1. Introduction

1.1 Organization and Content

This manual is designed to help owners, designers, builders, inspectors, examiners, and energy consultants comply with and enforce California’s energy efficiency standards for nonresidential buildings. The manual is written as both a reference and an instructional guide and can be helpful for anyone that is directly or indirectly involved in the design and construction of energy efficient nonresidential buildings.

Eight chapters make up the manual:

- This chapter (Chapter 1) introduces the Standards and discusses the application and scope.
- Chapter 2 reviews the compliance and enforcement process, including design and the preparation of compliance documentation through acceptance testing.
- Chapter 3 addresses the requirements for the design of the building envelope.
- Chapter 4 covers the requirements for HVAC systems and water heating systems.
- Chapter 5 addresses the requirements for indoor lighting.
- Chapter 6 addresses the requirements for outdoor lighting and signs (for both indoor and outdoor applications).
- Chapter 7 covers the whole building performance approach.
- Chapter 8 addresses the acceptance requirements.

Cross-references within the manual use the word ‘Section’ while references to sections in the Standards are represented by “§.”

1.2 Related Documents

This manual is intended to supplement three other documents that are available from the California Energy Commission (Energy Commission). These are:

- The Standards. This manual supplements and explains California’s energy efficiency standards for buildings; it does not replace them. Readers should have a copy of the Standards to refer to while reading this manual.
- Joint Appendices. The joint appendices to the residential and nonresidential Alternate Calculation Method (ACM) manuals contain information that is common to both the residential and nonresidential Standards.
• Joint Appendix I is a glossary of terms.
• Joint Appendix II summarizes the climate zones and design conditions in California cities.
• Joint Appendix III is a summary of time dependent valuation (TDV), the new currency for performance calculations.
• Joint Appendix IV contains thermal performance data for wall, roof and floor constructions that must be used in calculations.
• The Nonresidential ACM Manual. The Nonresidential ACM Manual is primarily a specification for computer software that is used for compliance purposes; however, the appendices contain procedures for acceptance testing and field verification and/or diagnostic testing of air distribution ducts. Of special note is ACM Manual Appendix NB-2005, which contains data on the power used for lamp and ballast combinations.

Material from these other documents is not always repeated in this manual. However, if you are using the electronic version of the manual, there are often hyperlinks in this document that will take you directly to the document that is referenced.

1.3 The Technical Chapters

Each of the four technical chapters (3 through 6) begins with an overview, which is followed by a presentation of each subsystem. For the building envelope, subsystems include fenestration, insulation, infiltration, etc. For HVAC, the subsystems include heating equipment, cooling equipment, and ducts. Mandatory measures and prescriptive requirements are described within each subsystem or component. These determine the stringency of the Standards and are the basis of the energy budget when the performance method is used.

1.4 Why California Needs Energy Standards

Energy efficiency reduces energy costs for owners, increases reliability and availability of electricity for the State, improves building occupant comfort, and reduces environmental impact.

Energy Savings

Reducing energy use is a benefit to all. Building owners save money, Californians have a more secure and healthy economy, the environment is less negatively impacted, and our electrical system can operate in a more stable state. The 2005 Standards (for residential and nonresidential buildings) are expected to reduce the growth in electricity use by 478 gigawatt-hours per year (GWh/y) and reduce the growth in gas use by 8.8 million therms per year (therms/y). The savings attributable to new nonresidential buildings are 163.2 GWh/y of electricity savings and 0.5 million therms. Additional savings result from the application of the Standards on building alterations. In particular, requirements for cool roofs, lighting and air distribution ducts are expected to
save about 175 GWh/y of electricity. These savings are cumulative, doubling in two years, tripling in three, etc.

![Electricity Savings Related to the 2005 Standards](image)

Figure 1-1 – Electricity Savings Related to the 2005 Standards

Electricity Reliability and Demand

Buildings are one of the major contributors to electricity demand. We learned during the 2000/2001 California energy crisis, and the East Coast blackout in the summer of 2003, that our electric distribution network is fragile and system overloads caused by excessive demand from buildings can create unstable conditions. Resulting blackouts can seriously disrupt business and cost the economy billions of dollars.

Since the California electricity crisis, the Energy Commission has placed more and more emphasis on demand reductions. Changes in 2001 (following the electricity crisis) reduced electricity demand by about 150 megawatts (MW) each year. The 2005 Standards are expected to reduce electric demand by another 180 MW each year. Nonresidential buildings account for 44 MW of these savings. Like energy savings, demand savings accumulate each year.
Comfort

Comfort is an important benefit of energy efficient buildings. Energy efficient buildings include properly designed HVAC systems, which provide improved air circulation, and high performance windows and/or shading to reduce solar gains and heat loss. Poorly designed building envelopes result in buildings that are less comfortable. Oversized heating and cooling systems do not assure comfort even in older, poorly insulated and leaky buildings.

Economics

For the building owner, energy efficiency helps create a more profitable operation. From a larger perspective, the less California depends on depletable resources such as natural gas, coal and oil, the stronger and more stable the economy will remain in the face of energy cost increases. A cost-effective investment in energy efficiency helps everyone. In many ways, it is far more cost effective for the people of California to invest in saving energy than it is to invest in building new power plants.

Environment

In many parts of the world, the use of energy has led to oil spills, acid rain, smog, and other forms of environmental pollution that have ruined the natural beauty people seek to enjoy. California is not immune to these problems, but appliance standards, building standards, and utility programs that promote efficiency and conservation help to maintain environmental quality. Other benefits include reduced destruction of natural habitats, which in turn helps protect animals, plants, and natural systems.
Global Warming

Experts believe that burning fossil fuel is a major contributor to global warming; carbon dioxide is being added to an atmosphere already containing 25% more than it did two centuries ago. Carbon dioxide and other greenhouse gasses create an insulating layer around the earth that leads to global climate change. Energy Commission research shows that most of the sectors of the State economy face significant risk from climate change including water resources (from reduced snow pack), agriculture, forests, and the natural habitats of a number of indigenous plants and animals.

Scientists recommend that actions be taken to reduce emissions of carbon dioxide and other greenhouse gasses. While adding scrubbers to power plants and catalytic converters to cars is a step in the right direction, those actions do not limit the carbon dioxide we emit into the atmosphere. Using energy efficiently is a far-reaching strategy that can make an important contribution to the reduction of greenhouse gasses.

The National Academy of Sciences has urged the country to follow California’s lead on such efforts, saying that conservation and efficiency should be the chief element in energy and global warming policy. Their first efficiency recommendation was simple: Adopt nationwide energy efficient building codes. Energy conservation will not only increase comfort levels and save California money, but it will also play a vital role in creating and maintaining a healthy environment.

1.5 What’s New for 2005

The process to develop the 2005 Standards began with a call for ideas in November 2001, moved through a series of workshops and hearings in 2002 and 2003 and concluded at the adoption hearing on November 5, 2003. Energy Commission staff, contractors, utilities and many others participated in the process. The following paragraphs summarize the principle changes that resulted.

All Buildings

- Time Dependent Valuation (TDV). Source energy was replaced with TDV energy. TDV energy values energy savings greater during periods of likely peak demand, such as hot summer weekday afternoons, and values energy savings less during off peak periods. TDV gives more credit to measures such as daylighting and thermal energy storage that are more effective during peak periods.

- New Federal Standards. Coincident with the 2005 Standards, new standards for water heaters and air conditioners took effect. These changes affect all residential buildings, but also affect many nonresidential buildings that use water heaters and/or “residential size” air conditioners.

- New Lighting in Historic Buildings. The exception to the Standards requirements for historic buildings has changed relative to lighting requirements so that only those historic or historic replica components are exempt.
Nonresidential Buildings

- **Cool Roofs.** The nonresidential prescriptive standards require “cool roofs” (high reflectance, high emittance roof surfaces, or exceptionally high reflectance and low emittance surfaces) in all low-slope applications. The cool roof requirements also apply to roof replacements for existing buildings.

- **Acceptance Requirements.** Basic “building commissioning”, at least on a component basis, is required for electrical and mechanical equipment that is prone to improper installation.

- **Demand Control Ventilation.** Controls that measure CO₂ concentrations and vary outside air ventilation are required for spaces such as conference rooms, dining rooms, lounges, and gyms.

- **T-bar Ceilings.** Placing insulation directly over suspended ceilings is not permitted as a means of compliance, except for limited applications.

- **Relocatable Public School Buildings.** Special compliance approaches are added for relocatables so they can be moved anywhere statewide.

- **Duct Efficiency.** R-8 duct insulation and duct sealing with field verification is required for ducts in unconditioned spaces in new buildings. Duct sealing is also required in existing buildings when the air conditioner is replaced. Performance method may be used to substitute a high efficiency air conditioner in lieu of duct sealing.

- **Indoor Lighting.** The lighting power limits for indoor lighting are reduced in response to advances in lighting technology.

- **Skylights for Daylighting in Buildings.** The prescriptive standards require that skylights with controls to shut off the electric lights are required for the top story of large, open spaces (spaces larger than 25,000 ft² with ceilings higher than 15 ft.).

- **Thermal Breaks for Metal Building Roofs.** Continuous insulation or thermal blocks at the supports are required for metal building roofs.

- **Efficient Space Conditioning Systems.** A number of measures are required that improve the efficiency of HVAC systems, including variable speed drives for fan and pump motors greater than 10 hp, electronically-commutated motors for series fan boxes, better controls, efficient cooling towers, and water cooled chillers for large systems.

- **Unconditioned Buildings.** New lighting standards—lighting controls and power limits—applies to unconditioned buildings, including warehouses and parking garages. Lighting power tradeoffs are not permitted between conditioned and unconditioned spaces.

- **Compliance Credits.** Procedures are added for gas cooling, underfloor ventilation.
Outdoor Lighting

- **Lighting Power Limits.** The Standards set limits on the power that can be used for outdoor lighting applications such as parking lots, driveways, pedestrian areas, sales canopies, and car lots. The limits vary by lighting zones or ambient lighting levels. Lighting power tradeoffs are not permitted between outdoor lighting and indoor lighting.

- **Shielding.** Luminaires in hardscape areas larger than 175 W are required to be cutoff luminaires, which will save energy by reducing glare.

- **Bi-level Controls.** In some areas outdoor lighting controls are required, including the capability to reduce lighting levels to 50%.

Signs

- **Lighting Power Limits.** Lighting power limits (or alternative equipment efficiency requirements) apply to externally and internally illuminated signs used either indoors or outdoors.

1.6 Mandatory Measures and Compliance Approaches

In addition to the mandatory measures (Section 1.6.1), the Standards provide two basic methods for complying with Nonresidential energy budgets: the prescriptive approach and the performance approach. The mandatory measures must be installed with either of these but note that mandatory measures may be superseded by more stringent measures under the prescriptive approach.

- The prescriptive approach (composed of prescriptive requirements described in Chapters 3, 4, 5, and 6) is the simpler. Each individual energy component of the proposed building must meet a prescribed minimum efficiency. The prescriptive approach offers relatively little design flexibility but is easy to use. There is some flexibility for building envelope components, such as walls, where portions of the wall that do not meet the prescriptive insulation requirement may still comply as long as they are area-weighted with the rest of the walls, and the average wall performance complies.

- The performance approach (Chapter 8) is more complicated but offers considerable design flexibility. The performance approach requires an approved computer software program that models a proposed building, determines it’s allowed energy budget, calculates its energy use, and determines when it complies with the budget. Design options such as window orientation, shading, thermal mass, zonal control, and building configuration are all considered in the performance approach. This approach is used because of the flexibility and because it provides a way to find the most cost-effective solution for complying with the Standards.

For additions and alterations, see Chapter 8 for details of compliance approaches that are available.
1.6.1 Mandatory Measures

With either the prescriptive or performance compliance paths, there are mandatory measures that must always be installed. Many of the mandatory measures deal with infiltration control and lighting; others require minimum insulation levels and equipment efficiency. The minimum mandatory levels are sometimes superseded by more stringent prescriptive requirements. For example, if mandatory measures specify R-19 ceiling insulation and the prescriptive approach, specifies R-38 ceiling insulation, then R-38 must be installed. Conversely, the mandatory measures may be of a higher efficiency than permitted under the performance approach; in these instances, the higher mandatory levels must be installed. For example, a building may comply with the performance computer modeling with only R-7 insulation in a raised floor; however, if mandatory requirement for this raised floor is R-19, the R-19 must be installed consistent with the mandatory requirements.

1.6.2 Prescriptive Packages

Building Envelope

The prescriptive envelope requirements are determined either by the Envelope Component Approach or the Overall Envelope Approach. These two approaches are described in detail in Chapter 3, beginning with an introduction in Section 3.1. The stringency of the envelope requirements varies according to climate zone and occupancy type.

Mechanical

The prescriptive mechanical requirements are described in detail in Chapter 4. The prescriptive Standards do not offer any alternative approaches, but specify hardware features and design procedures that must be followed.

Indoor Lighting

The prescriptive lighting requirements are determined by one of three methods: the Complete Building Method, the Area Category Method, or the Tailored Method. These three approaches are described in detail in Chapter 5, beginning with Section 5.2.2. Prescriptive Approach. The allowed lighting under the Standards varies according to the requirements of the particular building occupancy or task requirements.

Outdoor Lighting

The prescriptive lighting requirements are determined by lighting application type (general and specific) and the lighting zone for each application. These approaches are discussed in detail in Chapter 6, beginning with 6.4 Outdoor Lighting Power Allowances.

1.6.3 Performance Approach

The performance approach, also known as the computer method, requires that the annual TDV energy be calculated for the proposed house and compared to the TDV energy budget. TDV energy is the “currency” for the performance approach. TDV energy not only considers the type of energy that is used (electricity, gas, or propane), but also when it is used. Energy saved during
periods when California is likely to have a statewide system peak is worth more than energy saved at times when supply exceeds demand. Appendix III of the Joint Appendices has more information on TDV energy.

The performance approach allows a wider variety of design strategies and provides greater flexibility than the prescriptive approach. It is based on an energy simulation model of the building. The Standards specify the method for determining an energy budget for the building. This energy budget represents the upper limit of energy use allowed for that particular building. The designer is permitted to trade off different aspects of the building design, one against the other, when permit applications for more than one component are submitted at the same time. As long as total energy use considering all installed components does not exceed the allowed budget, the tradeoff is acceptable.

Three basic steps are involved:

1. Design the building with energy efficiency measures that are expected to be sufficient to meet the energy budget. (The prescriptive approach requirements provide a good starting point for the development of the design.)

2. Demonstrate that the building complies with the mandatory measures (see Chapters 3, 4, 5 and 6).

3. Using an approved calculation method, model the energy consumption of the building using the proposed features to create the proposed energy budget. The model will also automatically calculate the allowed energy budget for the proposed building.

If the proposed energy budget is no greater than the allowed energy budget, the building complies.

1.7 Scope and Application

The California Standards apply to both nonresidential and residential buildings. This manual addresses the requirements for nonresidential buildings, including hotels, motels, and high-rise residential buildings (those over three stories in height). The Residential Manual addresses the requirements for low-rise residential buildings.

1.7.1 Building Types Covered

The nonresidential Standards apply to all California Building Code (CBC) occupancies of Group A, B, E, F, H, M, R, S or U buildings that are mechanically heated or mechanically cooled resulting in directly or indirectly conditioned space. Nonresidential buildings that have space conditioning, but do not meet the criteria of a directly or indirectly conditioned building, must comply with the lighting requirements only.

The Standards do not apply to CBC Group I. This group includes such buildings as hospitals, daycare, nursing homes, and prisons. The Standards also do not apply to buildings that fall outside the jurisdiction of California building codes, such as mobile structures.
Historic Buildings

Exception 1 to §100(a) states that qualified historic buildings, as defined in the California Historical Building Code Title 24, Part 8 or California Building Code, Title 24, Part 2, Volume I, Chapter 34, Division II are not covered by the Building Energy Efficiency Standards. Building Energy Efficiency Standards §146 (a) 5.Q clarifies that lighting systems in qualified historic buildings are exempt from the lighting power allowances only if they consist solely of historic lighting components or replicas of historic lighting components. If lighting systems in qualified historic buildings contain some historic lighting components or replicas of historic components, combined with other lighting components, only those historic or historic replica components are exempt. All other lighting systems in qualified historic buildings must comply with the Building Energy Efficiency Standards.

The California Historical Building Code (CHBC) §102.1.1 specifies that all non-historical additions must comply with the regular code for new construction, including the Building Energy Efficiency Standards. CHBC §901.5 specifies that when new or replacement mechanical, plumbing, and electrical (including lighting) equipment or appliances are added to historic buildings they should comply with the Building Energy Efficiency Standards, including the Appliance Efficiency Regulations.

The California State Historical Building Safety Board has final authority in interpreting the requirements of the CHBC and determining to what extent the requirements of the Building Energy Efficiency Standards apply to new and replacement equipment and other alterations to qualified historic buildings. It should be noted that in enacting the State Historical Building Code legislation, one of the intents of the Legislature was to encourage energy conservation in alterations to historic buildings (Health and Safety Code §18951).

Additional information about the CHBC can be found on the following website: http://www.dsa.dgs.ca.gov/StateHistoricalBuildingSafetyBoard/

Contact the State Historical Building Safety Board at (916) 445-7627.

Low-rise Residential Buildings

The low-rise residential Standards cover single-family and low-rise residential buildings (occupancy groups R1, R2, and R3) and CBC Group U buildings including:

- All single-family dwellings of any number of stories.
- All duplex (two-dwelling) buildings of any number of stories.
- All multi-family buildings with three or fewer habitable stories (Groups R-1 and R-2).
- Additions and alterations to all the above buildings.
- Private garages, carports, sheds and agricultural buildings.
Table 1-1 – Nonresidential vs. Residential Standards

<table>
<thead>
<tr>
<th>Nonresidential Standards</th>
<th>Low-Rise Residential Standards</th>
</tr>
</thead>
<tbody>
<tr>
<td>These Standards cover all nonresidential occupancies (Group A, B, E, F, H, M, R, S or U), as well as high-rise residential (Groups R-1 and R-2 with four or more habitable stories), and all hotel and motel occupancies.</td>
<td>These Standards cover all low-rise residential occupancies including:</td>
</tr>
<tr>
<td>Offices</td>
<td>All single family dwellings of any number of stories (Group R-3)</td>
</tr>
<tr>
<td>Retail and wholesale stores</td>
<td>All duplex (two-dwelling) buildings of any number of stories (Group R-3)</td>
</tr>
<tr>
<td>Grocery stores</td>
<td>All multi-family buildings with three or fewer habitable stories (Groups R-1 and R-2)</td>
</tr>
<tr>
<td>Restaurants</td>
<td>Additions and alterations to all of the above buildings</td>
</tr>
<tr>
<td>Assembly and conference areas</td>
<td></td>
</tr>
<tr>
<td>Industrial work buildings</td>
<td></td>
</tr>
<tr>
<td>Commercial or industrial storage</td>
<td></td>
</tr>
<tr>
<td>Schools and churches</td>
<td></td>
</tr>
<tr>
<td>Theaters</td>
<td></td>
</tr>
<tr>
<td>Hotels and motels</td>
<td></td>
</tr>
<tr>
<td>Apartment and multi-family buildings, and long-term care facilities (Group R-2), with four or more habitable stories</td>
<td></td>
</tr>
</tbody>
</table>

Note: The Standards define a habitable story as one that contains space in which humans may live or work in reasonable comfort, and that has at least 50% of its volume above grade.

1.7.2 Scope of Improvements Covered

The Standards apply to any new construction that requires a building permit, whether for an entire building, for outdoor lighting systems, for signs, or for a modernization. The primary enforcement mechanism is through the building permitting process. Until the building department is satisfied that the building, outdoor lighting, or sign complies with all applicable code requirements, including the Standards, it may withhold the building permit (or, after construction, the occupancy permit).

The Standards apply only to the construction that is the subject of the building permit application (with the exception of existing spaces that are "conditioned" for the first time, in which case existing envelope and lighting systems also must show compliance with the Standards).

Other than for lighting, the Standards apply only to buildings that are directly or indirectly conditioned by mechanical heating or mechanical cooling. Section 1.7.15 provides detailed definitions of these terms.

1.7.3 Speculative Buildings

Known Occupancy

Speculative buildings of known occupancy are commonly built by developers. For example, if a strip shopping center or an office building were built on speculation, the owner would usually know the ultimate occupancy of the space but might not know the actual tenants. For this type of building, the owner could take responsibility for any or all of the major components by simply building and
showing energy compliance for the envelope, and leaving the lighting and HVAC improvements to the tenants (or the project could include the other systems as well). In most instances upgrading the envelope later increases total construction costs, as it is easier to install envelope features at time of construction of the shell than afterwards.

The obvious example is declaring the shell to be unconditioned, not insulating the shell and having to insulate the shell as part of the tenant improvement that adds air-conditioning. This increases the final cost of the building and should render the shell less valuable for spaces that are ultimately going to be conditioned.

A less obvious example that is new to the 2005 standards, is the shell of a building that will ultimately become a big box retail store or a warehouse with lighting power densities > 0.5 W/ft², ceiling heights > 15 ft, and an enclosed area > 25,000 ft². Such occupancies are prescriptively required to have skylights and daylighting controls. Installing skylights in the roof of the speculative building shell is less expensive than retrofitting them later. This should be considered when designing speculative shell buildings for the big box retail or warehouse market, as they will be more saleable than those requiring skylight retrofits.

Because compliance may be demonstrated for each component separately, the owner can simply demonstrate that the systems being built meet the Standards. The remaining construction and Standards compliance work can be dealt with as each tenant obtains building permits for work in their individual spaces (see Section 1.7.10).

Often, the developer will seek to minimize first cost by delaying compliance and construction of as much of the project as possible. While this can be done under the Standards, there are two disadvantages:

1. If all Standards compliance is deferred by declaring the building to be unconditioned, the owner needs to understand the potential problems that could arise later when the building is conditioned.

2. If only the envelope or lighting systems are shown to comply, the owner loses the opportunity to apply the performance approach to the entire building and so to make trade-offs between systems to optimize the cost-effectiveness of the design.

Unknown Occupancy

Speculative buildings are often built for which the ultimate occupancy is determined at the time of leasing and not during construction of the building shell. The structure, for example, could eventually be used as an office, a warehouse, a restaurant, or retail space. Because the Standards treat these occupancies in a similar fashion, the fact that the ultimate occupancy is unknown is not a significant problem. The major items affected by the ultimate occupancy have to do with lighting and ventilation requirements. If at the time of permitting a tenant is not identified for a multi-tenant space, the tenant leased space lighting power allowances from Standards Table 146-C shall be used.

The major problem that can occur with this type of building comes when the owner elects to declare it as an unconditioned building and defer Standards compliance until such time as a tenant installs mechanical space conditioning equipment.
1.7.4 Mixed Use Buildings

Because the Standards are different for residential and nonresidential buildings, and because mixed-use buildings occasionally include more than one type of occupancy, there is potential for confusion in application. The Standards address these circumstances regarding mixed-use buildings:

- **Minor Occupancy** (exception to §100(f)). If the minor occupancy or occupancies occupy less than 10% of the total conditioned floor area, then they may optionally be treated as if they were of the major occupancy. The mandatory measures applicable to the minor occupancy, if different from the major occupancy, would still apply.

- **Different Nonresidential Occupancies**. When both of these occupancies fall under the Nonresidential Standards, they would be dealt with together under the same compliance process. Although the occupancies may have different envelope and lighting requirements, these are not so different as to require special compliance procedures.

- **Hotel/Motel and Nonresidential Occupancies**. A hotel/motel with guest rooms, restaurants, sports facilities and other nonresidential occupancies is defined as a hotel/motel occupancy. The only variance is that the guestroom envelope and lighting and HVAC control requirements are different.

- **Mixed Residential and Nonresidential Occupancies**. These occupancies fall under different sets of Standards, they are considered separately. Two compliance submittals must be prepared, each using the calculations and forms of its respective Standards.

Example 1-1

Question

A 250,000ft² high-rise office building includes a small 500ft² apartment for use by visiting executives. This is clearly a residential occupancy, so is the apartment required to meet the residential requirements of the Standards?

Answer

No. It occupies less than 10% of the total conditioned floor area, so it is a minor occupancy and may be treated as part of the office occupancy. Residential mandatory measures apply.

1.7.5 High-rise Residential

High-rise residential buildings (four habitable stories or more) are covered by this manual and the Nonresidential Standards.

The Standards apply separately to the living quarters and to other areas within the building. Living quarters are those non-public portions of the building in which a resident lives. High-rise residential dwelling units must incorporate the envelope and mechanical elements of the Nonresidential Standards, with the lighting and service hot water needs of residential buildings. Outdoor lighting, including for parking lots and garages for eight or more vehicles, and for indoor
or outdoor signs (other than exit signs) must comply with the Nonresidential Standards. Exit signs must comply with the Appliance Standards.

The following subsections discuss the special compliance requirements that apply to high-rise residential occupancies.

Mandatory Measures

The mandatory measures for envelope, mechanical and indoor lighting, outdoor lighting and signs apply to high-rise residential buildings. Special requirements for high-rise residential buildings are summarized below:

- Living quarters must meet the applicable indoor lighting requirements for low-rise residential buildings.
- Outdoor lighting must meet the applicable outdoor lighting requirements of the Nonresidential Standards.
- Indoor and outdoor signs (other than exit signs) must comply with the Nonresidential Standards. Exit signs must comply with the Appliance Standards.
- High-rise residential occupancies must meet setback requirements applicable to low-rise residential occupancies.
- Readily accessible area switching controls are not required in public areas provided switches that control the lights in public areas are accessible to authorized personnel.
- Automatic shut-off controls are not required for living quarters.

Prescriptive Compliance

The prescriptive requirements for envelope, mechanical and lighting apply to high-rise residences. The following summarize the special prescriptive requirements for high-rise residential buildings.

- The envelope must meet the prescriptive envelope criteria for high-rise residential buildings (Standards Table 143-B).
- High-rise residential living quarters are not required to have economizer controls.
- High-rise residential living quarters are exempt from the lighting power density requirements. However, kitchens must meet the residential 50% high efficacy wattage requirements of the Nonresidential Standards. In addition, bathrooms must meet the efficiency and control requirements of §150(k). While there are no Prescriptive lighting requirements for residential buildings, lighting within the dwelling units must meet the lighting requirements of §150(k).
- Each occupancy (other than living quarters) in the high-rise residence must comply with the nonresidential lighting requirements.

Performance Compliance

The rules for high-rise residential performance compliance are identical to the performance compliance rules for all nonresidential buildings. The area of each
function of a high-rise residence is input into the program along with its corresponding envelope, mechanical and lighting features. The computer program will automatically calculate an energy budget for the standard design, and the proposed design's energy use.

1.7.6 Hotels and Motels

This section discusses both the similarities and differences between the requirements for a hotel/motel and other nonresidential or high-rise residential buildings.

The design of a hotel or motel is unique in that the design must incorporate a wide variety of occupancies and functions into one structure. The occupancies range from nonresidential occupancies to hotel/motel guest rooms. Design functions that affect guests range from the "experience of arrival" created through the main lobby's architectural features to the thermal comfort of the guest rooms. Other functions that hotel/motel designs must address include restaurants, kitchens, laundry, storage, light assembly, outdoor lighting, sign lighting, and other items that are necessary to the hotel/motel function. In short, these structures can range from simple guest rooms with a small office, to a structure encompassing a small city.

Like other occupancies: compliance is submitted for the features covered in the permit application only. The nonresidential areas must meet the envelope, mechanical, indoor lighting outdoor lighting, and sign lighting portions of the Nonresidential Standards, and the guest room portions of hotels/motels must meet the envelope, mechanical and lighting provisions applicable only to hotels/motel guest rooms. In essence, each portion of the building individually complies with the provisions applicable to that occupancy.

Since hotel/motels are treated as a mixture of occupancies covered by the Standards, the concepts presented at the beginning of each chapter apply to hotels/motels as they would any other nonresidential occupancy.

Mandatory Measures

The mandatory measures for envelope, mechanical, indoor lighting, outdoor lighting, and sign lighting apply to hotels/motels. The following bullets describe special requirements or exceptions for hotel/motel buildings.

- Ninety percent (90%) of the hotel/motel guest rooms must meet the applicable lighting requirements for low-rise residential buildings.
- Outdoor lighting must meet the applicable outdoor lighting requirements.
- Indoor and outdoor signs (other than exit signs) must comply with the Nonresidential Standards. Exit signs must comply with the Appliance Standards.
- Hotel and motel guest room thermostats shall have numeric temperature settings.
- Readily accessible area switching controls are not required in public areas provided switches that control the lights in public areas are accessible to authorized personnel.
• Automatic shut-off controls are not required for hotel/motel guest rooms.

Prescriptive Compliance

The prescriptive requirements for envelope, mechanical and lighting apply to hotel/motels. The following prescriptive requirements are specific to hotel/motels:

• Hotel/motel guest rooms must meet the prescriptive envelope criteria for high-rise residential buildings rather than the prescriptive criteria for nonresidential buildings.

• Hotel and motel guest rooms are not required to have economizer controls.

• Guest rooms in hotel/motels are exempt from the lighting power density requirements. However, lighting must meet the low-rise residential requirements of §150 (k).

• Each occupancy (other than guest rooms) in the hotel/motel must comply with the nonresidential lighting requirements.

Performance Compliance

The rules for performance compliance are identical to the rules for complying for all other nonresidential and high-rise residential buildings. The area of each function of a hotel/motel is input into the program along with its corresponding envelope, mechanical and indoor lighting features. The computer program will automatically calculate an energy budget for the standard design, and the proposed design’s energy use.

1.7.7 **Live-Work Spaces**

Live-work buildings are a special case of mixed occupancy buildings, as they combine residential and nonresidential uses within individual units. The building envelope of live-work buildings are required to meet the requirements of either the low-rise or high-rise residential standards, depending on the number of habitable floors. Low-rise Residential Standards apply to live/work units that are part of a building with no more than three habitable stories. Note that the loft space in a unit with high ceilings is not generally counted as a separate story (see definitions later in this chapter). The residential requirement applies since these buildings operate (and therefore are conditioned) 24 hours per day. Lighting in designated workspaces is required to show compliance with the nonresidential lighting requirements (§146).

1.7.8 **Unconditioned Space**

Unconditioned space is neither directly nor indirectly conditioned, as defined in the previous section. Both the requirements for lighting and minimum skylight area apply to unconditioned space. Some typical examples of spaces that may be unconditioned:

• Enclosed parking structures.
- Automotive workshops.
- Covered entry courts or walkways.
- Enclosed outdoor dining areas.
- Greenhouses.
- Loading docks.
- Mechanical/electrical equipment rooms.

Keep in mind that these kinds of spaces are not always unconditioned. The specifics of each case must be determined. See Figure 1-3 to determine whether a space is unconditioned or conditioned.

Figure 1-3 – Type of Conditioned Space and Scope of Compliance
1.7.9 Newly Conditioned Space

When previously unconditioned space becomes conditioned, the space is then considered an “addition” and all the building’s components must then comply as if it were a new building.

This situation has potentially significant construction and cost implications. For example, if an unconditioned warehouse is upgraded with a heating system thus becoming conditioned space, the building envelope must comply with the current envelope requirements and the lighting system must be brought into conformance with the current lighting requirements, including mandatory wiring and switching. If the envelope has large windows, it is conceivable that some would have to be eliminated or replaced with more efficient windows. If the lighting system is inefficient, fixtures might have to be removed and new, more efficient fixtures installed.

This requirement can cause difficulty when an owner of a building seeks exemption from complying with the Standards by erecting a shell with no plans to condition it. For example, the owner of an office building obtains a permit for the structure and envelope, but wishes to leave the space conditioning and lighting improvements to the tenants. If that owner claims unconditioned status for that building, the owner does not have to demonstrate compliance with the envelope requirements of the Standards, but does have to demonstrate compliance with the lighting requirements. If at the time of permitting a tenant is not identified for a multi-tenant space, the tenant leased space lighting power allowances from Standards Table 146-C shall be used. As soon as the tenant applies for a permit to install the HVAC equipment, however, the envelope and any existing lighting in the shell must then be brought into full compliance with the requirements for the occupancy designated at the time of the HVAC permit application. (This is the only circumstance when systems, other than those subject to the current permit application, fall under the Standards.) If the building was initially designed in a way that makes this envelope compliance difficult, the building envelope may require expensive alterations to bring it into compliance.

Many building departments require the owner to sign an affidavit at the time of the initial building permit for the shell, acknowledging the potential difficulties of future envelope or lighting compliance.

To minimize Standards compliance difficulties, the recommended practice is to demonstrate energy compliance at the time the envelope is built, and to demonstrate compliance for the lighting systems when lighting systems are installed.

1.7.10 New Construction in Existing Buildings

Alterations, tenant improvements, and repairs are new construction in an existing building. For example, the base building has been constructed, but the individual tenant spaces have not been completed. Tenant improvements can include work on the envelope, the mechanical or the lighting systems. Whatever the case, the system or systems being installed are considered to be new construction, and must comply with some or all of the current Standards, depending on the extent of the changes (see following sections).
The only circumstance when systems other than those subject to the current permit application come under scrutiny is when the tenant improvement results in the conditioning of previously unconditioned space.

1.7.11 Alterations to Occupied Spaces

§149(b)

An alteration is any change to a building’s water heating system, space conditioning system, indoor lighting system, outdoor lighting system, sign, or envelope that is not an addition. Alterations or renovations to existing conditioned spaces have their own set of rules for energy compliance. They are covered in a separate section of the Standards, §149(b). (Additions are discussed in §149(a).)

In summary, the alteration rules are:

1. The Standards apply only to those portions of the systems being altered; untouched portions need not comply with the Standards.

2. If an envelope, indoor lighting, outdoor lighting or sign lighting alteration increases the energy use of the altered systems, the alteration must comply with the current Standards.

3. Alterations must comply with the mandatory measures for the changed components.

4. New systems in the alteration must comply with the current Standards.

5. In an existing unconditioned building, outdoor lighting, or sign lighting system, altered lighting must meet mandatory measures for the changed lighting component. Alterations that increase the connected lighting load or replace more than 50% of the lighting fixtures must meet current Standards. Replacement of parts of an existing lighting fixture, including installing new ballasts or lamps, without replacing the entire luminaires is not an alteration subject to the alteration requirements.

6. In an existing, unconditioned building where evaporative cooling is added the existing unaltered envelope and lighting do not need to be brought into compliance with current Standards.

The effect of these rules is that, in most cases the existing systems (envelope and lighting) set the standard for the altered systems. For example, if the existing lighting system is changed but does not increase the connected lighting load, or replace more than 50% of lighting fixtures in enclosed spaces where lighting alterations are proposed, must meet current standards. The same holds true for changes to the envelope: if the overall heat loss or heat gain is not increased and it meets its applicable mandatory measures, then it complies. Mechanical system alterations are governed primarily by the mandatory measures.

The alternative alteration rule is to make changes to the existing building so that the entire building (existing and alteration) complies with the performance approach of the current Standards. Keep in mind that, under the performance approach, credit is given only for systems that are actually changed in the current construction process.
Example 1-2

Question
An owner wants to add less than 50 ft² of new glazing in an old building. This will increase the glazing area. How do the Standards apply?

Answer
The added glass must meet the U-value requirements but not the shading requirements in §143. In addition, the window must be rated for U-factor and SHGC either with default values and labels or be rated and labeled in accordance with NFRC standards and programs.

Example 1-3

Question
A building owner wants to change existing lighting fixtures with new ones. Do the Standards restrict the change in any way?

Answer
If more than 50% of the fixtures are replaced, in the permitted space (excluding enclosed spaces where no new lighting fixtures are proposed), or the connected load is increased, the Standards will treat this as a new lighting system that must comply with §146. Any applicable mandatory requirement affected by the alteration applies, and the mandatory switching requirements would apply to the improved system if the circuiting were altered. Title 20 Appliance Efficiency Regulations requirements for ballasts would also apply.

Example 1-4

Question
A building owner wants to rearrange some interior partitions and re-position the light fixtures in the affected rooms. Do the Standards apply to the work?

Answer
Each of the newly arranged rooms must have its own light switches. Since there is no change in the connected lighting load or the exterior envelope, only the mandatory light switching requirements would apply.

Example 1-5

Question
A building owner wants to re-arrange some duct work and add some additional fan coils to an existing HVAC system to improve comfort. Do the Standards apply to the work?

Answer
There would be no change in the load on the system nor any increase in its overall capacity, so the Standards would not apply to the central system. Only the duct construction requirements apply to altered ducting.

Example 1-6

Question
A building owner wants to replace an existing chiller. No other changes will be made to the HVAC system. Do the Standards restrict the change in any way?
Answer
The mandatory efficiency requirements would govern the efficiency of the new chiller. The other parts of the system are unchanged and therefore unaffected by the Standards.

Example 1-7

Question
A building owner has a high ceiling space and wants to build a new mezzanine space within it. There will be no changes to the building envelope or to the central HVAC system. There will be new lighting installed. How do the Standards apply?

Answer
Since a mezzanine does not add volume, it is an alteration, not an addition. The existing systems are not affected unless they are altered. The new lighting must comply with all requirements of the Standards. The envelope is unchanged, so there are no requirements for it. The mechanical system duct work is simply extended without increase in system capacity, so only the duct construction and insulation requirements apply.

1.7.12 Additions

§149(a)
An addition is any change to a building that increases conditioned floor area and conditioned volume. Additions involve either the construction of new, conditioned space and conditioned volume, or the installation of space conditioning in a previously unconditioned space. The mandatory measures, and either the prescriptive or the performance requirements apply. The heating, lighting, envelope, and water heating systems of additions are treated the same as for new buildings. The only exception to this is if the existing systems are simply extended into the addition: Standards Exception to §149(a). Refer above to Section 1.7.8 for further discussion of previously unconditioned space.

There are three options for the energy compliance of additions under the Standards:

Option 1 – Addition Alone
Treat the addition as a stand-alone building with adiabatic walls to conditioned space (§149(a)1 and (§149(a)2.B.1). This option can employ either the prescriptive or the performance approach. Adiabatic means the common walls are assumed to have no heat transfer between the addition and the adjacent conditioned space, and are ignored entirely.

Option 2 – Existing-Plus-Addition
Combine the existing building with the addition (§149(a)2.B.2). This option only works with the performance approach. It uses the custom budget approach to develop an energy budget for the existing building and a standard version of the addition. These combine into a total building energy budget. The combined building is then modeled as proposed. If it meets the budget, the addition complies. The Standard Design for any alterations to existing lighting and mechanical systems must meet the requirements for altered systems in §149(b).
This option will generally work to ease the energy requirements of the addition only if there are energy improvements to the existing building. It does allow the designer to make a relatively energy inefficient addition comply.

Option 3 – Whole Building

The existing structure combined with the addition can be shown to comply as a whole building with all requirements of the current Standards for envelope, lighting and mechanical.

Example 1-8

Question
A restaurant adds a greenhouse-style dining area with large areas of glazing. It is directly conditioned space. How can it comply with the Standards?

Answer
Because of its large glass area, it will not comply on its own. By making substantial energy improvements to the existing building (lighting, mechanical or other envelope features), or upgrading the existing building so that the entire building meets the requirements for new construction, it is possible for the combined building to comply. The performance approach would be used to model the combined existing/new building.

1.7.13 Changes of Occupancy

A change of occupancy alone does not require any action under the Energy Standards. If changes are made to the building, however, then the rules for alterations or additions apply (see Sections 1.7.11 and 1.7.12).

If the change in occupancy involves converting from a residential to a nonresidential occupancy or vice versa (changes defined by the California Building Code occupancy definitions), then the Standards applicable to the new occupancy would govern any alterations made to the building. For example, if a home is converted to law offices, and a new lighting system is installed, the nonresidential lighting requirements would apply. If a new HVAC system is installed, all the nonresidential HVAC requirements would have to be met.

If no changes are proposed for the building, it is advisable to consider the ventilation requirements of the new occupancy. For example, if a residence is converted to a hair salon, the ventilation rates of the building should be considered. With new sources of indoor pollution, the existing residential ventilation rates would likely not be adequate for the new uses. However, no change is required by the Standards.

1.7.14 Repairs

A repair is the reconstruction or renewal of any part of an existing building for the purpose of its maintenance. Repairs shall not increase the preexisting energy consumption of the required component, system, or equipment.
1.7.15 Scope Concepts and Definitions

This section explains the definitions and terms necessary for understanding the scope and application of the Nonresidential Standards. In most cases, a careful reading of these definitions will resolve questions of interpretation. See also the Glossary in Joint Appendix I.

Building is any structure or space for which a permit is sought. By this definition, a building is not necessarily a complete physical structure. For the Standards, a building in this sense can be a lighting system recirculating project, because this would require an electrical permit.

Conditioned Floor Area (CFA) is the floor area (in square ft) of enclosed conditioned space on all floors of a building, as measured at the floor level of the exterior surfaces of exterior walls enclosing the conditioned space. Once the spaces that are directly or indirectly conditioned are identified, then it is possible to calculate the conditioned floor area of the building. This number is used for various calculation purposes in complying with the Standards. The CFA is generally calculated from dimensions on the floor plans of the building. It is measured from the outside surfaces of exterior walls, with the dimensions taken at floor level. This definition helps mitigate any complexity from sloping walls, bay windows and other unique building details.

Conditioned Space is space in a building that is either directly conditioned or indirectly conditioned. In most circumstances it is obvious whether a space is conditioned or unconditioned. There are, however, special circumstances that require a closer look at the definitions of directly and indirectly conditioned space.

Directly Conditioned Space is an enclosed space that is provided with wood heating, is provided with mechanical heating that has a capacity exceeding 10 Btu/(hr-ft²), or is provided with mechanical cooling that has a capacity exceeding 5 Btu/(hr-ft²), unless the space conditioning system is designed and thermostatically controlled to maintain a process environment temperature less than 55°F or to maintain a process environment temperature greater than 90°F for the whole space that the system serves, or unless the space conditioning is designed and controlled to be incapable of operating at temperatures above 55°F or incapable of operating at temperatures below 90°F at design conditions. This definition contains several key ideas central to the Standards. First, mechanically heated or mechanically cooled space (discussed below) may be conditioned (i.e., it does not have to be both heated and cooled). Second, it depends on how much heating or cooling is provided to determine if the space is directly conditioned. It is not uncommon for an otherwise unheated space (such as a warehouse) to have a small area with a unit heater, such as a desk on the loading dock. This usually does not make the entire structure a heated space. The total quantity of heating provided to the space has to exceed 10 Btu/(hr-ft²). Similar logic applies to a mechanical cooling system; if it provides more than 5 Btu/(hr-ft²), it means the space is directly conditioned. Third, it matters at what temperature the space is controlled. Many spaces, such as refrigerated warehouses, are conditioned but are deliberately kept at very hot or cold temperatures. The space conditioning is not for human comfort but to serve the needs of some process, such as preventing vegetables from spoiling. If the space conditioning system is specifically designed and operated to maintain a temperature that is not within the range of 55°F through 90°F and is...
thermostatically controlled not to operate within this temperature range, then the space is not directly conditioned. Note that these spaces are treated like unconditioned spaces and therefore must meet the lighting requirements.

Defined:

Enclosed Space is space that is substantially surrounded by solid surfaces. Spaces that are not enclosed are spaces that are open to the outdoors, such as covered walkways, parking structures that are open or have fenced mechanical enclosures.

Entire Building is the ensemble of all enclosed space in a building, including the space for which a permit is sought, plus all existing conditioned and unconditioned space within the structure. This definition affects lighting compliance within the complete building method.

Habitable Story is a story that contains space in which humans may work or live in reasonable comfort, and that has at least 50% of its volume above grade. This definition is important in distinguishing between high-rise and low-rise residential buildings, which are covered by different Standards and are described in separate Manuals. Basement floors with more than 50% of their volume below grade are not counted as habitable stories regardless of their actual use. In buildings on sloping ground, the calculation of volume below grade can become cumbersome, but for most buildings it will be obvious whether the floor is at least 50% above grade.

Indirectly Conditioned Space is enclosed space including, but not limited to, unconditioned volume in atria, that (1) is not directly conditioned space; and (2) either (a) has an area-weighted heat transfer coefficient to directly conditioned space exceeding that to the outdoors or to unconditioned space, or, (b) is a space through which air from directly conditioned spaces is transferred at a rate exceeding three air changes per hour. This definition is important because the Standards treat indirectly conditioned space the same as conditioned space; in other words, indirectly conditioned spaces must meet the requirements of the Standards. As a guide, professional judgment should be exercised when determining whether a space is indirectly conditioned, especially as relates to door placement in the space. When an enclosed space that is not directly conditioned has openings only into a conditioned space, it should be considered indirectly conditioned. Likewise, when an enclosed space that is not directly conditioned has openings only to the outdoors, it should be considered to be unconditioned. When enclosed spaces that are not directly conditioned have openings both to the outdoors and to conditioned spaces, an evaluation of relative heat transfer and air change rate (UA) should be used to determine the status of the space. A typical example of an indirectly conditioned space might be the stairwell of a high-rise office building. The first part of the definition is that it not be directly conditioned. This is not uncommon in stairwells. The second part of the definition is that it be provided with space conditioning energy from a space that is directly conditioned. This can be done one of two ways. The first is by conduction heat transfer. If heat is transferred in from directly conditioned space (e.g., through the walls of the stairwell) faster than it is transferred out to the unconditioned surroundings, then the space is considered to be indirectly conditioned. The second way is for the space to be ventilated with air from directly conditioned spaces. For example, if exhaust hoods draw air through a kitchen from the dining room at a rate exceeding three air changes per hour, then the kitchen will be considered indirectly conditioned space.
Mechanical Cooling is lowering the temperature within a space using refrigerant compressors or absorbers, desiccant dehumidifiers, or other systems that require energy from depletable sources to directly condition the space. In nonresidential, high-rise residential, and hotel/motel buildings, cooling of a space by direct or indirect evaporation of water alone is not considered mechanical cooling (see also “directly conditioned space”). For buildings covered by this manual, evaporative cooling is not considered mechanical cooling. This means, for example, that a warehouse with only evaporative coolers does not meet the definition of mechanical cooling. Nonresidential buildings with evaporative cooling are unconditioned spaces.

Mechanical Heating is raising the temperature within a space using electric resistance heaters, fossil fuel burners, heat pumps, or other systems that require energy from depletable sources to directly condition the space. If the only source of the heat is a nondepletable source, then the system is not considered mechanical heating. Nondepletable sources would include solar collectors, geothermal sources, and heat recovered from a process, such as refrigeration chillers.

Space Conditioning System is a system that provides either collectively or individually heating, ventilating, or cooling within or associated with conditioned spaces in a building. The Standards apply to conditioned space, and they govern the space conditioning systems that provide the conditioning for those spaces.

Unconditioned Space is enclosed space within a building that is not directly conditioned or indirectly conditioned space. Unconditioned spaces are required to meet the Indoor Lighting Standards.

High-Rise Residential is a building, other than a hotel/motel, of occupancy group R-1 with four or more habitable stories. California Building Code Occupancy Group R-1 includes apartment houses, convents and monasteries (accommodating more than 10 persons). (See definition of Unconditioned Space above). If a building has four or more habitable stories, any residential occupancy in the building is considered high-rise residential, regardless of the number of stories that are residential.

Hotel/Motel is a building or buildings incorporating six or more guest rooms or a lobby serving six or more guest rooms, where the guest rooms are intended or designed to be used, or which are used, rented, or hired out to be occupied, or which are occupied for sleeping purposes by guests, and all conditioned spaces within the same building envelope. Hotel/motel also includes all conditioned spaces that are (1) on the same property as the hotel/motel, (2) served by the same central HVAC system as the hotel/motel, and (3) integrally related to the functioning of the hotel/motel as such, including, but not limited to, exhibition facilities, meeting and conference facilities, food service facilities, lobbies and laundries. A key part of this definition is that the hotel/motel includes all spaces within the same building envelope as the lobby or the guest rooms. This is because hotel/motel buildings are generally multi-purpose facilities. They may include such diverse spaces as restaurants, auditoriums, retail stores, offices, kitchens, laundries and swimming pools. All are treated as hotel/motel spaces.

This concept extends to other buildings associated with the hotel/motel that pass the three tests:

- Same property.
• Same central HVAC system.
• Integ rally related to the hotel/motel.

Mixed Occupancies. The Standards apply to mixed occupancies in the same way they apply to single occupancy buildings. The Low-Rise Residential Standards apply to applicable occupancies; the Nonresidential Standards apply to appropriate occupancies. If these two types occur in the same building, the building must be treated as two separate buildings for purposes of energy compliance, with each part meeting its applicable requirements. An exception provides that if one occupancy makes up 90% of the building, the entire building may comply with the provisions of the dominant occupancy. The mandatory measures for the actual occupancy will apply.

Other Occupancy Definitions. There are over 35 additional occupancy definitions in the Standards. They are used primarily to assign lighting area categories. Refer to the Glossary in Joint Appendix I for these definitions (found alphabetically under “Occupancy Type”).

Example 1-9
Question
If a space were 1,000 ft², how large would the heating system have to be to make the space directly conditioned?

Answer
The heating system would have to be larger than 10 Btu/(hr-ft²) x 1,000 ft² = 10,000 Btu/hr output to meet the definition of directly conditioned space.

Example 1-10
Question
A water treatment plant has a heating system installed to prevent pipes from freezing. The heating system exceeds 10 Btu/(hr-ft²) and operates to keep the space temperature from falling below 50°F. Is this plant directly conditioned?

Answer
Not if the heating system is sized to meet the building load at 50°F and is thermostatically controlled to prevent operating temperatures above 50°F. The definition of directly conditioned space excludes spaces that have space conditioning designed and controlled to be incapable of operating at temperatures above 55°F at design conditions. Under these conditions, the space is not directly conditioned.

Example 1-11
Question
A manufacturing facility will have space cooling to keep the temperature from exceeding 90°F. If the thermostat will not allow cooling below 90°F is this facility directly conditioned?

Answer
No, this facility is not directly conditioned. The definition of directly conditioned space excludes spaces where the space conditioning system is designed and controlled to be incapable of operating at temperatures below 90°F at design conditions.
Example 1-12

Question

The accompanying sketch shows a building with three unconditioned spaces (none has a direct source of mechanical heating or cooling). The air transfer rate from the adjacent conditioned spaces is less than three air changes per hour. The area weighted heat transfer coefficients of the walls (UA) are shown on the sketch. The roof/ceiling area weighted heat transfer coefficients (UA) for each of the three unconditioned spaces is 90 Btu/Hr -°F.

Are any of these spaces indirectly conditioned?

Answer

Because the air change rate is low, we evaluate each space on the basis of heat transfer coefficients through the walls and roof. It is further assumed that the floors are adiabatic. Therefore, the heat transfer will be proportional to the area weighted heat transfer coefficients of the walls and roof/ceilings.

SPACE A: The area weighted heat transfer coefficient to directly conditioned space is $3 \times (75 \text{ Btu/Hr-°F}) = 225 \text{ Btu/Hr-°F}$. The area weighted heat transfer coefficient to the outdoors or to unconditioned space is $70 \text{ Btu/Hr-°F} + 90 \text{ Btu/Hr-°F} = 160 \text{ Btu/Hr-°F}$. Since the heat transfer coefficient from Space A to the conditioned space is greater than heat transfer coefficient from Space A to outside, Space A is considered indirectly conditioned.

SPACE B: The area weighted heat transfer coefficient to directly conditioned space is 75 Btu/Hr-°F. The area weighted heat transfer coefficient to the outdoors or to unconditioned space is $(3 \times 70 \text{ Btu/Hr-°F}) + 90 \text{ Btu/Hr-°F} = 300 \text{ Btu/Hr-°F}$. Since the heat transfer coefficient from Space B to the conditioned space is less than the heat transfer coefficient from Space B to outside, Space B is considered unconditioned.

SPACE C: The area weighted heat transfer coefficient to directly conditioned space is $(2 \times 75 \text{ Btu/Hr-°F}) = 150 \text{ Btu/Hr-°F}$. The area weighted heat transfer coefficient to the outdoors or to unconditioned space is $(2 \times 70 \text{ Btu/Hr-°F}) + 90 \text{ Btu/Hr-°F} = 230 \text{ Btu/Hr-°F}$. Since the heat transfer coefficient from Space C to the conditioned space is less than the heat transfer coefficient from Space C to outside, Space C is considered unconditioned.

Example 1-13

Question

A four-story building has one floor retail, two floors are offices and the fourth floor is residential (as defined in the UBC). Is the residential space high-rise or low-rise?

Answer

It is a high-rise residential space. Even though there is only one floor of residential occupancy, the building has four habitable stories, making it a high-rise building.
1.8 About the Standards

History

Section 25402 of the Public Resources Code

The Legislature adopted the Warren-Alquist Act which created the California Energy Commission (Energy Commission) in 1975 to deal with energy-related issues, and charged the Energy Commission with the responsibility to adopt and maintain Energy Efficiency Standards for new buildings. The first Standards were adopted in 1978 in the wake of the Organization of Petroleum Exporting Countries (OPEC) oil embargo of 1973.

The Act requires that the Standards be cost effective “when taken in their entirety and amortized over the economic life of the structure.” It also requires that the Energy Commission periodically update the Standards and develop manuals to support the Standards. Six months after publication of the manuals, the Act directs local building permit jurisdictions to withhold permits until the building satisfies the Standards.

The so-called “First Generation” Standards for nonresidential buildings took effect in 1978, and remained in effect for all nonresidential occupancies until the late 1980s, when the “Second Generation” Standards took effect for offices, retail and wholesale stores.

The next major revision occurred in 1992 when the requirements were simplified and consolidated for all building types. At this time, major changes were made to the lighting requirements, the building envelope and fenestration requirements, as well as the HVAC and mechanical requirements. Structural changes made in 1992 set the way for national standards and other states.

The Standards went through minor revisions in 1995, but in 1998, the lighting power limits were reduced significantly, because at that time, electronic ballasts and T-8 lamps were cost effective and becoming common practice in nonresidential buildings.

The California electricity crisis of 2000 resulted in rolling blackouts through much of the State and escalating energy prices at the wholesale market, and in some areas of the State in the retail market as well. The Legislature responded with AB 970, which required the Energy Commission to update the Energy Efficiency Standards through an emergency rulemaking. This was achieved within the 120 days prescribed by the Legislature and the 2001 Standards (or the AB 970 Standards) took effect mid-year 2001. The 2001 Standards included requirements for high performance windows throughout the State, more stringent lighting requirements and miscellaneous other changes.

The Public Resources Code was amended in 2002 through Senate Bill 5X to expand the authority of the Energy Commission to develop and maintain standards for outdoor lighting and signs. The Standards covered in this manual (the 2005 Standards) build from the rich history of nonresidential energy standards in California and the leadership and direction provided over the years by the California Legislature.

Compliance Approaches

The Standards provide flexibility to the designer by providing several paths to Standards compliance. There are two basic options for demonstrating that a
building meets the requirements of the Standards: the prescriptive approach and the performance approach. With either approach, certain mandatory measures always apply.

The Standards cover the three major systems of a nonresidential building: the building envelope, the mechanical systems, and the indoor and outdoor lighting systems, including sign lighting. A minor energy user, water heating, is also covered in the mechanical chapter.

Each system is typically the responsibility of a different design professional. The envelope is designed by an architect, the mechanical systems by a mechanical engineer, and the lighting systems by an electrical engineer or lighting designer. Each of the three systems may be shown to comply independently under the prescriptive approach. Under the performance approach, compliance may be shown for the envelope only, the envelope and mechanical systems, or for all three components together. The building (all three components) may be shown to comply as a whole under the performance approach only when the permit application includes all three components.

Prescriptive Approach

- The prescriptive approach is the simpler way to comply with the Standards. Each of the three building systems complies separately from the others. The compliance procedures and documentation are also separate for the three. The prescriptive approach for each system requires that the proposed design meet specific energy efficiency criteria specified by the Standards. If the design fails to meet even one of the requirements, then the system does not comply with the Standards. The performance approach provides the most flexibility to the building designer for choosing alternative energy efficiency features.

- **Building Envelope.** The prescriptive envelope requirements are determined either by the envelope component approach or the overall envelope approach. These two approaches are described in detail in Chapter 3 of this manual. The stringency of the envelope requirements varies according to climate zone and occupancy type.

- **Mechanical.** The prescriptive mechanical requirements are described in detail in Chapter 4. The prescriptive Standards do not offer any alternative approaches, but specify equipment, features and design procedures that must be followed.

- **Indoor Lighting.** The prescriptive lighting power requirements are determined by one of three methods: the complete building method, the area category method, or the tailored method. These three approaches are described in detail in Chapter 5. The allowed lighting under the Standards varies according to the requirements of the particular building occupancy or task requirements.

- **Outdoor Lighting.** The Outdoor Lighting Standards are new with 2005 and are described in Chapter 6. They set power limits for various applications such as parking lots, pedestrian areas, sales canopies, building entrances, building facades and signs. The Standards also set minimum requirements for cutoff luminaires and controls.
1.8.1 California Climate Zones

Since energy use depends partly upon weather conditions, which differ throughout the State, the Energy Commission has established 16 climate zones representing distinct climates within California. These 16 climate zones are used with both the Residential and the Nonresidential Standards. The boundaries are shown in Figure 1-21-4 and detailed descriptions and lists of locations within each zone are available in Joint Appendix II.

Cities may occasionally straddle two climate zones. In these instances, the exact building location and correct climate zone should be verified before any calculations are performed. If a single building is split by a climate zone boundary line, it must be designed to the requirements of the climate zone in which 50% or more of the building is contained.

1.8.2 Performance Approach

The performance approach allows compliance through a wide variety of design strategies and provides greater flexibility than the prescriptive approach. It is based on an energy simulation model of the building. The Standards specify the method for determining an energy budget for the building. This is known as the custom energy budget, because it is generated on a case-by-case basis. This energy budget represents the upper limit of energy use allowed for that particular building.
Figure 1-5 – California Climate Zones

Four basic steps are involved:

- Design the building with energy efficiency measures that are expected to be sufficient to meet the energy budget. (The prescriptive approach requirements provide a good starting point for the development of the design.)

- Demonstrate that the building complies with the mandatory measures.

- Using an approved calculation method (state-approved energy compliance software.)

- Model the energy consumption of the building using the proposed features to create the proposed energy budget. The model will also automatically calculate the allowed energy budget for the proposed building.
• If the proposed energy budget is no greater than the allowed energy budget, the building complies.