

 CALIFORNIA

ENERGY
COMMISSION

Component Level Model-based Fault
Detection

TE

C
H

N
IC

A
L

R
EP

O
R

T

 October 2003
 500-03-097-A-20

 Gray Davis, Governor

 CALIFORNIA

 ENERGY

 COMMISSION

 Prepared By:
 Buildings Technologies Department

Lawrence Berkeley National Laboratory

Steve Selkowitz

 B90R3110
1 Cyclotron Road
E. O. Lawrence Berkeley National
Laboratory
Berkeley, CA 94720

 CEC Contract No. 400-99-012

 Prepared For:
 Martha Brook,
 Contract Manager

 Nancy Jenkins,
 PIER Buildings Program Manager

 Terry Surles,
 PIER Program Director

 Robert L. Therkelsen
 Executive Director

 DISCLAIMER
 This report was prepared as the result of work sponsored by the

California Energy Commission. It does not necessarily represent
the views of the Energy Commission, its employees or the State
of California. The Energy Commission, the State of California, its
employees, contractors and subcontractors make no warrant,
express or implied, and assume no legal liability for the
information in this report; nor does any party represent that the
uses of this information will not infringe upon privately owned
rights. This report has not been approved or disapproved by the
California Energy Commission nor has the California Energy
Commission passed upon the accuracy or adequacy of the
information in this report.

ii

Component Level Model-based Fault Detection Acknowledgement

Acknowledgements
In a program of this magnitude there are many people who contributed to its success. We owe the
many staff members, faculty, and students of the different institutions our thanks for the superb
work and long hours they contributed. All of their names may not appear in this report, but their
efforts are visible in the many papers, reports, presentations, and thesis that were the major output
of this program.

The EETD leadership provided support in many ways. We thank Mark Levine, Marcy Beck, and
Nancy Padgett. Members of the Communications Department of EETD helped in preparing
reports, presentations, handouts, and brochures. The help of Allan Chen, Julia Turner, Anthony
Ma, Steve Goodman, Sondra Jarvis, and Ted Gartner is acknowledged.

Special thanks are given to the support staff from the Buildings Technologies Program at LBNL:
JeShana Dawson, Rhoda Williams, Denise Iles, Catherine Ross, Pat Ross, and Danny Fuller.
Norman Bourassa performed a wide range of duties, from original research to tracking
deliverables.

We thank the following members of the Program Advisory Committee (PAC) for their advice and
support. In a program designed to deal with real world problems their ideas were vital. The PAC
members are:

Larsson, Nils C2000 Canada
Stein, Jay....................................... E-Source
Wagus, Carl Am. Architectural Manufs. Assoc.
Lewis, Malcolm Constructive Technologies
Bernheim, Anthony SMWM Architects
MacLeamy, Patrick HOK
Mix, Jerry Wattstopper
Waldman, Jed................................ CA Dept of Health Services
Bocchicchio, Mike UC Office of the President
Prindle, Bill Alliance to Save Energy
Sachs, Harvey ACEEE
Browning, Bill Rocky Mountain Institute
Lupinacci, Jean U.S. EPA
Goldstein, Dave Natural Resources Defense Council
Smothers, Fred Smother & Associates
Benney, Jim NFRC Director of Education
Stewart, RK Gensler Assoc
Angyal, Chuck San Diego Gas & Electric
Ervin, Christine US Green Buildings Council
Ginsberg, Mark US Department of Energy
Higgins, Cathy New Buildings Institute

Finally, we acknowledge the support and contributions of the PIER Contract Manager, Martha
Brook, and the Buildings Program team under the leadership of Nancy Jenkins.

1

Component Level Model-based Fault Detection Preface

Preface
The Public Interest Energy Research (PIER) Program supports public interest energy research and
development that will help improve the quality of life in California by bringing environmentally
safe, affordable, and reliable energy services and products to the marketplace.

The Program’s final report and its attachments are intended to provide a complete record of the
objectives, methods, findings and accomplishments of the High Performance Commercial
Building Systems (HPCBS) Program. This Commercial Building Energy Benchmarking
attachment provides supplemental information to the final report (Commission publication # 500-
03-097-A2). The reports, and particularly the attachments, are highly applicable to architects,
designers, contractors, building owners and operators, manufacturers, researchers, and the energy
efficiency community.

This document is the twentieth of 22 technical attachments to the final report, and consists of a
research report and software:

� Development of Whole-Building Fault Detection Methods (E5P2.3T3a)

� Software Toolbox for Component-Level Model-Based Fault Detection Methods
(E5P2.3T3c)

The Buildings Program Area within the Public Interest Energy Research (PIER) Program
produced this document as part of a multi-project programmatic contract (#400-99-012). The
Buildings Program includes new and existing buildings in both the residential and the
nonresidential sectors. The program seeks to decrease building energy use through research that
will develop or improve energy-efficient technologies, strategies, tools, and building performance
evaluation methods.

For the final report, other attachments or reports produced within this contract, or to obtain more
information on the PIER Program, please visit http://www.energy.ca.gov/pier/buildings or contact
the Commission’s Publications Unit at 916-654-5200. The reports and attachments are also
available at the HPCBS website: http://buildings.lbl.gov/hpcbs/.

2

http://www.energy.ca.gov/pier/buildings
http://buildings.lbl.gov/hpcbs/

Component Level Model-based Fault Detection Abstract

Abstracts

Library of component reference model for fault detection
This aim of the work reported here is to develop a library of equipment reference models suitable
for use in component-level, functional testing and performance monitoring. It is part of the Task
3.3 - Develop Semi-Automated, Component-Level Diagnostic Procedures, within Element 5 -
Integrated Commissioning And Diagnostics.

In commissioning and fault diagnosis, a baseline model of correct operations is normally first
configured and calibrated against design information and manufacturers’ data. Next, the model is
fined-tuned to match the actual performance after any faults have been fixed and the model is
then used as part of a performance monitoring diagnostic tool for operations. The reference
model is used to predict performance that would be expected in the absence of faults. A
comparator is used to determine the significance of any differences between the predicted and
measured performance and hence the level of confidence that a fault has been detected.

A complete library of reference models would include models of all types of HVAC equipment,
and possibly the associated controls. The work reported here focuses on developing diagnosis
models for secondary HVAC system (air handling units and distribution systems) and chillers
(simple chiller power model).

Software Toolbox for Component-Level Model-Based Fault Detection Methods
This document provides a brief synopsis of the toolbox for component-level model-based fault
detection methods in commercial building HVAC systems. The “toolbox” consists of five basic
modules: a parameter estimator for model calibration, a preprocessor, a SPARK AHU model
simulator, a steady-state detector, and a comparator. Each of these modules will be described in
detail. The toolbox is completely written in C++, so one user requirement is familiarity with C++.
It also invokes the SPARK simulation program. However, because the toolbox calls pre-compiled
SPARK executables from within C++ code, user familiarity with SPARK is not essential.

3

California Energy Commission
Public Interest Energy Research Program

HPCBS No. E5P23T3a

High Performance Commercial Building

LIBRARY OF COMPONENT REFERENCE MODELS FOR FAULT DETECTION
(AHU AND CHILLER) (DRAFT)

Element 5 - Integrated Commissioning and Diagnostics
Project 2.3 - Advanced Commissioning and Monitoring Techniques
 Systems
Peng Xu and Philip Haves
Lawrence Berkeley National Laboratory

October, 2003

Acknowledgement

This work was supported by the California Energy Commission, Public Interest Energy
Research Program, under Contract No. 400-99-012 and by the Assistant Secretary for
Energy Efficiency and Renewable Energy, Building Technologies Program of the U.S.
Department of Energy under Contract No. DE-AC03-76SF00098.

DISCLAIMER

This document was prepared as an account of work sponsored by the United States
Government. While this document is believed to contain correct information, neither the
United States Government nor any agency thereof, nor The Regents of the University of
California, nor any of their employees, makes any warranty, express or implied, or
assumes any legal responsibility for the accuracy, completeness, or usefulness of any
information, apparatus, product, or process disclosed, or represents that its use would not
infringe privately owned rights. Reference herein to any specific commercial product,
process, or service by its trade name, trademark, manufacturer, or otherwise, does not
necessarily constitute or imply its endorsement, recommendation, or favoring by the
United States Government or any agency thereof, or The Regents of the University of
California. The views and opinions of authors expressed herein do not necessarily state or
reflect those of the United States Government or any agency thereof, or The Regents of
the University of California.

This report was prepared as a result of work sponsored by the California Energy
Commission (Commission). It does not necessarily represent the views of the
Commission, its employees, or the State of California. The Commission, the State of
California, its employees, contractors, and subcontractors make no warranty, express or
implied, and assume no legal liability for the information in this report; nor does any
party represent that the use of this information will not infringe upon privately owned
rights. This report has not been approved or disapproved by the Commission nor has the
Commission passed upon the accuracy or adequacy of the information in this report.

DRAFT

 0

HIGH PERFORMANCE COMMERCIAL BUILDING SYSTEMS

LIBRARY OF COMPONENT REFERENCE
MODELS FOR FAULT DETECTION

(AHU AND CHILLER)

October 10, 2003

Peng Xu and Philip Haves
Lawrence Berkeley National Laboratory

Subtask 2.3.3 Develop semi-automated, component-level diagnostic
procedures

Element 5 – Integrated Commissioning & Diagnostics

DRAFT

 1

TABLE OF CONTENTS
 PAGES

1 Introduction

1.1. SPARK 2
1.2 Contents 3

2 Reference Model

2.1 Coil 4
2.1.1 General description
2.1.2 Model description
2.1.3 Nomenclature
2.1.4 Source Codes

2.2 Fan 17
2.2.1 General description
2.2.2 Model description
2.2.3 Nomenclature
2.2.4 Source Codes

2.3 Control valve 29
2.3.1 General description
2.3.2 Model description
2.3.3 Nomenclature
2.3.4 Source Codes

2.4 Mixing box 33
2.4.1 General description
2.4.2 Model description
2.4.3 Nomenclature
2.4.4 Source Codes

2.5 AHU 43
2.5.1 General description
2.5.2 Model description
2.5.3 Nomenclature
2.5.4 Source Codes

2.6 Chiller 51
2.6.1 General description
2.6.2 Model description
2.6.3 Nomenclature
2.6.4 Source Codes

3 Reference 56

DRAFT

 2

INTRODUCTION

The increasing complexity of building HVAC control and management systems
heightens the need for the devolvement of tools to assist in monitoring the performance
of these systems. The application of these tools is expected to lead to improved comfort,
energy performance and reduced maintenance costs. The function of these tools may be
limited to collecting raw data from sensors and control system outputs and displaying it
for manual analysis by operators or engineers. Alternatively, the tools may analyze the
data in order to determine whether the operation is correct or faulty (automated fault
detection) and may also identify the location or nature of the physical cause of a problem
(automated fault diagnosis).

In automated commissioning and fault diagnosis, a baseline model of correct operation is
normally first configured and calibrated against design information and manufacturers’
data. Next, the model is fined-tuned to match the actual performance after any faults
have been fixed and the model is then used as part of a performance monitoring
diagnostic tool for operations. The reference model is used to predict performance that
would be expected in the absence of faults. A comparator is used to determine the
significance of any differences between the predicted and measured performance and
hence the level of confidence that a fault has been detected. Model-based fault detection
is illustrated in Figure 1.

Figure 1: The concept of model-based fault detection and its application to a heating coil

Automated fault detection and diagnosis (AFDD) tools may either be implemented in a
separate computer networked to the energy management and control systems (EMCS) or
may be embedded in the EMCS itself. Separate implementation can be achieved with
less engineering development work than embedded implementation and provides a

DRAFT

 3

stepping stone towards the tighter integration of embedded implementation, as well as
providing a viable deplyment path in its own right.

The work reported here is part of Task 3.3 - Develop Semi-Automated, Component-Level
Diagnostic Procedures, within Element 5 - Integrated Commissioning and Diagnostics.
The aim of Task 3.3 is to create software procedures that will provide component- level
fault detection and functional testing methods. The specific subtasks include:

• Develop a library of equipment models for component- level functional testing and
performance monitoring

• Develop a toolbox of software procedures to support component-level, functional
testing and performance monitoring.

• Conduct field trials to assess the performance of the methods and software tools.

This report describes and documents the library of equipment models as of July, 2003. A
complete library of reference models would include models of all types of HVAC
equipment, and possibly the associated controls. The work reported here focuses on
developing diagnosis models for secondary HVAC system (air handling units and
distribution systems) and chillers (simple chiller power model). It is expected that
additional models will be added as a result of the work of IEA Annex 40 Commissioning
of Buildings and HVAC Systems for Improved Energy Performance (see
http://www.commissioning-hvac.org/). The library will be made available for download
from http://buildings.lbl.gov/hpcbs/Element_5/02_E5_P2_3_3.html. The source code
will be included in the download and will be subject to the provisions of LBNL’s Open
Source agreement.

SPARK

The simulation program SPARK (SPARK 2003) has been used to develop and implement
the reference model library. SPARK is an object-based software system that can be used
to simulate physical systems that can be modeled using sets of differential and algebraic
equations. ‘Object-based’ means that components and subsystems are modeled as objects
that can be interconnected to form a model of the entire system. Often the same
component and subsystem models can be used in many different system models, reducing
the cost of development.

The process of describing a problem in order to produce a SPARK model begins by
breaking it down in an object-oriented way. This involves thinking about the system in
terms of its components, so that each component can be represented by a SPARK object.
Then, a model is developed for each component not already available in a SPARK
library. Since there may be several components of the same type, SPARK object models,
i.e., equations or groups of equations, are defined in a generic manner, called classes.
Classes serve as templates for creating any number of like objects that may be needed in
a problem. The problem model is then completed by linking objects together, thus
defining how they interact, specifying data values that specialize the model to represent
the actual problem to be solved and providing boundary values.

DRAFT

 4

SPARK models have a hierarchical structure. The smallest programming element is a
class consisting of an individual equation, called an atomic class. Atomic classes are
saved as files with extension .cc. A macro class consists of several atomic classes (and
possibly other macro classes) combined together into a higher level unit. Macro classes
are saved as .cm files. The ports of the different atomic classes with equal value are
linked using equal objects defined in equal_link.cm.

Problem models are similarly described, using the atomic and macro classes, and placed
in a problem specification file. When the problem is processed by SPARK, the problem
specification file is converted to a C++ program, which gets compiled, linked and
executed to solve the problem for a particular set of boundary conditions specified at run-
time.

Just before the end of the High Performance Commercial Building Systems program, and
after the completion of the work described here, a new Version of SPARK
(VisualSPARK Version 2.0) was released. Version 2.0 has two new features that offer
important advantages for the implementation of model-based fault detection:

• A SPARK problem can be compiled to produce a Dynamic Link Library
(DLL), which allows the simulation to be called as a function from a fault
detection program rather than using an ‘exec’ call with its associated overhead

• SPARK objects may be ‘multi-valued’, i.e. calculate more than one output
variable, simplifying the process of creating and connecting models

New variants of the models in the library that are compatible with Version 2.0 will be
added to the library as resources permit. In the meantime, it is suggested that intending
users consider porting models of interest to Version 2.0 and contact the authors if they
have questions or problems.

Contents of the Model Library

This document describes the component models developed using SPARK. For secondary
systems, the major goal is to develop a full component model library to treat air-handling
units (AHU). The components that have been modeled are coils (cooling and heating),
fans, valves, and mixing boxes. Combining all these models together creates a model of
an AHU. For primary systems, a simple chiller model based on the Gordon-Ng algorithm
has been developed.

In this report, the documentation of each reference model in the library consists of a
general description, a model description, and the source code. The general description
describes the nature and function of the component and the possible common faults. The
model description explains the model structure and the governing equations. The
definitions of all the variables and the source code for all the classes for each component
are also presented.

DRAFT

 5

Coil REFERENCE MODELS

General description
‘Coils’ are fin- tube, air to water heat exchangers that are typically used for either cooling
or heating the air supplied to conditioned spaces. Heating coils typically have one or two
rows of tubes and are essentially cross-flow devices. Cooling coils typically have four or
more rows and are essentially counterflow devices. They may provide dehumidification
as well as sensible cooling and the surface in contact with the air may then be partially or
completely wet. Most heating coils, at least in climates where there is no risk of freezing,
and all cooling coils, are controlled by varying the flow rate of water through the coil.
Coils in VAV systems also experience variable air- flow rate. The challenges in coil
modeling are to treat the variation in surface resistance with flow rate and to treat
partially wet operation.

The most common fault to be detected in either heating or cooling coils is fouling of the
heat exchange surface, either on the air or the water-side. In order to detect fouling when
it occurs, it is only necessary to model full load operation. However, in order to be able
to predict loss of capacity at peak load before it occurs, it is necessary to model part load
operation as well.

A significant number of coil models have been developed over the last few decades; none
of the models that treat partly wet operation is entirely suitable for fault detection. In
particular, there are two cooling coil models in the ASHRAE Secondary Toolkit
(Brandemuehl et al., 19930. The simple model approximates partially wet operation as all
wet or all dry, which leads to errors of up to 5%. The detailed model treats the dry and
wet regions separately and iterates to find the position of the boundary. Testing of this
model performed as part of the work described here showed that the iterative scheme
employed in the model sometimes fails to converge under conditions of high humidity.
For this reason, it was decided to develop a new model of partially wet coil operation.

Model description
 In the new model, the coil is divided into discrete sections along the direction of fluid
flow. In each section, heat and mass balance equations are established for each fluid,
together with rate equations describing the heat and mass transfer. If the dew point
temperature of the air is lower than the metal surface temperature, that section of the coil
is treated as dry. If not, the water condensation rate is assumed to be proportional to the
difference between the humidity ratio of the bulk air stream and the humidity ratio of
saturated air at the temperature of the coil metal surface. The coefficient of
proportionality is determined by assuming the value of the Lewis Number is unity. The
sections that make up the coil are linked together by associating the fluid inlet conditions
of one section with the outlet conditions for the adjacent upstream section.

The resulting set of coupled equations is then solved by SPARK. Although the
computational burden of the new coil model is significantly greater than that of the
ASHRAE Toolkit models, the model is robust, and it has the additional advantage of
being a suitable starting point for a dynamic cooling coil model.

DRAFT

 6

Coil REFERENCE MODELS

SPARK can not simulate a model with a dynamic number of objects. In the code, the
number of layers of the coil is hard-wired to 20 instead of being variable. Dividing the
cooling coil into 20 layers provides enough accuracy, because under the common
operation range of the cool coil, the driving temperature difference in each layer is one
order of magnitude lower than the temperature change along the flow direction.

Two macro classes were developed for the cooling coil models. The class to model the
heat and mass transfers within one layer of the coil is coil_layer.cm. The class that
models the performance of a counter flow coil is coil_counter_flow.cm. This latter class
invokes coil.layer.cm to solve the heat and mass transfer equations for each layer of the
coil. The counter flow coil class can be used for cooling and heating.

A simple heating coil model for crossflow heat exchange is used to simulate heating coil
performance. With a known overall heat transfer coefficient, the capacity rates of the two
fluid streams, the inlet fluid states, and the flow configuration, and effectiveness-NTU
method can be used to determine outlet states. As in the cooling coil, the U value of the
coil on the air side and the water side is modeled as a function of the fluid flow rate. The
macro class for this crossflow coil is coil_heating_cross_flow.cm.

Governing equations

UA value
UA value of heat exchanger external surface and internal surface:

extairextext AvCUA ⋅⋅= 8.0

int
8.0

intint AvCUA liq ⋅⋅=

Cooling coil
For each layer of the cooling coil :
(coillayer.cm)

Heat transfer between air and cooling coil surface:

 extsur
lvgairentair

layersen UAT
TT

q)
2

(,,
, −

+
=









⋅−
+

= massfgsur
lvgairentair

layerlat hhw
ww

q)
2

(,0max ,,
,

Heat transfer between cooling coil surface and water flow:

 int
,,

,)
2

(UA
TT

Tq lvgliqentliq
surlayertot

+
−=

DRAFT

 7

Coil REFERENCE MODELS

Heat balance:

)()(,,,,,,,, lvgairentairdryairentliqlvgliqliqliqlayerlatlayersenlayertot hhmTTcmqqq −=−=+=

)(,,,, lvgairentairpdryairlayersen TTcmq −=

Others functions:
(In SPARK HVAC/Toolkit library, based on the ASHRAE Handbook Fundamentals)
),(,,, lvgairlvgairlvgair wTenthalpyh =

),(,,, entairentairentair wTenthalpyh =

)(sursur Thumratiow =
)(airp wcpairc =

 Counter flow cooling coil:
(coil_counter_drywet.cm)
 1,,,, −= ilvgairientair TT

 1,,,, += ientairilvgair TT

 1,,,, += ilvgliqientliq TT

 1,,,, −= ilvgliqilvgliq TT

∑= layersensen qq ,

∑= layertottot qq ,

Figure 1 Discrete sections of counter flow coil in the cooling coil model

Heating coil
(Cross flow, one side unmixed)
Determining the number of transfer units (NTU),

),(min liqliqairair mcmcMINC ⋅⋅=

),(max liqliqairair mcmcMAXC ⋅⋅=

water

air

i+1 i

Tair,lvg,i-1 = Tair,ent,i Tair,lvg,i+1

Tliq,ent,i = Tliq,lvg,i+1 Tliq,ent,i-1 = Tliq,lvg,i

Tair,lvg,i = Tair,ent,i+1

i-1

Tliq,ent,i+1

DRAFT

 8

Coil REFERENCE MODELS

minC

UA
NTU =

The ratio of the two fluid capacity rates is,

max

min

C
C

R =

Effectiveness for cross flow, minimum capacity rate stream unmixed,

R
e

NTUeR)1(1
−−⋅−−

=ε

Outlet fluid condition are calculated from the definition of the effectiveness,

liqliqentliqentair

entliqlvgliq

mc
C

TT

TT

⋅
⋅=

−

−
min

,,

,, ε

airairentliqentair

lvgairentair

mc
C

TT

TT

⋅
⋅=

−

−
min

,,

,, ε

Nomenclature

Variables Description Unit
Aext AExt External heat exchange area m2
Aint AInt Internal heat exchange area m2
cair CpAir Air specific heat at constant pressure kJ/kg.K
cwater CLiq Water specific heat kJ/kg.K
Cmax CMax Maximum of the two capacity rates kW/K
Cmin CMin Minimum of the two capacity rates kW/K
Cext CExt Constant of heat exchange of external surface Dimensionless
Cint CInt Constant of heat exchange of internal surface Dimensionless
ε E Effectiveness of the heat exchanger. Dimensionless
hair,ent hairEnt Coil entering air enthalpy kJ/kg
hair,lvg hAirLvg Coil leaving air enthalpy kJ/kg
hmass hMass Mass transfer coefficient kg/s
hfg hfg enthalpy of vaporization kJ/kg
mair,dry mAir Dry air flow rate kg_dryair/s
mliq mLiq water flow rate kg/s

DRAFT

 9

Coil REFERENCE MODELS

Variables Description Unit
NTU NTU Number of transfer units of heat exchanger Dimensionless
qsen qSen Sensible heat transfer rate. Positive for air

cooling
W

qlat qLat Latent heat transfer rate. Positive for air
cooling

W

qtot qTot Heat transfer rate. Positive for air cooling W
Tair,ent TAirEnt Coil entering air temperature oC
Tair,lvg TAirLvg Coil leaving air temperature oC
Tliq,lvg TLiqLvg Coil leaving water temperature oC
Tliq,ent TLiqEnt Coil entering water temperature oC
Tsur TSur Coil surface temperature oC
UAext UAExt Coil air side -external- heat transfer

conductance
W/ K

UAint UAInt Wet coil liquid side - internal- heat transfer
conductance

W/ K

vair vAir air velocity m/s
vliq vLiq water flow velocity m/s

wsur wSur Saturate air humidity ratio at coil surface

temperature
kg/kg

wair,lvg wAirLvg Coil leaving air humidity ratio kg/kg
wair,ent wAirEnt Coil entering air humidity ratio kg/kg

Tair,ent,i TAirEnt Coil entering air temperature at layer i oC
Tair,lvg,i TAirLvg Coil leaving air temperature at layer i oC
Tliq,lvg,i TLiqLvg Coil leaving water temperature at layer i oC
Tliq,ent,i TLiqEnt Coil entering water temperature at layer i oC

Tair,ent,i-1 TAirEnt Coil entering air temperature at layer i-1 oC
Tair,lvg,i-1 TAirLvg Coil leaving air temperature at layer i-1 oC
Tliq,lvg,i-1 TLiqLvg Coil leaving water temperature at layer i-1 oC
Tliq,ent,i-1 TLiqEnt Coil entering water temperature at layer i-1 oC

Tair,ent,i+1 TAirEnt Coil entering air temperature at layer i+1 oC
Tair,lvg,i+1 TAirLvg Coil leaving air temperature at layer i+1 oC
Tliq,lvg,i+1 TLiqLvg Coil leaving water temperature at layer i+1 oC
Tliq,ent,i+1 TLiqEnt Coil entering water temperature at layer i+1 oC
R R Ratio of the Cmin and Cmax. Dimensionless

DRAFT

 10

coil_layer.cm Coil / SOURCE CODE

/* CLASSMACRO coil_layer

ABSTRACT
 modeling one portion or layer of the dry/wet coil.
ABSTRACT_END

Equations:
 qSen = ((TAirEnt + TAirLvg)/2 - TSur) * UAExt;
 qLat = ((wAirEnt + wAirLvg)/2 - wSur) * A*hMass
 =0 if [(wAirEnt + wAirLvg)/2 - wSur <0];
 qTot = UAInt * (TSur - (TLiqLvg + TLiqEnt)/2)
 qTot = mLiq * C_Water*(TLiqLvg - TLiqEnt)
 qSen = CAir * (TAirEnt -TAirLvg)
 qTot = mAir * (hairEnt - hAirLvg)
 hAMass = UAExt * hfg /Cpm
 hAirLvg = f (TAirLvg, wAirLvg)
 hAirEnt = f (TAirEnt, wAirEnt)
 wSur = f (TSur)
 qTot = qSen + qLat
 UAExt = CExt*AExt*mAir^0.8
 UAInt =Cint *AInt* mLiq^0.8

TEST_INPUT
 TAirEnt = 31
 TAirLvg = unknown
 wAirEnt = 0.02
 wAirLvg = unknown
 TLiqEnt =8
 TLiqLvg = unknown
 UAExt =200
 UAInt =400
 mAir =1
 mLiq =0.5
 PAtm =101325
 qSen = unknown
 qLat = unknown
 qTot = unknown
*/
// ==== PORTS ====
PORT TAirEnt "Coil entering air dry bulb temperature" [deg_C] ;
PORT TAirLvg "Coil leaving air dry bulb temperature" [deg_C] ;
PORT wAirEnt "Coil entering air humidity ratio" [kg_water/kg_dryAir] ;
PORT wAirLvg "Coil leaving air humidity ratio" [kg_water/kg_dryAir];
PORT TLiqEnt "Coil entering water temperature" [deg_C] ;
PORT TLiqLvg "Coil leaving water temperature" [deg_C] ;
PORT UAExt "Coil air side -external- heat transfer coefficient" [W/deg_C] ;
PORT UAInt "Wet coil liquid side -internal- heat transfer coefficient" [W/deg_C] ;
PORT mAir "Air flow rate" [kg_dryAir/s] ;
PORT mLiq "Liquid flow rate" [kg/s] ;
PORT PAtm "Atmospheric pressure" [Pa];
PORT qSen "Sensible heat transfer rate. Positive for air cooling." [W];
PORT qLat "Latent heat transfer rate. Positive for air cooling." [W];
PORT qTot "Heat transfer rate. Positive for air cooling." [W];

declare cond qSen qLat qLiq qAirSen qLiqInt qAirTot;
declare average TAir wAir TLiq;
declare max2 max1;
declare safquot quot;
declare lat_rate hMass;
declare cpair cp;
declare capratel cpLiq;
declare cap_rate CAir;

declare equal_link qSen1 qSen2;
declare equal_link qLat1 ;
declare equal_link qTot1 qTot2 qTot3;
declare equal_link TSur1 TSur2;
declare equal_link TAirEnt1 TAirEnt2;

DRAFT

 11

coil_layer.cm Coil / SOURCE CODE

declare equal_link TAirLvg1 TAirLvg2;
declare equal_link wAirEnt1;
declare equal_link wAirLvg1 wAirLvg2;
declare equal_link UAExt1;
declare equal_link hMass1;
declare equal_link wSur1 wSur2;
declare equal_link TLiqEnt1;
declare equal_link TLiqLvg1;
declare equal_link hAirLvg1;
declare equal_link hAirEnt1;
declare equal_link mAir1;

// qSen = ((TAirEnt + TAirLvg)/2 - TSur) * UAExt
LINK qSen.q qSen1.a ;
LINK .TAirEnt TAir.a TAirEnt1.a;
LINK .TAirLvg TAir.b TAirLvg1.a;
LINK TAir.c qSen.T1 ;
LINK qSen.T2 TSur1.a;
LINK .UAExt qSen.U12 UAExt1.a ;

//qLat = ((wAirEnt + wAirLvg)/2 - wSur) * hMass or =0 if [(wAirEnt + wAirLvg) *0.5 - wSur <0]
LINK qLat.q qLat1.a;
LINK .wAirEnt wAir.a wAirEnt1.a;
LINK .wAirLvg wAir.b wAirLvg1.a;
LINK wAir.c max1.a;
LINK max1.b qLat.T2 wSur1.a;
LINK max1.c qLat.T1;
LINK qLat.U12 hMass1.b;

//hMass = UAExt * hfg /Cpm
LINK quot.a UAExt1.b;
LINK cp.w wSur1.b wSur2.a;
LINK cp.CpAir quot.b;
LINK quot.c hMass.mAir;
LINK hMass.cap hMass1.a;

//qLiq = UAInt * (TSur - (TLiqLvg + TLiqEnt)/2);
LINK qLiq.q qTot1.a;
LINK .TLiqEnt TLiq.a TLiqEnt1.a;
LINK . TLiqLvg TLiq.b TLiqLvg1.a;
LINK TLiq.c qLiq.T2;
LINK qLiq.T1 TSur1.b TSur2.a;
LINK .UAInt qLiq.U12;

//qLiq = mLiq * C_Water*(TLiqLvg - TLiqEnt)
LINK qLiqInt.q qTot1.b qTot2.a;
LINK qLiqInt.T2 TLiqEnt1.b;
LINK qLiqInt.T1 TLiqLvg1.b;
LINK .mLiq cpLiq.mWater;
LINK cpLiq.cap qLiqInt.U12;

//qSen = CAir * (TAirEnt -TAirLvg)
LINK qAirSen.q qSen1.b qSen2.a;
LINK qAirSen.T1 TAirEnt1.b TAirEnt2.a;
LINK qAirSen.T2 TAirLvg1.b TAirLvg2.a;
LINK .mAir CAir.mAir mAir1.a;
LINK CAir.w wAirLvg1.b wAirLvg2.a;
LINK CAir.cap qAirSen.U12;

//qTot = mAir * (hairEnt - hAirLvg)
LINK qAirTot.q qTot2.b qTot3.a;
LINK qAirTot.T2 hAirLvg1.a;
LINK qAirTot.T1 hAirEnt1.a;
LINK qAirTot.U12 mAir1.b;

// hAirLvg = f (TAirLvg, wAirLvg)
declare enthalpy enAirLvg;

DRAFT

 12

coil_layer.cm Coil / SOURCE CODE

LINK enAirLvg.h hAirLvg1.b;
LINK enAirLvg.TDb TAirLvg2.b;
LINK enAirLvg.w wAirLvg2.b;

// hAirEnt = f (TAirEnt, wAirEnt)
declare enthalpy enAirEnt;
LINK enAirEnt.h hAirEnt1.b;
LINK enAirEnt.TDb TAirEnt2.b;
LINK enAirEnt.w wAirEnt1.b;

//wSur = f (TSur)
declare enthsat Surf;
LINK .PAtm Surf.PAtm;
LINK Surf.TDb TSur2.b;
LINK Surf.w wSur2.b;
LINK hSur Surf.hSat;

//qTot = qSen + qLat
declare sum q;
LINK .qTot q.c qTot3.b;
LINK .qSen q.a qSen2.b;
LINK .qLat q.b qLat1.b;

DRAFT

 13

coil_cooling_counter_flow.cm Coil / SOURCE CODE

/* CLASSMACRO coil_counter_drywet
 "model of counter flow coil, including total dry, total wet, partial dry and partial wet conditions"
 the model can be used both for cooling and heating purpose"
ABSTRACT
 The counter flow coil is divided into 20 layers in the direction of air flow. The leaving
 condition of one layer is the entering condition of next layers. In each layer, model of class

coil_layer is used. This model demonstrates advantage over the model in HVAC toolkit and SPARK HVAC
toolkit

 in terms of mathematical stability and handling partial dry and wet conditions.

 ...
ABSTRACT_END
TEST_INPUT
 TAirEnt = 31
 TAirLvg = unknown
 wAirEnt = 0.02
 wAirLvg = unknown
 TLiqEnt =8
 TLiqLvg = unknown
 UAExt =200
 UAInt =400
 mAir =1
 mLiq =0.5
 PAtm =101325
 qSen = unknown
 qLat = unknown
 qTot = unknown
*/
PORT TAirEnt "Coil entering air dry bulb temperature" [deg_C] ;
PORT TAirLvg "Coil leaving air dry bulb temperature" [deg_C] ;
PORT wAirEnt "Coil entering air humidity ratio" [kg /kg_dryAir] ;
PORT wAirLvg "Coil leaving air humidity ratio" [kg /kg_dryAir];
PORT TLiqEnt "Coil entering water temperature" [deg_C] ;
PORT TLiqLvg "Coil leaving water temperature" [deg_C] ;
PORT AExt "Heat exchange area - Coil air side -external" [W/deg_C] ;
PORT AInt "Heat exchange area - Wet coil liquid side -internal" [W/deg_C] ;
PORT CExt "Constant- Coil air side -external- heat transfer coefficient" [W/deg_C] ;
PORT CInt "Constant - Wet coil liquid side -internal- heat transfer coefficient" [W/deg_C] ;
PORT mAir "Air flow" [kg_dryAir/s] ;
PORT mLiq "Liquid flow" [kg/s] ;
PORT PAtm "Atmospheric pressure" [Pa];
PORT qSen "Sensible heat transfer rate. Positive for air cooling." [W];
PORT qLat "Latent heat transfer rate. Positive for air cooling." [W];
PORT qTot "Heat transfer rate. Positive for air cooling." [W];

declare coil_layer l1 l2 l3 l4 l5 l6 l7 l8 l9 l10 l11 l12 l13 l14 l15 l16 l17 l18 l19 l20 ;

declare UA UAExt UAInt;
LINK .AExt UAExt.AreaHX;
LINK .CExt UAExt.C;
LINK .AInt UAInt.AreaHX;
LINK .CInt UAInt.C;

declare div20 div1 div2;
LINK UAExt.UA div1.a;
LINK div1.c l1.UAExt l2.UAExt l3.UAExt l4.UAExt l5.UAExt l6.UAExt l7.UAExt l8.UAExt l9.UAExt l10.UAExt l11.UAExt
l12.UAExt l13.UAExt l14.UAExt l15.UAExt l16.UAExt l17.UAExt l18.UAExt l19.UAExt l20.UAExt ;
LINK UAInt.UA div2.a;
LINK div2.c l1.UAInt l2.UAInt l3.UAInt l4.UAInt l5.UAInt l6.UAInt l7.UAInt l8.UAInt l9.UAInt l10.UAInt l11.UAInt l12.UAInt
l13.UAInt l14.UAInt l15.UAInt l16.UAInt l17.UAInt l18.UAInt l19.UAInt l20.UAInt ;

LINK .PAtm l1.PAtm l2.PAtm l3.PAtm l4.PAtm l5.PAtm l6.PAtm l7.PAtm l8.PAtm l9.PAtm l10.PAtm l11.PAtm l12.PAtm
l13.PAtm l14.PAtm l15.PAtm l16.PAtm l17.PAtm l18.PAtm l19.PAtm l20.PAtm ;
LINK .mAir UAExt.m l1.mAir l2.mAir l3.mAir l4.mAir l5.mAir l6.mAir l7.mAir l8.mAir l9.mAir l10.mAir l11.mAir l12.mAir
l13.mAir l14.mAir l15.mAir l16.mAir l17.mAir l18.mAir l19.mAir l20.mAir ;
LINK .mLiq UAInt.m l1.mLiq l2.mLiq l3.mLiq l4.mLiq l5.mLiq l6.mLiq l7.mLiq l8.mLiq l9.mLiq l10.mLiq l11.mLiq l12.mLiq
l13.mLiq l14.mLiq l15.mLiq l16.mLiq l17.mLiq l18.mLiq l19.mLiq l20.mLiq ;

DRAFT

 14

coil_cooling_counter_flow.cm Coil / SOURCE CODE

LINK .TliqEnt l1.TLiqEnt;
LINK T1 l1.TLiqLvg l2.TLiqEnt ;
LINK T2 l2.TLiqLvg l3.TLiqEnt ;
LINK T3 l3.TLiqLvg l4.TLiqEnt ;
LINK T4 l4.TLiqLvg l5.TLiqEnt ;
LINK T5 l5.TLiqLvg l6.TLiqEnt ;
LINK T6 l6.TLiqLvg l7.TLiqEnt ;
LINK T7 l7.TLiqLvg l8.TLiqEnt ;
LINK T8 l8.TLiqLvg l9.TLiqEnt ;
LINK T9 l9.TLiqLvg l10.TLiqEnt ;
LINK T10 l10.TLiqLvg l11.TLiqEnt;
LINK T11 l11.TLiqLvg l12.TLiqEnt;
LINK T12 l12.TLiqLvg l13.TLiqEnt;
LINK T13 l13.TLiqLvg l14.TLiqEnt;
LINK T14 l14.TLiqLvg l15.TLiqEnt;
LINK T15 l15.TLiqLvg l16.TLiqEnt;
LINK T16 l16.TLiqLvg l17.TLiqEnt;
LINK T17 l17.TLiqLvg l18.TLiqEnt;
LINK T18 l18.TLiqLvg l19.TLiqEnt;
LINK T19 l19.TLiqLvg l20.TLiqEnt;
LINK .TLiqLvg l20.TLiqLvg;

LINK .TAirEnt l20.TAirEnt;
LINK Tw20 l20.TAirLvg l19.TAirEnt;
LINK Tw19 l19.TAirLvg l18.TAirEnt;
LINK Tw18 l18.TAirLvg l17.TAirEnt;
LINK Tw17 l17.TAirLvg l16.TAirEnt;
LINK Tw16 l16.TAirLvg l15.TAirEnt;
LINK Tw15 l15.TAirLvg l14.TAirEnt;
LINK Tw14 l14.TAirLvg l13.TAirEnt;
LINK Tw13 l13.TAirLvg l12.TAirEnt;
LINK Tw12 l12.TAirLvg l11.TAirEnt;
LINK Tw11 l11.TAirLvg l10.TAirEnt;
LINK Tw10 l10.TAirLvg l9.TAirEnt ;
LINK Tw9 l9.TAirLvg l8.TAirEnt ;
LINK Tw8 l8.TAirLvg l7.TAirEnt ;
LINK Tw7 l7.TAirLvg l6.TAirEnt;
LINK Tw6 l6.TAirLvg l5.TAirEnt ;
LINK Tw5 l5.TAirLvg l4.TAirEnt ;
LINK Tw4 l4.TAirLvg l3.TAirEnt;
LINK Tw3 l3.TAirLvg l2.TAirEnt ;
LINK Tw2 l2.TAirLvg l1.TAirEnt;
LINK .TAirLvg l1.TAirLvg;

LINK .wAirEnt l20.wAirEnt;
LINK w20 l20.wAirLvg l19.wAirEnt;
LINK w19 l19.wAirLvg l18.wAirEnt;
LINK w18 l18.wAirLvg l17.wAirEnt;
LINK w17 l17.wAirLvg l16.wAirEnt;
LINK w16 l16.wAirLvg l15.wAirEnt;
LINK w15 l15.wAirLvg l14.wAirEnt;
LINK w14 l14.wAirLvg l13.wAirEnt;
LINK w13 l13.wAirLvg l12.wAirEnt;
LINK w12 l12.wAirLvg l11.wAirEnt;
LINK w11 l11.wAirLvg l10.wAirEnt;
LINK w10 l10.wAirLvg l9.wAirEnt ;
LINK w9 l9.wAirLvg l8.wAirEnt ;
LINK w8 l8.wAirLvg l7.wAirEnt ;
LINK w7 l7.wAirLvg l6.wAirEnt ;
LINK w6 l6.wAirLvg l5.wAirEnt ;
LINK w5 l5.wAirLvg l4.wAirEnt ;
LINK w4 l4.wAirLvg l3.wAirEnt ;
LINK w3 l3.wAirLvg l2.wAirEnt ;
LINK w2 l2.wAirLvg l1.wAirEnt ;
LINK .wAirLvg l1.wAirLvg;

declare sum20 qSen;

DRAFT

 15

coil_cooling_counter_flow.cm Coil / SOURCE CODE

LINK l1.qSen qSen.a1;
LINK l2.qSen qSen.a2;
LINK l3.qSen qSen.a3;
LINK l4.qSen qSen.a4;
LINK l5.qSen qSen.a5;
LINK l6.qSen qSen.a6;
LINK l7.qSen qSen.a7;
LINK l8.qSen qSen.a8;
LINK l9.qSen qSen.a9;
LINK l10.qSen qSen.a10;
LINK l11.qSen qSen.a11;
LINK l12.qSen qSen.a12;
LINK l13.qSen qSen.a13;
LINK l14.qSen qSen.a14;
LINK l15.qSen qSen.a15;
LINK l16.qSen qSen.a16;
LINK l17.qSen qSen.a17;
LINK l18.qSen qSen.a18;
LINK l19.qSen qSen.a19;
LINK l20.qSen qSen.a20;
LINK .qSen qSen.sum;

declare sum20 qLat;
LINK l1.qLat qLat.a1;
LINK l2.qLat qLat.a2;
LINK l3.qLat qLat.a3;
LINK l4.qLat qLat.a4;
LINK l5.qLat qLat.a5;
LINK l6.qLat qLat.a6;
LINK l7.qLat qLat.a7;
LINK l8.qLat qLat.a8;
LINK l9.qLat qLat.a9;
LINK l10.qLat qLat.a10;
LINK l11.qLat qLat.a11;
LINK l12.qLat qLat.a12;
LINK l13.qLat qLat.a13;
LINK l14.qLat qLat.a14;
LINK l15.qLat qLat.a16;
LINK l17.qLat qLat.a17;
LINK l18.qLat qLat.a18;
LINK l19.qLat qLat.a19;
LINK l20.qLat qLat.a20;
LINK .qLat qLat.sum;

declare sum20 qTot;
LINK l1.qTot qTot.a1;
LINK l2.qTot qTot.a2;
LINK l3.qTot qTot.a3;
LINK l4.qTot qTot.a4;
LINK l5.qTot qTot.a5;
LINK l6.qTot qTot.a6;
LINK l7.qTot qTot.a7;
LINK l8.qTot qTot.a8;
LINK l9.qTot qTot.a9;
LINK l10.qTot qTot.a10;
LINK l11.qTot qTot.a11;
LINK l12.qTot qTot.a12;
LINK l13.qTot qTot.a13;
LINK l14.qTot qTot.a14;
LINK l15.qTot qTot.a15;
LINK l16.qTot qTot.a16;
LINK l17.qTot qTot.a17;
LINK l18.qTot qTot.a18;
LINK l19.qTot qTot.a19;
LINK l20.qTot qTot.a20;
LINK .qTot qTot.sum;

DRAFT

 16

coil_heating_cross_flow.cm Coil / SOURCE CODE
/*+++
 Identification: heating coil, cross flow, stream 1 unmixed
 Abstract:
 Notes:
 The configuration is cross flow, stream 1 unmixed
 Interface:
 mAirEnt: Air flow (kg dry air/s)
 mLiq: Liquid flow (kg/s)
 TAirEnt: Entering air dry bulb temperature (deg-C)
 TLiqEnt: Entering water temperature (deg C)
 wAirEnt: Entering air humidity ratio (kg-water/kg dry air)
 CHx: Constant of heat exchanger coefficient
 AHx: Overall heat exchanger surface area (m2)
 mAirLvg: Leaving air flow (kg dry air/s)
 wAirLvg: Leaving air humidity ratio (kg-water/kg dry air)
 TAirLvg: Leaving air Temperature (deg C)
 TLiqLvg: Leaving water temperature (deg C)
 q: Heat transfer rate. Positive for air cooling. (W)
 Acceptable input set:
 CHx = 1000, AHx = 1, mAirEnt = 1, mLiq = 1, TAirEnt = 15, wAirEnt = 0.001,
 TLiqEnt = 50
 Recommended matches:
 None
 Suggested breaks:
 None
 Local variables:
 capAir: Air capacity rate (kg/s)
 capLiq: Water capacity rate (kg/s)
 Equations:
 capAir = mAirEnt*(CpAir+WAirEnt*CpVap)
 capLiq = MLiq*CpLiq
 ntup = UA/capAir
 cRatiop = capAir/capLiq
 effect(cRatiop, ntup, effp)
 qRef = capAir*(TAirEnt-TLiqEnt)
 q = capAir*(TAirEnt-TLiqLvg)
 q = capLiq*(TLiqLvg-TLiqEnt)
 q = effp * qRef
 Q = capAir*(TAirEnt-TAirLvg)
 WAirLvg = WAirEnt
---*/
port mAirEnt "Air flow" [kg_dryAir/s] ;
port mLiq "Liquid flow" [kg/s] ;
port TAirEnt "Entering air dry bulb temperature" [deg_C] ;
port TLiqEnt "Entering water temperature" [deg_C] ;
port wAirEnt "Entering air humidity ratio" [kg_water/kg_dryAir] ;
port mAirLvg "Leaving air flow" [kg_dryAir/s] ;
port wAirLvg "Leaving air humidity ratio" [kg_water/kg_dryAir] ;
port TAirLvg "Leaving air Temperature" [deg_C] ;
port TLiqLvg "Leaving water temperature" [deg_C] ;
port qSen "Heat transfer rate. Negative for air heating." [W] ;
port CHx "Constant of heat exchanger coefficient- air side";
port AHx "Overall heat exchanger surface area - air side" [m2];

declare equal_link eq1 eq2;

declare drcc1u Hx /*declare a cross flow heat exchange object*/ ;
link .mAirEnt Hx.mAirEnt;
link .mLiq Hx.mLiq;
link .TAirEnt Hx.TAirEnt;
link .TLiqEnt Hx.TLiqEnt;
link .wAirEnt Hx.wAirEnt;
link UA Hx.UA eq1.a;
link .mAirLvg Hx.mAirLvg eq2.a;
link .wAirLvg Hx.wAirLvg;
link .TAirLvg Hx.TAirLvg;
link .TLiqLvg Hx.TLiqLvg;
link .qSen Hx.q;

DRAFT

 17

declare UA UA;
link .CHx UA.C;
link .AHx UA.AreaHX;
link mAir UA.m eq2.b;
link UA0 UA.UA eq1.b;

DRAFT

 18

UA.cc Coil / SOURCE CODE
/* CLASS UA "UA value based on the flow rate and heat exchange area"

ABSTRACT
 ...
 ...
ABSTRACT_END
TEST_INPUT
 C = 2.3, m = 1.23, AreaHx =2 ;
*/
#ifdef SPARK_TEXT
// ==== PORTS ====

PORT C "constant of heat exchanger " [scalar] ;
PORT m "mass flow rate" [scalar] ;
PORT AreaHX "heat exchange area" [m2] ;
PORT UA "UA" [W/K] ;

EQUATIONS { UA = C*(m)^0.8*AreaHx ;
 }

// ==== FUNCTIONS ====
FUNCTIONS {
 UA = UA_UA(C, m, AreaHX, UA) ;
 }
#endif /* SPARK_TEXT */
#include "spark.h"

 double
UA_UA (ARGS)
{
 ARGDEF(0,C) ;
 ARGDEF(1,m) ;
 ARGDEF(2,AreaHX) ;
 double UA;

 if (m < 0)
 cout<<” error! m in UA.CC less than 0” <<endl;
 else
 UA = C* pow (m,0.8) * AreaHX;

 return UA ;
}

DRAFT

 19

Fan_system REFERENCE MODELS

General description
The most commonly used fans in large air handling units are centrifugal fans. In VAV
systems, fan capacity is controlled by varying either the rotation speed or the position of
an inlet guide vane. Return fans may be axial fans, controlled by varying either the
rotation speed or the blade angle. In VAV systems, there is a pressure sensor in the
supply duct and a feedback control loop to maintain the air pressure in the duct constant
by adjusting the supply fan capacity. The model described here applies to VAV systems
in which the capacity of each fan is controlled by varying the rotation speed.

Model description
The model treats either the supply fan or the return fan, together with the appropriate
section of the distribution system (Figure 2). Fan performance is modeled by using the
fan similarity laws to normalize the flow rate, pressure rise and power in terms of rotation
speed and diameter. Over the limited range of normalized flow used in normal operation,
the fan head curve can be approximated using a constant term and a squared term. The
constant term is the pressure rise extrapolated to zero flow, which is proportional to the
square of the rotation speed, and the squared term corresponds to the internal pressure
drop inside the fan. The model is written in terms of total pressure (i.e. static pressure
plus velocity pressure) since the energy losses are directly related to changes in total
pressure.

pfan = k fannfan
2 - Cfanmair

2

Figure 2 System diagram of the fan-air system simulated in the model

The system curve, which represents the pressure drop through all the air handling unit
(AHU) and distribution system components also consists of a constant term and a squared
term. For the supply fan subsystem, the constant term is the static pressure set-point.
The squared term represents the pressure drop through the AHU and distribution system
components and the velocity pressure at the static pressure sensor, both of which are
proportional to the square of the air mass flow rate.

pStat

Resistance

Resistance
Supply Fan

Return Fan

Zone

pStat

+

0

0

DRAFT

 20

Fan_system REFERENCE MODELS

pRes = pStat + (CRes + 1/2?airA2)mair
2

For the return fan subsystem, pstat is the measured or assumed pressure in the occupied
space and appears as a negative term, since a positive pressure in the space reduces the
fan pressure rise required. The correction for the velocity pressure in the room is very
small and can be ignored.

pRes = -pStat + CResmair
2

The fan operating point is where the pressure drop across the system equals the pressure
increase across the fan, as shown in Figure 3. The air flowing through the fan increases
in temperature because of the heat added to the air stream due to fan inefficiency and due
to motor inefficiency, if the fan is in the air stream. Because air is a compressible fluid
and can be treated as a perfect gas, it can be shown that the fluid work peformed by the
fan results in the same temperature increase that would be obtained if the fluid work were
completely converted to heat. The opposite is true for incompressible fluids, such as
water. In the case of incompressible fluids, the fluid work only appears as heat when the
fluid passes through a dissipative element.

The class of the fan-air system is fan_system.cm. Atomic classes fan_qLoss.cc,
fan_effShaft.cc, and fan_resistance.cc are the models of air heat gain, fan shaft
efficiency and fan resistance respectively.

Figure 3 Schematic of the fan model

PR
E

SS
U

R
E

fan curve

system curve

system
operation
point

pStat

pfan0

FLOW RATE

DRAFT

 21

Fan_system REFERENCE MODELS

Governing equations:

Simplified fan curve:
 airairfanfanfan mmCpp ⋅−= 0

System curve:

 airairres
air

statres mmC
A

pp ⋅++=)
2

1
(

2ρ

System operation point constraint:
 resfan pp =

Fan speed
 2

0 fanfanfan nkp ⋅=

Combining all the above equations

 airairfanres
air

statfanfan mmCC
A

pnk ⋅+++=)
2

1
(

2
2

ρ

Fan shaft power

airs

fanair
s

pm
W

ρη

⋅
=

Total motor power

motor

s
T

W
W

η
=

Heat loss to the air stream
 lossmotorsTsloss fWWWq ,)(−+=

The fan efficiency as a function of air flow rate is:

 2max,
max,)(

fan

air

fan

air
ss n

m
n
m

C −−= ηηη

The internal heat gain and temperature rise cross the fan is determined from

lossairpinairoutair qmcTT =⋅⋅−)(,,

DRAFT

 22

Fan_system REFERENCE MODELS

Nomenclature

Variables Description Unit
A Area duct cross section area m2
Cfan CFan fan curve constant Dimensionless
Cres CRes resistance characteristic constant Dimensionless
C? CEff constant to calculate fan efficiency Dimensionless
Tair,out TAirOut leaving air temperature deg_C
Tair,in TAirIn entering air temperature deg_C
fmotor,loss MotFrac fraction of motor heat loss entering air

stream
Dimensionless

kfan kFan pressure-fan speed constant Dimensionless
mair mAir air flow rate through the fan kg/s
nfan nFan fan speed rpm
pfan pFan pressure increase cross the fan Pa
pfan0 pFan0 baseline fan pressure increase Pa
pres pRes load pressure drop Pa
qloss qLoss air stream heat gain from fan W
Ws powerShaft shaft power W
WT powerMot total motor power W
?s effShaft fan efficiency Dimensionless
?s,max effShaftMax maximum fan efficiency Dimensionless
?m effMot motor efficency Dimensionless

DRAFT

 23

fan_system.cm Fan / SOURCE CODE
/*+++
/*+++
 Identification: fan model

 Abstract:
 The fan curve can be treated by simplified model:
 pFan = pFan0 - CFan * m^2
 where pFan0 is directly related to fan speed, where is
 pFan = kFan * nFan^2
 The resistance is:
 pRes = pStat + (vAir/(2*area^2)+CRes)* m^2
 Given a fan-resistance system
 pFan = pRes, therefore
 pFan0 = pStat + (vAir/(2*area^2)+ CFan + CRes) * m^2

 Notes:
 None

 Interface:
 nFan: fan speed [rpm];
 pStat: static pressure setpoint [Pa] ;
 pFan: total pressure increase across fan [Pa];
 mAir: air flow rate through the fan [kg_dryAir/s];
 CRes: resistance charactristic constant [scalar];
 CFan: fan curve constant [scalar];
 kFan: pressure-fanspeed constant [scalar];
 CEff: fan effiency constant [scalar];
 area: duct work crossing section area [m2];
 TAirEnt: Incoming air temperature [J/kg_dryAir] ;
 wAirEnt: Incoming air humidity ratio [kg/kg_dryAir];
 TAirLvg: Outgoing air temperature [J/kg_dryAir] ;
 wAirLvg: Incoming air humidity ratio [kg/kg_dryAir];
 powerTot:Power consumption [W] ;
 effMot: Efficiency of fan motor [scalar] ;
 motFrac: Fraction of motor heat loss in air stream[fraction] ;
 effShaft: fan efficiency [scalar];
 effShaftMax: fan maximum efficiency [scalar];
 mAirMax: maximum air flow of the fan [kg_dryAir/s];
 PAtm: Atmospheric pressure [Pa];

 Acceptable input set:

 nFan: unknown [rpm];
 pStat: 20 [Pa] ;
 pFan: unknown [Pa];
 mAir: 5 [kg_dryAir/s];
 CRes: 0.1 [scalar];
 CFan: 0.3 [scalar];
 kFan: 1.25E-3 [scalar];
 CEff: 1e-4 [scalar];
 area: 0.3 [m2];
 TAirEnt: 20 [J/kg_dryAir] ;
 wAirEnt: 0.08 [kg/kg_dryAir];
 TAirLvg: unknown [J/kg_dryAir] ;
 wAirLvg: unknown [kg/kg_dryAir];
 powerTot: unknown [W] ;
 effMot: 0.9 [scalar] ;
 motFrac: 1 [scalar] ;
 effShaft: unknown [scalar];
 effShaftMax: 0.9 [scalar];
 mAirMax: 8 [kg_dryAir/s];
 PAtm: 1e5 [Pa];

 Recommended matches:
 None

 Suggested breaks:
 None

DRAFT

 24

fan_system.cm Fan / SOURCE CODE

 Equations:
 kFan * nFan^2 = pStat + ((1/(2*density_air*area^2)) + CRes + CFan) * mAir^2 ;
 pFan = kFan* nFan^2 - CFan * mAir^2;
 effShaft = effShaftMax - CEff*((mAir-mAirMax)/nFan)^2;
 powerShaft = mAir * PFan / effShaft *vAir;
 powerTot = powerShaft / effMot;
 qLoss = (powerShaft)+(powerTot-powerShaft)*motFrac;
 (TAirLvg-TAirEnt)*mAir*Cp = qLoss;
---*/

PORT nFan "fan speed " [rpm];
PORT pStat "static pressure setpoint " [Pa] ;
PORT pFan "total pressure increase across fan" [Pa];
PORT mAir "air flow rate through the fan " [kg_dryAir/s];

PORT CRes "resistance charactristic cons tant" [scalar];
PORT CFan "fan curve constant" [scalar];
PORT kFan "pressure-fanspeed constant" [scalar];
PORT CEff "fan effiency constant" [scalar];
PORT area "duct work crossing section area" [m2];

PORT TAirEnt "Incoming air temperature" [J/kg_dryAir] ;
PORT wAirEnt "Incoming air humidity ratio" [kg/kg_dryAir];
PORT TAirLvg "Outgoing air temperature" [J/kg_dryAir] ;
PORT wAirLvg "Incoming air humidity ratio" [kg/kg_dryAir];
PORT powerTot "Power consumption." [W] ;
PORT effMot "Efficiency of fan motor" [scalar] ;
PORT motFrac "Fraction of motor heat loss in air stream" [fraction] ;
PORT effShaft "fan efficiency" [scalar];
PORT effShaftMax "fan maximum efficiency" [scalar];
PORT mAirMax "maximum air flow of the fan" [kg_dryAir/s];
PORT PAtm "Atmospheric pressure" [Pa];

//LINKS
declare equal_link eq1 eq2 eq3 eq4 eq5 eq6 eq7 eq8 eq9 eq10 eq11 eq12 eq13 eq14 eq15 eq16 eq17 eq18 eq19 eq20;

//kFan * nFan^2 = pStat + ((1/(2*density_air*area^2)) + CRes + CFan) * mAir^2
declare fan_resistance FR;
link .nFan FR.nFan eq8.a eq9.a;
link .pStat FR.pStat ;
link .mAir FR.mAir eq5.a eq11.a;
link .CRes FR.CRes ;
link .CFan FR.CFan eq20.a;
link .kFan FR.kFan eq10.a;
link .area FR.area ;
link vAir FR.vAir eq1.a;

//pFan = kFan * nFan^2 -CFan * mAir^2
declare safprod pdA pdB pdC pdD;
declare sum sumA;
link kFan1 pdA.a eq10.b;
link nFan2 pdB.b pdB.a eq9.b;
link nFanSquare pdA.b pdB.c;
link pFan0 pdA.c sumA.c;
link CFan pdC.a eq20.b;
link mAir4 pdD.b pdD.a eq11.b;
link mAirSquare pdC.b pdD.c;
link CFanmAirSquare pdC.c sumA.a;
link .pFan sumA.b eq12.a;

//effShaft = effShaftMax - CEff*((mAir-mAirMax)/nFan)^2
declare fan_effShaft ES;
link .effShaft ES.effShaft eq3.a;
link .effShaftMax ES.effShaftMax;
link mAir ES.mAir eq5.b eq6.a;
link .mAirMax ES.mAirMax;

DRAFT

 25

fan_system.cm Fan / SOURCE CODE

link nFan ES.nFan eq8.b;
link .CEff ES.CEff;

//powerShaft = mAir * PFan / effShaft *vAir
declare safprod pd1 pd2;
declare safquot sq1;
link mAir1 pd1.a eq6.b eq7.a;
link pFan pd1.b eq12.b;
link mAirPFan pd1.c pd2.a;
link vAir2 pd2.b eq1.b eq2.a;
link mAirpFanvAir pd2.c sq1.a;
link effShaft sq1.b eq3.b eq4.a;
link powerShaft sq1.c eq13.a;

//powerTot = powerShaft / effMot
declare safquot sq;
link powerShaft1 sq.a eq13.b eq14.a;
link .effMot sq.b;
link .powerTot sq.c eq15.a;

//qLoss = (powerShaft)+(powerTot-powerShaft)*motFrac
declare fan_qLoss qL;
link powerShaft2 qL.powerShaft eq14.b;
link effShaft1 qL.effShaft eq4.b;
link powerTot qL.powerTot eq15.b;
link .motFrac qL.motFrac;
link qLoss1 qL.qLoss eq19.a;

//(TAirLvg-TAirEnt)*mAir*Cp = qLoss
declare enthalpy en1 en2;
link .TAirEnt en1.TDb eq17.a;
link .wAirEnt en1.w eq16.a;
link .TAirLvg en2.TDb ;
link .wAirLvg en2.w eq16.b eq18.a;
declare sum sum1;
link hAirLvg sum1.c en2.h ;
link hAirEnt sum1.a en1.h ;
declare safprod pd4;
link hAirIncrease sum1.b pd4.a;
link mAir2 pd4.b eq7.b;
link qLoss pd4.c eq19.b;

//specific volume of the air
declare specvol sv;
link .PAtm sv.PAtm;
link TAirLvg1 sv.TDb eq17.b;
link wAirLvg1 sv.w eq18.b;
link vAir1 sv.v eq2.b;

DRAFT

 26

fan_resistance.cc Fan / SOURCE CODE

/*+++
 Identification: fan model using the simplified method.

 Abstract:
 The fan curve can be treated by simplified model:
 pFan = pFan0 - CFan * m^2
 where pFan0 is directly related to fan speed, where is
 pFan = kFan * nFan^2
 The resistance is:
 pRes = pStat + (vAir/(2*area^2)+CRes)* m^2
 Given a fan-resistance system
 pFan = pRes, therefore
 pFan0 = pStat + (vAir/(2*area^2)+ CFan + CRes) * m^2

 Notes:
 None

 Interface:
 nFan: fan speed [rpm]
 pFan: pressure increase cross the fan [Pa]
 pStat: static pressure setpoint [Pa]
 mAir: air flow rate through the fan [kg/s]
 CRes: resistance charactristic constant [scalar]
 CFan: fan curve constant [scalar]
 kFan: pressure-fanspeed constant [scalar]
 vAir: Air specific volume [m^3/kg_dryAir]

 Acceptable input set:
 area: 0.3
 pStat: 20
 mAir: 2
 CRes: 0.1
 CFan: 0.3
 kFan: 1.25e-3
 vAir: 1.0

 Recommended matches:
 None

 Suggested breaks:
 None

 Local variables:
 pRes: pressure resistance [Pa]

 Equations:

 kFan * nFan^2 = pStat + ((1/(2*density_air*area^2)) + CRes + CFan) * mAir^2 ;

---*/

#ifdef SPARK_TEXT

PORT nFan "fan speed " [rpm];
PORT pStat "static pressure setpoint " [Pa] ;
PORT mAir "air flow rate through the fan " [kg/s]
 INIT = 2.0 ;
PORT CRes "resistance charactristic constant" [scalar];
PORT CFan "fan curve constant" [scalar];
PORT kFan "pressure-fanspeed constant" [scalar];
PORT area "duct work crossing section area" [m2];
PORT vAir "Specific volume" [m^3/kg_dryAir] ;

EQUATIONS {
 kFan * nFan^2 = pStat + ((1*vAir/2*area^2) + CRes + CFan) * mAir^2 ;
 }

// ==== FUNCTIONS ====

DRAFT

 27

fan_resistance.cc Fan / SOURCE CODE

FUNCTIONS {
 nFan = fan_sys_nFan(pStat, mAir, area, vAir, CRes, CFan, kFan) ;
 pStat = fan_sys_pStat(nFan, mAir, area, vAir, CRes, CFan, kFan) ;
 mAir = fan_sys_mAir(pStat, nFan, area, vAir, CRes, CFan, kFan) ;
 }
#endif /* SPARK_TEXT */
#include "spark.h"

 double
fan_sys_nFan (ARGS)
{
 ARGDEF(0,pStat) ;
 ARGDEF(1,mAir) ;
 ARGDEF(2,area) ;
 ARGDEF(3,vAir) ;
 ARGDEF(4,CRes) ;
 ARGDEF(5,CFan) ;
 ARGDEF(6,kFan) ;

 double nFan;
 nFan = pow (((pStat + ((vAir/(2*area*area)) + CRes + CFan) * mAir*mAir)/kFan),0.5) ;

 return nFan ;
}

 double
fan_sys_pStat (ARGS)
{
 ARGDEF(0,nFan) ;
 ARGDEF(1,mAir) ;
 ARGDEF(2,area) ;
 ARGDEF(3,vAir) ;
 ARGDEF(4,CRes) ;
 ARGDEF(5,CFan) ;
 ARGDEF(6,kFan) ;

 double pStat;
 pStat = kFan * nFan*nFan - ((vAir/(2*area*area)) + CRes + CFan) * mAir*mAir ;

 return pStat ;
}

 double
fan_sys_mAir (ARGS)
{
 ARGDEF(0,pStat) ;
 ARGDEF(1,nFan) ;
 ARGDEF(2,area) ;
 ARGDEF(3,vAir) ;
 ARGDEF(4,CRes) ;
 ARGDEF(5,CFan) ;
 ARGDEF(6,kFan) ;

 double mAir;
 if (kFan * nFan*nFan - pStat >=0)
 mAir =pow(((kFan * nFan*nFan - pStat) / ((vAir/(2*area*area)) + CRes + CFan)), 0.5);
 else
 cout<<"error! kFan*nFan*nFan less than pStat" <<endl;

 return mAir ;
}

DRAFT

 28

fan_qLoss.cc Fan / SOURCE CODE

/*+++
 Identification: fan heat gain.
 Abstract:

 Notes:
 None

 Interface:
 qLoss: heat gain of the air stream through fan [W]
 powerShaft: fan shaft power [W]
 effShaft: fan efficiency [kg/s]
 power: Total motor power consumption [kg/s]
 motFrac: Fraction of motor heat loss in air stream [fraction] ;

 Acceptable input set:
 qLoss: unknown [W]
 powerShaft: 100 [W]
 effShaft: 0.8 [kg/s]
 power: 120 [kg/s]
 motFrac: 1 [fraction] ;

 Recommended matches:
 None
 Suggested breaks:
 None
 Local variables:
 Equations:
 qLoss = (powerShaf)+(powerTot-powerShaft)*motFrac;

---*/

#ifdef SPARK_TEXT

port qLoss "heat gain of the air stream through fan" [W];
port powerShaft "fan shaft power" [W];
port effShaft "fan efficiency" [kg/s];
port powerTot "Total motor power consumption" [kg/s];
port motFrac "Fraction of motor heat loss in air stream" [fraction] ;

EQUATIONS {
 qLoss = (powerShaft - powerShaft*effShaft)+(powerTot-powerShaft)*motFrac;
 }

// ==== FUNCTIONS ====
FUNCTIONS {
 qLoss = fan_qLoss_qLoss(powerShaft, effShaft, powerTot, motFrac) ;
 }
#endif /* SPARK_TEXT */
#include "spark.h"

 double
fan_qLoss_qLoss (ARGS)
{
 ARGDEF(0,powerShaft) ;
 ARGDEF(1,effShaft) ;
 ARGDEF(2,powerTot) ;
 ARGDEF(3,motFrac) ;

 double qLoss;
 qLoss = (powerShaft)+(powerTot-powerShaft)*motFrac ;

 return qLoss;
}

DRAFT

 29

fan_effShaft.cc Fan / SOURCE CODE
/*+++
 Identification: fan shaft efficiency model.
 Abstract:
 Notes:
 None

 Interface:
 effShaft: fan efficiency [scalar]
 effShaftMax: maximum fan efficiency [scalar]
 mAir: air flow rate through the fan [kg/s]
 mAirMax: maximum air flow rate through the fan [kg/s]
 CEff: fan effiency constant [scalar]
 nFan: fan speed [rpm]

 Acceptable input set:
 effShaft: unknown [scalar]
 effShaftMax: 0.98 [scalar]
 mAir: 1 [kg/s]
 mAirMax: 1.5 [kg/s]
 CEff: 0.2 [scalar]
 nFan: 1000 [rpm]

 Recommended matches:
 None

 Suggested breaks:
 None

 Local variables:

 Equations:
 effShaft = effShaftMax - CEff*((mAir-mAirMax)/nFan)^2;
---*/
#ifdef SPARK_TEXT

PORT nFan "fan speed " [rpm];
PORT effShaft "fan efficiency" [scalar];
PORT effShaftMax "maximum fan efficiency" [scalar];
PORT mAir "air flow rate through the fan" [kg/s];
PORT mAirMax "maximum air flow rate through the fan" [kg/s];
PORT CEff "fan effiency constant" [scalar];

EQUATIONS {
 effShaft = effShaftMax - CEff*((mAir-mAirMax)/nFan)^2 ;
 }

// ==== FUNCTIONS ====
FUNCTIONS {
 effShaft = fan_effShaft_effShaft(effShaftMax, CEff, mAir, mAirMax, nFan) ;
 }
#endif /* SPARK_TEXT */
#include "spark.h"

 double
fan_effShaft_effShaft (ARGS)
{
 ARGDEF(0,effShaftMax) ;
 ARGDEF(1,CEff) ;
 ARGDEF(2,mAir) ;
 ARGDEF(3,mAirMax) ;
 ARGDEF(4,nFan) ;

 double effShaft;
 if((mAir-mAirMax)<0)
 effShaft = effShaftMax - CEff* pow(((mAir-mAirMax)/nFan), 2) ;
 else
 cout<<” error! mAirMax less than mAir” <<endl;
 return effShaft ;
}

DRAFT

 30

Control valve REFERENCE MODELS

Control valve

General description
A control valve varies the fluid flow rate in a circuit by varying its flow resistance. An
external actuator is used to move a plug connected to the valve stem that restricts the flow
to varying degrees depending on its position. There are three distinct valve flow types
based on the geometry of the plug: quick opening, linear, and equal percentage. The
equal percentage characteristic is used to compensate for the non-linear characteristic of
heating and cooling coils and the effect of the series resistance of the coil.

The most common faults associated with control valves are: leakage, stuck
valve/actuator, actuator/valve range mismatch and unstable control. In order to detect
these faults, it is more important to model the valve behavior at each end of the operation
than in the middle. However, as discussed in the Coil section, it is desirable to be able to
predict the part load performance of coils in order to anticipate loss of peak capacity
before it occurs. Since the water flow rate through a coil is not generally measured in
HVAC systems, it is necessary to treat the behavior of the control valve at intermediate
flow rates by modeling its inherent and installed characteristics in order to predict the
water flow rate through the coil.

Model description
The water flow rate is a function of the valve position, the flow rate through the valve
when fully open and the leakage. The flow characteristic is assumed to be parabolic,
which is an adequate and convenient approximation to the equal percentage
characteristic.

 In order to model the installed characteristic of the valve, it is necessary to treat the
effect of the series resistance of the coil and other components in the branch. This is
conventionally expressed in terms of the authority of the valve. Authority is the ratio of
the pressure drop across the valve when it is fully open to the pressure drop across the
whole of the branch when the valve is fully open. When the authority is equal to unity,
the pressure drop across the valve dominates the pressure drop in the branch and there is
no distortion of the valve flow characteristics curve. When the authority is equal to zero,
the pressure drop across the valve is negligible unless it is fully closed and so the valve
has essentially no effect on the flow rate except when it is fully closed. A more detailed
description of valve authority is given in the ASHRAE Handbook (HVAC Systems and
Equipment, p41.7, 1996)

The model described here is a combination of the valve model in the ASHRAE
Secondary Toolkit and relationships given in the ASHRAE Handbook. The class of the
valve model is valve.cc.

DRAFT

 31

Valve REFERENCE MODELS

Governing equations

openliq

leak
par m

m
leak

,

=

parparinher leakposleakf +⋅−= 2)1(

)1(

1

2 a
f
a

f

inher

install

−+

= (finher ? 0)

0=installf (finher = 0)

openliqinstallliq mfm ,⋅=

Nomenclature

Variables Description Unit
A A Valve authority, between 0-1 Dimensionless
leakpar Leakpar Leakage parameter Dimensionless
mliq mLiq Mass flow rate kg/s
mliq,open mLiqOpen Mass flow rate for open valve kg/s
mleak mLeak Mass flow rate with closed valve kg/s
pos pos Valve position, between 0-1 Dimensionless
finstall fInstall Installed flow rate factor Dimensionless
finher fInher Inherit valve resistance ratio (valve

resistance divided by valve
resistance at full open)

Dimensionless

DRAFT

 32

valve.cc Valve / SOURCE CODE

/*+++
 Identification: Flow circuit with non-linear/square valve and series flow
 resistance.

 Abstract:

 Notes:
 None

 Interface:
 pos: Valve position (-)
 mLiq: Mass flow rate [Kg/s]
 A: Valve authority (-)
 mLiqOpen:Mass flow rate for open valve [kg/s]
 mLeak: Mass flow rate for closed valve [Kg/s]

 Acceptable input set:
 pos = 0.5, A = 0.5, mLiqOpen = 1, wf = 0.5, leak = 0.05

 Recommended matches:
 None

 Suggested breaks:
 None

 Local variables:
 Leakpar: Fraction of mLeak to mOpen
 fInher: inherited valve resistance ratio
 fInstall: Installed flow rate factor

 Equations:
 Leakpar = mLeak/mLiqOpen;
 fInher = (1-Leakpar)*pos^2 + Leakpar) ;
 fInstall = 1/ (a/(fInher^2) + (1-a))^0.5 (fInher !=0)
 = 0 (fInher = 0);
 mLiq = mLiqOpen *fInstall;
---*/

#ifdef SPARK_TEXT
// ==== PORTS ====
port pos "Valve position, between 0-1" [scalar] ;
port mLiq "Mass flow rate" [Kg/s];
port A "Valve authority, between 0-1" [scalar] ;
port mLiqOpen "Mass flow rate for open valve" [Kg/s] ;
port mLeak "Fraction of m_open for closed valve" [Kg/s] ;

EQUATIONS { mLiq = valve_mLiq (pos, A, mLiqOpen, mLeak) ;
 }

// ==== FUNCTIONS ====
FUNCTIONS {
 mLiq = valve1_mLiq(pos, A, mLiqOpen, mLeak) ;
 pos = valve1_pos (mLiq, A, mLiqOpen, mLeak) ;
 }
#endif /* SPARK_TEXT */
#include "spark.h"

 double
valve1_mLiq (ARGS)
{
 ARGDEF(0,pos) ;
 ARGDEF(1,A) ;
 ARGDEF(2,mLiqOpen) ;
 ARGDEF(3,mLeak) ;

 double Leakpar;
 double fInher ;

DRAFT

 33

valve.cc Valve / SOURCE CODE

 double fInstall;
 double mLiq;

 Leakpar = mLeak/mLiqOpen;
 fInher = (1-Leakpar)*pos*pos + Leakpar ;

 if (fInher !=0)
 fInstall = 1/ pow ((A/(fInher*fInher) + (1-A)), 0.5);
 else
 fInstall = 0;

 mLiq = mLiqOpen *fInstall;

 return mLiq;
}

 double
valve1_pos (ARGS)
{
 ARGDEF(0,mLiq) ;
 ARGDEF(1,A) ;
 ARGDEF(2,mLiqOpen) ;
 ARGDEF(3,mLeak) ;

 double Leakpar;
 double fInher ;
 double fInstall;
 double pos;

 Leakpar = mLeak/mLiqOpen;
 fInstall = mLiq / mLiqOpen ;
 if (fInstall == 0)
 pos =0;
 else
 {
 if (fInstall >1.0)
 cout<<"error! mLiq is larger than mLiqOpen"<<endl;
 else
 fInher =pow(A / (1/ (fInstall*fInstall) - (1-A)), 0.5) ;

 if (fInher < Leakpar)
 cout<<"error! mLeak is larger than mLiq"<<endl;
 else
 pos = pow ((fInher - Leakpar) / (1-Leakpar), 0.5) ;
 }
 return pos;
}

DRAFT

 34

Mixing box REFERENCE MODELS

General description
A mixing box is the section of an air handling unit used to mix the return air flow with
the outside air flow. It consists of three sets of dampers whose operation is coordinated
to control the fraction of the outside air in the supply air while maintaining the supply air-
flow rate approximately constant. Figure 2 is a simplified diagram of the mixing box
simulated in the model. A variant of this design has a separate outside air damper that is
adjusted to provide the minimum outside air flow required during occupancy. In an ideal
mixing box (no damper leakage), the mixed air should consist of 100% return air when
the control signal is 0 and consist of 100% outside air when the control signal is 1.

Figure 4 Diagram of the mixing box

Figure 5 shows ideal behavior and the range of acceptable behavior of a mixing box. The
vertical axis is the outside air fraction. Under the ideal conditions, the outside air fraction
should range from 0 to 1 when the damper position varies from 0 to 1. However, in
general there is leakage of both the outside air and the return air dampers; the outside air
fraction then ranges between a minimum value that is greater than 0 and a maximum
value that is less than 1. In addition, the air- flow rate is not necessarily linearly related to
the damper position and therefore the mixed air temperature and humidity ratio are not
linearly related to damper position. After the mixing box has been commissioned, the
results of the functional test can be used to calibrate a model of the actual behavior.

Te Tr

To Tm

return air

supply air

exhaust air

outside air

damper

damper

damper

DRAFT

 35

Mixing box REFERENCE MODELS

Model description
Theoretically, it is possible to determine the airflow rates of both the outside air and
recirculation air streams as a function of damper position. The airflow rates can then be
used to determine the outside air fraction and hence the mixed air temperature and
humidity ratio. However, it is impractical to simulate the mixed air temperature
accurately in that way, because the pressure boundary conditions change with fan speed
and as a result of wind effects and because of the difficulty of estimating the authority of
the dampers. This said, the behavior in the middle of the operating range is relatively
unimportant compared to the behavior at the ends of the operating range.

Figure 4 shows the forms of the models to be used during commissioning and during
routine operation following commissioning. In the model to be used at the
commissioning stage, when only design information is available, the range of acceptable
behavior is modeled. A 3:1 gain variation is used by default; when the damper position is
50%, the upper limit of the outside air fraction is 25% lower than its maximum and the
lower limit is 25% above its minimum. The maximum acceptable deviations from 0 and
100% outside air fraction at each end of the operating range should be specified by the
designer. Once the mixing box has been commissioned, the results of the functional test
can be used to fit curves to the measured variation of outside air fraction with the control
signal. There are two ways to fit into this curve, one is by simple polynomial, another
one is by a more complex method that involved with a middle point representing where
the curve reflects and an exponential constant (see equations below). In VAV systems,
this relationship may depend on supply air- flow rate. If it is significant, this dependence
may be treated by fitting two polynomials, one for maximum supply air flow rate and one
for minimum supply air flow rate, and using these two polynomials to define the range of
expected behavior.

OAF

damper position

OAF

lower estimation

upper estimation

prediction

lower range

upper range

OAFmin

damper position

OAFmax ideal condition

Figure 5 mixing box design curves Figure 6 mixing box model curves

OAFmin

OAFmax

posref

DRAFT

 36

Mixing box REFERENCE MODELS

The class mix.cm is the model of the mixing box. There are three mixed air temperature
outputs, the upper and lower estimates of the mixed air temperature, and the predicted
mixed air temperature by polynomial curve fitting. The atomic class OAFLow.cc is to
predict the lower acceptable range of the mixed air temperature; the
class OAFHigh.cc is to predict the upper range of the mixed air temperature; the class
OAF.cc is the simulation model to predict the outside air fraction by 3rd order polynomial
fitting. Atomic class tmix.cc models the mixed air temperature based on the outside air
fraction.

Governing equations

Minimum and maximum of the outside air fraction:

outleakOAF =min

 retleakOAF −= 1max

Upper and lower limit of the outside air fraction:







=
<×⋅

>+−×−⋅

)5.0(2

)5.0()
max

()5.0(2

pos
half

OAFpos

pos
half

OAF
half

OAFOAFposlowerOAF







=
<+−×⋅

>+−×−⋅

)5.0(
min

)
min

(2

)5.0()1()5.0(2

posOAFOAF
half

OAFpos

pos
half

OAF
half

OAFposhigherOAF

Predicted outside air fraction by polynomial curve fitting

min
3

3
2

21minmax))((OAFposCposCposCOAFOAFOAFpredic +++−=

Polynomial coefficients are related by following constraint:
1321 =++ CCC

Predicted outside air fraction by two exponential curves fitting linked at reference
position

)()
)1(

)(
)((minmaxmin refn

ref
n

ref

n
ref

n
ref

predic pospos
pospos

pospospos
OAFOAFOAFOAF >

−+

−+
−+=

DRAFT

 37

Mixing box REFERENCE MODELS

)()
)1(

)(
)((minmaxmin refn

ref
n

ref

n
ref

n
ref

predic pospos
pospos

pospospos
OAFOAFOAFOAF ≤

−+

−−
−+=

Mixed air temperature:
 retretoutpredicpredicmix TTTOAFT +−⋅=)(,

 retretoutlowerlowermix TTTOAFT +−⋅=)(,

retretouthigherhighermix TTTOAFT +−⋅=)(,

DRAFT

 38

Mixing box REFERENCE MODELS

Nomenclature
Variables Description Unit
leakret LeakRet Installed return damper leakage (0-1) Dimensionless
leakout LeakOut Installed outside air damper leakage (0-1) Dimensionless
pos pos Valve damper position(-) (0 to 1, 1 = 100%

outside air, 0 = 100% return air)
Dimensionless

OAF OAF Outside air fraction Dimensionless
OAFhalf OAFHalf Outside air fraction when damper position is 0.5 Dimensionless
OAFmin OAFMin Minimum outside air fraction Dimensionless
OAFmax OAFMax Maximum outside air fraction Dimensionless
Tret TRet Return air temperature oC
Tout TOut Out air temperature oC
Tmix,lower TMixLow Lower range of the mixed air temperature oC
Tmix,higher TMixHigh Upper range of the mixed air temperature oC
Tmix,predic TMix Predicted mixed air temperature" oC
C1 C1 Polynomial constant 1 for curve fitting outside

air fraction as a function of damper position

C2 C2 Polynomial constant 2 for curve fitting outside
air fraction as a function of damper position

C3 C3 Polynomial constant 3 for curve fitting outside
air fraction as a function of damper position

n n Exponential constant in two exponential curve
fitting

>0, Real
number

posref RefPos Reference position where the two curves reflect
each other (Figure 6) (0-1)

Scalar

DRAFT

 39

mix.cm Mix / SOURCE CODE

/*+++
 Identification: mixing air temperature
 Abstract:
 Notes:
 None

 Interface:
 pos: damper position(-) "0 to 1, 1 = 100% outside air, 0 = 100% return air " [scalar]
 TRet: Return air temperature [deg_C]
 TOut: Outside air temperature [deg_C]
 TMix: mixing air temperature [deg_C]
 TMixHigh: Lower estimation of mixing air temperature [deg_C]
 TMixLow: Higher estimation of mixing air temperature [deg_C]
 LeakRet: installed return damper leakage 0-1 [scalar]
 LeakOut: outside air damper leakage 0-1 [scalar]

 Acceptable input set:
 pos = 0, TRet = 20, TOut =30, LeakRet =0.01, LeatOut=0.01

 Recommended matches:
 None

 Suggested breaks:
 None

 Local variables:
 OAF: Outside air fraction (0-1)
 OAFHigh: High estimation of outside air fraction (0-1)
 OAFLow: Low estimation of outside air fraction (0-1)
 OAFHalfHigh: High estimation of outside air fraction when damper position equals to 0.5.
 OAFHalfLow: Low estimation of outside air fraction when damper position equals to 0.5.
 OAFMax: Maximum outside air fraction when damper postion equals to 1. (Leak age from return air damper)
 OAFMin: Minimum outside air fraction when damper postion equals to 0. (Leakage from outside air damper)

 Equations:
 TMix = OAF * (TOut-TRet) + TRet;
 OAFMax = 1-LeakRet;
 OAFMin = LeakOut ;
 OAF = (OAFMax-OAFMin)* (C1*pos+C2*pos^2+C3*pos^3) + OAFMin

 OAFHalfHigh = OAFMin + 0.75*(OAFMax -OAFMin)
 OAFHigh = (OAFHalf-OAFMin) * (pos*2) + OAFMin (pos <= 0.5)
 OAFHigh = (1 - OAFHalf) * ((pos -0.5)*2) + OAFHalfHigh (pos > 0.5)

 OAFHalfLow = OAFMin + 0.25*(OAFMax -OAFMin)
 OAFLow = OAFHalf * (pos*2) (pos <= 0.5)
 OAFLow = (OAFMax - OAFHalfLow) * ((pos -0.5)*2) + OAFHalfLow (pos > 0.5)
*/
//PORT
PORT pos "damper position(-) (0 to 1, 1 = 100% outside air, 0 = 100% return air) " ;
PORT TRet "Return air temperature" [deg_C];
PORT TOut "Outside air temperature" [deg_C] ;
PORT TMix "mixing air temperature" [deg_C];
PORT TMixHigh "Lower estimation of mixing air temperature" [deg_C];
PORT TMixLow "Higher estimation of mixing air temperature" [deg_C];
PORT LeakRet "installed return damper leakage 0-1” [scalar];
PORT LeakOut "installed outside air damper leakage 0-1” [scalar];
PORT C1 "polynomial constant 1 for curve fitting the outside air fraction (C1+C2+C3=1)" [scalar];
PORT C2 "polynomial constant 2 for curve fitting the outside air fraction (C1+C2+C3=1)" [scalar] ;
PORT C3 "polynomial constant 3 for curve fitting the outside air fraction (C1+C2+C3=1)" [scalar] ;

DRAFT

 40

mix.cm Mix / SOURCE CODE
declare equal_link eq1 eq2 eq3;

//Mixed Air temperature
//predicted mixed air temperature
declare tmix tmix;
link OAF tmix.OAF eq1.a;
link .TMix tmix.TMix;

//Lower estimation of mixed air temperature
declare tmix tmixLow;
link OAFLow tmixLow.OAF eq2.a;
link .TmixLow tmixLow.TMix;

//Higher estimation of mixed air temperature
declare tmix tmixHigh;
link OAFHigh tmixHigh.OAF eq3.a;
link .TMixHightmixHigh.TMix;

link .TOut tmix.TOut tmixLow.TOut tmixHigh.TOut;
link .TRet tmix.TRet tmixLow.TRet tmixHigh.TRet;

//Outside air fraction
//Predicted outside Air Fraction
declare OAF OAF;
link OAF0 OAF.OAF eq1.b;
link .C1 OAF.C1;
link .C2 OAF.C2;
link .C3 OAF.C3;

//Lower estimation of outside Air Fraction
declare OAFLow OAFLow;
link OAFLow0 OAFLow.OAFLow eq2.b;;

//Higher estimation of outside Air Fraction
declare OAFHigh OAFHigh ;
link OAFHigh0 OAFHigh.OAFHigh eq3.b;

link .pos OAF.pos OAFLow.pos OAFHigh.pos;
link .LeakRet OAF.LeakRet OAFHigh.LeakRet OAFLow.LeakRet;
link .LeakOut OAF.LeakOut OAFHigh.LeakOut OAFLow.LeakOut;

DRAFT

 41

mix_EXP.cm Mix / SOURCE CODE
/*+++
 Identification: mixing air temperature
 Abstract:
 Notes:
 None

 Interface:
 pos: damper position(-) "0 to 1, 1 = 100% outside air, 0 = 100% return air "
 TRet: Return air temperature [oF]
 TOut: Outside air temperature [oF]
 TMix: mixing air temperature [oF]
 TMixHigh: Lower estimation of mixing air temperature [oF]
 TMixLow: Higher estimation of mixing air temperature [oF]
 LeakRet: The ratio of the mass flow rate of return air to outside air
 when damper equals to 1 (100% outside air)
 LeakOut: The ratio of the mass flow rate of outside to return air
 when damper equals to 0 (100% return air)
 RefPos: reflection position (0-1), the position where the curves start to reflect
 n: the exponential constants (>0, real number)

 Acceptable input set:
 pos = 0, TRet = 20, TOut =30, LeakRet =0.01, LeatOut=0.01, n =2, RefPos=0.5

 Recommended matches:
 None

 Suggested breaks:
 None

 Local variables:
 OAF: Outside air fraction (0-1)
 OAFHigh: High estimation of outside air fraction (0-1)
 OAFLow: Low estimation of outside air fraction (0-1)
 OAFHalfHigh: High estimation of outside air fraction when damper position equals to 0.5.
 OAFHalfLow: Low estimation of outside air fraction when damper position equals to 0.5.
 OAFMax: Maximum outside air fraction when damper postion equals to 1. (Leakage from return air damper)
 OAFMin: Minimum outside air fraction when damper postion equals to 0. (Leakage from outside air damper)

 Equations:
 TMix = OAF * (TOut-TRet) + TRet;
 OAFMax = 1-LeakRet;
 OAFMin = LeakOut ;
 OAF = (OAFMax-OAFMin)* (C1*pos+C2*pos^2+C3*pos^3) + OAFMin

 OAFHalfHigh = OAFMin + 0.75*(OAFMax -OAFMin)
 OAFHigh = (OAFHalf-OAFMin) * (pos*2) + OAFMin (pos <= 0.5)
 OAFHigh = (1 - OAFHalf) * ((pos -0.5)*2) + OAFHalfHigh (pos > 0.5)

 OAFHalfLow = OAFMin + 0.25*(OAFMax -OAFMin)
 OAFLow = OAFHalf * (pos*2) (pos <= 0.5)
 OAFLow = (OAFMax - OAFHalfLow) * ((pos -0.5)*2) + OAFHalfLow (pos > 0.5)
*/
//PORT
PORT pos "damper position(-) (0 to 1, 1 = 100% outside air, 0 = 100% return air) " ;
PORT TRet "Return air temperature" [oF];
PORT TOut "Outside air temperature" [oF] ;
PORT TMix "mixing air temperature" [oF];
PORT TMixHigh "Lower estimation of mixing air temperature" [oF];
PORT TMixLow "Higher estimation of mixing air temperature" [oF];
PORT LeakRet "The ratio of the mass flow rate of return air to outside air when damper equals to 1 (100% outside
air)" [];
PORT LeakOut "The ratio of the mass flow rate of outside to return air when damper equals to 0 (100% return air)" [];
PORT RefPos "reflection position (0-1), the position where the curves start to reflect, 0-1" ;
PORT n "the exponential constants (>0, real number) " ;

DRAFT

 42

mix_EXP.cm Mix / SOURCE CODE

declare equal_link eq1 eq2 eq3;

//Mixed Air temperature
//predicted mixed air temperature
declare tmix tmix;
link OAF tmix.OAF eq1.a;
link .TMix tmix.TMix;

//Lower estimation of mixed air temperature
declare tmix tmixLow;
link OAFLow tmixLow.OAF eq2.a;
link .TMixLow tmixLow.TMix;

//Higher estimation of mixed air temperature
declare tmix tmixHigh;
link OAFHigh tmixHigh.OAF eq3.a;
link .TMixHightmixHigh.TMix;

link .TOut tmix.TOut tmixLow.TOut tmixHigh.TOut;
link .TRet tmix.TRet tmixLow.TRet tmixHigh.TRet;

//Outside air fraction
//Predicted outside Air Fraction
declare OAF_EXP OAF;
link "OAF" OAF.OAF eq1.b;
link .n OAF.n;
link .RefPos OAF.RefPos;

//Lower estimation of outside Air Fraction
declare OAFLow OAFLow;
link "OAFLow" OAFLow.OAFLow eq2.b;;

//Higher estimation of outside Air Fraction
declare OAFHigh OAFHigh ;
link "OAFHigh" OAFHigh.OAFHigh eq3.b;

link .pos OAF.pos OAFLow.pos OAFHigh.pos;
link .LeakRet OAF.LeakRet OAFHigh.LeakRet OAFLow.LeakRet;
link .LeakOut OAF.LeakOut OAFHigh.LeakOut OAFLow.LeakOut;

DRAFT

 43

OAF.cc Mix / SOURCE CODE
/*+++
 Identification: estimation of outside air fraction
 Abstract:
 Notes:
 None
 Interface:
 pos: damper position(-) "change from 0 to 1, 1 = 100% outside air, 2 = 100% return air "
 LeakRet: The installed return air damper leakage (0-1)
 LeakOut: The installed outside air damper leakage (0-1)
 Acceptable input set:
 pos = 0, LeakRet =0.01, LeatOut=0.01
 Recommended matches:
 None
 Suggested breaks:
 None
 Local variables:
 OAF: Outside air fraction (0-1)
 OAFHalf: Outside air fraction when damper position equals to 0.5.
 OAFMax: Maximum outside air fraction when damper postion equals to 1. (Leakage from return air damper)
 OAFMin: Minimum outside air fraction when damper postion equals to 0. (Leakage from outside air damper)
 Equations:
 OAFMax = 1-LeakRet;
 OAFMin = LeakOut ;
 OAF = (OAFMax-OAFMin)* (C1*pos+C2*pos^2+C3*pos^3) + OAFMin
*/
#ifdef SPARK_TEXT
//PORT
PORT pos "Damper position(-) (0 to 1, 1 = 100% outside air, 0 = 100% return air) " [scalar];
PORT OAF "Outside air fraction" [scalar];
PORT LeakRet "Installed return air damper leakage (0-1)" [scalar];
PORT LeakOut "Installed outside air damper leakage (0-1)" [scalar];
PORT C1 "polynomial constant 1 for curve fitting the outside air fraction (C1+C2+C3=1)" [scalar];
PORT C2 "polynomial constant 2 for curve fitting the outside air fraction (C1+C2+C3=1)" [scalar];
PORT C3 "polynomial constant 3 for curve fitting the outside air fraction (C1+C2+C3=1)" [scalar];

EQUATIONS {
 OAFMax = 1-LeakRet;
 OAFMin = LeakOut ;
 OAF = (OAFMax-OAFMin)* (C1*pos+C2*pos^2+C3*pos^3) + OAFMin;
 }
// ==== FUNCTIONS ====
FUNCTIONS {
 OAF = OAF(pos, LeakRet, LeakOut,C1, C2, C3);
 }
#endif /* SPARK_TEXT */
#include "spark.h"

 double
OAF (ARGS)
{
 ARGDEF(0,pos) ;
 ARGDEF(1,LeakRet) ;
 ARGDEF(2,LeakOut) ;
 ARGDEF(3,C1) ;
 ARGDEF(4,C2) ;
 ARGDEF(5,C3) ;

 double OAFMax;
 double OAFMin;
 double OAF;
 OAFMax = 1-LeakRet;
 OAFMin = LeakOut;
 OAF = (OAFMax-OAFMin)* (C1*pos+C2*pow(pos,2)+C3*pow(pos,3)) + OAFMin ;

 return OAF;
}

DRAFT

 44

OAF_EXP.cc Mix / SOURCE CODE
/*+++
 Identification: estimation of outside air fraction based on two exponential functions
 Abstract:
 Notes:
 None

 Interface:
 pos: damper position(-) "change from 0 to 1, 1 = 100% outside air, 2 = 100% return air "
 LeakRet: The return air damper leakage (0-1)
 LeakOut: The outside air damper leakage (0-1)
 RefPos: reflection position (0-1), the position where the curves start to reflect
 n: the exponential constants (>0, real number)

 Acceptable input set:
 pos = 0, LeakRet =0.01, LeatOut=0.01, RefPos=0.5

 Recommended matches:
 None

 Suggested breaks:
 None

 Local variables:
 OAF: Outside air fraction (0-1)
 OAFMax: Maximum outside air fraction when damper postion equals to 1. (Leakage from return air damper)
 OAFMin: Minimum outside air fraction when damper postion equals to 0. (Leakage from outside air damper)

 Equations:
 OAFMax = 1-LeakRet;
 OAFMin = LeakOut ;
 OAF = OAFMin + (OAFMax -OAFMin)*(pow(RefPos,n)+pow((pos-RefPos),n))/(pow(RefPos,n)+pow((1-
RefPos),n)) (if pos> RefPos)
 OAF = OAFMin + (OAFMax -OAFMin)*(pow(RefPos,n)-pow((RefPos-pos),n))/(pow(RefPos,n)+pow((1-
RefPos),n)) (if pos<= RefPos)
*/
#ifdef SPARK_TEXT
//PORT
PORT pos "Damper position(-) (0 to 1, 1 = 100% outside air, 0 = 100% return air) " [scalar];
PORT OAF "Outside air fraction" [scalar];
PORT LeakRet "Return air damper leakage (0-1)" [scalar];
PORT LeakOut "Outside air damper leakage (0-1)" [scalar];
PORT n "the exponential constants (>0, real number) " ;
PORT RefPos "reflection position (0-1), the position where the curves start to reflect" ;

EQUATIONS {
 OAFMax = 1-LeakRet;
 OAFMin = LeakOut ;
 OAF = OAFMin + (OAFMax -OAFMin)*(pow(RefPos,n)+pow((pos-RefPos),n))/(pow(RefPos,n)+pow((1-
RefPos),n)) (if pos> RefPos) ;
 OAF = OAFMin + (OAFMax -OAFMin)*(pow(RefPos,n)-pow((RefPos-pos),n))/(pow(RefPos,n)+pow((1-
RefPos),n)) (if pos<= RefPos) ;
 }

// ==== FUNCTIONS ====
FUNCTIONS {
 OAF = OAF(pos, LeakRet, LeakOut, n, RefPos);
 }
#endif /* SPARK_TEXT */
#include "spark.h"

 double
OAF (ARGS)
{
 ARGDEF(0,pos) ;
 ARGDEF(1,LeakRet) ;
 ARGDEF(2,LeakOut) ;
 ARGDEF(3,n) ;
 ARGDEF(4,RefPos) ;

DRAFT

 45

OAF_EXP.cc Mix / SOURCE CODE

 double OAFMax;
 double OAFMin;

 double OAF;

 OAFMax = 1-LeakRet;
 OAFMin = LeakOut;

 if (pos> RefPos)
 OAF = OAFMin + (OAFMax -OAFMin)*(pow(RefPos,n)+pow((pos-RefPos),n))/(pow(RefPos,n)+pow((1-
RefPos),n)) ;
 else
 OAF = OAFMin + (OAFMax -OAFMin)*(pow(RefPos,n)-pow((RefPos-pos),n))/(pow(RefPos,n)+pow((1-
RefPos),n)) ;

 return OAF;

}

DRAFT

 46

OAFHigh.cc Mix / SOURCE CODE
/*+++
 Identification: upper estimation of outside air fraction
 Abstract:
 Notes:
 None
 Interface:
 pos: damper position(-) "change from 0 to 1, 1 = 100% outside air, 2 = 100% return air "
 LeakRet: The installed return air damper leakage (0-1)
 LeakOut: The installed outside air damper leakage (0-1)
 Acceptable input set:
 pos = 0, LeakRet =0.01, LeatOut=0.01
 Local variables:
 OAFHigh: Lower estimation of outside air fraction (0-1)
 OAFHalf: Outside air fraction when damper position equals to 0.5.
 OAFMax: Maximum outside air fraction when damper postion equals to 1. (Leakage from return air damper)
 OAFMin: Minimum outside air fraction when damper postion equals to 0. (Leakage from outside air damper)

 Equations:
 OAFMax = 1-LeakRet;
 OAFMin = LeakOut ;
 OAFHalf = OAFMin + 0.75*(OAFMax -OAFMin)
 OAFHigh = (OAFHalf-OAFMin) * (pos*2) + OAFMin (pos <= 0.5)
 OAFHigh = (1 - OAFHalf) * ((pos -0.5)*2) + OAFHalf (pos > 0.5)
*/
#ifdef SPARK_TEXT
//PORT
PORT pos "Damper position(-) (0 to 1, 1 = 100% outside air, 0 = 100% return air) " [scalar];
PORT OAFHigh "Lower estimation of Outside air fraction" [scalar];
PORT LeakRet "Installed return air damper leakage (0-1)" [scalar];
PORT LeakOut "Installed outside air damper leakage (0-1)" [scalar];

EQUATIONS {
 OAFMax = 1-LeakRet;
 OAFMin = LeakOut ;
 OAFHalf = OAFMin + 0.75*(OAFMax -OAFMin)
 OAFHigh = (OAFHalf-OAFMin) * (pos*2) + OAFMin (pos <= 0.5)
 OAFHigh = (1 - OAFHalf) * ((pos -0.5)*2) + OAFHalf (pos > 0.5)
 }
// ==== FUNCTIONS ====
FUNCTIONS {
 OAFHigh = OAFHigh(pos, LeakRet, LeakOut);
 }
#endif /* SPARK_TEXT */
#include "spark.h"
 double
OAFHigh (ARGS)
{
 ARGDEF(0,pos) ;
 ARGDEF(1,LeakRet) ;
 ARGDEF(2,LeakOut) ;

 double OAFMax;
 double OAFMin;
 double OAFHalf;
 double OAFHigh;

 OAFMax = 1-LeakRet;
 OAFMin = LeakOut;
 OAFHalf = OAFMin + 0.75*(OAFMax -OAFMin);
 if (pos <= 0.5)
 OAFHigh = (OAFHalf-OAFMin) * (pos*2) + OAFMin ;
 else
 OAFHigh = (1 - OAFHalf) * ((pos -0.5)*2) + OAFHalf ;

 return OAFHigh;

}

DRAFT

 47

OAFLow.cc Mix / SOURCE CODE
/*+++
 Identification: lower estimation of outside air fraction
 Abstract:
 Notes:
 None
 Interface:
 pos: damper position(-) "change from 0 to 1, 1 = 100% outside air, 2 = 100% return air "
 LeakRet: The installed return air damper leakage (0-1)
 LeakOut: The installed outside air damper leakage (0-1)
 Acceptable input set:
 pos = 0, LeakRet =0.01, LeatOut=0.01
 Local variables:
 OAFLow: Lower estimation of outside air fraction (0-1)
 OAFHalf: Outside air fraction when damper position equals to 0.5.
 OAFMax: Maximum outside air fraction when damper postion equals to 1. (Leakage from return air damper)
 OAFMin: Minimum outside air fraction when damper postion equals to 0. (Leakage from outside air damper)

 Equations:
 OAFMax = 1-LeakRet;
 OAFMin = LeakOut ;
 OAFHalf = OAFMin + 0.25*(OAFMax -OAFMin)
 OAFLow = OAFHalf * (pos*2) (pos <= 0.5)
 OAFLow = (OAFMax - OAFHalf) * ((pos -0.5)*2) + OAFHalf (pos > 0.5)
*/
#ifdef SPARK_TEXT
//PORT
PORT pos "Damper position(-) (0 to 1, 1 = 100% outside air, 0 = 100% return air) " [scalar];
PORT OAFLow "Lower estimation of Outside air fraction" [scalar];
PORT LeakRet "Installed return air damper leakage (0-1)"
 [scalar];
PORT LeakOut "Installed outside air damper leakage (0-1)"
 [scalar];

EQUATIONS {
 OAFMax = 1-LeakRet;
 OAFMin = LeakOut ;
 OAFHalf = OAFMin + 0.25*(OAFMax -OAFMin)
 OAFLow = OAFHalf * (pos*2) (pos <= 0.5)
 OAFLow = (OAFMax - OAFHalf) * ((pos -0.5)*2) + OAFHalf (pos > 0.5)
 }
// ==== FUNCTIONS ====
FUNCTIONS {
 OAFLow = OAFLow(pos, LeakRet, LeakOut);
 }
#endif /* SPARK_TEXT */
#include "spark.h"
 double
OAFLow (ARGS)
{
 ARGDEF(0,pos) ;
 ARGDEF(1,LeakRet) ;
 ARGDEF(2,LeakOut) ;

 double OAFMax;
 double OAFMin;
 double OAFHalf;
 double OAFLow;

 OAFMax = 1-LeakRet;
 OAFMin = LeakOut;
 OAFHalf = OAFMin + 0.25*(OAFMax -OAFMin);

 if (pos <= 0.5)
 OAFLow = OAFHalf * (pos*2) ;
 else
 OAFLow = (OAFMax - OAFHalf) * ((pos -0.5)*2) + OAFHalf;

 return OAFLow;
}

DRAFT

 48

tmix.cc Mix / SOURCE CODE
/*+++
/* CLASS tmix "determine the mixed air temperature based on outside air fraction"

ABSTRACT

ABSTRACT_END
TEST_INPUT
 TRet = 1, TOut = 0, TMix = 0.5 ;
*/
#ifdef SPARK_TEXT
// ==== PORTS ====

PORT OAF "outside air fraction in the mixed air" [scalar] ;
PORT TRet "return air temperature" [deg_C] ;
PORT TOut "outside air temperature" [deg_C] ;
PORT TMix "mixed air temperature" [deg_C] ;

EQUATIONS {
 TMix = OAF * (TOut - TRet) + TRet;
 }

// ==== FUNCTIONS ====
FUNCTIONS {
 OAF = tmix_OAF(TRet, TOut, TMix) ;
 TMix = tmix_TMix (OAF, TRet, TOut);
 }
#endif /* SPARK_TEXT */
#include "spark.h"

 double
tmix_OAF (ARGS)
{
 ARGDEF(0,TRet) ;
 ARGDEF(1,TOut) ;
 ARGDEF(2,TMix) ;

 double OAF;
 OAF = (TMix - TRet) / (TOut - TRet) ;
 return OAF;
}

 double
tmix_TMix (ARGS)
{
 ARGDEF(0,OAF) ;
 ARGDEF(1,TRet) ;
 ARGDEF(2,TOut) ;

 double TMix;
 TMix = OAF * (TOut - TRet) + TRet;
 return TMix;
}

DRAFT

 49

AHU REFERENCE MODELS

Air handling unit (AHU)
General description
An air-handling unit consists of a set of components that together provide conditioned air
for distribution to occupied spaces. The components described above perform the
functions of heating, cooling, dehumidification and ventilation. The fan system model
implicitly treats the pressure drops due to the coils, filters and attenuators. These models
can be connected together in different combinations to form models of different types of
air handling units. Figure 7 shows an example, which consists of a mixing box, a cooling
coil with a control valve, a heating coil with a control valve, and supply and return fans.

Figure 7 Schmetic of the modeled air handling unit (AHU)

Model description
The model of an air handling unit is built by linking all the above related component
models together. The outlet air property of a particular component is the inlet property of
the component immediately downstream. Class AHU_Example.cm is an example model
of an AHU that has the configuration shown in Figure 7.

Governing equations:
 lheatingcoiairlcoolingcoiairplyfanair mmm ,,sup, ==

 lcoolingcoiwatervalveCCwater mm ,, =

 lheatingcoiwatervalveHCwater mm ,, =

 outsidemixingairoutsideAHUair TT ,,,, =

 entlccolingcoiairlvgmixingair TT ,,,, =

entlheatingcoiairlvglcoolingcoiair TT ,,,, =

mixing box

cooling coil supply fan

outside air

return air

exhaust air

supply air

heating coil

_ +

return air

return fan

DRAFT

 50

AHU REFERENCE MODELS

entpplyfanairlvglheatingcoiair TT ,sup,,, =

sup,,,sup, AHUairlvgplyfanair TT =

entreturnfanairretAHUair TT ,,,, =

retmixingairlvgreturnair TT ,,,, =

outsidemixingairoutsideAHUair ww ,,,, =

 entlccolingcoiairlvgmixingair ww ,,,, =

sup,,,, AHUairlvglcoolingcoiair ww =

Nomenclature

Variables Description Unit

mair,supplyfan mAirSup Supply fan air flow rate [kg_dryAir/s]
mwater,coolingcoil mLiqCC Cooling coil Liquid flow rate [kg/s]
mwater,valveCC mLiqValCC Cooling coil Liquid flow rate [kg/s]
mwater,heatingcoil mLiqHC Heating coil Liquid flow rate [kg/s]
mwater,valveHC mLiqValHC Heating coil Liquid flow rate [kg/s]

Tair,AHU,outside TAirOut Outside air temperature [deg_C]
Tair,AHU,ret TAirRet Return air dry bulb temperature [deg_C]
Tair,AHU,sup TAirSup Supply air dry bulb temperature [deg_C]

Tair,coolingcoil,lvg TAirLvgCC Cooling coil leaving air dry bulb temperature [deg_C]
Tair,coolingcoil,ent TAirEntCC Cooling coil entering air dry bulb temperature [deg_C]
Tair,heatingcoil,ent TAirEntHC Heating coil entering air dry bulb temperature [deg_C]
Tair,heatingcoil,lvg TAirLvgHC Heating coil leaving air dry bulb temperature [deg_C]

Tair,supplyfan,lvg TAirLvgSfan Supply fan leaving air dry bulb temperature [deg_C]
Tair,supplyfan,ent TAirEntSfan Supply fan entering air dry bulb temperature [deg_C]
Tair,returnfan,ent TAirEntRfan Return fan entering air dry bulb temperature [deg_C]
Tair,returnfan,lvg TAirLvgRfan Return fan leaving air dry bulb temperature [deg_C]

Tair,mixing,outside TAirMixOut Mixing box outside air temperature [deg_C]
Tair,mixng,ret TAirMixRet Mixing box return air dry bulb temperature [deg_C]
Tair,mixing,lvg TAirMixLvg Mixing box leaving air dry bulb temperature [deg_C]

DRAFT

 51

AHU_Example.cm AHU / SOURCE CODE

/*+++

/*+++
 Identification: AHU model for diagnosis.

 Abstract:

 Notes:
 None

 Interface:

 TAirLvgCC Cooling coil leaving air dry bulb temperature [deg_C]
 wAirLvgCC Cooling coil leaving air humidity ratio [kg/kg_dryAir]
 TLiqEntCC Cooling coil entering water temperature [deg_C]
 TLiqLvgCC Cooling coil leaving water temperature [deg_C]
 AExtCC Cooling coil heat transfer area [m2]
 AIntCC Cooling coil heat transfer area [m2]
 CExtCC Cooling coil air side heat transfer coefficient constant [scalar]
 CIntCC Cooling coil liquid side heat transfer coefficient constant [scalar]
 PAtm Atmospheric pressure
 [Pa]
 qSenCC Cooling coil Sensible heat transfer rate. Positive for air cooling. [W]
 qLatCC Cooling coil Latent heat transfer rate. Positive for air cooling. [W]
 qTotCC Cooling coil Heat transfer rate. Positive for air cooling. [W]

 posValveCC Cooling coil Valve position, between 0-1 [scalar]
 AValveCC Cooling coil Valve authority, between 0-1 [scalar]
 mLiqOpenValveCC Cooling coil Mass flow rate for open valve [Kg/s]
 mLeakValveCC Cooling coil Mass flow rate of leakage [Kg/s]
 mLiqCC Cooling coil Liquid flow rate [kg/s]

 TAirLvgHC heating coil leaving air dry bulb temperature [deg_C]
 TLiqEntHC heating coil entering water temperature [deg_C]
 TLiqLvgHC heating coil leaving water temperature [deg_C]
 AHC heating coil heat transfer area [m2]
 CHC heating coil liquid side heat transfer coefficient constant [scalar]
 qSenHC heating coil Sensible heat transfer rate. Positive for air cooling. [W]

 posValveHC heating coil Valve position, between 0-1 [scalar]
 AValveHC heating coil Valve authority, between 0-1 [scalar]
 mLiqOpenValveHC heating coil Mass flow rate for open valve [Kg/s]
 mLeakValveHC heating coil Mass flow rate of leakage [Kg/s]
 mLiqHC heating coil Liquid flow rate [kg/s]

 TAirSup Supply air dry bulb temperature [deg_C]
 wAirSup Supply air humidity ratio [kg/kg_dryAir]
 mAirSup supply fan air flow rate [kg_dryAir/s]
 powerTotSfan supply fan motor power consumption [W]
 nSfan supply fan fan speed [rpm]
 pStatSfan supply fan static pressure setpoint [Pa]
 pSfan supply fan total pressure increase across fan [Pa]
 effMotSfan supply fan Efficiency of fan motor [scalar]
 motFracSfan supply fan Fraction of motor heat loss in air stream [fraction]
 effShaftSfan supply fan fan efficiency [scalar]
 effShaftMaxSfan supply fan fan maximum efficiency [scalar]
 mAirMaxSfan supply fan maximum air flow of the fan [kg_dryAir/s]
 CResSfan supply fan resistance charactristic constant [scalar]
 CSfan supply fan fan curve constant [scalar]
 kSfan supply fan pressure-fanspeed constant [scalar]
 CEffSfan supply fan fan effiency constant [scalar]
 areaSPSfan supply fan duct work crossing section area [m2]

DRAFT

 52

AHU_Example.cm AHU / SOURCE CODE

 TAirRet Return air dry bulb temperature [deg_C]
 wAirRet Return air humidity ratio [kg_water/kg_dryAir]
 mAirRet Return fan air flow rate [kg_dryAir/s]
 powerTotRfan return fan motor power consumption [W]
 nRfan return fan fan speed [rpm]
 pStatRfan return fan static pressure setpoint [Pa]
 pRfan return fan total pressure increase across fan [Pa]
 effMotRfan return fan Efficiency of fan motor [scalar]
 motFracRfan return fan Fraction of motor heat loss in air stream scalar]
 effShaftRfan return fan fan efficiency [scalar]
 effShaftMaxRfan return fan fan maximum efficiency [scalar]
 mAirMaxRfan return fan maximum air flow of the fan [kg_dryAir/s]
 CResRfan return fan resistance charactristic constant [scalar]
 CRfan return fan fan curve constant [scalar]
 kRfan return fan pressure-fanspeed constant [scalar]
 CEffRfan return fan fan effiency constant [scalar]
 areaSPRfan return fan duct work crossing section area [m2]

 TAirOut Outside air temperature [deg_C]
 wAirOut Outside humidity ratio [kg/kg]
 posDamper damper position (0 to 1, 1 = 100% outside air, 0 = 100% return air) [scalar]
 LeakRetDamper installed return damper leakage (0-1) [scalar]
 LeakOutDamper installed outside air damper leakage (0-1) [scalar]
 mixC1 polynomial constant 1 for curve fitting the outside fraction [scalar]
 mixC2 polynomial constant 2 for curve fitting the outside fraction [scalar]
 mixC3 polynomial constant 3 for curve fitting the outside fraction [scalar]

 Acceptable input set:
 TAirLvgCC = unknown [deg_C]
 wAirLvgCC = unknown [kg_water/kg_dryAir]
 TLiqEntCC = 7 [deg_C]
 TLiqLvgCC = unknown [deg_C]
 AExtCC = 1 [m2]
 AIntCC = 1 [m2]
 CExtCC = 1000 [scalar]
 CIntCC = 4000 [scalar]
 PAtm = 100000 [Pa]
 qSenCC = unknown [W]
 qLatCC = unknown [W]
 qTotCC = unknown [W]

 posValveCC = 0.5 [scalar]
 AValveCC = 0.5 [scalar]
 mLiqOpenValveCC = 3 [Kg/s]
 mLeakValveCC = 0.1 [Kg/s]
 mLiqCC = unknown [kg/s]

 TAirLvgHC = unknown [deg_C]
 TLiqEntHC = 95 [deg_C]
 TLiqLvgHC = unknown [deg_C]
 AHC = 1 [m2]
 CHC = 4000 [scalar]
 qSenHC = unknown [W]

 posValveHC = 0.5 [scalar]
 AValveHC = 0.5 [scalar]
 mLiqOpenValveHC = 3 [Kg/s]
 mLeakValveHC = 0.1 [Kg/s]
 mLiqHC = unknown [kg/s]

 TAirSup = unknown [deg_C]
 wAirSup = unknown [kg_water/kg_dryAir]

DRAFT

 53

AHU_Example.cm AHU / SOURCE CODE

 mAirSup = unknown [kg_dryAir/s]
 powerTotSfan = unknown [W]
 nSfan = unknown [rpm]
 pStatSfan = 20 [Pa]
 pSfan = unknown [Pa]
 effMotSfan = 0.9 [scalar]
 motFracSfan = 1 [fraction]
 effShaftSfan = unknown [scalar]
 effShaftMaxSfan = 0.9 [scalar]
 mAirMaxSfan = 5 [kg_dryAir/s]
 CResSfan = 0.1 [scalar]
 CSfan = 0.3 [scalar]
 kSfan = 0.00125 [scalar]
 CEffSfan = 0.0001 [scalar]
 areaSPSfan = 0.3 [m2]

 TAirRet = 25 [deg_C]
 wAirRet = 0.007 [kg_water/kg_dryAir]
 mAirRet = unknown [kg_dryAir/s]
 powerTotRfan = unknown [W]
 nRfan = unknown [rpm]
 pStatRfan = 20 [Pa]
 pRfan = unknown [Pa]
 effMotRfan = 0.9 [scalar]
 motFracRfan = 1 [fraction]
 effShaftRfan = unknown [scalar]
 effShaftMaxRfan = 0.9 [scalar]
 mAirMaxRfan = unknown [kg_dryAir/s]
 CResRfan = 0.1 [scalar]
 CRfan = 0.3 [scalar]
 kRfan = 0.00125 [scalar]
 CEffRfan = 0.0001 [scalar]
 areaSPRfan = 0.3 [m2]

 TAirOut = 38 [deg_C]
 wAirOut = 0.009 [kg/kg]
 posDamper = 0.5 [scalar]
 LeakRetDamper = 0.01 [scalar]
 LeakOutDamper = 0.01 [scalar]
 mixC1 = 0.8 [scalar]
 mixC2 = 0.1 [scalar]
 mixC3 = 0.1 [scalar]

 Recommended matches:
 None

 Suggested breaks:
 None

 Local variables:
 None
 Equations:
 Objects: cooling coil, fan, valve, mixing box, air specific volume;
---*/

//cooling coil
PORT TAirLvgCC "Cooling coil leaving air dry bulb temperature" [deg_C] ;
PORT wAirLvgCC "Cooling coil leaving air humidity ratio" [kg_water/kg_dryAir];
PORT TLiqEntCC "Cooling coil entering water temperature" [deg_C] ;
PORT TLiqLvgCC "Cooling coil leaving water temperature" [deg_C] ;
PORT AExtCC "Cooling coil heat transfer area" [m2] ;
PORT AIntCC "Cooling coil heat transfer area" [m2] ;
PORT CExtCC "Cooling coil air side heat transfer coefficient constant" [scalar] ;
PORT CIntCC "Cooling coil liquid side heat transfer coefficient constant" [scalar] ;
PORT PAtm "Atmospheric pressure" [Pa];
PORT qSenCC "Cooling coil Sensible heat transfer rate. Positive for air cooling." [W];

DRAFT

 54

AHU_Example.cm AHU / SOURCE CODE

PORT qLatCC "Cooling coil Latent heat transfer rate. Positive for air cooling." [W];
PORT qTotCC "Cooling coil Heat transfer rate. Positive for air cooling." [W];
//valve-cooling
port posValveCC "Cooling coil Valve position, between 0-1" [scalar] ;
port AValveCC "Cooling coil Valve authority, between 0-1" [scalar] ;
port mLiqOpenValveCC "Cooling coil Mass flow rate for open valve" [Kg/s] ;
port mLeakValveCC "Cooling coil Mass flow rate of leakage" [Kg/s] ;
PORT mLiqCC "Cooling coil Liquid flow rate " [kg/s] ;
//heating coil
PORT TAirLvgHC "heating coil leaving air dry bulb temperature" [deg_C] ;
PORT TLiqEntHC "heating coil entering water temperature" [deg_C] ;
PORT TLiqLvgHC "heating coil leaving water temperature" [deg_C] ;
PORT AHC "heating coil heat transfer area" [m2] ;
PORT CHC "heating coil liquid side heat transfer coefficient constant" [scalar] ;
PORT qSenHC "heating coil Sensible heat transfer rate. Positive for air cooling." [W];
//valve-heating
port posValveHC "heating coil Valve position, between 0-1" [scalar] ;
port AValveHC "heating coil Valve authority, between 0-1" [scalar] ;
port mLiqOpenValveHC "heating coil Mass flow rate for open valve" [Kg/s] ;
port mLeakValveHC "heating coil Mass flow rate of leakage" [Kg/s] ;
PORT mLiqHC "heating coil Liquid flow rate " [kg/s] ;
//fan-supply fan
PORT TAirSup "Supply air dry bulb temperature" [deg_C] ;
PORT wAirSup "Supply air humidity ratio" [kg/kg_dryAir];
PORT mAirSup "supply fan air flow rate " [kg_dryAir/s];
PORT powerTotSfan "supply fan motor power consumption" [W];
PORT nSfan "supply fan fan speed " [rpm];
PORT pStatSfan "supply fan static pressure setpoint " [Pa] ;
PORT pSfan "supply fan total pressure increase across fan" [Pa];
PORT effMotSfan "supply fan Efficiency of fan motor" [scalar] ;
PORT motFracSfan "supply fan Fraction of motor heat loss in air stream" [fraction] ;
PORT effShaftSfan "supply fan fan efficiency" [scalar];
PORT effShaftMaxSfan "supply fan fan maximum efficiency" [scalar];
PORT mAirMaxSfan "supply fan maximum air flow of the fan" [kg_dryAir/s];
PORT CResSfan "supply fan resistance charactristic constant" [scalar];
PORT CSfan "supply fan fan curve constant" [scalar];
PORT kSfan "supply fan pressure-fanspeed constant" [scalar];
PORT CEffSfan "supply fan fan effiency constant" [scalar];
PORT areaSPSfan "supply fan duct work crossing section area" [m2];

//fan-return fan
PORT TAirRet "Return air dry bulb temperature" [deg_C] ;
PORT wAirRet "Return air humidity ratio" [kg/kg_dryAir];
PORT mAirRet "Return fan air flow rate " [kg_dryAir/s];
PORT powerTotRfan "return fan motor power consumption" [W];
PORT nRfan "return fan fan speed " [rpm];
PORT pStatRfan "return fan static pressure setpoint " [Pa] ;
PORT pRfan "return fan total pressure increase across fan" [Pa];
PORT effMotRfan "return fan Efficiency of fan motor" [scalar] ;
PORT motFracRfan "return fan Fraction of motor heat loss in air stream" [fraction] ;
PORT effShaftRfan "return fan fan efficiency" [scalar];
PORT effShaftMaxRfan "return fan fan maximum efficiency" [scalar];
PORT mAirMaxRfan "return fan maximum air flow of the fan" [kg_dryAir/s];
PORT CResRfan "return fan resistance charactristic constant" [scalar];
PORT CRfan "return fan fan curve constant" [scalar];
PORT kRfan "return fan pressure-fanspeed constant" [scalar];
PORT CEffRfan "return fan fan effiency constant" [scalar];
PORT areaSPRfan "return fan duct work crossing section area" [m2];

//mixing box
PORT TAirOut "Outside air temperature" [deg_C] ;
PORT wAirOut "Outside humidity ratio" [kg/kg] ;
PORT posDamper "damper position(-) (0 to 1, 1 = 100% outside air, 0 = 100% return air) " [scalar];
PORT LeakRetDamper "installed return damper leakage (0-1)” [scalar];

DRAFT

 55

AHU_Example.cm AHU / SOURCE CODE

PORT LeakOutDamper "outside air damper leakge (0-1)" [scalar];
PORT mixC1 "polynomial constant 1 for curve fitting the outside air fraction" [scalar] ;
PORT mixC2 "polynomial constant 2 for curve fitting the outside air fraction" [scalar];
PORT mixC3 "polynomial constant 3 for curve fitting the outside air fraction" [scalar];

declare equal_link eq1 eq2 eq4 eq5 eq6 eq7 eq8 eq9 eq10 eq11 eq12 eq14 eq15 eq16;
//LINKS
declare coil_cooling_counter_flow cc;
link TAirEntCC cc.TAirEnt eq1.a;
link wAirEntCC cc.wAirEnt eq2.a;
link mAirCC cc.mAir eq7.a eq9.a;
link mLiqCC cc.mLiq eq4.b ;
link .TAirLvgCC cc.TAirLvg eq5.a;
link .wAirLvgCC cc.wAirLvg eq8.a;
link .TLiqEntCC cc.TLiqEnt;
link .TLiqLvgCC cc.TLiqLvg;
link .AExtCC cc.AExt ;
link .AIntCC cc.AInt;
link .CExtCC cc.CExt;
link .CIntCC cc.CInt;
link .PAtm cc.PAtm eq12.b;
link .qSenCC cc.qSen;
link .qLatCC cc.qLat;
link .qTotCC cc.qTot;

declare valve CCvalve;
link .posValveCC CCvalve.pos;
link .mLiqCC CCvalve.mLiq eq4.a;
link .AValveCC CCvalve.A;
link .mLiqOpenValveCC CCvalve.mLiqOpen;
link .mLeakValveCC CCvalve.mLeak ;

declare coil_heating_cross_flow hc;
link mAirHC hc.mAirEnt eq7.b;
link mLiqHC hc.mLiq eq6.a;
link TAirEntHC hc.TAirEnt eq5.b;
link wAirEntHC hc.wAirEnt eq8.b;
link mAirLvgHC hc.mAirLvg;
link wAirLvgHC hc.wAirLvg eq11.a;
link .TLiqEntHC hc.TLiqEnt;
link .TAirLvgHC hc.TAirLvg eq10.a;
link .TLiqLvgHC hc.TLiqLvg ;
link .qSenHC hc.qSen ;
link .CHC hc.CHx ;
link .AHC hc.AHx ;

declare valve HCvalve;
link .posValveHC HCvalve.pos;
link .mLiqHC HCvalve.mLiq eq6.b;
link .AValveHC HCvalve.A;
link .mLiqOpenValveHC HCvalve.mLiqOpen;
link .mLeakValveHC HCvalve.mLeak;

declare fan_system Sfan;
link TAirEntSfan Sfan.TAirEnt eq10.b;
link wAirEntSfan Sfan.wAirEnt eq11.b;
link .TAirSup Sfan.TAirLvg;
link .wAirSup Sfan.wAirLvg;
link .powerTotSfan Sfan.powerTot;
link .effMotSfan Sfan.effMot;
link .motFracSfan Sfan.motFrac;
link .effShaftSfan Sfan.effShaft;
link .effShaftMaxSfan Sfan.effShaftMax;
link .mAirMaxSfan Sfan.mAirMax;
link .nSfan Sfan.nFan;

DRAFT

 56

AHU_Example.cm AHU / SOURCE CODE

link .pStatSfan Sfan.pStat;
link .pSfan Sfan.pFan;
link .mAirSup Sfan.mAir eq9.b ;
link .CResSfan Sfan.CRes ;
link .CSfan Sfan.CFan ;
link .kSfan Sfan.kFan ;
link .CEffSfan Sfan.CEff;
link .areaSPSfan Sfan.area;
link PAtmSfan Sfan.PAtm eq12.a eq16.b;

declare fan_system Rfan;
link .TAirRet Rfan.TAirEnt ;
link .wAirRet Rfan.wAirEnt ;
link TAirLvgRfan Rfan.TAirLvg eq14.a;
link wAirLvgRfan Rfan.wAirLvg eq15.a;
link .powerTotRfan Rfan.powerTot;
link .effMotRfan Rfan.effMot;
link .motFracRfan Rfan.motFrac;
link .effShaftRfan Rfan.effShaft;
link .effShaftMaxRfan Rfan.effShaftMax;
link .mAirMaxRfan Rfan.mAirMax;
link .nRfan Rfan.nFan;
link .pStatRfan Rfan.pStat;
link .pRfan Rfan.pFan;
link .mAirRet Rfan.mAir ;
link .CResRfan Rfan.CRes ;
link .CRfan Rfan.CFan ;
link .kRfan Rfan.kFan ;
link .CEffRfan Rfan.CEff;
link .areaSPRfan Rfan.area;
link PAtmRfan Rfan.PAtm eq16.a;

declare mix mixT mixW;
link .posDamper mixT.pos mixW.pos ;
link .LeakRetDamper mixT.LeakRet mixW.LeakRet ;
link .LeakOutDamper mixT.LeakOut mixW.LeakOut ;
link .mixC1 mixT.C1 mixW.C1;
link .mixC2 mixT.C2 mixW.C2;
link .mixC3 mixT.C3 mixW.C3;

link TAirRetMix mixT.TRet eq14.b;
link .TAirOut mixT.TOut ;
link TMixLvg mixT.TMix eq1.b ;
link TMixLow mixT.TMixLow;
link TMixHigh mixT.TMixHigh;
link wAirRetMix mixW.TRet eq15.b;
link .wAirOut mixW.TOut ;
link wMixLvg mixW.TMix eq2.b ;
link wMixLow mixW.TMixLow;
link wMixHigh mixW.TMixHigh;

DRAFT

 57

Chiller REFERENCE MODELS

General description
Chiller models can generally be divided into two categories: efficiency models and
detailed mechanistic models. Efficiency models predict the power required to meet a
particular load at particular operating conditions. These models can usually be extended
to model capacity, i.e. the ability to meet that particular load. The input variables for
these models are the water temperatures and flow rates. Mechanistic models predict
refrigerant temperatures, pressures and flow rates and account explicitly for faults such as
fouling and incorrect refrigerant charge.

Model description
Previously developed efficiency models were compared, specifically the DOE-
2/CoolTools empirical model, the Gordon and Ng thermodynamic model and the
ASHRAE Primary Toolkit model, which is a simplified mechanistic model (Sreedharan
and Haves 2001). The Gordon and NG universal chiller model (2nd generation) was
selected for use in the library. The model is based on both energy and entropy balances,
thus incorporating both the first and second laws of thermodynamics. As in the
ASHRAE Toolkit model, sensible heat exchange is not treated explicitly in either the
condenser or the evaporator, which are modeled using the NTU-ε method assuming an
infinite capacity rate on the refrigerant side. The performance equation is expressed in a
form that is linear in physically meaningful parameters. The values of the model
parameters, TS∆ , eqvleakQ , , R , are obtained by linear regression.

Governing equations:

)(,,, lvgevaentevaliqevaliqeva TTcmq −=

)(,,, entconlvgconliqconliqcon TTcmq −=







+

×
+

×
−

+∆=−





+

COPT
qR

qT
TT

QS
q

T
COPT

T

entcon

eva

evaentcon

entevaentcon
eqvleakT

eva

enteva

entcon

enteva 1
11

1
1

,,

,,
,

,

,

,

COP
q

W eva
com =

evacomcon qWq +=

DRAFT

 58

Chiller REFERENCE MODELS

Nomenclature

Variables Description Unit
COP COP chiller COP Dimensionless
cliq cLiq water specific heat kW/kg.K
mliq,con mLiqCon Water mass flow rate at condenser kg/s
mliq,eva mLiqEva Water mass flow rate at evaporator kg/s
qeva qEva Heat exchange at evaporator kW
qcon qCon Heat exchange at condenser kW
Qleak QLeak equvilant heat leak kW
R R total heat exchanger thermal resistance

 =(1/C_con) + (1/C_eva)"
K/kW

St St total internal entropy production K/kW
Teva,ent TEvaEnt Entering water temperature at evaporator K
Teva,lvg TEvaLvg Leaving water temperature at evaporator K
Tcon,ent TConEnt Entering water temperature at condenser K
Tcon,lvg TConLvg Leaving water temperature at condenser K
Wcom WCom Compressor power consumption kW

DRAFT

 59

Chiller.cm Chiller / SOURCE CODE

/*+++
 Identification: Chiller model using Ng-Gordon method.

 Abstract:

 Notes:
 None

 Interface:
 mLiqEva: Water mass flow rate at evaprator [Kg/s]
 mLiqCon: Water mass flow rate at condenser [Kg/s]
 TEvaEnt: Entering water temperature at evaprator [K]
 TEvaLvg: Leaving water temperature at evaprator [K]
 TConEnt: Entering water temperature at condenser [K]
 TEvaLvg: Leaving water temperature at condenser [K]
 qEva: Heat exchange at evaporator [kW]
 qCon: Heat exchange at condenser [kW]
 WCom: Compressor power consumption [kW]
 St: total internal entropy production [K/kW]
 R: total heat exchanger thermal resistance
 =(1/C_con) + (1/C_eva) [K/kW]
 QLeak: equvilant heat leak [kW]
 cLiq: water specific heat [kW/kg.K]

 Acceptable input set:
 mLiqEva: 0.5
 mLiqCon: 0.5
 TEvaEnt: 293
 TEvaLvg: 283
 TConEnt: 310
 St: 0.005
 R: 2.5
 QLeak: 0.2
 cLiq: 4.182

 Recommended matches:
 None

 Suggested breaks:
 None

 Local variables:
 COP: coefficient of performance [scalar]
 cLiq: water specific heat [kW/kg.K]

 Equations:
 qEva=mLiqEva*cLiq*(TEvaEnt-TEvaLvg);
 qCon=mLiqCon*cLiq*(TConLvg-TConEnt);

COP=(1-TEvaEnt/TConEnt+TEvaEnt*St/qEva+QLeak*(TConEnt-
TEvaEnt)/TConEnt/qEva+qEva/TConEnt/UA) -̂1*(TEvaEnt-qEva/UAEva)/TConEnt;

 WCom=1/COP*qEva;
 qCon =Wcom + qEva;

---*/
PORT mLiqEva "Water mass flow rate at evaprator" [Kg/s];
PORT mLiqCon "Water mass flow rate at condenser " [Kg/s];
PORT TEvaEnt "Entering water temperature at evaprator" [K];
PORT TEvaLvg "Leaving water temperature at evaprator" [K];
PORT TConEnt "Entering water temperature at condenser" [K];
PORT TConLvg "Leaving water temperature at condenser" [K];
PORT qEva "Heat exchange at evaporator" [kW];
PORT qCon "Heat exchange at condenser" [kW];
PORT WCom "Compressor power consumption" [kW];
PORT St "total internal entropy production" [K/kW];
PORT R "total heat exchanger thermal resistance
 =(1/C_con) + (1/C_eva)" [K/kW];
PORT QLeak "equvilant heat leak " [kW];

DRAFT

 60

Chiller.cm Chiller / SOURCE CODE

PORT cLiq "water specific heat " [kW/kg.K];
PORT COP "chiller COP" [scalar];

declare equal_link eq1 eq2 eq3 eq4 eq5 eq6 eq7 eq8;
//Evaporator
//qEva=mLiqEva*cLiq*(TEvaEnt-TEvaLvg);
DECLARE cond Eva;
DECLARE safprod pd1;
LINK .TEvaEnt Eva.T1 eq1.a;
LINK .TEvaLvg Eva.T2 ;
LINK .cLiq pd1.a eq2.a;
LINK .mLiq Eva pd1.b;
LINK pd1.c Eva.U12;
LINK qEva Eva.q eq5.b;

//Condenser
//qCon=mLiqCon*cLiq*(TConLvg-TConEnt);
DECLARE cond Con;
DECLARE safprod pd2;
LINK .TConEnt Con.T2 eq4.a;
LINK .TConLvg Con.T1;
LINK cLiq pd2.a eq2.b;
LINK .mLiqCon pd2.b;
LINK pd2.c Con.U12;
LINK .qCon Con.q eq6.a;

//COP=(1-TEvaEnt/TConEnt+TEvaEnt*St/qEva+QLeak*(TConEnt-TEvaEnt)/TConEnt/qEva+qEva/TConEnt/UAEva)^-
1*(TEvaEnt-qEva/UAEva)/TConEnt;
declare chiller_COP COP;
LINK TEvaEnt COP.TEvaEnt eq1.b;
LINK TConEnt COP.TConEnt eq4.b;
LINK .St COP.St;
LINK .qEva COP.qEva eq3.a eq5.a;
LINK .QLeak COP.QLeak;
LINK .R COP.R ;

// WCom=qEva/COP;
declare safquot sq;
LINK qEva1 sq.a eq3.b eq7.a;
LINK .COP COP.COP sq.b;
LINK .Wcom sq.c eq8.a;

// qCon =Wcom + qEva;
declare sum sum1;
LINK WCom sum1.a eq8.b;
LINK qEva2 sum1.b eq7.b;
LINK qCon sum1.c eq6.b;

DRAFT

 61

Chiller_COP.cc Chiller / SOURCE CODE

/* CLASS ch_COP "COP of chillers"

ABSTRACT

 NG-GORDON method

ABSTRACT_END
TEST_INPUT
 TEvaEnt = 290, TConEnt = 370, St=0.005, qEva=10, QLeak=0.2, R=2.5;
*/
#ifdef SPARK_TEXT
// ==== PORTS ====

PORT TEvaEnt "Entering water temperature at evaprator" [K];
PORT TConEnt "Entering water temperature at condenser" [K];
PORT St "Total internal entropy production" [K/kW] ;
PORT qEva "Heat exchange at evaporator" [kW];
PORT QLeak "Equvilant heat leak" [kW];
PORT R "total heat exchanger thermal resistance
 =(1/C_con) + (1/C_eva)" [K/kW];
PORT COP "chiller COP" [scalar];

EQUATIONS {

COP=(1-TEvaEnt/TConEnt+TEvaEnt*St/qEva+QLeak*(TConEnt-TEvaEnt)/TConEnt/qEva+qEva/TConEnt/UAEva)^-
1*(TEvaEnt-qEva/UAEva)/TConEnt;

 }

// ==== FUNCTIONS ====
FUNCTIONS {
 COP = chiller_COP(TEvaEnt, TConEnt, St, qEva, QLeak, R) ;

 }
#endif /* SPARK_TEXT */
#include "spark.h"

 double
chiller_COP (ARGS)
{
 ARGDEF(0,TEvaEnt) ;
 ARGDEF(1,TConEnt) ;
 ARGDEF(2,St) ;
 ARGDEF(3,qEva) ;
 ARGDEF(4,QLeak) ;
 ARGDEF(5,R) ;

 double COP ;

 COP = 1/(1-TEvaEnt/TConEnt+TEvaEnt*St/qEva+QLeak*(TConEnt-TEvaEnt)/TConEnt/qEva+ R*qEva/TConEnt) *
(TEvaEnt-R*qEva)/TConEnt;

 return COP;
}

DRAFT

 62

REFERENCES

Brandemuehl, M. J., Gabel, S., I. Andersen. 1993. A toolkit for secondary HVAC system
energy calculations, HVAC2 Toolkit. Prepared for The American Society of Heating,
Refrigerating and Air Conditioning Engineers. TC 4.7 Energy Calculations. Atlanta, GA.
ASHRAE.

Sreedharan, P. and Haves, P. 2001. Comparison of Chiller Models for use in Model-
Based Fault Detection, Proc. International Conference for Enhancing Building
Operations, Austin, TX, July

Ng, K. C., H. T. Chua, W.Ong, S. S. Lee, J. M. Gordon. 1997. Diagnostics and
optimization of reciprocating chillers: theory and experiment, Applied Thermal
Engineering, vol. 17, no.3, pp. 263-276.

SPARK 2003. Simulation Problem Analysis and Research Kernel. Lawrence Berkeley
National Laboratory and Ayres Sowell Associates, Inc. Downloadable from
http://simulationresearch.lbl.gov/

HPCBS # E5P23T3c

HPCBS
Software Toolbox for
Component-Level Model-Based Fault Detection Methods
(Draft)

Element 5 - Integrated Commissioning and Diagnostics
Project 2.3 - Advanced Commissioning and Monitoring Techniques

California Energy Commission
Public Interest Energy Research Program

Rodney Martin, Peng Xu, Philip Haves
Lawrence Berkeley National Laboratory

October, 2003

High Performance Commercial Building Systems

Acknowledgement

This work was supported by the California Energy Commission, Public Interest Energy
Research Program, under Contract No. 400-99-012 and by the Assistant Secretary for
Energy Efficiency and Renewable Energy, Building Technologies Program of the U.S.
Department of Energy under Contract No. DE-AC03-76SF00098.

DISCLAIMER

This document was prepared as an account of work sponsored by the United States
Government. While this document is believed to contain correct information, neither the
United States Government nor any agency thereof, nor The Regents of the University of
California, nor any of their employees, makes any warranty, express or implied, or
assumes any legal responsibility for the accuracy, completeness, or us efulness of any
information, apparatus, product, or process disclosed, or represents that its use would not
infringe privately owned rights. Reference herein to any specific commercial product,
process, or service by its trade name, trademark, manufacturer, or otherwise, does not
necessarily constitute or imply its endorsement, recommendation, or favoring by the
United States Government or any agency thereof, or The Regents of the University of
California. The views and opinions of authors expressed herein do not necessarily state or
reflect those of the United States Government or any agency thereof, or The Regents of
the University of California.

This report was prepared as a result of work sponsored by the California Energy
Commission (Commission). It does not necessarily represent the views of the
Commission, its employees, or the State of California. The Commission, the State of
California, its employees, contractors, and subcontractors make no warranty, express or
implied, and assume no legal liability for the information in this report; nor does any
party represent that the use of this information will not infringe upon privately owned
rights. This report has not been approved or disapproved by the Commission nor has the
Commission passed upon the accuracy or adequacy of the information in this report.

High Performance Commercial Building Systems

Software Toolbox for
Component-Level Model-Based Fault

Detection and Diagnosis Methods

October 24, 2003

Rodney Martin, Peng Xu, Moosung Kim and Philip Haves

Lawrence Berkeley National Laboratory

Subtask 2.3.3 Develop semi-automated, component-level diagnostic
procedures

Element 5 – Integrated Commissioning & Diagnostics

Table of Contents
 Pages

1 Abstract

2 Introduction

2.1 Toolbox in phases of building lifecycle
2.2 SPARK and toolbox

3 Calibration module
3.1 Calibration algorithm
3.2 Calibration module structure
3.3 Mixing box calibration module
3.4 VAV fan-duct system calibration module
3.5 Cooling coil and valve system calibration module

4 Online monitoring and fault detection modules
4.1 Pre-processor module
4.2 Steady-state detector module
4.3 Simulator module
4.4 Comparator module
4.5 Fault Diagnosis

5 References

6 Appendices

6.1 Appendix I – Innovate SPARK model
6.2 Appendix I - Complex method used for calibrations
6.3 Appendix III - Table of C++ program files
6.4 Appendix IV - Table of data files

Abstract

This document describes the contents of a toolbox for component- level model-based fault
detection methods in commercial building HVAC systems. The toolbox consists of five
basic modules: a parameter estimator for model calibration, a preprocessor, an AHU
model simulator, a steady-state detector, and a comparator. Each of these modules will
be described in detail. The toolbox is written in C++ and also invokes the SPARK
simulation program.

Introduction

The aim of the work described here is to develop and implement model-based fault
detection methods for HVAC components and subsystems. The software routines
documented here are designed to be used with a set of component models implemented in
the object-oriented simulation program SPARK, developed at LBNL. The models are
documented in a companion report (Xu and Haves 2003).

SPARK is used to execute the models at each stage of use of the tool. In the calibration
stage, model parameters are identified on a component-by-component basis. In some
cases, e.g. air handling units, the components are then aggregated to form subsystems
whose boundaries are defined by the availability of reliable sensor measurements. In the
fault detection stage, SPARK is used to simulate the subsystem model. The calibration
routines support both linear and non-linear models. Currently, only static models are
supported. The execution of the SPARK models is illustrated in Appendix I.

Model-based fault detection tools proposed here can be used in both the commissioning
and routine operation phases of the building life-cycle. As it is shown in Figure 1,
different modes of execution are used at each phase. Each mode of execution involves
two different stages, which are performed sequentially – model calibration followed by
fault detection. During the commissioning phase, design information and manufacturer’s
performance data are first used to calibrate the model. Functional test data taken during
start-up tests are then used to detect any pre-existing faults. Once remedial work has
been performed, the tests are repeated to confirm that the faults have been corrected.
Once the test results are considered satisfactory, the test data are used to recalibrate the
model for use in the on- line monitoring phase. The predictions of the recalibrated model
are compared with routine operating data in order to detect any faults that may arise
during subsequent operation.

Figure 1: Fault detection schema

Calibration modules

Calibration algorithm
There are several nonlinear optimization techniques that may be used for model
calibration. The method implemented in the toolbox is Box’s Complex Method for
constrained nonlinear optimization (Box, 1965). A step-by-step description of the
algorithm is in the appendix II.

Calibration module structure
The parameter estimator module uses functional test data in order to calibrate parameters
for the specific component. Three main components within the AHU system are all
calibrated. The diagram in Figure 2 illustrates the calibration process fo r all of the
component model parameters, using the cooling coil and valve system as an example.

model

Functional test data

model parameters

Parameter estimator:
Model “fine-tuning”

Online data taken during routine operation of system

pre-processor

model input data

output data

model output

comparator

FAULT

steady state detector

model

Functional test data

model parameters

Parameter estimator:
Model “fine-tuning”

Online data taken during routine operation of system

pre-processor

model input data

output data

model output

comparator

FAULT

steady state detector

Figure 2 Calibration module structure

The performance data used to calibrate the model parameters, ccalibrationsansome.dat,
shown at the top of Figure 2 is separated into two files before starting the calibration.
One is the output data file, CCRealOutput.dat, which contains measured values that will
be predicted by the model, such as leaving air and water temperatures. The other is the
input data file, CcvalvecReal1.inp, contains valve position data which is used as input to
the model. The file containing the constant parameters, ccvalveCConstant1.inp, the file
containing the current estimates of the parameters that are being identified,
ccvalvecSim1.inp, are also shown in Figure 2.

The calibration parameter file, ccvalvecSim1.inp, is written continuously as required by
the algorithm that is used to calibrate the model. The three *.inp files are merged to form
the ccvalve1.run meta-file, which, along with ccvalve1.prf, is used by SPARK to
simulate the output of the model. The results of the SPARK are then stored in
ccvalveSparkoutput.dat. The calibration program, Coolingcoilvalvecalibration.exe, then
estimates new values for the parameters, based on the differences between the measured
and simulated values stored in CCRealOutput.dat and ccvalveSparkoutput. Once the
algorithm has converged, the values of the calibrated parameters are written to the screen.
The display takes the form of a visually appealing animation of the convergence of the
simulated and measured data.

The resulting data presented in the visual display does not necessarily have to be
coincident with the training data sets used to calibrate the models. In fact, there is a bin
module, which is used to reduce the size of the training data set. This reduced sized

Functional test data:
CccalibrationSansome.dat

Spark run files:
Cccal.run

SPARK Exe files:
CC.exe

SPARK prf files:
CC.prf

SPARK output files:
CCSparkoutput.dat

Functional tests input
data:
CcvalvecReal1.inp

Functional test output data:
CCRealOutput.dat

Other constant parameters:
CcvalveCconstact1.inp

Calibration parameters:
CcvalvecSim1.inp

Complex method:
Coolingcoilvalvecalibr
ation.exe

training data set is used to calibrate the model, while the original larger data set is used to
generate the visual display results of the calibration. This “bin” tool collapses one large
data set into a small data set based on two criteria: that the system is in steady state, and
the new control signal is significantly different to the previous control signal recorded in
the small data set. The small data set is then be used for model calibration, the advantage
being that execution time is significantly reduced.

The following sections highlight the specific features of the code required to calibrate
each one of the components using the algorithm just described.

Mixing box calibration module

For the mixing box, the parameters to be calibrated are: LeakRet, LeakOut, c1, and c2 (N.B.
c3 = 1-c1-c2). The inputs are: pos, Tret, and Tout. The output parameter is Tmix, and the
governing relationship is as fo llows:

 Tmix=(((1-LeakRet)-LeakOut)(c1*pos+c2*pos2+c3*pos3)+LeakOut)*(Tout-Tret)+Tret

More details of this model are given in (Xu and Haves 2003).

This module performs model calibration of the mixing box component of the AHU
system. The parameters, inputs, outputs, and their relationships are listed above. Because
the equations are nonlinear with respect to the output parameters, the least squares
method cannot be used to compute them. The least squares method can only be used
when the output is linearly dependent on the calibration parameters.

The model parameters are estimated using the Box-Complex constrained nonlinear
optimization algorithm discussed in Appendix II. Figure 3 illustrates the fit of the
simulated model output compared to the real measured output mixed air temperature.

Figure 3: Automatic calibration results of mixing box

VAV Fan-duct system calibration module

For the fan-duct system, the parameters to be estimated are: CRes, CFan, kFan, and ηMot. The
constants are: MotFrac, ηShaftMax, PAtm, Area, cEff, and density(ρ). The input parameters are:
nFan and mAir. The output parameters are: PowerTot , Pfan, PStat . The governing relationships
are:

 Pfan=kfan*nFan

2-CFan*mAir
2

 PStat=Pfan-cRes*mAir
2

 PowerTot = mAir*Pfan/(ρ * ηMot)

Again, for more details refer to (Xu and Haves 2003). Note that, unlike the mixing box
calibration, there are three calibrations that must take place because there are three output
variables and three governing equations. These calibrations must take place sequentially -
the result of the first calibration are used in the second and third calibrations. Other than
this major difference, the underlying principle of the calibration is the same.

Note that the second governing equation to be calibrated is linear in cRes. Hence, the least
squares method could be used to obtain this value. However, for consistency, the Box -
Complex constrained nonlinear optimization algorithm is used for all three calibrations.

Figure 4 illustrates the fit of the model output to the second measured output, static fan
pressure.

Figure 4: Automatic calibration results of VAV fans

Cooling coil and valve system calibration module

Finally, for the cooling coil-valve system calibration, the parameters to be estimated are:
Cair, Cwater, Valc1, and Valc2. The constants are: Aext, Aint, Patm, ValLeakpar, and Authority.
The input variables are: TairEnt, wAirEnt, TliqEnt, mAir, mLiqOpen, and valve position. The
output variables are: TairLvg, wAirLvg, and Tliqlvg, although the latter two outputs are not
used since they are not usually measured in practice.

The governing relationships are more complicated than for the previous two subsystems -
details are provided in (Xu and Haves 2003). As with the fan subsystem, there are three
sequential calibrations to perform. The underlying principle of the calibration is the
same. Figure 5 illustrates the fit of the simulated model output compared to the measured
output, the air temperature downstream of the cooling coil.

Figure 5: Automatic calibration results of cooling coil-valve system

On-line monitoring and fault detection modules

Now that the model calibration stage has been presented, we must revisit the fault
detection stage. In the current implementation, the model parameters for each of the
components must be recorded manually via the visual displays that are updated during
calibration, as shown in Figs. 3 - 5. Also, they must be hardcoded into the appropriate
files for the ensuing fault detection stage. The right side of Fig. 1 illustrated the modules
within this stage, shown again with more file transfer information in Fig. 6.

Figure 6 On-line monitoring and fault detection schema

Pre-processor

The pre-processor module of the fault detection stage, shown at the top of Figure 6,
collects the online data taken during routine operation of the system. The main C++
program file that implements this module is called preprocessor.cpp. This program
converts the raw data file, raw.dat, containing all data measured during the fault detection
phase into processed data files having a standard format. There is a control file,
convert.con, which contains the standard format and naming conventions of the
parameters to be converted. This control file is used to process the raw data file, convert
it and separate it into two processed data files: one is the measured input parameter data
file, realinput.dat, and other is the measured output parameter data file, realoutput.dat.
Data is also checked for errors prior to writing the input and output data files.

Several different modules use the input and output data files within the fault detection
stage. One of these, the model simulation itself, has already been discussed in detail.
Simulation of the AHU model in SPARK requires the use of model input parameter data
obtained from the preprocessor module. This model input data, as well as the output data
found in the files realinput.dat and realoutput.dat is used by the steady state detector
module.

FAULT
(FaultReport.dat)

model

pre-processor

model input data

output data

model output

comparator

steady state detector

Online data taken during routine operation of system

model parameters
(hardcoded)

raw.dat

realoutput.dat

realinput.dat
realinput.dat

realoutput.dat

realoutput.dat

SS.dat

realinput.dat = pos.inp

convert.con

SS_T_input.con

SS_T_output.con

FAULT
(FaultReport.dat)

model

pre-processor

model input data

output data

model output

comparator

steady state detector

Online data taken during routine operation of system

model parameters
(hardcoded)
model parameters
(hardcoded)

raw.dat

realoutput.dat

realinput.dat
realinput.dat

realoutput.dat

realoutput.dat

SS.dat

realinput.dat = pos.inp

convert.con

SS_T_input.con

SS_T_output.con

Steady-state detector

The steady-state detector module is implemented with the use of the C++ program file
SSDetector.cpp. It is used to detect whether the system components under consideration
are in steady state. The governing equations used to model all components of the system
are static, since no dynamics have been modeled. Hence we can only consider fault
detection during steady-state, and no transients are allowed. As such, there must be some
threshold for determining the steady-state condition for both input and output data sets.
Steady-state detection is performed by computing the EWMA (Exponentially-Weighted
Moving Average) of the difference between consecutive time- indexed values for input
and output parameter data values. If the absolute value of this moving average for any
input or output variable is below a predetermined threshold value, then steady-state has
been achieved.

The input and output data files, realinput.dat, and realoutput.dat, respectively, are needed
by the steady-state detector module, and come from the preprocessing module.
SS_T_input.con is a control file required by the steady-state detector module, and it
contains the threshold values of each input variable. Similarly, SS_T_output.con is a
control file that contains the threshold of each output variable. The output file, ss.dat,
stores the results of the detection. For each time- indexed data point, a value of 1 is
recorded in this file if the component is found to be in steady state, or 0 if it is not in
steady state.

Simulator

The C++ program file that implements the simulator module invokes the aggregate AHU
(Air-handling unit) model generated by SPARK. All of the components of the AHU
model's parameters are calibrated by the functional test data in a separate phase. These
calibrated constant parameters are hardcoded and stored in the file constant.inp. The
preprocessor module automatically generates the measured operating AHU system input
data, and the results are effectively written in the file pos.inp.

Both of these input files, pos.inp and constant.inp are referenced in the file AHU1.run,
which is used by SPARK. Currently all of these calibrated parameters are hard-coded, not
automatically written into the constant.inp file. It is possible that additional coding effort
could be used to automate this process, making for a more seamless boundary between
the two stages of model parameter calibration and fault detection.

There are over 100 parameters that SPARK requires for aggregate AHU system
simulation. However, there are only about 10 that are actually calibrated. There are
several software development options that could be explored in terms of how to handle
generalizing this parameter selection, calibration and component inclusion modeling
issue.

The AHU1.run file also references an output file, Sparkoutput.out. This is where the
resulting simulated output data for the AHU model executed by SPARK are stored. Other
meta-data is also included in the AHU1.run file, such as the initial and final simulation
times, as well as the simulation time increment, etc. There is also an AHU.prf file that is
used by SPARK in order to set the specific parameters that control the methods and
tolerances for analysis and solution of the governing equations. The executable file,
AHU.exe, will generate the simulated output results of an overall model of the AHU
system. Diagnostic information on SPARK's simulation is returned to the console upon
completion of the simulation by default. This can be suppressed by redirecting this
information to a log file, instead of to console I/O. This is named SPARK.log.

Comparator

The final module within the fault detection stage is the comparator. This is implemented
by the C++ program file comparator.cpp. The system must first be in steady-state,
determined by data from the file SS.dat. Then the simulated outputs derived from the
SPARK simulation module, Sparkoutput.dat, are compared with the real output of the
system, realoutput.dat. The real output data comes from the preprocessor module.
Depending on the magnitude of the absolute error between the two, a determination is
made regarding whether or not a fault has occurred. The results are stored in the file
named FaultReport.dat, and released to console I/O screen display.

Detection of a fault is based upon comparing the magnitude of the absolute error to some
component-specific threshold. The thresholds are based upon empirical input data found
in the file realinput.dat, and characterize specific physical parameters of the components,
in a least squares sense. These relationships are defined in a separate file, threshold.cpp,
and called in the comparator module. Hence, the information in the file realinput.dat
needs to be used by the comparator module. Although the least squares method is
currently used to identify most of these thresholds empirically, in the case of the mixing
box model, these thresholds will be based upon the upper & lower limits defined by the
SPARK model (Xu and Haves 2003). Specifically, the outside air fraction (OAF)
provides the basis for setting these thresholds in lieu of the mixed air temperature. These
thresholds are defined over the entire operating range, and therefore can similarly be used
for fault detection over the same range.

The effects of measurement & modeling errors are not explicitly accounted for in this
fault detection toolbox. It is assumed that some engineering judgment will need to be
used to take these factors into consideration to prevent spurious false alarms and/or
missed detections.

Fault Diagnosis

In the comparator module, fault detection is augmented with some fault diagnosis
functionality. If the AHU system is found to be in steady-state, fault diagnosis is

performed by using the innovation (error) found in the detection phase as a fuzzy input to
a diagnostic rulebase. The software used to generate the fuzzy rulebase, input sets and
membership functions is TILShell 3.0, from Togai InfraLogic, Inc. C code can be
automatically generated by this program, and the data structures from the resulting source
code can be incorporated into the existing toolbox comparator module.

There are currently some problems with incorporating the source code generated by the
TILShell in the existing toolbox comparator module. However, the problem can be
solved by manually implementing a coding workaround. The problem is that the
automatically generated code references some data structures that are not declared. The
problem can be overcome by including appropriate declarations.

The fault diagnosis is based upon a list of possible faults that may occur over the entire
operating range of the controlled input for a particular HVAC component. Because
different faults occur in different sections of the operating range of the control signal,
weighted bins are used to accumulate instances of detected faults that occur in the same
sections of the operating range. Typically, there are two or three bins that cover each
dimension of the operating range. These bins provide a way to partition the operating
range into sections. In this way, the number of faults detected in any one bin can be used
to set a threshold count for when an accurate computation of the moving average value
can be made.

The cooling & heating coil fault diagnosis is based upon the premise that there are two
fuzzy inputs: the innovation (i.e. the difference between predicted and measured output
values) at full duty and the innovation at minimal duty of the heating or cooling coil
valve. Two bins are used to aggregate the data for each of the fuzzy inputs. There are four
possible faults: valve leakage, coil fouling, and positive or negative sensor offset. The
following table summarizes a fuzzy rulebase, based upon combinations of all possible
faults & bins:

Table 1

Fault Type Innovation at Minimal Duty
(ε0)

Innovation at Full Duty (ε100)

Valve Leakage + 0
Coil Fouling 0 -

Positive Sensor Offset + +
Negative Sensor Offset - -

The weighting factors for both inputs are binned according to the graph below illustrating
both the crisp and fuzzy bins for the heating & cooling coil-valve weighting factor. As
shown in Figure 7, the weighting factor is meant to act as a mitigating technique in
computation of the moving average when using the fuzzy bin method. The reason for
using this technique is to weight the new incoming data according to the operating range
location. The result that this might have on the final updated moving average value can
be either positive or negative, depending on the value of the difference between the new

incoming data and the cur rent moving average value. The mitigating effect is evident by
the weighting factor’s linear decrease from 1 to 0. It can also be seen that the weighting
factor is always equal to one for the crisp bin method. Hence the following equation for
the moving average is:

nnn xwwyy)]1(1[)1(1 αα −−+−= −

and when w=1 it becomes:

nnn xyy)1(1 αα +−= −

where α is the forgetting factor, xn is the new data, yn-1 is the current moving average
value, and yn is the new moving average value.

Figure 7 Weighting factor vs. valve position for coil-valve system

Note that the moving average computation is not treated as valid before 50 detections
have been counted. However, it is still computed regardless of the number of counts, and
displayed upon each detection, along with a warning stating that the value may not be
valid. To clarify, the detection count will always be computed, as well the moving
average. However, the diagnostic code is invoked only if the count for both bins exceeds
50. The resulting diagnostic information is displayed only if there is a detection

(threshold exceedance) that triggers it, regardless of whether the count for both bins
exceeds 50 or not. The bins shown above are only defined on the very small regions
between 0 and 0.02, representing minimal duty, and between 0.98 and 1, representing full
duty.

The fuzzy membership functions defined for the input variables are created in the
TILShell 3.0 software. For both minimal and full duty innovations, the membership
functions for the sets are as in Figure 8:

Figure 8: Coil-valve membership functions (N = negative, Z = zero, P = positive)

The rule-base associated with the fuzzy system is based upon the table shown previously.
There are three basic fuzzy sets for both inputs: zero, positive and negative, as shown in
Figure 8. Each of the rules will fire based upon the computed inputs and defined fuzzy
membership functions. As a result, the belief values associated with each of the rules will
be used as the diagnostic information that is displayed upon an instance of triggered fault
detection.

The mixing box fault diagnosis uses three independent fuzzy systems, one for each type
of possible fault. There are three possible faults: outside air damper leakage, return air
damper leakage, and a ‘catch-all’ category that includes all other types of faults including
nonlinearities. Each fuzzy system has its own rulebase, with innovations binned over
specific sections of the operating range that act as inputs. They are as follows: innovation
at minimal duty, innovation at half duty, and innovation at full duty of the mixing box
damper position. The input s correspond respectively to the faults mentioned previously.
Table 2 summarizes the fuzzy rulebases, based upon combinations of all possible faults &
bins:

Table 2: Mixing box fault diagnosis rules

Fault Type Innovation at
Minimal Duty (ε0)

Innovation at
Half Duty (ε50)

Innovation at
Full Duty (ε100)

Outside Air Damper Leakage -
Return Air Damper Leakage +
Nonlinearity and other faults +
Nonlinearity and other faults -

The weighting factors for both inputs are binned according to the bins shown in Figure 9.

Figure 9 Weighting factor vs. damper position

The bins shown above are defined on the regions between 0 and 0.02, representing
minimal duty, between 0.4 and 0.6 representing half duty, and between 0.98 and 1,
representing full duty. The three basic fuzzy sets for all inputs are: zero, positive and
negative. For all three innovation inputs, the membership functions for the sets are as
follows:

Figure 10: Mixing box member functions

Again, each of the rules will fire based upon the computed inputs and defined fuzzy
membership functions. The belief values associated with each of the rules will then be
used as the diagnostic information displayed when triggered by the detection of a fault.

Finally, the supply and return fan duct-system fault diagnosis is based upon the premise
that that there are two fuzzy inputs: innovation at low speed and innovation at high speed
of the supply & return fans. Two bins are used to aggregate the data for each of the fuzzy
inputs. There are eight possible faults: positive and negative sensor offset, fan stuck at
full and intermediate speed, fan motor failure, fan reduced capacity, slipping fan belt, and
all others lumped into a single generic category. The following Table 3 summarizes a
fuzzy rulebase, based upon combinations of all possible faults & bins:
Table 3

Fault Type Innovation at Minimal Duty (ε0) Innovation at
Full Duty (ε100)

Positive sensor offset + +
Negative sensor offset S- S-
Fan stuck at full speed + 0

Fan stuck at intermediate speed + S-
Fan motor failure L- L-

Fan reduced capacity S- +
Slipping fan belt M- M-

Others 0 S-

The five basic fuzzy sets for both inputs shown in the above table are: positive (+), zero
(0), small negative (S-), medium negative (M-), and large negative (L-). The weighting
factor for both inputs are binned according to the graph below illustrating both the crisp
and fuzzy bins for the supply & return fan duct system weighting factor in Figure 11.

Figure 11: Weighting factor vs. fan speed

The bins shown above are defined on the regions between 0.3 and 0.5, representing low
fan speed, and between 0.65 and 1 representing high fan speed. The membership
functions for the five basic fuzzy sets described earlier, for both innovation inputs, are as
Figure 12:

Figure 12 Fan system member functions

Note that the fuzzy sets shown in the legend of the illustration above (NM, N, Z, P, PM)
do not correspond exactly with the sets described previously (positive (+), zero (0), small
negative (S-), medium negative (M-), and large negative (L-)). The sets, however, have to
be translated respectively because the software defaults to the former nomenclature. As
always, each of the rules will fire based upon the computed inputs and defined fuzzy
membership functions. The belief values associated with each of the rules will then be
used as the diagnostic information displayed when triggered by the detection of a fault.

5 References

Box, M. J. (1965). A new method of constrained optimization and a comparison with
other methods. Computer Journal, 8:42--52.

Xu, P. and Haves, P. (2002). Field Testing of Component-Level Model-Based Fault
Detection Methods for Mixing Boxes and VAV Fan Systems. Proceedings of 2002
American Council ACEEE Summer Study on Energy Efficiency in Buildings. Pacific
Grove, CA.

Xu, P. and Haves, P. (2003). Library of component reference models for fault detection
(AHU and chiller). Report to California Energy Commission. Lawrence Berkeley
National Laboratory.

Appendix I Execution of SPARK models in the current version of toolbox

Three main components or subsystems within the air handling unit subsystem are the
mixing box, the fan-duct subsystem, and the cooling coil subsystem. To explore different
implementation approaches, the simpler models are coded as C++ classes and SPARK is
used for the more complex models, such as the cooling coil subsystem, which require
iteration. Calling the current version of SPARK requires an EXEC call, which involves a
significant overhead. When a more convenient form of SPARK becomes available, e.g. a
DLL, SPARK will become the implementation method of choice for all components,
providing a uniform way of calling and coupling models.

The basic file processing and data transfer requirements for generating a SPARK
executable are shown in Figure 3. The input files are: 1) filename.run, a meta-file
containing a list of the files referencing basic constant, input and calibration parameters
required to solve the equation(s). It also contains other important parameters such as the
name of the resulting output file, the initial & final simulation times, and time interval,
etc., and 2) filename.prf, which contains the user preferences for how the governing
equation(s) are to be solved and certain tolerances associated with obtaining the
solutions. Given these two files, the SPARK software will create an executable file that
can be invoked on the command line, and hence called from within a C++ program when
necessary.

The files containing the basic constant, input and calibration parameters required to solve
the governing equation(s) for the component(s) being simulated are typically created with
extension *.inp. As shown in Figure 3, some *.inp files that are generated manually and
others are generated automatically, either by C++ programs or from trend logs of EMCS
databases. Table 1 illustrates the present status of automation vs. manual generation for
the different uses of SPARK within the toolbox:

Figure 3: Generation of SPARK executables

hardcoded.inp

automated.inp
Filename.run SPARK

Filename.prf

Filename.exe
Filename.out
Or
Filename.dat

Input Status Depends
on level of automation
currently coded

Examples of input files:
current calibration parameters,
input parameters

Execute/invoke within C
code

hardcoded.inp

automated.inp
Filename.run SPARK

Filename.prf

Filename.exe
Filename.out
Or
Filename.dat

Input Status Depends
on level of automation
currently coded

Examples of input files:
current calibration parameters,
input parameters

Execute/invoke within C
code

Table 1 Current status of hardcoded and automated use of SPARK

1. Total AHU model simulation for fault detection
2. Cooling coil subsystem model simulation for calibration

Note that automation of the input parameter data file for use in the total AHU SPARK
model simulation for fault detection has not yet been implemented. Furthermore, the
naming convention for the files shown is provisional. In the future, the file naming
convention for these input (and other) relevant files would be standardized.

(Just before the end of the High Performance Commercial Building Systems program,
and after the completion of the work described here, a new Version of SPARK
(VisualSPARK Version 2.0) was released. Version 2.0 has two new features that offer
important advantages for the implementation of model-based fault detection:

• A SPARK problem can be compiled to produce a Dynamic Link Library
(DLL), which allows the simulation to be called as a function from a fault
detection program rather than using an ‘exec’ call with its associated overhead

• SPARK objects may be ‘multi-valued’, i.e. calculate more than one output
variable, simplifying the process of creating and connecting models

New variants of the models in the library that are compatible with Version 2.0 will be
added to the library as resources permit. In the meantime, it is suggested that intending
users consider porting models of interest to Version 2.0 and contact the authors if they
have questions or problems.)

 Automated Manually Generated

1)

Pos.inp (Input parameters)
- 480 lines of data
- should be written by preprocessor &
read by SPARK

Constant.inp (Calibration parameters)
- 1 line of data
- hardcoded & read by SPARK

2)

ccvalveSim1.inp
(Calibration
parameters)
-1 line of data
- Continuously
written by
calibration routine
& read by SPARK

ccvalvexReal1.inp
(Input parameters)
- 8 lines of data
- Written once by
calibration routine using
data from
Cccalibrationsansome.dat
& read by SPARK

ccvalveCConstant1.inp
(Constant parameters)
-1 line of data
- hardcoded & read by SPARK

Appendix II Complex method used for calibrations

Let:
 nc = number of parameters to be estimated
 M = number of vertices (points) corresponding to the number of initial guesses for all
calibration parameters values, representing a complex geometric figure in nc{?}-space
(the ‘complex’).

 1. Find M ≥ nc+1 points that satisfy all implicit & explicit inequality constraints. There
are two cases, depending on the nature of the constraints:

a. For explicit inequality constraints, the complex is bounded by a hypercube
defined by the constraints, which defines the region of feasible solutions. One
point can be picked within the feasible range, and for the remaining points, a
uniform random number generator can be used to ensure compliance with the
bounding hypercube restriction.

b. For implicit inequality constraints, each new test point is generated randomly
and then tested for feasibility. If the point is infeasible, it is moved to a
location halfway to the centroid of the already accepted points. This process
is repeated until a set of k{M} feasible points is found.

Note: only explicit cons traints are used in the current version of the toolbox.

 2. Define an objective function to minimize.

In this case, the objective function is an error function, f, defined as the
sum of the scaled absolute error between the measured actual output of the
component or subsystem and model simulated output, averaged over a set
of N measurements:

{ }M1j ,)(
1

1

K∈∀−= ∑
=

N

i

real
iji

sim
ij yy

N
f c,x

where fj is the error for the jth point in the complex, yi
sim is the model

output for the ith measurement, xi is the vector of measured inputs the ith
measurement, cj is the vector of parameters that define the jth point in the
complex and yi

real is the measured output for the ith measurement. There
are M error functions to compute, one for each point in the complex.
The function is evaluated at each of the k points (vertices). The point that
evaluates to the largest function value is reflected about the centroid of the
remaining vertices of complex. The formula for reflection is:

 Xr =(1+a)X0-aXh

 where Xr = new reflected point
 X0 = centroid of remaining points

 Xh = current point evaluating to largest function value
 a = positive-valued reflection coefficient (default value 1.3)

Note that this formula must be computed for each dimension of the
parameter space. The intuition for the reflection formula stems from the
fact that the new reflected point lies on a line joining the centroid of the
remaining points and the high point. However, it lies closer to the centroid
than to the high point. This is what we want, since we move away from
the high point, and closer to potential low points. The distance away from
the high point and to the centroid of remaining points is governed by
selection of the reflection coefficient, a.

3. We must test for feasibility of the new reflected point (meaning the

constraints must not be violated with this new reflected point).
a. If the new point is feasible, and the function value is lower than the

high value, we replace this high value with the new reflected point
and proceed to finding another maximum function value and
reflection in Step 2.

b. If the function value is not lower, then the reflection coefficient
must be too high. Hence, a new reflection point is found by halving
the value of a, and re-computing the reflection point. This iteration
continues until a point is found that results in a lower function
value. However, we don't want this to go on indefinitely, so we
must set some tolerance, ε1, for a, at which this process will stop.

c. If a lower function value is not found after reaching the ε1
tolerance level, then we just throw away this point, and start Step 2
all over again with the 2nd highest function value.

 4. If at any stage the reflected point is deemed to be infeasible, it is moved

halfway in towards the centroid until it becomes feasible.

5. Convergence of the process (i.e. termination of the algorithm) is

determined when the following conditions are met:
a. The complex shrinks to a specified small size, i.e. the distance

between any two vertices is smaller than some pre-specified
tolerance, ε2.

b. The standard deviation of the function value becomes sufficiently
small, below some prescribed tolerance, ε3.

 Appendix III Table of C++ files

File Name Usage Module Content

PreProcessor.cpp Online monitoring/fault
detection Preprocessor Pre process the raw data collected from EMCS

systems

SSDectector.cpp

Online monitoring/fault
detection Steady state detector Determine whether the system is under steady

state
simulation.cpp

Online monitoring/fault
detection Simulator Conduct SPARK sim ulation

Comparator.cpp

Online monitoring/fault
detection Comparator Compare the measured and simulated output

and determine whether there is a fault
Threshold.cpp

Online monitoring/fault
detection Comparator Determine the threshold of the output variable

for comparator

coolingcoilvalvecalibration.cpp Automatic calibration Cooling coil and valve

calibration
Cooling coil and valve system calibration

fancalibration.cpp Automatic calibration VAV fan calibration VAV fan system calibration
mixingboxcalibration.cpp Automatic calibration Mixing box calibration Mixing box calibration

bin.cpp Automatic calibration Bin module Collapse a big data set from functional step test
to a small training data set

plot.cpp Automatic calibration Calibration Real time plot of all above calibrations

Appendix IV Table of data files

File Name Called By/
Created By

Module Content Format

Time

raw.dat preprocessor.cpp/
EMCS system

Preprocessor
Time-indexed data dump from building
EMCS system
 (1 11-hr working day, 10 sec intervals)

Parameter names
from EMCS
system

convert.con preprocessor.cpp/
software user

Preprocessor Control file that contains the standard
format and naming conventions of the
parameters to be converted

N/A

Time
TLiqEntCC
posValveCC
TLiqEntHC
posValveHC
TAirRet
wAirRet
TAirOut
wAirOut

realinput.dat

SSDetector.cpp,
comparator.cpp,
threshold.cpp,
AHU1.run
SPARK
/preprocessor.cpp

Steady-State
Detector,
Comparator,
SPARK
Model

Contains the input data read during
routine operation of system, after being
processed by preprocessor module

posDamper
Time
TAirLvgCC
wAirLvgCC
TLiqLvgCC
mLiqCC
TAirLvgHC
TLiqLvgHC
mLiqHC
TAirSup
wAirSup
mAirSup
powerTotSfan
nSfan
pSfan
mAirRet
powerTotRfan
nRfan

realoutput.dat

SSDetector.cpp,
comparator.cpp,
threshold.cpp
/preprocessor.cpp

Steady-State
Detector,
Comparator

Contains the output data read during
routine operation of system, after being
processed by preprocessor module

pRfan
TLiqEntCC
posValveCC
TLiqEntHC
posValveHC
TAirRet
wAirRet
TAirOut
wAirOut

SS_T_input.con SSDetector.cpp/
Software user

Steady-State
Detector

Control file required by the steady-state
detector module containing the threshold
values of each input parameter

posDamper
TLiqEntCC
posValveCC
TLiqEntHC
posValveHC
TAirRet
wAirRet
TAirOut
wAirOut

SS_T_output.con SSDetector.cpp/
Software user

Steady-State
Detector

Control file required by the steady-state
detector module containing the threshold
values of each output parameter

PosDamper
Time

SS.dat comparator.cpp/
SSDetector.cpp

Comparator

Stores the results of the detection as
follows: for each time-indexed data
point, record a value of 1 (Yes, at steady-
state i.e. below threshold) or 0 (No, not
at steady-state i.e. above threshold)

SS Value

FaultReport.dat
Software User/
comparator.cpp Comparator The final results are stored in the file

N/A

Index
MixposDamper
MixTAirOut

Pos.inp
AHU1.run,
SPARK
/preprocessor.cpp

SPARK
Model Contains input data from fault detection

RetTAirRet

Constant.inp
AHU1.run,
SPARK
/ Software User

SPARK
Model Contains calibration parameter values

See SPARK
documentation
for more details

Sparkoutput.out
comparator.cpp/
SPARK

SPARK
Model

Contains SPARK simulation output
results for aggregate AHU system

See SPARK
documentation
for more details
MixTAirOut
RetTAirRet
MixposDamper

mixingcal.dat
mixingboxcalibration.cpp/
EMCS system

Parameter
Estimator

Contains training data for calibration of
mixing box model parameters

TAirEntCC
nFan
mAir
PowerTot
pFan

fanCal.dat fancalibration.cpp/
EMCS system

Parameter
Estimator

Contains training data for calibration of
VAV fan-duct model parameters

Pstat
TAirEnt
wAirEnt
TLiqEnt
mAir
mLiqOpen
pos
wAirLvg

Cccalibrationsansome.dat

coolingcoilvalvecalibration
.cpp/EMCS system

Parameter
Estimator

Contains training data for calibration of
coil-valve model parameters

TairLvg
Index
TAirEnt
wAirEnt
TLiqEnt
mAir
mLiqOpen

ccvalvexReal1.inp

ccvalve1.run, SPARK/
coolingcoilvalvecalibration
.cpp, EMCS system

Parameter
Estimator

Contains input training data for
generation of simulated output for coil-
valve model using SPARK (One-time
read)

pos
Index
Cair
Cwater
Valc1

ccvalvecSim1.inp

ccvalve1.run, SPARK/
coolingcoilvalvecalibration
.cpp

Parameter
Estimator

Contains current calibration parameters
for generation of simulated output for
coil-valve model using SPARK
(Continuously read)

Valc2
Aext
Aint
Patm
ValLeakpar

ccvalveCConstant1.inp

ccvalve1.run, SPARK/
Software User

Parameter
Estimator

Contains constant parameters for
generation of simulated output for coil-
valve model using SPARK

Authority

ccvalveSparkoutput1.dat

coolingcoilvalvecalibration
.cpp/SPARK

Parameter
Estimator

Contains SPARK simulation output
results for coil-valve model
(Continuously written)

	Component Level Model-based Fault DetectionAcknowledgement
	Acknowledgements
	Component Level Model-based Fault Detection Preface
	Preface
	Component Level Model-based Fault DetectionAbstract
	Abstracts

