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 DISCLAIMER 
 This report was prepared as the result of work sponsored by the 

California Energy Commission. It does not necessarily represent 
the views of the Energy Commission, its employees or the State 
of California. The Energy Commission, the State of California, its 
employees, contractors and subcontractors make no warrant, 
express or implied, and assume no legal liability for the 
information in this report; nor does any party represent that the 
uses of this information will not infringe upon privately owned 
rights. This report has not been approved or disapproved by the 
California Energy Commission nor has the California Energy 
Commission passed upon the accuracy or adequacy of the 
information in this report.  
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Preface 
The Public Interest Energy Research (PIER) Program supports public interest energy research and 
development that will help improve the quality of life in California by bringing environmentally 
safe, affordable, and reliable energy services and products to the marketplace. 

The Program’s final report and its attachments are intended to provide a complete record of the 
objectives, methods, findings and accomplishments of the High Performance Commercial 
Building Systems (HPCBS) Program. This Commercial Building Energy Benchmarking 
attachment provides supplemental information to the final report (Commission publication # 500-
03-097-A2). The reports, and particularly the attachments, are highly applicable to architects, 
designers, contractors, building owners and operators, manufacturers, researchers, and the energy 
efficiency community. 

This document is the twentieth of 22 technical attachments to the final report, and consists of a 
research report and software:   

� Development of Whole-Building Fault Detection Methods (E5P2.3T3a) 

� Software Toolbox for Component-Level Model-Based Fault Detection Methods 
(E5P2.3T3c) 

The Buildings Program Area within the Public Interest Energy Research (PIER) Program 
produced this document as part of a multi-project programmatic contract (#400-99-012). The 
Buildings Program includes new and existing buildings in both the residential and the 
nonresidential sectors. The program seeks to decrease building energy use through research that 
will develop or improve energy-efficient technologies, strategies, tools, and building performance 
evaluation methods. 

For the final report, other attachments or reports produced within this contract, or to obtain more 
information on the PIER Program, please visit http://www.energy.ca.gov/pier/buildings or contact 
the Commission’s Publications Unit at 916-654-5200. The reports and attachments are also 
available at the HPCBS website: http://buildings.lbl.gov/hpcbs/.
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Abstracts 
 
Library of component reference model for fault detection 
This aim of the work reported here is to develop a library of equipment reference models suitable 
for use in component-level, functional testing and performance monitoring.  It is part of the Task 
3.3 - Develop Semi-Automated, Component-Level Diagnostic Procedures, within Element 5 - 
Integrated Commissioning And Diagnostics. 

In commissioning and fault diagnosis, a baseline model of correct operations is normally first 
configured and calibrated against design information and manufacturers’ data.  Next, the model is 
fined-tuned to match the actual performance after any faults have been fixed and the model is 
then used as part of a performance monitoring diagnostic tool for operations.  The reference 
model is used to predict performance that would be expected in the absence of faults.  A 
comparator is used to determine the significance of any differences between the predicted and 
measured performance and hence the level of confidence that a fault has been detected.   

A complete library of reference models would include models of all types of HVAC equipment, 
and possibly the associated controls.  The work reported here focuses on developing diagnosis 
models for secondary HVAC system (air handling units and distribution systems) and chillers 
(simple chiller power model).   

 
Software Toolbox for Component-Level Model-Based Fault Detection Methods 
This document provides a brief synopsis of the toolbox for component-level model-based fault 
detection methods in commercial building HVAC systems. The “toolbox” consists of five basic 
modules: a parameter estimator for model calibration, a preprocessor, a SPARK AHU model 
simulator, a steady-state detector, and a comparator. Each of these modules will be described in 
detail. The toolbox is completely written in C++, so one user requirement is familiarity with C++. 
It also invokes the SPARK simulation program. However, because the toolbox calls pre-compiled 
SPARK executables from within C++ code, user familiarity with SPARK is not essential.  
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INTRODUCTION 
 
The increasing complexity of building HVAC control and management systems 
heightens the need for the devolvement of tools to assist in monitoring the performance 
of these systems.  The application of these tools is expected to lead to improved comfort, 
energy performance and reduced maintenance costs.  The function of these tools may be 
limited to collecting raw data from sensors and control system outputs and displaying it 
for manual analysis by operators or engineers.  Alternatively, the tools may analyze the 
data in order to determine whether the operation is correct or faulty (automated fault 
detection) and may also identify the location or nature of the physical cause of a problem 
(automated fault diagnosis). 
 
In automated commissioning and fault diagnosis, a baseline model of correct operation is 
normally first configured and calibrated against design information and manufacturers’ 
data.  Next, the model is fined-tuned to match the actual performance after any faults 
have been fixed and the model is then used as part of a performance monitoring 
diagnostic tool for operations.  The reference model is used to predict performance that 
would be expected in the absence of faults.  A comparator is used to determine the 
significance of any differences between the predicted and measured performance and 
hence the level of confidence that a fault has been detected.  Model-based fault detection 
is illustrated in Figure 1. 

 
Figure 1: The concept of model-based fault detection and its application to a heating coil 
 
Automated fault detection and diagnosis (AFDD) tools may either be implemented in a 
separate computer networked to the energy management and control systems (EMCS) or 
may be embedded in the EMCS itself.  Separate implementation can be achieved with 
less engineering development work than embedded implementation and provides a 
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stepping stone towards the tighter integration of embedded implementation, as well as 
providing a viable deplyment path in its own right.   
 
The work reported here is part of Task 3.3 - Develop Semi-Automated, Component-Level 
Diagnostic Procedures, within Element 5 - Integrated Commissioning and Diagnostics.  
The aim of Task 3.3 is to create software procedures that will provide component- level 
fault detection and functional testing methods.   The specific subtasks include: 
 

• Develop a library of equipment models for component- level functional testing and 
performance monitoring 

• Develop a toolbox of software procedures to support component-level, functional 
testing and performance monitoring. 

• Conduct field trials to assess the performance of the methods and software tools. 
 
This report describes and documents the library of equipment models as of July, 2003. A 
complete library of reference models would include models of all types of HVAC 
equipment, and possibly the associated controls.  The work reported here focuses on 
developing diagnosis models for secondary HVAC system (air handling units and 
distribution systems) and chillers (simple chiller power model).  It is expected that 
additional models will be added as a result of the work of IEA Annex 40 Commissioning 
of Buildings and HVAC Systems for Improved Energy Performance (see 
http://www.commissioning-hvac.org/).   The library will be made available for download 
from http://buildings.lbl.gov/hpcbs/Element_5/02_E5_P2_3_3.html.  The source code 
will be included in the download and will be subject to the provisions of LBNL’s Open 
Source agreement. 
 
SPARK 
 
The simulation program SPARK (SPARK 2003) has been used to develop and implement 
the reference model library.  SPARK is an object-based software system that can be used 
to simulate physical systems that can be modeled using sets of differential and algebraic 
equations.  ‘Object-based’ means that components and subsystems are modeled as objects 
that can be interconnected to form a model of the entire system.  Often the same 
component and subsystem models can be used in many different system models, reducing 
the cost of development. 
 
The process of describing a problem in order to produce a SPARK model begins by 
breaking it down in an object-oriented way.  This involves thinking about the system in 
terms of its components, so that each component can be represented by a SPARK object.  
Then, a model is developed for each component not already available in a SPARK 
library.  Since there may be several components of the same type, SPARK object models, 
i.e., equations or groups of equations, are defined in a generic manner, called classes.  
Classes serve as templates for creating any number of like objects that may be needed in 
a problem.  The problem model is then completed by linking objects together, thus 
defining how they interact, specifying data values that specialize the model to represent 
the actual problem to be solved and providing boundary values. 
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SPARK models have a hierarchical structure.  The smallest programming element is a 
class consisting of an individual equation, called an atomic class.  Atomic classes are 
saved as files with extension .cc. A macro class consists of several atomic classes (and  
possibly other macro classes) combined together into a higher level unit.  Macro classes 
are saved as .cm files.  The ports of the different atomic classes with equal value are 
linked using equal objects defined in equal_link.cm.    
 
Problem models are similarly described, using the atomic and macro classes, and placed 
in a problem specification file.  When the problem is processed by SPARK, the problem 
specification file is converted to a C++ program, which gets compiled, linked and 
executed to solve the problem for a particular set of boundary conditions specified at run-
time.   
 
Just before the end of the High Performance Commercial Building Systems program, and 
after the completion of the work described here, a new Version of SPARK 
(VisualSPARK Version 2.0) was released.  Version 2.0 has two new features that offer 
important advantages for the implementation of model-based fault detection: 
 

• A SPARK problem can be compiled to produce a Dynamic Link Library 
(DLL), which allows the simulation to be called as a function from a fault 
detection program rather than using an ‘exec’ call with its associated overhead 

• SPARK objects may be ‘multi-valued’, i.e. calculate more than one output 
variable, simplifying the process of creating and connecting models 

 
New variants of the models in the library that are compatible with Version 2.0 will be 
added to the library as resources permit.  In the meantime, it is suggested that intending 
users consider porting models of interest to Version 2.0 and contact the authors if they 
have questions or problems. 
 
Contents of the Model Library 
 
This document describes the component models developed using SPARK. For secondary 
systems, the major goal is to develop a full component model library to treat air-handling 
units (AHU).  The components that have been modeled are coils (cooling and heating), 
fans, valves, and mixing boxes.  Combining all these models together creates a model of 
an AHU.  For primary systems, a simple chiller model based on the Gordon-Ng algorithm 
has been developed.   
 
In this report, the documentation of each reference model in the library consists of a 
general description, a model description, and the source code.   The general description 
describes the nature and function of the component and the possible common faults.  The 
model description explains the model structure and the governing equations.  The 
definitions of all the variables and the source code for all the classes for each component 
are also presented. 
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Coil       REFERENCE MODELS  
 
General description 
‘Coils’ are fin- tube, air to water heat exchangers that are typically used for either cooling 
or heating the air supplied to conditioned spaces.  Heating coils typically have one or two 
rows of tubes and are essentially cross-flow devices.   Cooling coils typically have four or 
more rows and are essentially counterflow devices.  They may provide dehumidification 
as well as sensible cooling and the surface in contact with the air may then be partially or 
completely wet.  Most heating coils, at least in climates where there is no risk of freezing, 
and all cooling coils, are controlled by varying the flow rate of water through the coil.  
Coils in VAV systems also experience variable air- flow rate.  The challenges in coil 
modeling are to treat the variation in surface resistance with flow rate and to treat 
partially wet operation.  
 
The most common fault to be detected in either heating or cooling coils is fouling of the 
heat exchange surface, either on the air or the water-side.  In order to detect fouling when 
it occurs, it is only necessary to model full load operation.  However, in order to be able 
to predict loss of capacity at peak load before it occurs, it is necessary to model part load 
operation as well. 
 
A significant number of coil models have been developed over the last few decades; none 
of the models that treat partly wet operation is entirely suitable for fault detection.   In 
particular, there are two cooling coil models in the ASHRAE Secondary Toolkit 
(Brandemuehl et al., 19930. The simple model approximates partially wet operation as all 
wet or all dry, which leads to errors of up to 5%.  The detailed model treats the dry and 
wet regions separately and iterates to find the position of the boundary.  Testing of this 
model performed as part of the work described here showed that the iterative scheme 
employed in the model sometimes fails to converge under conditions of high humidity.  
For this reason, it was decided to develop a new model of partially wet coil operation. 
 
Model description  
 In the new model, the coil is divided into discrete sections along the direction of fluid 
flow.  In each section, heat and mass balance equations are established for each fluid, 
together with rate equations describing the heat and mass transfer.  If the dew point 
temperature of the air is lower than the metal surface temperature, that section of the coil 
is treated as dry. If not, the water condensation rate is assumed to be proportional to the 
difference between the humidity ratio of the bulk air stream and the humidity ratio of 
saturated air at the temperature of the coil metal surface.  The coefficient of 
proportionality is determined by assuming the value of the Lewis Number is unity.  The 
sections that make up the coil are linked together by associating the fluid inlet conditions 
of one section with the outlet conditions for the adjacent upstream section.   
 
The resulting set of coupled equations is then solved by SPARK.  Although the 
computational burden of the new coil model is significantly greater than that of the 
ASHRAE Toolkit models, the model is robust, and it has the additional advantage of 
being a suitable starting point for a dynamic cooling coil model. 
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SPARK can not simulate a model with a dynamic number of objects.  In the code, the 
number of layers of the coil is hard-wired to 20 instead of being variable.  Dividing the 
cooling coil into 20 layers provides enough accuracy, because under the common 
operation range of the cool coil, the driving temperature difference in each layer is one 
order of magnitude lower than the temperature change along the flow direction. 
 
Two macro classes were developed for the cooling coil models.  The class to model the 
heat and mass transfers within one layer of the coil is coil_layer.cm.  The class that 
models the performance of a counter flow coil is coil_counter_flow.cm.  This latter class 
invokes coil.layer.cm to solve the heat and mass transfer equations for each layer of the 
coil.  The counter flow coil class can be used for cooling and heating. 
 
A simple heating coil model for crossflow heat exchange is used to simulate heating coil 
performance.  With a known overall heat transfer coefficient, the capacity rates of the two 
fluid streams, the inlet fluid states, and the flow configuration, and effectiveness-NTU 
method can be used to determine outlet states.  As in the cooling coil, the U value of the 
coil on the air side and the water side is modeled as a function of the fluid flow rate.  The 
macro class for this crossflow coil is coil_heating_cross_flow.cm. 
 
Governing equations  
 
UA value 
UA value of heat exchanger external surface and internal surface: 
 

extairextext AvCUA ⋅⋅= 8.0
 

int
8.0

intint AvCUA liq ⋅⋅=  

 
Cooling coil 
For each layer of the cooling coil : 
(coillayer.cm) 
 
Heat transfer between air and cooling coil surface: 
 

 extsur
lvgairentair

layersen UAT
TT

q )
2

( ,,
, −

+
=  









⋅−
+

= massfgsur
lvgairentair

layerlat hhw
ww

q )
2

(,0max ,,
,  

  
Heat transfer between cooling coil surface and water flow: 

 int
,,

, )
2

( UA
TT

Tq lvgliqentliq
surlayertot

+
−=  
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Heat balance: 

)()( ,,,,,,,, lvgairentairdryairentliqlvgliqliqliqlayerlatlayersenlayertot hhmTTcmqqq −=−=+=  

 )( ,,,, lvgairentairpdryairlayersen TTcmq −=  
 
Others functions: 
(In SPARK HVAC/Toolkit library, based on the ASHRAE Handbook Fundamentals) 
 ),( ,,, lvgairlvgairlvgair wTenthalpyh =  

 ),( ,,, entairentairentair wTenthalpyh =  

)( sursur Thumratiow =  
)( airp wcpairc =  

 
 Counter flow  cooling coil: 
(coil_counter_drywet.cm) 
 1,,,, −= ilvgairientair TT  

 1,,,, += ientairilvgair TT  

 1,,,, += ilvgliqientliq TT  

 1,,,, −= ilvgliqilvgliq TT  

∑= layersensen qq ,  

∑= layertottot qq ,  
 
 
 
 
 
 
 
 
 
 
 

 
Figure 1  Discrete sections of counter flow coil in the cooling coil model 

 
Heating coil 
(Cross flow, one side unmixed) 
Determining the number of transfer units (NTU), 
 

),(min liqliqairair mcmcMINC ⋅⋅=    

),(max liqliqairair mcmcMAXC ⋅⋅=   

water 

air 

i+1 i 

Tair,lvg,i-1 = Tair,ent,i Tair,lvg,i+1  

Tliq,ent,i = Tliq,lvg,i+1  Tliq,ent,i-1 = Tliq,lvg,i 

Tair,lvg,i = Tair,ent,i+1  

i-1 

Tliq,ent,i+1  
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minC

UA
NTU =   

 
The ratio of the two fluid capacity rates is, 
 

max

min

C
C

R =  

  
Effectiveness for cross flow, minimum capacity rate stream unmixed, 
 

R
e

NTUeR )1(1
−−⋅−−

=ε   

   
Outlet fluid condition are calculated from the definition of the effectiveness,  
      

liqliqentliqentair

entliqlvgliq

mc
C

TT

TT

⋅
⋅=

−

−
min

,,

,, ε   

     

airairentliqentair

lvgairentair

mc
C

TT

TT

⋅
⋅=

−

−
min

,,

,, ε  

 
 
Nomenclature  
 
Variables  Description Unit 
Aext AExt External heat exchange area m2 
Aint AInt Internal heat exchange area m2 
cair CpAir Air specific heat at constant pressure kJ/kg.K 
cwater CLiq Water specific heat kJ/kg.K 
Cmax CMax Maximum of the two capacity rates  kW/K 
Cmin  CMin Minimum of the two capacity rates  kW/K 
Cext CExt Constant of heat exchange of external surface Dimensionless 
Cint CInt Constant of heat exchange of internal surface Dimensionless 
ε E Effectiveness of the heat exchanger. Dimensionless 
hair,ent hairEnt Coil entering air enthalpy kJ/kg 
hair,lvg hAirLvg Coil leaving air enthalpy kJ/kg 
hmass hMass Mass transfer coefficient kg/s 
hfg hfg enthalpy of vaporization kJ/kg 
mair,dry mAir Dry air flow rate kg_dryair/s 
mliq mLiq water flow rate kg/s 
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Coil       REFERENCE MODELS  
 
Variables  Description Unit 
NTU NTU Number of transfer units of heat exchanger Dimensionless 
qsen qSen Sensible heat transfer rate.  Positive for air 

cooling 
W 

qlat qLat Latent heat transfer rate.  Positive for air 
cooling 

W 

qtot qTot Heat transfer rate.  Positive for air cooling W 
Tair,ent TAirEnt Coil entering air temperature oC 
Tair,lvg TAirLvg Coil leaving air temperature oC 
Tliq,lvg TLiqLvg Coil leaving water temperature oC 
Tliq,ent TLiqEnt Coil entering water temperature oC 
Tsur TSur Coil surface temperature oC 
UAext UAExt Coil air side -external- heat transfer 

conductance 
W/ K 

UAint UAInt Wet coil liquid side - internal- heat transfer 
conductance 

W/ K 

vair vAir air velocity m/s 
vliq vLiq water flow velocity m/s 
    
wsur wSur Saturate air humidity ratio at coil surface 

temperature 
kg/kg 

wair,lvg wAirLvg Coil leaving air humidity  ratio kg/kg 
wair,ent wAirEnt Coil entering air humidity  ratio kg/kg 
    
Tair,ent,i TAirEnt Coil entering air temperature at layer i oC 
Tair,lvg,i TAirLvg Coil leaving air temperature  at layer i oC 
Tliq,lvg,i TLiqLvg Coil leaving water temperature at layer i oC 
Tliq,ent,i TLiqEnt Coil entering water temperature at layer i oC 
    
Tair,ent,i-1 TAirEnt Coil entering air temperature at layer i-1 oC 
Tair,lvg,i-1 TAirLvg Coil leaving air temperature  at layer i-1 oC 
Tliq,lvg,i-1 TLiqLvg Coil leaving water temperature at layer i-1 oC 
Tliq,ent,i-1 TLiqEnt Coil entering water temperature at layer i-1 oC 
    
Tair,ent,i+1 TAirEnt Coil entering air temperature at layer i+1 oC 
Tair,lvg,i+1  TAirLvg Coil leaving air temperature  at layer i+1 oC 
Tliq,lvg,i+1 TLiqLvg Coil leaving water temperature at layer i+1 oC 
Tliq,ent,i+1 TLiqEnt Coil entering water temperature at layer i+1 oC 
R R Ratio of the Cmin and Cmax. Dimensionless 
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coil_layer.cm      Coil / SOURCE CODE 

 
/* CLASSMACRO  coil_layer  
 
ABSTRACT 
 modeling one portion or layer of the dry/wet coil. 
ABSTRACT_END 
 
Equations: 
 qSen = ( (TAirEnt + TAirLvg)/2 - TSur ) * UAExt; 
 qLat = ( (wAirEnt + wAirLvg)/2 - wSur ) * A*hMass  
      =0 if [(wAirEnt + wAirLvg)/2 - wSur <0]; 
 qTot = UAInt * ( TSur - (TLiqLvg + TLiqEnt)/2 ) 
 qTot = mLiq * C_Water*(TLiqLvg - TLiqEnt) 
 qSen = CAir * (TAirEnt -TAirLvg) 
 qTot = mAir * ( hairEnt - hAirLvg)  
 hAMass = UAExt * hfg /Cpm 
 hAirLvg = f (TAirLvg, wAirLvg) 
 hAirEnt = f (TAirEnt, wAirEnt) 
 wSur = f ( TSur ) 
 qTot = qSen + qLat 
 UAExt = CExt*AExt*mAir^0.8 
 UAInt =Cint *AInt* mLiq^0.8 
 
TEST_INPUT 
 TAirEnt = 31  
 TAirLvg = unknown  
 wAirEnt = 0.02  
 wAirLvg = unknown  
 TLiqEnt =8  
 TLiqLvg = unknown  
 UAExt =200  
 UAInt =400  
  mAir  =1  
 mLiq =0.5  
 PAtm =101325  
 qSen = unknown  
 qLat = unknown  
 qTot = unknown 
*/ 
// ==== PORTS ==== 
PORT TAirEnt  "Coil entering air dry bulb temperature"   [deg_C] ; 
PORT TAirLvg  "Coil leaving air dry bulb temperature"   [deg_C] ; 
PORT wAirEnt  "Coil entering air humidity  ratio"   [kg_water/kg_dryAir] ; 
PORT wAirLvg  "Coil leaving air humidity  ratio"   [kg_water/kg_dryAir]; 
PORT TLiqEnt  "Coil entering water temperature"   [deg_C] ; 
PORT TLiqLvg  "Coil leaving water temperature"   [deg_C] ; 
PORT UAExt  "Coil air side -external- heat transfer coefficient"   [W/deg_C] ; 
PORT UAInt  "Wet coil liquid side -internal- heat transfer coefficient"  [W/deg_C] ; 
PORT  mAir   "Air flow rate"     [kg_dryAir/s] ; 
PORT mLiq  "Liquid flow rate"     [kg/s] ; 
PORT PAtm  "Atmospheric pressure"    [Pa]; 
PORT qSen  "Sensible heat transfer rate.  Positive for air cooling." [W]; 
PORT qLat  "Latent heat transfer rate.  Positive for air cooling."  [W]; 
PORT qTot  "Heat transfer rate.  Positive for air cooling."  [W]; 
 
declare cond qSen qLat qLiq qAirSen qLiqInt qAirTot;  
declare average TAir wAir TLiq; 
declare max2 max1; 
declare safquot quot; 
declare lat_rate hMass; 
declare cpair cp; 
declare capratel cpLiq; 
declare cap_rate CAir; 
 
declare equal_link qSen1 qSen2; 
declare equal_link qLat1 ; 
declare equal_link qTot1 qTot2 qTot3; 
declare equal_link TSur1 TSur2; 
declare equal_link TAirEnt1 TAirEnt2;  
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declare equal_link TAirLvg1 TAirLvg2; 
declare equal_link wAirEnt1; 
declare equal_link wAirLvg1 wAirLvg2; 
declare equal_link UAExt1; 
declare equal_link hMass1; 
declare equal_link wSur1 wSur2; 
declare equal_link TLiqEnt1; 
declare equal_link TLiqLvg1; 
declare equal_link hAirLvg1; 
declare equal_link hAirEnt1; 
declare equal_link mAir1; 
 
 
// qSen = ( (TAirEnt + TAirLvg)/2 - TSur ) * UAExt 
LINK  qSen.q   qSen1.a  ; 
LINK  .TAirEnt TAir.a   TAirEnt1.a; 
LINK  .TAirLvg TAir.b   TAirLvg1.a; 
LINK  TAir.c  qSen.T1   ; 
LINK   qSen.T2   TSur1.a; 
LINK .UAExt  qSen.U12   UAExt1.a ;  
 
//qLat = ( (wAirEnt + wAirLvg)/2 - wSur ) * hMass or =0 if [(wAirEnt + wAirLvg) *0.5 - wSur <0] 
LINK  qLat.q   qLat1.a; 
LINK  .wAirEnt wAir.a   wAirEnt1.a; 
LINK  .wAirLvg wAir.b   wAirLvg1.a; 
LINK  wAir.c  max1.a; 
LINK  max1.b qLat.T2  wSur1.a; 
LINK  max1.c  qLat.T1; 
LINK  qLat.U12   hMass1.b; 
 
//hMass = UAExt * hfg /Cpm 
LINK  quot.a   UAExt1.b; 
LINK  cp.w   wSur1.b wSur2.a; 
LINK       cp.CpAir quot.b; 
LINK      quot.c hMass.mAir; 
LINK  hMass.cap  hMass1.a; 
 
//qLiq = UAInt * ( TSur - (TLiqLvg + TLiqEnt)/2 ); 
LINK  qLiq.q   qTot1.a; 
LINK  .TLiqEnt TLiq.a   TLiqEnt1.a; 
LINK  . TLiqLvg TLiq.b  TLiqLvg1.a; 
LINK     TLiq.c qLiq.T2; 
LINK  qLiq.T1   TSur1.b TSur2.a; 
LINK    .UAInt qLiq.U12; 
 
//qLiq = mLiq * C_Water*(TLiqLvg - TLiqEnt) 
LINK  qLiqInt.q   qTot1.b qTot2.a; 
LINK  qLiqInt.T2   TLiqEnt1.b; 
LINK  qLiqInt.T1   TLiqLvg1.b; 
LINK .mLiq cpLiq.mWater; 
LINK  cpLiq.cap qLiqInt.U12; 
 
//qSen = CAir * (TAirEnt -TAirLvg) 
LINK      qAirSen.q  qSen1.b qSen2.a; 
LINK  qAirSen.T1  TAirEnt1.b TAirEnt2.a; 
LINK  qAirSen.T2  TAirLvg1.b TAirLvg2.a; 
LINK .mAir CAir.mAir    mAir1.a; 
LINK  CAir.w    wAirLvg1.b wAirLvg2.a; 
LINK  CAir.cap qAirSen.U12; 
 
//qTot = mAir * ( hairEnt - hAirLvg)  
LINK  qAirTot.q   qTot2.b qTot3.a; 
LINK  qAirTot.T2  hAirLvg1.a; 
LINK  qAirTot.T1  hAirEnt1.a; 
LINK  qAirTot.U12  mAir1.b; 
 
// hAirLvg = f (TAirLvg, wAirLvg) 
declare enthalpy enAirLvg; 
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LINK   enAirLvg.h   hAirLvg1.b; 
LINK    enAirLvg.TDb   TAirLvg2.b; 
LINK    enAirLvg.w  wAirLvg2.b; 
 
// hAirEnt = f (TAirEnt, wAirEnt) 
declare enthalpy enAirEnt; 
LINK   enAirEnt.h   hAirEnt1.b; 
LINK     enAirEnt.TDb   TAirEnt2.b; 
LINK    enAirEnt.w  wAirEnt1.b; 
 
//wSur = f ( TSur ) 
declare enthsat Surf; 
LINK  .PAtm  Surf.PAtm;   
LINK   Surf.TDb   TSur2.b;  
LINK    Surf.w   wSur2.b; 
LINK hSur Surf.hSat;  
 
//qTot = qSen + qLat 
declare sum q; 
LINK .qTot q.c   qTot3.b; 
LINK .qSen q.a   qSen2.b; 
LINK .qLat  q.b   qLat1.b; 
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/* CLASSMACRO  coil_counter_drywet  
 "model of counter flow coil, including total dry, total wet, partial dry and partial wet conditions" 
  the model can be used both for cooling and heating purpose" 
ABSTRACT 
 The counter flow coil is divided into 20 layers in the direction of air flow.  The leaving 
 condition of one layer is the entering condition of next layers. In each layer, model of class 

coil_layer is used.  This model demonstrates advantage over the model in HVAC toolkit and SPARK HVAC 
toolkit 

 in terms of mathematical stability and handling partial dry and wet conditions. 
 
 ... 
ABSTRACT_END 
TEST_INPUT 
 TAirEnt = 31  
 TAirLvg = unknown  
 wAirEnt = 0.02  
 wAirLvg = unknown  
 TLiqEnt =8  
 TLiqLvg = unknown  
 UAExt =200  
 UAInt =400  
  mAir  =1  
 mLiq =0.5  
 PAtm =101325  
 qSen = unknown  
 qLat = unknown  
 qTot = unknown 
*/ 
PORT TAirEnt  "Coil entering air dry bulb temperature"    [deg_C] ; 
PORT TAirLvg  "Coil leaving air dry bulb temperature"    [deg_C] ; 
PORT wAirEnt  "Coil entering air humidity  ratio"    [kg /kg_dryAir] ; 
PORT wAirLvg  "Coil leaving air humidity  ratio"    [kg /kg_dryAir]; 
PORT TLiqEnt  "Coil entering water temperature"    [deg_C] ; 
PORT TLiqLvg  "Coil leaving water temperature"    [deg_C] ; 
PORT AExt  "Heat exchange area - Coil air side -external"   [W/deg_C] ; 
PORT AInt  "Heat exchange area - Wet coil liquid side -internal"   [W/deg_C] ; 
PORT CExt  "Constant- Coil air side -external- heat transfer coefficient"   [W/deg_C] ; 
PORT CInt  "Constant - Wet coil liquid side -internal- heat transfer coefficient" [W/deg_C] ; 
PORT  mAir   "Air flow"       [kg_dryAir/s] ; 
PORT mLiq  "Liquid flow"      [kg/s] ; 
PORT PAtm  "Atmospheric pressure"     [Pa]; 
PORT qSen  "Sensible heat transfer rate.  Positive for air cooling."  [W]; 
PORT qLat  "Latent heat transfer rate.  Positive for air cooling."   [W]; 
PORT qTot  "Heat transfer rate.  Positive for air cooling."    [W]; 
 
declare coil_layer l1 l2 l3 l4 l5 l6 l7 l8 l9 l10 l11 l12 l13 l14 l15 l16 l17 l18 l19 l20 ; 
 
declare UA UAExt UAInt; 
LINK .AExt UAExt.AreaHX; 
LINK .CExt UAExt.C; 
LINK .AInt UAInt.AreaHX; 
LINK .CInt UAInt.C; 
 
declare div20 div1 div2; 
LINK UAExt.UA div1.a; 
LINK div1.c l1.UAExt l2.UAExt l3.UAExt l4.UAExt l5.UAExt l6.UAExt l7.UAExt l8.UAExt l9.UAExt l10.UAExt l11.UAExt 
l12.UAExt l13.UAExt l14.UAExt l15.UAExt l16.UAExt l17.UAExt l18.UAExt l19.UAExt l20.UAExt  ; 
LINK UAInt.UA div2.a; 
LINK div2.c l1.UAInt l2.UAInt l3.UAInt l4.UAInt l5.UAInt l6.UAInt l7.UAInt l8.UAInt l9.UAInt l10.UAInt l11.UAInt l12.UAInt 
l13.UAInt l14.UAInt l15.UAInt l16.UAInt l17.UAInt l18.UAInt l19.UAInt l20.UAInt ; 
 
LINK .PAtm l1.PAtm l2.PAtm l3.PAtm l4.PAtm l5.PAtm l6.PAtm l7.PAtm l8.PAtm l9.PAtm l10.PAtm l11.PAtm l12.PAtm 
l13.PAtm l14.PAtm l15.PAtm l16.PAtm l17.PAtm l18.PAtm l19.PAtm l20.PAtm ; 
LINK .mAir   UAExt.m l1.mAir l2.mAir l3.mAir l4.mAir l5.mAir l6.mAir l7.mAir l8.mAir l9.mAir l10.mAir l11.mAir l12.mAir 
l13.mAir l14.mAir l15.mAir l16.mAir l17.mAir l18.mAir l19.mAir l20.mAir ; 
LINK .mLiq   UAInt.m l1.mLiq l2.mLiq l3.mLiq l4.mLiq l5.mLiq l6.mLiq l7.mLiq l8.mLiq l9.mLiq l10.mLiq l11.mLiq l12.mLiq 
l13.mLiq l14.mLiq l15.mLiq l16.mLiq l17.mLiq l18.mLiq l19.mLiq l20.mLiq ; 
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LINK  .TliqEnt l1.TLiqEnt; 
LINK  T1  l1.TLiqLvg  l2.TLiqEnt ; 
LINK  T2  l2.TLiqLvg  l3.TLiqEnt ; 
LINK  T3  l3.TLiqLvg  l4.TLiqEnt ; 
LINK  T4  l4.TLiqLvg  l5.TLiqEnt ; 
LINK  T5  l5.TLiqLvg  l6.TLiqEnt ; 
LINK  T6   l6.TLiqLvg  l7.TLiqEnt ; 
LINK  T7   l7.TLiqLvg  l8.TLiqEnt ; 
LINK  T8  l8.TLiqLvg  l9.TLiqEnt ; 
LINK  T9  l9.TLiqLvg  l10.TLiqEnt ; 
LINK  T10 l10.TLiqLvg  l11.TLiqEnt; 
LINK  T11 l11.TLiqLvg  l12.TLiqEnt; 
LINK  T12 l12.TLiqLvg  l13.TLiqEnt; 
LINK  T13 l13.TLiqLvg  l14.TLiqEnt; 
LINK  T14 l14.TLiqLvg  l15.TLiqEnt; 
LINK  T15 l15.TLiqLvg  l16.TLiqEnt; 
LINK  T16 l16.TLiqLvg  l17.TLiqEnt; 
LINK  T17  l17.TLiqLvg  l18.TLiqEnt; 
LINK  T18  l18.TLiqLvg  l19.TLiqEnt; 
LINK  T19  l19.TLiqLvg  l20.TLiqEnt; 
LINK  .TLiqLvg  l20.TLiqLvg; 
 
LINK  .TAirEnt  l20.TAirEnt; 
LINK  Tw20  l20.TAirLvg  l19.TAirEnt; 
LINK  Tw19  l19.TAirLvg  l18.TAirEnt; 
LINK  Tw18  l18.TAirLvg  l17.TAirEnt; 
LINK  Tw17  l17.TAirLvg  l16.TAirEnt; 
LINK  Tw16  l16.TAirLvg  l15.TAirEnt; 
LINK  Tw15  l15.TAirLvg  l14.TAirEnt; 
LINK  Tw14  l14.TAirLvg  l13.TAirEnt; 
LINK  Tw13  l13.TAirLvg  l12.TAirEnt; 
LINK  Tw12  l12.TAirLvg  l11.TAirEnt; 
LINK  Tw11  l11.TAirLvg  l10.TAirEnt; 
LINK  Tw10  l10.TAirLvg  l9.TAirEnt ; 
LINK  Tw9  l9.TAirLvg  l8.TAirEnt ; 
LINK  Tw8  l8.TAirLvg  l7.TAirEnt ; 
LINK  Tw7  l7.TAirLvg  l6.TAirEnt; 
LINK  Tw6  l6.TAirLvg  l5.TAirEnt ; 
LINK  Tw5  l5.TAirLvg  l4.TAirEnt ; 
LINK  Tw4  l4.TAirLvg  l3.TAirEnt; 
LINK  Tw3  l3.TAirLvg  l2.TAirEnt ; 
LINK  Tw2  l2.TAirLvg  l1.TAirEnt; 
LINK  .TAirLvg  l1.TAirLvg; 
 
LINK  .wAirEnt  l20.wAirEnt; 
LINK  w20  l20.wAirLvg  l19.wAirEnt; 
LINK  w19  l19.wAirLvg  l18.wAirEnt; 
LINK  w18  l18.wAirLvg  l17.wAirEnt; 
LINK  w17  l17.wAirLvg  l16.wAirEnt; 
LINK  w16  l16.wAirLvg  l15.wAirEnt; 
LINK  w15  l15.wAirLvg  l14.wAirEnt; 
LINK  w14  l14.wAirLvg  l13.wAirEnt; 
LINK  w13  l13.wAirLvg  l12.wAirEnt; 
LINK  w12  l12.wAirLvg  l11.wAirEnt; 
LINK  w11  l11.wAirLvg  l10.wAirEnt; 
LINK  w10  l10.wAirLvg  l9.wAirEnt  ; 
LINK  w9   l9.wAirLvg  l8.wAirEnt ; 
LINK  w8   l8.wAirLvg  l7.wAirEnt ; 
LINK  w7   l7.wAirLvg  l6.wAirEnt  ; 
LINK  w6   l6.wAirLvg  l5.wAirEnt ; 
LINK  w5   l5.wAirLvg  l4.wAirEnt ; 
LINK  w4   l4.wAirLvg  l3.wAirEnt ; 
LINK  w3   l3.wAirLvg  l2.wAirEnt  ; 
LINK  w2   l2.wAirLvg  l1.wAirEnt ; 
LINK  .wAirLvg  l1.wAirLvg; 
 
declare sum20 qSen; 
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LINK   l1.qSen  qSen.a1;  
LINK   l2.qSen  qSen.a2;  
LINK   l3.qSen  qSen.a3;  
LINK   l4.qSen  qSen.a4;  
LINK   l5.qSen  qSen.a5;  
LINK   l6.qSen  qSen.a6;  
LINK   l7.qSen  qSen.a7;  
LINK   l8.qSen  qSen.a8;  
LINK   l9.qSen  qSen.a9;  
LINK   l10.qSen  qSen.a10;  
LINK   l11.qSen  qSen.a11;  
LINK   l12.qSen  qSen.a12;  
LINK   l13.qSen  qSen.a13;  
LINK   l14.qSen  qSen.a14;  
LINK   l15.qSen  qSen.a15;  
LINK   l16.qSen  qSen.a16;  
LINK   l17.qSen  qSen.a17;  
LINK   l18.qSen  qSen.a18;  
LINK   l19.qSen  qSen.a19;  
LINK   l20.qSen  qSen.a20;  
LINK  .qSen  qSen.sum; 
 
declare  sum20  qLat; 
LINK   l1.qLat  qLat.a1;  
LINK   l2.qLat  qLat.a2;  
LINK   l3.qLat  qLat.a3;  
LINK   l4.qLat  qLat.a4;  
LINK   l5.qLat  qLat.a5;  
LINK   l6.qLat  qLat.a6;  
LINK   l7.qLat  qLat.a7;  
LINK   l8.qLat  qLat.a8;  
LINK   l9.qLat  qLat.a9;  
LINK   l10.qLat  qLat.a10;  
LINK   l11.qLat  qLat.a11;  
LINK   l12.qLat  qLat.a12;  
LINK   l13.qLat  qLat.a13;  
LINK   l14.qLat  qLat.a14;  
LINK   l15.qLat   qLat.a16;  
LINK   l17.qLat  qLat.a17;  
LINK   l18.qLat  qLat.a18;  
LINK   l19.qLat  qLat.a19;  
LINK   l20.qLat  qLat.a20;  
LINK  .qLat  qLat.sum; 
   
declare sum20 qTot; 
LINK   l1.qTot  qTot.a1;  
LINK   l2.qTot  qTot.a2;  
LINK   l3.qTot  qTot.a3;  
LINK   l4.qTot  qTot.a4;  
LINK   l5.qTot  qTot.a5;  
LINK   l6.qTot  qTot.a6;  
LINK   l7.qTot  qTot.a7;  
LINK   l8.qTot  qTot.a8;  
LINK   l9.qTot  qTot.a9;  
LINK  l10.qTot  qTot.a10;  
LINK   l11.qTot  qTot.a11;  
LINK  l12.qTot  qTot.a12;  
LINK   l13.qTot  qTot.a13;  
LINK   l14.qTot  qTot.a14;  
LINK  l15.qTot  qTot.a15;  
LINK  l16.qTot  qTot.a16;  
LINK   l17.qTot  qTot.a17;  
LINK  l18.qTot  qTot.a18;  
LINK  l19.qTot  qTot.a19;  
LINK   l20.qTot qTot.a20;  
LINK   .qTot  qTot.sum; 
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/*+++ 
  Identification:  heating coil, cross flow, stream 1 unmixed 
  Abstract:         
  Notes:            
       The configuration is cross flow, stream 1 unmixed  
  Interface:        
      mAirEnt:   Air flow (kg dry air/s) 
      mLiq:      Liquid flow (kg/s) 
      TAirEnt:   Entering air dry bulb temperature (deg-C) 
      TLiqEnt:   Entering water temperature (deg C) 
      wAirEnt:   Entering air humidity  ratio (kg-water/kg dry air) 
      CHx:  Constant of heat exchanger coefficient 
      AHx:       Overall heat exchanger surface area (m2) 
      mAirLvg:   Leaving air flow (kg dry air/s) 
      wAirLvg:   Leaving air humidity  ratio (kg-water/kg dry air) 
      TAirLvg:   Leaving air Temperature (deg C) 
      TLiqLvg:   Leaving water temperature (deg C) 
      q:         Heat transfer rate.  Positive for air cooling. (W) 
  Acceptable input set:   
       CHx = 1000, AHx = 1, mAirEnt = 1, mLiq = 1, TAirEnt = 15, wAirEnt = 0.001, 
       TLiqEnt = 50 
  Recommended matches: 
          None 
  Suggested breaks:   
          None 
  Local variables:   
      capAir:   Air capacity rate (kg/s) 
      capLiq:   Water capacity rate (kg/s) 
  Equations:   
      capAir = mAirEnt*(CpAir+WAirEnt*CpVap) 
      capLiq = MLiq*CpLiq 
      ntup = UA/capAir 
      cRatiop = capAir/capLiq 
      effect(cRatiop, ntup, effp) 
      qRef = capAir*(TAirEnt-TLiqEnt) 
      q = capAir*(TAirEnt-TLiqLvg) 
      q = capLiq*(TLiqLvg-TLiqEnt) 
      q = effp * qRef 
      Q = capAir*(TAirEnt-TAirLvg) 
      WAirLvg = WAirEnt 
---*/ 
port mAirEnt  "Air flow"      [kg_dryAir/s] ; 
port mLiq   "Liquid flow"     [kg/s] ; 
port TAirEnt  "Entering air dry bulb temperature"   [deg_C] ; 
port TLiqEnt  "Entering water temperature"    [deg_C] ; 
port wAirEnt  "Entering air humidity  ratio"    [kg_water/kg_dryAir] ; 
port mAirLvg  "Leaving air flow"     [kg_dryAir/s] ; 
port wAirLvg  "Leaving air humidity  ratio"    [kg_water/kg_dryAir] ; 
port TAirLvg  "Leaving air Temperature"    [deg_C] ; 
port TLiqLvg  "Leaving water temperature"    [deg_C] ; 
port qSen  "Heat transfer rate.  Negative for air heating."  [W] ; 
port CHx  "Constant of heat exchanger coefficient- air side"; 
port AHx         "Overall heat exchanger surface area - air side"   [m2]; 
 
declare equal_link eq1 eq2; 
 
declare drcc1u Hx /*declare a cross flow heat exchange object*/ ; 
link  .mAirEnt  Hx.mAirEnt; 
link  .mLiq  Hx.mLiq; 
link  .TAirEnt  Hx.TAirEnt; 
link  .TLiqEnt  Hx.TLiqEnt; 
link  .wAirEnt  Hx.wAirEnt; 
link   UA Hx.UA  eq1.a; 
link  .mAirLvg Hx.mAirLvg  eq2.a; 
link  .wAirLvg Hx.wAirLvg; 
link  .TAirLvg  Hx.TAirLvg; 
link  .TLiqLvg  Hx.TLiqLvg; 
link  .qSen  Hx.q; 
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declare UA UA; 
link  .CHx  UA.C; 
link  .AHx  UA.AreaHX;  
link   mAir UA.m  eq2.b; 
link  UA0  UA.UA   eq1.b; 
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/* CLASS  UA "UA value based on the flow rate and heat exchange area" 
    
ABSTRACT 
 ... 
 ... 
ABSTRACT_END 
TEST_INPUT 
        C = 2.3, m = 1.23, AreaHx =2 ; 
*/ 
#ifdef SPARK_TEXT 
// ==== PORTS ==== 
 
PORT C     "constant of heat exchanger "     [scalar] ; 
PORT m     "mass flow rate"      [scalar] ; 
PORT AreaHX    "heat exchange area"      [m2] ; 
PORT UA  "UA"       [W/K] ; 
 
EQUATIONS { UA = C*(m)^0.8*AreaHx ; 
   } 
 
// ==== FUNCTIONS ==== 
FUNCTIONS { 
 UA = UA_UA( C, m, AreaHX, UA ) ; 
   } 
#endif /* SPARK_TEXT */ 
#include "spark.h" 
 
    double 
UA_UA ( ARGS ) 
{ 
    ARGDEF(0,C) ; 
    ARGDEF(1,m) ; 
    ARGDEF(2,AreaHX) ; 
    double UA; 
 
    if (m < 0) 
 cout<<” error! m in UA.CC less than 0” <<endl; 
    else 
 UA = C* pow (m,0.8) * AreaHX; 
 
    return UA ; 
} 
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General description 
The most commonly used fans in large air handling units are centrifugal fans.  In VAV 
systems, fan capacity is controlled by varying either the rotation speed or the position of 
an inlet guide vane.  Return fans may be axial fans, controlled by varying either the 
rotation speed or the blade angle.  In VAV systems, there is a pressure sensor in the 
supply duct and a feedback control loop to maintain the air pressure in the duct constant 
by adjusting the supply fan capacity.  The model described here applies to VAV systems 
in which the capacity of each fan is controlled by varying the rotation speed. 
 
Model description 
The model treats either the supply fan or the return fan, together with the appropriate 
section of the distribution system (Figure 2).  Fan performance is modeled by using the 
fan similarity laws to normalize the flow rate, pressure rise and power in terms of rotation 
speed and diameter.  Over the limited range of normalized flow used in normal operation, 
the fan head curve can be approximated using a constant term and a squared term.  The 
constant term is the pressure rise extrapolated to zero flow, which is proportional to the 
square of the rotation speed, and the squared term corresponds to the internal pressure 
drop inside the fan.  The model is written in terms of total pressure (i.e. static pressure 
plus velocity pressure) since the energy losses are directly related to changes in total 
pressure. 
 

pfan = k fannfan
2 - Cfanmair

2 
 

 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 2  System diagram of the fan-air system simulated in the model 
 
The system curve, which represents the pressure drop through all the air handling unit 
(AHU) and distribution system components also consists of a constant term and a squared 
term.  For the supply fan subsystem, the constant term is the static pressure set-point.  
The squared term represents the pressure drop through the AHU and distribution system 
components and the velocity pressure at the static pressure sensor, both of which are 
proportional to the square of the air mass flow rate.   
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pRes = pStat + (CRes + 1/2?airA2)mair
2 

 
For the return fan subsystem, pstat is the measured or assumed pressure in the occupied 
space and appears as a negative term, since a positive pressure in the space reduces the 
fan pressure rise required.  The correction for the velocity pressure in the room is very 
small and can be ignored. 
 

pRes = -pStat + CResmair
2 

 
The fan operating point is where the pressure drop across the system equals the pressure 
increase across the fan, as shown in Figure 3.   The air flowing through the fan increases 
in temperature because of the heat added to the air stream due to fan inefficiency and due 
to motor inefficiency, if the fan is in the air stream.  Because air is a compressible fluid 
and can be treated as a perfect gas, it can be shown that the fluid work peformed by the 
fan results in the same temperature increase that would be obtained if the fluid work were 
completely converted to heat.  The opposite is true for incompressible fluids, such as 
water.  In the case of incompressible fluids, the fluid work only appears as heat when the 
fluid passes through a dissipative element. 
 
The class of the fan-air system is fan_system.cm.  Atomic classes fan_qLoss.cc, 
fan_effShaft.cc, and fan_resistance.cc are the models of air heat gain, fan shaft 
efficiency and fan resistance respectively. 
 
 
 

 
 

 
Figure 3 Schematic of the fan model 
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Governing equations: 
 
Simplified fan curve: 
 airairfanfanfan mmCpp ⋅−= 0  

 
System curve: 

 airairres
air

statres mmC
A

pp ⋅++= )
2

1
(

2ρ
 

 
System operation point constraint: 
 resfan pp =  
 
Fan speed 
 2

0 fanfanfan nkp ⋅=  
 
Combining all the above equations  

 airairfanres
air

statfanfan mmCC
A

pnk ⋅+++= )
2

1
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2
2

ρ
 

 
Fan shaft power 

 
airs

fanair
s
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W

ρη
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Total motor power 
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η
=  

 
Heat loss to the air stream 
 lossmotorsTsloss fWWWq ,)( −+=  

 
The fan efficiency as a function of air flow rate is: 

 2max,
max, )(

fan

air

fan

air
ss n

m
n
m

C −−= ηηη  

 
The internal heat gain and temperature rise cross the fan is determined from 
 

lossairpinairoutair qmcTT =⋅⋅− )( ,,  
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Nomenclature  
 
Variables  Description Unit 
A Area duct cross section area  m2 
Cfan CFan fan curve constant   Dimensionless 
Cres CRes resistance characteristic constant       Dimensionless 
C? CEff constant to calculate fan efficiency Dimensionless 
Tair,out  TAirOut leaving air temperature  deg_C 
Tair,in TAirIn entering air temperature deg_C 
fmotor,loss MotFrac fraction of motor heat loss entering air 

stream 
Dimensionless 

kfan kFan pressure-fan speed constant        Dimensionless 
mair mAir air flow rate through the fan       kg/s 
nfan nFan fan speed rpm 
pfan pFan pressure increase cross the fan Pa 
pfan0 pFan0 baseline fan pressure increase Pa 
pres pRes load pressure drop Pa 
qloss qLoss air stream heat gain from fan W 
Ws powerShaft shaft power W 
WT powerMot total motor power W 
?s effShaft fan efficiency Dimensionless 
?s,max effShaftMax maximum fan efficiency Dimensionless 
?m effMot motor efficency Dimensionless 
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/*+++ 
/*+++ 
  Identification: fan model 
 
  Abstract:         
       The fan curve can be treated by simplified model: 
 pFan = pFan0 - CFan * m^2 
 where pFan0 is directly related to fan speed, where is 
 pFan = kFan * nFan^2 
       The resistance is: 
 pRes = pStat + (vAir/(2*area^2)+CRes )* m^2 
       Given a fan-resistance system 
 pFan = pRes, therefore 
 pFan0 = pStat + (vAir/(2*area^2)+ CFan + CRes) * m^2 
 
  Notes:            
       None 
 
  Interface:        
  nFan:   fan speed      [rpm]; 
 pStat:  static pressure setpoint     [Pa] ; 
 pFan:   total pressure increase across fan   [Pa]; 
 mAir:   air flow rate through the fan         [kg_dryAir/s]; 
 CRes:   resistance charactristic constant        [scalar]; 
 CFan:  fan curve constant           [scalar]; 
 kFan:  pressure-fanspeed constant         [scalar]; 
 CEff:  fan effiency constant          [scalar]; 
 area:  duct work crossing section area   [m2]; 
 TAirEnt:  Incoming air temperature     [J/kg_dryAir] ; 
 wAirEnt:  Incoming air humidity ratio    [kg/kg_dryAir]; 
 TAirLvg:  Outgoing air temperature     [J/kg_dryAir] ; 
 wAirLvg:  Incoming air humidity ratio    [kg/kg_dryAir];  
 powerTot:Power consumption     [W] ; 
 effMot: Efficiency of fan motor    [scalar] ; 
 motFrac:  Fraction of motor heat loss in air stream[fraction] ; 
 effShaft:  fan efficiency     [scalar]; 
 effShaftMax: fan maximum efficiency    [scalar]; 
 mAirMax:  maximum air flow of the fan    [kg_dryAir/s];  
 PAtm:  Atmospheric pressure    [Pa]; 
 
  Acceptable input set:   
 
  nFan:   unknown      [rpm]; 
 pStat:   20     [Pa] ; 
 pFan:    unknown     [Pa]; 
 mAir:    5           [kg_dryAir/s]; 
 CRes:   0.1           [scalar]; 
 CFan:   0.3           [scalar]; 
 kFan:   1.25E-3         [scalar]; 
 CEff:   1e-4           [scalar]; 
 area:   0.3     [m2]; 
 TAirEnt:   20      [J/kg_dryAir] ; 
 wAirEnt:   0.08     [kg/kg_dryAir]; 
 TAirLvg:   unknown     [J/kg_dryAir] ; 
 wAirLvg:   unknown     [kg/kg_dryAir];  
 powerTot:  unknown     [W] ; 
 effMot:  0.9     [scalar] ; 
 motFrac:   1     [scalar] ; 
 effShaft:   unknown     [scalar]; 
 effShaftMax:  0.9     [scalar]; 
 mAirMax: 8     [kg_dryAir/s];  
 PAtm:   1e5     [Pa]; 
 
  Recommended matches:   
          None 
 
  Suggested breaks:   
          None 
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 Equations:  
 kFan * nFan^2 = pStat + ((1/(2*density_air*area^2)) + CRes + CFan ) * mAir^2 ; 
 pFan = kFan* nFan^2 - CFan  * mAir^2; 
 effShaft = effShaftMax - CEff*((mAir-mAirMax)/nFan)^2; 
 powerShaft = mAir * PFan / effShaft *vAir; 
 powerTot = powerShaft / effMot; 
 qLoss = (powerShaft)+(powerTot-powerShaft)*motFrac; 
 (TAirLvg-TAirEnt)*mAir*Cp = qLoss; 
---*/ 
 
PORT     nFan  "fan speed "     [rpm]; 
PORT     pStat "static pressure setpoint "   [Pa] ; 
PORT      pFan  "total pressure increase across fan"  [Pa]; 
PORT     mAir  "air flow rate through the fan "        [kg_dryAir/s]; 
 
PORT     CRes  "resistance charactristic cons tant"        [scalar]; 
PORT     CFan "fan curve constant"          [scalar]; 
PORT     kFan "pressure-fanspeed constant"          [scalar]; 
PORT     CEff "fan effiency constant"          [scalar]; 
PORT area "duct work crossing section area"   [m2]; 
 
PORT TAirEnt "Incoming air temperature"    [J/kg_dryAir] ; 
PORT   wAirEnt "Incoming air humidity ratio"   [kg/kg_dryAir]; 
PORT  TAirLvg "Outgoing air temperature"    [J/kg_dryAir] ; 
PORT wAirLvg "Incoming air humidity ratio"   [kg/kg_dryAir];  
PORT powerTot "Power consumption."   [W] ; 
PORT   effMot "Efficiency of fan motor"   [scalar] ; 
PORT motFrac "Fraction of motor heat loss in air stream" [fraction] ; 
PORT  effShaft "fan efficiency"    [scalar]; 
PORT  effShaftMax "fan maximum efficiency"   [scalar]; 
PORT mAirMax "maximum air flow of the fan"   [kg_dryAir/s];  
PORT PAtm "Atmospheric pressure"   [Pa]; 
 
//LINKS 
declare equal_link eq1 eq2 eq3 eq4 eq5 eq6 eq7 eq8 eq9 eq10 eq11 eq12 eq13 eq14 eq15 eq16 eq17 eq18 eq19 eq20; 
 
//kFan * nFan^2 = pStat + ((1/(2*density_air*area^2)) + CRes + CFan ) * mAir^2  
declare fan_resistance FR; 
link      .nFan    FR.nFan     eq8.a eq9.a; 
link      .pStat   FR.pStat ; 
link      .mAir    FR.mAir     eq5.a eq11.a; 
link      .CRes    FR.CRes  ; 
link      .CFan    FR.CFan     eq20.a; 
link      .kFan    FR.kFan     eq10.a; 
link  .area    FR.area ; 
link   vAir    FR.vAir     eq1.a; 
 
//pFan = kFan * nFan^2 -CFan * mAir^2  
declare safprod pdA pdB pdC pdD; 
declare sum sumA; 
link     kFan1   pdA.a    eq10.b; 
link     nFan2   pdB.b pdB.a   eq9.b; 
link     nFanSquare pdA.b pdB.c; 
link     pFan0  pdA.c sumA.c; 
link     CFan   pdC.a    eq20.b; 
link     mAir4   pdD.b pdD.a   eq11.b; 
link     mAirSquare pdC.b pdD.c; 
link     CFanmAirSquare pdC.c sumA.a;  
link     .pFan   sumA.b    eq12.a;    
 
 
//effShaft = effShaftMax - CEff*((mAir-mAirMax)/nFan)^2 
declare fan_effShaft ES; 
link  .effShaft   ES.effShaft   eq3.a; 
link  .effShaftMax  ES.effShaftMax; 
link  mAir   ES.mAir    eq5.b eq6.a; 
link  .mAirMax ES.mAirMax; 
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link  nFan   ES.nFan    eq8.b; 
link  .CEff   ES.CEff; 
 
//powerShaft = mAir * PFan / effShaft *vAir 
declare safprod pd1 pd2; 
declare safquot sq1; 
link  mAir1   pd1.a    eq6.b eq7.a; 
link  pFan   pd1.b    eq12.b; 
link  mAirPFan  pd1.c pd2.a; 
link  vAir2   pd2.b    eq1.b eq2.a; 
link  mAirpFanvAir pd2.c sq1.a; 
link  effShaft   sq1.b    eq3.b eq4.a; 
link  powerShaft  sq1.c    eq13.a; 
 
//powerTot = powerShaft / effMot 
declare safquot sq; 
link  powerShaft1  sq.a    eq13.b eq14.a; 
link  .effMot   sq.b; 
link  .powerTot  sq.c    eq15.a; 
 
//qLoss = (powerShaft)+(powerTot-powerShaft)*motFrac  
declare fan_qLoss qL; 
link  powerShaft2  qL.powerShaft   eq14.b; 
link  effShaft1   qL.effShaft   eq4.b; 
link  powerTot   qL.powerTot   eq15.b; 
link  .motFrac   qL.motFrac; 
link     qLoss1  qL.qLoss    eq19.a; 
 
//(TAirLvg-TAirEnt)*mAir*Cp = qLoss 
declare enthalpy en1 en2; 
link  .TAirEnt   en1.TDb     eq17.a; 
link  .wAirEnt   en1.w    eq16.a;  
link  .TAirLvg   en2.TDb ; 
link  .wAirLvg   en2.w    eq16.b eq18.a; 
declare sum sum1; 
link  hAirLvg   sum1.c en2.h ; 
link  hAirEnt  sum1.a en1.h ; 
declare safprod pd4; 
link  hAirIncrease sum1.b pd4.a; 
link  mAir2   pd4.b    eq7.b; 
link  qLoss   pd4.c    eq19.b; 
 
//specific volume of the air 
declare specvol sv; 
link  .PAtm   sv.PAtm; 
link  TAirLvg1   sv.TDb    eq17.b; 
link  wAirLvg1  sv.w    eq18.b; 
link  vAir1  sv.v    eq2.b; 
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/*+++ 
  Identification: fan model using the simplified method. 
 
  Abstract:         
       The fan curve can be treated by simplified model: 
 pFan = pFan0 - CFan * m^2 
 where pFan0 is directly related to fan speed, where is 
 pFan = kFan * nFan^2 
       The resistance is: 
 pRes = pStat + (vAir/(2*area^2)+CRes )* m^2 
       Given a fan-resistance system 
 pFan = pRes, therefore 
 pFan0 = pStat + (vAir/(2*area^2)+ CFan + CRes) * m^2 
 
  Notes:            
       None 
 
  Interface:        
      nFan:   fan speed     [rpm] 
      pFan:   pressure increase cross the fan   [Pa] 
      pStat:  static pressure setpoint   [Pa] 
      mAir:   air flow rate through the fan        [kg/s] 
      CRes:   resistance charactristic constant        [scalar] 
      CFan:   fan curve constant          [scalar] 
      kFan:    pressure-fanspeed constant         [scalar] 
      vAir:    Air specific volume    [m^3/kg_dryAir]  
 
  Acceptable input set:   
      area:   0.3 
      pStat:  20 
      mAir:    2 
      CRes:   0.1 
      CFan:   0.3 
      kFan:   1.25e-3 
      vAir:    1.0 
 
  Recommended matches:   
          None 
 
  Suggested breaks:   
          None 
 
  Local variables:   
        pRes:  pressure resistance  [Pa] 
 
  Equations:  
  
 kFan * nFan^2 = pStat + ((1/(2*density_air*area^2)) + CRes + CFan ) * mAir^2 ; 
 
---*/ 
 
#ifdef SPARK_TEXT 
 
PORT       nFan  "fan speed "     [rpm]; 
PORT       pStat "static pressure setpoint "   [Pa] ; 
PORT       mAir  "air flow rate through the fan "        [kg/s] 
  INIT = 2.0 ; 
PORT       CRes  "resistance charactristic constant"        [scalar]; 
PORT       CFan "fan curve constant"          [scalar]; 
PORT       kFan "pressure-fanspeed constant"          [scalar]; 
PORT  area "duct work crossing section area"   [m2]; 
PORT   vAir "Specific volume"    [m^3/kg_dryAir] ; 
 
EQUATIONS {  
 kFan * nFan^2 = pStat + ((1*vAir/2*area^2) + CRes + CFan ) * mAir^2 ; 
   } 
 
// ==== FUNCTIONS ==== 
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FUNCTIONS { 
 nFan = fan_sys_nFan( pStat, mAir, area, vAir, CRes, CFan, kFan ) ; 
 pStat = fan_sys_pStat(nFan, mAir, area, vAir, CRes, CFan, kFan ) ; 
 mAir  = fan_sys_mAir( pStat, nFan, area, vAir, CRes, CFan, kFan ) ; 
   } 
#endif /* SPARK_TEXT */ 
#include "spark.h" 
  
    double 
fan_sys_nFan ( ARGS ) 
{ 
    ARGDEF(0,pStat) ; 
    ARGDEF(1,mAir) ; 
    ARGDEF(2,area) ; 
    ARGDEF(3,vAir) ; 
    ARGDEF(4,CRes) ; 
    ARGDEF(5,CFan) ; 
    ARGDEF(6,kFan) ; 
     
    double nFan; 
    nFan = pow (((pStat + ((vAir/(2*area*area)) + CRes + CFan ) * mAir*mAir)/kFan),0.5)  ; 
 
    return nFan ; 
} 
 
    double 
fan_sys_pStat ( ARGS ) 
{ 
    ARGDEF(0,nFan) ; 
    ARGDEF(1,mAir) ; 
    ARGDEF(2,area) ; 
    ARGDEF(3,vAir) ; 
    ARGDEF(4,CRes) ; 
    ARGDEF(5,CFan) ; 
    ARGDEF(6,kFan) ; 
     
    double pStat; 
    pStat = kFan * nFan*nFan - ((vAir/(2*area*area)) + CRes + CFan ) * mAir*mAir ; 
 
    return pStat ; 
} 
 
    double 
fan_sys_mAir ( ARGS ) 
{ 
    ARGDEF(0,pStat) ; 
    ARGDEF(1,nFan) ; 
    ARGDEF(2,area) ; 
    ARGDEF(3,vAir) ; 
    ARGDEF(4,CRes) ; 
    ARGDEF(5,CFan) ; 
    ARGDEF(6,kFan) ; 
     
    double mAir; 
    if ( kFan * nFan*nFan - pStat >=0) 
 mAir =pow(( (kFan * nFan*nFan - pStat ) /  ((vAir/(2*area*area)) + CRes + CFan )  ), 0.5 ); 
    else 
 cout<<"error! kFan*nFan*nFan less than pStat" <<endl; 
     
  return mAir ; 
} 
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/*+++ 
  Identification: fan heat gain. 
  Abstract:         
       
  Notes:            
       None 
 
  Interface:        
      qLoss:   heat gain of the air stream through fan  [W] 
      powerShaft:  fan shaft power    [W] 
      effShaft:  fan efficiency          [kg/s] 
      power:  Total motor power consumption        [kg/s] 
      motFrac:   Fraction of motor heat loss in air stream  [fraction] ; 
 
  Acceptable input set:   
      qLoss:   unknown  [W] 
      powerShaft:  100  [W] 
      effShaft:  0.8        [kg/s] 
      power:  120        [kg/s] 
      motFrac:   1  [fraction] ; 
 
  Recommended matches:   
          None 
  Suggested breaks:   
          None 
  Local variables:   
  Equations:  
 qLoss = (powerShaf)+(powerTot-powerShaft)*motFrac; 
 
---*/ 
 
#ifdef SPARK_TEXT 
 
port       qLoss  "heat gain of the air stream through fan"  [W]; 
port       powerShaft "fan shaft power"    [W]; 
port       effShaft "fan efficiency"          [kg/s]; 
port       powerTot "Total motor power consumption"        [kg/s]; 
port       motFrac "Fraction of motor heat loss in air stream" [fraction] ; 
 
        
EQUATIONS {  
 qLoss = (powerShaft - powerShaft*effShaft)+(powerTot-powerShaft)*motFrac; 
   } 
 
// ==== FUNCTIONS ==== 
FUNCTIONS { 
 qLoss = fan_qLoss_qLoss( powerShaft, effShaft, powerTot, motFrac) ; 
   } 
#endif /* SPARK_TEXT */ 
#include "spark.h" 
  
    double 
fan_qLoss_qLoss ( ARGS ) 
{ 
    ARGDEF(0,powerShaft) ; 
    ARGDEF(1,effShaft) ; 
    ARGDEF(2,powerTot) ; 
    ARGDEF(3,motFrac) ; 
 
    double qLoss; 
    qLoss = (powerShaft)+(powerTot-powerShaft)*motFrac  ; 
 
    return qLoss; 
} 
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/*+++ 
  Identification: fan shaft efficiency model. 
  Abstract:         
  Notes:            
       None 
 
  Interface:        
      effShaft:   fan efficiency      [scalar] 
      effShaftMax:   maximum fan efficiency     [scalar] 
      mAir:   air flow rate through the fan         [kg/s] 
      mAirMax:  maximum air flow rate through the fan        [kg/s] 
      CEff:    fan effiency constant          [scalar] 
      nFan:   fan speed            [rpm] 
  
  Acceptable input set:   
      effShaft:   unknown      [scalar] 
      effShaftMax:   0.98       [scalar] 
      mAir:    1            [kg/s] 
      mAirMax:  1.5            [kg/s] 
      CEff:    0.2            [scalar] 
      nFan:   1000            [rpm] 
  
  Recommended matches:   
          None 
 
  Suggested breaks:   
          None 
 
  Local variables:   
 
  Equations:  
 effShaft = effShaftMax - CEff*((mAir-mAirMax)/nFan)^2; 
---*/ 
#ifdef SPARK_TEXT 
 
PORT      nFan  "fan speed "     [rpm]; 
PORT      effShaft  "fan efficiency"     [scalar]; 
PORT      effShaftMax "maximum fan efficiency"    [scalar]; 
PORT      mAir "air flow rate through the fan"         [kg/s]; 
PORT      mAirMax "maximum air flow rate through the fan"       [kg/s]; 
PORT      CEff "fan effiency constant"          [scalar]; 
              
EQUATIONS {  
 effShaft = effShaftMax - CEff*((mAir-mAirMax)/nFan)^2 ; 
   } 
 
// ==== FUNCTIONS ==== 
FUNCTIONS { 
 effShaft = fan_effShaft_effShaft( effShaftMax, CEff, mAir, mAirMax, nFan) ; 
   } 
#endif /* SPARK_TEXT */ 
#include "spark.h" 
  
    double 
fan_effShaft_effShaft ( ARGS ) 
{ 
    ARGDEF(0,effShaftMax) ; 
    ARGDEF(1,CEff) ; 
    ARGDEF(2,mAir) ; 
    ARGDEF(3,mAirMax) ; 
    ARGDEF(4,nFan) ; 
     
    double effShaft; 
    if( (mAir-mAirMax)<0 ) 
     effShaft = effShaftMax - CEff* pow( ((mAir-mAirMax)/nFan), 2)  ; 
    else 
 cout<<” error! mAirMax less than mAir” <<endl; 
    return effShaft ; 
} 
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Control valve 
 
General description 
A control valve varies the fluid flow rate in a circuit by varying its flow resistance.  An 
external actuator is used to move a plug connected to the valve stem that restricts the flow 
to varying degrees depending on its position.  There are three distinct valve flow types 
based on the geometry of the plug: quick opening, linear, and equal percentage.  The 
equal percentage characteristic is used to compensate for the non-linear characteristic of 
heating and cooling coils and the effect of the series resistance of the coil.   
 
The most common faults associated with control valves are: leakage, stuck 
valve/actuator, actuator/valve range mismatch and unstable control.  In order to detect 
these faults, it is more important to model the valve behavior at each end of the operation 
than in the middle.  However, as discussed in the Coil section, it is desirable to be able to 
predict the part load performance of coils in order to anticipate loss of peak capacity 
before it occurs.  Since the water flow rate through a coil is not generally measured in 
HVAC systems, it is necessary to treat the behavior of the control valve at intermediate 
flow rates by modeling its inherent and installed characteristics in order to predict the 
water flow rate through the coil.   
 
Model description 
The water flow rate is a function of the valve position, the flow rate through the valve 
when fully open and the leakage.  The flow characteristic is assumed to be parabolic, 
which is an adequate and convenient approximation to the equal percentage 
characteristic.    
 
 In order to model the installed characteristic of the valve, it is necessary to treat the 
effect of the series resistance of the coil and other components in the branch.  This is 
conventionally expressed in terms of the authority of the valve.    Authority is the ratio of 
the pressure drop across the valve when it is fully open to the pressure drop across the 
whole of the branch when the valve is fully open.  When the authority is equal to unity, 
the pressure drop across the valve dominates the pressure drop in the branch and there is 
no distortion of the valve flow characteristics curve.  When the authority is equal to zero, 
the pressure drop across the valve is negligible unless it is fully closed and so the valve 
has essentially no effect on the flow rate except when it is fully closed.  A more detailed 
description of valve authority is given in the ASHRAE Handbook (HVAC Systems and 
Equipment, p41.7, 1996) 
 
The model described here is a combination of the valve model in the ASHRAE 
Secondary Toolkit and relationships given in the ASHRAE Handbook.  The class of the 
valve model is valve.cc. 
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Governing equations  
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Nomenclature  
 
Variables  Description Unit 
A A Valve authority, between 0-1  Dimensionless 
leakpar Leakpar Leakage parameter       Dimensionless 
mliq mLiq Mass flow rate kg/s 
mliq,open mLiqOpen Mass flow rate for open valve kg/s 
mleak mLeak Mass flow rate with closed valve kg/s 
pos pos Valve position, between 0-1 Dimensionless 
finstall fInstall Installed flow rate factor Dimensionless 
finher fInher Inherit valve resistance ratio (valve 

resistance divided by valve 
resistance at full open )      

Dimensionless 
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/*+++ 
  Identification: Flow circuit with non-linear/square valve and series flow 
      resistance. 
 
  Abstract:         
        
  Notes:            
       None 
 
  Interface:        
      pos:     Valve position (-) 
      mLiq:    Mass flow rate  [Kg/s] 
      A:        Valve authority  (-) 
      mLiqOpen:Mass flow rate for open valve [kg/s] 
      mLeak:   Mass flow rate for closed valve [Kg/s] 
 
  Acceptable input set:   
       pos = 0.5, A = 0.5, mLiqOpen = 1,  wf = 0.5, leak = 0.05 
 
  Recommended matches:   
          None 
 
  Suggested breaks:   
          None 
 
  Local variables:   
      Leakpar: Fraction of mLeak to mOpen 
      fInher:  inherited valve resistance ratio 
      fInstall: Installed flow rate factor    
 
  Equations:  
 Leakpar = mLeak/mLiqOpen; 
 fInher = (1-Leakpar)*pos^2 + Leakpar) ; 
 fInstall = 1/ (a/(fInher^2) + (1-a) )^0.5 (fInher !=0) 
   = 0 (fInher = 0); 
 mLiq = mLiqOpen *fInstall; 
---*/ 
 
#ifdef SPARK_TEXT 
// ==== PORTS ==== 
port pos  "Valve position, between 0-1"  [scalar] ; 
port mLiq  "Mass flow rate"    [Kg/s]; 
port A  "Valve authority, between 0-1"  [scalar] ; 
port mLiqOpen "Mass flow rate for open valve" [Kg/s] ; 
port mLeak "Fraction of m_open for closed valve" [Kg/s] ; 
 
 
EQUATIONS { mLiq = valve_mLiq (pos, A, mLiqOpen, mLeak) ; 
   } 
 
// ==== FUNCTIONS ==== 
FUNCTIONS { 
 mLiq = valve1_mLiq( pos, A, mLiqOpen, mLeak ) ; 
 pos  = valve1_pos ( mLiq, A, mLiqOpen, mLeak ) ; 
   } 
#endif /* SPARK_TEXT */ 
#include "spark.h" 
 
    double 
valve1_mLiq ( ARGS ) 
{ 
    ARGDEF(0,pos) ; 
    ARGDEF(1,A) ; 
    ARGDEF(2,mLiqOpen) ; 
    ARGDEF(3,mLeak) ; 
     
    double Leakpar; 
    double fInher ; 
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    double fInstall; 
    double mLiq; 
 
    Leakpar = mLeak/mLiqOpen; 
    fInher = (1-Leakpar)*pos*pos + Leakpar ; 
     
    if (fInher !=0) 
    fInstall = 1/ pow ( (A/(fInher*fInher) + (1-A) ), 0.5 ); 
    else 
    fInstall = 0; 
     
    mLiq = mLiqOpen *fInstall; 
    
    return mLiq; 
} 
     
 double 
valve1_pos ( ARGS ) 
{ 
    ARGDEF(0,mLiq) ; 
    ARGDEF(1,A) ; 
    ARGDEF(2,mLiqOpen) ; 
    ARGDEF(3,mLeak) ; 
     
    double Leakpar; 
    double fInher ; 
    double fInstall; 
    double pos; 
 
    Leakpar = mLeak/mLiqOpen; 
    fInstall = mLiq / mLiqOpen ; 
    if (fInstall == 0) 
       pos =0; 
    else 
 { 
  if (fInstall >1.0) 
   cout<<"error! mLiq is larger than mLiqOpen"<<endl; 
  else 
      fInher  =pow( A / (1/ (fInstall*fInstall) - (1-A)), 0.5) ; 
   
  if (fInher < Leakpar) 
   cout<<"error! mLeak is larger than mLiq"<<endl; 
  else 
         pos = pow ((fInher - Leakpar) /  (1-Leakpar), 0.5)  ; 
   }   
    return pos; 
} 
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Mixing box      REFERENCE MODELS  
 
General description 
A mixing box is the section of an air handling unit used to mix the return air flow with 
the outside air flow.  It consists of three sets of dampers whose operation is coordinated 
to control the fraction of the outside air in the supply air while maintaining the supply air-
flow rate approximately constant.  Figure 2 is a simplified diagram of the mixing box 
simulated in the model.   A variant of this design has a separate outside air damper that is 
adjusted to provide the minimum outside air flow required during occupancy.  In an ideal 
mixing box (no damper leakage), the mixed air should consist of 100% return air when 
the control signal is 0 and consist of 100% outside air when the control signal is 1.                   
 
 
 
 
 
 
 
 
 
 

 
Figure 4 Diagram of the mixing box 

 
 
 
Figure 5 shows ideal behavior and the range of acceptable behavior of a mixing box.  The 
vertical axis is the outside air fraction.  Under the ideal conditions, the outside air fraction 
should range from 0 to 1 when the damper position varies from 0 to 1.  However, in 
general there is leakage of both the outside air and the return air dampers; the outside air 
fraction then ranges between a minimum value that is greater than 0 and a maximum 
value that is less than 1.  In addition, the air- flow rate is not necessarily linearly related to 
the damper position and therefore the mixed air temperature and humidity ratio are not 
linearly related to damper position.  After the mixing box has been commissioned, the 
results of the functional test can be used to calibrate a model of the actual behavior.   
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Mixing box      REFERENCE MODELS  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Model description 
Theoretically, it is possible to determine the airflow rates of both the outside air and 
recirculation air streams as a function of damper position.  The airflow rates can then be 
used to determine the outside air fraction and hence the mixed air temperature and 
humidity ratio.  However, it is impractical to simulate the mixed air temperature 
accurately in that way, because the pressure boundary conditions change with fan speed 
and as a result of wind effects and because of the difficulty of estimating the authority of 
the dampers.   This said, the behavior in the middle of the operating range is relatively 
unimportant compared to the behavior at the ends of the operating range.   
 
Figure 4 shows the forms of the models to be used during commissioning and during 
routine operation following commissioning.  In the model to be used at the 
commissioning stage, when only design information is available, the range of acceptable 
behavior is modeled.  A 3:1 gain variation is used by default; when the damper position is 
50%, the upper limit of the outside air fraction is 25% lower than its maximum and the 
lower limit is 25% above its minimum.  The maximum acceptable deviations from 0 and 
100% outside air fraction at each end of the operating range should be specified by the 
designer.    Once the mixing box has been commissioned, the results of the functional test 
can be used to fit curves to the measured variation of outside air fraction with the control 
signal.  There are two ways to fit into this curve, one is by simple polynomial, another 
one is by a more complex method that involved with a middle point representing where 
the curve reflects and an exponential constant (see equations below).  In VAV systems, 
this relationship may depend on supply air- flow rate.  If it is significant, this dependence 
may be treated by fitting two polynomials, one for maximum supply air flow rate and one 
for minimum supply air flow rate, and using these two polynomials to define the range of 
expected behavior. 
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Mixing box      REFERENCE MODELS  
 
The class mix.cm is the model of the mixing box.  There are three mixed air temperature 
outputs, the upper and lower estimates of the mixed air temperature, and the predicted 
mixed air temperature by polynomial curve fitting.  The atomic class OAFLow.cc is to 
predict the lower acceptable range of the mixed air temperature; the  
class OAFHigh.cc is to predict the upper range of the mixed air temperature; the class 
OAF.cc is the simulation model to predict the outside air fraction by 3rd order polynomial 
fitting.  Atomic class tmix.cc models the mixed air temperature based on the outside air 
fraction. 
 
 
Governing equations  
    
Minimum and maximum of the outside air fraction: 

outleakOAF =min  
 

 retleakOAF −= 1max  
 
Upper and lower limit of the outside air fraction: 
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Predicted outside air fraction by polynomial curve fitting  
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Polynomial coefficients are related by following constraint: 
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Mixing box      REFERENCE MODELS  
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Mixed air temperature: 
 retretoutpredicpredicmix TTTOAFT +−⋅= )(,  
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Mixing box      REFERENCE MODELS  

 
 
Nomenclature  
Variables  Description Unit 
leakret LeakRet Installed return damper leakage  (0-1) Dimensionless 
leakout LeakOut Installed outside air damper leakage (0-1) Dimensionless 
pos pos Valve damper position(-) (0 to 1, 1 = 100% 

outside air, 0 = 100% return air) 
Dimensionless 

OAF OAF Outside air fraction  Dimensionless 
OAFhalf OAFHalf Outside air fraction when damper position is 0.5 Dimensionless 
OAFmin OAFMin Minimum outside air fraction Dimensionless 
OAFmax OAFMax Maximum outside air fraction Dimensionless 
Tret TRet Return air temperature  oC 
Tout TOut Out air temperature  oC 
Tmix,lower TMixLow Lower range of the mixed air temperature  oC 
Tmix,higher TMixHigh Upper range of the mixed air temperature oC 
Tmix,predic TMix Predicted mixed air temperature"  oC 
C1 C1 Polynomial constant 1 for curve fitting outside 

air fraction as a function of damper position 
 

C2 C2 Polynomial constant 2 for curve fitting outside 
air fraction as a function of damper position 

 

C3 C3 Polynomial constant 3 for curve fitting outside 
air fraction as a function of damper position 

 

n n Exponential constant in two exponential curve 
fitting 

>0, Real 
number 

posref RefPos Reference position where the two curves reflect 
each other (Figure 6) (0-1) 

Scalar 
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mix.cm       Mix / SOURCE CODE 
 
 
/*+++ 
  Identification: mixing air temperature 
  Abstract:         
  Notes:            
       None 
 
  Interface:        
      pos:      damper position(-) "0 to 1, 1 = 100% outside air, 0 = 100% return air " [scalar] 
      TRet:     Return air temperature      [deg_C] 
      TOut:     Outside air temperature      [deg_C]    
      TMix:     mixing air temperature      [deg_C] 
      TMixHigh:  Lower estimation of mixing air temperature    [deg_C] 
      TMixLow:   Higher estimation of mixing air temperature    [deg_C] 
      LeakRet:  installed return damper leakage 0-1    [scalar] 
      LeakOut:  outside air damper leakage 0-1    [scalar] 
 
 
  Acceptable input set:   
       pos = 0, TRet = 20, TOut =30, LeakRet =0.01, LeatOut=0.01 
 
  Recommended matches:   
          None 
 
  Suggested breaks:   
          None 
 
 Local variables:   
      OAF:   Outside air fraction (0-1) 
      OAFHigh:  High estimation of outside air fraction (0-1) 
      OAFLow:  Low estimation of outside air fraction (0-1) 
      OAFHalfHigh:   High estimation of outside air fraction when damper position equals to 0.5. 
      OAFHalfLow:   Low estimation of outside air fraction when damper position equals to 0.5. 
      OAFMax:    Maximum outside air fraction when damper postion equals to 1. (Leak age from return air damper) 
      OAFMin:    Minimum outside air fraction when damper postion equals to 0. (Leakage from outside air damper) 
 
  Equations:  
 TMix = OAF * (TOut-TRet) + TRet; 
         OAFMax = 1-LeakRet; 
 OAFMin = LeakOut ; 
 OAF = (OAFMax-OAFMin)* (C1*pos+C2*pos^2+C3*pos^3) + OAFMin   
 
 OAFHalfHigh = OAFMin + 0.75*(OAFMax -OAFMin) 
       OAFHigh = (OAFHalf-OAFMin) * (pos*2) + OAFMin   ( pos <= 0.5) 
       OAFHigh = (1 - OAFHalf) * ((pos -0.5)*2) + OAFHalfHigh    ( pos > 0.5) 
 
 OAFHalfLow = OAFMin + 0.25*(OAFMax -OAFMin) 
       OAFLow = OAFHalf * (pos*2)     ( pos <= 0.5) 
       OAFLow = (OAFMax - OAFHalfLow) * ((pos -0.5)*2) + OAFHalfLow   ( pos > 0.5) 
*/ 
//PORT 
PORT        pos       "damper position(-) (0 to 1, 1 = 100% outside air, 0 = 100% return air) " ; 
PORT      TRet      "Return air temperature"       [deg_C]; 
PORT      TOut      "Outside air temperature"       [deg_C]   ; 
PORT      TMix      "mixing air temperature"       [deg_C]; 
PORT TMixHigh "Lower estimation of mixing air temperature"     [deg_C]; 
PORT      TMixLow  "Higher estimation of mixing air temperature"     [deg_C]; 
PORT      LeakRet   "installed return damper leakage 0-1”      [scalar]; 
PORT      LeakOut   "installed outside air damper leakage 0-1”     [scalar]; 
PORT   C1 "polynomial constant 1 for curve fitting the outside air fraction (C1+C2+C3=1)"  [scalar]; 
PORT   C2   "polynomial constant 2 for curve fitting the outside air fraction (C1+C2+C3=1)" [scalar] ; 
PORT   C3         "polynomial constant 3 for curve fitting the outside air fraction (C1+C2+C3=1)" [scalar] ; 
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mix.cm       Mix / SOURCE CODE 
declare equal_link eq1 eq2 eq3; 
 
//Mixed Air temperature 
//predicted mixed air temperature 
declare tmix tmix; 
link OAF  tmix.OAF      eq1.a; 
link .TMix  tmix.TMix; 
 
//Lower estimation of  mixed air temperature 
declare tmix tmixLow; 
link OAFLow  tmixLow.OAF     eq2.a; 
link .TmixLow  tmixLow.TMix; 
 
//Higher estimation of  mixed air temperature 
declare tmix tmixHigh; 
link OAFHigh  tmixHigh.OAF     eq3.a; 
link .TMixHightmixHigh.TMix; 
 
link .TOut  tmix.TOut tmixLow.TOut tmixHigh.TOut; 
link .TRet  tmix.TRet tmixLow.TRet tmixHigh.TRet; 
 
//Outside air fraction 
//Predicted outside Air Fraction 
declare OAF  OAF; 
link  OAF0  OAF.OAF      eq1.b; 
link     .C1  OAF.C1; 
link     .C2  OAF.C2; 
link     .C3  OAF.C3; 
 
//Lower estimation of outside Air Fraction 
declare OAFLow OAFLow; 
link  OAFLow0  OAFLow.OAFLow     eq2.b;; 
 
//Higher estimation of outside Air Fraction 
declare OAFHigh OAFHigh ; 
link  OAFHigh0 OAFHigh.OAFHigh     eq3.b; 
 
link .pos  OAF.pos OAFLow.pos OAFHigh.pos; 
link .LeakRet   OAF.LeakRet OAFHigh.LeakRet OAFLow.LeakRet; 
link .LeakOut   OAF.LeakOut OAFHigh.LeakOut OAFLow.LeakOut; 
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mix_EXP.cm      Mix / SOURCE CODE 
/*+++ 
  Identification: mixing air temperature 
  Abstract:         
  Notes:            
       None 
 
  Interface:        
      pos:      damper position(-) "0 to 1, 1 = 100% outside air, 0 = 100% return air " 
      TRet:     Return air temperature     [oF] 
      TOut:     Outside air temperature    [oF]    
      TMix:     mixing air temperature     [oF] 
      TMixHigh: Lower estimation of mixing air temperature  [oF] 
      TMixLow:  Higher estimation of mixing air temperature  [oF] 
      LeakRet: The ratio of the  mass flow rate of return air to outside air  
   when damper equals to 1 (100% outside air) 
      LeakOut: The ratio of the  mass flow rate of outside to return air  
   when damper equals to 0 (100% return air) 
      RefPos:  reflection position (0-1), the position where the curves start to reflect 
      n: the exponential constants (>0, real number)  
 
 
 
 
  Acceptable input set:   
       pos = 0, TRet = 20, TOut =30, LeakRet =0.01, LeatOut=0.01, n =2, RefPos=0.5 
 
  Recommended matches:   
          None 
 
  Suggested breaks:   
          None 
 
 Local variables:   
      OAF:   Outside air fraction (0-1) 
      OAFHigh:   High estimation of outside air fraction (0-1) 
      OAFLow:   Low estimation of outside air fraction (0-1) 
      OAFHalfHigh:   High estimation of outside air fraction when damper position equals to 0.5. 
      OAFHalfLow:   Low estimation of outside air fraction when damper position equals to 0.5. 
      OAFMax:    Maximum outside air fraction when damper postion equals to 1. (Leakage from return air damper) 
      OAFMin:    Minimum outside air fraction when damper postion equals to 0. (Leakage from outside air damper) 
 
  Equations:  
 TMix = OAF * (TOut-TRet) + TRet; 
        OAFMax = 1-LeakRet; 
 OAFMin = LeakOut ; 
 OAF = (OAFMax-OAFMin)* (C1*pos+C2*pos^2+C3*pos^3) + OAFMin   
 
 OAFHalfHigh = OAFMin + 0.75*(OAFMax -OAFMin) 
       OAFHigh = (OAFHalf-OAFMin) * (pos*2) + OAFMin    ( pos <= 0.5) 
       OAFHigh = (1 - OAFHalf) * ((pos -0.5)*2) + OAFHalfHigh   ( pos > 0.5) 
 
 OAFHalfLow = OAFMin + 0.25*(OAFMax -OAFMin) 
       OAFLow = OAFHalf * (pos*2)    ( pos <= 0.5) 
       OAFLow = (OAFMax - OAFHalfLow) * ((pos -0.5)*2) + OAFHalfLow   ( pos > 0.5) 
*/ 
//PORT 
PORT      pos      "damper position(-) (0 to 1, 1 = 100% outside air, 0 = 100% return air) " ; 
PORT      TRet     "Return air temperature"       [oF]; 
PORT      TOut     "Outside air temperature"       [oF]   ; 
PORT      TMix     "mixing air temperature"       [oF]; 
PORT   TMixHigh "Lower estimation of mixing air temperature"    [oF]; 
PORT      TMixLow  "Higher estimation of mixing air temperature"    [oF]; 
PORT      LeakRet  "The ratio of the  mass flow rate of return air to outside air when damper equals to 1 (100% outside 
air)" []; 
PORT      LeakOut  "The ratio of the  mass flow rate of outside to return air when damper equals to 0 (100% return air)" []; 
PORT   RefPos   "reflection position (0-1), the position where the curves start to reflect, 0-1" ; 
PORT   n      "the exponential constants (>0, real number) " ; 
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mix_EXP.cm      Mix / SOURCE CODE 
 
declare equal_link eq1 eq2 eq3; 
 
//Mixed Air temperature 
//predicted mixed air temperature 
declare tmix tmix; 
link OAF tmix.OAF     eq1.a; 
link .TMix tmix.TMix; 
 
//Lower estimation of  mixed air temperature 
declare tmix tmixLow; 
link OAFLow tmixLow.OAF     eq2.a; 
link .TMixLow tmixLow.TMix; 
 
//Higher estimation of  mixed air temperature 
declare tmix tmixHigh; 
link OAFHigh tmixHigh.OAF     eq3.a; 
link .TMixHightmixHigh.TMix; 
 
link .TOut tmix.TOut tmixLow.TOut tmixHigh.TOut; 
link .TRet tmix.TRet tmixLow.TRet tmixHigh.TRet; 
 
//Outside air fraction 
//Predicted outside Air Fraction 
declare OAF_EXP OAF; 
link  "OAF" OAF.OAF      eq1.b; 
link    .n OAF.n; 
link    .RefPos OAF.RefPos; 
 
//Lower estimation of outside Air Fraction 
declare OAFLow OAFLow; 
link  "OAFLow" OAFLow.OAFLow    eq2.b;; 
 
//Higher estimation of outside Air Fraction 
declare OAFHigh OAFHigh ; 
link  "OAFHigh" OAFHigh.OAFHigh    eq3.b; 
 
link .pos OAF.pos OAFLow.pos OAFHigh.pos; 
link .LeakRet OAF.LeakRet OAFHigh.LeakRet OAFLow.LeakRet; 
link .LeakOut OAF.LeakOut OAFHigh.LeakOut OAFLow.LeakOut; 
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OAF.cc       Mix / SOURCE CODE 
/*+++ 
  Identification: estimation of outside air fraction 
  Abstract:         
  Notes:            
       None 
  Interface:        
      pos:      damper position(-) "change from 0 to 1, 1 = 100% outside air, 2 = 100% return air " 
      LeakRet:  The installed return air damper leakage (0-1) 
      LeakOut:  The installed outside air damper leakage (0-1) 
  Acceptable input set:   
       pos = 0, LeakRet =0.01, LeatOut=0.01 
  Recommended matches:   
          None 
  Suggested breaks:   
          None 
  Local variables:   
      OAF:   Outside air fraction (0-1) 
      OAFHalf:   Outside air fraction when damper position equals to 0.5. 
      OAFMax:    Maximum outside air fraction when damper postion equals to 1. (Leakage from return air damper) 
      OAFMin:   Minimum outside air fraction when damper postion equals to 0. (Leakage from outside air damper) 
  Equations:  
         OAFMax = 1-LeakRet; 
 OAFMin = LeakOut ; 
 OAF = (OAFMax-OAFMin)* (C1*pos+C2*pos^2+C3*pos^3) + OAFMin    
*/ 
#ifdef SPARK_TEXT 
//PORT 
PORT      pos      "Damper position(-) (0 to 1, 1 = 100% outside air, 0 = 100% return air) "   [scalar]; 
PORT      OAF     "Outside air fraction"        [scalar]; 
PORT      LeakRet  "Installed return air damper leakage (0-1)"       [scalar]; 
PORT      LeakOut  "Installed outside air damper leakage (0-1)"       [scalar]; 
PORT   C1   "polynomial constant 1 for curve fitting the outside air fraction (C1+C2+C3=1)"   [scalar]; 
PORT   C2     "polynomial constant 2 for curve fitting the outside air fraction (C1+C2+C3=1)"   [scalar]; 
PORT   C3       "polynomial constant 3 for curve fitting the outside air fraction (C1+C2+C3=1)"   [scalar]; 
 
EQUATIONS { 
 OAFMax = 1-LeakRet; 
 OAFMin = LeakOut ; 
 OAF = (OAFMax-OAFMin)* (C1*pos+C2*pos^2+C3*pos^3) + OAFMin; 
 } 
// ==== FUNCTIONS ==== 
FUNCTIONS { 
        OAF = OAF(pos, LeakRet, LeakOut,C1, C2, C3); 
    } 
#endif /* SPARK_TEXT */ 
#include "spark.h" 
 
  double 
OAF ( ARGS ) 
{ 
     ARGDEF(0,pos) ; 
     ARGDEF(1,LeakRet) ; 
     ARGDEF(2,LeakOut) ; 
     ARGDEF(3,C1) ; 
     ARGDEF(4,C2) ; 
     ARGDEF(5,C3) ; 
 
     double OAFMax; 
     double OAFMin; 
      double OAF; 
     OAFMax = 1-LeakRet; 
 OAFMin = LeakOut; 
 OAF = (OAFMax-OAFMin)* (C1*pos+C2*pow(pos,2)+C3*pow(pos,3)) + OAFMin ; 
      
     return OAF;  
} 
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OAF_EXP.cc      Mix / SOURCE CODE 
/*+++ 
  Identification: estimation of outside air fraction based on two exponential functions  
  Abstract:         
  Notes:            
       None 
 
  Interface:        
      pos:     damper position(-) "change from 0 to 1, 1 = 100% outside air, 2 = 100% return air " 
      LeakRet: The return air damper leakage (0-1) 
      LeakOut: The outside air damper leakage (0-1) 
      RefPos:  reflection position (0-1), the position where the curves start to reflect 
      n: the exponential constants (>0, real number)  
 
  Acceptable input set:   
       pos = 0, LeakRet =0.01, LeatOut=0.01, RefPos=0.5 
 
  Recommended matches:   
          None 
 
  Suggested breaks:   
          None 
 
  Local variables:   
      OAF:  Outside air fraction (0-1) 
      OAFMax:   Maximum outside air fraction when damper postion equals to 1. (Leakage from return air damper) 
      OAFMin:   Minimum outside air fraction when damper postion equals to 0. (Leakage from outside air damper) 
 
  Equations:  
        OAFMax = 1-LeakRet; 
 OAFMin = LeakOut ; 
 OAF = OAFMin + (OAFMax -OAFMin)*(pow(RefPos,n)+pow((pos-RefPos),n))/(pow(RefPos,n)+pow((1-
RefPos),n)) (if pos> RefPos)     
 OAF = OAFMin + (OAFMax -OAFMin)*(pow(RefPos,n)-pow((RefPos-pos),n))/(pow(RefPos,n)+pow((1-
RefPos),n)) (if pos<= RefPos)    
*/ 
#ifdef SPARK_TEXT 
//PORT 
PORT      pos     "Damper position(-) (0 to 1, 1 = 100% outside air, 0 = 100% return air) "  [scalar]; 
PORT      OAF     "Outside air fraction"        [scalar]; 
PORT      LeakRet "Return air damper leakage (0-1)"        [scalar]; 
PORT      LeakOut "Outside air damper leakage (0-1)"        [scalar]; 
PORT   n     "the exponential constants (>0, real number) " ; 
PORT   RefPos      "reflection position (0-1), the position where the curves start to reflect" ; 
 
EQUATIONS { 
 OAFMax = 1-LeakRet; 
 OAFMin = LeakOut ; 
 OAF = OAFMin + (OAFMax -OAFMin)*(pow(RefPos,n)+pow((pos-RefPos),n))/(pow(RefPos,n)+pow((1-
RefPos),n)) (if pos> RefPos)    ; 
 OAF = OAFMin + (OAFMax -OAFMin)*(pow(RefPos,n)-pow((RefPos-pos),n))/(pow(RefPos,n)+pow((1-
RefPos),n)) (if pos<= RefPos)  ; 
 } 
 
// ==== FUNCTIONS ==== 
FUNCTIONS { 
        OAF = OAF(pos, LeakRet, LeakOut, n, RefPos); 
    } 
#endif /* SPARK_TEXT */ 
#include "spark.h" 
 
  double 
OAF ( ARGS ) 
{ 
     ARGDEF(0,pos) ; 
     ARGDEF(1,LeakRet) ; 
     ARGDEF(2,LeakOut) ; 
     ARGDEF(3,n) ; 
     ARGDEF(4,RefPos) ; 
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OAF_EXP.cc      Mix / SOURCE CODE 
 
     double OAFMax; 
     double OAFMin; 
  
     double OAF; 
 
     OAFMax = 1-LeakRet; 
 OAFMin = LeakOut; 
 
 if (pos> RefPos) 
 OAF = OAFMin + (OAFMax -OAFMin)*(pow(RefPos,n)+pow((pos-RefPos),n))/(pow(RefPos,n)+pow((1-
RefPos),n)) ; 
 else  
 OAF = OAFMin + (OAFMax -OAFMin)*(pow(RefPos,n)-pow((RefPos-pos),n))/(pow(RefPos,n)+pow((1-
RefPos),n)) ; 
      
     return OAF; 
  
} 
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OAFHigh.cc      Mix / SOURCE CODE 
/*+++ 
  Identification: upper estimation of outside air fraction 
  Abstract:         
  Notes:            
       None 
  Interface:        
      pos:      damper position(-) "change from 0 to 1, 1 = 100% outside air, 2 = 100% return air " 
      LeakRet:  The installed return air damper leakage (0-1) 
      LeakOut:  The installed outside air damper leakage (0-1) 
  Acceptable input set:   
      pos = 0, LeakRet =0.01, LeatOut=0.01 
  Local variables:   
      OAFHigh:  Lower estimation of outside air fraction (0-1) 
      OAFHalf:   Outside air fraction when damper position equals to 0.5. 
      OAFMax:    Maximum outside air fraction when damper postion equals to 1. (Leakage from return air damper) 
      OAFMin:    Minimum outside air fraction when damper postion equals to 0. (Leakage from outside air damper) 
 
  Equations:  
         OAFMax = 1-LeakRet; 
 OAFMin = LeakOut ; 
 OAFHalf = OAFMin + 0.75*(OAFMax -OAFMin) 
       OAFHigh = (OAFHalf-OAFMin) * (pos*2) + OAFMin    ( pos <= 0.5) 
       OAFHigh = (1 - OAFHalf) * ((pos -0.5)*2) + OAFHalf   ( pos > 0.5) 
*/ 
#ifdef SPARK_TEXT 
//PORT 
PORT      pos      "Damper position(-) (0 to 1, 1 = 100% outside air, 0 = 100% return air) "  [scalar]; 
PORT      OAFHigh  "Lower estimation of Outside air fraction"     [scalar]; 
PORT      LeakRet  "Installed return air damper leakage (0-1)"       [scalar]; 
PORT      LeakOut  "Installed outside air damper leakage (0-1)"       [scalar]; 
 
EQUATIONS { 
        OAFMax = 1-LeakRet; 
 OAFMin = LeakOut ; 
 OAFHalf = OAFMin + 0.75*(OAFMax -OAFMin) 
       OAFHigh = (OAFHalf-OAFMin) * (pos*2) + OAFMin  ( pos <= 0.5) 
       OAFHigh = (1 - OAFHalf) * ((pos -0.5)*2) + OAFHalf   ( pos > 0.5) 
  } 
// ==== FUNCTIONS ==== 
FUNCTIONS { 
        OAFHigh = OAFHigh(pos, LeakRet, LeakOut); 
    } 
#endif /* SPARK_TEXT */ 
#include "spark.h" 
  double 
OAFHigh ( ARGS ) 
{ 
     ARGDEF(0,pos) ; 
     ARGDEF(1,LeakRet) ; 
     ARGDEF(2,LeakOut) ; 
 
     double OAFMax; 
     double OAFMin; 
     double OAFHalf; 
     double OAFHigh; 
 
     OAFMax = 1-LeakRet; 
 OAFMin = LeakOut; 
 OAFHalf = OAFMin + 0.75*(OAFMax -OAFMin); 
 if ( pos <= 0.5 )  
       OAFHigh = (OAFHalf-OAFMin) * (pos*2) + OAFMin ; 
        else     
       OAFHigh = (1 - OAFHalf) * ((pos -0.5)*2) + OAFHalf ; 
 
     return OAFHigh; 
  
} 
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/*+++ 
  Identification: lower estimation of outside air fraction 
  Abstract:         
  Notes:            
       None 
  Interface:        
      pos:      damper position(-) "change from 0 to 1, 1 = 100% outside air, 2 = 100% return air " 
      LeakRet:  The installed return air damper leakage (0-1) 
      LeakOut:  The installed outside air damper leakage (0-1) 
  Acceptable input set:   
       pos = 0, LeakRet =0.01, LeatOut=0.01 
 Local variables:   
      OAFLow:  Lower estimation of outside air fraction (0-1) 
      OAFHalf:   Outside air fraction when damper position equals to 0.5. 
      OAFMax:    Maximum outside air fraction when damper postion equals to 1. (Leakage from return air damper) 
      OAFMin:    Minimum outside air fraction when damper postion equals to 0. (Leakage from outside air damper) 
 
  Equations:  
         OAFMax = 1-LeakRet; 
 OAFMin = LeakOut ; 
 OAFHalf = OAFMin + 0.25*(OAFMax -OAFMin) 
       OAFLow = OAFHalf * (pos*2)      ( pos <= 0.5) 
       OAFLow = (OAFMax - OAFHalf) * ((pos -0.5)*2) + OAFHalf    ( pos > 0.5) 
*/ 
#ifdef SPARK_TEXT 
//PORT 
PORT      pos      "Damper position(-) (0 to 1, 1 = 100% outside air, 0 = 100% return air) "  [scalar]; 
PORT      OAFLow   "Lower estimation of Outside air fraction"      [scalar]; 
PORT      LeakRet  "Installed return air damper leakage (0-1)"       
 [scalar]; 
PORT      LeakOut  "Installed outside air damper leakage (0-1)"       
 [scalar]; 
 
EQUATIONS { 
        OAFMax = 1-LeakRet; 
 OAFMin = LeakOut ; 
 OAFHalf = OAFMin + 0.25*(OAFMax -OAFMin) 
       OAFLow = OAFHalf * (pos*2)       ( pos <= 0.5) 
       OAFLow = (OAFMax - OAFHalf) * ((pos -0.5)*2) + OAFHalf   ( pos > 0.5) 
  } 
// ==== FUNCTIONS ==== 
FUNCTIONS { 
        OAFLow = OAFLow(pos, LeakRet, LeakOut); 
    } 
#endif /* SPARK_TEXT */ 
#include "spark.h" 
  double 
OAFLow ( ARGS ) 
{ 
     ARGDEF(0,pos) ; 
     ARGDEF(1,LeakRet) ; 
     ARGDEF(2,LeakOut) ; 
 
     double OAFMax; 
     double OAFMin; 
     double OAFHalf; 
     double OAFLow; 
 
     OAFMax = 1-LeakRet; 
 OAFMin = LeakOut; 
 OAFHalf = OAFMin + 0.25*(OAFMax -OAFMin); 
         
 if ( pos <= 0.5 )  
        OAFLow = OAFHalf * (pos*2) ; 
        else     
        OAFLow = (OAFMax - OAFHalf) * ((pos -0.5)*2) + OAFHalf; 
 
     return OAFLow; 
} 
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tmix.cc       Mix / SOURCE CODE 
/*+++ 
/* CLASS  tmix  "determine the mixed air temperature based on outside air fraction" 
    
ABSTRACT 
 
ABSTRACT_END 
TEST_INPUT 
         TRet = 1, TOut = 0, TMix = 0.5 ; 
*/ 
#ifdef SPARK_TEXT 
// ==== PORTS ==== 
 
PORT OAF    "outside air fraction in the mixed air" [scalar] ; 
PORT TRet   "return air temperature"   [deg_C] ; 
PORT TOut   "outside air temperature"  [deg_C] ; 
PORT TMix   "mixed air temperature"   [deg_C] ; 
 
EQUATIONS { 
       TMix = OAF * (TOut - TRet) + TRet; 
  } 
 
// ==== FUNCTIONS ==== 
FUNCTIONS { 
 OAF = tmix_OAF( TRet, TOut, TMix ) ;  
 TMix = tmix_TMix (OAF, TRet, TOut ); 
   } 
#endif /* SPARK_TEXT */ 
#include "spark.h" 
 
  double 
tmix_OAF ( ARGS ) 
{ 
    ARGDEF(0,TRet) ; 
    ARGDEF(1,TOut) ; 
    ARGDEF(2,TMix) ; 
 
    double OAF; 
    OAF = ( TMix - TRet ) / (TOut - TRet) ; 
    return OAF; 
} 
 
  double 
tmix_TMix ( ARGS ) 
{ 
    ARGDEF(0,OAF) ; 
    ARGDEF(1,TRet) ; 
    ARGDEF(2,TOut) ; 
   
    double TMix; 
    TMix = OAF * (TOut - TRet) + TRet; 
    return TMix; 
} 
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Air handling unit (AHU) 
General description 
An air-handling unit consists of a set of components that together provide conditioned air 
for distribution to occupied spaces.  The components described above perform the 
functions of heating, cooling, dehumidification and ventilation.  The fan system model 
implicitly treats the pressure drops due to the coils, filters and attenuators.  These models 
can be connected together in different combinations to form models of different types of 
air handling units.  Figure 7 shows an example, which consists of a mixing box, a cooling 
coil with a control valve, a heating coil with a control valve, and supply and return fans.   
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 

Figure 7  Schmetic of the modeled air handling unit (AHU) 
 
Model description 
The model of an air handling unit is built by linking all the above related component 
models together.  The outlet air property of a particular component is the inlet property of 
the component immediately downstream. Class AHU_Example.cm is an example model 
of an AHU that has the configuration shown in Figure 7. 
 
Governing equations: 
 lheatingcoiairlcoolingcoiairplyfanair mmm ,,sup, ==  

 lcoolingcoiwatervalveCCwater mm ,, =  

 lheatingcoiwatervalveHCwater mm ,, =  
 
 outsidemixingairoutsideAHUair TT ,,,, =  

 entlccolingcoiairlvgmixingair TT ,,,, =  

entlheatingcoiairlvglcoolingcoiair TT ,,,, =  

mixing box 

cooling coil supply fan 

outside air 

return air

exhaust air 

supply air 

heating coil 

_ +

return air

return fan 
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entpplyfanairlvglheatingcoiair TT ,sup,,, =  

sup,,,sup, AHUairlvgplyfanair TT =  

entreturnfanairretAHUair TT ,,,, =  

retmixingairlvgreturnair TT ,,,, =  
 

outsidemixingairoutsideAHUair ww ,,,, =  

 entlccolingcoiairlvgmixingair ww ,,,, =  

sup,,,, AHUairlvglcoolingcoiair ww =  
 

 
 
Nomenclature  

Variables  Description Unit 
    
mair,supplyfan mAirSup        Supply fan air flow rate            [kg_dryAir/s]     
mwater,coolingcoil mLiqCC      Cooling coil Liquid flow rate       [kg/s]       
mwater,valveCC mLiqValCC      Cooling coil Liquid flow rate       [kg/s]       
mwater,heatingcoil mLiqHC      Heating coil Liquid flow rate       [kg/s]       
mwater,valveHC mLiqValHC      Heating coil Liquid flow rate       [kg/s]       
    
Tair,AHU,outside TAirOut          Outside air temperature       [deg_C]         
Tair,AHU,ret  TAirRet      Return air dry bulb temperature      [deg_C]       
Tair,AHU,sup TAirSup      Supply air dry bulb temperature      [deg_C]       
    
Tair,coolingcoil,lvg TAirLvgCC      Cooling coil leaving air dry bulb temperature      [deg_C]       
Tair,coolingcoil,ent  TAirEntCC      Cooling coil entering air dry bulb temperature     [deg_C]       
Tair,heatingcoil,ent  TAirEntHC      Heating coil entering air dry bulb temperature     [deg_C]       
Tair,heatingcoil,lvg TAirLvgHC      Heating coil leaving air dry bulb temperature      [deg_C]       
    
Tair,supplyfan,lvg TAirLvgSfan      Supply fan leaving air dry bulb temperature      [deg_C]       
Tair,supplyfan,ent  TAirEntSfan      Supply fan entering air dry bulb temperature      [deg_C]       
Tair,returnfan,ent  TAirEntRfan      Return fan entering air dry bulb temperature      [deg_C]       
Tair,returnfan,lvg TAirLvgRfan      Return fan leaving air dry bulb temperature      [deg_C]       
    
Tair,mixing,outside TAirMixOut          Mixing box outside air temperature       [deg_C]       
Tair,mixng,ret  TAirMixRet      Mixing box return air dry bulb temperature      [deg_C]       
Tair,mixing,lvg TAirMixLvg      Mixing box leaving air dry bulb temperature      [deg_C]       
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/*+++ 
 
/*+++ 
  Identification: AHU model for diagnosis. 
 
  Abstract:         
        
 
  Notes:            
       None 
 
  Interface:        
 
    TAirLvgCC      Cooling coil leaving air dry bulb temperature        [deg_C]       
     wAirLvgCC      Cooling coil leaving air humidity  ratio        [kg/kg_dryAir]      
     TLiqEntCC      Cooling coil entering water temperature        [deg_C]       
     TLiqLvgCC      Cooling coil leaving water temperature        [deg_C]       
     AExtCC       Cooling coil heat transfer area          [m2]       
     AIntCC       Cooling coil heat transfer area          [m2]       
     CExtCC       Cooling coil air side heat transfer coefficient constant        [scalar]       
     CIntCC       Cooling coil liquid side heat transfer coefficient constant       [scalar]       
     PAtm       Atmospheric pressure           
 [Pa]      
     qSenCC       Cooling coil Sensible heat transfer rate.  Positive for air cooling.   [W]      
     qLatCC       Cooling coil Latent heat transfer rate.  Positive for air cooling.      [W]      
     qTotCC       Cooling coil Heat transfer rate.  Positive for air cooling.       [W]      
 
      posValveCC      Cooling coil Valve position, between 0-1        [scalar]       
      AValveCC      Cooling coil Valve authority, between 0-1        [scalar]       
      mLiqOpenValveCC      Cooling coil Mass flow rate for open valve        [Kg/s]       
      mLeakValveCC      Cooling coil Mass flow rate of leakage        [Kg/s]       
     mLiqCC       Cooling coil Liquid flow rate          [kg/s]       
 
     TAirLvgHC      heating coil leaving air dry bulb temperature        [deg_C]       
     TLiqEntHC      heating coil entering water temperature        [deg_C]       
     TLiqLvgHC      heating coil leaving water temperature        [deg_C]       
     AHC       heating coil heat transfer area          [m2]       
     CHC       heating coil liquid side heat transfer coefficient constant       [scalar]       
     qSenHC       heating coil Sensible heat transfer rate.  Positive for air cooling.     [W]      
 
      posValveHC      heating coil Valve position, between 0-1        [scalar]       
      AValveHC      heating coil Valve authority, between 0-1        [scalar]       
      mLiqOpenValveHC      heating coil Mass flow rate for open valve        [Kg/s]       
      mLeakValveHC      heating coil Mass flow rate of leakage        [Kg/s]       
     mLiqHC       heating coil Liquid flow rate          [kg/s]       
 
     TAirSup       Supply air dry bulb temperature         [deg_C]       
     wAirSup       Supply air humidity  ratio         [kg/kg_dryAir]      
         mAirSup        supply fan air flow rate               [kg_dryAir/s]       
      powerTotSfan       supply fan motor power consumption        [W]      
         nSfan         supply fan  fan speed           [rpm]      
         pStatSfan       supply fan static pressure setpoint         [Pa]       
         pSfan         supply fan  total pressure increase across fan       [Pa]      
      effMotSfan      supply fan  Efficiency of fan motor         [scalar]       
      motFracSfan      supply fan  Fraction of motor heat loss in air stream       [fraction]       
      effShaftSfan       supply fan  fan efficiency         [scalar]      
      effShaftMaxSfan          supply fan  fan maximum efficiency        [scalar]      
      mAirMaxSfan      supply fan  maximum air flow of the fan        [kg_dryAir/s]       
         CResSfan        supply fan  resistance charactristic constant             [scalar]      
         CSfan        supply fan  fan curve constant           [scalar]      
         kSfan        supply fan  pressure-fanspeed constant               [scalar]      
         CEffSfan             supply fan  fan effiency constant         [scalar]      
     areaSPSfan       supply fan  duct work crossing section area        [m2]      
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     TAirRet       Return air dry bulb temperature         [deg_C]       
     wAirRet       Return air humidity  ratio        [kg_water/kg_dryAir]      
         mAirRet             Return fan air flow rate           [kg_dryAir/s]       
      powerTotRfan       return fan motor power consumption        [W]      
         nRfan         return fan  fan speed           [rpm]      
         pStatRfan       return fan static pressure setpoint          [Pa]       
         pRfan         return fan  total pressure increase across fan       [Pa]      
      effMotRfan      return fan  Efficiency of fan motor         [scalar]       
      motFracRfan      return fan  Fraction of motor heat loss in air stream       scalar]       
      effShaftRfan       return fan  fan efficiency         [scalar]      
      effShaftMaxRfan          return fan  fan maximum efficiency         [scalar]      
      mAirMaxRfan      return fan  maximum air flow of the fan        [kg_dryAir/s]       
         CResRfan        return fan  resistance charactristic constant             [scalar]      
         CRfan        return fan  fan curve constant         [scalar]      
         kRfan        return fan  pressure-fanspeed constant               [scalar]      
         CEffRfan                       return fan  fan effiency constant              [scalar]      
     areaSPRfan       return fan  duct work crossing section area        [m2]      
 
         TAirOut          Outside air temperature          [deg_C]         
         wAirOut          Outside humidity ratio           [kg/kg]         
         posDamper           damper position (0 to 1, 1 = 100% outside air, 0 = 100% return air)  [scalar]               
         LeakRetDamper       installed return damper leakage (0-1)        [scalar]      
        LeakOutDamper       installed outside air damper leakage (0-1)        [scalar]         
 mixC1         polynomial constant 1 for curve fitting the outside fraction            [scalar] 
     mixC2              polynomial constant 2 for curve fitting the outside fraction            [scalar]            
     mixC3            polynomial constant 3 for curve fitting the outside fraction            [scalar]            
 
 
  Acceptable input set: 
    TAirLvgCC  = unknown     [deg_C]       
     wAirLvgCC  = unknown     [kg_water/kg_dryAir]      
     TLiqEntCC  = 7  [deg_C]       
     TLiqLvgCC  = unknown     [deg_C]       
     AExtCC   = 1  [m2]       
     AIntCC   = 1  [m2]       
     CExtCC   = 1000      [scalar]       
     CIntCC   = 4000     [scalar]       
     PAtm   = 100000 [Pa]      
     qSenCC   = unknown      [W]      
     qLatCC   = unknown      [W]      
     qTotCC   = unknown       [W]      
 
      posValveCC  = 0.5  [scalar]       
      AValveCC  = 0.5    [scalar]       
      mLiqOpenValveCC  = 3      [Kg/s]       
      mLeakValveCC  = 0.1  [Kg/s]       
     mLiqCC   = unknown [kg/s]       
 
     TAirLvgHC  = unknown    [deg_C]       
     TLiqEntHC  = 95     [deg_C]       
     TLiqLvgHC  = unknown     [deg_C]       
     AHC   = 1   [m2]       
     CHC   = 4000  [scalar]       
     qSenHC   = unknown      [W]      
 
      posValveHC  = 0.5    [scalar]       
      AValveHC  = 0.5     [scalar]       
      mLiqOpenValveHC  = 3     [Kg/s]       
      mLeakValveHC  = 0.1   [Kg/s]       
     mLiqHC   = unknown [kg/s]       
 
     TAirSup   = unknown     [deg_C]       
     wAirSup   = unknown  [kg_water/kg_dryAir]      
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  mAirSup     = unknown [kg_dryAir/s]       
      powerTotSfan   = unknown    [W]      
         nSfan     = unknown [rpm]      
         pStatSfan   = 20       [Pa]       
         pSfan     = unknown     [Pa]      
      effMotSfan  = 0.9  [scalar]       
      motFracSfan  = 1      [fraction]       
      effShaftSfan   = unknown [scalar]      
      effShaftMaxSfan   = 0.9   [scalar]      
      mAirMaxSfan  = 5    [kg_dryAir/s]       
         CResSfan    = 0.1        [scalar]      
         CSfan    = 0.3  [scalar]      
         kSfan    = 0.00125      [scalar]      
         CEffSfan    = 0.0001  [scalar]      
     areaSPSfan   = 0.3    [m2]      
 
     TAirRet   = 25   [deg_C]       
     wAirRet   = 0.007     [kg_water/kg_dryAir]      
         mAirRet     = unknown       [kg_dryAir/s]       
      powerTotRfan   = unknown    [W]      
        nRfan     = unknown     [rpm]      
         pStatRfan   = 20      [Pa]       
         pRfan     = unknown    [Pa]      
      effMotRfan  = 0.9     [scalar]       
      motFracRfan  = 1      [fraction]       
      effShaftRfan   = unknown  [scalar]      
      effShaftMaxRfan   = 0.9     [scalar]      
      mAirMaxRfan  = unknown   [kg_dryAir/s]       
         CResRfan    = 0.1       [scalar]      
         CRfan       = 0.3  [scalar]      
         kRfan    = 0.00125      [scalar]      
         CEffRfan   = 0.0001      [scalar]      
     areaSPRfan   = 0.3    [m2]      
 
         TAirOut      = 38  [deg_C]         
         wAirOut      = 0.009   [kg/kg]         
         posDamper       = 0.5  [scalar]         
        LeakRetDamper   = 0.01        [scalar]      
         LeakOutDamper   = 0.01      [scalar]      
     mixC1     = 0.8        [scalar]    
     mixC2          = 0.1     [scalar]       
     mixC3        = 0.1        [scalar]   
 
  Recommended matches:   
          None 
 
  Suggested breaks:   
          None 
 
  Local variables:   
   None 
  Equations:  
  Objects: cooling coil, fan, valve, mixing box, air specific volume; 
---*/ 
 
//cooling coil 
PORT TAirLvgCC "Cooling coil leaving air dry bulb temperature"  [deg_C] ; 
PORT wAirLvgCC "Cooling coil leaving air humidity  ratio"   [kg_water/kg_dryAir]; 
PORT TLiqEntCC "Cooling coil entering water temperature"  [deg_C] ; 
PORT TLiqLvgCC "Cooling coil leaving water temperature"   [deg_C] ; 
PORT AExtCC  "Cooling coil heat transfer area"    [m2] ; 
PORT AIntCC  "Cooling coil heat transfer area"    [m2] ; 
PORT CExtCC  "Cooling coil air side heat transfer coefficient constant"  [scalar] ; 
PORT CIntCC  "Cooling coil liquid side heat transfer coefficient constant"  [scalar] ; 
PORT PAtm  "Atmospheric pressure"    [Pa]; 
PORT qSenCC  "Cooling coil Sensible heat transfer rate.  Positive for air cooling." [W]; 
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PORT qLatCC  "Cooling coil Latent heat transfer rate.  Positive for air cooling." [W]; 
PORT qTotCC  "Cooling coil Heat transfer rate.  Positive for air cooling."   [W]; 
//valve-cooling  
port  posValveCC "Cooling coil Valve position, between 0-1"   [scalar] ; 
port  AValveCC "Cooling coil Valve authority, between 0-1"   [scalar] ; 
port  mLiqOpenValveCC "Cooling coil Mass flow rate for open valve"   [Kg/s] ; 
port  mLeakValveCC "Cooling coil Mass flow rate of leakage"    [Kg/s] ; 
PORT mLiqCC  "Cooling coil Liquid flow rate "     [kg/s] ; 
//heating coil 
PORT TAirLvgHC "heating coil leaving air dry bulb temperature"   [deg_C] ; 
PORT TLiqEntHC "heating coil entering water temperature"   [deg_C] ; 
PORT TLiqLvgHC "heating coil leaving water temperature"    [deg_C] ; 
PORT AHC  "heating coil heat transfer area"     [m2] ; 
PORT CHC  "heating coil liquid side heat transfer coefficient constant"   [scalar] ; 
PORT qSenHC  "heating coil Sensible heat transfer rate.  Positive for air cooling." [W]; 
//valve-heating  
port  posValveHC "heating coil Valve position, between 0-1"   [scalar] ; 
port  AValveHC "heating coil Valve authority, between 0-1"   [scalar] ; 
port  mLiqOpenValveHC "heating coil Mass flow rate for open valve"   [Kg/s] ; 
port  mLeakValveHC "heating coil Mass flow rate of leakage"    [Kg/s] ; 
PORT mLiqHC  "heating coil Liquid flow rate "     [kg/s] ; 
//fan-supply fan  
PORT TAirSup  "Supply air dry bulb temperature"    [deg_C] ; 
PORT wAirSup  "Supply air humidity  ratio"     [kg/kg_dryAir]; 
PORT     mAirSup    "supply fan air flow rate "          [kg_dryAir/s];  
PORT  powerTotSfan  "supply fan motor power consumption"    [W]; 
PORT    nSfan    "supply fan  fan speed "     [rpm]; 
PORT    pStatSfan  "supply fan static pressure setpoint "    [Pa] ; 
PORT    pSfan    "supply fan  total pressure increase across fan"   [Pa]; 
PORT  effMotSfan "supply fan  Efficiency of fan motor"    [scalar] ; 
PORT  motFracSfan "supply fan  Fraction of motor heat loss in air stream"  [fraction] ; 
PORT  effShaftSfan  "supply fan  fan efficiency"     [scalar]; 
PORT  effShaftMaxSfan  "supply fan  fan maximum efficiency"    [scalar]; 
PORT  mAirMaxSfan "supply fan  maximum air flow of the fan"   [kg_dryAir/s];  
PORT     CResSfan   "supply fan  resistance charactristic constant"         [scalar]; 
PORT     CSfan   "supply fan  fan curve constant"          [scalar]; 
PORT    kSfan   "supply fan  pressure-fanspeed constant"          [scalar]; 
PORT     CEffSfan   "supply fan  fan effiency constant"      [scalar]; 
PORT    areaSPSfan  "supply fan  duct work crossing section area"   [m2]; 
 
//fan-return fan  
PORT TAirRet  "Return air dry bulb temperature"    [deg_C] ; 
PORT wAirRet  "Return air humidity  ratio"     [kg/kg_dryAir]; 
PORT     mAirRet    "Return fan air flow rate "        [kg_dryAir/s];  
PORT  powerTotRfan  "return fan motor power consumption"    [W]; 
PORT     nRfan    "return fan  fan speed "     [rpm]; 
PORT     pStatRfan  "return fan static pressure setpoint "    [Pa] ; 
PORT    pRfan    "return fan  total pressure increase across fan"   [Pa]; 
PORT  effMotRfan "return fan  Efficiency of fan motor"    [scalar] ; 
PORT  motFracRfan "return fan  Fraction of motor heat loss in air stream"  [fraction] ; 
PORT  effShaftRfan  "return fan  fan efficiency"     [scalar]; 
PORT  effShaftMaxRfan  "return fan  fan maximum efficiency"    [scalar]; 
PORT  mAirMaxRfan "return fan  maximum air flow of the fan"    [kg_dryAir/s];  
PORT     CResRfan   "return fan  resistance charactristic constant"         [scalar]; 
PORT     CRfan   "return fan  fan curve constant"          [scalar]; 
PORT     kRfan   "return fan  pressure-fanspeed constant"          [scalar]; 
PORT     CEffRfan   "return fan  fan effiency constant"         [scalar]; 
PORT areaSPRfan  "return fan  duct work crossing section area"   [m2]; 
 
//mixing box 
PORT    TAirOut      "Outside air temperature"      [deg_C]   ; 
PORT    wAirOut      "Outside humidity ratio"      [kg/kg]   ; 
PORT    posDamper      "damper position(-) (0 to 1, 1 = 100% outside air, 0 = 100% return air) " [scalar]; 
PORT    LeakRetDamper  "installed return damper leakage (0-1)”      [scalar]; 
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PORT    LeakOutDamper  "outside air damper leakge (0-1)"     [scalar]; 
PORT mixC1    "polynomial constant 1 for curve fitting the outside air fraction" [scalar] ; 
PORT mixC2    "polynomial constant 2 for curve fitting the outside air fraction"  [scalar]; 
PORT mixC3       "polynomial constant 3 for curve fitting the outside air fraction"  [scalar]; 
 
 
 
declare equal_link eq1 eq2 eq4 eq5 eq6 eq7 eq8 eq9 eq10 eq11 eq12 eq14 eq15 eq16; 
//LINKS 
declare coil_cooling_counter_flow cc; 
link   TAirEntCC  cc.TAirEnt  eq1.a; 
link   wAirEntCC  cc.wAirEnt  eq2.a; 
link    mAirCC   cc.mAir           eq7.a eq9.a; 
link   mLiqCC   cc.mLiq   eq4.b ; 
link .TAirLvgCC    cc.TAirLvg  eq5.a; 
link .wAirLvgCC    cc.wAirLvg  eq8.a; 
link .TLiqEntCC    cc.TLiqEnt; 
link .TLiqLvgCC    cc.TLiqLvg; 
link .AExtCC     cc.AExt ; 
link .AIntCC     cc.AInt; 
link     .CExtCC     cc.CExt; 
link    .CIntCC     cc.CInt; 
link .PAtm     cc.PAtm   eq12.b; 
link .qSenCC     cc.qSen; 
link .qLatCC     cc.qLat; 
link .qTotCC     cc.qTot; 
 
declare valve CCvalve; 
link  .posValveCC    CCvalve.pos; 
link  .mLiqCC     CCvalve.mLiq     eq4.a; 
link  .AValveCC    CCvalve.A; 
link  .mLiqOpenValveCC   CCvalve.mLiqOpen; 
link  .mLeakValveCC    CCvalve.mLeak   ; 
 
declare coil_heating_cross_flow hc; 
link   mAirHC  hc.mAirEnt   eq7.b; 
link   mLiqHC   hc.mLiq   eq6.a; 
link   TAirEntHC hc.TAirEnt   eq5.b; 
link   wAirEntHC hc.wAirEnt   eq8.b; 
link   mAirLvgHC hc.mAirLvg; 
link   wAirLvgHC hc.wAirLvg   eq11.a; 
link .TLiqEntHC    hc.TLiqEnt; 
link .TAirLvgHC    hc.TAirLvg   eq10.a; 
link .TLiqLvgHC    hc.TLiqLvg   ; 
link .qSenHC     hc.qSen ; 
link .CHC     hc.CHx ; 
link .AHC     hc.AHx       ; 
 
declare valve HCvalve; 
link  .posValveHC    HCvalve.pos; 
link  .mLiqHC     HCvalve.mLiq     eq6.b; 
link  .AValveHC    HCvalve.A; 
link  .mLiqOpenValveHC   HCvalve.mLiqOpen; 
link  .mLeakValveHC    HCvalve.mLeak; 
 
declare fan_system Sfan; 
link    TAirEntSfan Sfan.TAirEnt  eq10.b; 
link    wAirEntSfan Sfan.wAirEnt  eq11.b; 
link  .TAirSup     Sfan.TAirLvg; 
link  .wAirSup     Sfan.wAirLvg;  
link  .powerTotSfan    Sfan.powerTot; 
link  .effMotSfan    Sfan.effMot; 
link  .motFracSfan    Sfan.motFrac; 
link  .effShaftSfan    Sfan.effShaft; 
link  .effShaftMaxSfan    Sfan.effShaftMax; 
link  .mAirMaxSfan    Sfan.mAirMax;  
link .nSfan      Sfan.nFan; 
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AHU_Example.cm    AHU / SOURCE CODE 
 
link    .pStatSfan     Sfan.pStat; 
link     .pSfan      Sfan.pFan; 
link    .mAirSup     Sfan.mAir     eq9.b ; 
link     .CResSfan     Sfan.CRes  ; 
link     .CSfan      Sfan.CFan ; 
link     .kSfan      Sfan.kFan ; 
link     .CEffSfan     Sfan.CEff; 
link .areaSPSfan     Sfan.area; 
link    PAtmSfan Sfan.PAtm   eq12.a eq16.b; 
 
declare fan_system Rfan; 
link  .TAirRet     Rfan.TAirEnt   ; 
link  .wAirRet     Rfan.wAirEnt   ; 
link    TAirLvgRfan  Rfan.TAirLvg   eq14.a; 
link    wAirLvgRfan  Rfan.wAirLvg   eq15.a;  
link  .powerTotRfan    Rfan.powerTot; 
link  .effMotRfan    Rfan.effMot; 
link  .motFracRfan    Rfan.motFrac; 
link  .effShaftRfan    Rfan.effShaft; 
link  .effShaftMaxRfan    Rfan.effShaftMax; 
link  .mAirMaxRfan    Rfan.mAirMax;  
link  .nRfan      Rfan.nFan; 
link     .pStatRfan     Rfan.pStat; 
link     .pRfan      Rfan.pFan; 
link     .mAirRet      Rfan.mAir     ; 
link     .CResRfan     Rfan.CRes  ; 
link    .CRfan      Rfan.CFan ; 
link    .kRfan      Rfan.kFan ; 
link     .CEffRfan     Rfan.CEff; 
link .areaSPRfan     Rfan.area; 
link     PAtmRfan Rfan.PAtm   eq16.a; 
 
declare mix mixT mixW; 
link     .posDamper    mixT.pos   mixW.pos    ; 
link      .LeakRetDamper    mixT.LeakRet  mixW.LeakRet ; 
link      .LeakOutDamper    mixT.LeakOut  mixW.LeakOut ; 
link  .mixC1     mixT.C1  mixW.C1; 
link  .mixC2     mixT.C2  mixW.C2; 
link  .mixC3     mixT.C3  mixW.C3; 
 
link         TAirRetMix  mixT.TRet       eq14.b; 
link       .TAirOut     mixT.TOut    ; 
link         TMixLvg   mixT.TMix      eq1.b  ; 
link         TMixLow   mixT.TMixLow; 
link         TMixHigh mixT.TMixHigh; 
link         wAirRetMix  mixW.TRet       eq15.b; 
link       .wAirOut     mixW.TOut    ; 
link         wMixLvg  mixW.TMix      eq2.b  ; 
link         wMixLow   mixW.TMixLow; 
link         wMixHigh  mixW.TMixHigh; 
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Chiller      REFERENCE MODELS  
 
General description 
Chiller models can generally be divided into two categories: efficiency models and 
detailed mechanistic models.  Efficiency models predict the power required to meet a 
particular load at particular operating conditions.  These models can usually be extended 
to model capacity, i.e. the ability to meet that particular load.  The input variables for 
these models are the water temperatures and flow rates.  Mechanistic models predict 
refrigerant temperatures, pressures and flow rates and account explicitly for faults such as 
fouling and incorrect refrigerant charge. 
 
Model description  
Previously developed efficiency models were compared, specifically the DOE-
2/CoolTools empirical model, the Gordon and Ng thermodynamic model and the 
ASHRAE Primary Toolkit model, which is a simplified mechanistic model (Sreedharan 
and Haves 2001).  The Gordon and NG universal chiller model (2nd generation) was 
selected for use in the library.  The model is based on both energy and entropy balances, 
thus incorporating both the first and second laws of thermodynamics.  As in the 
ASHRAE Toolkit model, sensible heat exchange is not treated explicitly in either the 
condenser or the evaporator, which are modeled using the NTU-ε method assuming an 
infinite capacity rate on the refrigerant side.  The performance equation is expressed in a 
form that is linear in physically meaningful parameters.  The values of the model 
parameters, TS∆ , eqvleakQ , , R , are obtained by linear regression. 
 
Governing equations: 
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Chiller      REFERENCE MODELS  
 
Nomenclature  
 
Variables  Description Unit 
COP COP chiller COP Dimensionless 
cliq cLiq water specific heat kW/kg.K 
mliq,con mLiqCon Water mass flow rate at condenser kg/s 
mliq,eva mLiqEva Water mass flow rate at evaporator kg/s 
qeva qEva Heat exchange at evaporator kW 
qcon qCon Heat exchange at condenser kW 
Qleak QLeak equvilant heat leak kW 
R R total heat exchanger thermal resistance 

  =(1/C_con) + (1/C_eva)" 
K/kW 

St St total internal entropy production K/kW 
Teva,ent TEvaEnt Entering water temperature at evaporator K 
Teva,lvg TEvaLvg Leaving water temperature at evaporator K 
Tcon,ent TConEnt Entering water temperature at condenser K 
Tcon,lvg TConLvg Leaving water temperature at condenser K 
Wcom WCom Compressor power consumption kW 
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Chiller.cm      Chiller / SOURCE CODE 
 
/*+++ 
  Identification: Chiller model using Ng-Gordon method. 
 
  Abstract:         
        
 
  Notes:            
       None 
 
  Interface:        
      mLiqEva:   Water mass flow rate at evaprator   [Kg/s] 
      mLiqCon:   Water mass flow rate at condenser   [Kg/s] 
      TEvaEnt:   Entering water temperature at evaprator       [K] 
      TEvaLvg:   Leaving water temperature at evaprator       [K] 
      TConEnt:   Entering water temperature at condenser       [K] 
      TEvaLvg:   Leaving water temperature at condenser       [K] 
      qEva:   Heat exchange at evaporator         [kW]  
      qCon:   Heat exchange at condenser         [kW] 
      WCom:   Compressor power consumption  [kW] 
      St:  total internal entropy production  [K/kW] 
      R:  total heat exchanger thermal resistance 
  =(1/C_con) + (1/C_eva)   [K/kW] 
      QLeak: equvilant heat leak    [kW] 
      cLiq:    water specific heat    [kW/kg.K] 
 
  Acceptable input set:   
      mLiqEva:  0.5 
      mLiqCon:  0.5  
      TEvaEnt:  293  
      TEvaLvg:  283  
      TConEnt:  310 
      St:       0.005  
      R:     2.5 
      QLeak:    0.2  
      cLiq:     4.182 
 
  Recommended matches:   
          None 
 
  Suggested breaks:   
          None 
 
  Local variables:   
        COP:  coefficient of performance   [scalar] 
 cLiq:   water specific heat  [kW/kg.K] 
 
  Equations:  
 qEva=mLiqEva*cLiq*(TEvaEnt-TEvaLvg); 
 qCon=mLiqCon*cLiq*(TConLvg-TConEnt); 

COP=(1-TEvaEnt/TConEnt+TEvaEnt*St/qEva+QLeak*(TConEnt-
TEvaEnt)/TConEnt/qEva+qEva/TConEnt/UA) -̂1*(TEvaEnt-qEva/UAEva)/TConEnt; 

    WCom=1/COP*qEva; 
 qCon =Wcom + qEva; 
 
---*/ 
PORT       mLiqEva   "Water mass flow rate at evaprator"   [Kg/s]; 
PORT       mLiqCon  "Water mass flow rate at condenser "  [Kg/s]; 
PORT       TEvaEnt  "Entering water temperature at evaprator"      [K]; 
PORT       TEvaLvg  "Leaving water temperature at evaprator"      [K]; 
PORT       TConEnt  "Entering water temperature at condenser"      [K]; 
PORT       TConLvg  "Leaving water temperature at condenser"      [K]; 
PORT       qEva   "Heat exchange at evaporator"        [kW]; 
PORT       qCon   "Heat exchange at condenser"  [kW]; 
PORT       WCom   "Compressor power consumption"        [kW]; 
PORT       St "total internal entropy production"  [K/kW]; 
PORT       R "total heat exchanger thermal resistance 
  =(1/C_con) + (1/C_eva)"   [K/kW]; 
PORT       QLeak  "equvilant heat leak "   [kW]; 
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Chiller.cm      Chiller / SOURCE CODE 
 
 
PORT       cLiq   "water specific heat "   [kW/kg.K]; 
PORT  COP   "chiller COP"    [scalar]; 
 
 
declare equal_link eq1 eq2 eq3 eq4 eq5 eq6 eq7 eq8; 
//Evaporator 
//qEva=mLiqEva*cLiq*(TEvaEnt-TEvaLvg); 
DECLARE cond Eva; 
DECLARE safprod pd1; 
LINK .TEvaEnt   Eva.T1   eq1.a; 
LINK .TEvaLvg  Eva.T2 ; 
LINK .cLiq   pd1.a   eq2.a; 
LINK .mLiq  Eva pd1.b;  
LINK   pd1.c Eva.U12; 
LINK   qEva Eva.q  eq5.b; 
 
//Condenser 
//qCon=mLiqCon*cLiq*(TConLvg-TConEnt); 
DECLARE cond Con; 
DECLARE safprod pd2; 
LINK .TConEnt  Con.T2   eq4.a; 
LINK .TConLvg  Con.T1; 
LINK   cLiq pd2.a  eq2.b; 
LINK .mLiqCon  pd2.b;  
LINK   pd2.c Con.U12; 
LINK .qCon   Con.q   eq6.a; 
 
//COP=(1-TEvaEnt/TConEnt+TEvaEnt*St/qEva+QLeak*(TConEnt-TEvaEnt)/TConEnt/qEva+qEva/TConEnt/UAEva)^-
1*(TEvaEnt-qEva/UAEva)/TConEnt; 
declare chiller_COP COP; 
LINK   TEvaEnt COP.TEvaEnt eq1.b; 
LINK   TConEnt COP.TConEnt eq4.b; 
LINK .St   COP.St; 
LINK .qEva   COP.qEva  eq3.a eq5.a; 
LINK .QLeak   COP.QLeak; 
LINK .R    COP.R ; 
 
//    WCom=qEva/COP; 
declare safquot sq; 
LINK     qEva1 sq.a  eq3.b eq7.a; 
LINK .COP   COP.COP sq.b; 
LINK .Wcom   sq.c   eq8.a;    
 
// qCon =Wcom + qEva; 
declare sum sum1; 
LINK   WCom sum1.a  eq8.b; 
LINK   qEva2 sum1.b  eq7.b; 
LINK   qCon sum1.c  eq6.b; 
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Chiller_COP.cc     Chiller / SOURCE CODE 
 
 
/* CLASS  ch_COP "COP of chillers" 
    
ABSTRACT 
   
 NG-GORDON method 
 
ABSTRACT_END 
TEST_INPUT 
         TEvaEnt = 290, TConEnt = 370, St=0.005, qEva=10, QLeak=0.2, R=2.5; 
*/ 
#ifdef SPARK_TEXT 
// ==== PORTS ==== 
 
PORT TEvaEnt    "Entering water temperature at evaprator"       [K]; 
PORT TConEnt    "Entering water temperature at condenser"       [K]; 
PORT St     "Total internal entropy production"  [K/kW] ; 
PORT qEva  "Heat exchange at evaporator"         [kW]; 
PORT QLeak  "Equvilant heat leak"    [kW]; 
PORT R  "total heat exchanger thermal resistance 
  =(1/C_con) + (1/C_eva)"     [K/kW]; 
PORT COP  "chiller COP"     [scalar]; 
 
EQUATIONS { 
  
COP=(1-TEvaEnt/TConEnt+TEvaEnt*St/qEva+QLeak*(TConEnt-TEvaEnt)/TConEnt/qEva+qEva/TConEnt/UAEva)^-
1*(TEvaEnt-qEva/UAEva)/TConEnt; 
 
   } 
 
// ==== FUNCTIONS ==== 
FUNCTIONS { 
 COP = chiller_COP( TEvaEnt, TConEnt, St, qEva, QLeak, R ) ; 
 
   } 
#endif /* SPARK_TEXT */ 
#include "spark.h" 
 
  double 
chiller_COP ( ARGS ) 
{ 
    ARGDEF(0,TEvaEnt) ; 
    ARGDEF(1,TConEnt) ; 
    ARGDEF(2,St) ; 
    ARGDEF(3,qEva) ; 
    ARGDEF(4,QLeak) ; 
    ARGDEF(5,R) ; 
 
    double COP ; 
 
    COP = 1/(1-TEvaEnt/TConEnt+TEvaEnt*St/qEva+QLeak*(TConEnt-TEvaEnt)/TConEnt/qEva+ R*qEva/TConEnt) * 
(TEvaEnt-R*qEva)/TConEnt; 
 
    return  COP; 
} 
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Abstract 
 
This document describes the contents of a toolbox for component- level model-based fault 
detection methods in commercial building HVAC systems.  The toolbox consists of five 
basic modules: a parameter estimator for model calibration, a preprocessor, an AHU 
model simulator, a steady-state detector, and a comparator.  Each of these modules will 
be described in detail.  The toolbox is written in C++ and also invokes the SPARK 
simulation program.                                                                        
 
Introduction 
  
The aim of the work described here is to develop and implement model-based fault 
detection methods for HVAC components and subsystems.  The software routines 
documented here are designed to be used with a set of component models implemented in 
the object-oriented simulation program SPARK, developed at LBNL.  The models are 
documented in a companion report (Xu and Haves 2003). 
 
SPARK is used to execute the models at each stage of use of the tool.  In the calibration 
stage, model parameters are identified on a component-by-component basis.  In some 
cases, e.g. air handling units, the components are then aggregated to form subsystems 
whose boundaries are defined by the availability of reliable sensor measurements.  In the 
fault detection stage, SPARK is used to simulate the subsystem model.  The calibration 
routines support both linear and non-linear models.   Currently, only static models are 
supported.  The execution of the SPARK models is illustrated in Appendix I. 
 
Model-based fault detection tools proposed here can be used in both the commissioning 
and routine operation phases of the building life-cycle.  As it is shown in Figure 1, 
different modes of execution are used at each phase.  Each mode of execution involves 
two different stages, which are performed sequentially – model calibration followed by 
fault detection.  During the commissioning phase, design information and manufacturer’s 
performance data are first used to calibrate the model.  Functional test data taken during 
start-up tests are then used to detect any pre-existing faults.  Once remedial work has 
been performed, the tests are repeated to confirm that the faults have been corrected.  
Once the test results are considered satisfactory, the test data are used to recalibrate the 
model for use in the on- line monitoring phase.  The predictions of the recalibrated model 
are compared with routine operating data in order to detect any faults that may arise 
during subsequent operation. 

 
 
 
 
 
 
 

 



Figure 1: Fault detection schema 
 
 
Calibration modules 
 
Calibration algorithm 
There are several nonlinear optimization techniques that may be used for model 
calibration.  The method implemented in the toolbox is Box’s Complex Method for 
constrained nonlinear optimization (Box, 1965).  A step-by-step description of the 
algorithm is in the appendix II. 
 
Calibration module structure  
The parameter estimator module uses functional test data in order to calibrate parameters 
for the specific component. Three main components within the AHU system are all 
calibrated. The diagram in Figure 2 illustrates the calibration process fo r all of the 
component model parameters, using the cooling coil and valve system as an example. 
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Figure 2 Calibration module structure  
 

The performance data used to calibrate the model parameters, ccalibrationsansome.dat, 
shown at the top of Figure 2 is separated into two files before starting the calibration.  
One is the output data file, CCRealOutput.dat, which contains measured values that will 
be predicted by the model, such as leaving air and water temperatures.  The other is the 
input data file, CcvalvecReal1.inp, contains valve position data which is used as input to 
the model. The file containing the constant parameters, ccvalveCConstant1.inp, the file 
containing the current estimates of the parameters that are being identified, 
ccvalvecSim1.inp, are also shown in Figure 2.   
 
The calibration parameter file, ccvalvecSim1.inp, is written continuously as required by 
the algorithm that is used to calibrate the model. The three *.inp files are merged to form 
the ccvalve1.run meta-file, which, along with ccvalve1.prf, is used by SPARK to 
simulate the output of the model. The results of the SPARK are then stored in 
ccvalveSparkoutput.dat. The calibration program, Coolingcoilvalvecalibration.exe, then 
estimates new values for the parameters, based on the differences between the measured 
and simulated values stored in CCRealOutput.dat and ccvalveSparkoutput.  Once the 
algorithm has converged, the values of the calibrated parameters are written to the screen.  
The display takes the form of a visually appealing animation of the convergence of the 
simulated and measured data. 
 
The resulting data presented in the visual display does not necessarily have to be 
coincident with the training data sets used to calibrate the models. In fact, there is a bin 
module, which is used to reduce the size of the training data set. This reduced sized 

Functional test data:  
CccalibrationSansome.dat 

Spark run files: 
Cccal.run 
 

SPARK Exe files: 
CC.exe 

SPARK prf files: 
CC.prf 

SPARK output files: 
CCSparkoutput.dat 

Functional tests input 
data: 
CcvalvecReal1.inp 

Functional test output data: 
CCRealOutput.dat 

Other constant parameters: 
CcvalveCconstact1.inp 

Calibration parameters: 
CcvalvecSim1.inp 

Complex method: 
Coolingcoilvalvecalibr
ation.exe 



training data set is used to calibrate the model, while the original larger data set is used to 
generate the visual display results of the calibration. This “bin” tool collapses one large 
data set into a small data set based on two criteria: that the system is in steady state, and 
the new control signal is significantly different to the previous control signal recorded in 
the small data set. The small data set is then be used for model calibration, the advantage 
being that execution time is significantly reduced.   
 
The following sections highlight the specific features of the code required to calibrate 
each one of the components using the algorithm just described.  
 
Mixing box calibration module 
 
For the mixing box, the parameters to be calibrated are: LeakRet, LeakOut, c1, and c2 (N.B. 
c3 = 1-c1-c2). The inputs are: pos, Tret, and Tout. The output parameter is Tmix, and the 
governing relationship is as fo llows: 
 
   Tmix=(((1-LeakRet)-LeakOut)(c1*pos+c2*pos2+c3*pos3)+LeakOut)*(Tout-Tret)+Tret 
 
More details of this model are given in (Xu and Haves 2003). 
 
This module performs model calibration of the mixing box component of the AHU 
system. The parameters, inputs, outputs, and their relationships are listed above. Because 
the equations are nonlinear with respect to the output parameters, the least squares 
method cannot be used to compute them. The least squares method can only be used 
when the output is linearly dependent on the calibration parameters.  
 
The model parameters are estimated using the Box-Complex constrained nonlinear 
optimization algorithm discussed in Appendix II. Figure 3 illustrates the fit of the 
simulated model output compared to the real measured output mixed air temperature.  

 
 



 
 

Figure 3: Automatic calibration results of mixing box 
 

VAV Fan-duct system calibration module 
 
For the fan-duct system, the parameters to be estimated are: CRes, CFan, kFan, and ηMot.  The 
constants are: MotFrac, ηShaftMax, PAtm, Area, cEff, and density(ρ). The input parameters are: 
nFan and mAir.  The output parameters are: PowerTot , Pfan, PStat . The governing relationships 
are: 

 
    Pfan=kfan*nFan

2-CFan*mAir
2 

    PStat=Pfan-cRes*mAir
2 

    PowerTot  = mAir*Pfan/( ρ * ηMot) 
  

Again, for more details refer to (Xu and Haves 2003). Note that, unlike the mixing box 
calibration, there are three calibrations that must take place because there are three output 
variables and three governing equations. These calibrations must take place sequentially -  
the result of the first calibration are used in the second and third calibrations. Other than 
this major difference, the underlying principle of the calibration is the same. 

 
Note that the second governing equation to be calibrated is linear in cRes. Hence, the least 
squares method could be used to obtain this value. However, for consistency, the Box - 
Complex constrained nonlinear optimization algorithm is used for all three calibrations. 



Figure 4 illustrates the fit of the model output to the second measured output, static fan 
pressure.   
 

 
 

Figure 4: Automatic calibration results of VAV fans 
 
 
Cooling coil and valve system calibration module 
 
Finally, for the cooling coil-valve system calibration, the parameters to be estimated are: 
Cair, Cwater, Valc1, and Valc2.  The constants are: Aext, Aint, Patm, ValLeakpar, and Authority.  
The input variables are: TairEnt, wAirEnt, TliqEnt, mAir, mLiqOpen, and valve position. The 
output variables are: TairLvg, wAirLvg, and Tliqlvg, although the latter two outputs are not 
used since they are not usually measured in practice. 

 
The governing relationships are more complicated than for the previous two subsystems - 
details are provided in (Xu and Haves 2003).  As with the fan subsystem, there are three 
sequential calibrations to perform.  The underlying principle of the calibration is the 
same.  Figure 5 illustrates the fit of the simulated model output compared to the measured 
output, the air temperature downstream of the cooling coil.  

 
 
 



 
 

Figure 5: Automatic calibration results of cooling coil-valve system 
 
 
 
 

On-line monitoring and fault detection modules 
 

Now that the model calibration stage has been presented, we must revisit the fault 
detection stage. In the current implementation, the model parameters for each of the 
components must be recorded manually via the visual displays that are updated during 
calibration, as shown in Figs. 3 - 5.  Also, they must be hardcoded into the appropriate 
files for the ensuing fault detection stage. The right side of Fig. 1 illustrated the modules 
within this stage, shown again with more file transfer information in Fig. 6. 

 
 
 
 
 
 
 
 
 



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 6 On-line monitoring and fault detection schema 
 

 
 
Pre-processor 
 
The pre-processor module of the fault detection stage, shown at the top of Figure 6, 
collects the online data taken during routine operation of the system. The main C++ 
program file that implements this module is called preprocessor.cpp. This program 
converts the raw data file, raw.dat, containing all data measured during the fault detection 
phase into processed data files having a standard format. There is a control file, 
convert.con, which contains the standard format and naming conventions of the 
parameters to be converted. This control file is used to process the raw data file, convert 
it and separate it into two processed data files: one is the measured input parameter data 
file, realinput.dat, and other is the measured output parameter data file, realoutput.dat. 
Data is also checked for errors prior to writing the input and output data files. 
 
Several different modules use the input and output data files within the fault detection 
stage. One of these, the model simulation itself, has already been discussed in detail. 
Simulation of the AHU model in SPARK requires the use of model input parameter data 
obtained from the preprocessor module. This model input data, as well as the output data 
found in the files realinput.dat and realoutput.dat is used by the steady state detector 
module.  
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Steady-state detector 
 
The steady-state detector module is implemented with the use of the C++ program file 
SSDetector.cpp. It is used to detect whether the system components under consideration 
are in steady state. The governing equations used to model all components of the system 
are static, since no dynamics have been modeled. Hence we can only consider fault 
detection during steady-state, and no transients are allowed. As such, there must be some 
threshold for determining the steady-state condition for both input and output data sets. 
Steady-state detection is performed by computing the EWMA (Exponentially-Weighted 
Moving Average) of the difference between consecutive time- indexed values for input 
and output parameter data values. If the absolute value of this moving average for any 
input or output variable is below a predetermined threshold value, then steady-state has 
been achieved.  

 
The input and output data files, realinput.dat, and realoutput.dat, respectively, are needed 
by the steady-state detector module, and come from the preprocessing module. 
SS_T_input.con is a control file required by the steady-state detector module, and it 
contains the threshold values of each input variable. Similarly, SS_T_output.con is a 
control file that contains the threshold of each output variable. The output file, ss.dat, 
stores the results of the detection. For each time- indexed data point, a value of 1 is 
recorded in this file if the component is found to be in steady state, or 0 if it is not in 
steady state. 
 
Simulator 

 
 

The C++ program file that implements the simulator module invokes the aggregate AHU 
(Air-handling unit) model generated by SPARK. All of the components of the AHU 
model's parameters are calibrated by the functional test data in a separate phase. These 
calibrated constant parameters are hardcoded and stored in the file constant.inp. The 
preprocessor module automatically generates the measured operating AHU system input 
data, and the results are effectively written in the file pos.inp.  

 
Both of these input files, pos.inp and constant.inp are referenced in the file AHU1.run, 
which is used by SPARK. Currently all of these calibrated parameters are hard-coded, not 
automatically written into the constant.inp file.  It is possible that additional coding effort 
could be used to automate this process, making for a more seamless boundary between 
the two stages of model parameter calibration and fault detection.  
 
There are over 100 parameters that SPARK requires for aggregate AHU system 
simulation. However, there are only about 10 that are actually calibrated. There are 
several software development options that could be explored in terms of how to handle 
generalizing this parameter selection, calibration and component inclusion modeling 
issue.  
 



The AHU1.run file also references an output file, Sparkoutput.out. This is where the 
resulting simulated output data for the AHU model executed by SPARK are stored. Other 
meta-data is also included in the AHU1.run file, such as the initial and final simulation 
times, as well as the simulation time increment, etc. There is also an AHU.prf file that is 
used by SPARK in order to set the specific parameters that control the methods and 
tolerances for analysis and solution of the governing equations. The executable file, 
AHU.exe, will generate the simulated output results of an overall model of the AHU 
system. Diagnostic information on SPARK's simulation is returned to the console upon 
completion of the simulation by default. This can be suppressed by redirecting this 
information to a log file, instead of to console I/O. This is named SPARK.log. 
 

 
Comparator 
 
The final module within the fault detection stage is the comparator. This is implemented 
by the C++ program file comparator.cpp. The system must first be in steady-state, 
determined by data from the file SS.dat. Then the simulated outputs derived from the 
SPARK simulation module, Sparkoutput.dat, are compared with the real output of the 
system, realoutput.dat. The real output data comes from the preprocessor module. 
Depending on the magnitude of the absolute error between the two, a determination is 
made regarding whether or not a fault has occurred. The results are stored in the file 
named FaultReport.dat, and released to console I/O screen display. 

 
Detection of a fault is based upon comparing the magnitude of the absolute error to some 
component-specific threshold. The thresholds are based upon empirical input data found 
in the file realinput.dat, and characterize specific physical parameters of the components, 
in a least squares sense. These relationships are defined in a separate file, threshold.cpp, 
and called in the comparator module. Hence, the information in the file realinput.dat 
needs to be used by the comparator module. Although the least squares method is 
currently used to identify most of these thresholds empirically, in the case of the mixing 
box model, these thresholds will be based upon the upper & lower limits defined by the 
SPARK model (Xu and Haves 2003).  Specifically, the outside air fraction (OAF) 
provides the basis for setting these thresholds in lieu of the mixed air temperature. These 
thresholds are defined over the entire operating range, and therefore can similarly be used 
for fault detection over the same range. 

 
The effects of measurement & modeling errors are not explicitly accounted for in this 
fault detection toolbox. It is assumed that some engineering judgment will need to be 
used to take these factors into consideration to prevent spurious false alarms and/or 
missed detections. 

 
 

Fault Diagnosis 
 

In the comparator module, fault detection is augmented with some fault diagnosis 
functionality. If the AHU system is found to be in steady-state, fault diagnosis is 



performed by using the innovation (error) found in the detection phase as a fuzzy input to 
a diagnostic rulebase. The software used to generate the fuzzy rulebase, input sets and 
membership functions is TILShell 3.0, from Togai InfraLogic, Inc.  C code can be 
automatically generated by this program, and the data structures from the resulting source 
code can be incorporated into the existing toolbox comparator module.  

 
There are currently some problems with incorporating the source code generated by the 
TILShell in the existing toolbox comparator module. However, the problem can be 
solved by manually implementing a coding workaround. The problem is that the 
automatically generated code references some data structures that are not declared. The 
problem can be overcome by including appropriate declarations. 

 
The fault diagnosis is based upon a list of possible faults that may occur over the entire 
operating range of the controlled input for a particular HVAC component. Because 
different faults occur in different sections of the operating range of the control signal, 
weighted bins are used to accumulate instances of detected faults that occur in the same 
sections of the operating range. Typically, there are two or three bins that cover each 
dimension of the operating range. These bins provide a way to partition the operating 
range into sections. In this way, the number of faults detected in any one bin can be used 
to set a threshold count for when an accurate computation of the moving average value 
can be made.  

 
The cooling & heating coil fault diagnosis is based upon the premise that there are two 
fuzzy inputs: the innovation (i.e. the difference between predicted and measured output 
values) at full duty and the innovation at minimal duty of the heating or cooling coil 
valve. Two bins are used to aggregate the data for each of the fuzzy inputs. There are four 
possible faults: valve leakage, coil fouling, and positive or negative sensor offset. The 
following table summarizes a fuzzy rulebase, based upon combinations of all possible 
faults & bins: 

 
Table 1 

Fault Type Innovation at Minimal Duty 
(ε0) 

Innovation at Full Duty (ε100) 

Valve Leakage + 0 
Coil Fouling 0 - 

Positive Sensor Offset + + 
Negative Sensor Offset - - 

 
 

The weighting factors for both inputs are binned according to the graph below illustrating 
both the crisp and fuzzy bins for the heating & cooling coil-valve weighting factor. As 
shown in Figure 7, the weighting factor is meant to act as a mitigating technique in 
computation of the moving average when using the fuzzy bin method. The reason for 
using this technique is to weight the new incoming data according to the operating range 
location. The result that this might have on the final updated moving average value can 
be either positive or negative, depending on the value of the difference between the new 



incoming data and the cur rent moving average value. The mitigating effect is evident by 
the weighting factor’s linear decrease from 1 to 0. It can also be seen that the weighting 
factor is always equal to one for the crisp bin method. Hence the following equation for 
the moving average is: 
 

nnn xwwyy )]1(1[)1(1 αα −−+−= −  
 
and when w=1 it becomes: 
 

nnn xyy  )1(1 αα +−= −  
 
where α is the forgetting factor, xn is the new data, yn-1 is the current moving average 
value, and yn is the new moving average value. 

 

 
Figure 7 Weighting factor vs. valve position for coil-valve system 

 
Note that the moving average computation is not treated as valid before 50 detections 
have been counted. However, it is still computed regardless of the number of counts, and 
displayed upon each detection, along with a warning stating that the value may not be 
valid. To clarify, the detection count will always be computed, as well the moving 
average. However, the diagnostic code is invoked only if the count for both bins exceeds 
50. The resulting diagnostic information is displayed only if there is a detection 



(threshold exceedance) that triggers it, regardless of whether the count for both bins 
exceeds 50 or not. The bins shown above are only defined on the very small regions 
between 0 and 0.02, representing minimal duty, and between 0.98 and 1, representing full 
duty.  

 
The fuzzy membership functions defined for the input variables are created in the 
TILShell 3.0 software. For both minimal and full duty innovations, the membership 
functions for the sets are as in Figure 8: 

 

 
 
Figure 8:  Coil-valve membership functions (N = negative, Z = zero, P = positive) 

 
The rule-base associated with the fuzzy system is based upon the table shown previously. 
There are three basic fuzzy sets for both inputs: zero, positive and negative, as shown in 
Figure 8. Each of the rules will fire based upon the computed inputs and defined fuzzy 
membership functions. As a result, the belief values associated with each of the rules will 
be used as the diagnostic information that is displayed upon an instance of triggered fault 
detection. 

 
The mixing box fault diagnosis uses three independent fuzzy systems, one for each type 
of possible fault. There are three possible faults: outside air damper leakage, return air 
damper leakage, and a ‘catch-all’ category that includes all other types of faults including 
nonlinearities. Each fuzzy system has its own rulebase, with innovations binned over 
specific sections of the operating range that act as inputs. They are as follows: innovation 
at minimal duty, innovation at half duty, and innovation at full duty of the mixing box 
damper position. The input s correspond respectively to the faults mentioned previously. 
Table 2 summarizes the fuzzy rulebases, based upon combinations of all possible faults & 
bins: 
 
 



Table 2: Mixing box fault diagnosis rules 
 

Fault Type Innovation at 
Minimal Duty (ε0) 

Innovation at 
Half Duty (ε50) 

Innovation at 
Full Duty (ε100) 

Outside Air Damper  Leakage -   
Return Air Damper  Leakage   + 
Nonlinearity and other faults  +  
Nonlinearity and other faults  -  

 
The weighting factors for both inputs are binned according to the bins shown in Figure 9. 
 

 
 

 
Figure 9 Weighting factor vs. damper position 

 
The bins shown above are defined on the regions between 0 and 0.02, representing 
minimal duty, between 0.4 and 0.6 representing half duty, and between 0.98 and 1, 
representing full duty. The three basic fuzzy sets for all inputs are: zero, positive and 
negative. For all three innovation inputs, the membership functions for the sets are as 
follows: 



 
Figure 10: Mixing box member functions 

  
Again, each of the rules will fire based upon the computed inputs and defined fuzzy 
membership functions. The belief values associated with each of the rules will then be 
used as the diagnostic information displayed when triggered by the detection of a fault. 
 
Finally, the supply and return fan duct-system fault diagnosis is based upon the premise 
that that there are two fuzzy inputs: innovation at low speed and innovation at high speed 
of the supply & return fans. Two bins are used to aggregate the data for each of the fuzzy 
inputs. There are eight possible faults: positive and negative sensor offset, fan stuck at 
full and intermediate speed, fan motor failure, fan reduced capacity, slipping fan belt, and 
all others lumped into a single generic category. The following Table 3 summarizes a 
fuzzy rulebase, based upon  combinations of all possible faults & bins: 
Table 3 

Fault Type Innovation at Minimal Duty (ε0) Innovation at  
Full Duty (ε100) 

Positive sensor offset + + 
Negative sensor offset S- S- 
Fan stuck at full speed + 0 

Fan stuck at intermediate speed + S- 
Fan motor failure L- L- 

Fan reduced capacity S- + 
Slipping fan belt M- M- 

Others 0 S- 
 

The five basic fuzzy sets for both inputs shown in the above table are: positive (+), zero 
(0), small negative (S-), medium negative (M-), and large negative (L-). The weighting 
factor for both inputs are binned according to the graph below illustrating both the crisp 
and fuzzy bins for the supply & return fan duct system weighting factor in Figure 11. 



 

 
Figure 11: Weighting factor vs. fan speed 

 
The bins shown above are defined on the regions between 0.3 and 0.5, representing low 
fan speed, and between 0.65 and 1 representing high fan speed. The membership 
functions for the five basic fuzzy sets described earlier, for both innovation inputs, are as 
Figure 12: 

 



  
 

Figure 12 Fan system member functions  
 

Note that the fuzzy sets shown in the legend of the illustration above (NM, N, Z, P, PM) 
do not correspond exactly with the sets described previously (positive (+), zero (0), small 
negative (S-), medium negative (M-), and large negative (L-)). The sets, however, have to 
be translated respectively because the software defaults to the former nomenclature. As 
always, each of the rules will fire based upon the computed inputs and defined fuzzy 
membership functions. The belief values associated with each of the rules will then be 
used as the diagnostic information displayed when triggered by the detection of a fault. 
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Appendix I Execution of SPARK models in the current version of toolbox  
 
Three main components or subsystems within the air handling unit subsystem are the 
mixing box, the fan-duct subsystem, and the cooling coil subsystem.  To explore different 
implementation approaches, the simpler models are coded as C++ classes and SPARK is 
used for the more complex models, such as the cooling coil subsystem, which require 
iteration.  Calling the current version of SPARK requires an EXEC call, which involves a 
significant overhead.  When a more convenient form of SPARK becomes available, e.g. a 
DLL, SPARK will become the implementation method of choice for all components, 
providing a uniform way of calling and coupling models.   
 
The basic file processing and data transfer requirements for generating a SPARK 
executable are shown in Figure 3.  The input files are: 1) filename.run, a meta-file 
containing a list of the files referencing basic constant, input and calibration parameters 
required to solve the equation(s).  It also contains other important parameters such as the 
name of the resulting output file, the initial & final simulation times, and time interval, 
etc., and 2) filename.prf, which contains the user preferences for how the governing 
equation(s) are to be solved and certain tolerances associated with obtaining the 
solutions.  Given these two files, the SPARK software will create an executable file that 
can be invoked on the command line, and hence called from within a C++ program when 
necessary.  
 
The files containing the basic constant, input and calibration parameters required to solve 
the governing equation(s) for the component(s) being simulated are typically created with 
extension *.inp.  As shown in Figure 3, some *.inp files that are generated manually and 
others are generated automatically, either by C++ programs or from trend logs of EMCS 
databases. Table 1 illustrates the present status of automation vs. manual generation for 
the different uses of SPARK within the toolbox: 

 
 

Figure 3: Generation of SPARK executables 
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Table 1 Current status of hardcoded and automated use of SPARK 

 
1. Total AHU model simulation for fault detection 
2. Cooling coil subsystem model simulation for calibration 

 
Note that automation of the input parameter data file for use in the total AHU SPARK 
model simulation for fault detection has not yet been implemented.  Furthermore, the 
naming convention for the files shown is provisional.  In the future, the file naming 
convention for these input (and other) relevant files would be standardized. 
 
(Just before the end of the High Performance Commercial Building Systems program, 
and after the completion of the work described here, a new Version of SPARK 
(VisualSPARK Version 2.0) was released.  Version 2.0 has two new features that offer 
important advantages for the implementation of model-based fault detection: 
 

• A SPARK problem can be compiled to produce a Dynamic Link Library 
(DLL), which allows the simulation to be called as a function from a fault 
detection program rather than using an ‘exec’ call with its associated overhead 

• SPARK objects may be ‘multi-valued’, i.e. calculate more than one output 
variable, simplifying the process of creating and connecting models 

 
New variants of the models in the library that are compatible with Version 2.0 will be 
added to the library as resources permit.  In the meantime, it is suggested that intending 
users consider porting models of interest to Version 2.0 and contact the authors if they 
have questions or problems.) 

 

 Automated Manually Generated 

1) 

 
Pos.inp (Input parameters) 
- 480 lines of data 
- should be written by preprocessor & 
read by SPARK 

 
 

Constant.inp (Calibration parameters) 
- 1 line of data 
- hardcoded & read by SPARK 
 

2) 

ccvalveSim1.inp 
(Calibration 
parameters) 
-1 line of data 
- Continuously 
written by 
calibration routine 
& read by SPARK 
 
 

ccvalvexReal1.inp 
(Input parameters) 
- 8 lines of data 
- Written once by 
calibration routine using 
data from 
Cccalibrationsansome.dat 
& read by SPARK 
 
 

ccvalveCConstant1.inp 
(Constant parameters) 
-1 line of data 
- hardcoded & read by SPARK 
 
 



Appendix II Complex method used for calibrations  
 
Let: 
   nc = number of parameters to be estimated 
  M = number of vertices (points) corresponding to the number of initial guesses for all 
calibration parameters values, representing a complex geometric figure in nc{?}-space 
(the ‘complex’). 
 
  1. Find M ≥ nc+1 points that satisfy all implicit & explicit inequality constraints.  There 
are two cases, depending on the nature of the constraints: 

a. For explicit inequality constraints, the complex is bounded by a hypercube 
defined by the constraints, which defines the region of feasible solutions. One 
point can be picked within the feasible range, and for the remaining points, a 
uniform random number generator can be used to ensure compliance with the 
bounding hypercube restriction.  

b. For implicit inequality constraints, each new test point is generated randomly 
and then tested for feasibility.  If the point is infeasible, it is moved to a 
location halfway to the centroid of the already accepted points.   This process 
is repeated until a set of k{M} feasible points is found.  

 
Note: only explicit cons traints are used in the current version of the toolbox. 
 
  2. Define an objective function to minimize. 
 

In this case, the objective function is an error function, f, defined as the 
sum of the scaled absolute error between the measured actual output of the 
component or subsystem and model simulated output, averaged over a set 
of N measurements:  
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where fj is the error for the jth point in the complex, yi
sim is the model 

output for the ith measurement, xi is the vector of measured inputs the ith 
measurement, cj is the vector of parameters that define the jth point in the 
complex and yi

real is the measured output for the ith measurement.  There 
are M error functions to compute, one for each point in the complex.    
The function is evaluated at each of the k points (vertices). The point that 
evaluates to the largest function value is reflected about the centroid of the 
remaining vertices of complex. The formula for reflection is: 

 
            Xr =(1+a)X0-aXh 
 

    where  Xr = new reflected point 
     X0 = centroid of remaining points 

    Xh = current point evaluating to largest function value 
      a = positive-valued reflection coefficient (default value 1.3) 

       



Note that this formula must be computed for each dimension of the 
parameter space. The intuition for the reflection formula stems from the 
fact that the new reflected point lies on a line joining the centroid of the 
remaining points and the high point. However, it lies closer to the centroid 
than to the high point. This is what we want, since we move away from 
the high point, and closer to potential low points. The distance away from 
the high point and to the centroid of remaining points is governed by 
selection of the reflection coefficient, a. 

 
3.  We must test for feasibility of the new reflected point (meaning the 

constraints must not be violated with this new reflected point).  
a. If the new point is feasible, and the function value is lower than the 

high value, we replace this high value with the new reflected point 
and proceed to finding another maximum function value and 
reflection in Step 2. 

b.  If the function value is not lower, then the reflection coefficient 
must be too high. Hence, a new reflection point is found by halving 
the value of a, and re-computing the reflection point. This iteration 
continues until a point is found that results in a lower function 
value. However, we don't want this to go on indefinitely, so we 
must set some tolerance, ε1, for a, at which this process will stop.  

c.  If a lower function value is not found after reaching the ε1 
tolerance level, then we just throw away this point, and start Step 2 
all over again with the 2nd highest function value. 

 
  4.  If at any stage the reflected point is deemed to be infeasible, it is moved 

halfway in towards the centroid until it becomes feasible. 
 
5.  Convergence of the process (i.e. termination of the algorithm) is 

determined when the following conditions are met: 
a. The complex shrinks to a specified small size, i.e. the distance 

between any two vertices is smaller than some pre-specified 
tolerance, ε2. 

b.  The standard deviation of the function value becomes sufficiently 
small, below some prescribed tolerance, ε3.  

 



 Appendix III Table of C++ files 
 

File Name Usage Module Content 

PreProcessor.cpp Online monitoring/fault 
detection Preprocessor Pre process the raw data collected from EMCS 

systems 

SSDectector.cpp 
 

Online monitoring/fault 
detection Steady state detector Determine whether the system is under steady 

state 
simulation.cpp 
 

Online monitoring/fault 
detection Simulator Conduct SPARK sim ulation  

Comparator.cpp 
 

Online monitoring/fault 
detection Comparator Compare the measured and simulated output 

and determine whether there is a fault  
Threshold.cpp 
 

Online monitoring/fault 
detection Comparator Determine the threshold of the output variable 

for comparator 
    
coolingcoilvalvecalibration.cpp Automatic calibration Cooling coil and valve 

calibration  
Cooling coil and valve system calibration 

fancalibration.cpp Automatic calibration VAV fan calibration VAV fan system calibration 
mixingboxcalibration.cpp Automatic calibration Mixing box calibration Mixing box calibration 

bin.cpp Automatic calibration Bin module Collapse a big data set from functional step test 
to a small training data set  

plot.cpp Automatic calibration Calibration Real time plot of all above calibrations 

 
 



Appendix IV Table of data files  
 

File Name Called By/ 
Created By 

Module Content Format 

Time 

raw.dat preprocessor.cpp/ 
EMCS system 

Preprocessor 
Time-indexed data dump from building 
EMCS system 
 (1 11-hr working day, 10 sec intervals) 

Parameter names 
from  EMCS 
system 

convert.con preprocessor.cpp/ 
software user 

Preprocessor Control file that contains the standard 
format and naming conventions of the 
parameters to be converted 

N/A 

Time 
TLiqEntCC 
posValveCC 
TLiqEntHC 
posValveHC 
TAirRet  
wAirRet 
TAirOut 
wAirOut 

realinput.dat  

SSDetector.cpp, 
comparator.cpp, 
threshold.cpp, 
AHU1.run  
SPARK 
/preprocessor.cpp 

Steady-State 
Detector,  
Comparator, 
SPARK 
Model 

Contains the input data read during 
routine operation of system, after being 
processed by preprocessor module 

posDamper 
Time 
TAirLvgCC 
wAirLvgCC 
TLiqLvgCC 
mLiqCC 
TAirLvgHC 
TLiqLvgHC 
mLiqHC 
TAirSup 
wAirSup 
mAirSup 
powerTotSfan 
nSfan 
pSfan 
mAirRet  
powerTotRfan 
nRfan 

realoutput.dat  

SSDetector.cpp, 
comparator.cpp, 
threshold.cpp 
/preprocessor.cpp 

Steady-State 
Detector,  
Comparator 

Contains the output data read during 
routine operation of system, after being 
processed by preprocessor module 

pRfan 
TLiqEntCC 
posValveCC 
TLiqEntHC 
posValveHC 
TAirRet  
wAirRet 
TAirOut 
wAirOut 

SS_T_input.con SSDetector.cpp/ 
Software user 

Steady-State 
Detector 

Control file required by the steady-state 
detector module containing the threshold 
values of each input parameter 

posDamper 
TLiqEntCC 
posValveCC 
TLiqEntHC 
posValveHC 
TAirRet  
wAirRet 
TAirOut 
wAirOut 

SS_T_output.con SSDetector.cpp/ 
Software user 

Steady-State 
Detector 

Control file required by the steady-state 
detector module containing the threshold 
values of each output parameter 

PosDamper 
Time 

SS.dat comparator.cpp/ 
SSDetector.cpp 

Comparator 

Stores the results of the detection as 
follows: for each time-indexed data 
point, record a value of 1 (Yes, at steady-
state i.e. below threshold) or 0 (No, not 
at steady-state i.e. above threshold) 

SS Value 

FaultReport.dat  
Software User/ 
comparator.cpp Comparator The final results are stored in the file 

N/A 



Index 
MixposDamper 
MixTAirOut 

Pos.inp 
AHU1.run, 
SPARK 
/preprocessor.cpp 

SPARK 
Model Contains input data from fault detection 

RetTAirRet  

Constant.inp 
AHU1.run, 
SPARK 
/ Software User 

SPARK 
Model Contains calibration parameter values 

See SPARK 
documentation 
for more details 

Sparkoutput.out  
comparator.cpp/ 
SPARK 

SPARK 
Model 

Contains SPARK simulation output 
results for aggregate AHU system 

See SPARK 
documentation 
for more details 
MixTAirOut 
RetTAirRet  
MixposDamper 

mixingcal.dat  
mixingboxcalibration.cpp/ 
EMCS system 

Parameter  
Estimator 

Contains training data for calibration of 
mixing box model parameters 

TAirEntCC 
nFan 
mAir 
PowerTot 
pFan 

fanCal.dat  fancalibration.cpp/ 
EMCS system 

Parameter  
Estimator 

Contains training data for calibration of 
VAV fan-duct model parameters 

Pstat  
TAirEnt 
wAirEnt 
TLiqEnt 
mAir 
mLiqOpen 
pos 
wAirLvg 

Cccalibrationsansome.dat  
 

coolingcoilvalvecalibration
.cpp/EMCS system 

Parameter  
Estimator 

Contains training data for calibration of 
coil-valve model parameters 

TairLvg 
Index 
TAirEnt 
wAirEnt 
TLiqEnt 
mAir 
mLiqOpen 

ccvalvexReal1.inp 
 

ccvalve1.run, SPARK/ 
coolingcoilvalvecalibration
.cpp, EMCS system 

Parameter  
Estimator 

Contains input training data for 
generation of simulated output for coil-
valve model using SPARK (One-time 
read) 

pos 
Index 
Cair 
Cwater 
Valc1 

ccvalvecSim1.inp 
 

ccvalve1.run, SPARK/ 
coolingcoilvalvecalibration
.cpp 

Parameter  
Estimator 

Contains current calibration parameters 
for generation of simulated output for 
coil-valve model using SPARK 
(Continuously read) 

Valc2 
Aext 
Aint 
Patm 
ValLeakpar 

ccvalveCConstant1.inp 
 

ccvalve1.run, SPARK/ 
Software User 

Parameter  
Estimator 

Contains constant parameters for 
generation of simulated output for coil-
valve model using SPARK  

Authority 

ccvalveSparkoutput1.dat  
 

coolingcoilvalvecalibration
.cpp/SPARK 

Parameter  
Estimator 

Contains SPARK simulation output 
results for coil-valve model 
(Continuously written) 
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