the other faults. The results of Breuker
and Braun do show some “1* Detected levels” that are below the lowest level of fault that was
introduced. This is because their results were calculated by interpolating the impact of the
fault level. This was not done for the current study.

Table 4-5 Detected ( , fault) points/ total operation points @ compressor valve

leakage fault

Load Level
20% 40% 60% 80% 100%
Normal (11,0)/98 (70,00/147 | (186,0)/277 | (208,0)/335 | (229,0)/359
7% (0,37)/108 | (0,80)/191 (0,56)/324 (0,379)/401 | (0,336)/396
Fault 14% 0,2)/172 (0,49)/143 (0,88)/216 (0,222)/288 | (0,544)/593
Level 19% 0,27)/108 | (0,33)/190 | (0,220)/304 | (0,340)/423 | (0,577)/569
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28%

| (0,79/108 | (0,90)/164 | (0,229)/324 | (0,341)/432 | (0,717)/782

Table 4-6 (Right, wrong) diagnosed points/ total detected steady-state points @
compressor valve leakage fault

Load Level
20% 40% 60% 80% 100%
Normal (11,0)/11 (70,0)/70 (186,0)/186 | (208,0)/208 | (229,0)/229
7% (31,0)/31 (80,0)/80 (56,0)/56 (319,0)/319 | (336,0)/336
Fault 14% (2,0)/2 (49,0)/49 (88,0)/88 (222,0)/222 | (554,0)/554
Level 19% (21,0)/21 (33,0)/33 (220,0)/220 | (340,0)/340 | (511,0)/511
28% (19,0)/19 (90,0)/90 (229,0)/229 | (341,0)/341 | (717,0)/717

Table 4-7 Average (right, wrong) fault diagnosis ratio @ compressor valve leakage fault

Load Level

20%

40%

60%

80%

100%

Normal

(N/A, N/A)

(N/A, N/A)

(N/A, N/A)

(N/A, N/A)

(N/A, N/A)

7%

(0.9613, N/A)

(0.9418, N/A)

(0.9379, N/A)

(0.9260, N/A)

(0.9367, N/ A)

Fault| 14%

(0.9163, N/.A)

(0.9157, N/.A)

(0.9080, N/ A)

(0.9075, N/ A)

(0.9190, N/.A)

Level| 19%,

(0.8813, N/.A)

(0.8877, N/.A)

(0.8887, N/ A)

(0.8716, N/ A)

(0.8806, N/.A)

28%

(0.7747, N/.A)

(0.7794, N/ A)

(0.7630, N/A)

(0.7358, N/A)

(0.7260, N/ A)

Table 4-8 Detected (normal, fault) points/ total operation points @ refrigerant leakage

fault
Load Level
20% 40% 60% 80% 100%

Normal | (11,0)/98 (70,00/147 | (186,0)/277 | (208,0)/335 | (229,0)/359

3.5% (0,30)/104 | (0,67)/145 | (0,737)/216 | (0,245)/329 | (0,67)/175

Fault 7% (0,7)/108 | (0,727)/215 | (0,760)/279 | (0,257)/334 | (0,164)/224
Level 10% 0,24)/107 | (0,62)/166 | (0,770)/324 | (0,255)/336 | (0,737)/780
14% 0,6)/72 (0,77)/145 | (0,720)/322 | (0,314)/394 | (0,587)/646

Table 4-9 (Right, wrong) diagnosed points/ total detected steady-state points @
refrigerant leakage fault

Load Level
20% 40% 60% 80% 100%
Normal | (11,0)/11 (70,0)/70 (186,0)/186 | (208,0)/208 | (229,0)/229
3.5% (7,23)/30 (5,62)/67 (137,0)/137 | (245,0)/245 (67,0)/67
Fault
Level
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7% 7,0/7 | 021,0)/121 | (160,0)/160 | (251,0)/251 | (164,0)/164
10% | (24,00/24 | (62,00/62 | (170,0)/170 | (255,0)/255 | (731,0)/731
14% 6,0)/6 (11,0/11 | (120,0)/120 | (314,0)/314 | (581,0)/581

Table 4-10 Average (right, wrong) fault diagnosis ratio @ refrigerant leakage fault

Load Level

20%

40%

60%

80%

100%

Normal

(N/A, N/A)

(N/A, N/A)

(N/A, N/A)

(N/A, N/A)

(N/A, N/A)

3.5%

(0.9973,0.9974)

(0.9994,0.9968)

(0.9814,N/ )

(0.9924,N/ )

(0.9779, N/ A)

Fault

7%

(0.9800, N/ A)

(0.9858, N/ A)

(0.9772, N/A)

(0.9884, N/ A)

(0.9776, N/A)

Level

10%

(0.9404, N/ A)

(0.9779, N/ A)

(0.9481, N/A)

(0.9665, N/ A)

(0.9582, N/ A)

14%

(0.9095, N/A)

(0.9508, N/A)

(0.9404, N/ .A)

(0.9855, N/A)

(0.9693, N/ A)

Table 4-11 Detected (normal, fault) points/ total operation points @ condenser fouling

fault
Load Level
20% 40% 60% 80% 100%

Normal | (11,0)/98 (70,00/147 | (186,0)/277 | (208,0)/335 | (229,0)/359

14.6% | (0,20)/108 | (0,770)/216 | (0,230)/319 | (0,35)/431 | (0,650)/712

Fault | 29.2% | (0,34)/108 | (0,707)/190 | (0,726)/216 | (0,796)/288 | (0,435)/480
Level | 41.4% (0,2)/90 0,80)/173 | (0,217)/309 | (0,344)/418 | (0,207)/265
56.1% | (0,74)/108 | (0,733)/216 | (0,232)/311 | (0,333)/410 | (0,484)/544

Table 4-12 (Right, wrong) diagnosed points/ total detected steady-state points @
condenser fouling fault

Load Level
20% 40% 60% 80% 100%
Normal | (11,0)/11 (70,0)/70 (186,0)/186 | (208,0)/208 | (229,0)/229
14.6% (20,0)/20 | (110,0)/110 | (230,0)/230 (35,0)/35 (650,0)/650
Fault | 29.2% (34,00/34 | (107,0)/107 | (126,0)/126 | (196,0)/196 | (435,0)/435
Level | 41.4% (2,0)/2 (80,0)/80 (211,0)/211 | (344,0)/344 | (207,0)/207
56.1% (14,00/14 | (133,0)/133 | (232,0)/232 | (333,0)/333 | (484,0)/484
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Table 4-13 Average (right, wrong) fault diagnosis ratio @ condenser fouling fault

Load Level

20%

40%

60%

80%

100%

Normal

(N/A, N/A)

(N/A, N/A)

(N/A, N/A)

(N/A, N/A)

(N/A, N/A)

14.6%

(0.9329, N/.A)

(0.9542, N/.A)

(0.9373, N/ A)

(0.9544, N/ A)

(0.9555, N/.A)

Fault| 29.2%

(0.8197, N/A)

(0.8345, N/ A)

(0.8266, N/ A)

(0.8366, N/ A)

(0.8594, N/ A)

Level| 41.4%

(0.6598, N/ A)

(0.6834, N/ A)

(0.6924, N/ A)

(0.7060, N/ A)

(0.7323, N/.A)

56.1%

(0.5135, N/.A)

(0.5606, N/.A)

(0.5521, N/ A)

(0.5438, N/ A)

(0.5757, N/.A)

Table 4-14 Detected (normal, fault) points/ total operation points @ evaporator fouling

fault
Load Level
20% 40% 60% 80% 100%
Normal | (11,0)/98 (70,0)/147 | (186,0)/277 | (208,0)/335 | (229,0)/359
12% (0,38)/108 | (0,722)/199 | (0,792)/316 | (0,777)/313 | (0,736)/188
Fault 24% (0,39/105 | (0,77)/157 | (0,217)/323 | (0,314)/429 | (0,330)/405
Level 35% (0,6)/96 0,98)/211 0,23)/216 | (0,200)/288 | (0,77)/128

Table 4-15 (Right, wrong) diagnosed points/ total detected steady-state points @
evaporator fouling fault

Load Level
20% 40% 60% 80% 100%
Normal (11,0)/11 (70,0)/170 (186,0)/186 | (208,0)/208 | (229,0)/22
9
Fault 12% (38,0)/38 | (122,0)/122 | (192,0)/192 | (111,0)/111 | (136,0)/136
Level 24% (39,0)/39 (77,00/117 (217,0)/217 | (314,0)/314 | (330,0)/33
0
35% | (L0)/21 | (35,0/33 | (220,0)/220 | (340,0)/340 | (511,0)/511

Table 4-16 Average (right, wrong) fault diagnosis ratio @ evaporator fouling fault

Load Level

20%

40%

60%

80%

100%

Normal

(N/A, N/A)

(N/A, N/A)

(N/A, N/A)

(N/A, N/A)

(N/A, N/A)

12%

(0.9843, N/ A)

(0.9400, N/ A)

(0.8950, N/A)

(0.8497, N/A)

(0.8302, N/ A)

Fault| 24%

(0.8252, N/.A)

(0.7929, N/.A)

(0.7888, N/A)

(0.7615, N/ A)

(0.7485, N/ A)

Level| 359%,

(0.7352, N/.A)

(0.6988, N/.A)

(0.6604, N/ A)

(0.6639, N/ A)

(0.6550, N/.A)
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Table 4-17 Detected (normal, fault) points/ total operation points @ liquid-line
restriction fault

Load Level
20% 40% 60% 80% 100%
Normal | (11,0)/98 (70,00/147 | (186,0)/277 | (208,0)/335 | (229,0)/359
5% 0,27)/108 | (0,779)/216 | (0,44)/324 | (0,7183)/400 | (0,756)/479
Fault 10% 0,5)/72 (0,73)/162 | (0,171)/277 | (0,287)/432 | (0,87)/371
Level 15% (0,75)/108 | (0,777)/215 | (0,784)/294 | (0,244)/360 | (0,237)/440
20% (0,72)/105 | (0,97)/216 | (0,283)/301 | (0,374)/424 | (0,538)/630

Table 4-18 (Right, wrong) diagnosed points/ total detected steady-state points @ liquid-
line restriction fault

Load Level
20% 40% 60% 80% 100%
Normal | (11,0)/11 (70,0)/70 (186,0)/186 | (208,0)/208 | (229,0)/229
5% (21,00/21 | (119,0)/119 (44,0)/44 (183,0)/183 | (156,0)/156
Fault 10% (5,0)/5 (73,0)/13 (171,00/171 | (281,0)/281 (87,0)/87
Level 15% (15,0)/15 | (111,0)/111 | (184,0)/184 | (244,0)/244 | (231,0)/231
20% (12,0)/12 (91,0)/91 (183,0)/183 | (314,0)/314 | (538,0)/538

Table 4-20 Average (right, wrong) fault diagnosis ratio @ liquid-line restriction fault

Load Level

20%

40%

60%

80%

100%

Normal

(N/A, N/A)

(N/A, N/A)

(N/A, N/A)

(N/A, N/A)

(N/A, N/A)

5%

(0.9107, N/ A)

(0.9035, N/ A)

(0.9318, N/A)

(0.9243, N/ A)

(0.9450, N/ A)

Fault| 10%

(0.8095, N/.A)

(0.8125, N/.A)

(0.8525, N/ A)

(0.8685, N/A)

(0.8980, N/.A)

Level| 15%

(0.7030, N/.A)

(0.7105, N/.A)

(0.7607, N/ A)

(0.7945, N/ A)

(0.8232, N/.A)

20%

(0.6325, N/ A)

(0.6512, N/ A)

(0.7155, N/ A)

(0.7743, N/ A)

(0.8272, N/A)

Table 4-21 Performance comparison of previous and improved FDD method

Refrigerant Liquid-line Compressor Condenser fouling Evaporator
FDD leakage restriction valve leakage (14.6,29.2,41.4,56.1)% fouling
results (3.5,7,10,14)% | (5,10,15,20)% (7,14,19,28)% (12,24,35)%
1st All 1st All 15t All 1st All 1st All
Breuker 7.8 9.5 6.2 8.1 6.5 14.2 11.6 15.1 11.1 | 30.9
Improved 3.5 7 5 5 7 7 14.6 14.6 12 12
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To evaluate the impact of parameter ¢ on the performance of the FDD method, the results
with ¢ equal to 20 F and 1 F were calculated. The results show that the difference between
¢ equal to 20 F and 10 F is very small, while the difference between ¢ equal to 10 Fand 1 F
is very significant (see Figure 4-5 and Figure 4-6). From Figure 4-5, it can be seen that the
distance ratio monotonously decreases with increasing fault level if parameter ¢ is either 10

F or 20 F. However, the distance ratio behavior is different when parameter cis set to 1 F.

From Figure 4-6, it can be seen that the distance ratio is relatively constant with increasing
cooling load level for the same fault level if parameter ¢ is set to 10 F or 20 F but has a
different behavior when parameter cis set at 1 F. These results illustrate that it is not
necessary to have an accurate determination of the largest expected residual, c, as long as it is

large enough (e.g, 10 to 20 F).

In summary, the distance method has several following good characteristics. The
petformance of the method is good (good sensitivity for detecting/diagnosing faults) and is

relatively insensitive to the choice of parameters and different operating conditions.
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Figure 4-5 Impact of parameter ¢ on the performance of FDD for different compressor
valve leakage fault levels with 20% cooling load
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Figure 4-6 Impact of parameter ¢ on the performance of FDD for 3.5% compressor valve
leakage fault with different cooling load

4.5 Fault Evaluation Results

The data for the test unit includes refrigerant flow rate, cooling capacity, and power
consumption. As a result, it is possible to compare the impact of the different faults on
these actual performance indices and those calculated using the compressor maps. Tables 4-
22, 4-23 and 4-24 give the actual percent change of system performance and estimated

percent change of system performance for different faults.

Except for compressor valve leakage, the trend and magnitude of performance changes with
respect to fault levels are similar for the actual and estimated flow rate, cooling capacity and
power consumption. Compressor valve leakage has a significant effect on refrigerant flow
rate (up to —15%) and thus cooling capacities and compressor power consumption.
Refrigerant leakage at the levels considered had a small effect on refrigerant flow rate,
cooling capacities, and compressor power consumption. Condenser fouling also had a
relatively small effect on refrigerant flow rate and capacities, but had a significant effect on
power consumption. Evaporator fouling had a small effect on refrigerant flow rate,

compressor power consumption, and cooling capacity. Liquid line restriction had a
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significant effect on refrigerant flow rate, and thus cooling capacities and compressor power

consumption.

The overall performance models (virtual sensors) do not provide accurate estimates of
refrigerant flow rate and cooling capacity when the compressor operates abnormally since
they are based upon correlated compressor data obtained for normal operation. When the

compressor has a fault, the volumetric and isentropic efficiencies will be reduced.

Table 4-22 Actual /estimated per cent change of compressor power consumption

Fault Fault level
name | normal 1 2 3 4
compnv 1/1.3 2/2.4 3/3 4/3.5 7/5.6
refleak 1/1.2] 1/-0.7| 1/-0.25 -1/-5| -2.5/-6
condfoul 1/1.2| 2.5/2.7 4/5.8 7/9.6| 10/13.8
evapfoul 1/1.2 1/1.2] -1/0.6] -2/-0.6
lIrestr 1/1.2 1/-2]-0.5/-3.8 -3/-7| -8/-13

Table 4-23 Actual /estimated per cent change of cooling capacity on refrigerant side

Fault Fault level
name | normal 1 2 3 4
compnv| [SH WIS BES IS NS
refleak 1/1 1/-0.2| 1/-1.6| -1/-83.6| -3/-6.5
condfoul 1/1 1/0.2|-1.5/-0.5| -3.5/-2 -6/-5
evapfoul 1.5/1| 0.6/-0.2| -2/-2.5| -4/-3.8
lIrestr 1.5/1 1/-1 -1/-2| -3.5/-6| -12/-12

Table 4-24 Actual /estimated per cent change of refrigerant flow rate

Fault Fault level
name | normal 1 2 3 4

compny E -3/8| 595 -7/125 -15/22]

refleak -0.2/-1| -1.5/-3 -3/-6 -6/-9

/1.5
condfoul .5/1.5 2/1.5 3/3 3/4 4/5
evapfoul| 1.5/1.5] 0.5/0.5| -1/-0.4 -2/-2
llrestr| 1.5/1.5| -1.5/-3 -4/-6| -9/-12| -22/-24
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5 Conclusions

Following the literature review by Comstock et. al (1999), up-to-date literature on HVAC

FDD was reviewed. FDD techniques developed by previous investigators were studied. An

improved FDD prototype and a case study were presented. The new FDD technique

improves on previous methods in the following aspects:

v

Incorporates a new steady-state detector, which is a combination of the slope and
variance methods. This new steady-state detector has better robustness for filtering

transient data and thus improves overall FDD performance.

Incorporates a new modeling approach for predicting normal operation variables,

which was documented in the last report.

Incorporates a novel fault detection classifier called the normalized distance method,
which eliminates the probability calculation and requires very small memory and

computation.

Incorporates a new fault diagnosis classifier called the simple distance method. This
method also does not require multi-dimensional probability calculations or online

estimation of the current covariance mattix.

Incorporates overall performance models, which act as virtual sensors to estimate
some system performance variables that cannot be economically measured. These
system variables can be used to access the impact of the fault on the system

performance in order to evaluate whether service should be performed.
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