CALIFORNIA ENERGY
COMMISSION

Final Report Compilation for

Extending BACnet for Lighting and Utility
Interfacing

ANSI/ASHRAE
Standard 135-1995

Approved by the American National
Standards Institute Decomber 19, 1895

ASHIRAE
=O= gianman

o)

A Data Communication
Protocol for

Building Automation
and

Control Networks

TECHNICAL REPORT

Appruved by the ASHRAE Standards Committes June 28. 1995,
and by the ASHRAE Board of Directors June 28, 1995,

i following the
Standard rumber is the year of approval. Copies may be pur-
chased from ASHRAE Custamar Service, 1731 Tilllo Circle, NE.
Adanta, GA 30329,

#1995 ISSN 1041-2336

AMERICAN SOCIETY OF HEATING,
REFRIGERATING AND
AIR-CONDITIONING ENGINEERS, INC.

1791 Tullie Circle, NE = Atlanta, GA 30329

October 2003
P-500-03-096-A11

Gy, RGY com\u'ﬁ\ﬂ"
~

Gray Davis, Governor

CALIFORNIA
ENERGY
COMMISSION

Prepared By:

Architectural Energy Corporation
Vernon A. Smith

Boulder, CO

National Institute of Standards and
Technology

Steven Bushby

Gaithersburg, MD

CEC Contract No. 400-99-011
Prepared For:
Christopher Scruton

Contract Manager

Nancy Jenkins
PIER Buildings Program Manager

Terry Surles
PIER Program Director

Robert L. Therkelsen
Executive Director

DISCLAIMER

This report was prepared as the result of work sponsored by the
California Energy Commission. It does not necessarily represent
the views of the Energy Commission, its employees or the State
of California. The Energy Commission, the State of California, its
employees, contractors and subcontractors make no warrant,
express or implied, and assume no legal liability for the
information in this report; nor does any party represent that the
uses of this information will not infringe upon privately owned
rights. This report has not been approved or disapproved by the
California Energy Commission nor has the California Energy
Commission passed upon the accuracy or adequacy of the
information in this report.

ii

Acknowledgements

Steven Bushby, David Holmberg, and Stephen Treado with NIST
conducted this research project.

iii

The Public Interest Energy Research (PIER) Program supports public interest
energy research and development that will help improve the quality of life in
California by bringing environmentally safe, affordable, and reliable energy
services and products to the marketplace.

The Program’s final report and its attachments are intended to provide a complete
record of the objectives, methods, findings and accomplishments of the Energy
Efficient and Affordable Commercial and Residential Buildings Program. This
attachment is a compilation of reports from Project 3.4, Extending BACnet for
Lighting and Utility Interfacing, providing supplemental information to the
final report (Commission publication #P500-03-096). The reports, and
particularly the attachments, are highly applicable to architects, designers,
contractors, building owners and operators, manufacturers, researchers, and the
energy efficiency community.

This document is one of 17 technical attachments to the final report, consisting of
the final research report from Project 3.4:

» Proposed Amendments for Extending the BACnet Standard to
Include Lighting Control and Interfacing Building Systems with
Utilities. (May 2003)

The Buildings Program Area within the Public Interest Energy Research (PIER)
Program produced this document as part of a multi-project programmatic
contract (#400-99-011). The Buildings Program includes new and existing
buildings in both the residential and the nonresidential sectors. The program
seeks to decrease building energy use through research that will develop or
improve energy-efficient technologies, strategies, tools, and building
performance evaluation methods.

For the final report, other attachments or reports produced within this contract, or
to obtain more information on the PIER Program, please visit
www.energy.ca.gov/pier/buildings or contact the Commission’s Publications
Unit at 916-654-5200. The reports and attachments, as well as the individual
research reports, are also available at www.archenergy.com.

iv

www.energy.ca.gov/pier/buildings
www.archenergy.com

Project 3.4, Extending BACnet for Lighting and Utility Interfacing,

This project focused on developing software objects for the BACnet
HVAC standard to include lighting controls and utility meters. The
concept was to use the BACnet communications protocol to promote an
open (as contrasted with proprietary) control scheme that would include
lighting and energy meters as well as HVAC. NIST worked closely with
the ASHRAE standards committee responsible for the BACnet standard
and a number of international organizations to create consensus for the
scope and functionality of the proposed objects. Progress was made in
both areas.

= Two lighting control features, one to allow grouping of lighting
control commands and one to interface to the DALI lighting protocol,
should be part of the BACnet standard before the end of 2003.

= Two utility interface features related to remote meter reading were
recently published for public comment.

= Integration of lighting controls and utility meters into the BACnet
standard will promote energy conservation by giving building
operators the opportunity to work on a single controls platform.

This document is includes the final technical report from the research.

Task Report for the

Energy Efficient and Affordable Small
Commercial and Residential Buildings

Research Program
A Public Interest Energy Research Program
Sponsored by the California Energy commission

Project 3.4 — Extending BACnet for Lighting
Control and Interfacing Building
Systems with Utilities

Task 3.4.3 — Finalize and Propose BACnet Amendments
Steven T. Bushby, Mechanical Systems and Controls Group

David G. Holmberg, Mechanical Systems and Controls Group
Stephen J. Treado, Mechanical Systems and Controls Group

May 27, 2003

Prepared for
Architectural Energy Corporation

NIST

National Institute of Standards and Technology
Technology Administration, U.S. Department of Commerce

Table of Contents

EXCCULIVE SUIMIMIATYuvvvviieieeiieeiiiiieeeeeeeeeeciiteeeeeeeeeeeettaeeeeeeeeeeeetasseseeeeeeeetstsssseeeeeeeaisssseseaeeeessasssseeseeeeennnes 1
Lighting Applications Prog@ress UPAAteeeeeeiieeiiiriieeeeeeeiiiiireeeeeeeeeeciirreeeeeeeeeeiivreeeeeeeeeeeesrsseseeeeeesninns 2
Utilities Interactions Progress UDAALE...........uvvvveieeiiieeiieeiieeeeeeeeiieeeeeeeeeeeeeiteeeeeeeeeeeesnaeeeeeeeseeesaseeseeseesennnnnes 2
| D) N Ao T d 0180 0V] o) [T o] £ OO 5
Attachment A: MUItIPIEXET ODJECEuuuiiiiiiiiiiiieiiiieeeeeeeeeeteeeeeeeeeeeaeeeaeeeeeeeaaeeaeaeaeeesraesesrererassrsesraasereraaraanee 5
Attachment B: Lighting Control (DALI) ODBJECL......cccteitiiiirieiieeitenteesite sttt 10
Draft Utility INte@ration ODJECESvvvieeiiiiirieeeeeeeeeeeeiieeeeeeeeeeeeesteeeeeeeeeeeaaaeeeeeeessesssseeeeeesesenssrnneeeeessnannes 12
Attachment C: ACCUMUIALOT ODJECEuuuviiiieiiiiieiiieeeieeeeeeeeeeeeeeeeeeeeeeeaeeeeeeeeeeea—————————————————————————————————————. 12
Attachment D: PulSE CONVEITET ODJECEuuuuiiiiiiiiiieiiieeeeeeeeeieeeeeeeeeeeeeeeeeeeereeeaeereereseeererre—————————————————————. 27
Attachment E: 1.0ad CONIOl ODJECE.......cooeuueeeiieeeeieeeeieee e ettt e e e eeeeeeree e e e e e eeeeaaseeeeeeeessensnarreeeeeeeas 40
Attachment F: RTP ENCOGINGcoouviiiiiiiiiieeieeeeee ettt eeeeetaae e e e e e eettraeeee e e e e eeannneees 56
Attachment G: LogiCal ENTILY ODJEC.......uuuuuiiiiiiiiiiiiiiieeieieieeeeeeeeeeeeeeeeeeeeeeeeeeeeseesessesssseesrereeasersearar—er—————.. 60

Executive Summary

This report on Task 3.4.3 — Finalize and Propose BACnet Amendments — summarizes the
accomplishments in extending the capabilities of the BACnet communication protocol to meet the needs
of lighting control systems and interactions between building automation systems and utility companies.

The BACnet communication protocol for building automation and control systems was developed by
ASHRAE and is now an ANSI/ASHRAE standard, a Korean national standard, and a proposed ISO
standard. It has been translated into Korean, Chinese, and Japanese. It has also been endorsed by the fire
alarm industry in the United States as the preferred method of integrating fire systems with other building
control systems. The BACnet standard is maintained by a standing ASHRAE committee under
"continuous maintenance" procedures. This provides a mechanism for proposing enhancements to the
standard at any time.

Although BACnet has become well established in the commercial heating ventilating, and air
conditioning (HVAC) controls market and is growing in acceptance for lighting controls, fire alarm
systems, and access control systems, features specifically designed for lighting control applications and
for communication between the building and utility providers are still under development.

One goal of this effort was to establish a working liaison between lighting control experts and the
ASHRAE BACnet committee for the purpose of identifying additions or changes to the BACnet standard
that should be made to improve its ability to meet the needs of the lighting control industry. Although
BAChnet is believed to be well suited for lighting control applications there were no lighting control
experts directly involved in its development. A Lighting Applications Working Group (LA-WG) was
formed in ASHRAE SSPC 135 to provide a mechanism for building an industry consensus for action.
Companies currently making BACnet lighting control systems participate directly in the working group.
Liaison relationships have been established with the National Electrical Manufacturers Association
(NEMA) and with the lighting controls committee of the Illuminating Engineering Society of North
America (IESNA).

The BACnet Lighting Working Group has conducted several workshops to solicit comments and other
input from interested stakeholders, as well as a number of working meetings to coalesce the information
and develop approaches and methods for implementing the enhancements to accommodate lighting
control. Two new draft lighting objects have been developed and are in the committee review process.
These are a multiplexer object type and a lighting control object type. It is believed that the addition of
these two objects will substantially improve the potential for using BACnet for lighting control.

Another goal of this effort was to develop proposed enhancements to the BACnet protocol that can
facilitate the exchange of information between utilities and building systems. A Ultilities Interactions
Working Group (UI-WG) was formed in ASHRAE SSPC 135 to provide a mechanism for building an
industry consensus for action. The UI-WG has established close ties to interested parties in Europe
through a liaison to Committee for European Normalization Technical Committee 247 (CEN TC 247),
and in Japan through a liaison with the Institute of Electrical Installation Engineers of Japan (IEIEJ). This
international cooperation makes it likely that the end product will become part of an international
standard. The involvement of building automation system manufacturers makes it likely that the changes
will be implemented in commercial products.

The UI-WG developed two new object types that provide a simple interface to utility meters with a pulsed
output. These objects have been published for public review and comment. The UI-WG has made
significant progress on the proposed Load Control Object (LCO) which allows demand limiting signals to

be received from the utility and sent to devices on the network. There has also been progress made on
defining the transport from utility to building—the Logical Entity Object (LEO), which is part of a
proposed utility-to-building interface that fits in with work proceeding in the XML working group, has
been drafted and reviewed. The issue of how to best link to the utility, really a business to business data
transfer issue, is being hotly contested with the SSPC. It is likely that the utility connection will be the
first application requiring communication with a non-BACnet speaking outside partner which will require
transport services that are still under debate. The Electric Power Research Institute (EPRI) is also working
on these issues within their Integrated Energy and Communications Systems Architecture (IECSA)
project that hopefully the UI-WG can give some input on. There has also been a project working with
EPRI to demonstrate a Real Time Pricing (RTP) signal from the utility to a building customer with
feedback from the electric meter. This project has served to define the RTP encoding in BACnet and has
given some definition to the LEO.

Lighting Applications Progress Update

The initial efforts by the BACnet Lighting Working Group involved identifying and consolidating typical
tasks for and requirements of building lighting control systems. Existing BACnet capabilities were
examined to determine which lighting control functions could be implemented using current objects and
services, and which, if any, would require or substantially benefit from enhancements or additions to the
BAChnet protocol. This activity resulted in the identification of a number of lighting control functions that
could not be easily implemented in BACnet, if at all, due to insufficient functionality or excessive
network traffic implications. In particular, lighting controllers typically use a group of writable objects as
a way of simplifying control, and as a way of reducing network traffic. These are known as groups,
zones, or areas, depending on the manufacturer.

Grouping a set of outputs allows control of areas, such as hallways or rooms. This makes setting up a
system easier, since the controller only needs to know about adjusting the lights in an area, such as a
hallway or a room, and does not need to know that output 1 and output 3 on the load panel control the
hallway lights. When a system of lighting controllers is used, they are typically networked together.
When multiple networked controllers attempt to control lights in unison in a single area, and the network
contains any delays, there may be noticeable aberrations in the lighting to the occupants of the area. The
LA-WG has drafted a Multiplexer Object Type to address these needs, and the current revision of this
object is presented in Attachment A.

Another desirable enhancement to BACnet is a lighting control object that would allow dimming,
switching and ramping, and which would be compatible with the emerging DALI standard for digital
electronic ballasts. This object would provide network visibility and controllability for individual lighting
fixtures. A new draft Lighting Control (DALI) object has been developed and, along with the Multiplexer
Object, is in the BACnet review process to address the above issues (see Attachment B). These objects
are expected to be approved as new addenda before the end of the calendar year.

Utilities Interactions Progress Update

In June of 2000 ASHRAE SSPC 135 formed the Utility Interactions Working Group (UI-WG) to
deliberate proposed enhancements to BACnet that would allow communication between building
automation and control systems and utility providers. As part of this activity an effort has been made to
bring electric utility experts into the process and to engage international standards organizations that
expressed an interest in working with ASHRAE in this area. Connections with the US utility industry
have been made through the Electric Power Research Institute (EPRI). EPRI is working on utility
industry communication standards and addressing utility-building connectivity. The international
connections are through liaisons to Committee for European Normalization Technical Committee 247
(CEN TC 247) and the Institute of Electrical Installation Engineers of Japan (IEIEJ). Both of these

organizations are involved with the adoption of BACnet within their domain and also as a world standard
through the International Organization for Standardization (ISO). CEN and the IEIEJ have expressed an
urgent need for new BACnet capabilities to interface to utility meters.

Early discussions revealed multiple applications for communication with electric utilities and utility
electric meters. The final report from ASHRAE research project 1011, Utility/Energy Management and
Control Systems (EMCS) Communication Protocol Requirements, presented many potential points for
utility-EMCS communication. Of these, the applications that were identified as most pressing are billing
management and peak load management. A consensus emerged that the best way to proceed was to begin
by defining a new BACnet object or objects that represent the information exchange needed for peak load
management and billing management.

Proposals for new BACnet objects to meet these applications have passed through several rounds of
iteration and discussion. The initially developed meter object saw multiple iterations, and finally settled as
two separate objects: an "Accumulator Object” and a “Pulse Converter Object”. Together these two
objects meet most of the needs of both US and international participants in providing a simple
functionality to allow building control systems to read the pulse from an electric utility meter. This in turn
provides billing and power management capabilities to the building control system. These two objects
were approved at the ASHRAE June 2002 meeting by SSPC 135 for inclusion in the next BACnet
addendum for public review. This has since been incorporated in Addendum C and is presently in public
review. There have been some changes, and the latest versions are provided as Attachments C and D.

Work has also been progressing on a BACnet object to allow peak load management. This Load Control
Object (LCO) is still under continued deliberation within the UI-WG but will hopefully be released for
public review this year. The object allows for a command to be sent by a utility (or building master
controller) to direct a building controller or equipment controller to reduce load. LCO objects can be
nested to provide management flexibility and also a way to scale up to large complex systems. The
current version is provided as Attachment E.

At the June 2002 meeting, the BACnet committee also identified the need to better understand the utility
industry meter standard ANSI C12.19. A subset of the UI-WG was selected to review the C12.19
standard and identify what work has already been done that might be adapted to allow a more enhanced
BAChnet/ meter interface, providing functionality beyond what is provided in the simple Accumulator and
Pulse Converter objects. The early effort to develop the Accumulator and Pulse Converter objects
provides for simple functionality useful throughout the world, while additional developments will
probably be more regional in scope (as with the US ANSI C12.19 meter standard). The issue at hand
presently is how best to interface to the meter—via what protocol and network transport, with what
BAChnet interface: a BACnet C12 Meter object, or via a standardized data structure that would allow
access to the entire meter tables, or a data structure that would provide only a subset of the data. Work
continues to address the best method to interface meters to the building control system and how to
represent the meter data within BACnet.

A third utility-building service identified for implementation is Real Time Pricing (RTP). This service is
outlined in the report cited earlier, RP-1011, and in the past year this service has been seen significant
efforts made on the EPRI side. Dr. Martin Burns has prepared an XML schema of the RTP data structure
in an effort to address the utility-to-building transport issue. In addition, NIST has worked with him on a
demonstration project to demonstrate communication between a utility and meter, and between utility and
building control system. NIST has prepared a BACnet object, the Logical Entity object (LEO), that may
be used in the interface between utility and building, and was used in the demonstration project. A table
was prepared demonstrating the transformation from the utility data structure to the BACnet encoding

required in the LEO. This table is provided as attachment F along with the RTP XML schema. The
current version of the LEO is provided at attachment G.

The international involvement in the committee’s activity makes it likely that the end products will
become an international standard. The involvement of building automation system manufacturers and
utility representatives makes it likely that the changes will be implemented in commercial products.

CEC Report on Extending BACnet for Lighting Control and Interfacing Building Systems with Utilities

Draft Lighting Objects

Attachment A: Multiplexer Object

Multiplexing a Writable Property

References:

ANSI/ASHRAE Standard 135-2001, "BACnet®, A Data Communication Protocol for Building Automation and Control
Networks"

Background

Lighting controllers typically use a group of writable objects as a way of simplifying control, and as a way of
reducing network traffic. These are known as groups, zones, or areas, depending on the manufacturer.

Grouping a set of outputs allows control of areas, such as hallways or rooms. This makes setting up a system easier,
since the controller only needs to know about adjusting the lights in an area, such as a hallway or a room, and does
not need to know that output 1 and output 3 on the load panel control the hallway lights.

When a system of lighting controllers is used, they are typically networked together. When multiple networked
controllers attempt to control lights in unison in a single area, and the network contains any delays, there may be
noticeable aberrations in the lighting to the occupants of the area.'

Grouping in BACnet

BACnet supports two ways to perform grouping. These are the Group Object for reading a set of values from a
group of object properties, and the Command Object for writing a set of values to a group of object properties based
on the action code.

The standard explicitly states that the Group Object "is a read only property; it cannot be used to write a set of
values to the members of the group." Therefore, it cannot be used for our purposes.

The command object seems useful, but it requires an action code (index) be written to it so that it will perform
predefined commands for each code. For lighting we could use indices 0 to 100 to represent percentage levels 0% to
100%, and other indices to represent stepping commands. For simple lighting groups, this would work great.
However, when we add dimmers into the mix, and want to pass a fade time, this no longer works. If we use relays
and want to pass a timeout value (time until relinquish) along with the level, this no longer works.

Perhaps the best solution to sending multiple property requests is BACnet's WritePropertyMultiple service. Since
the properties must be modified in the order specified, there would not be any problems with atomicity when the
sequence of the properties is critical’. A "feature” of WPM that makes it such that it would not fulfill the purpose
outlined here is that when executing a WritePropertyMultiple, only properties up to the first failed property are
written. In this particular use case, stopping subsequent property writes due to errors is not desirable. Another
drawback of using WritePropertyMultiple is that simple devices may not have that service available to them.

'T had this problem at a theater/restaurant in Los Angeles. There were four lighting panels networked together using
BACnet over ARCNET 156kbps over EIA-485. The house lights in the stage area were controlled by dimmer
outputs from each of the four panels. The control algorithm was such that a switch input would send network
messages to each output that it controlled. When the sound booth light switch was used to raise or lower the lights,
one side of the room would start to raise, and then the other side of the room would start to raise. By the time the
lights were adjusted, they were all at different levels. Each press and release of the button resulted in hundreds of
network messages. The solution was to limit the amount of network traffic. I successfully changed the control
algorithm to only send 3 remote messages — one to each remote cabinet — and the message was sent to the object that
represented a group of dimmers in that cabinet.

*Sending the level of a light along with the fade time (amount of time duration for the light to go from its current
level to the new lighting level) is an example of a critical property writing sequence. If the level is written before
the fade time, the light would not respond in the desired manner.

CEC Report on Extending BACnet for Lighting Control and Interfacing Building Systems with Utilities

Writing to Multiple Objects

A new BACnet object that is based on the internal workings of the schedule object could help to solve the problem
of writing a single value to multiple objects and properties. The new object could also help significantly reduce
network traffic. The new object can be thought of as a writable Group object. It would allow any value written to
the new object to be written to each of the objects in its member list. Since the WriteProperty service has an
optional priority parameter, the priority can also be passed to the objects in its member list. Although this object in
itself would not solve the multiple property problem, we should be able to use this object in conjunction with
WritePropertyMultiple.

An issue that is unclear is whether a group of objects may be formed by using any combination of object types. This
increases the complexity of the internal workings of this object, since it will have to determine how to convert
properties that contain disparate datatypes. The most common case of this is the Present_Value property. For an
Analog Output and Analog Value object, the Present_Value property is defined as a REAL. For a Binary Output
object, the Present_Value property is defined as a BACnetBinaryPV. For a Multi-state Output object, the
Present_Value property is defined as an Unsigned. This problem is similar to the Present_Value property in the
Schedule object, which simply restricts the property to any primitive datatype.

Writing Writing
Device Device

WriteProperty WriteProperty

service service
New New
Object Object
Object (Object [Object Object |Object |Object
1 2 n 1 2 n Object [Object Object] Object (Object Object
1 2 n 1 2 n
Device 1 Device n Device 1 Device n
Existing method of writing the same value to Proposed method of writing the same
multiple objects in the same device using value to multiple objects in the same
WriteProperty services. device using WriteProperty services.

[add to 12, pp.127-232]

12.X Multiplexer Object Type

The Multiplexer object type defines a standardized object whose properties represent a collection of other objects
properties. A Multiplexer object is used to simplify the exchange of information between BACnet Devices by
providing a shorthand way to specify all members of a group at once. A group may be formed using any
combination of object types. The Multiplexer object and its properties are summarized in Table 12-X and described
in detail in this subclause.

This object uses the Priority' parameter of the WriteProperty service to command the referenced properties.

CEC Report on Extending BACnet for Lighting Control and Interfacing Building Systems with Utilities

Table 12-X. Properties of the Multiplexer Object Type

Property Identifier Property Datatype Conformance Code
Object_Identifier BACnetObjectldentifier R
Object_Name CharacterString R
Object_Type BAChnetObjectType R
Present_Value Any \%Y
Description CharacterString (0]
List_Of_Object_Property_References List of BACnetDeviceObjectPropertyReference R
Profile_Name CharacterString O

Object_Identifier

This property, of type BACnetObjectldentifier, is a numeric code that is used to identify the object. It shall be
unique within the BACnet Device that maintains it.

Object_Name

This property, of type CharacterString, shall represent a name for the object that is unique within the BACnet
Device that maintains it. The minimum length of the string shall be one character. The set of characters used in the
Object_Name shall be restricted to printable characters.

Object_Type

This property, of type BACnetObjectType, indicates membership in a particular object-type class. The value of this
property shall be Multiplexer.

Present_Value (Commandable)

This property indicates the current value of the Mulitplexer object, or of the objects in the
List_Of_Object_Property_References, i.e., the value most recently written to the referenced object property of all
members of the List_Of_Object_Property_References. This may be any primitive datatype. As a result, analog,
binary, and enumerated values may be written. If the List_ Of Object_Property_References is empty, then the value
of this property will be that which would have been most recently written to the
List_Of_Object_Property_References.

Although this property is commandable, there is no corresponding Priority_Array or Relinquish_Default property.
The values that are written to the Present_Value property are passed to the properties listed in the
List_Of_Object_Property_References. If the value is written to the Present_Value multiple times, the value gets
passed to the listed properties multiple times.

The initial value of the Present_Value property is NULL. This value does not automatically get written to the
properties listed in the List_Of_Object_Property_References.

Description
This property is a string of printable characters whose content is not restricted.
List_Of_Object_Property_Reference

This property specifies the Device Identifiers, Object Identifiers and Property Identifiers of the properties to be
written with the Present_Value property when the Present_Value property is written.

If this property is writable, it may be restricted to only support references to objects inside of the device containing
the Multiplexer object. If the property is restricted to referencing objects within the containing device, an attempt to
write a reference to an object outside the containing device into this property shall cause a Result(-) to be returned
with an error class of PROPERTY and an error code of OPTIONAL_FUNCTIONALITY_NOT_SUPPORTED.

If this property is set to reference an object outside the device containing the Multiplexer object, the method used for
writing to the referenced property value for the purpose of controlling the property is a local matter. The only
restriction on the method of writing to the referenced property is that the Multiplexer device be capable of using
WriteProperty for this purpose so as to be interoperable with all BACnet devices.

CEC Report on Extending BACnet for Lighting Control and Interfacing Building Systems with Utilities

Profile_Name

This optional property, of type CharacterString, is the name of an object profile to which this object conforms. To
ensure uniqueness, a profile name must begin with a vendor identifier code (see Clause 23) in base-10 integer
format, followed by a dash. All subsequent characters are administered by the organization registered with that
vendor identifier code. The vendor identifier code that prefixes the profile name shall indicate the organization that
publishes and maintains the profile document named by the remainder of the profile name. This vendor identifier
need not have any relationship to the vendor identifier of the device within which the object resides.

A profile defines a set of additional properties, behavior, and/or requirements for this object beyond those specified
here. This standard defines only the format of the names of profiles. The definition of the profiles themselves is
outside the scope of this standard.

[add to 19, p.342]

19.2.1.1 Commandable Properties

The prioritization scheme is applied to certain properties of objects. The standard commandable properties and
objects are as follows:

OBJECT COMMANDABLE PROPERTY

Analog Output Present_Value
Binary Output Present_Value
Multi-state Output Present_Value
Multi-state value Present_Value
Analog Value Present_Value
Binary Value Present_Value

Multiplexer Present_Value

The designated property of these objects is commandable (prioritized) by definition. Individual vendors, however,
may decide to apply prioritization to any of the vendor-specified properties. These additional commandable
properties shall have associated Priority_Array and Relinquish_Default properties with appropriate names. See 23.3.

[add to 21, BACnetObjectType pp.397-398]

BACnetObjectType ::= ENUMERATED {

multi-state-value (19),
multiplexer (n)
notification-class (15),
-- see life-safety-zone (22),
-- see multiplexer (n)

}

-- Enumerated values 0-127 are reserved for definition by ASHRAE. Enumerated values
-- 128-1023 may be used by others subject to the procedures and constraints described
-- in Clause 23.

BACnetObjectTypesSupported ::= BIT STRING {

-- multi-state-value (19),

multiplexer (n),
notification-class (15),
program (16),

CEC Report on Extending BACnet for Lighting Control and Interfacing Building Systems with Utilities

schedule (17),
-- trend-log (20),
-- Objects added after 1995

averaging (18),
multi-state-value (19),
trend-log 20)
life-safety-point 21),
life-safety-zone (22),
multiplexer (n),

}

[add to ANNEX C pp.428-438]

MULTIPLEXER ::= SEQUENCE {

object-identifier [75] BACnetObjectldentifier,

object-name [77] CharacterString,

object-type [79] BACnetObjectType,

present-value [85] ABSTRACT-SYNTAX.&Type, -- Any datatype
description [28] CharacterString OPTIONAL,
list-of-object-property-references [54] SEQUENCE OF BACnetDeviceObjectPropertyReference,
profile-name [167] CharacterString OPTIONAL

}
[add to ANNEX D pp.439-456]
ANNEX D - EXAMPLES OF STANDARD OBJECT TYPES (INFORMATIVE)

D.X Example of a Multiplexer Object

The following is an example of a Multiplexer object that is used for controlling a group of Binary Output objects.

Property: Object_Identifier = (Multiplexer, Instance 3)

Property: Object_Name = "Lighting Group 3"

Property: Object_Type = MULTIPLEXER

Property: Present_Value = 100

Property: Description = "Hallway Lights Floor 3 Building 1"

Property: List_Of_Object_Property_References = (((Device, Instance 12),(Binary Output, Instance 9),

Present_Value)

((Device, Instance 12),(Binary Output, Instance 8),
Present_Value)

((Device, Instance 12),(Binary Output, Instance 7),
Present_Value))

CEC Report on Extending BACnet for Lighting Control and Interfacing Building Systems with Utilities

Attachment B: Lighting Control (DALI) Object

Following is the partial object definition of the DALI object. The
conformance code column (Optional, Required) was not discussed at this
meeting and will need to be reviewed at a future meeting.

Table 12-x. Properties of the DALI Object Type
Present_Value BACnetLightingState W
Device_Type CharacterString o
Luminance REAL (0]

12.x.1 Object_Identifier

This property, of type BACnetObjectldentifier, is a numeric code that
is used to identify the object. It shall be unique within the BACnet
Device that maintains it.

12.x.2 Object_Name

This property, of type CharacterString, shall represent a name for the
object that is unique within the BACnet Device that maintains it. The
minimum length of the string shall be one character. The set of
characters used in the Object_Name shall be restricted to printable
characters.

12.x.3 Object_Type

This property, of type BACnetObjectType, indicates membership in a
particular object type class. The value of this property shall be

DALIL

12.x.4 Present_Value
This property, of type BACnetLightingState, defines the current
commanded state of the DALI object as defined below:

Command: Description
Power Off: Cuts electrical power to the device. The last command and
its priority are saved for use when the device is later Powered On.

Power On: Applies electrical power to the device setting its luminance
to the last commanded value.

Ramp Up: Raises the luminance level at a given rate. The ramp up
continues until another command is received or it reaches its maximum
luminance. Ramp up can be applied with Power Off or Power On. When
Powered Off the resulting luminance level is saved for use when the
device is later Powered On.

Ramp Down: Lowers the luminance level at a given rate. The ramp down
continues until another command is received or it reaches its minimum
luminance. Ramp down can be applied with Power Off or Power On. When
Powered Off the resulting luminance level is saved for use when the

device is later Powered On.

Step Up: The luminance level is stepped up by a percent of the fade
rate. The step up continues until another command is received or it

10

CEC Report on Extending BACnet for Lighting Control and Interfacing Building Systems with Utilities

reaches its maximum luminance. Step up can be applied with Power Off
or Power On. When Powered Off the resulting luminance level is saved
for use when the device is later Powered On.

Step Down: The luminance level is stepped down by a percent of the

fade rate. The step down continues until another command is received

or it reaches its minimum luminance. Step down can be applied with
Power Off or Power On. When Powered Off the resulting luminance level
is saved for use when the device is later Powered On. If minimum
luminance is reached, the light remains Powered On.

Recall Maximum: Power is applied to the device if not already applied.
and set to maximum luminance.

Recall Minimum: Power is applied to the device if not already applied.
and set to minimum luminance.

Step Down + Off: The luminance level is stepped down by a percent of
the fade rate. The step down continues until another command is

received or it reaches its minimum luminance. Step down can be applied
with Power Off or Power On. When Powered Off the resulting luminance
level is saved for use when the device is later Powered On. If

minimum luminance is reached during step down, the light is Powered
Off.

On + Step Up: Power is applied to the light if not already applied.
The luminance level is then stepped up by a percent of the fade rate.
The step up continues until another command is received or it reaches
its maximum luminance.

Go to Level: Power is applied to the light if not already applied..
The luminance level is then set as a percentage O to 100. If the
level set is O the light remains Powered On.

Hold Level: Stops further level change for all commands.

Blink: If the device is Powered On, it turns Power Off for the warning
period. Power is then reapplied at the same luminance level prior to
the Blink command.

On + Ramp Up: Power is applied to the light if not already applied.

The luminance level is then ramped up from the minimum luminance by a
percent of the fade rate. The ramp up continues until another command

is received or it reaches its maximum luminance.

12.x.6 Device_Type

This property, of type CharacterString, is a text description of the
physical device connected to the analog output. It will typically be
used to describe the type of device attached to the analog output.

12.x.7 Luminance

This property, of type REAL, indicates the actual value, in
engineering units, of the output. This value is the linearized
percentage (0..100) of the device's light output (LUMENS) of the
object; 0 being dimmest, 100 brightest.

11

CEC Report on Extending BACnet for Lighting Control and Interfacing Building Systems with Utilities

Draft Utility Integration Objects

Attachment C: Accumulator Object

135¢-4. Add a new Accumulator Object Type.

Rationale

There is need for a standard object to represent inputs indicating various measured values by means of a
pulsed output for applications ranging from system monitoring and control to billing. Many such
applications use small, limited controllers incapable of performing floating-point calculations. This factor
was considered in the development of this object type.

Addendum 135¢-4

[Add a new Clause 12.1, p. 130, and renumber the existing Clause 12.1 and subsequent clauses, including tables and
figures]

12.1 Accumulator Object Type

The Accumulator object type defines a standardized object whose properties represent the externally visible
characteristics of a device that indicates measurements made by counting pulses.

This object maintains precise measurement of input count values, accumulated over time. The accumulation of
pulses represents the measured quantity in unsigned integer units. This object is also concerned with the
accurate representation of values presented on meter read-outs. This includes the ability to initially set the
Present_Value property to the value currently displayed by the meter (as when the meter is installed), and to
duplicate the means by which it is advanced, including simulating a modulo-N divider prescaling the actual
meter display value, as shown in Figure 12-1.

Typical applications of such devices are in peak load management and in accounting and billing management
systems. This object is not intended to meet all such applications. Its purpose is to provide information about the
quantity being measured, such as electric power, water, or natural gas usage, according to criteria specific to the
application.

Accumulator
modulo-N/M divider

» (N counts out = M pulses in)
Prescale: |1:100

1 count = 100 kWh

Present Value: (0125

1 pulse = 1 kwh

Figure 12-1. Example of an Accumulator object

12

CEC Report on Extending BACnet for Lighting Control and Interfacing Building Systems with Utilities

The object and its properties are summarized in Table 12-1 and described in detail in this subclause. [Tom, I
rejected this change because it would make the language inconsistent with dozens of similar cases in Clause 12. I
made the same decision in the other instances where you made this change.]

Table 12-1. Properties of the Accumulator Object

Property Identifier Property Datatype Conformance Code
Object_Identifier BAChnetObjectldentifier R
Object_Name CharacterString R
Object_Type BAChnetObjectType R
Present_Value Unsigned R!
Description CharacterString (0]
Device_Type CharacterString (0]
Status_Flags BAChnetStatusFlags R
Event_State BACnetEventState R
Reliability BAChnetReliability (0]
Out_Of_Service BOOLEAN R
Scale BACnetScale R
Units BAChnetEngineeringUnits R
Prescale BACnetPrescale (0]
Max_Pres_Value Unsigned R
Value_Change_Time BACnetDateTime 0?
Value_Before_Change Unsigned 0%
Value_Set Unsigned 0%
Logging_Record BACnetAccumulatorRecord (0]
Logging Object BAChnetObjectldentifier (0]
Pulse_Rate Unsigned o
High_Limit Unsigned (o}
Low_Limit Unsigned o*
Limit_Monitoring_Interval Unsigned o*
Notification_Class Unsigned o*
Time_Delay Unsigned o*
Limit_Enable BACnetLimitEnable o*
Event_Enable BACnetEventTransitionBits o*
Acked_Transitions BACnetEventTransitionBits o*
Notify_Type BAChnetNotifyType (o}
Event_Time_Stamps BACnetARRAY[3] of BACnetTimeStamp o*
Profile_ Name CharacterString (6]

" This property is required to be writable when Out_Of_Service is TRUE.

*These properties are required if either Value_Before_Change or Value_Set is writable.
3 Either Value_Before_Change or Value_Set may be writable, but not both.

* These properties are required if the object supports intrinsic reporting.

12.1.1 Object_Identifier

This property, of type BACnetObjectldentifier, is a numeric code that is used to identify the object. It shall be
unique within the BACnet Device that maintains it.

13

CEC Report on Extending BACnet for Lighting Control and Interfacing Building Systems with Utilities

12.1.2 Object_Name

This property, of type CharacterString, shall represent a name for the object that is unique within the BACnet
Device that maintains it. The minimum length of the string shall be one character. The set of characters used in
the Object_Name shall be restricted to printable characters.

12.1.3 Object_Type

This property, of type BACnetObjectType, indicates membership in a particular object type class. The value of
this property shall be ACCUMULATOR.

12.1.4 Present_Value

This property, of type Unsigned, indicates the count of the input pulses, prescaled if the Prescale property is
present, acquired since the value was most recently set by writing to the Value_Set property.

The value of this property shall remain in the range from zero through Max_Pres_Value. All operations on the
Present_Value property are performed modulo (Max_Pres_Value+1).

This property shall be writable when Out_Of_Service is TRUE.

12.1.5 Description

This property, of type CharacterString, is a string of printable characters whose content is not restricted.
12.1.6 Device_Type

This property, of type CharacterString, is a text description of the physical device represented by the
Accumulator object. It will typically be used to describe the type of sensor represented by the Accumulator.

12.1.7 Status_Flags

This property, of type BACnetStatusFlags, represents four Boolean flags that indicate the general "health" of an
Accumulator object. Three of the flags are associated with the values of other properties of this object. A more
detailed status could be determined by reading the properties that are linked to these flags. The relationship
between individual flags is not defined by the protocol. The four flags are

{IN_ALARM, FAULT, OVERRIDDEN, OUT_OF_SERVICE}

where:

IN_ALARM Logical FALSE (0) if the Event State property has a value of NORMAL, otherwise
logical TRUE (1).

FAULT Logical TRUE (1) if the Reliability property is present and does not have a value of

NO_FAULT_DETECTED, otherwise logical FALSE (0).

OVERRIDDEN Logical TRUE (1) if the point has been overridden by some mechanism local to the
BACnet Device. In this context "overridden" is taken to mean that the Present_Value and
Reliability properties are no longer tracking changes to the physical input. Otherwise, the

value is logical FALSE (0).

OUT_OF_SERVICE Logical TRUE (1) if the Out_Of_Service property has a value of TRUE, otherwise
logical FALSE (0).

12.1.8 Event_State

14

CEC Report on Extending BACnet for Lighting Control and Interfacing Building Systems with Utilities

The Event_State property, of type BACnetEventState, is included in order to provide a way to determine if this
object has an active event state associated with it. If the object supports intrinsic reporting, then the Event_State
property shall indicate the event state of the object. If the object does not support intrinsic reporting and if the
Reliability property is not present, then the value of this property shall be NORMAL. If the Reliability property
is present and does not have a value of NO_FAULT_DETECTED, then the value of the Event_State property
shall be FAULT. Changes in the Event_State property to the value FAULT are considered to be “fault” events.

12.1.9 Reliability

The Reliability property, of type BACnetReliability, provides an indication of whether the Present_Value
property or the operation of the physical input in question is "reliable" as far as the BACnet Device or operator
can determine and, if not, why. The Reliability property for this object type may have any of the following
values:

{NO_FAULT_DETECTED, NO_SENSOR, OVER_RANGE, UNDER_RANGE, OPEN_LOOP,
SHORTED_LOOP, UNRELIABLE_OTHER}

12.1.10 Out_Of_Service

The Out_Of_Service property, of type BOOLEAN, is an indication whether (TRUE) or not (FALSE) the
physical input that the object represents is not in service. This means that the Present_Value and Pulse_Rate
properties are decoupled from the physical input and will not track changes to the physical input when the value
of Out_Of_Service is TRUE. In addition, the Reliability property and the corresponding state of the FAULT
flag of the Status_Flags property shall be decoupled from the physical input when Out_Of_Service is TRUE.
While the Out_Of_Service property is TRUE, the Present_Value, Pulse_Rate and Reliability properties may be
changed to any value as a means of simulating specific fixed conditions or for testing purposes. Other functions
that depend on the state of the Present_Value, Pulse_Rate or Reliability properties shall respond to changes
made to these properties while Out_Of_Service is TRUE, as if those changes had occurred in the physical input.

12.1.11 Scale

This property, of type BACnetScale, indicates the conversion factor to be multiplied with the value of the
Present_Value property to provide a value in the units indicated by Units. The choice of options for this
property determine how the scaling operation (which is performed by the client reading this object) is
performed:

Option Datatype Indicated Value in Units
floatScale REAL Present_Value x Scale
integerScale INTEGER Present_Value x 10 5%

12.1.12 Units

This property, of type BACnetEngineeringUnits, indicates the measurement units of the Present_Value when
multiplied with the scaling factor indicated by Scale. See the BACnetEngineeringUnits ASN.1 production in
Clause 21 for a list of engineering units defined by this standard.

12.1.13 Prescale
This property, of type BACnetPrescale, presents the coefficients that are used for converting the pulse signals
generated by the measuring instrument into the value displayed by Present_Value. The conversions are

performed using integer arithmetic in such a fashion that no measurement-generated pulse signals are lost in the
conversion.

15

CEC Report on Extending BACnet for Lighting Control and Interfacing Building Systems with Utilities

These coefficients might simply document a conversion performed prior to the reception of the input pulses by
the Accumulator object, or they might actually be used by the Accumulator to convert input pulses into the value
displayed by Present_Value. Whichever is done is a local matter.

The coefficients are as follows:

multiplier The numerator of the conversion factor expressed as a ratio of integers.
moduloDivide = The denominator of the conversion factor expressed as a ratio of integers.

The conversion algorithm is performed as follows, utilizing a non-displayed variable called an accumulator:
For each input pulse:
Add the value of ‘multiplier’ to an accumulator and then,
while the accumulator is greater than or equal to the value of ‘moduloDivide’:
Increment the value of Present_Value by one, and
decrease the value of the accumulator by the value of ‘moduloDivide’.

This procedure supports non-integral ratios of measurement pulses to Present_Value. For example, in an
electrical metering application, the output of the voltage- and current-measuring systems might be 9000/1200
(scale / voltage*current) pulses per kWh, requiring the Accumulator object to accumulate 2/15 kWh/pulse. With
this algorithm such pulses can be accurately accumulated and displayed when the units of Present_Value are
KILOWATT_HOURS.

12.1.14 Max_Pres_Value
This property, of type Unsigned, indicates the maximum value of the Present_Value property.
12.1.15 Value_Change_Time

This read-only property, of type BACnetDateTime, shall be present if the Present_Value property is adjustable
by writing to the Value_Before_Change or Value_Set properties. It represents the date and time of the most
recent occurrence of such a write operation. If no such write has yet occurred, this property shall have wildcard
values for all date and time fields.

12.1.16 Value_Before_Change

This property, of type Unsigned, indicates the value of the Present_Value property just prior to the most recent
write to the Value_Set or Value_Before_Change properties. If no such write has yet occurred, this property
shall have the value zero. If this property is writable, the Value_Set property shall be read-only.

If this property is writable, the following series of operations, for which the associated properties are present,
shall be performed atomically by the object when this property is written:

(1) The value of Present_Value shall be copied to the Value_Set property.

(2) The value written to Value_Before_Change shall be stored in the Value_Before_Change property.

(3) The current date and time shall be stored in the Value_Change_Time property.

While this series of operations is being performed, it is critical that any other process not change the
Present_Value, Value_Set and Value_Before_Change properties.

12.1.17 Value_Set
This property, of type Unsigned, indicates the value of the Present_Value property after the most recent write to
the Value_Set or Value_Before_Change properties. If no such write has yet occurred, this property shall have

the value zero. If this property is writable, the Value_Before_Change property shall be read-only.

If this property is writable, the following series of operations, for which the associated properties are present,
shall be performed atomically by the object when this property is written:

16

CEC Report on Extending BACnet for Lighting Control and Interfacing Building Systems with Utilities

(1) The value of Present_Value shall be copied to the Value_Before_Change property.
(2) The value written to Value_Set shall be stored in both the Value_Set and Present_Value properties.
(3) The current date and time shall be stored in the Value_Change_Time property.

While this series of operations are being performed, it is critical that any other process not change the
Present_Value, Value_Set and Value_Before_Change properties.

12.1.18 Logging Record

This read-only property, of type BACnetAccumulatorRecord, is a list of values that must be acquired and
returned “atomically” in order to allow proper interpretation of the data.

If the Logging_Object property is present, then, when Logging_Record is acquired by the object identified by
Logging_Object, this list of values shall be saved and returned when read by other objects or devices. If the
Logging_Object property is present and Logging Record has not yet been acquired by the object identified by
Logging_Object, ‘timestamp’ shall contain all wildcards, ‘present-value’ and ‘accumulated-value” shall contain
the value zero, and ‘accumulator-status’ shall indicate STARTING.

The list of values (‘timestamp’, ‘present-value’, ‘accumulated-value’, and ‘accumulator-status’) shall be
acquired from the underlying system when they reflect a stable state of the device (for example, they shall not
be acquired when Present_Value has just been incremented but the corresponding increment of ‘accumulated-
value’ has not yet occurred).

The items returned in the list of values are:

timestamp The local date and time when the data was acquired.

present-value The value of the Present_Value property.

accumulated-value The short term accumulated value of the counter. The algorithm used to calculate
accumulated-value is a function of the value of accumulator-status. If this is the initial
read, the value returned shall be zero.

accumulator-status An indication of the reliability of the data in this list of values.

The accumulator-status parameter may take on any of the following values:
{NORMAL, STARTING, RECOVERED, ABNORMAL, FAILED}
where the values are defined as follows:

NORMAL No event affecting the reliability of the data has occurred during the
period from the preceding to the current qualified reads of the
Logging_Record property. In this case ‘accumulated-value’ shall be
represented by the expression:

(accumulated-value) = (Present_Value yment) -
(Present_Valuepeyious)

STARTING This value indicates that the data in Logging_Records is either the first
data to be acquired since startup by the object identified by
Logging_Object (if ‘timestamp’ has non-wildcard values) or that no
data has been acquired since startup by the object identified by
Logging Object (in which case ‘timestamp’ has all wildcard values).

RECOVERED One or more writes to Value_Before_Change or Value_Set have
occurred since Logging_Record was acquired by the object identified
by Logging Object. For the case of a single write, ‘accumulated-value’
shall be represented by the expression:

‘accumulated-value’ = (Present_Value e - Value_Set) +

17

CEC Report on Extending BACnet for Lighting Control and Interfacing Building Systems with Utilities

(Value_Before_Change — Present_Valuepeyious)

ABNORMAL The accumulation has been carried out, but some unrecoverable event
such as the clock’s time being changed by a significant amount since
Logging_Record was acquired by the object identified by
Logging Object. (How much time is considered significant shall be a
local matter.)

FAILED ‘accumulation-value’ is not reliable due to some problem. The criteria
for returning this value are a local matter.

Changes in the value of ‘accumulator-status’ shall occur only when the Logging_Record is acquired by the
object identified by Logging_Object.

18

CEC Report on Extending BACnet for Lighting Control and Interfacing Building Systems with Utilities

12.1.19 Logging_Object

This property, of type BACnetObjectldentifier, indicates the object in the same device as the Accumulator
object which, when it acquires Logging_Record data from the Accumulator object, shall cause the Accumulator
object to acquire, present and store the data from the underlying system.

12.1.20 Pulse_Rate

This property, of type Unsigned, shall indicate the number of input pulses received during the most recent
period specified by Limit_Monitoring_Interval. The mechanism that associates the input signal with the value
indicated by this property is a local matter.

This property shall be writable when Out_Of_Service is TRUE.

12.1.21 High_Limit

This property, of type Unsigned, shall specify a limit that Pulse_Rate must exceed before an event is generated.
This property is required if this object supports intrinsic reporting.

12.1.21.1 Conditions for Generating a TO-OFFNORMAL Event
A TO-OFFNORMAL event is generated under these conditions:
(a) Pulse_Rate must exceed High_Limit for a minimum period of time, specified in the Time_Delay
property, and
(b) the HighLimitEnable flag must be set in the Limit_Enable property, and
(c) the TO-OFFNORMAL flag must be set in the Event_Enable property.
12.1.21.2 Conditions for Generating a TO-NORMAL Event

Once exceeded, Pulse_Rate must fall below High_Limit before a TO-NORMAL event is generated under these
conditions:

(a) Pulse_Rate must remain below High_Limit for a minimum period of time, specified in the Time_Delay
property, and
(b) the HighLimitEnable flag must be set in the Limit_Enable property, and
(c) the TO-NORMAL flag must be set in the Event_Enable property.
12.1.22 Low_Limit

This property, of type Unsigned, shall specify a limit that Pulse_Rate must fall below before an event is
generated. This property is required if this object supports intrinsic reporting.

12.1.22.1 Conditions for Generating a TO-OFFNORMAL Event
A TO-OFFNORMAL event is generated under these conditions:
(a) Pulse_Rate must fall below Low_Limit for a minimum period of time, specified in the Time_Delay
property, and
(b) the LowLimitEnable flag must be set in the Limit_Enable property, and
(c) the TO-OFFNORMAL flag must be set in the Event_Enable property.
12.1.22.2 Conditions for Generating a TO-NORMAL Event

Once Pulse_Rate has fallen below the Low_Limit, the Pulse_Rate must become greater than Low_Limit before
a TO-NORMAL event is generated under these conditions:

19

CEC Report on Extending BACnet for Lighting Control and Interfacing Building Systems with Utilities

(a) Pulse_Rate must become greater than Low_Limit for a minimum period of time, specified in the
Time_Delay property, and

(b) the LowLimitEnable flag must be set in the Limit_Enable property, and

(c) the TO-NORMAL flag must be set in the Event_Enable property.

12.1.23 Limit_Monitoring_Interval

This property, of type Unsigned, specifies the monitoring period in seconds for determining the value of
Pulse_Rate. The use of a fixed or sliding time window for detecting pulse rate is a local matter. This property is
required if this object supports intrinsic reporting.

12.1.24 Notification_Class

This property, of type Unsigned, shall specify the notification class to be used when handling and generating
event notifications for this object. The Notification_Class property implicitly refers to a Notification Class
object that has a Notification_Class property with the same value. This property is required if this object
supports intrinsic reporting.

12.1.25 Time_Delay

This property, of type Unsigned, shall specify the minimum period of time in seconds that Pulse_Rate must
remain outside the range from Low_Limit through High_Limit, before a TO-OFFNORMAL event is generated,
or within the same band before a TO-NORMAL event is generated. This property is required if this object
supports intrinsic reporting.

12.1.26 Limit_Enable

This property, of type BACnetLimitEnable, shall convey two flags that separately enable and disable reporting
of High_Limit and Low_Limit offnormal events and their return to normal. This property is required if this
object supports intrinsic reporting.

12.1.27 Event_Enable

This property, of type BACnetEventTransitionBits, shall convey three flags that separately enable and disable
reporting of TO-OFFNORMAL, TO-FAULT, and TO-NORMAL events. In the context of Accumulator
objects, transitions to the High_Limit or Low_Limit Event_States are considered to be "offnormal" events. This
property is required if this object supports intrinsic reporting.

12.1.28 Acked_Transitions

This property, of type BACnetEventTransitionBits, shall convey three flags that separately indicate the receipt
of acknowledgements for TO-OFFNORMAL, TO-FAULT, and TO-NORMAL events. In the context of
Accumulator objects, transitions to High_Limit and Low_Limit Event_State are considered to be "offnormal"
events. These flags shall be cleared upon the occurrence of the corresponding event and set under any of these
conditions:

(a) upon receipt of the corresponding acknowledgement;

(b) upon the occurrence of the event if the corresponding flag is not set in the Event_Enable property (meaning
event notifications will not be generated for this condition and thus no acknowledgement is expected);

(c) upon the occurrence of the event if the corresponding flag is set in the Event_Enable property and the
corresponding flag in the Ack_Required property of the Notification Class object implicitly referenced by
the Notification_Class property of this object is not set (meaning no acknowledgement is expected).

This property is required if this object supports intrinsic reporting.

20

CEC Report on Extending BACnet for Lighting Control and Interfacing Building Systems with Utilities

12.1.29 Notify_Type

This property, of type BACnetNotifyType, shall convey whether the notifications generated by the object
should be Events or Alarms. This property is required if this object supports intrinsic reporting.

12.1.30 Event_Time_Stamps

This optional property, of type BACnetARRAY([3] of BACnetTimeStamp, shall convey the times of the last
event notifications for TO-OFFNORMAL, TO-FAULT, and TO-NORMAL events, respectively. Time stamps
of type Time or Date shall have X'FF' in each octet and Sequence number time stamps shall have the value O if
no event notification of that type has been generated since the object was created. This property is required if
this object supports intrinsic reporting.

12.1. 31 Profile_Name

This property, of type CharacterString, is the name of an object profile to which this object conforms. To ensure
uniqueness, a profile name must begin with a vendor identifier code (see Clause 23) in base-10 integer format,
followed by a dash. All subsequent characters are administered by the organization registered with that vendor
identifier code. The vendor identifier code that prefixes the profile name shall indicate the organization that
publishes and maintains the profile document named by the remainder of the profile name. This vendor
identifier need not have any relationship to the vendor identifier of the device within which the object resides.

A profile defines a set of additional properties, behavior, and/or requirements for this object beyond those
specified here. This standard defines only the format of the names of profiles. The definition of the profiles
themselves is outside the scope of this standard.

[Change Table 13-2 p. 237]

Table 13-2. Standard Objects that That May Support Intrinsic Reporting

Object Type Criteria Event Type
Accumulator If Pulse_Rate exceeds range from Low_Limit through UNSIGNED _RANGE
High_Limit for longer than Time_Delay AND the new
transition is enabled in Event_Enable and
Limit_Enable,

OR

Pulse_Rate returns to range from Low_Limit through
High_Limit for longer than Time_Delay AND the new
transition is enabled in Event_Enable and
Limit_Enable

Analog Input, If Present_Value exceeds range between High_Limit OUT_OF_RANGE
Analog Output, and Low_Limit for longer than Time_Delay AND the
Analog Value, new transition is enabled in Event_Enable and

Limit_Enable,

OR

Present__Value returns within the High_Limit —
Deadband to Low_Limit + Deadband range for longer
than Time_Delay AND the new transition is enabled
in Event_Enable and Limit_Enable

21

CEC Report on Extending BACnet for Lighting Control and Interfacing Building Systems with Utilities

[Change Table 13-3 p. 238]

Table 13-3. Standard Object Property Values Returned in Notifications

Object Event Type Notification Referenced Object's Properties
Parameters
Accumulator UNSIGNED_RANGE Exceeding_Value Pulse_Rate
Status_Flags Status_Flags
Exceeded_Limit Low_Limit or High_Limit
Analog Input, OUT_OF_RANGE Exceeding_Value Present_Value
Analog Output, Status_Flags Status_Flags
Analog Value Deadband Deadband
Exceeded_Limit Low_Limit or High_Limit

[Change Table 13-4, p. 238]

Table 13-4. Notification Parameters for Standard Event Types

Event Type

Notification Parameters

Description

CHANGE_OF_LIFE_SAFETY

New_State
New_Mode
Status_Flags
Operation_Expected

The new value of the referenced property

The new mode of the referenced object

The Status_Flags of the referenced object

The next operation requested by the referenced object

UNSIGNED_RANGE

Exceeding_Value
Status_Flags
Exceeded_Limit

The value that exceeded a limit
The Status_Flags of the referenced object
The limit that was exceeded

[Change Clause 13.3, p.239]

13.3 Algorithmic Change Reporting

The following event type algorithms are specified in this standard because of their widespread occurrence in
building automation and control systems. They are:

(a) CHANGE_OF_BITSTRING
(b) CHANGE_OF_STATE

(c) CHANGE_OF_VALUE
(d) COMMAND_FAILURE
(e) FLOATING_LIMIT

(f) OUT_OF_RANGE
() BUFFER_READY

(h) CHANGE_OF_LIFE_SAFETY
(i) UNSIGNED_RANGE

[Add Clause 13.3.9, p. 245]

13.3.9 UNSIGNED_RANGE Algorithm

An UNSIGNED_RANGE occurs if the referenced property leaves the range of values from Low_Limit through
High_Limit parameters and remains there for Time_Delay seconds. If the transition is to a value above

22

CEC Report on Extending BACnet for Lighting Control and Interfacing Building Systems with Utilities

High_Limit or below Low_Limit, the Event Enrollment object generates a TO-OFFNORMAL transition. The
event notification shall show an 'Event Type' of UNSIGNED_RANGE.

An UNSIGNED_RANGE clears when the referenced property attains a value from Low_Limit through
High Limit and remains there for Time_Delay seconds. The Event Enrollment object generates a TO-
NORMAL transition. The event notification shall show an 'Event Type' of UNSIGNED_RANGE. See Figure
13-10.

[Add new Figure 13-10, p.245, and renumber existing Figure 13-10 and subsequent figures]

Referenced Property > High_Limit
for Time_Delay seconds

Referenced Property < Low_Limit
for Time_Delay seconds

Referenced Property <= High_Limit
for Time_Delay seconds

Referenced Property >= Low_Limit
for Time_Delay seconds

Figure 13-10. UNSIGNED_RANGE algorithm.
[Add new BACnetAccumulatorRecord production to Clause 21, p. 387]

BACnetAccumulatorRecord ::= SEQUENCE {
timestamp [0] BACnetDateTime,
presentValue [1] Unsigned,
accumulatedValue [2] Unsigned,
accumulatortStatus [3] ENUMERATED {

normal (0),
starting (1),
recovered (2),
abnormal (3),
failed (4)
/

23

CEC Report on Extending BACnet for Lighting Control and Interfacing Building Systems with Utilities

[Change BACnetEventParameter production in Clause 21, p.393]
BACnetEventParameter ::= CHOICE {
-- These choices have a one-to-one correspondence with Event_Type enumeration

change-of-life-safety [8] SEQUENCE {

time-delay [0] Unsigned,
list-of-life-safety-alarm-values [1] SEQUENCE OF BACnetLifeSafetyState,
list-of-alarm-values [2] SEQUENCE OF BACnetLifeSafetyState,
mode-property-reference [3] BACnetDeviceObjectPropertyReference

+/

unsigned-range [9] SEQUENCE {
time-delay [0] Unsigned,
low-limit [1] Unsigned,
high-limit [2] Unsigned
/

}

-- CHOICE [6] has been intentionally omitted. It parallels the complex-event-type CHOICE [6] of the
-- BACnetNotificationParameters production which was introduced to allow the addition of proprietary event
-- algorithms whose event parameters are not necessarily network-visible.

[Change BACnetEventType production in Clause 21, p.394]

BACnetEventType ::= ENUMERATED {
change-of-bitstring ~ (0),

change-of-state (D),
change-of-value 2),
command-failure A3),
floating-limit @),
out-of-range %),
-- complex-event-type (6), -- see comment below
buffer-ready @,
change-of-life-safety (8),
unsigned-range (9),

}
-- Enumerated values 0-63 are reserved for definition by ASHRAE. Enumerated values
-- 64-65535 may be used by others subject to the procedures and constraints described
-- in Clause 23. It is expected that these enumerated values will correspond to the use of the
-- complex-event-type CHOICE [6] of the BACnetNotificationParameters production.
-- The last enumeration used in this version is 8. 9.

[Change B ACnetNotificationParameters production in Clause 21, p.396]

BA CnetNotificationParameters ::= CHOICE {
-- These choices have a one-to-one correspondence with Event_Type enumeration

change-of-life-safety [8] SEQUENCE {

new-state [0] BACnetLifeSafetyState,
new-mode [1] BACnetLifeSafetyMode,
status-flags [2] BACnetStatusFlags,
operation-expected [3] BACnetLifeSafetyOperation

1/

24

CEC Report on Extending BACnet for Lighting Control and Interfacing Building Systems with Utilities

unsigned-range [9] SEQUENCE {
exceeding-value [0] Unsigned,
status-flags [1] BACnetStatusFlags,
exceeded-limit [2] Unsigned
/

}
[Add new BACnetPrescale production to Clause 21, p. 399]

BACnetPrescale ::= SEQUENCE {

multiplier [0] Unsigned,
moduloDivide [1] Unsigned
/

[Add new BACnetScale production to Clause 21, p. 405]

BACnetScale ::= CHOICE {

floatScale [0] REAL,
integerScale [1] INTEGER
/

[Add to Annex C, p. 428]
ANNEX C - FORMAL DESCRIPTION OF OBJECT TYPE STRUCTURES (INFORMATIVE)
(This annex is not part of this standard but is included for informative purposes only.)

ACCUMULATOR ::= SEQUENCE {

object-identifier [75] BACnetObjectldentifier,
object-name [77] CharacterString,

object-type [79] BACnetObjectType,
present-value [85] Unsigned,

description [28] CharacterString OPTIONAL,
device-type [31] CharacterString OPTIONAL,
status-flags [111] BACnetStatusFlags,

event-state [36] BACnetEventState,

reliability [103] BACnetReliability OPTIONAL,
out-of-service [81] BOOLEAN,

scale [186] BACnetScale,

units [117] BACnetEngineeringUnits,
prescale [188] BACnetPrescale OPTIONAL,
max-pres-value [65] Unsigned,

value-change-time [192] BACnetDateTime OPTIONAL,
value-before-change [190] Unsigned OPTIONAL,

value-set [191] Unsigned OPTIONAL,
logging-record [184] BACnetAccumulatorRecord OPTIONAL,
logging-device [183] BACnetRecipient OPTIONAL,
pulse-rate [186] Unsigned OPTIONAL,
high-limit [45] Unsigned OPTIONAL,

low-limit [59] Unsigned OPTIONAL,
limit-monitoring-interval [182] Unsigned OPTIONAL,
event-type [37] BACnetEventType,
notification-class [17] Unsigned OPTIONAL,
time-delay [113] Unsigned OPTIONAL,
limit-enable [52] BACnetLimitEnable OPTIONAL,
event-enable [35] BACnetEventTransitionBits OPTIONAL,

25

CEC Report on Extending BACnet for Lighting Control and Interfacing Building Systems with Utilities

acked-transitions [0] BACnetEventTransitionBits OPTIONAL,
notify-type [72] BACnetNotifyType OPTIONAL,
event-time-stamps [130] SEQUENCE OF BACnetTimeStamp OPTIONAL,
profile-name [167] CharacterString OPTIONAL

/

ANALOG-INPUT ::= SEQUENCE {

[Add new Clause D.1, p. 439, and renumber existing Clause D.1 and subsequent clauses]

D.1 Example of an Accumulator object

Property: Object_Identifier = (Accumulator, Instance 1)

Property: Object_Name = "Tenant 1"

Property: Object_Type = ACCUMULATOR

Property Present_Value = 323

Property: Description = "

Property: Device_Type = "Electric Pulse"

Property: Status_Flags = {FALSE, FALSE, FALSE, FALSE}
Property: Event_State = NORMAL

Property: Out_Of_Service = FALSE

Property: Scale = 2

Property: Units = KILOWATT_HOURS

Property: ~ Prescale = (1,10000)

Property: ~ Max_Pres_Value = 9999

Property: Value_Change_Time = (23-MAR-01,18:50:21.2)

Property: Value_Before_Change = 0

Property: Value_Set = 67

Property: Logging Record = ((13-JUL-01,13:00:00.2),120,1, NORMAL)
Property: Logging Object = (Trend Log Multiple, Instance 100)
Property: ~ Pulse_Rate = 3

Property: ~ High_Limit = 15

Property: ~ Low_Limit = 0

Property: ~ Limit_Monitoring_Interval = 300

Property: ~ Event_Type = UNSIGNED_RANGE

Property: Notification_Class = 3

Property: Limit_Enable = {TRUE, FALSE}

Property: Event_Enable = {TRUE, FALSE, TRUE}

Property: Acked_Transitions = {TRUE, TRUE, TRUE}

Property: Notify_Type = ALARM

Property: Event_Time_Stamps = ((12-JUL-01,18:50:21.2),

(*_*_*’*:*:*.*)’

(12-JUL-01,19:01:34.0))

26

CEC Report on Extending BACnet for Lighting Control and Interfacing Building Systems with Utilities

Attachment D: Pulse Converter Object

135¢-5. Add a new Pulse Converter Object Type.

Rationale
There is need for a standard object to represent pulsed inputs indicating various measured values used
for system monitoring and control.

Addendum 135¢-5

[Add a new Clause 12.22, p. 224, and renumber the existing Clause 12.22 and subsequent clauses including tables
and figures]

12.23 Pulse Converter Object Type

The Pulse Converter object type defines a standardized object that represents a process whereby ongoing
measurements made of some quantity, such as electric power or water or natural gas usage, and represented by
pulses or counts, might be monitored over some time interval for applications such as peak load management,
where it is necessary to make periodic measurements but where a precise accounting of every input pulse or
count is not required.

The Pulse Converter object might represent a physical input. As an alternative, it might acquire the data from
the Present_Value of an Accumulator object, representing an input in the same device as the Pulse Converter
object. This linkage is illustrated by the dotted line in Figure 12-3. Every time the Present_Value property of the
Accumulator object is incremented, the Count property of the Pulse Converter object is also incremented.

The Present_Value property of the Pulse Converter object can be adjusted at any time by writing to the
Adjust_Value property, which causes the Count property to be adjusted, and the Present_Value recomputed
from Count. In the illustration in Figure 12-3, the Count property of the Pulse Converter was adjusted down to 0
when the Total_Count of the Accumulator object had the value 0070.

W Accumulator Pulse Converter
1 pulse = dulo-N/M divid
meter 1 kwh m?)ouuntgout =M pul|\5/els ﬁ)r Presen'[_Va|Ue 687_5

Y

012500

Prescale: [1:100

Scale_Factor: | 12.5
Tcount=100kWh--ucreeefpoecmmmm e .
4 ¥

Present Value (0125 Count: 0055

Figure 12-3. Relationship between the Pulse Converter and Accumulator objects.

The object and its properties are summarized in Table 12-27 and described in detail in this subclause.

27

CEC Report on Extending BACnet for Lighting Control and Interfacing Building Systems with Utilities

Table 12-27. Properties of the Pulse Converter Object

Property Identifier Property Datatype Conformance Code
Object_Identifier BAChnetObjectldentifier R
Object_Name CharacterString R
Object_Type BAChnetObjectType R
Description CharacterString (0]
Present_Value REAL R!
Input_Reference BAChnetObjectPropertyReference (0]
Status_Flags BAChnetStatusFlags R
Event_State BACnetEventState R
Reliability BAChnetReliability (0]
Out_Of_Service BOOLEAN R
Units BAChnetEngineeringUnits R
Scale_Factor REAL R
Adjust_Value REAL w
Count Unsigned R
Update_Time BACnetDateTime R
Count_Change_Time BACnetDateTime R?
Count_Before_Change Unsigned R?
COV _Increment REAL o’
COV_Period Unsigned o’
Notification_Class Unsigned o*
Time_Delay Unsigned (o}
High_Limit REAL (o}
Low_Limit REAL o*
Deadband REAL o*
Limit_Enable BACnetLimitEnable o*
Event_Enable BACnetEventTransitionBits o*
Acked_Transitions BACnetEventTransitionBits o*
Notify_Type BAChnetNotifyType (o}
Event_Time_Stamps BACnetARRAY[3] of BACnetTimeStamp o*
Profile_Name CharacterString (6]

" This property is required to be writable when Out_Of_Service is TRUE.
*These properties are required if Count_Before_Change is writable.

? These properties are required if the object supports COV reporting.

* These properties are required if the object supports intrinsic reporting.

12.23.1 Object_Identifier

This property, of type BACnetObjectldentifier, is a numeric code that is used to identify the object. It shall be
unique within the BACnet Device that maintains it.

12.23.2 Object_Name
This property, of type CharacterString, shall represent a name for the object that is unique within the BACnet

Device that maintains it. The minimum length of the string shall be one character. The set of characters used in
the Object_Name shall be restricted to printable characters.

28

CEC Report on Extending BACnet for Lighting Control and Interfacing Building Systems with Utilities

12.23.3 Object_Type

This property, of type BACnetObjectType, indicates membership in a particular object type class. The value of
this property shall be PULSE_CONVERTER.

12.23.4 Description
This property, of type CharacterString, is a string of printable characters whose content is not restricted.
12.23.5 Present_Value

This property, of type REAL, indicates the accumulated value of the input being measured. It is computed by
multiplying the current value of the Count property by the value of the Scale_Factor property. The value of the
Present_Value property may be adjusted by writing to the Adjust_Value property. The Present_Value property
shall be writable when Out_Of_Service is TRUE.

12.23.6 Input_Reference

This optional property, of type BACnetObjectPropertyReference, indicates the object and property (typically an
Accumulator object's Present_Value property) representing the actual physical input that is to be measured and
presented by the Pulse Converter object. The referenced property should have a datatype of INTEGER or
Unsigned.

If this property is not present, the Pulse Converter object directly represents the physical input.

12.23.7 Status_Flags

This property, of type BACnetStatusFlags, represents four Boolean flags that indicate the general "health"” of a
Pulse Converter. Three of the flags are associated with the values of other properties of this object. A more
detailed status could be determined by reading the properties that are linked to these flags. The relationship

between individual flags is not defined by the protocol. The four flags are

{IN_ALARM, FAULT, OVERRIDDEN, OUT_OF_SERVICE}

where:

IN_ALARM Logical FALSE (0) if the Event_State property has a value of NORMAL, otherwise
logical TRUE (1).

FAULT Logical TRUE (1) if the Reliability property is present and does not have a value of

NO_FAULT_DETECTED, otherwise logical FALSE (0).

OVERRIDDEN Logical TRUE (1) if the point has been overridden by some mechanism local to the
BACnet Device. In this context "overridden" is taken to mean that the Present_Value,
Count and Reliability properties are no longer tracking changes to the input. Otherwise,
the value is logical FALSE (0).

OUT_OF_SERVICE Logical TRUE (1) if the Out_Of_Service property has a value of TRUE, otherwise
logical FALSE (0).

12.23.8 Event_State
The Event_State property, of type BACnetEventState, is included in order to provide a way to determine if this
object has an active event state associated with it. If the object supports intrinsic reporting, then the Event_State

property shall indicate the event state of the object. If the object does not support intrinsic reporting and if the
Reliability property is not present, then the value of this property shall be NORMAL. If the Reliability property

29

CEC Report on Extending BACnet for Lighting Control and Interfacing Building Systems with Utilities

is present and does not have a value of NO_FAULT_DETECTED, then the value of the Event_State property
shall be FAULT. Changes in the Event_State property to the value FAULT are considered to be “fault” events.

12.23.9 Reliability

The Reliability property, of type BACnetReliability, provides an indication of whether the Present Value
and/or Count properties or the operation of the physical input in question is "reliable" as far as the BACnet
Device or operator can determine and, if not, why. The Reliability property for this object type may have any of
the following values:

{NO_FAULT_DETECTED, NO_SENSOR, OVER_RANGE, UNDER_RANGE, OPEN_LOOP,
SHORTED_LOOP, UNRELIABLE_OTHER, CONFIGURATION_ERROR}

If Input_Reference is configured to reference a property that is not of datatype Unsigned or INTEGER, or is
otherwise not supported as an input source for this object, the Reliability property shall indicate
CONFIGURATION_ERROR.

12.23.10 Out_Of_Service

The Out_Of_Service property, of type BOOLEAN, is an indication whether (TRUE) or not (FALSE) the input
that the object directly represents, if any, is not in service. ("Directly represents” means that the
Input_Reference property is not present in this object.) The Present_Value property is decoupled from the
Count property and will not track changes to the input when the value of Out_Of_Service is TRUE. In addition,
the Reliability property and the corresponding state of the FAULT flag of the Status_Flags property shall be
decoupled from the input when Out_Of_Service is TRUE. While the Out_Of_Service property is TRUE, the
Present_Value and Reliability properties may be changed to any value as a means of simulating specific fixed
conditions or for testing purposes. Other functions that depend on the state of the Present_Value or Reliability
properties shall respond to changes made to these properties while Out_Of_Service is TRUE as if those changes
had occurred in the input.

If the Input_Reference property is present, the state of the Out_Of_Service property of the object referenced by
Input_Reference shall not be indicated by the Out_Of_Service property of the Pulse Converter object.

12.23.11 Units

This property, of type BACnetEngineeringUnits, indicates the measurement units of the Present_Value
property. See the BACnetEngineeringUnits ASN.1 production in Clause 21 for a list of engineering units
defined by this standard.

12.23.12 Scale_Factor

This property, of type REAL, provides the conversion factor for computing Present_Value. It represents the
change in Present_Value resulting from changing the value of Count by one.

12.23.13 Adjust_Value

This property, of type REAL, is written to adjust the Present_Value property (and thus the Count property also)
by the amount written to Adjust_Value.

If this property is writable the following series of operations shall be performed atomically when this property is
written:

(1) The value written to Adjust_Value shall be stored in the Adjust_Value property.

(2) The value of Count shall be copied to the Count_Before_Change property.

(3) The value of Count shall be decremented by the value calculated by performing the integer division
(Adjust_Value/Scale_Factor) and discarding the remainder.

30

CEC Report on Extending BACnet for Lighting Control and Interfacing Building Systems with Utilities

(4) The current date and time shall be stored in the Count_Change_Time property.

A write to this property results in a change in the value of Present_Value. Whether the new value is computed
as part of the atomic series of operations or when Present_Value is read is a local matter.

If Adjust_Value has never been written, it shall have a value of zero.
12.23.14 Count

This read-only property, of type Unsigned, indicates the count of the input pulses as acquired from the physical
input or the property referenced by the Input_Reference property.

If the property referenced by Input_Reference property is present, has datatype Unsigned or INTEGER, and is
supported as an input source for this object, the value of the Count property is derived from the referenced
property. An increment by one count in the referenced property is reflected by an increment of one count in the
Count property. The means by which this is done shall be a local matter. Because the value of the Pulse
Converter object Count property may be changed by a write to the Adjust_Value property, the value of the
Count property can be different from the value of the referenced property.

12.23.15 Update_Time

This read-only property, of type BACnetDateTime, reflects the date and time of the most recent change to the
Count property as a result of input pulse accumulation and is updated atomically with the Count property. If no
such change has yet occurred, this property shall have wildcard values for all date and time fields.

12.23.16 Count_Change_Time

This read-only property, of type BACnetDateTime, represents the date and time of the most recent occurrence
of a write to the Adjust_Value property. If no such write has yet occurred, this property shall have wildcard
values for all date and time fields.

12.23.17 Count_Before_Change

This property, of type Unsigned, indicates the value of the Count property just prior to the most recent write to
the Adjust_Value properties. If no such write has yet occurred, this property shall have the value zero.

12.23.18 COV_Increment

This property, of type REAL, shall specify the minimum change in Present_Value that will cause a COV
notification to be issued to subscriber COV-clients. This property is required if COV reporting is supported by
this object.

12.23.19 COV_Period

The COV_Period property, of type Unsigned, shall indicate the amount of time in seconds between the periodic
COV notifications performed by this object. This property is required if COV reporting is supported by this
object.

12.23.20 Notification_Class

This property, of type Unsigned, shall specify the notification class to be used when handling and generating
event notifications for this object. The Notification_Class property implicitly refers to a Notification Class
object that has a Notification_Class property with the same value. This property is required if intrinsic reporting

is supported by this object.

12.23.21 Time_Delay

31

CEC Report on Extending BACnet for Lighting Control and Interfacing Building Systems with Utilities

This property, of type Unsigned, shall specify the minimum period of time in seconds that the Present_Value
must remain outside the band defined by the High Limit and Low_Limit properties before a TO-
OFFNORMAL event is generated or remain within the same band, including the Deadband property, before a
TO-NORMAL event is generated. This property is required if intrinsic reporting is supported by this object.

12.23.22 High_Limit

This property, of type REAL, shall specify a limit that the Present_Value must exceed before an event is
generated. This property is required if intrinsic reporting is supported by this object.

12.23.22.1 Conditions for Generating a TO-OFFNORMAL Event
A TO-OFFNORMAL event is generated under these conditions:

(a) the Present_Value must exceed the High_Limit for a minimum period of time, specified in the Time_Delay
property, and

(b) the HighLimitEnable flag must be set in the Limit_Enable property, and

(c) the TO-OFFNORMAL flag must be set in the Event_Enable property.

12.23.22.2 Conditions for Generating a TO-NORMAL Event

Once exceeded, the Present_Value must fall below the High_Limit minus the Deadband before a TO-
NORMAL event is generated under these conditions:

(a) the Present_Value must fall below the High_Limit minus the Deadband for a minimum period of time,
specified in the Time_Delay property, and

(b) the HighLimitEnable flag must be set in the Limit_Enable property, and

(c) the TO-NORMAL flag must be set in the Event_Enable property.

12.23.23 Low_Limit

This property, of type REAL, shall specify a limit below which the Present_Value must fall before an event is
generated. This property is required if intrinsic reporting is supported by this object.

12.23.23.1 Conditions for Generating a TO-OFFNORMAL Event

A TO-OFFNORMAL event is generated under these conditions:

(a) the Present_Value must fall below the Low_Limit for a minimum period of time, specified in the
Time_Delay property, and

(b) the LowLimitEnable flag must be set in the Limit_Enable property, and

(c) the TO-OFFNORMAL flag must be set in the Event_Enable property.

12.23.23.2 Conditions for Generating a TO-NORMAL Event

Once the Present_Value has fallen below the Low_Limit, the Present_Value must exceed the Low_Limit plus
the Deadband before a TO-NORMAL event is generated under these conditions:

(a) the Present_Value must exceed the Low_Limit plus the Deadband for a minimum period of time,

specified in the Time_Delay property, and
(b) the LowLimitEnable flag must be set in the Limit_Enable property, and

32

CEC Report on Extending BACnet for Lighting Control and Interfacing Building Systems with Utilities

(c) the TO-NORMAL flag must be set in the Event_Enable property.
12.23.24 Deadband

This property, of type REAL, shall specify a range between the High_Limit and Low_Limit properties, which
the Present_Value must remain within for a TO-NORMAL event to be generated under these conditions:

(a) the Present_Value must fall below the High_Limit minus Deadband, and

(b) the Present_Value must exceed the Low_Limit plus the Deadband, and

(c) the Present_Value must remain within this range for a minimum period of time, specified in the
Time_Delay property, and

(d) either the HighLimitEnable or LowLimitEnable flag must be set in the Limit_Enable property, and

(e) the TO-NORMAL flag must be set in the Event_Enable property

This property is required if intrinsic reporting is supported by this object.
12.23.25 Limit_Enable

This property, of type BACnetLimitEnable, shall convey two flags that separately enable and disable reporting
of HighLimit and LowLimit offnormal events and their return to normal. This property is required if intrinsic
reporting is supported by this object.

12.23.26 Event_Enable

This property, of type BACnetEventTransitionBits, shall convey three flags that separately enable and disable
reporting of TO-OFFNORMAL, TO-FAULT, and TO-NORMAL events. In the context of Pulse Converter
objects, transitions to the High_Limit or Low_Limit Event_States are considered to be "offnormal" events. This
property is required if intrinsic reporting is supported by this object.

12.23.27 Acked_Transitions

This property, of type BACnetEventTransitionBits, shall convey three flags that separately indicate the receipt
of acknowledgements for TO-OFFNORMAL, TO-FAULT, and TO-NORMAL events. In the context of Pulse
Converter objects, transitions to High_Limit and Low_Limit Event_State are considered to be "offnormal”
events. These flags shall be cleared upon the occurrence of the corresponding event and set under any of these
conditions:

(a) upon receipt of the corresponding acknowledgement;

(b) upon the occurrence of the event if the corresponding flag is not set in the Event_Enable property (meaning
event notifications will not be generated for this condition and thus no acknowledgement is expected);

(c) upon the occurrence of the event if the corresponding flag is set in the Event_Enable property and the
corresponding flag in the Ack_Required property of the Notification Class object implicitly referenced by
the Notification_Class property of this object is not set (meaning no acknowledgement is expected).

This property is required if intrinsic reporting is supported by this object.
12.23.28 Notify_Type

This property, of type BACnetNotifyType, shall convey whether the notifications generated by the object
should be Events or Alarms. This property is required if intrinsic reporting is supported by this object.

33

CEC Report on Extending BACnet for Lighting Control and Interfacing Building Systems with Utilities

12.23.29 Event_Time_Stamps

This optional property, of type BACnetARRAY[3] of BACnetTimeStamp, shall convey the times of the last
event notifications for TO-OFFNORMAL, TO-FAULT, and TO-NORMAL events, respectively. Time stamps
of type Time or Date shall have X'FF' in each octet and Sequence number time stamps shall have the value 0 if
no event notification of that type has been generated since the object was created. This property is required if
intrinsic reporting is supported by this object.

12.23.30 Profile_Name

This property, of type CharacterString, is the name of an object profile to which this object conforms. To ensure
uniqueness, a profile name must begin with a vendor identifier code (see Clause 23) in base-10 integer format,
followed by a dash. All subsequent characters are administered by the organization registered with that vendor
identifier code. The vendor identifier code that prefixes the profile name shall indicate the organization that
publishes and maintains the profile document named by the remainder of the profile name. This vendor
identifier need not have any relationship to the vendor identifier of the device within which the object resides.

A profile defines a set of additional properties, behavior, and/or requirements for this object beyond those
specified here. This standard defines only the format of the names of profiles. The definition of the profiles
themselves is outside the scope of this standard.

[Change Clause 13.1, p. 234]
13.1 Change of Value Reporting

Change of value (COV) reporting allows a COV-client to subscribe with a COV-server, on a permanent or
temporary basis, to receive reports of some changes of value of some referenced property based on fixed
criteria. If an object provides COV reporting, then changes of value of any subscribed-to properties of the
object, in some cases based on programmable increments, trigger COV notifications to be sent to subscribing
clients. Typically, COV notifications are sent to supervisory programs in COV-client devices or to operators or
logging devices. Any object, proprietary or standard, may support COV reporting at the implementor's option.

COV subscriptions are established using the SubscribeCOV service or the SubscribeCOVProperty service. The
subscription establishes a connection between the change of value detection and reporting mechanism within
the COV-server device and a "process" within the COV-client device. Notifications of changes are issued by the
COV-server when changes occur after the subscription has been established. The ConfirmedCOVNotification
and UnconfirmedCOVNotification services are used by the COV-server to convey change notifications. The
choice of confirmed or unconfirmed service is specified in the subscription.

When a BACnet standard object, of a type listed in Table 13-1, supports COV reporting, it shall support COV
reporting for the property as listed in Table 13-1. At the implementor's discretion, COV reporting may also be
supported for any other property of the object. For properties listed in Table 13-1 that have a REAL data type,
the COV increment used to determine when to generate notifications will be the COV_Increment property of
the object unless a COV_Increment parameter is supplied in the SubscribeCOVProperty service. For other
properties that have a REAL data type, the COV increment to use when not supplied with the
SubscribeCOVProperty service shall be a local matter. This is to allow multiple subscribers that do not require a
specific increment to use a common increment to allow for the reduction of the processing burden on the COV-
server. The criteria for COV reporting for properties other than those listed in Table 13-1 is based on the data
type of the property subscribed to and is described in Table 13-1a.

If an object supports the COV_Period property and COV_Period is non-zero, it shall issue COV notifications to
all subscribed recipients at the regular interval specified by COV_Period, in addition to the notifications
initiated by the change of value of the monitored property. The value of the monitored property conveyed by the
periodic COV notification shall be the basis for determining whether a subsequent COV notification is required
by the change in value of the monitored property. If COV_Period is zero, the periodic notifications shall not be
issued.

34

CEC Report on Extending BACnet for Lighting Control and Interfacing Building Systems with Utilities

[Change Table 13-1, p. 235]

Table 13-1. Standardized Objects Whieh That May Support COV Reporting

Object Type

Criteria

Properties Reported

Loop

If Present_Value changes by COV_Increment
or
Status_Flags changes at all

Present_Value, Status_Flags,
Setpoint,
Controlled_Variable_Value

Pulse Converter

If Present_Value changes by COV_Increment
or

Status_Flags changes at all

or

If COV_Period expires

Present_Value, Status_Flags,
Update_Time

[Change Table 13-2, p. 237]

Table 13-2. Standard Objects that That May Support Intrinsic Reporting

Pulse Converter,

Object Type Criteria Event Type
Analog Input, If Present_Value exceeds range between High_Limit OUT_OF_RANGE
Analog Output, and Low_Limit for longer than Time_Delay AND the
Analog Value Value, new transition is enabled in Event_Enable and

Limit_Enable,

OR

Present__Value returns within the High Limit —
Deadband to Low_Limit + Deadband range for longer
than Time_Delay AND the new transition is enabled
in Event_Enable and Limit_Enable

[Change Table 13-3, p. 238]

Table 13-3. Standard Object Property Values Returned in Notifications

Analog Value Value,
Pulse Converter

Deadband
Exceeded_Limit

Object Event Type Notification Parameters | Referenced Object's Properties
Analog Input, OUT_OF_RANGE Exceeding_Value Present_Value
Analog Output, Status_Flags Status_Flags

Deadband
Low_Limit or High_Limit

[Change BACnetObjectType production in Clause 21, pp. 397-398]

BACnetObjectType ::= ENUMERATED {

accumulator
analog-input

program
pulse-converter
schedule
-- see averaging

-- see multi-state-value

(23),
),

(16),
(24),
7),
(18),
(19),

35

CEC Report on Extending BACnet for Lighting Control and Interfacing Building Systems with Utilities

trend-log (20),
-- see life-safety-point 20,
-- see life-safety-zone (22),
-- see accumulator (23),
-- see pulse-converter (24),

}
-- Enumerated values 0-127 are reserved for definition by ASHRAE. Enumerated values
-- 128-1023 may be used by others subject to the procedures and constraints described
-- in Clause 23.

[Change B ACnetObjectTypesSupported production in Clause 21, pp. 398-399]

BACnetObjectTypesSupported ::= BIT STRING {

-- accumulator
analog-input

program

-- pulse-converter
schedule

-- trend-log

-- Objects added after 1995

averaging
multi-state-value
trend-log
life-safety-point
life-safety-zone

-- Objects added after 2001

accumulator
pulse-converter

}

(23),
),

(16),
(24),
a7),
(20),

(18),
(19),
(20)
2D,
(22),

(23),
(24)

[Change B ACnetPropertyldentifier production in Clause 21, pp. 399-403]
[Note: schedule-default (174) appears in Addendum 135-2001a PR2]

BACnetPropertyldentifier ::= ENUMERATED {

accepted-modes
acked-transitions

active-cov-subscriptions

adjust-value
alarm-value

controlled-variable-value

count
count-before-change
count-change-time
cov-increment
cov-period

cov-resubscription-interval

in-process
input-reference
instance-of

limit-enable

(175),
0),

(152),
(176),
(6),

2D,

(177),
(178),
(179),
(22),

(180),
(128),

(47),
(181),
(48),

(52),

36

CEC Report on Extending BACnet for Lighting Control and Interfacing Building Systems with Utilities

limit-monitoring-interval (182),
list-of-group-members (53),
log-interval (134),
logging-device (183),
logging-record (184),
low-limit 59),
polarity (84),
prescale (185),
present-value (85),
protocol-version 99),
pulse-rate (186),
read-only 99),
resolution (106),
scale (187),
scale-factor (188),
schedule-default (174),
update-interval (118),
update-time (189),
utc-offset (119),
valid-samples (146),
value-before-change (190),
value-set (191),
value-change-time (192),
variance-value (151),
-- see schedule-default (174),
-- see accepted-modes (175),
-- see adjust-value (176),
-- see count (177),
-- see count-before-change (178),
-- see count-change-time (179),
-- see cov-period (180),
-- see input-reference (181),
-- see limit-monitoring-interval (182),
-- see logging-device (183),
-- see logging-record (184),
-- see prescale (185),
-- see pulse-rate (186),
-- see scale (187),
-- see scale-factor (188),
-- see update-time (189),
-- see value-before-change (190),
-- see value-set (191),
-- see value-change-time (192),
}

-- The special property identifiers all, optional, and required are reserved for use in the ReadPropertyConditional
and
-- ReadPropertyMultiple services or services not defined in this standard.

37

CEC Report on Extending BACnet for Lighting Control and Interfacing Building Systems with Utilities

-- Enumerated values 0-511 are reserved for definition by ASHRAE. Enumerated values 512-4194303 may be
used by

-- others subject to the procedures and constraints described in Clause 23. The highest enumeration used in this

version is +74- 192.

[Add to Clause 21, BACnetReliability, pp. 404-405]
[Note: configuration-error (10) is defined in Addendum 135-2001a PR2]

BACnetReliability ::= ENUMERATED {

multi-state fault 9),
configuration-error (10),

}
[Add to Annex C, p. 437]
PROGRAM :: = SEQUENCE {
-

PULSE-CONVERTER ::= SEQUENCE {

object-identifier [75] BACnetObjectldentifier,

object-name [77] CharacterString,

object-type [79] BACnetObjectType,

description [28] CharacterString OPTIONAL,
present-value [85] REAL,

input-reference [181] BACnetObjectPropertyReference OPTIONAL,
status-flags [111] BACnetStatusFlags,

event-state [36] BACnetEventState,

reliability [103] BACnetReliability OPTIONAL,
out-of-service [81] BOOLEAN,

units [117] BACnetEngineeringUnits,

scale-factor [188] REAL,

adjust-value [176] REAL,

count [177] Unsigned,

update-time [189] BACnetDateTime,

count-change-time [179] BACnetDateTime,

count-before-change [178] Unsigned,

cov-increment [22] REAL OPTIONAL,

cov-period [180] Unsigned OPTIONAL,

notification-class [17] Unsigned OPTIONAL,

time-delay [113] Unsigned OPTIONAL,

high-limit [45] REAL OPTIONAL,

low-limit [59] REAL OPTIONAL,

deadband [25] REAL OPTIONAL,

limit-enable [52] BACnetLimitEnable OPTIONAL,
event-enable [35] BACnetEventTransitionBits OPTIONAL,
acked-transitions [0] BACnetEventTransitionBits OPTIONAL,
notify-type [72] BACnetNotifyType OPTIONAL,
event-time-stamps [130] SEQUENCE OF BACnetTimeStamp OPTIONAL,
profile-name [167] CharacterString OPTIONAL

/

SCHEDULE ::= SEQUENCE {...

38

CEC Report on Extending BACnet for Lighting Control and Interfacing Building Systems with Utilities

[Add new Annex D.22, p. 455, and renumber existing Annex D.22 and subsequent clauses]

D.22 Example of a Pulse Converter object

Property: Object_Identifier = (Pulse Converter, Instance 1)
Property: Object_Name = "Meter 5"

Property: Object_Type = PULSE_CONVERTER
Property: Description = "

Property : Present_Value = 125.0

Property: Input_Reference = ((Accumulator, Instance 1), Present_Value)
Property: Status_Flags = {FALSE, FALSE, FALSE, FALSE}
Property: Event_State = NORMAL

Property: Out_Of _Service = FALSE

Property: Units = LITERS_PER_HOUR
Property: Scale_Factor = 0.5

Property: Adjust_Value = 500.0

Property: Count = 250

Property: Update_Time = (10-JUL-01,11:40:21.0),
Property: Count_Change_Time = (10-JUL-01,11:30:01.0),
Property: Count_Before_Change = 523

Property: COV_Increment = 10.0

Property: COV_Period = 3600

Property: Notification_Class = 5

Property: Time_Delay = 0

Property: High Limit = 1000.0

Property: Low_Limit = 0.0

Property: Deadband = 0.0

Property: Limit_Enable = {FALSE, TRUE}

Property: Event_Enable = {TRUE, FALSE, TRUE}
Property: Acked_Transitions = {TRUE, TRUE, TRUE}
Property: Notify_Type = ALARM

Property: Event_Time_Stamps = ((12-JUL-01,18:50:21.2),

(*_*_*’*:*:*.*)’

(12-JUL-01,19:01:34.0))

39

CEC Report on Extending BACnet for Lighting Control and Interfacing Building Systems with Utilities

Attachment E: Load Control Object

Load Control Object Type
History:

Michael Kintner-Meyer and Martin Burns published a report (ASHRAE Research Project 1011-RP) on
Utility/EMCS Integration in August 1999. They looked at requirements for applications between utilities and
commercial customers. The report built on the Common Application Services Model (CASM) developed by the
Electric Power Research Institute (EPRI).

SSPC135 is beginning to integrate some of the applications introduced in 1011-RP. Many of the applications make
use of transactions similar to the existing read/write/notification operations available in BACnet. The Utilities
Integration Working Group decided at the Buffalo Grove interim meeting in October 2001 to begin with the Load
Control object, discussed in Sections 4.8 and 6.7 of 1011-RP. The Load Control object allows a BACnet client,
such as a utility company, to request that a BACnet device shed a portion of its power load for a period of time. The
mechanism of how this load is shed, including the selection of what internal loads will be shed to accomplish the
overall load shed goal, is completely hidden from the client.

At the Honolulu meeting the basic format of the object was confirmed, although the emphasis of the discussion was
on the need (as communicated by Marty Burns) to enable the utility to send a single uniform message to all
customers that would not require implementation of the BACnet stack, but instead something like an email with the
basic load shed parameters. The only feedback to the utility would be perhaps an acknowledgment receipt.
Otherwise the utility simply monitors the power meter. As for specifics in the object: Stop_Time reverts back to
Shed_Duration since this requires only one fixed time (Start_Time) and this can be both randomized and relative to
“now”. The Full_Duty_Baseline property is probably not needed since the agreed level with utility might actually be
a profile rather than some fixed level. Finally, the five properties (Level, Start Time, Duration, Randomized Start,
Duty Window) included in the shed signal from the utility should be considered optional. We also discussed the
need for an end-to-end solution; only solving the BACnet Object definition will not suffice. We need to specify a
means of transport for getting the utility requests into the facility.

Based on discussions of several interested parties after the Honolulu meeting, additional changes were made.

e The Full_Duty_Baseline, Actual_Shed_Amount, and Actual_Start_Time properties were made optional,
because it was felt that these properties are not important to the basic functionality of the object, although some
manufacturers may want to support them to provide additional information about the load management.
Shed_Mode was made required because its value is closely tied with the interpretation of Shed_Level.

e The Shed_Level (used to be Shed_Request), Start_Time, Shed_Duration, Random_Start, and Duty_Window
properties were all made optional. The parameters of the shed request are now contained in the writable property
Shed_Request. This is written to initiate load shedding. The optional properties are to provide easier visibility of
the five load shed parameters, at the discretion of the implementer. (This has been superseded. Shed_Request was
eliminated).

e The Shed_Request property now contains an updated list of the currently configured load shed parameters.
After starting at the default values for each component, each write to Shed_Request will modify the values of the
components that it contains, leaving the other components unchanged. Thus, Shed_Request contains the latest load
shed information. (Shed_Request was eliminated).

Points for discussion in Columbus:

e Originally, all of the load shed parameters were separate. Because of problems with the atomicity of load shed
requests, they were combined into one parameter. For the ease of viewing the properties, it was decided to leave the
individual properties in place as optional, read-only properties. (again, superceded)

¢ Originally, any new load shed parameters that were received would not cause a change to the load shedding
until the corresponding Start_Time was reached. This was because the Start_Time was intended to be written with

40

CEC Report on Extending BACnet for Lighting Control and Interfacing Building Systems with Utilities

every load shed request. With all parameters being optional, it seems that any new load shed parameters would have
to be immediately effective, because a corresponding Start_Time may not be issued in the request.

e The default value of Shed_Request is questionable. The value of each component is taken from the default
value of the optional properties, but if the optional properties don’t exist, we are taking the value that they would
have if they existed. It has been suggested that this isn’t consistent with the way things are done elsewhere in the
specification.

e The discussions in Honolulu and afterward have indicated that the Load Control object is now to play a dual
role. It will operate in a “within-building” mode, where a BACnet device controlling a potentially sheddable load
may have a Load Control object, which can be commanded to shed power by some local facility master device.
Alternately, the Load Control object is to serve as the interface to the utility company, although this transport
mechanism is not yet defined, and is likely not to involve the currently defined communications stack. This sounds
suspiciously like the dual roles that the Counter object was once attempting to fill, which lead to quite a lot of
headaches before the functionality was broken into two distinct objects. It seems that the best approach would be to
restrict the scope of the problem that we are trying to solve with one object, so that the problem can be solved
cleanly and efficiently. If another object is needed to solve a different problem, then so be it.

Guidance received from SSPC 135 in Columbus (from UTWG minutes dated 9/26/02 by J. Martocci):

There were two major topics that needed clarification: 1) how to guarantee atomicity when setting the 5
controlling parameters for the object and 2) how to transport the requested control information from the Utility to
the various Facilities. The discussion provided direction for the former, however, we did not tackle the latter.

With regard to Atomicity in setting the 5 operative parameters of the Load Control object:

1. This topic has been debated before in similar cases and never implemented.

2. The committee agrees that the Write Multiple service is not atomic. However, the committee is concerned that
defining the service for this case, and not reviewing all other cases already established in the standard would be
problematic.

The object as currently specified has the 5 operational parameters defined as individual optional read-only
properties. A sixth property (Shed_Request) is the amalgamation of the 5 parameters to be used for atomicity
purposes. We discussed all the pros/cons of the approaches. Other than creating a new or updated service, all
options had good and bad points. A straw poll was taken as to how the object should get defined with the following
results:

4 — voted to keep the 5 parameters (but make them required) and keep the Shed_Request property as

drafted.
2 — voted to keep the Shed-Request property, but eliminate the 5 properties.
6 — voted to keep the 5 properties, and drop the Shed_Request property

The suggested actions given by the committee to the working group is as follows...

1. The document should be redrafted eliminating the Shed_Request property.

2. The UI Working group should review the 5 parameters and perform a sensitivity analysis on the inputs to
determine the possible negative effects that could occur by setting them at slightly different times.

3. The narrative of the object should note the dependency of these parameters and give guidance that the
implementer should use a Write Multiple service request to perform the operations giving near atomic support.
NOTE: It was further suggested that a discussion of this nature be added in a more prominent section of the
standard (e.g. Clause 12) so that it would apply as a general rule rather than unique for this application.

4. Review the COV requirement needs for the 5 parameters. If needed we may want to group these parameters in
a COV to reduce network overhead.

5. Dave Robin, Carl Neilson and Bill Swan had previously put together an ‘object locking” document that would
insure atomicity. Dave, Carl and Bill will dust off this document and review it for a possible long-term
implementation strategy to handle atomicity.

Grant Wichenko noted that the Load and Real-time pricing parameters (e.g. KW Ratings, on-time, off-time) were
not included in the object. Jerry mentioned that the direction given in the Redmond meeting was that the actual
shedding algorithms not be prescribed in the standard and be a local matter. We also see the Real-time pricing
information to be another object that is referenced to determine how the intra-facility shedding (and how much) will

41

CEC Report on Extending BACnet for Lighting Control and Interfacing Building Systems with Utilities

occur. This opened a new discussion about the need for an end-to-end design that captures actions from the Utility
down to the loads. The committee took this as an action item to be developed prior to the next committee review.

Dave Robin mentioned that he would have expected a dialog to occur between the LCO objects within the facility.
This was not in the existing description since the Working Group had been focusing on the Utility to Facility
interface. Dave is correct though that once within the facility, the LCOs will need to communicate to determine how
the shedding across the facility is proceeding.

Per guidance above:
1. Shed_Request property taken out.
2. Sensitivity analysis:

Presently we have Shed_Level not being reset after execution completed. One could subsequently write to
Start_Time and have the same shed again. If reset, then Shed_Level must also be written to each time. If we assume
a stateless controller (client), then said client will be forced to always write Shed_Level whether the value of
Shed_Level has changed or not. If it is willing to keep a record of what it did last time, then it might not need to
write Shed_Level, but what is gained really? Suppose we always use Shed_Level = 0 for normal, =1 for normal shed
and =2 for major shed, then I would like default to be 0. But then I am still forced to write to Shed_Level to initiate
the shed. I could leave it at =1 and that would mean most of the time I wouldn’t have to write to it to shed, but I still
need to be stateful, and sometimes need to write to it. Is bandwidth that tight? On the other hand, resetting to
defaults would insure that if a write is received on some other property, but somehow the write to Shed_Level is
dropped that the result is nothing happens, rather than some unintended shed. (this would only be important if
someone didn’t use WPM, see next paragraph).

Shed_Level
Start_Time
Shed_Duration
Random_Start
Duty_Window

We are supposed to receive these 5 properties (or subset) in a WPM. If that is the case, how could all of them not be
received at the same time (other than the milliseconds between writes required by the device to process the WPM)?
It seems that in general the first three properties are likely to be written to regularly, while the last two stick to preset
values. So now a WPM arrives writing the first three. They have to arrive in order, yes? They have to arrive in the
same packet, yes? If so, we have only a very short delay, and no possibility that, for example, Start_Time has been
written while Shed_Level was dropped. If only Shed_Duration is written, then one can be positive that Shed_Level
and Start_Time were not intended to be written.

So, let’s say there is a slow device, and Shed_Level gets written, but it takes a while to write Start_Time and
Shed_Duration. When does the LCO know to start doing something? Maybe the problem is not the LCO—the
device receives a message that is then addressed to the properties of the LCO, but the LCO doesn’t see the packet
headers. It most likely will only see the individual writes to the properties. So then, how does it know when the
writes are done?

One possibility is to require writing Shed_Level each time, and the using of WPM mandatory, and also to specify
the WPM order such that Shed_Level is written last. In this case, the LCO knows that it can act once Shed_Level
has been written. WPM guarantees that all properties (or none) have been written. Seeing Shed_Level written
insures that the shed command has been received completely. This is how the object is written now.

There is no sensitivity analysis beyond this, if I understand things correctly. Changes to the document related to the
required use of the WPM service are highlighted in yellow.

3. Narrative-
The narrative has been updated to indicate that the shed control is accomplished solely through the use of the

WritePropertyMultiple service request. Changes related to this request are highlighted in green.

4. COV

42

CEC Report on Extending BACnet for Lighting Control and Interfacing Building Systems with Utilities

The LCO is currently set up for COV reporting whenever the Present_Value, or any of the five load shed parameters
changes. This allows a facility manager to be informed whenever a load shed request comes in and is sent to the
devices in his building. Changes related to this request are highlighted in green.

Guidance received from SSPC 135 in Chicago 1/25-7/2003:

The issue of the atomicity of the shed command was debated. The end result is that the state machine for the shed
mechanism should be diagrammed, and leave as an implementation matter exactly how it is carried out, whether by
enforcing a WPM, or not applying any command for a “waiting” period, or whatever.

The SHED_FAULT state is to be removed. The SHED_ALARM state is to be renamed to
SHED_TARGET_NOT_MET. A list of states that are also considered alarm states is provided at the implementor’s
discretion.

There was also a suggestion to possibly make the value commandable. The committee did not have a formal
recommendation on this topic. As there is expected to only be one issuer of load control requests, this has not been
included in the object.

There was a requirement to clean up language implying that there is a single load control object per device. This is
not necessarily the case, and the proposal language should not imply this.

There was a requirement to combine the Shed_Mode and Shed_Amount properties into a single property, which
would be a CHOICE data type, where the choice would implicitly describe the shed mode.

The state machine has now been described with a diagram, Figure 12-1. I have also updated the language in the
beginning of the object to describe the important transitions in the diagram.

Guidance received from UIWG in Germantown, MD 4/28/2003

Add property State_Description. Make BACnetShedState a non-extensible enumeration. Additional information,
such as that which would be provided by additional states, is to be conveyed through the State_Description property.

Change UnsuccessfulShedReconfigured transition to ShedConditionsChanged, and remove CanNowMeetShed
transition. Remove ActiveShedReqReceived transition.

Compare Start_Time and current time on device restart to determine if shedding must begin. Also use language
similar to the Schedule object to suggest that load shed properties should be persisted across device restart.

Remove footnote 1 reference to Out_Of_Service property; add Enable property (BOOLEAN default=TRUE) — if
false, LCO ignores all requests and remains in the Shed_Inactive state, transitioning to it if necessary.

Remove 12.X.8.2.

Change ShedRequestReceived semantics. Should indicate only reception of shed request, not to indicate anything
about the current shedding status.

Changes made from CG-001-5 to CG-001-6
e Added State_Description property.
Made BACnetShed_State non-extensible.
Added language about restorative behavior across restart/time change.
Removed footnote 1.
Removed Alarm_Values property.
Added Enabled property.
Reworked state diagram.

43

CEC Report on Extending BACnet for Lighting Control and Interfacing Building Systems with Utilities

Reworked state diagram description.
Removed 12.X.8.2.

Renumbered sections.

Cleaned up ASN.1.

Issues to consider:
¢ Tincluded the CanNowMeetShed transition, despite comments in Germantown, to handle the case where
the load shed conditions change independent of any reconfiguration of the desired shed — what if a
previously critical lighting panel has become noncritical, and can now shed its load?
e State diagram is missing some transitions from previous one — this is because of the new semantics where
all writes cause a transition to SHED_REQUEST_RECEIVED for further evaluation.

The subject matter of this proposal (O has [X] has not) been verified by implementation.

44

CEC Report on Extending BACnet for Lighting Control and Interfacing Building Systems with Utilities

Changes to ASHRAE Standard 135: (reference: BACnet2001publication draft.doc)

[Add new 12.X, “Load Control Object Type, ca. p.196]
12.X Load Control Object Type

The Load Control object type defines a standardized object whose properties represent the externally visible
characteristics of a mechanism for controlling load requirements in a BACnet device. A BACnet device can use
a Load Control Object to allow external control over the shedding of a load that it controls. The mechanisms by
which the loads are shed are not visible to the BACnet client. One or more objects may be used in the device to
allow independent control over different sub-loads. The Load Control Object may also be used in a hierarchical
fashion to control other Load Control Objects in other BACnet devices.

A BACnet client, such as a master controller or a utility company, can request that the Load Control Object
shed a portion of its load for a specified time by writing to any or all of the five properties: Shed_Level,
Start_Time, Shed_Duration, Random_Start, and Duty_Window. For any given shed request, each of these
parameters is optional. Modification of these shed request parameters serves to configure the load shed
command. Initial values of these properties, and values taken at the completion of a shed command execution,
are as specified in the individual property descriptions.

The Load Control Object shed mechanism follows a state machine whose operation is displayed in Figure 12-1.
This state machine captures the transitions that occur within the Load Control Object. When the Load Control
Object is not currently shedding, the Present_Value property has the value SHED_INACTIVE. Receipt of a
write to the properties Shed_Level, Shed_Duration, Random_Start, Duty_Window, or Start_Time shall cause
the object to follow the ReceiveShedRequest transition to the SHED_REQUEST_RECEIVED state. In this
state the Load Control Object will compare the Start_Time with the current time. If Start Time is in the past,
the object shall follow the BeginShed transition to the SHEDDING state. If Start Time is in the future, the
object shall remain in the SHED_REQUEST_RECEIVED state. At Start_Time plus a randomized offset
defined by Random_Start, the object shall then follow the BeginShed transition to the SHEDDING state. Once
the requested shed amount is achieved, the object shall follow the AbleToMeetShed transition to the
SHED_TARGET_MET state. If the full requested shed amount cannot be shed, the object shall follow the
CannotMeetShed transition to the SHED_TARGET_NOT_MET state. If the ability to meet the requested shed
amount changes during the shedding, the CanNowMeetShed and CanNoLongerMeetShed transitions shall be
followed between the SHED_TARGET_NOT_MET and SHED _TARGET_MET states. Once the
Shed_Duration has expired, the object shall follow the FinishedSuccessfulShed or FinishedUnsuccessfulShed
transition to the SHED INACTIVE state.

Receipt of a write to Shed_Level, Shed_Duration, Random_Start, Duty_Window, or Start_Time while shedding
is currently pending or active shall cause the object to transition to the SHED_REQUEST_RECEIVED state.
This transition does not mandate anything about the state of the actual shedding, only that the new request must
be processed to determine if shedding should continue or terminate. After processing the request, the object
shall then transition to the SHED_INACTIVE or SHEDDING state as appropriate. From the SHEDDING state,
the object shall transition to the SHED_TARGET_MET or SHED_TARGET_NOT_MET state as appropriate.
This is a statement of the logical behavior of the state machine. In some devices the transitions may be rapid
enough so as to be invisible to an external device.

This state machine only describes the behavior of the Load Control Object when the Enabled property has the
value TRUE. See 12.X.15 for a description of the effect of this property.If the device is unable to comply fully
with the shed request by shedding the entire amount of power load requested, it is a local matter whether the
device sheds as much load as it can, or whether it does not shed any of its loads.

The Load Control Object shall exhibit restorative behavior across restart or time change of the BACnet device
in which it resides. Upon restart of the device or change of the device time, the Load Control Object shall
compare the current time with the Start_Time property to determine if load shedding should commence. If load
shedding is to begin, the object shall transition to the SHEDDING state and begin shedding its loads.

45

CEC Report on Extending BACnet for Lighting Control and Interfacing Building Systems with Utilities

While the Load Control object is designed to work independently, it is possible that there will exist within the
building (or even within a device) a hierarchy of Load Control objects, where one particular Load Control
object receives a load shed command from a higher level (say the utility), and the controller which hosts that
object in turn will be responsible for managing and issuing requests to other Load Control objects. The
management of this hierarchy, such as how to handle shed management of the low level Load Control objects,
and how to handle shed failures at the low level objects, is a local matter. A dialog using the Load Control
objects could be accomplished using alarm states to communicate ability to comply with a shed request, while
the Actual_Shed_Amount property could report the amount that a sub-device (or sub-controller) is able to shed.
Alternatively, this dialog could be performed separately from the Load Control objects.

Figure 12-1. State Diagram for Load Control Object.

Shed Inactive

Reconfigure
Pending

1senbaypaysaniedsy
CancelShed

Shed Request

B Received 2
0] =
7 2
& o >

3 2 @

us]

s 3 2 P
8 5 5 %
] %) 2 @,
] 3 IS c =
g a 3 3 <4

[0] @)
o < o
Q.
Q
[o)
(1)
@,
=5
: <
Shedding Y
»
(V]
Q
[e]
A
e
Q >
) [o%
)
z
()
o('
%
()
N o
CanNowMeetShed

Shed Target CanNolLongerMeetShed

Met

Shed Target
Not Met

Y

46

CEC Report on Extending BACnet for Lighting Control and Interfacing Building Systems with Utilities

Table 12-X. Properties of the Load Control Object

Property Identifier Property Datatype Conformance Code
Object_Identifier BAChnetObjectldentifier R
Object_Name CharacterString R
Object_Type BAChnetObjectType R
Description CharacterString (0]
Present_Value BACnetShedState R
State_Description CharacterString (0]
Status_Flags BACnetStatusFlags R
Event_State BACnetEventState R
Reliability BAChnetReliability (0]
Shed_Level BACnetShedLevel w
Start_Time BACnetDateTime \%Y
Shed_Duration Unsigned \\%
Random_Start Unsigned \Y%
Duty_Window Unsigned w
Enabled BOOLEAN (0]
Full_Duty_Baseline REAL (0]
Actual_Start_Time BACnetDateTime 0!
Actual_Shed_Amount REAL o'
Notification_Class Unsigned 0?
Time_Delay Unsigned o’
Event_Enable BACnetEventTransitionBits 0?
Acked_Transitions BACnetEventTransitionBits 0?
Notify_Type BAChnetNotifyType 0’
Event_Time_Stamps BACnetARRAY[3] of BACnetTimeStamp 0?
Profile_Name CharacterString (6]

"These properties, if present, must be readonly.
* These properties are required if the object supports intrinsic reporting.

12.X.1 Object_Identifier

This property, of type BACnetObjectldentifier, is a numeric code that is used to identify the object. It shall be
unique within the BACnet Device that maintains it.

12.X.2 Object_Name

This property, of type CharacterString, shall represent a name for the object that is unique within the BACnet
Device that maintains it. The minimum length of the string shall be one character. The set of characters used in
the Object_Name shall be restricted to printable characters.

12.X.3 Object_Type

This property, of type BACnetObjectType, indicates membership in a particular object type class. The value of
this property shall be LOAD_CONTROL.

12.X.4 Description

This property, of type CharacterString, is a string of printable characters whose content is not restricted.

47

CEC Report on Extending BACnet for Lighting Control and Interfacing Building Systems with Utilities

12.X.5 Present_Value

This property, of type BACnetShedState, indicates the current load shedding state of the object. See Figure 12-
1 for a diagram of the state machine governing the value of Present_Value.

12.X.6 State_Description

This property, of type CharacterString, is a string of printable characters whose content is not restricted. The
State_Description provides additional information about the shed state of the Load Control Object.

12.X.7 Status_Flags

This property, of type BACnetStatusFlags, represents four Boolean flags that indicate the general "health” of a
Load Control object. Three of the flags are associated with the values of other properties of this object. A more
detailed status could be determined by reading the properties that are linked to these flags. The relationship
between individual flags is not defined by the protocol. The four flags are

{IN_ALARM, FAULT, OVERRIDDEN, OUT_OF_SERVICE}

where:

IN_ALARM Logical FALSE (0) if the Event_State property has a value of NORMAL, otherwise
logical TRUE (1).

FAULT Logical TRUE (1) if the Reliability property is present and does not have a value of

NO_FAULT_DETECTED, otherwise logical FALSE (0).

OVERRIDDEN Logical TRUE (1) if the point has been overridden by some mechanism local to the
BACnet Device, otherwise logical FALSE (0).

OUT_OF_SERVICE Logical TRUE (1) if the Out_Of_Service property has a value of TRUE, otherwise
logical FALSE (0).

12.X.8 Event_State

The Event_State property, of type BACnetEventState, is included in order to provide a way to determine if this
object has an active event state associated with it. If the object supports intrinsic reporting, then the Event_State
property shall indicate the event state of the object. If the object does not support intrinsic reporting and if the
Reliability property is not present then the value of this property shall be NORMAL. If the Reliability property
is present and does not have a value of NO_FAULT_DETECTED, then the value of the Event_State property
shall be FAULT. Changes in the Event_State property to the value FAULT are considered to be “fault” events.

12.X.9 Reliability

The Reliability property, of type BACnetReliability, provides an indication of whether the Load Control object
is reliably reporting its compliance with any load shed requests. The Reliability property for this object type
may have any of the following values:

{NO_FAULT_DETECTED, UNRELIABLE_OTHER}

12.X.10 Shed_Level

This property, of type BACnetShedLevel, indicates the desired load shedding. If the choice for Shed_Level is

PERCENT, the value of Shed_Level is interpreted as a requested percentage of the baseline power usage to
which the device is to attempt to reduce its load. The determination of the baseline power usage is a local

48

CEC Report on Extending BACnet for Lighting Control and Interfacing Building Systems with Utilities

matter. It may be determined from the Full_Duty_Baseline property, if present. Or it may be defined by an
hourly profile, agreed upon by the facility manager and the utility company in advance. If the choice for
Shed_Level is LEVEL, the value of Shed_Level is used to set a preconfigured level of load shedding. The
meaning of these shed levels is a local matter. If Shed_Mode is AMOUNT, the value of Shed_Level is to be
interpreted as an amount, in kilowatts, by which to reduce power usage. Note that these amounts in all three
cases are always absolute, not differential, so the previous value of Shed_Level is not used in determining the
new shed level. The following table describes the default values and power targets for the different choices of
Shed_Level:
Table 12-X. Shed_Level default values and power targets

Choice Default value of Shed_Level Power load target in kKW

PERCENT] 100 (current baseline) * Shed_Level / 100

LEVEL 0 locally prespecified shed target for the given level
AMOUNT 0.0 (current power usage) - Shed_Level

If a load control command has been issued, and execution of the command has completed, Shed_Level shall be
reset to the default value appropriate to the value of Shed_Level used for the last command.

12.X.11 Start_Time

This property, of type BACnetDateTime, indicates the time at which execution of the load control shall begin.
Shedding begins at the Actual_Start_Time, which is later than the issued Start_Time by a random amount of
time less than or equal to Random_Start. If no load control command has been written to this property,
Start_Time shall contain all wildcard values. If a load control command has been issued, and execution of the
command has completed, Start_Time shall be reset by the device to contain all wildcard values. If Start_Time
contains wildcard values for the Date portion of the BACnetDateTime only (wildcards are acceptable for the
seconds and hundredths fields of the Time portion), the device shall execute the load shed request at the
specified time on every day and Start_Time shall not be reset by the device to all wildcard values. A load
control command may be issued without Start_Time being set to indicate “start now”. In this case, the previous
load control command is terminated and Start_Time shall be reset by the device to the current time.

12.X.12 Shed_Duration

This property, of type Unsigned, indicates the duration of the load shed action, starting at Start_Time plus a
randomized offset. The units for Shed_Duration are minutes. If no load control command has been written to
this property, Shed_Duration shall contain wildcard values. If a load control command has been issued, and
execution of the command has completed, Shed_Duration shall be reset by the device to contain wildcard
values. A load control command may be issued without Shed_Duration being set to indicate an indefinite
length load shed request.

12.X.13 Random_Start

This property, of type Unsigned, indicates the maximum value of a random time offset to be applied to the start
of execution of the load shed command. If this property is zero, the load shed command will execute at
Start_Time, or as soon thereafter as the device is able to begin load shedding. If this property is greater than
zero, the device will begin load shedding at a point in time offset from Start Time by some value between zero
and Random_Start minutes. Note that this offset does not affect Shed_Duration. If no load control command
has been written to this property, Random_Start shall be set to some pre-agreed on value. If a load control
command has been issued, and execution of the command has completed, Random_Start shall be reset by the
device to this pre-agreed value. The units of Random_Start are minutes.

12.X.14 Duty_Window
This property, of type Unsigned, indicates the duty window over which the load shedding is to be realized. The

units for Duty_Window are minutes. Duty_Window is used for performance measurement or compliance
purposes. The average power consumption across the Duty_Window must be less than or equal to the requested

49

CEC Report on Extending BACnet for Lighting Control and Interfacing Building Systems with Utilities

reduced consumption. Whether this window is fixed or sliding is a local matter. Duty_Window begins at the
Actual_Start_Time. If no load control command has been written to this property, Duty_Window shall be set to
some pre-agreed on value. If a load control command has been issued, and execution of the command has
completed, Duty_Window shall be reset by the device to this pre-agreed value.

12.X.15 Enabled

This property, of type BOOLEAN, indicates whether the Load Control Object is currently enabled to respond to
load shed requests. If Enabled is TRUE, the object will respond to load shed requests normally, and follow the
state machine described in Figure 12-1. If Enabled is FALSE, the object will transition to the Shed_Inactive
state if necessary and remain in that state. It will not respond to any load shed request while Enabled is FALSE.

12.X.16 Full_Duty_Baseline

This property, of type REAL, indicates the baseline power consumption value for this device, if a fixed baseline
is used. Shed requests are with respect to this baseline, i.e., “percent of baseline” and “amount off baseline”.
This may optionally be writable by an external device through the WriteProperty or WritePropertyMultiple
service requests. The frequency with which this property is written (if writable) is a local matter. The units of
Full_Duty_Baseline are kilowatts.

12.X.17 Actual_Start_Time

This property, of type BACnetDateTime, indicates the time at which execution of the load control actually
begins after adding a random offset between zero and Random_Start minutes to Start_Time. If no load control
command has been issued to this object, Actual_Start_Time shall contain wildcard values. If a load control
command has been issued, and execution of the command has completed, Actual _Start_Time shall be reset by
the device to contain wildcard values.

12.X.18 Actual_Shed_Amount

This property, of type REAL, indicates the actual amount of power that is currently being shed in response to a
load shed request. This value is an average calculated over Duty_Window minutes. This may be a fixed
window, or a sliding window, at the discretion of the implementer. This can be useful in determining the power
consumption reduction in the event that the device is able to shed some, but not all, of the requested amount.
The units for Actual_Shed_Amount are the same as the units for Shed_Level, i.e., dependent on the value of
Shed_Mode.

12.X.19 Notification_Class

This property, of type Unsigned, shall specify the notification class to be used when handling and generating
event notifications for this object. The Notification_Class property implicitly refers to a Notification Class
object that has a Notification_Class property with the same value. This property is required if intrinsic reporting
is supported by this object.

12.X.20 Time_Delay

This property, of type Unsigned, shall specify the minimum period of time in seconds that the Present_Value
property may remain equal to SHED_TARGET_NOT_MET before a TO-OFFNORMAL event is generated, or
not equal to SHED_TARGET_NOT_MET before a TO-NORMAL event is generated. This property is required
if intrinsic reporting is supported by this object.

12.X.21 Event_Enable
This property, of type BACnetEventTransitionBits, shall convey three flags that separately enable and disable

reporting of TO-OFFNORMAL, TO-FAULT, and TO-NORMAL events. This property is required if intrinsic
reporting is supported by this object.

50

CEC Report on Extending BACnet for Lighting Control and Interfacing Building Systems with Utilities

12.X.22 Acked_Transitions

This property, of type BACnetEventTransitionBits, shall convey three flags that separately indicate the receipt
of acknowledgements for TO-OFFNORMAL, TO-FAULT, and TO-NORMAL events. These flags shall be
cleared upon the occurrence of the corresponding event and set under any of these conditions:

(a) upon receipt of the corresponding acknowledgement;

(b) upon the occurrence of the event if the corresponding flag is not set in the Event_Enable property
(meaning event notifications will not be generated for this condition and thus no acknowledgement is
expected);

() upon the occurrence of the event if the corresponding flag is set in the Event_Enable property and
the corresponding flag in the Ack_Required property of the Notification Class object implicitly
referenced by the Notification_Class property of this object is not set (meaning no acknowledgement is
expected).

This property is required if intrinsic reporting is supported by this object.
12.X.23 Notify_Type

This property, of type BACnetNotifyType, shall convey whether the notifications generated by the object
should be Events or Alarms. This property is required if intrinsic reporting is supported by this object.

12.X.24 Event_Time_Stamps

This optional property, of type BACnetARRAY[3] of BACnetTimeStamp, shall convey the times of the last
event notifications for TO-OFFNORMAL, TO-FAULT, and TO-NORMAL events, respectively. Time stamps
of type Time or Date shall have X'FF' in each octet and Sequence number time stamps shall have the value 0 if
no event notification of that type has been generated since the object was created. This property is required if
intrinsic reporting is supported by this object.

12.X.25 Profile_Name

This property, of type CharacterString, is the name of an object profile to which this object conforms. To ensure
uniqueness, a profile name must begin with a vendor identifier code (see Clause 23) in base-10 integer format,
followed by a dash. All subsequent characters are administered by the organization registered with that vendor
identifier code. The vendor identifier code that prefixes the profile name shall indicate the organization that
publishes and maintains the profile document named by the remainder of the profile name. This vendor
identifier need not have any relationship to the vendor identifier of the device within which the object resides.

A profile defines a set of additional properties, behavior, and/or requirements for this object beyond those
specified here. This standard defines only the format of the names of profiles. The definition of the profiles
themselves is outside the scope of this standard.

[Renumber Figure 12-1, “Loop object structure with its referenced objects”, p. 198]
Figure 12-2. Loop object structure with its referenced objects.

[Change text in 12.16 to reflect renumbering of Figures, p. 196]
... Figure 12-1 illustrates the relationship between the Loop object properties and the other objects referenced by

the loop.

[Renumber Figure 12-2, “State Transitions for the program object”, p. 221]
Figure 12-3. State Transitions for the program object.

51

CEC Report on Extending BACnet for Lighting Control and Interfacing Building Systems with Utilities

[Change text in 12.21.5 to reflect renumbering of Figures, p. 220]
... Figure 12-3 shows the valid state transitions and the resulting new Program_State.

[Changes to tables in 13.1, “Change of Value Reporting”, p. 235]

Table 13-1. Standardized Objects Which May Support COV Reporting

Object Type Criteria Properties Reported
Loop If Present_Value changes by COV_Increment Present_Value, Status_Flags,
or Setpoint,
Status_Flags changes at all Controlled_Variable_Value
Load Control If Present_Value, Shed_Level, Start_Time, Present_Value, Status_Flags,
Shed_Duration, Random_Start, or Shed_Level, Start_Time,
Duty_Window changes at all Shed_Duration,
Random_Start,
Duty_Window

[Changes to tables in 13.2, “Intrinsic Reporting”, p. 237]

Table 13-2. Standard Objects that May Support Intrinsic Reporting

Object Type Criteria Event Type
Binary Output, If Present_Value differs from Feedback_Value COMMAND_FAILURE
Multi-state Output for longer than Time_ Delay AND the new

transition is enabled in Event_Enable
Load Control If Present_Value equals COMMAND_FAILURE

SHED_TARGET_NOT_MET or any value in
Alarm_Values for longer than Time_Delay AND
the new transition is enabled in Event_Enable

Loop If the absolute difference between Setpoint and FLOATING_LIMIT
Controlled_Variable_Value exceeds Error_Limit
for longer than Time_Delay AND the new
transition is enabled in Event_Enable

[Changes to tables in 13.2, “Intrinsic Reporting”, p. 238]

Table 13-3. Standard Object Property Values Returned in Notifications

Object Event Type Notification Parameters | Referenced Object's Properties
Binary Output, COMMAND_FAILURE Command_Value Present_Value
Multi-state Output Status_Flags Status_Flags
Feedback_Value Feedback_Value
Load Control COMMAND_FAILURE Command_Value Shed_Level
Status_Flags Status_Flags
Feedback_Value Actual_Shed_Amount
Loop FLOATING_LIMIT Referenced_Value Controlled_Variable_Value
Status_Flags Status_Flags
Setpoint_Value Setpoint

52

CEC Report on Extending BACnet for Lighting Control and Interfacing Building Systems with Utilities

Error_Limit Error_Limit

[Add to 21, BACnetObjectType, p. 398]
load-control (n),

[Add to 21, BACnetObjectTypesSupported, p. 399]
load-control (n),

[Add to 21, BACnetPropertyldentifier (distributed alphabetically), pp. 400-404]

actual-shed-amount (n),
actual-start-time (n),
duty-window (n),
enabled (n),
full-duty-baseline (n),
random-start (n),
shed-duration (n),
shed-level (n),
state-description (n),

[Add comments to same production]

-see actual-shed-amount (n),
-see actual-start-time (n),
-see duty-window (n),
-see enabled (n),

-see full-duty-baseline (n),
-see random-start (n),
-see shed-duration (n),
-see shed-level (n),
-see state-description (n)

[add to 21, new production, p. 406]

BACnetShedLevel :: = CHOICE {
percent [0] Unsigned,

level [1] Unsigned,
amount [2] REAL
/

[add to 21, new production, p. 406]

BACnetShedState ::= ENUMERATED {

shed-inactive (0),
shed-request-received (1),
shedding (2),
shed-target-met (3),
shed-target-not-met (4),
}

[Add to Annex C, p. 435]

53

CEC Report on Extending BACnet for Lighting Control and Interfacing Building Systems with Utilities

object-identifier
object-name
object-type
description
present-value
state-description
status-flags
event-state
reliability
shed-level
start-time
shed-duration
random-start
duty-window
enabled
full-duty-baseline
actual-start-time
actual-shed-amount
notification-class
time-delay
event-enable
acked-transitions
notify-type
event-time-stamps
profile-name

LOAD-CONTROL ::= SEQUENCE {

[75] BACnetObjectldentifier,
[77] CharacterString,
[79] BACnetObjectType,
[28]CharacterString OPTIONAL,
[85] BACnetShedState,
[28]CharacterString OPTIONAL,
[111] BACnetStatusFlags,
[36] BACnetEventState,
[103] BACnetReliability OPTIONAL,
[n] BACnetShedLevel,
[n] BACnetDateTime,
[n] Unsigned,
[n] Unsigned,
[n] Unsigned,
[n] BOOLEAN,
[n] REAL OPTIONAL,
[n] BACnetDateTime OPTIONAL,
[n] REAL OPTIONAL,
[17] Unsigned OPTIONAL,
[113] Unsigned OPTIONAL,
[35] BACnetEventTransitionBits OPTIONAL,
[0] BACnetEventTransitionBits OPTIONAL,
[72] BACnetNotifyType OPTIONAL,
[130] SEQUENCE OF BACnetTimeStamp OPTIONAL
[167] CharacterString OPTIONAL

/

[Add to Annex D, p. 450]

D.X Example of a Load Control object

Property: Object_Identifier =
Property: Object_Name =
Property: Object_Type =
Property: Description =
Property: Present_Value =
Property: State_Description =
Property: Status_Flags =
Property: Event_State =
Property: Reliability =
Property: Shed_Level =
Property: Start_Time =
Property: Shed_Duration =
Property: Random_Start =
Property: Duty_Window =
Property: Enabled =

Property: Full_Duty_Baseline =
Property: Actual_Start_Time =
Property: Actual_Shed_Amount =
Property: Notification_Class =
Property: Time_Delay =
Property: Event_Enable =
Property: Acked_Transitions =
Property: Notify_Type =

(Load_Control, Instance 1)

"Load Control 1"

LOAD CONTROL
"Chiller Load Control"

SHED _TARGET_MET

"shed accomplished"

{FALSE, FALSE, FALSE, FALSE}

NORMAL
NO_FAULT_DETECTED

(Percent, 20)
(17-APR-2001,10:00:00.0)

120

10

30
TRUE

250.0

(17-APR-2001, 10:03:00.0)

20

3

60

{TRUE, FALSE, TRUE}

{TRUE, TRUE, TRUE}

ALARM

54

CEC Report on Extending BACnet for Lighting Control and Interfacing Building Systems with Utilities

Property: Event_Time_Stamps = ((12-JUL-01,18:50:21.2),

(oK ok)

(12-JUL-01,19:01:34.0))
Changes to ASHRAE Standard 135.1P:
[Add to 4.5.4, Object Types Supported]
4.5.4 Object Types Supported
;l;fle standard objects may be any of:

Load Control

[add new 4.5.10.X, “Load Control”’]

4.5.10.X Load Control
{
object-identifier: (load-control, {d)
object-name: """
object-type: load-control
description: """
present-value: O
state-description: """
status-flags: O
event-state: (1
reliability: 1
shed-level: O
start-time: (1
shed-duration: O
random-start: (1
duty-window: 4
enabled: O
Sull-duty-baseline: (1
actual-start-time:
actual-shed-amount: O
notification-class: 1
time-delay: (1
event-enable: (O 0. 0)
acked-transitions: (4,0, 0)
notify-type: 1
event-time-stamps: (4, O, O)
profile-name: “1”
/

[add]
7.3.2.X Load Control Object Tests
(Tests for the Load Control object to be written when the object itself is resolved.)

[end]

55

CEC Report on Extending BACnet for Lighting Control and Interfacing Building Systems with Utilities

Attachment F: RTP Encoding

Name RP1011 type BACnet type | Ta | Le Value BACnet Encoding
g n
Tariff STRUCTURE STRUCTURE 0 — — OE (0000 1 110, 1—class=context spec,1 10=open struc)
Tariff.id UnivObjID Octet string 0 var | 2.16.840.1.99 0D 05 60 86 48 01 63 (101=len follows, 05=len, rest=binary
rep)
Tariff.numMx INT8U U-INT 1 1 1 19 01 (0001tag 1 001len, 01 val)
Tariff.d Char string Char string 2 var | Price and sched 2D OF “price and sched” (OF=15 characters)
Tariff.billToDat REAL REAL 3 4 1234.56 3C X’449A51EC” (C=len of 4, binary s,e,f see p.359)
Tariff.curr Enum Enum 4 1 134 49 86
Tariff.cmps.pricing STRUCTURE STRUCTURE 1 — — 1LE (open structure tag)
Tariff.cmps.pricing.curPrice | REAL REAL 0 4 0.0215 0C X’3CB020C5’
Tariff.cmps.pricing.curTier INTSS S-INT 1 1 4 19 04
Tariff.cmps.pricing.name Char string Char string 2 var | “Emeter.MX.r” 2D 0B “Emeter. MX.r”
Tariff.cmps.pricing.type Enum Enum 3 1 6 39 06
Tariff.cmps.pricing.u Char string Char string 4 var | “$/kWh” 4D 05 “$/kWh”
Tariff.cmps.pricing.numBin | INT16U U-INT 5 1 24 59 18
s
Tariff.cmps.pricing.prices Array REAL SEQ of REAL 6 var | 0.0241,0.0233,... | 6E 44 X’3CC56D5D’ (first array ele, applic tag for
REAL=4),
44 X’3CBEDFA4’ (2nd), ..., 44 X’ (24™) 6F (close array
tag)
Tariff.cmps.pricing.scale REAL REAL 7 4 1.00 7C X’3F800000°
Tariff.cmps.pricing.bins array INT32 SEQ of U-INT 8 var | [empty] 8E, 8F (open close) (applic tag for U-INT=2)
1F (close pricing structure)
Tariff.cmps.refProfile STRUCTURE STRUCTURE 2 — — 2B
Tariff.cmps.refProfilenuml | INT16U U-INT 0 1 24 09 18
ntv
Tariff.cmps.refProfile.delT INT16U U-INT 1 1 60 19 3C
Tariff.cmps.refProfile.count | Array REAL SEQ of REAL 2 var | 0.0241,0.0233,... | 2E, SEQ of 24 REALs, 2F (? XML gives units of INT32S,

S

but text RP1011 p109 says units “same as defined in pricing
component”?)

2F (close refProfile structure)

OF (close tariff structure)

XML schema for RTP data structure

<?xml version="1.0" encoding="UTF-8" ?>
- <l-- edited with XMLSPY v5 U (http://www.xmlspy.com) by Martin J Burns (Hypertek, Inc.) --

>

- <xs:schema xmins:xs="http://www.w3.0rg/2001/XMLSchema"
elementFormDefault="qualified" attributeFormDefault="unqualified">

<xs:include schemalLocation=".\acsipartial.xsd" />

- <!__

56

CEC Report on Extending BACnet for Lighting Control and Interfacing Building Systems with Utilities

RP1011 Models
-->
- <xs:complexType name="Tariff">
- <Xxs:sequence>
<xs:element name="id" type="OBJID" />
<xs:element name="numMx" type="INT8U" />
<xs:element name="d" />
<xs:element name="billToDat" type="FLOATINGPOINT32" />
<xs:element name="curr" type="ENUMERATED" />
- <xs:element name="cmps">
- <xs:complexType>
- <xs:sequence maxOccurs="unbounded">
<xs:element name="pricing" type="Pricing" />
<xs:element name="refProfile" type="Profile" />
<xs:element name="schd" type="RTPSchd" />
</Xs:sequence>
</xs:complexType>
</xs:element>
</Xs:sequence>
</xs:complexType>
- <xs:simpleType name="0OBJID">
- <xs:restriction base="xs:string">
<xs:pattern value="[12](\.[1-9][0-9]*)+" />
</xs:restriction>
</xs:simpleType>
- <xs:complexType name="Pricing">
- <Xs:sequence>
<xs:element name="curPrice" type="FLOATINGPOINT32" />
<xs:element name="curTier" type="INT8" />
<xs:element name="name" type="VISIBLESTRING" />
- <xs:element name="type">
- <xs:simpleType>
- <xs:restriction base="ENUMERATED">
<xs:enumeration value="Accumulated" />
<xs:enumeration value="Maximum" />
<xs:enumeration value="Minimum" />
<xs:enumeration value="Differential" />
<xs:enumeration value="QuarterHour" />
<xs:enumeration value="Hourly" />
<xs:enumeration value="Monthly" />
</xs:restriction>
</xs:simpleType>
</xs:element>
<xs:element name="u" />
<xs:element name="numBins" type="INT16" />
- <xs:element name="prices">
- <xs:complexType>
- <xs:sequence>

57

CEC Report on Extending BACnet for Lighting Control and Interfacing Building Systems with Utilities

<xs:element name="price"
type="FLOATINGPOINT32"
maxOccurs="unbounded" />
</Xs:sequence>
</xs:complexType>
</xs:element>
<xs:element name="scale" type="FLOATINGPOINT32" />
- <xs:element name="bins">
- <xs:complexType>
- <Xs:sequence>
<xs:element name="bin" type="INT32"
maxOccurs="unbounded" />
</xs:sequence>
</xs:complexType>
</xs:element>
</Xs:sequence>
</xs:complexType>
- <xs:complexType name="RTPSchd">
- <Xs:sequence>
<xs:element name="numSchd" type="INT16U" />
- <xs:element name="schds">
- <xs:complexType>
- <xs:sequence>
<xs:element name="schd" maxOccurs="unbounded"
/>
</Xs:sequence>
</xs:complexType>
</xs:element>
<xs:element name="editMode" />
<xs:element name="addEntry" />
</Xs:sequence>
</xs:complexType>
- <xs:complexType name="Profile">
- <Xs:sequence>
<xs:element name="numlIntv" type="INT16U" />
<xs:element name="delT" type="INT16U" />
- <xs:element name="counts">
- <xs:complexType>
- <Xs:sequence>
<xs:element name="count" type="INT32"
maxOccurs="unbounded" />
</xs:sequence>
</xs:complexType>
</xs:element>
</Xs:sequence>
</xs:complexType>
- <xs:complexType name="Schd">
- <Xs:sequence>
- <xs:element name="schdHdr">

58

CEC Report on Extending BACnet for Lighting Control and Interfacing Building Systems with Utilities

- <xs:complexType>
- <xs:sequence>
<xs:element name="isEdit" type="BOOLEAN" />
<xs:element name="numTEV" type="INT16U" />
<xs:element name="numRDat" type="INT16U" />
<xs:element name="sup" />
</Xs:sequence>
</xs:complexType>
</xs:element>
- <xs:element name="timEvts" minOccurs="0">
- <xs:complexType>
- <xs:sequence>
<xs:element name="timEvt" type="TimEvt"
maxOccurs="unbounded" />
</Xs:sequence>
</xs:complexType>
</xs:element>
- <xs:element name="rDats" minOccurs="0">
- <xs:complexType>
- <Xs:sequence>
<xs:element name="rDat" type="RDat"
maxOccurs="unbounded" />
</Xs:sequence>
</xs:complexType>
</xs:element>
</Xs:sequence>
</xs:complexType>
<xs:complexType name="TimEvt" />
<xs:complexType name="RDat" />
</xs:schema>

59

CEC Report on Extending BACnet for Lighting Control and Interfacing Building Systems with Utilities

Attachment G: Logical Entity Object

DRAFT: David Holmberg 4/23/03
Background

The motivation for this object comes from the utility integration efforts. The electric utility industry uses
a communication standard called UCA (in the US—IEEE SCC36, and also IEC 61850 under
development as an international standard) that uses name-based addressing (NBA) to communicate within
electric substations. If a utility wants to send a native UCA message to a building (such as a real-time
pricing RTP signal), how can the message be translated from NBA to the native BACnet flat ObjectID
based addressing? The RTP signal is a very complex data structure.

Michael Kintner-Meyer and Martin Burns, in their report, “Utility/Energy Management and Controls
System (EMCS) Communication Protocol Requirements” (ASHRAE Research Project 1011-RP, July
1999), presented a way to address these issues with their “Structured View” object. That proposed object
contains a property with an array of object property names (standardized) and a second property listing
respective pointers (BACnetObjectPropertyReference) to those object properties.

The proposed Logical Entity Object (LEO) has grown out of a discussion primarily between Holmberg,
Burns, Isler, and Martocci. This document will try to make a case for the object and develop some case
scenarios that demostrate the LEO’s potential usefulness, before presenting the details of the object.

Problems it Addresses

¢ BACnet presents objects without hierarchy (flat object space). The proposed Logical Entity Object (LEO)
provides a means to make devices and other entities (like distributed but related objects or data) as logical
entities visible on the network.

® While the Global Group Object allows reading the values of group members, the LEO allows organizing
those members into a structure with branches and leaves, allows reading and writing to those members,
and stores information about the structure and members of the structure. It allows holding data locally in
the device holding the LEO, or pointing to the data elsewhere on the network. It also allows storing a
branch of the structure in another LEO and pointing to that.

¢ How does an external party like a non-original system integrator, or a service provider (or for that matter
the original system vendor) make sense of a large complex facility with tens or hundreds of thousands of
objects? There is no network visible way to view the physical, functional, or geographical hierarchies of a
building. The LEO allows this information to be made network visible. This may be especially helpful in a
building with multiple vendors, or for making system information available to outside partners.

e If one wants to write application code that accesses various data points on a network, the code must
reference a proprietary look-up table to get object property IDs. The LEO allows this table to be network
visible, providing a layer of indirection, and making the data in the data structure available for other
applications.

¢ If an outside service provider gathers non-network visible data through a gateway from multiple vendors’
controllers, then standardizing the name-binding table promotes inter-operability in gateway design.

e How do I send a message to all the VAV boxes in the east side of a building? I must do a query on a
database to find that information. If that information is in the LEO, then it is network visible and any
device can use it to distribute messages.

e There is no VAV box object in BACnet. The description field of the Device Object is not standardized and
not generally useful for a computer to identify a device. Even if it were, there is no function specific
format to the Device Object that tells where the thermostat and damper position object properties are. The
LEO can be a VAV box object.

60

CEC Report on Extending BACnet for Lighting Control and Interfacing Building Systems with Utilities

Issues to be resolved

1. Cascading LEOs—presently the LEO allows pointing to another LEO in order to show connections
(map) type information, but only allows reading and writing to that LEO indirectly from the pointing
LEO using the NBA services, and only if reading writing only from/to that sub-LEQ. Is this how we want
it? What if both LEOs are held in the same device? The CASM model is that we put devices together with
smaller building blocks. So we have a TemperatureSensorObject and then a ThermostatObject, and then a
VAVBoxObject, and then an AHUODbject. Each would be a LEO, but then the AHUODbject might not
have any R/W points since it is simply pointing to another LEO. Perhaps we define structures such that
we have both pointers to other LEOs as well as data points from those lower structures that we care about
and want visible in the upper-level LEO. Better solution?

2. Timeout—how do we specify timeouts so that the LEO has time to go and collect all the externally
held data points, or worse if the LEO points to another LEO that has to collect data? The NBA service
may return an error, but the external values may drop in correctly and within the transaction timeout. So
the NBA service (or RP) times out, indicates a problem, but there is none. It is a matter of timeouts of
cascaded requests which has not addressed so far in BACnet. Perhaps some kind of heartbeat wait signal
that would be sent to indicate that a downstream process is still waiting and that the timeout should be
delayed.

3. Linkage between utility and building—the utility would like to send one message out to all customers,
irregardless of what BCS protocol they are using. The utility could speak UCA (their language) to a
gateway at every facility, but that is expensive. They could speak BACnet/IP, except that there will
always be customers that don’t speak it. Web services seems to be the way that things are moving now to
provide a means of moving information cross-platform. It removes the gateway (along with the BACnet
specific LEO). BACnet still needs to develop a web services interface to take the incoming message and
process it. Take for example the Load Control object (LCO) which has 5 parameters to pass from utility
to BCS. The utility passes the parameters to a customer’s IP address and port in some XML format,
which form would include an identifier like “LCOcontrol”. Then there is a LEO (with object name =
LCOcontrol) with a structure matching the incoming message that the server (with the web services
interface) passes the message to. The LCO then polls the LEO to get most recent control parameters.

4. LEO standardization issue—take the utility case. If the utility writes the LEO and gives it to a
customer, then they also must write the application that sits on the customer site to get the data from that
LEO and uses it to put together load control orders to on-site devices. So if this is all utility specific, why
use BACnet?

e There might be other applications that want access to the data from the utility. Even if it is not in a
“universal” format, it is still network visible.

e Ideally it will be standardized by us or some utility group so that anyone can write an application
that works here as well as there. So, then why not just write a new Object (like a Real Time Pricing
Object) where the BACnet committee standardizes it? Do we want a thousand Clause 12 objects?
The hope is that we can have a “fast-track” that doesn’t involve a full-blown object, but only a
structure. We could even standardize only the basic structure, but allow additional branches to be
added on. We only need to standardize a main branch structure and datatypes, and extension rules
(if not general).

e The LEO simplifies the job of any gateway—it makes it easier for the utility to move their data
structures in BACnet . Now they only change the envelope and they can pass the data structure to a
LEO unmodified. Without the LEO they need a gateway to chop up the structure and write it to
many locations.

5. What about LEOs listing any upstream LEOs that point to them?

61

CEC Report on Extending BACnet for Lighting Control and Interfacing Building Systems with Utilities

6. Type enumeration: do we allow constructed types? Who enumerates them and how is the list updated
and maintained? How are proprietary data types enumerated?

7. What is the DNS application as Dave Robins envisions it? We pass it a name and it returns a BACnet
address? Can the LEO as it is written now do the DNS type function that Dave hopes to see? If not, can
some changes make it work?

8. Profile issue. Why define the structure in the object? Usually don’t need it. But that is why it is kept in
Entity_Attributes separate from data. Some applications will use the LEO to discover structure as is the
case for a LEO that stores configuration information which is in turn referenced by the OWS application
that needs this information to present to the operator. Making the structure network visible also allows
other parties to understand and access data, e.g. for commissioning applications. The Profile_Name
property is intended for extending the object. But the entity definition is not related. We use some other
property (Object_Name or Description?) to put a label on a given Logical Entity definition, which might
include a vendor ID, name, and version number. The use of Profile_Name is to communicate extensions
to an object, and someone might wish to add additional properties to the LEO, but this is separate from
defining an entity.

9. Defining the NBA Read and Write services—see service descriptions following the LEO description.

10. What does status mean for a LEO? Can we have it act like the GGO? First, the GGO collects all
states of the objects referenced into a property "Member_Status_Flags". Second, intrinsic reporting of the
GGO is based on the value of "Member_Status_Flags". But the GGO is fundamentally different as it
maintains its present value indicating members’ present values. Likewise with status—it [can or does?]
constantly monitor the status of members. The LEO only updates present value when requested.

So how can it notify others about status of its external members? It can’t, unless we change the function
of the LEO to act like the GGO to track member status. This would also help with the problem of time-
outs of cascading reads—especially a problem if we have more than one cascaded LEO (i.e. I want to
read a value that is in an external LEO that in turn points to an external LEO that in turn points to an
externally held value—four reads must be initiated and results returned in sequence). What is easier—
requiring LEO to stay current, or figuring out how to wait and not time-out? Or is time of an essence?

We could ignore externally held values and report status as the availability of internal data. But other
objects with similar functions (Averaging Object, Schedule Object) don’t have Status_Flags.

So, I think we:
a) change LEO to keep track of member current state (values, status) like the GGO if we think this
is necessary, or
b) have no Status_Flags property and advise those who want to track status of members to add a
branch in their structure that has pointers to all the status_flags properties of members for which
they want to know status. Then they have status whenever they read PV.

62

CEC Report on Extending BACnet for Lighting Control and Interfacing Building Systems with Utilities

Use cases for the LEO and examples
A. Reading and Writing Data

Read/Write access to data values is via the Present_Value property, and I may be reading values that are
held internally (to the device holding the LEO) or externally (in a different device on the network).

1) Global Group Object (GGO) case—Read from a group of properties in externally held objects. Here
the LEO points to all these properties. When a device receives a read request (either a RP of the PV or an
NBA Read) of the LEO, it initiates reads of all the external values (unlike GGO which keeps an updated
cache locally), and then returns the values. Unlike the GGO which returns values of datatype
BAChnetPropertyAccessResult which includes device, object and property IDs along with property value
or access error, the LEO does not include DevObjPropID info since this is available in Entity_Attributes
if needed. Additionally, the LEO offers a means to store other information about the group, and to put
group members into a hierarchical arrangement. I can also read from a subset of the group.

2) Write data values via LEO to external object properties. The LEO takes a complex structure and
flattens it out into the Present_Value array. In order to write to PV, I only need to know the data structure
(which element of PV array corresponds to which named element) and the data type of that element. I do
not need nor want to concern myself with where on the network the data is actually stored—the LEO
provides indirection. The present tagged PV format ensures that the datatype is communicated with the
value, allowing an array of mixed type.

3) Write to a LEO that holds data internally. An example of this is the utility RTP (real time pricing) case.
The utility wants to write the values of a data structure to a LEO. Let’s say it is the daily price signal
which is an array of 24 price values of type REAL, and an array of schedule values of type
BAChnetDateTime. This will be transferred as a single array written to the LEO using the NBA Write
service. The device holding the LEO will store the values internally. In this case, the LEO needs to have
some datatype information stored with the value, but there is no associated DevObjPropID, thus the
CHOICE in the BACnetLEReference. The problem is that there is no way in BACnet now to store
datatype information. Thus the proposal for a new BACnetDatatype datatype that enumerates datatypes
for the purpose of internally held data values.

4) Fourth case—reading from an internally held value. The example use case would be a campus weather station
that gathers data from many sensors (which sensor outputs may or may not be included in the LEO data structure)
and based on some internal algorithm comes up with an outdoor temp, a humidity value, a cloud covering value,
etc., and presents these in the LEO as internally held values that I want to read. Whether I use the RP service or the
NBA Read service, I am returned an array of type BACnetLEValue which gives me type along with each value in
the array.

B. Mapping applications

In these use cases, the PV is perhaps not used. The LEO is instead used to store a hierarchical structure
that describes some aspect of the building control system: functional or physical or geographical
hierarchy. This information may be used at the OWS for presentation of the BAC system layout to a
human or to a third party application that uses it to discover entities.

This use of the object de-emphasizes the data and focuses on the hierarchy of the structure. Many LEOs

will have a mixed use—i.e. not every element of PV is a data element. By definition a branch header will
not have a data value associated with it; it only shows organization. This is the mapping function.

63

CEC Report on Extending BACnet for Lighting Control and Interfacing Building Systems with Utilities

C. Examples of possible implementations
Here are some ideas for potential applications of the LEO:

Third party software that works on the network without having to have configuration information entered
in—it can access network visible configuration info, find devices, know what functionality they have and
interact with them. For example, this might work with commissioning. After installation, wiring, building
configuration databases (potentially in LEOs), commissioning is still required. If a standard LEO has been
used for all VAV boxes (for example) and all of these are referenced in another LEO mapping the system,
then a third party vendor can write automatic scripts that locate these standard LEOs and test the standard
functionality of the devices. No human is needed to go over a written point list to manually set up point
by point tests.

Fault Detection and Diagnostics (FDD). Ideally, an FDD algorithm runs in the little brain of some device,
monitoring performance to catch problems (like stuck air damper or drifting temperature sensor). The
algorithm will be specific to the device’s capabilities and sensors, and therefore developed by the vendor.
So, an HVAC vendor could ship a VAV box controller that presents all the device data in a LEO with
fixed names, even as locally configured addresses change. Then the vendor can ship standard fault-
detection code that accesses the device data points using name-based addressing, not needing to be
concerned with local addresses. If the vendor can access the network from outside, it could do a who-has
request for all objects having a certain name that is fixed for their VAV box model, and then write
updated FDD code to that device.

Utility interface. One application is to allow an outsider like a utility to pass messages to specialized
objects like a Real-Time Pricing (RTP) LEO. The LEO provides a means of transferring a complex data
structure into one BACnet object from which it subsequently is available to all devices on the network,
and to all applications wanting the data. Somewhere there has to be a “structure-element” to
“BACnetObjPropRef” binding. I can do that in a proprietary way or I can do it in a standardized BACnet
way. Maybe the utility wants to monitor energy efficiency for compliance purposes, but someone else
may want the same data for fault detection purposes. Maybe the utility wants my weather data for local
conditions, but I want to use it to make it available on the company WAN. Maybe the utility wants to
have some control of the onsite generator, but so do I. Therefore, multiple applications can use data for
different purposes.

Weather Station: making a virtual weather station by assembling the various instruments and sensors
available on the outside of a building and making this available (as a logical entity) on the network.
Internal algorithms can use these sensors as inputs and these (locally calculated and held) values can also
be incorporated into the weather station LEO, using any desired structure organization.

Map of the mechanical systems of a building: which AHU is connected to which VAV box and what
sensors in which rooms. Where the chillers are and what their components are, etc. Then the example of
the building map by room that presents temperature, occupancy, light status, and whatever else control
related. If someone calls to report a cold temperature in meeting room C, then the secretary only cares
about an interface that would let her adjust the temperature. However, if something is broken, the building
manager wants to see which VAV box is malfunctioning and where it is.

Standardized LEOs: If we have universally known LEO data structures, I can write scripts to locate LEOs

on a network and then read and write to them without needing to discover their structures or know their
location. This will open a miriad of new applications.

64

CEC Report on Extending BACnet for Lighting Control and Interfacing Building Systems with Utilities

12.X Logical Entity Object

The Logical Entity object type provides a container that holds complex data structures and which also
describes the structure within the object. The data in the structure may be held locally in the device
implementing the LEO, or the data values may be held externally in any object on the network. Data
values are accessed by reading the Present_Value property, at which time the device holding the LEO
reads any externally held values. Data values may also be written to Present_Value. The structure
definition is contained in the BACnetLEAttributes property. The structure may have any number of
branches and leaves. Only a leaf holds a data value. The LEO also offers the ability to have an externally
held branch by pointing to another LEO. In this way it is possible to have a LEO with a structure that only
points to other structures and serves as a system map, rather than as a data container. A typical LEO will
have a data structure with branch headers (organization information) and leaves (data values).

The data within a LEO is accessible via Read Property and Write Property services acting on
Present_Value. Alternatively, the data can be accessed via the Name Based Addressing Read service
(NBA Read) and the Name Based Addressing Write service (NBA Write). With these services, the data
structure can be navigated in a hierarchical manner by name, rather than by reference to the array index of
Present_Value. In addition, this allows a subset of the Present_Value array to be returned corresponding
to a branch of the data structure held in the logical entity.

Table 12-Y. Properties of the Logical Entity Object

Property Identifier Property Datatype Conformance
Code

Object_Identifier BACnetObjectldentifier R
Object_Name CharacterString R
Object_Type BACnetObjectType R
Description CharacterString o
Present_Value Array of BACnetLEValue R
Entity_Attributes Array of BACnetLEAttributes R

? Status_Flags BACnetStatusFlags R

? Member_Status_Flags BAChnetStatusFlags R

? Event_State BACnetEventState R

7 Reliability BAChetReliability (0]

? Out_Of_Service BOOLEAN R

? Time_Delay Unsigned o'

? Notification_Class Unsigned (o}

? EventEnable BACnetEventTransitionBits o'

? AckedTransitions BACnetEventTransitionBits o'

? NotifyType BAChnetNotifyType o'

? EventTimeStamps BACnetARRAY[3] of BACnetTimeStamp o'
Profile_Name CharacterString O

" These properties are required if the object supports intrinsic reporting.

12.X.1 Object_Identifier

This property, of type BACnetObjectldentifier, is a numeric code that is used to identify the object. It

shall be unique within the BACnet Device that maintains it.

12.X.2 Object_Name

65

CEC Report on Extending BACnet for Lighting Control and Interfacing Building Systems with Utilities

This property, of type CharacterString, shall represent a name for the object that is unique within the
BAChnet Device that maintains it. The minimum length of the string shall be one character. The set of
characters used in the Object_Name shall be restricted to printable characters.

12.X.3 Object_Type

This property, of type BACnetObjectType, indicates membership in a particular object type class. The
value of this property shall be LOGICAL_ENTITY.

12.X.4 Description
This property, of type CharacterString, is a string of printable characters whose content is not restricted.
12.X.5 Present_Value

This property, an array of type BACnetLEValue, is used to read and write the values of the Logical
Entity’s data structure. These values may be held locally within the device hosting the LEO or externally
in the property of any other object on the network, as indicated in the Entity_Attributes property. There is
no caching function as with the Global Group Object—any Read Property request of Present_Value shall
initiate a read of all externally held property values in order to form a reply with present values. Any
Write Property request to Present_Value shall initiate writes to the properties of externally held values.
The array index of Present_Value shall correspond to the array index of Entity_Attributes. Each element
of the Present_Value array corresponds to the element of Entity_Attributes at the same index.

BACnetLEValue ::= CHOICE {
value [0] ABSTRACT-SYNTAX.&Type,

error [1] Error

}

Note: some elements of the Present_Value array will correspond to structure headings (branch names,
identified by BACnetLEReference CHOICE = 0) within the data structure that have no associated value.
In this case the value contained at that array index in Present_Value shall be “null”.

12.X.6 Entity_Attributes

This property holds an array of type BACnetLEAttributes that contains the definition of the entity
structure and optionally gives location and descriptive information for individual elements. Within the
BAChnetLEAttributes sequence, the “name” parameter holds an arbitrary name for each node of the
structure, where a node is defined as a leaf or the header for a branch. A branch may have an arbitrary
number of nodes within it that can be leaf or branch nodes. In order to allow name based addressing, all
nodes at the same level in the data structure shall have unique names. This implies that leaf node or
branch node names directly beneath the same branch node must have unique names, while a branch may
contain nodes with names the same as contained by other branches. It may be desired to have two or more
leaves point to separate LEOs that are of some standard identical structure. In this case the “description”
parameter field may be used to give the standard LEO name.

The “reference” parameter of the BACnetLEAttributes sequence is of type BACnetLEReference and
holds one of four values: the size of a branch, type unsigned, where the size is defined as the number of
nodes at the level directly beneath the branch header level, but not including nodes at lower levels; the
LEOaddress (BACnetDeviceObjectPropertyldentifier) where a branch contained in a sub-LEO is held
externally; the address (BACnetDeviceObjectPropertyldentifier) at which an externally held value is

66

CEC Report on Extending BACnet for Lighting Control and Interfacing Building Systems with Utilities

located; or the fype (BACnetDataType) of an internally held value. These options (size, LEOaddress,
address, type) are mutually exclusive: a branch header node will have a name and size, unless the branch
is contained in an external LEO, in which case there is only a pointer to that LEO and no size; an
externally held value will have a name and address; and a locally held value will have a name and type. A
LEOaddress reference will always point to the Entity_Attributes property of the external LEO.

“Location”, of type BACnetLocation, is used to indicate the geographical location of an entity
element. This may be useful for identifying the locations of parts of a distributed system of devices or of
rooms in a facility or of buildings on a campus. The definition of BACnetLocation allows for supplying a
string as well as GPS (latitude N, longitude E, height) coordinates in decimal degrees notation (lat, long)
and meters (height), as well as generic coordinates (x,y,z) relative to some local reference (which may be
a building GPS reference stored in the GPS field).

Datatype contruct for Entity_Attributes:

BACnetLEAttributes ::= SEQUENCE {

name [0] CharacterString,

reference [1] BACnetLEReference,

location [2] BACnetLocation OPTIONAL,
description [3] CharacterString OPTIONAL

}

-- new definitions needed:

BACnetLEReference ::= CHOICE {

size [0] Unsigned, -- Number of branches and leaves below
this structure node
LEOaddress [1] BACnetDeviceObjectPropertyReference, -- location of external LEO
branch
address [2] BACnetDeviceObjectPropertyReference, -- location of externally held value
type [3] BACnetDatatype -- data type of value held locally

}

BAChnetLocation ::= SEQUENCE ({
name [0] CharacterString,
GPS position [1] BACnet3DPosition OPTIONAL,
XYZ position [2] BACnet3DPosition OPTIONAL

}

BAChnetDatatype ::= ENUMERATED {

Null 0),

Boolean (D),

Unsigned (2), -- Unsigned Integer

Signed (3), -- Signed Integer (2's complement notation)
Real (4), -- ANSI/IEEE-754 floating point

Double (5), -- ANSI/IEEE-754 double precision floating point
OctetString (6),

CharacterString N,

BitString (8),

Enumerated),

Date (10),

67

CEC Report on Extending BACnet for Lighting Control and Interfacing Building Systems with Utilities

Time (11),
BAChnetObjectldentifier (12),
L2707

}

BACnet3Dposition ::= SEQUENCE {
X Real,
Y Real,
Z. Real

}

The elements of Entity_Attributes may be viewed as a table that describes the data structure of the
logical entity. An example entity structure is given in Table 12-Y+1. Indentations in the “name” column
are added for clarity in this example. In this case a cluster of data is received from a utility with price and
schedule information. This cluster is written to the “Tariff” branch of the data structure, and all data
values in the Tariff branch are held locally.

Table 12-Y+1. Example of an RTP (Real Time Pricing) entity structure definition

Entity_ Attributes Present_Value
name reference location |descrip value
RTPcontrol address = BACnetDevObjPropRef TRUE
Get_RTP size = 3 null
RTP1 LEOaddress = BACnetDevObjPropRef |Bldgl OWS null
RTP2 LEOaddress = BACnetDevObjPropRef |Bldg2 OWS null
RTP3 LEOaddress = BACnetDevObjPropRef |Bldg3 OWS null
Tariff size = 4 null
ID type = Octet String 1.19.25.789
CurrentBill type = Real 175.02
Pricing size= 13 null
Name type = Char String “Meterl”
Units type = Char String “$/kWh”
Prices size=4 null
type = Real 0.0240
Pricef
Price2 type = Real 0.0262
Price3 type = Real 0.0295
Price4 type = Real 0.0258
Schedule size=4 null
Schdl type = Time 0:00:00.00
Schd2 type = Time 8:00:00.00
Schd3 type = Time 12:00:00.00
Schd4 type = Time 16:00:00.00

As a second example, consider a Weather Station LEO that gathers together various sensor data from around the
exterior of the building and presents it in the LEO, as shown in Table 12-Y+2. Here the reference column mainly
points to externally held values (sensor AV Objects held by the device connected to the respective sensors).
However, the “Outdoor Temp” element is calculated locally using some internal algorithm from the input of several
Sensors.

68

CEC Report on Extending BACnet for Lighting Control and Interfacing Building Systems with Utilities

Table 12-Y+2. Example of a weather station entity structure definition

Entity_ Attributes Present_Value
name reference location descrip value
Outdoor Temp type = REAL 85.5
Windspeed address = BACnetDevObjPropRef | WS, rooftopl 2.5
Wind Dir address = BACnetDevObjPropRef | WS, rooftop1 282.2
Rel Humid address = BACnetDevObjPropRef | WS, rooftopl 65
Baro Pressure | address = BACnetDevObjPropRef | WS, rooftopl 29.4

12.X.7 Profile_Name

This optional property, of type CharacterString, is the name of an object profile to which this object
conforms. To ensure uniqueness, a profile name must begin with a vendor identifier code (see Clause 23)
in base-10 integer format, followed by a dash. All subsequent characters are administered by the
organization registered with that vendor identifier code. The vendor identifier code that prefixes the
profile name shall indicate the organization that publishes and maintains the profile document named by
the remainder of the profile name. This vendor identifier need not have any relationship to the vendor
identifier of the device within which the object resides.

A profile defines a set of additional properties, behavior, and/or requirements for this object beyond those

specified here. This standard defines only the format of the names of profiles. The definition of the
profiles themselves is outside the scope of this standard.

69

CEC Report on Extending BACnet for Lighting Control and Interfacing Building Systems with Utilities

NBA Services

How does Name-Based Addressing work?

With RP and WP I need to address a property by DevObjProplD, and then array index. This ignores the hierarchical
structure contained within the array. NBA addresses the data in the present_value array from the viewpoint of the
hierarchy described in Entity_Attributes. I need to know DevicelD and either the LEO ObjectID or the LEO
Object_Name. Beyond that I can read or write data in the structure by using a string of names that consist of branch
headers starting at the top level and proceeding down to the data I want to read or write, e.g.
“topLevelBranch.subBranch[.subSubBranch.leaf]”. I can read/write a single value (a leaf node) or I can read/write a
sub-set of data (a branch). If a subBranch is actually an external LEO, the name string can continue into that LEO’s
data structure by name and be used to read and write data to the external LEO.

Why do we need Name-Based Addressing services?

First, let it be said that we can access all the information of the LEO without using NBA. However, there
are some potentially very useful benefits from using NBA, as follows:

. We may define the LEO is such a way that we can use available RP and WP services to pass
a sub-set of the data in Present_Value identified by index (e.g. use WP to pass PV an array of data
values AND an array index N, meaning write the array sub-set to PV starting at index N). However, it
seems more natural to address this sub-set by a meaningful name as a unit (a branch), rather than by
an index number.

. NBA allows me the potential to write to a sub-LEO. I can use a higher level LEO to access
all my lower level LEOs and read from or write to them, rather than reading/ writing to them directly.
This is an additional layer of indirection that may be useful.

. The utilities want NBA since their communication protocol works that way.

. NBA provides additional indirection when compared to using RP/WP on the LEO: NBA
allows addressing a LEO by Object_Name rather than ObjectID, and it also allows retrieving data by
branch names rather than array index. Potentially multiple structures could have a branch sub-
structure in common but otherwise be different. This could change array index while the naming tree
could be more easily held unchanged.

. Names are more suitable for interacting with humans. Somewhere there needs to be a
conversion from name to device address. NBA services allow an application to use names to get data
rather than first going to a table to get device address for a given name. This also benefits
interoperability since an application can be written to access data in a non-proprietary way.

70

CEC Report on Extending BACnet for Lighting Control and Interfacing Building Systems with Utilities

15.X Name Based Addressing Read (NBA-R) Service

The NBA-R service is used by a client to retrieve data from a Logical Entity object (LEO) using the
names given in the branch structure described in the LEO’s Entity_Attributes property. A single value
(leaf) can be read, or some sub-set (branch) of the data values of the data structure, or the entire data
structure. In addition, the naming string can include a branch name corresponding to an external LEO and
be used in this way to read the present value of a sub-LEO. Continuing further, the NBA Read service can
be used to read a sub-set (branch) of the data within a sub-LEQO, etc.

The service requires the LEO’s Object Identifier or its Object Name. No Property ID is required.
15.X.1 Structure

The structure of the NBA-Read service primitives is shown in Table 15-Y. The terminology and
symbology used in this table are explained in 5.6.

Table 15-Y Structure of NBA-Read Service Primitives

Parameter Name Req Ind Rsp Cnf

Argument M M(=)

Object Identifier C C(=)
Object Name C C(=)
NBA Address M M(=)

Result (+) S S(=)
Object Identifier C C(=)
Object Name C C(=)
NBA Address M M(=)
Array of BACnetLEValue M M(=)

Result (-) S S(=)
Error Type M M(=)

15.X.1.1 Argument
This parameter shall convey the parameters for the NBAWriteProperty confirmed service request.

15.X.1.1.1 Object Identifier

This parameter, of type BACnetObjectldentifier, shall provide the means of identifying the object whose property is
to be read and returnded to the requesting client BACnet-user. If this parameter is present, then Object Name shall
not be used.

15.X.1.1.2 Object Name

This parameter, of type CharacterString, may be used in place of the Object Identifier to identify the
Logical Entity Object containing the data structure.

15.X.1.1.3 NBA Address

This parameter, of type BACnetNBAString, shall convey the name of the data value or branch to be read
from the data structure.

71

CEC Report on Extending BACnet for Lighting Control and Interfacing Building Systems with Utilities

15.X.1.2 Result (+)

The ‘Result (+)” parameter shall indicate that the service request succeeded. A ‘Result (+)’ response shall
be returned if any of the values of the request are successfully read.

15.X.1.2.1 Object Identifier
This parameter, of type BACnetObjectldentifier, shall identify the LEO object whose data values have been read

and are being returned to the client BACnet-user. This parameter shall be returned only if the request was made
using the Object Identifier choice.

15.X.1.2.2 Object Name

This parameter, of type CharacterString, shall identify the LEO object whose data values have been read and are
being returned to the client BACnet-user. This parameter shall be returned only if the request was made using the
Object Name choice.

15.X.1.2.3 NBA Address

This parameter, of type BACnetNBAString, shall convey the name of the data value or branch to be read
from the data structure.

15.X.1.2.4 Array of BACnetLEValue

If access to the specified LEO was successful, this parameter shall indicate, for each requested array
element, the success or failure of the read attempt. If the read attempt was successful for a given element,
the BACnetLEValue value at that element shall be the requested value, of datatype appropriate for the
requested value. If the read attempt failed, the BACnetLLEValue value at that element shall be an error
code indicating the reason for the access failure.

15.X.1.3 Result (-)

The ‘Result (-)’ parameter shall indicate that the service request has failed in its entirety. The reason for
the failure shall be specified by the ‘Error Type’ parameter.

15.X.1.3.1 Error Type

This parameter consists of two component parameters: (1) an ‘Error Class’ and (2) and ‘Error Code’. See
Clause 18.

15.X.2 Service Procedure
After verifying the validity of the request, the responding BACnet user shall attempt to access the
requested value(s) of the LEO. If access to any of the values is successful, a ‘Result (+)’ primitive shall be

issued, which returns for each element either the requested value or the reason the attempt failed. If the
read attempt fails in entirety, a ‘Result (-)’ primitive shall be issued indicating the reason for the failure.

72

CEC Report on Extending BACnet for Lighting Control and Interfacing Building Systems with Utilities

Clause 21 Encoding

NBARead-Request ::= SEQUENCE {

objectldentifier [0] BACnetObjectldentifier OPTIONAL,
objectName [1] CharacterString OPTIONAL,
NBAAddress [2] BACnetNBAString,

}

NBARead-ACK ::= SEQUENCE {

objectldentifier [0] BACnetObjectldentifier OPTIONAL,
objectName [1] CharacterString OPTIONAL,
NBAAddress [2] BACnetNBAString,

arrayOfBACnetLEValue [3] SEQUENCE OF BACnetLEValue
}

BACnetNBAString ::= SEQUENCE OF CharacterString {
hierarchicalName [0] CharacterString

}

BACnetLEValue ::= CHOICE {
value [0] ABSTRACT-SYNTAX.&Type,

error [1] Error

}
(This is the datatype for the LEO Present_Value)

73

CEC Report on Extending BACnet for Lighting Control and Interfacing Building Systems with Utilities

15.X Name Based Addressing Write (NBA-W) Service

The NBA-W service is used by a client to write data to a Logical Entity object (LEO) using the names
given in the branch structure described in the LEO’s Entity_Attributes property. A single value (leaf) can
be written, or some sub-set (branch) of the data values of the data structure, or the entire data structure. In
addition, the naming string can include a branch name corresponding to an external LEO and be used in
this way to write to the present value of a sub-LEO. Continuing further, the NBA Write service can be
used to write to a sub-set (branch) of the data within a sub-LEO, etc.

The service requires the LEO’s Object Identifier or its Object Name. No Property ID is required.
15.X.1 Structure

The structure of the NBA-Write service primitives is shown in Table 15-X. The terminology and
symbology used in this table are explained in 5.6

Table 15-X Structure of NBAWrite Service Primitives

Parameter Name Req Ind Rsp Cnf
Argument M M(=)
Object Identifier C C(=)
Object Name C C(=)
NBA Address M M(=)
Data Value M M(=)
Result (+) S S(=)
Array of BACnetLEValue M M(=)
Result (-) S S(=)
Error Type M M(=)

15.X.1.1 Argument
This parameter shall convey the parameters for the NBAWriteProperty confirmed service request.

15.X.1.1.2 Object Identifier

This parameter, of type BACnetObjectldentifier, shall provide the means of identifying the object whose property is
to be modified. If this parameter is present, then Object Name shall not be used.

15.X.1.1.3 Object Name

This parameter, of type BACnetCharacterString, may be used in place of the Object Identifier to identify
the Logical Entity Object containing the data structure.

15.X.1.1.4 NBA Address

This parameter, of type BACnetNBAString, shall convey the name of the data value(s) to be written to
the Logical Entity Object.

15.X.1.1.5 Data Value

74

CEC Report on Extending BACnet for Lighting Control and Interfacing Building Systems with Utilities

The Data Value parameter is an array of datatype BACnetLEValue. If access to the specified values of the
specified object(s) is available, the value(s) contained in this parameter shall be used to replace the
specified value(s) held in the LEO’s Present_Value property. For each element of the array, the
BACnetLEValue choice ‘value’ shall be taken, with the datatype appropriate for the element of the data
structure to be written.

15.X.1.2 Result (+)

The ‘Result (+)’ parameter shall indicate that the service request succeeded. A ‘Result (+)’ response shall
be returned if any of the values of the request are successfully written.

15.X.1.2.1 Array of BACnetLEValue

This parameter, an array of datatype BACnetLEValue, is returned with a ‘Result (+)’ response. If the
write for a given element was successful, then choice ‘value’ is taken with the value set to ‘null’. If there
is an error writing a value of a given element, then the error type is returned in the array at that element
index.

15.X.1.3 Result (-)

The ‘Result (-)’ parameter shall indicate that the service request has failed in its entirety. The reason for
the failure shall be specified by the ‘Error Type’ parameter.

15.X.1.3.1 Error Type

This parameter consists of two component parameters: (1) an ‘Error Class’ and (2) and ‘Error Code’. See
Clause 18.

15.9.2 Service Procedure

After verifying the validity of the request, the responding BACnet user shall attempt to write the data
value(s) given in ‘Data Value’ to the locations specified in the Entity_Attributes property of the specified
LEO. If the write attempt for any of the elements is successful, a ‘Result (+)’ primitive shall be issued. If
the modification attempt fails in its entirety, a ‘Result (-)’ primitive shall be issued indicating the reason
for the failure.

Clause 21 Encoding

NBAWrite-Request ::= SEQUENCE {

objectldentifier [0] BACnetObjectldentifier OPTIONAL,
objectName [1] CharacterString OPTIONAL,
NBAAddress [2] BACnetNBAString,

DataValue [3] array of BACnetLEValue

}

NBAWrite-ACK ::= SEQUENCE {
arrayOfBACnetLEValue [3] SEQUENCE OF BACnetLEValue

}

75

