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Preface 
 
The Public Interest Energy Research (PIER) Program supports public interest energy research 
and development that will help improve the quality of life in California by bringing 
environmentally safe, affordable, and reliable energy services and products to the marketplace. 
 
The PIER Program, managed by the California Energy Commission (Energy Commission), 
annually awards up to $62 million to conduct the most promising public interest energy 
research by partnering with Research, Development, and Demonstration (RD&D) 
organizations, including individuals, businesses, utilities, and public or private research 
institutions. 
 
PIER funding efforts are focused on the following RD&D program areas: 

 
• Buildings End-Use Energy Efficiency 
• Energy Innovations Small Grant Program 
• Energy-Related Environmental Research 
• Energy Systems Integration Environmentally Preferred Advanced Generation 
• Industrial/Agricultural/Water End-Use Energy Efficiency 
• Renewable Energy Technologies 

 
The California Climate Change Center (CCCC) is sponsored by the PIER program and 
coordinated by its Energy-Related Environmental Research area. The Center is managed by the 
California Energy Commission, Scripps Institution of Oceanography at the University of 
California at San Diego, and the University of California at Berkeley. The Scripps Institution of 
Oceanography conducts and administers research on climate change detection, analysis, and 
modeling; and the University of California at Berkeley conducts and administers research on 
economic analyses and policy issues. The Center also supports the Global Climate Change 
Grant Program, which offers competitive solicitations for climate research.  
 
The California Climate Change Center Report Series details ongoing Center-sponsored 
research. As interim project results, these reports receive minimal editing, and the information 
contained in these reports may change; authors should be contacted for the most recent project 
results. By providing ready access to this timely research, the Center seeks to inform the public 
and expand dissemination of climate change information; thereby leveraging collaborative 
efforts and increasing the benefits of this research to California’s citizens, environment, and 
economy. 
 
The work described in this report was conducted under the Preliminary Climatic Data 
Collection, Analyses, and Modeling contract, contract number 500-02-004, Work Authorization 
MR-004,  by the Climate Research Division, Scripps Institution of Oceanography, University of 
California, San Diego. 
 
For more information on the PIER Program, please visit the Energy Commission’s Web site 
www.energy.ca.gov/pier/ or contract the Energy Commission at (916) 654-4628. 
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 Abstract 
 

 
Climate prediction for summertime tropospheric variables has been recognized as one of the 
most challenging issues in middle latitudes. However, advances in summertime temperature 
forecasts are important for planning activities of different economic sectors, such as the energy 
industry. In this study, seasonal predictability of summer temperature in California was explored 
using Canonical Correlation Analysis (CCA). The diagnostic and prediction scheme used Pacific 
Ocean Sea Surface Temperatures (PSST) as predictors and surface air temperature as predictands 
over 1950–2001. About 220 stations reporting daily data over California and Nevada were used. 
The analysis focused on three aspects: average temperature, extreme warm events, and cooling 
degree days. Results show a strong variability in air surface temperatures over California when a 
SST contrast between the North West-Central and East Pacific is found during the spring, 
suggesting the influence of the Pacific Decadal Oscillation (PDO). Maximum predictive skill for 
the June, July, and August (JJA) season was given by March, April, and May (MAM), but 
significant skill was found for PSST predictors leading summer air temperature by several 
seasons. Contingency analysis showed that under Below (Above) Normal spring PDO 
conditions, the most probable scenario for summer air surface temperature is Below (Above) 
Normal in California. Other important SST modes identified in the CCA analysis are the El 
Niño/Southern Oscillation (ENSO) variability and long term trends, but their influence on 
summer air surface temperatures was smaller than for the PDO. The strength and simplicity of 
the relationship between spring PDO and summer temperature suggests a simple yet useful 
approach for predicting summer temperatures in California. 
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1. Introduction 
In recent years significant progress has been made in seasonal climate prediction, yet 
summertime midlatitude climate prediction remains problematic (e.g., Gershunov and 
Cayan 2003). A series of previous studies have explored the skill of Pacific Sea Surface 
Temperatures (PSST) in seasonal prediction of various atmospheric variables (e.g., 
Barnett and Preisendorfer, 1987), but few have focused on its value in forecasting 
summer conditions (e.g., Douville, 2003). Advances in summertime temperature 
forecasts are important for planning in different economic sectors, such as the energy 
industry. This issue is especially important in California, where the summer peak energy 
demand is about 50% higher than that in winter, in response to heavy loads from air 
conditioners, pumping water, and other seasonal issues. The California Energy Security 
Project was designed to address this issue by developing summertime climate forecasts in 
a format, and containing information, that is tailored to the needs of decision makers in 
the energy sector (both public and private). 
 
A statistical model based on Canonical Correlation Analysis (CCA) was used for 
seasonal diagnosing and predicting summer temperatures in California. This statistical 
technique has proven skillful when used recently by Gershunov and Cayan (2003) for the 
prediction of winter precipitation statistics over the contiguous United States and by 
Westerling et al. (2002) in predicting wild fires in the West. The CCA is a statistical 
technique developed to identify and quantify associations between two sets of variables, 
matching mainly large-scale patterns in the predictor with patterns in the predictand 
fields; in this case coupled patterns in spring PSST and California summer temperatures 
were identified. As will be described, results from the CCA analysis provide the basis for 
a simpler statistical procedure using the state of the dominant mode of the North Pacific 
SST variability in spring to forecast summer temperature variability over the California 
region. 
 
2. Predicting California Temperatures 
2.1 Data 
We used 220 stations with daily temperature data covering 52 years (1950–2001) over 
California and Nevada, a subset of the National Climatic Data Center (NCDC) first order 
and cooperative observer data (Groisman et al., 2004; NCDC, 2003). Seasonal SST 
anomaly data from the Pacific basin over the 1950–2001 period were used as predictors 
(Kaplan et al., 1998). The analysis focused on three variables important for energy 
demand during June, July, and August (JJA): (1) the frequency of daily maximum 
temperature extremes (daily maximum temperatures above the 90th percentile of their 
summertime climatology (Tmax-T90), see next section for details), (2) seasonal average 
temperature (Tmean), and (3) Cooling Degree Days or CDD (Pierce 2004). 
 
2.2 Extreme events, relevant climate aspects, and background 
As a first approach, the same threshold for all stations in a particular season was used as a 
definition of extreme event. Fig. 2.2.1 shows the spatial distribution of the probability of 
days with maximum temperature equal to or greater than 95°F (35°C) during the summer. 
From Fig. 2.2.1, we see that this definition is inconvenient, because some stations present 
maximum temperature (Tmax) values greater than the threshold almost during the whole 
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summer and some of them hardly ever. This problem could also be identified for different 
days in a row (see for example Fig. 2.2.2). 
 
Taking this problem into account, the extreme warm events were defined as those values 
greater or equal to the 90th percentile during the summer (see for example Fig. 2.2.3). 
Then, annual time series, expressed as the percentage of days with extreme values for the 
season, were calculated.  
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Figure 2.2.1. Probability of having a day with maximum temperature equal to or greater than 
95°F (35°C) during summer. 
 
 

 

 
 

Figure 2.2.2. Probability of having three days in a row with maximum temperature equal to or 
greater than 95°(35°C) during summer for California and Nevada. 
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Figure 2.2.3. The spatial distribution of the 90th percentile for Tmax during the summer.  

 
For the summer, the lower 90th percentile values tend to occur in the coastal and 
mountain regions and most of upper values tends to occur inland, around the border of 
California, Nevada, and Arizona, in which the North American Monsoon influence 
(Higgins et al., 2003) is appreciable. 

 
Because the analysis does not have the annual cycle removed, the monthly distribution of 
extreme events is illustrated for summer in Figs. 2.2.4 (a), (b), and (c). These analyses 
show that in general July is the month with most of the warm extreme events. This could 
be explained by the annual air surface temperature cycle (Fig. 2.2.5) that shows a 
maximum in July and a minimum during January. Notice also that some locations, like 
those around the San Francisco Bay area, presents a distribution of extreme events during 
the summer with almost thirty percent for every month and the region around the coast in 
Southern California presents more extreme events in August. Going a step forward, the 
daily frequency distribution of extreme events was calculated in Fig. 2.2.6, shows a 
relatively smooth distribution of extreme events during the month of the maximum 
temperatures (July), but with a maximum on August 7. 
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Figure 2.2.4. Monthly distribution of extreme values for Tmax during the summer for California 
and Nevada, (a) June, (b) July, and (c) August. 
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Figure 2.2.5. Annual cycle of the first principal component for mean temperature stations in 
California and Nevada (solid line). This component explains around 98% of the explained 
variance. Dashed lines represent one standard deviation. 

 
Figure 2.2.6. Seasonal daily frequency distribution of summer warm extreme events (Tmax-T90, 
1950–2001).  

 
3. CCA Statistical Model 
To begin with, we used CCA as a diagnostic to identify coupled patterns between 
California summertime temperature and simultaneous or antecedent PSST. Fig. 3.1 
shows that using March, April, and May (MAM) SST and Tmean fields, the leading 
coupled mode (r = 0.91, Fig. 3.1a) captures an east-west contrast in the PSST correlations 
in the North Pacific resembling the Pacific Decadal Oscillation or PDO1 (Mantua et al. 
1997; Gershunov and Barnett 1998; Pierce 2002, Fig. 3.1b). Coupled to this PSST 
structure is a swath of anomalous temperature along the coast of California (Fig. 3.1c). 
The sense of the PSST-air temperature linkage is that positive (negative) values of the 
MAM-PDO index tend to be associated with warm (cool) JJA coastal temperature. This 
suggests that summer temperature may be seasonally predictable along the California 
coast, where much of the State’s population is concentrated. 

                                                 
1 Depending on the author and definition, it could be associated with the term: North Pacific Oscillation, or 
NPO. 
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Figure 3.1. (a) CCA mode 1 of JJA-Tmean (red line) related with MAM-PSST (green line). 
MAM-PDO index is also plotted for comparison (blue line). Spatial patterns of predictor fields 
(MAM-PSST) and JJA-Tmean are displayed in (b) and (c) as correlations of the temporal 
evolutions with their respective variable fields at each location (i.e., grid cell for predictors and 
station for the predictand). These correlation patterns are displayed in color for PSST and Tmean 
fields on the common color scale (-1: violet, 1: dark red). Correlations are displayed as contours 
at 0.2 intervals. Negative contours are dashed; positive are solid. Small circles in (c) represent 
station locations. Correlation values greater than 0.32 are significant at the 0.01 level. 
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Figure 3.2. CCA modes (a) 1 and (d) 3 of JJA-Tmax-T90 (red lines) related with MAM-PSST 
(green lines). The MAM PDO and MAM-Niño 3 indices are also plotted for comparison in (a) 
and (b) respectively (blue lines). Spatial patterns of predictor fields (MAM-PSST) and JJA-
Tmean are displayed in (b), (c), (e) and (f) as correlations of the temporal evolutions with their 
respective variable fields at each location (i.e., grid cell for predictors and station for the 
predictand). These correlation patterns are displayed in color for PSST and Tmax-T90 fields on 
the common color scale (-1: violet, 1: dark red). Correlations are displayed as contours at 0.2 
intervals. Negative contours are dashed, positive are solid. Small circles in (c) and (f) represent 
station locations. Correlation values greater than 0.32 are significant at the 0.01 level. 
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Comparing the leading modes of summer Tmean and Tmax-T90, we found that the first 
leading coupled mode (r = 0.88, Fig. 3.2a) also resembles the PDO structure (Fig. 3.2b) 
but with a more scattered response in the stations correlation pattern over California (Fig. 
3c). Additionally the third leading coupled mode (r = 0.55, Fig. 3.2d) is associated to 
interannual variability in the tropical eastern Pacific (Fig. 3.2e) with a broad but weak 
negative correlation pattern over almost all the State (Fig. 3.2f). 

 
We then used this coupled mode along with several others (not shown) in a CCA model 
estimated at different lead times from January-February-March (JFM) to MAM for 
prediction and from April-May-June (AMJ) to JJA for specification. Fig. 3.3a. shows the 
optimum skill values for JJA-Tmean, CDD and Tmax-T90 using different leading PSST 
seasons. These measures were obtained from the “optimum” CCA model, which was 
determined from optimizing the number of predictand and predictor modes to maximize 
the average skill, using cross-validation techniques to avoid overfitting (see Gershunov 
and Cayan (2003) for optimization details). Cross-Validation is a resampling technique 
that operates in a way similar to the bootstrap and permutation tests, dividing the total 
group of data repeatedly into a subgroup for control and another for verification. The 
most common point, like in this case, is that the size of the first group is n-1 and that of 
the second is 1, with n different data partitions. As expected, the skill values tend to 
decrease as the predictor lead time increases. The SST season that produces the 
maximum non-overlapping predictive skill for JJA Temperature season is MAM. The 
skill maps (Figs. 3.3b, c, and d) illustrate the correlation between the observed value and 
the predicted value in a cross-validated framework. The skill of Tmean and CDD 
prediction (Figs. 3.3b and c) shows values greater than 0.4 (more than 20% of the 
variability predicted by model) in a large part of the region, while the prediction of warm 
extreme values gives acceptable values only for some locations in the California central 
valley (Fig. 3.3d). A set of statistical models were constructed to investigate the 
predictability of PSST in forecasting three summer variables: (1) cooling degree days 
(CDD), (2) average temperature, (3) and the number of maximum temperature extremes. 
For each of these variables there appears to be significant model skill. Model skills are 
maximum for JJA PSST predicting JJA temperature measure and decline successively 
with increasing PSST time lead. The model for Tmean has greater skill than those for 
CDD and CDD models have greater skill than those for Tmax-T90 measure. 
Additionally, Fig. 3.4 presents the prediction skill maps for the summer Tmax-T90 using 
MJJ, AMJ, and February-March-April (FMA) PSST as predictors. Although, the first two 
maps of this figure implied some simultaneous months (Fig. 3.4a, b) with summer, these 
maps are useful to update the forecast or in the use of a perfect prognosis scheme. Notice 
also that in spite that the skill map using FMA predictors (Fig. 3.4c) has a lower 
correlation average value than the one using MAM predictors (Figs. 3.3a and d), it still 
maintains an important area with values having statistical significance greater than 99%. 
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Figure 3.3. (a) Optimized maximum average skill for Tmean (red line), CDD (green line), Tmax-
T90 (blue line), and Tmax-T95 (black line). (b), (c), and (d) are the respectively JJA Tmean, 
CDD and Tmax-T90 optimized skill maps, expressed as correlations between the cross-validated 
forecast and observations at stations using MAM-PSST as predictors. All values are displayed on 
the same range. Uncolored areas are regions of insignificant negative correlations. The three 
contours represent the 90th, 95th, and 99th percent levels of significance in order of increasing 
correlations. 
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(a) MJJ-PSST => JJA-Tmax-T90 
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(b) AMJ-PSST => JJA-Tmax-T90 
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Figure 3.4. JJA-Tmax-T90 optimized skill maps expressed as correlations between the cross-
validated forecast and observations at stations using (a) MJJ-PSST, (b) AMJ-PSST, and (c) FMA-
PSST as predictors. All values are displayed on the same range. Uncolored areas are regions of 
insignificant negative correlations. The three contours represent the 90th, 95th, and 99th percent 
levels of significance, in order of increasing correlations. 
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4. A Simplified Statistical Model Using Spring PDO 
The CCA methodology as used here amounts to a rather sophisticated statistical model 
based on many coupled patterns in Pacific SST and California temperature. However, 
Fig. 3.1 identifies a well-known climate pattern, the PDO, which is a dominant mode of 
anomalous SST variability in the extratropical North Pacific (Mantua et al. 1997), 
preceding coastal California summertime temperature anomalies. The PDO index is 
available at: http://jisao.washington.edu/pdo/PDO.latest. It is possible, therefore, to 
produce a simple rule-of-thumb California coastal summertime temperature-forecasting 
scheme based on the springtime state of the PDO. The strength of the spring PDO— 
summer temperature relationship suggests that it might be possible to exploit a rather 
simple contingency analysis. Such an analysis could be formatted to transform these 
predictions in a product tailored explicitly for energy producers. For this purpose we used 
the PDO index and related it to climate at stations that California Energy Commission has 
defined as representative of the different California Climate zones and important 
summertime energy demand sectors (Pierce 2004). These stations are: Eureka, Ukiah, 
Sacramento, Fresno, San Francisco, Long Beach, Los Angeles, San Diego, Burbank-
Glendale-Pasadena, Blythe, San Bernardino, and San Jose.  
 
Fig. 4.1 shows that under Below (Above) Normal spring PDO conditions, the most 
probable scenario for summer air surface temperature is also Below (Above) Normal in 
much California and mainly in those stations along the coast. Notice also that PDO 
observed conditions during previous winter and spring tend to persists trough summer. 
Not only is the occurrence of Below (Above) normal spring PDO biased in favor of the 
occurrence of Below (Above) normal summer Tmean or CDD at most of the stations, it 
also disfavors the occurrence of the opposite class anomalies of summer Tmean or CDD. 
For example, the expected value of 33% Below (Above) normal CDD is elevated to 
greater than 50% at several of the stations that were selected. The occurrence of the 
opposite class Above (Below) anomalies is likewise reduced to less than 20% and in 
some cases less than 7% of the sample considered. These statistical relationships are 
generally stronger along the coastal and in the southern and central portion of the station 
network. 
 
5. Implications for Utility Industry 
From a decision-making perspective, improved forecasts of summer California 
temperatures could provide several benefits to the electricity industry, including 
increased reliability, decreased risk of outages, and more efficient use of resources. 
Electrical energy use in California is highly dependent on temperature; for instance, on 
hot afternoons, air conditioning can account for over 40% of the total electricity use in 
California. California electrical providers are concerned not only with warm temperature 
anomalies, but also the spatial distribution of those temperature anomalies. Partly, this is 
because the interconnected electricity system can handle localized increased temperatures 
and corresponding demands, but becomes stressed when high demands spread throughout 
the state at the same time. The forecast capabilities described herein would help decision-
makers plan for seasonal electricity demands and to maintain adequate supplies under 
different temperature scenarios. 
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(a)  

 

(b)  

 
(c)  

 

(d)  

 

Figure 4.1. Contingency analysis using empirical conditional probabilities between the observed 
MAM-PDO and (a), (b) JJA-Tmean, (c), (d) JJA-CDD. (a), (c) is for a MAM-PDO scenario 
Below Normal and (b), (d) is for a MAM-PDO scenario Above Normal. For this purpose, 
researchers used the stations that the California Energy Commission has already defined as 
representative of the different California Climate zones (see text). The conditional probabilities 
between persistence previous winter-spring seasons and summer PDO is also included in (a) and 
(b), in the right upper corner. Percentage values greater (lower) than 45, 51 and 57 (24, 18, and 
13) are significant at the 0.10, 0.05 and 0.01 levels respectively for high (low) count bins in the 
contingency analysis. 
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