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Preface
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the electricity and natural gas ratepayers of California. The Energy Commission awards up to 
$62 million annually in electricity-related RD&D, and up to $12 million annually for natural gas 
RD&D.

The PIER program strives to conduct the most promising public interest energy research by 
partnering with RD&D organizations, including individuals, business, utilities, and public or 
private research institutions. 

PIER finding efforts are focused on the following six RD&D program areas: 

Buildings End-Use Energy Efficiency 

Industrial/Agricultural/Water End-Use Energy Efficiency 

Renewable Energy Technologies 

Environmentally Preferred Advanced Generation 

Energy-Related Environmental Research 

Energy Systems Integration 

Experimental and Field Studies to Assess Pulsed, Water Flow Impacts on the Behavior and Distribution 
of Fishes in the South Fork of the American River is the year one report for Contract 500-01-044, 
conducted by the University of California, Davis. The information from this project contributes 
to PIER’s Energy Systems Integration program area.  

For more information on the PIER Program, please visit the Energy Commission’s website at:  
www.energy.ca.gov/pier or contact the Energy Commission at 9l6-654-5164. 
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Abstract

Increased water flow (pulses) for hydroelectric generation and whitewater rafting may impact 
the distribution of native stream species because they represent significant deviations from the 
natural hydrograph. The research team conducted both experimental and field studies to assess 
the effect of these flows on four species of fishes that inhabit Californian rivers. Radio-tagged 
rainbow and brown trout were tracked during a single pulsed flow. No significant differences 
were found between the distances moved before, during, and after the release. Fish numbers 
were recorded in pools along this reach during snorkel surveys before and after the pulsed 
flow. The total fish density in each pool did not appear to differ before and after the pulse. The 
research team recorded the responses of juvenile rainbow trout, hardhead, and Sacramento 
suckers to artificially pulsed flows within a longitudinal flume. Although fish moved either 
upstream or downstream, the most common (or mean) position of the individuals was close to 
the center of the flume during pulsed flows. The distribution of individuals was also 
determined in a lateral displacement flume, consisting of a rectangular tank separated into a 
main channel that never drained and a sloped bank that alternately flooded and became 
exposed. Only three (7.8 percent) of the 38 fish placed within the apparatus became stranded.  
The field and laboratory studies described in the report provide an evaluation of the impacts of 
pulsed flows for recreational and commercial purposes on the behavior and movements of 
juveniles and adults of these species of fishes.   

Keywords:  Pulsed flows, Lateral displacement, Longitudindal displacement, American River, 
Hardhead, Rainbow trout, Brown trout, Sacramento suckers, artificial stream and radio 
telemetry.
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Executive Summary 

Introduction 
Human-manufactured increases in water flow (pulses) are common within rivers. There are 
many reasons for human-made water discharges: generating electricity, providing irrigation 
water, releases for flood control within reservoirs, flushing streambeds, and facilitating human 
recreation such as river rafting. California native stream species evolved with seasonal 
fluctuations, but their increased frequency and late, warm-season timing represent significant 
deviations from the natural hydrograph.  

Purpose

Although water releases provide benefits to humans, the effects of these three types of flow 
pulses on the community of species present within streams are relatively unknown. For that 
reason, both experimental and field studies were conducted to assess the impact of pulse flows 
on fish species that inhabit Californian rivers. 

Strong pulsed flows may have possible negative effects on fishes such as longitudinal 
displacement (forcing downstream of normal habitat) and lateral displacement (stranding along 
changing channel margins). 

Project Objectives 

The overall objective of this research was to identify the effects of pulsed flows on fishes. 
Experimental and field investigations were conducted on four species: rainbow trout 
(Oncorhynchus mykiss), hardhead minnow (Mylopharodon conocephalus), brown trout (Salmo 
trutta), and Sacramento sucker (Catostomus occidentalis).

There were three phases to Year 1 of this study: 

Tracking the movement of juveniles and adults (> 15 centimeters total length, cm TL), 
tagged with radio transmitters, in a river to ascertain whether individuals are displaced 
longitudinally in response to pulsed flows. 

Quantifying the distribution of juveniles (< 15 cm) in a river from visual censuses of 
unmarked individuals and those marked with visible implant elastomer (VIE) before, 
during, and after releases. 

Determining the degree of longitudinal and latitudinal displacement, as well as substrate 
preference of juvenile fishes in varying flows in laboratory experiments. 

Project Outcomes

Radio Tracking 

The research team captured three rainbow trout by hook and line, implanted radio tags into 
their peritoneal cavities, and released them into the Chili Bar Reach of the American River 
during the period from July 23 to August 5, 2004. These fish were exposed to one and 
occasionally two pulsed flows per day. The research team searched for these fish during seven 
days, from August 3 through 12, 2004. Rainbow trout (RT) 1 was captured and tagged on July 
29 and the tag was relocated 925 meters (m) upstream seven days later; 111 m further upstream 



2

on the following day. It exhibited no movement when located twice, three and four days later; 
and was determined to no longer be in the river.  RT 2 was captured and tagged and 
subsequently never relocated by the research team.  RT 3 was captured and tagged August 5 
and was located four times later within a 100-m radius of its original release location. 

One rainbow trout and six brown trout were tagged with radio tags and tracked during a single 
pulsed flow on September 15, 2004 in Silver Creek, a tributary of the American River. These 
individuals were located on the river after capture, later before the pulsed release, during the 
release, and after the release. No significant differences were found between the distances 
moved, normalized for their daily movement, between these three periods.  

Snorkel Survey and VIE Marking 

Young-of-the-year (less than one year old) and juvenile brown trout and rainbow trout were 
captured using minnow traps and angling, and marked by injecting Visible Implant Elastomer  
(VIE) prior to the pulsed release of water into Silver Creek.  VIE is a silicone based material that 
is used to track fish. VIE tags are injected as a liquid beneath transparent or translucent tissue 
and then soon turns into a solid that remains externally visible and does not harm the fish. 
Individuals were marked with different colors in three reaches of the river, each 100 m in 
length, in order to detect movement between the reaches during the pulsed flow. The VIE 
marks were not observed on individuals of either species during visual snorkel surveys before 
and after the survey, but this could be because a relatively small proportion of the total fish 
populations were marked, and individuals could be observed only from several meters away. 

Fish numbers were recorded in 15 pools along a 300 m reach of the river during snorkel surveys 
before and after the pulsed flow. Fish were identified to species where possible and age was 
estimated either as young-of-the-year, juveniles, or adults. The total fish density in each pool 
did not appear to differ markedly before and after the pulse. Some pools contained fewer fish 
after the pulse, but others contained more fish after the pulse, and there did not appear to be a 
pattern along the length of the study reach. Numbers of young-of-the year per pool tended to be 
lower after the pulse, although some pools contained more fish after the pulse. Numbers of 
juveniles were generally comparable pre- and post-pulse. Likewise, adult fish numbers did not 
appear to differ substantially between snorkel surveys. When the counts were examined, and 
normalized to take into account the different pool sizes, there were still no clear trends in fish 
distribution.

Longitudinal and Lateral Displacement Experiments 

The research team determined the responses of juvenile hatchery-reared rainbow trout, 
hardhead minnows, and Sacramento suckers to simulated pulsed flows within a 16.5-m long 
longitudinal flume, in which rocks were placed to simulate the substrate of the main stem of the 
American River. Although fish moved either upstream or downstream, the mean position of 
each sample of individuals was close to the center of the flume for each of the five periods of 
increasing and decreasing flows. This indicated that the fish did not swim or were not 
transported downstream or moved upstream when in the flume, and this may be due to the 
presence of a substrate, which created a refuge with slower flows for a fish to avoid having to 
expend the energy to maintain its position in the presence of higher water velocities. Hardhead 
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minnows and the hatchery-reared rainbow trout swam mainly over substrate; Sacramento 
suckers swam less often over the substrate.   

The movements of individuals of these species were also determined in a 2 x 1 m lateral 
displacement flume, consisting of a rectangular tank separated into a main channel that never 
drained and a raised wide channel that alternately flooded and became exposed. Water 
circulated through the apparatus, flowing downward over a 10 degree slope into a series of 
channels and potential holding areas for this fish. Four pools existed on the raised wide channel 
with different shapes, holding, and draining capacities. Fish could become stranded in one of 
these pools as the water level subsided within the apparatus.  Three (7.8 percent) of the 38 fish 
placed within the apparatus became stranded within one of the artificial pools. One Sacramento 
sucker and two hardhead minnows were stranded in the margin substrate and pools. The three 
fish were stranded after remaining within the apparatus during a short acclimation period; no 
individuals stranded after having a long period of acclimation. Rainbow trout did not strand 
during any experiments. The fish became stranded only in the largest pool.    

Conclusions and Recommendations 

Radio-telemetry in South Fork of the American River  

Conclusions.  This pilot study demonstrated that it was possible to tag and track fish on the 
South Fork. The paucity of individuals tagged and tracked precludes us from making any 
conclusions as to the effect of the pulsed flows on rainbow trout in the American River. 
However, the low densities of trout in comparison with other sierra streams would suggest that 
there are some factors limiting the trout population, which may be correlated to pulsed flows. 

Recommendations.  More rainbow trout need to be tracked both in the presence and absence of 
pulsed flows within the Chili Bar Reach of the American River. The research team angled for 
rainbow trout for a total of nine days during Year 1, for a total of about 23 person-days. With 
this amount of effort, only three rainbow trout were of suitable size and condition for tagging. 
For this reason, the research team concludes that it is infeasible to track wild rainbow trout in 
the main stem of the South Fork of American River. Alternatively, the team will tag and release 
rainbow trout raised at the local trout hatchery into the American River during Year 2. Hatchery 
trout may not respond to pulsed flows as wild fish might, but describing their response to these 
flows is important, because they represent the majority of trout presently inhabiting Californian 
rivers.  

Radio-telemetry in Silver Creek  

Conclusions.  One rainbow trout and six brown trout were tagged with radio tags and tracked 
during a single pulsed flow in Silver Creek, a tributary of the American River. These 
individuals were located on the river after capture, later before the pulsed release, during the 
release, and after the release. The results indicate that the single pulsed flow did not alter the 
distribution of fish within the Silver Creek study reach.

Recommendations. This field study indicates that a single, small release of water into a stream 
does not significantly alter the distribution of subadult trout. More frequent stream channel 
maintenance (to promote scouring) releases may be of greater magnitude and frequency and 
could affect the distribution of fishes. Thus, it is necessary to identify the effect of different types 
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of flow releases on fishes in Californian rivers. This is a first-step toward identifying the effect of 
water releases produced for recreational rafting or hydroelectric power on the local fish.  

Snorkel Survey and VIE Marking in Silver Creek 

Conclusions.  Trout did not appear to experience large downstream displacements due to the 
one-day pulse in Silver Creek, or if they were displaced, they had moved back upstream by the 
time of the post-pulse survey. Additional statistical analyses may clarify the response of the 
local trout population to the pulse, particularly regarding young-of-the-year distribution. 
Preliminary analyses indicate that a one-day pulse may not be harmful to trout, at least not in a 
stream with a large number of velocity refugia (for example, crevices, boulders, deep pools), 
and a bedrock bottom. However, pulses may negatively affect the ability of trout (and other 
fish) to feed, due to very high flow velocities, and/or increased turbidity (decreased effective 
search distance). More frequent pulses may eventually result in decreased growth rates, 
increased vulnerability to predation (smaller fish are more vulnerable), and decreased survival 
rates.

Recommendations. The short time frame available for trapping and marking fish precluded 
doing multiple pre-pulse snorkel surveys, in order to determine the variability of fish density 
per pool in the absence of a pulse.  

The pulse flow release occurred in September, when young-of-the-year trout were well 
developed and likely able to locate and move to low velocity areas to avoid the higher flows.  It 
would be informative to test pulses of similar magnitude at other times of the year, such as 
early summer, when fry may be newly emerged, and less able to locate and use flow refugia. 

The habitat in Silver Creek is relatively complex and heterogeneous, which likely provided a 
wide variety of flow refugia for fish. It would be useful to test the impacts of a similar pulse in a 
stream with less complex habitat to see whether fish are more likely to be displaced as habitat 
complexity declines.

Longitudinal Flume

Conclusions.  Using the longitudinal-displacement experimental flume; featuring a long (15+ 
m) test section, clear panels for behavioral observations, a variable-speed drive to simulate 
pulsed flows, and rocks to simulate American River habitat characteristics; the research team 
found that juvenile rainbow trout, hardhead, and Sacramento suckers trended to remain in the 
section to which they were introduced throughout the pulsed flow period. Thus, despite open-
channel water velocities up to 0.463 m s-1, these three species were neither displaced 
downstream nor stimulated to swim upstream during or after the flow pulse. It is possible, of 
course, that these flow-pulse-associated behaviors would change at water velocities higher than 
those that were tested. 

Recommendations. The research team will conduct temperature preference tests on adult 
rainbow trout and hardhead minnows under different flow regimes. These resulting data 
would complement field-derived temperature measurements of fishes’ selected habitats (for 
example, before and after pulsed flows associated with hydroelectric or white-water rafting 
activities). Managers will be able to model adult fish distributions based on this study’s 
resulting thermal (as well as hydraulic) maps of stream reaches. The value of the laboratory-
derived data would be their accuracy (especially if derived from fish with different temperature 
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acclimation histories), speed (many species measured within a few months, after set up), and 
low cost (especially after initial investment in equipment).   

Lateral Displacement Flume

Conclusions. Using the lateral-displacement flume; featuring a main-channel and a pulse-
flooded, gravel river-bank section with draining and non-draining pools and a 10º slope; 
juvenile rainbow trout appeared to resist stranding as pulse-flow waters receded down the 
slope bank. In contrast, with a short acclimation period (simulating the shorter inter-pulsed 
periods that may characterize days with both morning and evening high-hydroelectric-demand 
periods), Sacramento suckers, and especially hardhead, may be stranded via pulse-flow-
associated lateral displacement. All of the stranded fish would be vulnerable to predation in 
their non-draining pools. 

Recommendations. It is necessary to use both laboratory and field methods to determine the 
energetic costs when exposed to various pulsed flows. After determining the relationships 
among swimming velocity, tail beat frequency, and oxygen consumption (metabolic) rate in a 
Brett-type swimming respirometer, it will be possible to estimate the costs (energy, food, or 
oxygen-based) associated with a flow pulse by measuring tail beats, using special radio tags, 
over the flow pulse in the field. The field-based tail beat counts will give accurate estimates of 
stream-habitat energetic costs because the fish’s behavior in a real stream (including the 
potential uses of hydraulic cover structures) is incorporated into the measurements.  

Benefits to California 

The field and laboratory studies described in this report provide an evaluation of the effects of 
pulsed releases of water for recreational and commercial purposes on the behavior and 
movements of subadults and adults of these species of fishes. The results of these studies may 
help agencies manage pulsed flows with minimal impacts to the local fish.
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1.0 Introduction 

Human-controlled flows (pulses) are common within rivers. There are many reasons for 
anthropogenic water discharges: (1) generating electricity, (2) flushing streambeds, 
(3) facilitating human recreation, (4) providing additional water for downstream diversion for 
the purpose of irrigation, and (5) preventing reservoirs from flooding. The most common 
rationale for controlling the flows of rivers is the production of electrical energy. 
Hydroelectricity makes up 25% of California’s electrical capacity, and is thus a critical 
component of the state’s electrical grid. Water from the Sierra snowmelt, which collects in 
reservoirs, is passed into large conduits that run laterally along ridges and then downward into 
secondary reservoirs within valleys, forcing the water to flow downward and to rotate a turbine 
attached to a generator and producing electrical power. Water is usually not released directly 
into the riverbed, but can be passed through the river bed instead of large conduits to a turbine. 
These controlled flows provide additional electrical energy during hot summer days when 
electrical loads from air conditioners are highest (Hunter 1992). Flushing flows are brief and 
infrequent, but are sufficiently large that they move silt and sand downstream from the stream 
bed where they have settled due to slow water flow (Milhous 1994; Reiser et al. 1989). 
Recreational flows are water releases made to accommodate activities such as rafting and 
kayaking.

Although water releases provide obvious benefits to humans, the effects of these flow pulses on 
the aquatic community are relatively unknown. Native Californian fish species have evolved 
with seasonal fluctuations, but their increased frequency (e.g., for electricity generation) and 
late-warm-season timing (for recreational purposes) represent significant deviations from the 
natural hydrograph. Thus, it is imperative that studies be conducted to determine the impact of 
pulse flows on the fish species that inhabit California’s rivers. 

1.1. Background 

Strong pulsed flows may have possible negative effects on fishes such as longitudinal 
displacement (forcing downstream of normal habitat) and lateral displacement (stranding along 
changing channel margins). The former can result in slower growth, decreased reproduction, or 
mortality because of a reduction in the availability of natural prey (e.g., macroinvertebrates) or 
habitat (e.g., cobble for juvenile protection, gravel for adult spawning); the latter can result in 
mortality due to high water temperatures and enhanced vulnerability to predation in shallow 
pools.

1.1.1. Longitudinal Displacement 

Strong pulsed flows force juvenile salmonids downstream (McCrimmon 1954; Erman and Leidy 
1975; Ottaway and Clarke 1981; Ottaway and Forrest 1983; Heggenes and Traaen 1988; Crisp 
1991; Crisp and Hurley 1991; Pearsons et al. 1992). Longitudinal displacement of juvenile coho 
salmon has been observed in streams during winter periods when floods are common (Bell et 
al. 2001; Shirvell 1994; Giannico and Healy 1998). Passive integrated transponder (PIT)-tagged 
juvenile coho salmon moved mostly in the downstream direction between 10 and 1,992 m 
(mean: 517 m) after a five-year recurrence flood in Prairie Creek, California (Bell et al. 2001). The 
higher recapture rates of the young coho in more hydraulically protected habitat types (alcoves 
and backwaters), compared with those in main-channel pools, probably reflects the value of 
these off-channel habitats in minimizing the washout/dispersal of fishes downstream (Bell et al. 



7

2001). Furthermore, there may be an interaction between the seasonal timing of pulsed flow 
releases, the life history stage of fish present, and the relative magnitude of pulses compared 
with normal flows for that time of year.  

In contrast, the longitudinal displacement of larger fish seems less likely, due to their increased 
swimming performance compared with smaller fishes (Webb et al. 1999). Seventeen adult 
rainbow trout, equipped with radio transmitters, were tracked in the San Juan River, below 
Navajo Reservoir, during an elevated, spring reservoir-discharge event (Gido et al. 2000). 
Twelve of the trout moved laterally into shoreline and side-channel habitats, and five were lost.  
Because many river species (e.g., members of the family Cyprinidae, the minnows and carps) 
may have less (aerobic) red muscle than trout (Bainbridge 1960; Bainbridge 1962), downstream 
displacement of larger minnows and suckers might be anticipated with a pulsed flow. Indeed, 
Sacramento suckers (Catostomus occidentalis), fitted with radio transmitters, were displaced a 
mean of two kilometers (km) downstream, after a flow pulse in the Mokelumne River during 
2003 (C. Jeffres, pers. comm.). 

Salamunovich (2003) studied fish distribution in the Rock Creek and Cresta reaches of the 
North Fork Feather River in response to recreational flow releases. Visual counts were made by 
two divers at eleven sites 24 hours before and after five separate monthly recreational flows. 
The study found little change in the observed species, number and sizes of fish before and after 
flow pulses. However, because fish were not marked prior to the surveys, it was not possible to 
determine whether the fish seen before and after the pulses were in fact the same fish. If fish 
were displaced along the river consistently throughout the reach, the only change in density 
would be observed at the very top (lower density) and bottom (higher density) of Cresta Reach. 
If this were not observed, fish throughout the reach may have been displaced downstream. 

1.1.2. Lateral Displacement 

In rivers regulated for electrical power generation, sediment removal, or for recreational rafting, 
the flow of water may be increased for several hours. During this period, the water level rises 
and may form side channels. The cessation of water release can result in a rapid lowering of the 
water level as the river returns to its normal river channel (Cushman 1985; Hunter 1992). 
Stranding in shallow side channels has been observed in field studies (Maciolek and Needham 
1952; Hamilton and Buell 1976; Bauersfeld 1977, 1978; Wooden 1984; Hvidsten 1985; Olson 1986; 
Olson and Mezgar 1987; Higgins and Bradford 1996) and laboratory investigations (Bradford 
1997; Bradford et al. 1995; Monk 1989).   

Laboratory investigations have provided insight to the impact of pulsed flows because 
potentially critical factors were varied individually to assess effects on fish behavior and 
identify problematic factors. For example, Bradford et al. (1995) identified stranding of juvenile 
coho salmon (Oncorhynchus kisutch) and rainbow trout (O. mykiss) on river bars caused by rapid 
decreases in river flow in an artificial stream channel under winter conditions. Many fish 
became stranded because they concealed themselves in the interstitial areas in the gravel 
substrate and were reluctant to leave when water levels receded. Coho salmon were more likely 
to be stranded than rainbow trout. Also, juveniles of other species of salmonids responded to 
manufactured flows in the Sultan River, Washington, with differing susceptibility to stranding 
at different times of day or night (Olson and Metzgar 1987).  
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1.2. Project Objectives 

The overall aim of this research was to identify the effects of pulsed flows on fishes. The 
research team conducted field and experimental investigations on three species: rainbow trout, 
hardhead minnow (Mylopharodon conocephalus), and Sacramento sucker. There were four 
objectives to the study during 2004–2005: 

1. Characterize the flow velocities in rivers associated with manufactured releases of water 
for the purpose of electricity generation and recreation use with regard to normal flows 

2. Track the movements of subadults and adult trout (> 15 cm TL), carrying radio 
transmitters, in the river during pulsed releases to determine whether they were displaced 
longitudinally 

3. Quantify the effect of the flows on marked and unmarked juvenile trout (< 15 cm TL) from 
visual censuses made in the river before, during, and after releases 

4. Determine the displacement of juvenile suckers, hardhead minnows, and hatchery-trout 
laterally or longitudinally, in two experimental apparatuses in the presence of increasing 
flows of water, simulating the pulsed releases into rivers 

1.3. Report Organization 

Section 2 describes the methods used in the study. Section 3 presents the results of Year 1 of the 
study. Finally, Section 4 discusses the results in the context of the results of prior studies, 
offering conclusions and recommendations. Throughout the report, field studies will be 
described first and the laboratory studies second. 
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2.0 Project Approach  

2.1. Field Studies 

2.1.1. Study Sites 

This project’s field studies of the effect of pulsed flows on trout were carried out in the South 
Fork of the American River (Figures 1 and 2). First, the research team tracked rainbow trout 
during daily pulsed flows in the reach between Chili Bar Dam and Folsom Reservoir. Second, 
the team tracked rainbow and brown trout (Salmo trutta) farther upstream in Silver Creek 
during a single pulsed flow released from Camino Dam. 

2.1.1.1. South Fork 

The research team tagged and released three rainbow trout and tracked them between Camp 
Lotus and Gorilla Rock, upstream of Fowler’s Rock and downstream of Chili Bar Dam (see 
Figure 2). This 11.2 km reach of the river is characterized by strong pulsed flows and is a 
popular destination for whitewater rafting (see Figure 2). Water is released from the Chili Bar 
Dam into the Chili Bar reach of the South Fork. Pacific Gas and Electric Company (PG&E) 
operates this dam. Based on an agreement with the whitewater rafting community, PG&E 
releases daily pulses of water into this reach of the river from May–September of each year. The 
ambient rate of water discharge from Chili Bar dam is 5.0 cubic meters per second (m3s). This
rate is increased periodically during daytime to 35.0 m3s on Tuesday through Friday; the rate of 
discharge is increased even further on Saturday and Sunday, often exceeding 40.0 m3s. There is 
no agreement regarding the release of water on Monday, and PG&E releases an amount of 
water into the river that meets the current hydropower demand. The maximum discharge rates 
during the pulses ranged from 40.0 to 90.0 m3s during the two-week period that the rainbow 
trout were tracked in the South Fork (Figure 3). For example, the discharge rate on 9 August 
2004 increased from 5.0 to 50.0 m3s from 0600 to 0900 hours (hrs), and decreased from 40.0 to 5.0 
m3s from 1600 to 1900 hrs (Figure 4).  
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Flows released from Chili Bar Dam
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Figure 3. The rate of water discharged from Chili Bar Dam into the South Fork by 
PG&E during the 15-day rainbow trout radio tracking survey 
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8/9/2004 South Fork of the American River
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Figure 4.  Discharge and stage data for South Fork of American River below Chili 
Bar Dam during a 24-hour period on 9 August 2004 (one of the days during the 

rainbow trout radio tracking survey) 

Water height rose from 0.4 to 1.3 m at a reference point at Chili Bar Dam. Vast areas of 
cobble along the riverbed, exposed between flows, were submerged by rapidly flowing 
water during these temporary water discharges from Chili Bar Dam (Figure 5). 

2.1.1.2. Silver Creek  

The research team studied the movements of seven trout in a 600 m reach of Silver Creek 
(Figure 6), before, during, and after a pulsed discharge of water from the Camino Dam 
(Figure 7) on 15 September 2004. Water flows into this reservoir from the upper part of 
Silver Creek, and via the Jaybird Tunnel from Union Valley and Junction Reservoirs.
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Figure 5.  Two different reaches of South Fork: one, in the absence (above) and 
two, in the presence of a pulsed flow (below).  Note how much of the riverbed is 

exposed between the pulsed discharges of water from Chili Bar Dam. 
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Figure 6. The distribution of radio-tagged, VIE marked, and observed fish were 
determined before, during, and after the pulsed flow within a 600 m reach of Silver 
Creek below Camino Dam (upstream view from the center of the study reach with 

dam in background). 

Figure 7.  Water is shown being discharged from a pipe through Camino Dam into 
Silver Creek on a typical discharge day. On 15 September 2004, the rate of 

discharge was increased from 0.5 to 18.5 m3/s before it was decreased to 0.5 m3/s
later the same day. 
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Water is stored in Camino Reservoir, and most of it is diverted through a series of pipes along a 
ridge and then downward to the Camino Powerhouse, from which it flows into the South Fork 
American River just upstream of Slab Creek Reservoir. Typically, during September water is 
discharged at a rate of 0.5 m3s by the Sacramento Municipal Utility District (SMUD) into Silver 
Creek below Camino Dam. 

Mr. David Hanson of SMUD informed the research team during early summer of 2004 that it 
could study the effect of a one-day pulsed release of water on trout in Silver Creek. This one-
time discharge was designed to test the potential of the reach for Class IV to V whitewater 
kayaking. Water discharges from Camino Dam into Silver Creek varied from 0.3–2.1 m3s from 1 
October 2003 to 30 September 2004, with the exception of 15 September 2004 (Figure 8).  
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Figure 8. Daily mean rate of discharge from Camino Dam into Silver Creek from 1 
October 2003 to 30 September 2004.  Water discharge varied from 0.26 to 2.12 m3/s (9 to 

75 cubic feet per second, or cfs) over this period, with the exception of 15 September 
2004.  Data are courtesy of Mr. Randy Jensen, SMUD. 

The rate of discharge on this day rose from 0.5 m3s at 0600 hours (hrs) to 18.5 m3s at 0945 hrs, 
stayed constant until 1445 hrs, and then dropped to 1.8 m3s by 1730 hrs and 0.5 m3s by 2015 hrs 
(Figure 9). There was a large change (i.e., 3.2 feet ) in the level of water, illustrated by a river 
height gauge located halfway along the length of the 600-m long experimental reach (Figure 10). 
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Figure 9.  Rate of water release from Camino Dam to Silver Creek peaked at 18.5 m3/s
(653 cfs) during the pulsed flow on 15 September 2004 

Figure. 10.  Stage gauge for Silver Creek below Camino Dam before(left) and during 
(right) pulsed flow of 18.5 m3/s on 15 September 2004 
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2.1.2. Fish Collection 

Adult trout were captured by hook and line for radio tracking and juveniles were caught by 
hook and line and minnow traps for visible implant elastomer (VIE) marking on the South Fork 
(Figure 11) and Silver Creek (Figure 12) . 

Figure 11. Fishing for adult rainbow trout for the radio telemetry study near Gorilla Rock 
on the South Fork of the American River (above).  Retrieving minnow traps set to capture 

juvenile fish for the VIE marking study at the same site (below). 
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Figure 12.  Fishing for adult rainbow and brown trout to radio tag (above) and trapping 
juvenile trout for VIE marking (below) at Silver Creek 
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The adult fish were captured using artificial lures and insects. They were captured quickly, to 
minimize and reduce stress. If a trout was hooked in any area other than the lip or swallowed 
the lure, it was released because of the increased chance of mortality. The research team 
recorded the size of each captured individual, its GPS coordinates (if available), and location 
along the river. The fish were allowed to recover in a mesh live trap placed in the river, and 
permitted to regain their equilibrium before undergoing surgery. 

The juvenile trout were collected mainly using minnow traps. The traps had 2.5–3.2 cm 
openings on both ends enabling small trout to enter on either side. The research team employed 
salmon roe, dog food, cat food, beef liver, and Dove soap as bait in the South Fork. The traps 
were usually deployed at depths of 0.6–1.2 m, although this varied depending on whether 
water was being pulsed when they were set and retrieved. Traps were set in high, medium, and 
low flow areas and usually left overnight. Juvenile trout in Silver Creek were caught using 
salmon roe or dog food.  The traps were left for periods of 3–6 hours during the afternoon 
before being examined for captive fish. Traps were set at depths ranging from 0.9–2.4 m. The 
research team recorded the date, location, depth, times set/retrieved, bait type, and GPS 
coordinates of each trap. The fish within the trap were identified and counted and their 
approximate lengths recorded when checking a trap. 

2.1.3. Radio Tracking  

2.1.3.1. Radio Tag Description 

The radio tags utilized to track trout in the field were the smallest digitally encoded transmitters 
available for aquatic environments. A manual-tracking receiver (Lotek Wireless Inc., SRX400) 
recognized beacons transmitting pulses of the same frequency by their unique digital codes. The 
use of a single frequency decreased the chance of passing out of the range of a fish carrying a 
beacon of a particular frequency while scanning through frequencies other than that frequency.    

Two sizes of beacons were available for implantation in sub-adult and adult trout:  

1. 1. NTC-4-2L, 2.1 grams in air, 8.3 millimeters (mm) diameter by 18.3 mm long, with a life 
span of 93 days and a pulse burst every five seconds.   

2. 2. NTC-6-2, 4.5 grams in air, 9.1 mm diameter by 30.1 mm long, with a life span of 126 
days and a pulse burst every 2.5 seconds. 

The research team chose one of the two tag sizes using the 2% rule of body mass as a guideline 
(Jepsen et al. 2002).  The smaller tags were placed in the peritoneum of fish with a body mass 
between 105–225 grams and larger tags placed in fish with a body mass of > 225 grams. 

2.1.3.2. Surgery 

The trout were placed in live traps after capture while preparing the anesthesia solution and 
assembling the surgical gear. The research team implanted the tags using a surgery table 
attached to the raft at the site where the fish was captured on the South Fork American River. 
The surgical technique did not vary between field sites with a few exceptions: at Silver Creek, 
adult rainbow and brown trout were carried to a fixed surgery location in 18.9-liter buckets 
with lids and then returned to their capture sites after recovery from surgery. Individuals were 
transported a maximum distance of 250 m one way. When necessary, fish were kept in live 
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traps immersed in the stream over night to insure full recovery before being transported to their 
capture site. 

The anesthetic solution was prepared in a 18.9-liter, plastic bucket with 10 liters of river water, 
27 grams of sodium bicarbonate, and 10 milliliters (ml) of glacial acetic acid to buffer the pH as 
outlined in (Peake 1998). The pH of the anesthetic solution was neutral (7.0). Each fish was 
placed into the bucket and anesthetized to Stage 4 anesthesia; characterized by loss of 
orientation and slowing of gill movement. The fish was then removed from the solution of 
anesthetic and placed on the surgical table, ventral side up (Figure 13). The anesthetic solution 
was continuously passed over the gills with tubing connected to a recirculating, battery-
operated bilge pump. 

Figure 13. Rainbow trout positioned on surgical table with anesthetic solution  
circulating through the mouth and across the gills (left); an incision being  

made for tag implantation (right). 
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An incision, 1–2 cm long, was made below the rib cage and above the pelvic girdle, off the fish’s 
midline. To avoid damaging internal organs, a sheathed plastic 16 gauge (Ga.) catheter was 
used to puncture the body wall, creating an exit point for the whip antenna. The whip antenna 
was threaded through the plastic catheter sheath and fish’s body wall until reaching the site 
where the antenna attaches to the cylindrical tag. The tag was then gently pushed through the 
incision into fish’s body cavity. A solution of 0.005 ml per 100 grams of fish of an antibiotic 
(Liquamycin® LA-200®) was injected into the incision site with the 1-cc syringe. Three to four 
sutures were made along the incision site with synthetic, absorbable suture material (Vicryl ). 
Each suture was dotted with liquid topical tissue adhesive (Nexaband) to secure the knots. The 
fish was gently placed into a live trap after surgery and monitored for gill rate, tail beat, 
orientation, and swimming ability. The fish was released when it began to swim normally 
(Figure 14), with typical recovery times of 15–30 minutes. 

Figure 14.  Rainbow trout (RT 3) released after tag-implant surgery.  

2.1.3.3. Tracking 

a. South Fork American River 

A cooler with foam fitting snuggly around the equipment was secured into the back of the raft 
with cam straps. The research team programmed the receiver to continuously scan between the 
two frequencies at 5.5-second intervals and display the identification code of the tag if within 
range. The team floated downstream in the river, searching for the tagged fish by moving the 
antenna back and forth between banks of the river (Figure 15). Once a fish was detected by the 
receiver, the raft was rowed into an eddy or beached in order to determine location of the 
tagged fish more accurately from land. 
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A GPS location was recorded 
where the transmitter’s signal 
was first detected. Bearings 
were taken to the fish from 
points on the riverbank. At least 
two sets of bearings were 
collected for each tagged fish. 
The research team tried to locate 
fish from the same triangulation 
points every day. Also, an 
attempt was made to locate the 
fish from opposite sides of the 
river when possible. It was 
difficult to accurately 
distinguish the direction where 
the strength of the signal was 
greatest. For that reason, the 
tracker stood in the same spot 
and rotated the vertically 
oriented antenna back and 
forth, noting each direction 
where the signal strength began 
to attenuate, and then selected 
the mid point between these 
divergent bearings. Fish 
location was estimated by 
triangulation of lines of position 
based on bearings taken to 
specific landmarks.

b. Silver Creek 

Similar methodology was 
employed between the two 
field sites; however, with slight 
technical alterations due to the 
different nature of the sites. 
Silver Creek is a small creek, which is not passable by raft. Therefore, the research team climbed 
over rocks within the dry streambed along the length of the narrow creek, bordered by the steep 
sides of the small canyon. The creek consisted of rocky ledges, over which the water spilled into 
pools, in which there were turbulent eddies below the ledge, slower moving water in the deep 
center of the pool, and accelerating water in the riffles near the tail of the pool. 

The positions of the radio-tagged fish were determined in Silver Creek (1) at the time of their 
release, (2) on the day before the pulse, (3) during the pulse flow release (15 September 2004), 
and (4) a week after the pulse. The same methodology was used to determine the position of a 
tagged fish prior to the pulse and after the pulse; a slightly different technique was used to 

Figure 15.  Searching for radio tag signals with directional 

antenna and receiver, enclosed in cooler, on South Fork 
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position the fish during the pulsed flow. The team marked the location where each fish was 
caught and released. The experimental reach was 600 m long and was marked with flagging at 
50 m intervals. The reach began approximately 200 m downstream of Camino Dam. The access 
point was 300 m downstream from the beginning of the reach. The research team began 
searching for fish at a distance of 350 m along the experimental reach, where the fish farthest 
downstream was tagged and released. Researchers pointed the antenna, its elements held 
vertical, oriented toward the river, and searched for the radio signal. The tracking crew moved 
upstream until it recorded the maximum signal strength and the strength of the signal began to 
diminish. The antenna was then rotated, so the elements were parallel to the ground, to increase 
the directionality of the antenna. Researchers moved the antenna back and forth to either side of 
the pool to distinguish where the signal was highest, and then recorded river meter, signal 
power, and gain for that fish and drew a map of the area where each fish was found. 

The method used to detect fish during the pulse was slightly different to ensure that the 
research team would be able to operate safely while track during the pulse. The tracker 
recorded at every 50 m distance along the length of the creek the codes of the tags detected and 
their respective signal powers. The fish was first detected with the elements of the Yagi antenna 
held vertically and then switched to a horizontal orientation. The tracker recorded the fish’s 
location where the signal strength was the most powerful. 

2.1.3.4. Graphical Display 

The research team employed a software program (Locate 2) to triangulate positions and convert 
them into their geographical coordinates of latitude and longitude. A macro (Excel, geofunc.xla) 
was used to calculate the distance between two positions, each with a latitudinal and 
longitudinal coordinate. Geographical information system software (ESRI, Arcview 8.3) was 
used to superimpose the calculated latitudes and longitudes of tagged fish on a map of the 
study area. The map used was downloaded from www.klofas.com, a source of digital USGS 
topographic maps, referenced to the Datum NAD83. Arcview 8.3 was further used to verify the 
accuracy of the calculated latitudes and longitudes.  

2.1.3.5. Error Determination 

A GPS position was recorded for the radio-tag on RT 1, and also positioned using the method of 
triangulation. The distance between both sets of geographic coordinates was calculated, and 
used as an estimate of the error associated with the radio-determined positions. The distance 
between the two locations was 45.1 m. The accuracy of the GPS was displayed on the device for 
this particular location, giving a mean = 9.8 m. The telemetry- and GPS-derived errors were 
added to provide a cumulative error of 55 m for the radio position determinations. 

2.1.4. Snorkel Survey and VIE Marking 

The objective of this phase of the study was to determine the response of juvenile fish to the 
one-day flow pulse (see Figures 10 and 11) on Silver Creek. The aim was to identify whether 
young-of-the-year and juveniles of the fish species present in the river were displaced 
downstream during a pulsed flow. The research team also wanted to check whether individual 
fish were stranded after the pulse, although stranding was considered unlikely due to the 
gradual ramping rate of the release. 
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2.1.4.1. Study Reach 

A reach of the river was chosen for the study that began at the access point from the trail to 
Silver Creek, 500 m downstream of Camino Dam. This reach included the downstream half of 
the 600 m reach used in the radio tracking study and it contained 15 survey pools. A 
preliminary snorkel survey performed on 24 August 2004 of all the pools between the dam and 
the access point indicated that there were very few young-of-the-year or juvenile fish upstream 
of the access point. No fish < 14 cm TL were observed upstream of this point. The study reach 
was subdivided into three 100 m sections to allow for comparison of fish densities between 
sections. Each section contained between three and seven pools (Table 1). 

2.1.4.2. Water Quality and Stream Geomorphology 

Measurements of surface water temperature and dissolved oxygen concentration were made at 
the trail access point using a handheld meter (YSI, Model 550A) prior to, during, and after the 
15 September 2005 pulsed flow. Triplicate water samples (250 ml each) were collected near the 
trail access point, prior to, during, and after the pulse flow on 15 September 2004. Samples were 
analyzed for total Kjeldahl nitrogen (TKN), ammonia-nitrogen (NH4-N), nitrate-nitrogen (NO3-
N), soluble phosphorus, and total phosphorus.  Water quality analyses were performed by the 
University of California Division of Agriculture and Natural Resources Analytical Laboratory, 
on the University of California (UC) Davis campus. 

Table 1. Section and pool characteristics for the Silver Creek snorkel survey. Pool Area 
was calculated by assuming the pool was round, and averaging the pool length and 

maximum width to calculate the approximate pool diameter. Section Area is the sum of 
the areas of all the pools in a particular section of the study reach. 

Section
Length

(m)
VIE

Color
Pool

#
Maximum
Depth (m) 

Length
(m)

Maximum
Width (m) 

Pool
Area
(m2)

Section
Area (m2)

1 0–100 Red 1 1.37 37.2 12.8 490 1211 
   2 1.32 15.8 11.3 144  
   3 1.3 15.2 10.1 126  
   4 1.28 7.9 9.1 57  
   5 3.3 18.0 26.8 394  

2 100–200 Green 6 2 22.9 12.2 241 505 
   7 1.35 5.5 7.6 34  
   8 1.15 9.1 7.9 57  
   9 1.1 10.7 6.4 57  
   10 0.71 7.0 4.0 24  
   11 1.1 5.8 3.0 15  
   12 1.73 9.8 10.1 77  

3 200–300 Orange 13 2.08 34.1 13.4 444 906 
   14 1.7 25.3 7.6 213  
      15 2.33 22.9 12.8 250   
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Pool length and maximum pool width were recorded with a tape measure to allow an 
approximate calculation of pool area and fish densities. Maximum pool depth was measured 
using a stadia rod. Measurements were made after the pulse flow release on 16 September 2004, 
when the flow was about 17 cfs. 

2.1.4.3. Trout Capture and Marking 

The research team captured trout for Visible Implant Elastomer (VIE, Northwest Marine 
Technology) marking on 9, 10, 13, and 14 September. Young-of-the-year and juvenile fish were 
captured using minnow traps baited with roe, dog food, or cat food. Juvenile trout were also 
captured by angling, as part of the effort to capture adult fish for radio tagging.  The fish were 
held in buckets filled with stream water. Holding and recovery containers were treated with 
10 grams (g) rock salt/L to minimize fish stress by decreasing the osmotic gradient across the 
gills. Temperature and dissolved oxygen were monitored with a handheld meter. If water 
temperature increased, then more stream water was added.  Oxygen levels were maintained at 
ambient stream concentration using small battery operated air pumps. 

Trout were sedated using the same method used in radio-tag implantation. When an individual 
reached Stage 4 anesthesia (total loss of swimming motion with weak opercular movement), it 
was removed from the bucket and placed on a measuring board to have its length measured. 
Next the fish was marked by injecting VIE. These marks were injected at the base of the dorsal, 
adipose, or caudal fin to maximize their detection during subsequent snorkel surveys (Manning 
and Thompson 2003). The adipose fin mark proved to be the most effective and was used on all 
fish. The VIE injection generally took less than one minute.  The fish was then placed in a 
recovery bucket filled with river water, with a battery operated pump and air stone, for 
approximately 30 minutes. Once the fish had fully recovered from anesthesia it was released 
back to the river, to the same pool, from which it was captured.  Three colors of VIE were used 
in the 300 m study reach, depending on the section from which the fish was captured. Red was 
used for Section 1, Green for Section 2, and Orange for Section 3. Juvenile and adult fish 
captured from the creek upstream of the study reach (during angling for adult fish for radio-
tagging) were marked with yellow VIE.

2.1.4.4. Survey Design 

The research team recorded trout counts in the 15 study pools, using established snorkel survey 
procedures (Dolloff et al. 1996). On 14 September, the juveniles were counted by two snorkelers 
and a land-based support person, who performed a visual snorkel survey of each pool in each 
section, moving upstream along the banks, with one snorkeler on each side of the creek. The 
pools were sampled by moving upstream through the study reach. Fish were identified to 
species where possible, or listed as “unknown.” Fish length was estimated by eye in order to 
classify fish into age/size categories. Young-of-the-year trout were defined as those with a TL of 
< 10 cm. Juvenile fish were defined as those with a TL of 10–18 cm. Adult fish were defined as 
those with TL of > 18 cm. On 16 September the pools were again surveyed by snorkeling to 
determine post-pulse locations and densities of fish. 
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2.1.5. Laboratory Studies 

2.1.5.1. Fish Collection 

The laboratory studies utilized hardhead, hatchery-reared rainbow trout, and Sacramento 
suckers. The fish were collected from two different sites: Slab Creek (Figure 16) and Putah 
Creek. Sacramento suckers were caught by electrofishing in Putah Creek. Hardhead minnows 
were collected at the Slab Creek location with a 6.1-m beach seine and minnow traps. The small 
size, shallow depth, and presence of natural barriers of the sampling site allowed us to herd the 
fish into the seines. Fish were placed in a bucket, identified, and sorted. 

Electrofishing was used to capture Sacramento suckers in Putah Creek on the UC Davis campus 
because of the difficulty in capturing individuals in the South Fork of the American River. 
Sampling was conducted with two teams, each consisting of three to four trained staff members. 
Each team was led by one person equipped with a backpack electrofisher (Smith-Root, Inc., 
Model 12), who would extend the transducer under the overhanging bank to shock fish.  The 
remaining staff netted fish as they drifted downstream. The teams moved simultaneously along 
the upstream margins during the capture process and covered three 50-m reaches on each side 
of the creek. Captured fish were sorted at the conclusion of the collection and Sacramento 
suckers were retained for laboratory studies. The rainbow trout used in the laboratory studies 
were obtained from the California Department of Fish and Game’s American River Trout 
Hatchery at Rancho Cordova because of the difficulty of capturing individuals in the American 
River. 

2.1.5.2. Fish Transport and Housing  

The hardhead minnow, captured at Slab Creek, were placed into coolers containing four clear 
bags with river water. A water conditioner (NovAqua) was added to reduce handling and 
transport stress.  The water was aerated while fish were counted and placed into the bags (with 
a maximum of 40 fish per bag) in the cooler. Once the bags were filled, a pocket of air was left at 
the top and the opening was securely fastened using zip ties. Ice was placed around the bags 
and the cooler was moved into the transport vehicle. The hardhead were immediately driven to 
the Center for Aquatic Biology and Aquaculture (CABA) at UC Davis, two hours away. 

Once the juvenile Sacramento suckers from Putah Creek were sorted, fresh water was added to 
the collection bucket and the fish were hauled uphill to the transport vehicle. The fish were 
transported in the front seat of the truck (while under the observation of the van passenger) to 
CABA, a trip that took five minutes. 

These Nimbus Hatchery rainbow trout were captured by net and placed in a cooler filled with 
aerated hatchery water and 30-ml solution of NovAqua. Two plastic bags filled with ice were 
placed in the cooler to ensure the water temperature was cool during transport. The cooler was 
secured to the bench seat of the vehicle during the 45-minute period of transport to CABA.
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All fish were housed at CABA in 250-L flow-through circular tanks filled with air-
equilibrated well water and were held under conditions of natural photoperiod. A ten-
day disease prevention treatment consisting of malachite formalin and nitrofurazone 
was administered immediately after fish arrived at the facility. Tanks were cleaned and 
fish were fed Semi-moist feed (Rangen, Inc., Buhl, Idaho) on a daily basis. Water 
temperature was maintained at 14 C.

2.1.5.3. Longitudinal Flume  

Longitudinal displacement of hardhead minnow, Sacramento suckers, and hatchery-
reared rainbow trout was studied using a 16.5 x 0.6 m flume located at the J. Amorocho 
Hydraulics Laboratory on the UC Davis campus. The experiments were carried out 
between July and September 2004. 

a. Apparatus Design 

The experimental apparatus was a 4,542-L, self-contained flume that utilized a variable-
speed motor to move water through the system. Water was pumped to one end of the 
apparatus by the motor, allowed to flow through the open-topped, glass experimental 
chamber, and drained at the opposite end into a pipe connected to the pump (Figure 17).  

An additional connection to an underground sump was constructed using PVC pipes so 
that temperature could be regulated during the experiment via the delivery and removal 
of a small amount of water to and from the apparatus (Figure 18).  

A small, ¾-horsepower pump, connected to the pipes and located in the sump, filled and 
supplied water to the apparatus before and during experiments. The experimental area, 
measuring 15.24 x 0.6 m, was blocked off by fish screens on each end. A false Plexiglas 
bottom was affixed to the bottom of the flume so small river rocks could be fastened 
without damaging the apparatus. The simulated rock bed (Figures 19 and 20) was 
designed after observations and measurements taken of the streambed along the original 
study area (see Figure 5) in the South Fork of the American River.  

The study was limited to rocks ranging from 3.2–25.6 cm. Small rocks and sand were not 
used because they could come loose and endanger the flume’s motor; large rocks 
weighed too much to be transported easily. The substrate in the flume was composed of 
very course gravel (37% of total substrate), as well as small (45%) and large (18%) cobble, 
according a bed and bank material characterization chart (Harrelson et al. 1994). The 
final flume interior (Figure 21) consisted of areas without rock, or with small rocks, large 
rocks, or a mix of rock types. 
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Figure 19.  The longitudinal displacement flume 
outfitted with rocks from the South Fork of the 

American River 

Figure 20. Water velocities being measured within 
longitudinal displacement flume 
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Figure 21. Arrangement of artificial substrate in longitudinal displacement flume.  
The interior is shown in three sections due to its length. The upstream area is 

shown in the top left corner while the downstream area is located above the drain 
pump in the lower right corner. Rock locations are outlined along 0.9 m flume 

sections.
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b. Calibration and Measurement 

Water velocities were measured with a flow meter (Marsh-McBirney Inc., Flo-Mate 2000) 
at different locations in the flume to generate this study’s experimental velocity intervals 
(slow, mean=0.10 meters per second (m/s) ( 0.003 standard error (SE)); medium, 
mean=0.31 m/s ( 0.009 SE); and fast, mean=0.46 m/s ( 0.018 SE) [Figure 20]. These 
velocity intervals were used in a pattern consisting of slow, medium, fast, medium, and 
slow water velocities (Table 2). 

Table 2.  Description of the experimental conditions in the longitudinal 
displacement flume. Given are the mean flume water velocities and time spent by 
hardhead, rainbow trout, and Sacramento suckers in the flume during acclimation 

and the five periods of velocity intervals. 

This flow regime was set to simulate a hypothetical sequence of velocity conditions 
(gradually increasing to a maximum and decreasing to the baseline level) associated 
with daily river pulses in the South Fork of the American River. Fish were subjected to 
this five-stage velocity sequence in continuous 20-minute intervals. 

c. Experimental Design 

To begin an experiment, the flume was filled with 14 C (  1 C) water until the level in 
the glass portion achieved a height of 17.8 cm. Two “crowders,” PVC panels that 
temporarily forced fish toward the center, were placed in the middle of the apparatus at 
6.7 and 8.5 m, respectively. An individual fish (4–7 cm TL) was collected and 
transported in a bucket filled with water, released between the crowders in the flume, 
and allowed to acclimate for 30 minutes. Tracking difficulties did not allow us to test 
more than one fish per experiment. Pretest temperature and release time were noted and 
recorded.

After the acclimation period, the water velocity was gradually increased from zero 
velocity to the slow velocity. Observations of the location of the fish, its substrate use, 
swimming type, and overall behavior were recorded over five-minute periods. The 
fish’s position was recorded relative to the length of the flume, distance from a reference 
wall, and the elevation above the bottom (Figure 22). After 20 minutes, the water 
velocity was changed to the next speed (medium), and data were recorded again. This 
pattern was continued until 100 minutes had passed and the fish had been exposed to 
the increasing and decreasing sequence of the three flow speeds. The research team 

Velocity Interval Water Velocity 
(m/s)

Time Interval 
(min)

Acclimation      0.0 30 
Slow 0.10 (  0 SE) 20
Medium 0.31 (  0 SE) 20
Fast 0.46 (  0 SE) 20
Medium 0.31 (  0 SE) 20
Slow 0.10 (  0 SE) 20
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recorded a final water temperature and measured the fish (standard, fork, and total 
length) at the conclusion of the experiment. Eleven to twelve replicate experiments were 
conducted for each species to maximize statistical rigor. Water velocity and directional 
measurements at each observed fish location as well as at four to six additional adjacent 
points (representing other available flow options) were recorded after the completion of 
the experiments. 

Figure 22.  A rainbow trout swimming upstream during an 
experiment in the longitudinal flume 

2.1.5.4. Lateral Displacement Flume 

a. Apparatus Design

The lateral displacement flume was designed to assess the potential for lateral stranding 
in response to a pulsed water release into the South Fork of the American River from 
Chili Bar Dam. Experiments were conducted from September through November within 
an artificial stream channel, located at CABA at UC Davis.  

Plywood, coated with a primer base and marine topside polyurethane topcoat, was 
utilized in constructing the base, walls, and raised-bank habitat of the flume (Figure 23). 
The testing chamber consisted of a 200-cm long x 118.1-cm wide x 59.1-cm high testing 
area separated into a 15.9-cm wide main channel (gutter) that never drained during an 
experiment and a 12.1-cm raised 102.2-cm wide bank that flooded and dewatered with 
water level changes. Water circulated through the apparatus in a series of channels and 
holding areas, starting from the head tank and moving through the main channel of the 
testing area to the tail tank before being recycled under the substrate through a tunnel.  
Head and tail tanks were separated from the main channel by plastic mesh screens to 
ensure that the fish remained only within the test area. Partial walls, separating the  
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testing area from the head and tail tanks, created an eddy in the raised substrate. This setup mimics 
the flow dynamics observed at the South Fork of the American River, which has a main channel with 
continuous directional flow and bank habitats with irregular flows and eddies. 

A 0.75-horsepower (hp) pump filled and drained the apparatus, changing the water level by 30 cm 
during one experiment. Water level was controlled by utilizing a 12.7-cm diameter standpipe along 
with a series of bleed valves (Figure 24). Three connected sumps were used to keep an adequate 
amount of water available for experiments. Reservoir temperatures were maintained using three 
flow-through chillers. The water in the flume was constantly aerated and replaced weekly. Water 
circulation was maintained using a pump in the head tank to maintain a base flow. The water 
velocity and depth was then increased or decreased via bleed valves in specific sequences.  The main 
channel floor was covered with a 5-cm layer of pebbles (2.2–4.5 cm size range) and the side margin 
was arranged with a 10-degree slope to simulate the bank habitat on the South Fork of the American 
River (Figure 25). The substrate was composed of rock from American River donated by Dennis 
Redfern of the American River Trout Hatchery, combined with a 50-50 mix of gravel and pebbles 
obtained from a local hardware store. The substrate was divided into pool habitats, rock piles with 
cover, and open areas. The bottom in the apparatus increased in elevation from 1.0–17.7 cm with a 
slope of 10 degrees from the edge of the main channel to the wall of the flume. 

Figure 25.  Schematic of the lateral displacement flume (lateral view) 

10° Slope gravel bed 

Main
channel:
5.1 cm
average
gravel
depth

15.9 cm 

102.2 cm 

121.9 cm 

60.96 cm 

Main channel: face height = 12.1 cm w/o lip 
              lip  height = 1.6 cm 

Main
channel
lip

Water return channel 
under gravel bed 
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The 10-degree slope represents one of the lower gradient slopes measured during preliminary 
site surveys along the South Fork of the American River. The research team started with a 
minimum slope based on the observation that juvenile coho salmon stranded less frequently on 
steeper slopes (Bradford et al. 1995). Based on this information, the team chose to test the lowest 
mean site slope because it potentially had the highest potential for stranding. The flume was 
designed with the option to increase the slope of the bank by adding more substrate (e.g., for 
future experiments).

Four distinct pools (A, B, C, and D) with different draining and water holding capacities were 
created in the sloping substrate habitat. 

1. Pool A had a slow dewatering rate and retained much of its water during flume 
dewatering. Cobble of 7–13 cm diameter was placed within the pool to simulate cover. 

2. Pool B had larger cobble (9–25 cm diameter) bordering and over hanging the pool for 
cover with the substrate dugout underneath. This design allowed water level in the pool 
to drop as the flume’s water level decreased. 

3. Pool C had a wire mesh buried in the gravel substrate with larger cobble (8–16.5 cm 
diameter) placed for cover. The water in this pool emptied, as did the water in pool B. 

4. Pool D had a slow dewatering rate similar to pool A. This pool never entirely lost its water 
during the experiments, with a narrow passage to the main channel kept open for fish to 
use.

b. Experimental Design 

Acclimation began when a randomly selected fish was removed from the nearby holding tank 
and placed into the main channel of the lateral displacement flume. For each experiment, fish 
were subjected to one of two different acclimation periods: long or short. A minimum of six fish 
per each species was used for each acclimation type, making at least twelve fish of each species 
tested within the lateral displacement flume. Fish acclimating for the long period were placed 
into the flume at the end of the day and experiments begun at the beginning of the following 
day. This enabled the fish to acclimate overnight for a period of 16–17 hours. The shorter, 
2-hour acclimation period could be completed during the same day. The fish were kept under a 
natural light cycle during the acclimation and testing periods. Water depths during acclimation 
were 19–21 cm, measured from the base of the main channel. The initial (or pre-pulse) water 
level allowed fish to become accustomed with the main channel without access to the rest of the 
substrate and pools. 

To begin an experiment, the water level was raised to a depth of 50–54 cm over a 20 minute 
period (Figure 26), using water from the reservoirs, and then kept at that depth for 90 minutes 
until the level was decreased to the pre-pulse depth (Table 3). During the 90-minute, deep-
water pulse the fish had access to the entire bank and pool area (Figure 27). Dewatering lasted 
for 30 minutes, by which time the water had returned to the acclimation level. In this way, the 
experiment simulated the daily rising and falling water level (but not the velocity gradients) 
experienced by fish in the South Fork of the American River during a pulsed release of water. 
Observations were made from behind a semi-opaque screen in order not to disturb the fish 
(Figure 28).
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Table 3.  Description of the experimental conditions in the lateral displacement flume.
Shown are water heights, measured from the bottom of the main channel, and time spent 

during acclimation, rising water, constant high level, and receding water level. 

Figure 26. The lateral displacement flume during an experiment.  Note the main channel 
in front of the simulated bank habitat. 

Experiment Time Interval 

(min., unless noted) 

Water Height 

(cm)

Acclimation – Short 2 hrs 20  1 

Acclimation – Long 16–17 hrs 20  1 

Increasing 20 20  1 to 52  2 

Flooded – High water 90 52  2 

Decreasing 30 52  2 to 20  1 
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Figure 27.  A rainbow trout swimming between bank habitat and main channel 

Figure 28. View from above the bank, pools and substrate during high water.  
Fish behavior and stranding were observed from opaque screens. 
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c. Statistical Design 

Laboratory longitudinal flume data were entered and analyzed using Microsoft Excel, SPSS 
Sigma Stat, and Sigma Plot software. Non-parametric statistics were used because the data 
failed Kolmogorov-Smirnov normality tests, violating t-test and one-way analysis of variance 
(ANOVA) assumptions. Instead, Mann-Whitney rank sum tests were used to determine 
statistical significance (Neter et al. 1996). 
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3.0  Project Outcomes 

3.1. Field Studies 

3.1.1. Radio Tracking Results 

3.1.1.1. a. South Fork of American River 

The research team tracked three rainbow trout subjected to one (rarely two) pulse flows per day 
in the South Fork of the American River during August 2004. The trout ranged from  
29.0–29.6 cm standard length (SL). The tagged fish were caught and released between river 
kilometer (rk) 12 and 26 in the reach below Chili Bar Dam. The team attempted to locate fish 
that were radio-tagged during seven days over a period from 3–12 August 2004.  

Rainbow Trout (RT) 1 was first detected 925 meters upstream of its release site on 5 August 
2004, seven days after being radio-tagged (Table 4). After being located, RT 1 stayed in the same 
area for the remainder of the period of tracking (Figure 29). The strongest signal was in the 
direction of a small sand bar near a backwater eddy on 9 August 2004. Based upon this 
observation and confirmation made two days later, the research team determined that the 
radio-tag was at the base of an overhanging stump on the same sand bar. Because the estimated 
tag position and its associated error (indicated by a circle with a diameter of 55 m) did not 
overlap the river (Figure 30), the team concluded that the fish’s radio-tag was on land and not in 
the river. Bill Center, owner of Camp Lotus, told us that river otters have been observed in this 
area. One explanation for the fate of the RT 1 is that an otter consumed the trout (and beacon), 
depositing the tag where it later defecated on land. Another possible explanation is that the 
RT 1 swam upstream and died at that location. However, failure to detect RT 1 in the river 
when tracking on 3 August 2004 would support the first explanation. 

Table 4. Summary of RT1’s movements on the South Fork American River 

ID Frequency 
(MHz)

SL
(cm)

Dates Distance  
(m)

Days
Between

Mean Distance 
(m/day)

1 151.400 29.3 29 Jul - - - 
   5 Aug 925 7 132.1 
   6 Aug 111 1 111.0 
   9 Aug   0 3 0 
   11 Aug   0 2 0 
   12 Aug  45 1 45.0 

Rainbow Trout 2 was caught and released downstream of RT 1 on 29 July 2004. This trout (RT2) 
was 29.6 cm SL. It was never relocated by the research team after its release into the river 
despite the following extra efforts to locate it above and below the tracking reach. The research 
team searched for the trout on the upper section of the study reach from Marshall Gold (rk 9.7) 
to Camp Lotus (rk 14.5) on 5 August. The researchers also walked downstream 500 m from 
Gorilla Rock along the riverbank, searching for RT 2 without detecting its signal on 11 August 
2004. It is likely that the RT 2 moved downstream of Gorilla Rock, the downstream terminus of 
the study reach, 896 m from the capture site. Alternatively, a predator such as an otter or human 
may have caught the fish.   
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Figure 29.  Map with fish latitude and longitude locations on the South Fork 
American River. Colored points with black dots in the center denote positions 
determined using a handheld GPS unit. The GPS was used for release sites. 
Colored points without the black dots indicate locations determined using 

radio-telemetry. A dot’s radius is about 20 m. 
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Figure 30. Same map with trout positions, however, circles indicate spatial 
error around the points determined by radio telemetry.  Error calculations 
estimate the maximum radio telemetry error is 55 m.  However, one of RT 

3’s points is on land more than 55 m from riverbed. 
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Rainbow Trout 3 (RT3) was caught and radio-tagged on 5 August 2004. The field crew was able 
to relocate RT 3 in the same general location on four occasions over the next eight days. The 
position determined on 6 August 2004 is erroneous because RT 3 was on land and 216 m distant 
from the capture site, while it was found within the river on the following days near the capture 
site. The maximum distance moved by RT 3 during the study was 111 m (Table 5).  

Table 5. Movement summary for RT3 on the South Fork American River  

ID Frequency
(MHz)

SL
(cm)

Dates Distance
 (m) 

Days
Between

Mean Distance  
(m/day)

3 151.320 29.0 5 Aug - - - 

   9 Aug* 74 4 18.5 

   11 Aug   0 2   0.0 

   12 Aug 111 1 111.0 

*Distance from 5–6 August 2004 was not included, because the location on August 6 is inaccurate. 

In summary, RT 1 and RT 2 were removed from the river or traveled downstream out of 
detection range, whereas RT 3 stayed within 100 m of the release site. Potential graphical 
analysis for year two is shown for RT 3 in Figure 31, which relates river discharge to fish 
location.

Figure 31. Example of 
potential data analysis for 

next year in order to 
correlate discharge and 

fish movement. This graph 
overlays the total distance 

RT 3 moved between 
tracking events onto a 

graph showing time lagged 
discharge from Chili Bar 
Dam. The delay was four 

hours to account for 
traveling 14 miles 

downstream of the dam. 
The total distance RT 3 
moved does not have 

directionality associated 
with it (i.e., upstream, 
downstream or cross-

channel).
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3.1.1.2. Silver Creek 

Seven trout (one rainbow trout and six brown trout) were radio-tagged and tracked before, 
during, after the pulsed flow in Silver Creek. The standard lengths and masses of the fish radio 
tagged are summarized in Table 6.  

Table 6.  Fish identity, species, standard length, weight, and date of release for one 
rainbow and six brown trout tracked at Silver Creek 

Fish ID Species SL
(cm)

Mass
(g)

Date
Tagged

1 Rainbow trout 24.0 172 10 Sep 
2 Brown trout 21.2 138 10 Sep 
3 Brown trout 27.3 270 10 Sep 
4 Brown trout 20.5 118 10 Sep 
5 Brown trout 28.2 360 10 Sep 
6 Brown trout 24.5 232 13 Sep 
7 Brown trout 22.8 183 13 Sep 

The research team searched for the tagged fish within the stream’s pools using the antenna and 
radio receiver. Once the fish was found, the team recorded the distances, at which the seven 
trout were located along the 600 m long experimental reach, using the flags placed every 50 m 
along the bank of the creek. In Figure 32, locations of the one rainbow (Trout T1) and six brown 
trout (T 2-6) are shown on the study reach during release, pre-pulse, pulse, and post-pulse. The 
minimum distance moved between tracking events was 0 m; maximum distance was 120 m. T 4 
was not detected after being tagged and released. Little movement was detected either up or 
down stream between the pre-pulse and pulse (i.e., in response to the pulsed discharge of 
water) compared with the movements between the release after tagging and the pre-pulse and 
between the pulse and post-pulse for the one rainbow trout (T 1) and two brown trout (T2 and 
T3). Two brown trout (T5 and T6) appeared to move downstream during the pulse; and one 
brown trout (T7) appeared to move upstream. However, these apparent movements may, in 
reality be due to the error associated with different method of detection during the pulsed flow 
(see error bars, Figure 33).  The estimated movement (with errors) for the six tagged fish 
detected after release were: T1 0±50 m; T2  10±50 m; T3 +25±50 m; T5 -85±50 m; T6 -50±50 m; T7 
+35±50 m.  

Table 7 gives the distances moved upstream (denoted by ”+”) and downstream (indicated by  
“-“) by the six trout.  
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Figure 33. The errors for positions determined during the tracking studies. These were 

estimated for each tracking event: pre-pulse error =  10 m, pulse error =  50 m, and 

post-pulse error =  10 m. 
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Figure 32. The locations of fish in the study reach during the 
four conditions during the radio telemetry study at Silver Creek 
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Table 7.  A summary of the movements of trout between successive position 
determinations before, during, and after the pulsed flow at Silver Creek 

Fish ID  Distance  (m)  
 Release to Pre-pulse Pre-pulse to Pulse Pulse to Post-pulse 

1    0    0 +10 
2 - 15 - 10    0 
3 - 50 + 25 - 20 
4 * * * 
5  - 5 - 85 + 60 
6 + 50 - 50 + 50 
7 + 15 + 35 - 120 

Note: The ”–“ sign indicates movement downstream and the “+” sign indicates upstream movement, and 
zero indicates no movement.   
* Indicates that fish was not detected during experiment. 

The mean distances moved for the period between the release of the trout after tagging and the 
day before the pulse was 23 m ± 9 m SE, with a range from 0 m to 50 m. The mean distance 
moved the day before the pulse to the day of the pulse was 34 m ± 13 m SE, with distances 
ranging from 0 m to 85 m. The mean distance between the day of the pulse and the position of 
the trout a week after the pulse was 43 m ± 18 m SE with a range from 0 m to 120 m. Table 8 
shows the proportions of trout moving upstream, downstream, or remaining in one location. 
Fish were equally likely to move upstream or downstream, independent of the stream flows, 
pulsed or not pulsed. 

Table 8.  Proportions of fish moving upstream, downstream, or remaining stationary 
between tracking events at Silver Creek 

Event
Upstream

 (%) 
Downstream

(%)
No Movement 

 (%) 
Release to Pre-pulse 33 50 17 
Pre-pulse to Pulse 33 50 17 
Pulse to Post-pulse 50 33 17 

There are a few details concerning the data that must be addressed before making any 
conclusions. Firstly, the research team pooled radio tracking data from five brown and one 
rainbow trout.  Rank sum tests suggest that the medians for rainbow trout and brown trout 
daily movements were not significantly different (Mann-Whitney Test, p = 0.333–0.667). The 
data were then combined to increase the sample size for statistical comparisons.   

Second, fish were tagged on different days, and hence had shorter or longer periods to recover 
from their surgery before the increase in flow in the creek (see Table 7). Trout tagged and 
released on 10 September (T1–T5) had three additional days to recover compared to the two 
brown trout (T6 and T7) tagged on the 13 September and released on 14 September before the 
pulsed flow from Camino Dam on 15 September 2004. These two late-tagged brown trout fish 
had been released only six hours before their positions were determined. Arguing against a n 
affect from differing release dates is that the release to pre-pulse and pre-pulse to pulse are 
normalized for the differing periods of time (Tables 9 and 10), which were not significantly 
different between release dates (Mann-Whitney Rank Sum, p = 0.133 and 0.533).   
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Table 9.  Mean distances moved for trout between the day of their release and the day 
before the pulsed flow at Silver Creek 

Table 10. Mean distances moved per day for fish between the day before and the day of 
the pulsed flow release at Silver Creek 

Table 11.  Mean distances moved per day for fish between the pulse and a week after 
pulsed flow at Silver Creek 

Fish ID 
Days Between 

 Tracking 
Mean Distance per Day 

(m/day)
1 7   1.4 
2 7 0 
3 7   2.9 

 5 7   8.6 
6 7   7.1 
7 7  17.1 

Third, a different method of position determination was used during the pulsed flow versus 
before and after the pulse intervals (see Project Approach). The resulting location estimates 
have an error of approximately ± 50 m during the pulse flow period versus ± 10 m prior to and 
following the pulse release. The estimated error was determined by examining how many pools 
were in a 50 m and 100 m reach of the river. The research team was able to distinguish which 
pools the fish were located in, and in some cases verifying their identity based on observing the 
radio antenna leading from the fish when sampling pre-pulse and post-pulse. There were 

Fish ID 
Days Between 

Tracking
Mean Distance per Day 

(m/day)
1 4   3.8 
2 4 0 
3 4  12.5 
5 4    1.3 
6 < 1  50.0 
7 < 1  15.0 

Fish ID 
Days Between

Tracking
Mean Distance per Day 

 (m/day) 
1 1 0 
2 1 10 
3 1 25 
5 1 85 
6 1 50 
7 1 35 
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roughly 15 pools for the 300 m reach, and each pool was approximately 20 m, thus the error was 
± 10 m. Much of the difference between the positions of the fish during the pulsed and other 
conditions can be explained by the ± 50 m error estimate for the pulse flow period (see Figure 
32).

The distances between the three conditions can be normalized by dividing each distance, by the 
number of days between subsequent position determinations (Tables 9–11). When the distances 
are normalized per day, there are no significant differences apparent between the distances 
moved between: 1) release after tagging and the pre-pulse (Wilcoxon Test, p = 0.125), 2) the pre-
pulse and pulse (p = 0.063), and 3) pulse to post-pulse (p = 0.563). The research team concluded 
that there were no differences between the movement of the trout, standardized for daily 
movement, during the pulsed flow and before and after the flow. The one day pulsed flow on 
Silver Creek did not appear to alter the daily movement patterns of the tagged trout.   

3.1.2. Snorkel Survey and VIE Marking Results 

3.1.2.1. Habitat Measurements 

The discharge from Camino Dam into Silver Creek varied from 0.26 to 2.12 m3s from 1 October 
2003 to 30 September 2004, with the exception of the pulse flow release (see Figures 8 and 9). 
The rate of discharge on this day rose from 0.5 m3s at 0600 hrs to 18.5 m3s at 0945 hrs, stayed 
constant until 1445 hrs, and then dropped to 1.8 m3s by 1730 hrs and 0.5 m3s by 2015 hrs (see 
Figure 10). There was a 33 cm change in the level of water, measured at a river height gauge 
located halfway along the length of the 600-m long experimental reach (see Figure 11). 

The pools in the study reach were at bedrock, but often contained some gravel, finer sediment, 
and fallen leaves. The habitat was relatively complex, with numerous boulders at the upper and 
lower boundaries of pools. Maximum depth of the pools ranged from 0.7 to 3.3 m (Table 1).  
Pool length ranged from 5.5 to 37.2 m, and maximum pool width ranged from 3.0 to 26.8 m. 
Approximate pool area ranged from 15 to 490 m2. The total area of pools in Sections 1, 2, and 3 
was 1212 m2, 505 m2, and 906 m2, respectively. Section 1 contained five average sized pools, 
while Section 2 contained seven smaller pools, and Section 3 contained three large pools. 

Water temperatures before and after the pulsed flow were 10.7°C (Table 12). Values observed on 
the day of the pulse ranged between 10.2°C and 10.9°C. Dissolved oxygen was approximately 
11 mg/L during the pulse and 9.64 mg/L on the following day. Nutrient concentrations were 
generally low in samples taken near the Silver Creek, flow gage site both before and after the 
pulse flow release (Table 13). Total Kjeldahl nitrogen (TKN) was below the detection limit 
(< 0.1 mg/L) in about half of the samples taken. Ammonia-nitrogen (NH4-N) and nitrate-
nitrogen (NO3-N) were below the detection limit (< 0.05 mg/L) in all samples. Soluble 
phosphorus (soluble P) was below the detection limit (< 0.05 mg/L) in all samples. Total 
phosphorus (total P) was below the detection limit (< 0.1 mg/L) in all samples.  
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Table 12. Water temperature and dissolved oxygen concentration in relation to water flow 
in Silver Creek. Values were measured at the stillwell downstream of Camino Dam using 
a YSI 550A handheld meter, in Pool 1. Flow values, measured in cubic meters per second 
at the outflow of Camino Dam, were provided by Mr. Randy Jensen, SMUD. Flow values 

for 14, 16, and 21 September are daily averages. Flow values for 15 September are the 15-
minute averages for the time period closest to when temperature and dissolved oxygen 
were measured. Dissolved oxygen was not measured until 15 September at 1600 due to 

slow calibration of the meter. 

Date Time 
Flow

(m s-1)
Water Temperature 

 (oC)
Dissolved Oxygen 

 (mg/L) 

14-Sep-04 1804 0.5 10.7 N/A 
15-Sep-04 1045 18.5 10.2 N/A 
15-Sep-04 1339 18.5 10.6 N/A 
15-Sep-04 1600 10.9 10.9 11.54 
15-Sep-04 1655 6.4 10.9 11.09 
16-Sep-04 1145 0.5 10.7   9.64 

21-Sep-04 1255 1.6 10.7 10.67 

3.1.2.2. Survey of Trout Distribution 

Two species of fish were observed during the snorkel surveys: rainbow trout, and non-native 
brown trout. Young-of-the-year, juveniles, and adults were observed for both species.  A total of 
19 fish were captured for VIE marking (Table 14). Of these, 11 fish were caught in the main 
snorkel study area, relative to a total of 140 fish observed in the snorkel survey prior to the 
pulse flow release. Only two fish were captured in minnow traps. The low trap capture rate is 
likely due to the short time available for setting traps (one afternoon), due to the efforts spent on 
capturing and radio tagging.  The remaining VIE marked fish were captured by angling as part 
of the radio telemetry study. Six adult brown trout were VIE marked; of these, four were caught 
and released upstream of the main snorkel survey area, one was released in Section 1, and one 
in Section 2. Four juvenile rainbow trout were caught and released upstream of the main 
snorkel survey area. Three juvenile and four adult rainbow trout were VIE marked in Section 1. 
One juvenile rainbow trout was marked in Section 2, and one young-of-the-year rainbow trout 
was marked in Section 3. VIE marks were not observed on any fish of either species during the 
pre- and post-pulse snorkel surveys. The relatively small proportion of marked fish combined 
with typical observation distances of several meters probably reduced the chances of mark 
detection during the snorkel counts. 
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Table 13. Water quality before, during, and after the pulse flow release in Silver Creek 
near the stillwell, at Pool 1. Values are shown for total Kjeldahl nitrogen (TKN), ammonia-
nitrogen (NH4-N), nitrate-nitrogen (NO3-N), soluble phosphorus, and total phosphorus. All 

nutrients were measured in units of mg/L.

Date Time Replicate # TKN NH4-N NO3-N P (Soluble) P (Total) 

14-Sep-04 1000 1 0.1 < 0.05 < 0.05 < 0.05 < 0.1 
  2 < 0.1 < 0.05 < 0.05 < 0.05 < 0.1 
  3 < 0.1 < 0.05 < 0.05 < 0.05 < 0.1 

15-Sep-04 1020 1 < 0.1 < 0.05 < 0.05 < 0.05 < 0.1 
  2 0.1 < 0.05 < 0.05 < 0.05 < 0.1 
  3 0.1 < 0.05 < 0.05 < 0.05 < 0.1 

15-Sep-04 1330 1 0.2 < 0.05 < 0.05 < 0.05 < 0.1 
  2 < 0.1 < 0.05 < 0.05 < 0.05 < 0.1 
  3 0.1 < 0.05 < 0.05 < 0.05 < 0.1 

15-Sep-04 1655 1 < 0.1 < 0.05 < 0.05 < 0.05 < 0.1 
  2 < 0.1 < 0.05 < 0.05 < 0.05 < 0.1 
  3 0.1 < 0.05 < 0.05 < 0.05 < 0.1 

16-Sep-04 1020 1 < 0.1 < 0.05 < 0.05 < 0.05 < 0.1 
  2 < 0.1 < 0.05 < 0.05 < 0.05 < 0.1 
  3 < 0.1 < 0.05 < 0.05 < 0.05 < 0.1 

16-Sep-04 1650 1 < 0.1 < 0.05 < 0.05 < 0.05 < 0.1 
  2 < 0.1 < 0.05 < 0.05 < 0.05 < 0.1 
  3 < 0.1 < 0.05 < 0.05 < 0.05 < 0.1 

21-Sep-04 1255 1 0.2 < 0.05 < 0.05 < 0.05 < 0.1 
  2 0.2 < 0.05 < 0.05 < 0.05 < 0.1 
    3 0.1 < 0.05 < 0.05 < 0.05 < 0.1 
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Table 14. Number of fish in Silver Creek that were captured and given a VIE mark, 
grouped by species, age class, and location of capture. Fish were released to the 

location from which they were captured.  All fish were marked on both the adipose and 
caudal fins, with the exception of 2 fish that were given only adipose fin marks. 

Brown Trout Rainbow Trout 

Section

Section
Length

(m)
VIE

Color YOY Juvenile Adult YOY Juvenile Adult 
Between
Dam and 
Section 1 300 Yellow   4  4  

1 0–100 Red   1  3 4 
2 100–200 Green   1  1  
3 200–300 Orange       1     

YOY = young-of-the-year 

Total trout density in each pool did not appear to differ markedly before and after the pulse 
(Figure 34). Some pools contained fewer fish after the pulse, but some contained more, and 
there did not appear to be a pattern along the length of the study reach. Numbers of young-of-
the-year per pool tended to be lower after the pulse (Figure 35), although some pools contained 
more trout after the pulse. Numbers of juveniles were generally comparable pre- and post-pulse 
(Figure 36). Likewise, adult trout numbers did not appear to differ substantially between 
snorkel surveys (Figure 37). The total number of brown trout per pool ranged from 0–18 fish 
pre-pulse, and 0–7 post-pulse, with the highest number of brown trout occurring in Pool 13 both 
pre- and post-pulse (Figure 38). Rainbow trout were more abundant than brown trout in the 
study reach (Figure 39). While the total number of rainbow trout per pool ranged from 1–20 fish 
pre-pulse, and 0–19 post-pulse, rainbow trout occurred in a higher proportion of pools than 
brown trout, both pre- and post-pulse. There was no clear pattern of longitudinal displacement 
for either species. 
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Figure 34. Total number of trout observed during snorkel counts of Silver Creek pools on 
14 September 2005, and on 16 September 2005, before and after the 18.5 m3/s kayaking 
pulse flow event on 15 September 2004. The experimental reach was divided into three 

100 m sections containing a total of fifteen pools, with Pool 1 at the upstream end of the 
reach, and Pool 15 at the downstream end of the reach. 

Figure 35. Total number of young-of-the-year trout (total length < 10 cm) observed during 
snorkel counts of Silver Creek pools on 14 September 2005, and on 16 September 2005, 

before and after the 18.5 m3/s kayaking pulse flow event on 15 September 2004. Young-of-
the-year were defined as those < 10 cm TL. 
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Figure 36. Total number of juvenile trout (total length 10–18 cm) observed during snorkel 
counts of Silver Creek pools on 14 September 2005, and on 16 September 2005, before 
and after the 18.5 m3/s kayaking pulse flow event on 15 September 2004. Juveniles were 

defined as 10–18 cm TL. 
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Figure 37. Total number of adult trout (total length > 18 cm) observed during snorkel 
counts of Silver Creek pools on 14 September 2005, and on 16 September 2005, before 

and after the 18.5 m3/s kayaking pulse flow event on 15 September 2004. Adult trout were 
defined as > 18 cm TL.  
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Figure 38. Total number of brown trout observed during snorkel counts of Silver Creek 
pools on 14 September 2005, and on 16 September 2005, before and after the 18.5 m3/s

kayaking pulse flow event on 15 September 2004 

Figure 39. Total number of rainbow trout observed during snorkel counts of Silver Creek 
pools on 14 September 2005, and on 16 September 2005, before and after the 18.5 m3/s

kayaking pulse flow event on 15 September 2004 
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Examination of trout densities did not indicate any pulse flow impacts. It appeared that the 
density of young-of-the year might have declined in Section 1 post-pulse, with more trout 
appearing at the upper end of Section 2, and the upper end of Section 3 (Figure 40). Juvenile 
densities were similar in Section 1 pre-and post-pulse, and this was also observed for Section 3, 
but juveniles may have shifted downstream within Section 2 (Figure 41). The density of adults 
was below 0.04 fish/m2 in all pools, with the exception of Pool 11, which had a pre-pulse 
density of 0.13 fish/m2 (Figure 42). Five pools in Sections 1 and 2 had higher densities post-
pulse, while three pools had lower post-pulse densities. 
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Figure 40. Density of young-of-the-year trout (total length < 10 cm) observed during 
snorkel counts of Silver Creek pools on 14 September 2005, and on 16 September 2005, 

before and after the 18.5 m3/s kayaking pulse flow event on 15 September 2004 
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Figure 41. Density of juvenile trout (total length 10–18 cm) observed during snorkel 
counts of Silver Creek pools on 14 September 2005, and on 16 September 2005, before 

and after the 18.5 m3/s kayaking pulse flow event on 15 September 2004 
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Fig 42. Density of adult trout (total length > 18 cm) observed during snorkel counts of 
Silver Creek pools on 14 September 2005, and on 16 September 2005, before and after 

the 18.5 m3/s kayaking pulse flow event on 15 September 2004 



60

3.2. Laboratory Studies 

3.2.1. Experiments in Longitudinal Flume  

The research team tested 12 hardhead minnows, 11 rainbow trout, and 12 Sacramento suckers 
in the longitudinal flume. All the fish tested were young-of-the-year fish (< 10 cm). Mean 
standard lengths (SL) for hardhead, rainbow trout, and Sacramento suckers were 6.2 ( 0.2 SE), 
5.0 ( 0.2 SE), and 7.0 ( 0.2 SE) cm respectively. Mean weights ranged between 2.6 and 6.7 g 
(Table 15). 

Table 15.  Standard lengths and weights of juvenile hardhead, rainbow trout, and 
Sacramento suckers from the longitudinal displacement study. The mean, standard error 

(SE), and range are shown for each species. 

Species n  SL (cm)   Weight (g)  

  Mean SEM Range Mean SEM Range 

Hardhead 12 6.2 0.2 4.7–7.4 5.5      0.5 2.7–8.3 

Rainbow
trout

11 5.0 0.2 4.1–6.5 2.6      0.4 1.0–6.2 

Sacramento
sucker

12 7.0 0.2 5.8–8.0 6.7      0.5 4.0–9.3 

The research team measured water velocities at the observed test fish locations in the flume 
during the five successive flow rates. Adjacent velocities were also recorded at four to six points 
(3 cm upstream, downstream, to either side, and above and/or below) at each of the test flows. 
All measurements were taken in the absence of the subject, because making water velocity 
measurements during an experiment might alter fish behavior. Mean flume velocities were 
determined by measuring 50 random points along the entire length of the flume. During the 
slow, medium, and fast velocity tests, the mean velocities across the flume were 0.10 m/s 
( 0.00 SE), 0.31 m/s ( 0.01 SE), 0.46 m/s ( 0.02 SE), respectively. Water velocities were 
especially variable in certain flume locations, in part due to turbulence and eddies created by 
the substrate elements (see Figures 19–22). Because water velocities were difficult to measure at 
some test fish locations, twenty additional measurements were taken between rocks or in 
crevices to simulate velocities in those areas. Areas partially or fully surrounded by cobble 
elements were often characterized by eddies with reverse flows as rapid as –0.11 m/s. 

The locations of fish were measured in three-dimensions: x (flume length), y (flume width), and 
z (flume depth). Within each species, there were fish that moved either up or downstream 
during the experiment. However, the mean overall location for all species was near the center of 
the flume during each time interval (Figures 43–45) suggesting that fish species tested did not 
favor particular upstream or downstream area when tested in the flume. There were no 
significant differences in location selection between the three species (Mann-Whitney Test, 
p < 0.01). These results are consistent with members of the species staying in the center of the 
flume at their original introduced location by hiding in the velocity refuges downstream of 
rocks where eddies and slower velocities existed.   
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The water velocities measured at observed fish locations during each five-minute test interval 
were compared to the mean velocity measured throughout the flume (Figures 46–48).   

Hardhead and Sacramento suckers preferred locations in the flume characterized by slower 
velocities. The research team observed Hardhead and suckers at locations in the flume where 
velocities were significantly lower than the mean velocities recorded at points throughout the 
flume for all five velocity intervals (Mann-Whitney Test, p < 0.01). Hardhead minnows and 
Sacramento suckers chose significantly higher velocities during the two medium and high 
intervals than to the initial and final slow intervals (Mann-Whitney Test, p < 0.01). This may 
have resulted because no lower velocities were available at the medium and high velocity 
intervals.  Although preferred velocities were higher during the higher velocity intervals, they 
remained 0.20–0.35 m/s below the mean flume velocity. The velocity preference of the hatchery 
rainbow trout remained elevated during the final slow velocity interval despite their displaying 
velocity preferences at lower than average flume velocities during the first four test intervals 
(Figure 48). The trout appear to prefer swimming in water of higher velocities than hardhead 
and Sacramento suckers during the slow water velocity periods. This tendency to choose higher 
velocity area may be a result of their swimming behavior (tendency to orient into flows 
[positive rheotaxis] in order to feed on drifting organisms (Moyle 2002). This is most apparent 
in a comparison of the water velocities chosen by hardhead, rainbow trout, and Sacramento 
suckers (Figure 49). The rainbow trout chose significantly higher velocities to swim than 
hardhead minnows and Sacramento suckers (Mann-Whitney Test, p < 0.01) in the first and last 
velocity intervals (Figure 49). These significant differences may be attributed to the preference 
of salmonids of orienting to higher flows and their foraging behavior. 

The research team recorded whether the fish swam mainly over rocky substrate or the exposed 
Plexiglas bottom during the five-minute intervals. Hardhead and rainbow trout both preferred 
a rocky substrate, with the former spending roughly 80% of the time during the five flow 
intervals over a rocky bottom (Figure 50) and the trout roughly 65% over a rocky substrate 
(Figure 51). This suggests a common swimming behavior to cope with elevated water velocities 
associated with pulsed flows. Conversely, Sacramento suckers swam less often over rocky 
substrate 30%–40 % of the time during the high flows, but still favored rocky bottoms 75% and 
45% during the initial and final slow flow intervals, respectively (Figure 52).  In conclusion, 
hardhead more often sought out rocky substrate, while the Sacramento sucker favored this type 
of bottom the least (Figure 53). Other research suggests that suckers may not need to seek the 
slower velocities down current of rocky substrate due to their unique cranial morphology (i.e., 
flattened head) and behavior (Myrick and Cech 2000).  
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Figure 43.  Locations of 12 hardhead minnows (solid circles), mean location (open circle), 
and standard error (bars with ticks) along the length of flume during each of the velocity 
intervals.  Note the fish were acclimated in the center of the flume (between 6.7–8.5 m) at 

the beginning of the experiment.
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Figure 44.  Positions of 11 rainbow trout (solid squares), mean location (open square), 
and standard deviation (bars with ticks) along the length of flume during each of the 

velocity intervals 
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Figure 45.  Locations of 12 Sacramento suckers (solid triangles), mean location (open 
triangles), and standard error (bars with ticks) along the length of flume during each of 
the velocity intervals. Note the fish were acclimated in the center of the flume (between 

6.7 to 8.5 m). 
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Figure 46.  Comparison of the flume and fish measured velocities during the five 
experimental velocity intervals.  Hardhead minnow results show that fish select lower 

velocities than those available in the flume. 
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Figure 47.  Comparison of the flume and fish measured velocities during the five 
experimental velocity intervals. Sacramento sucker results show that fish select lower 

velocities than those available in the flume. 
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Figure 48.  Comparison of the flume and fish measured velocities during the five 
experimental velocity intervals. Rainbow trout results show that fish select lower 

velocities than those available in the flume, except at the last slow interval. 
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Figure 49.   Comparison of the three species’ velocity selection. Rainbow trout 
preferences differed significantly from hardhead and Sacramento suckers during both 

slow velocity intervals. In addition, there were significantly different velocity preferences 
between rainbow trout and hardhead during the first medium velocity interval. 

Figure 50.  Percentage of 20-min. periods spent by hardhead minnows over rock 
substrate versus the Plexiglas bottom during the five velocity intervals. Hardhead swam 

over rocky substrate during most of time over the entire experiment. 
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Figure 51.  Percentage of 20-min. periods spent by rainbow trout over a rock substrate 
versus a Plexiglas bottom during the five velocity intervals. Rainbow trout consistently 

used substrate throughout the experiment. 
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Figure 52.  Percentage of 20-min. periods spent by Sacramento suckers over a rock 
substrate versus a Plexiglas bottom during the five velocity intervals. The suckers swam 

over the rocky substrate less often when the water flowed faster and more when the 
water flowed slower. 
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Figure 53.  Percentages of time spent over rocky substrate shown all three species 
during the five velocity intervals. Hardhead minnow favored the rocky bottoms the most, 

while Sacramento suckers least preferred them. 

The research team qualitatively measured swimming activity, using an index, which had four 
states: no swimming, holding or maintaining position in the flow, routine or slow movement 
forward, and a burst or acceleration of swimming. These rates of movements were based on the 
team’s observations of the swimming activity of rainbow trout in a Brett–type swim tunnel. 
Members of all species tended to swim more (sustained, prolonged, and burst) during the faster 
flows than during slower flows. Hardhead and rainbow trout displayed similar percentages of 
swimming (sustained, prolonged, and burst combined) compared to non-swimming levels 
(Figure 54). However hardhead tended to rely on sustained swimming more than rainbow 
trout, which seemed to prefer routine swimming. Sacramento suckers swam the least. 

In conclusion, the research team found no significant movement up or downstream by any of 
the three species tested.  It is important to point out that the team was limited by the length and 
width of the flume (16.5 x 0.6 m). It is also possible that raceway-reared hatchery trout may 
have different swimming and feeding behavior from wild stream trout. The rainbow trout and 
other fish in the South Fork of the American River would not necessarily be restricted to such a 
confined space even at the lowest water levels. Although no significant differences in 
movement were seen, some individuals seemed to inhabit up or downstream areas. It is likely 
that some individual fish might move up or downstream in the river. The high usage of 
substrate by hardhead and rainbow trout suggests that the availability of velocity shelters (e.g., 
rocky substrate) is important to these species during pulsed flows. For these species, the 
presence and/or absence of refuge areas may determine whether they exhibit longitudinal 
displacement within the South Fork of the American River. 
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Figure 54.  The percentage of time spent by members of three species in different forms 
of locomotion.  Hardhead and rainbow trout spent the majority of their time holding 

position and swimming in a routine manner. 

Temperature differences can also affect fish swimming performance. It would be informative to 
conduct further testing at different temperatures. Although all of the fish were acclimated to 
14 C before testing, hardhead found in Slab Creek were caught in warmer water. In this study’s 
experiments, the research team was limited to simulating water velocities ranging between 0.10 
to 0.46 m/s. Actual velocities in a river during pulse flow release may exceed this range. This 
may indicate that other variables, such as substrate or fish swimming ability, could have a 
significant influence on the longitudinal displacement of rainbow trout, hardhead, and 
Sacramento suckers.  In addition, the research team tested fish under a one-pulsed-flow regime; 
whereas fishes in the South Fork of the American River are subjected to one or more pulsed 
flows per day, during a time of year when the river flows would be expected to be low. These 
continuous water releases could have a cumulative effect on the longitudinal movement and 
displacement of these fishes; however this was not evaluated. 

3.2.2. Experiments in Lateral Displacement Flume 

The ranges in the size of the fish used to test stranding and bank habitat use in the lateral 
displacement flume are summarized in Table 16. Long and short acclimated runs were 
combined within each species for fish size, (Mann-Whitney Test,  
p = 0.065–0.699). The rainbow trout (mean = 9.8 cm SL  0.4 cm SE) were longer than the 
hardhead minnows (mean = 5.7 cm SL  0.2 cm SE) and Sacramento suckers (mean = 5.4 SL 

 0.3 cm SE). It should be noted that the mean length of rainbow trout used in the lateral 
displacement experiments was almost twice that of those used in the longitudinal displacement 
experiments. Although their lengths were still < 1/3 that of the mean pool length of the sloped 
gravel test area of the lateral displacement flume (Figure 23), it is possible that smaller fish may 
have stranded at a higher rate.   
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A fish was considered stranded during experiments when it became isolated in a pool or the 
substrate as the flume drained of water and was unable to return to the main channel.  Three 
(8%) of the 38 test fish were stranded during the lateral displacement flume tests (Table 17): two 
hardhead and one sucker. None of the hatchery rainbow trout were stranded during the 
experiments. All three stranded fish were from the short acclimation (2 hour) category and all 
were isolated in pool A (see Figure 23), the deepest pool area, which retained water as water 
drained out of the apparatus. There were no significant differences in stranding incidences 
between species or acclimation times (Fisher’s Exact Test, p = 0.45–1.0). 

Table 16.  Standard lengths and weights of juvenile hardhead, rainbow trout, and 
Sacramento suckers used for experiments in the lateral displacement flume.  The means, 

standard error (SE) and range are shown for each species. 

Species n   SL (cm)     Weight (g)   

  Mean SE Range  Mean SE Range  

Rainbow trout 12 9.8  0.4 8.0–13.0 17.6  2.3 8.5–38.1 

Hardhead 14 5.7  0.2 5.0–8.0 4.6  0.5 2.4–10.5 

Sacramento suckers 12 5.4  0.3 3.9–6.9 3.4  0.5 1.4–6.5 

Table 17.  Summary of the occurrences of stranding in the lateral displacement flume 

Species Acclimation N # Strand # Not 
Strand

% Strand % Not 
Strand

Hardhead Short      7 2      5 29       71 
 Long      7 0      7 0      100 
Rainbow trout Short      6 0      6 0      100 
 Long      6 0      6 0      100 
Sacramento sucker Short      6 1      5 17        83 
 Long      6 0      6 0      100 

Test fish often entered the simulated river margin, although few of them stranded in this habitat 
during experiments. For example, a majority (9 fish of 12) of the rainbow trout entered the 
margin after both long and short acclimation periods (Table 18). Four of 12 Sacramento suckers 
entered the margin following both acclimation periods. Hardhead minnows did not leave the 
main channel after the long acclimation, but 43% of individuals entered the margin habitat after 
a short acclimation period. Rainbow trout utilized the substrate habitat more than the hardhead 
after long acclimation (Fisher’s Exact Test, p = 0.0046).  
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Table 18.  Summary of the frequencies (and percent totals) that hardhead minnows, 
rainbow trout, and Sacramento sucker, acclimated for both short and long periods, 

entered the bank habitat during pulsed flows.   

Species Acclimation N Enter 
Margin
Habitat

Remain in 
Main

Channel

% Enter 
Margin
Habitat

% Remain 
 in Main 
Channel

Hardhead Short 7 3 4 43 57 

 Long 7 0 7 0 100 

Rainbow trout Short 6 4 2 67 33 

 Long 6 5 1 83 17 

Sacramento sucker Short 6 2 4 33 67 

 Long 6 2 4 33 67 

Although the fish entered the margin more frequently than they became stranded, they still 
spent the majority of time in the main channel during experiments. The flume locations were 
separated into three categories: main channel, bank substrate and bank pools. All species spent 
significantly (Mann-Whitney Test, p < 0.05) more time in the main channel than in either the 
bank substrate or pools under either the short (Figure 55) and long acclimation periods (Figure 
56). There was no significant difference in the time spent in the bank pools compared to the 
bank substrate areas.   

The research team tried to determine whether the fish were responding to increases and 
decreases in water level (pulsed flows) while in the main channel. Fish depth was recorded 
during the experiments, and researchers then plotted the depths of short and long acclimated 
fish during the rise in water level, its high water state, and when the water level fell for 
hardhead minnows (Figure 58), rainbow trout (Figure 59), and Sacramento sucker (Figure 60). 
This simulated a pulsed flow within the river. Only fish, swimming within in the main channel, 
were included in this analysis. The team did not observe a change in depth of the hardhead (see 
solid and clear diamonds, Figure 57) and Sacramento suckers (see solid and clear squares, 
Figure 59). The rainbow trout did move slightly upward in the water column during the high 
water period and downward when the level of water was lowered (see solid and clear triangles, 
Figure 58). Rainbow trout may be responding to high flows by increasing their depth in the 
water column. 
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Figure 55. Time spent in different sections of lateral displacement flume after 
experiencing the short acclimation period.  Mean (+ SE) time spent in different flume 

sections are indicated with standard error bars. All three species spent the majority of 
their time in the main channel rather than the bank habitat. 

Figure 56.  Mean (+ SE) time spent in different sections of lateral displacement flume after 
experiencing the long acclimation period. All three species spent the majority of their 

time in the main channel rather than the bank habitat. 
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Figure 57.  The height of short and long acclimated hardhead minnows in the water 
column during experiments in lateral displacement flume. The hardhead minnows stayed 

close to the bottom during the changes in water height. 

Figure 58. The positions of short and long acclimated rainbow trout in the water column 
during simulated pulse flow in lateral displacement flume. Some of the short acclimated 
rainbow trout changed their position in the water column in response to the change in 
water level. They swam higher in the water column (see solid and clear squares during 

high water period) during the pulsed flow. Only a small proportion actually swam higher 
than the main channel lip (see dash and dotted line). 
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Figure 59. The depth of short and long acclimated Sacramento suckers in water column 
during simulated pulse flow in lateral displacement flume. They respond to rising and 
high water levels more than the hardhead minnows but still stay close to the bottom of 

the main channel. 

In summary, very few fish explored and became stranded on the bank habitat. In addition those 
fish that explored the bank habitat, once it became available, still spent the majority of their time 
in the main channel. Long and short acclimated fish did not seem to vary behavior, hardhead 
and Sacramento suckers stayed near the bottom of the flume regardless of flume water depth. 
Rainbow trout seemed to respond to simulated pulsed flows by venturing higher in the water 
column. The infrequent stranding and using substrate margin may have resulted from the fish 
acclimating in the main channel with minimal substrate exposure. However, the acclimation 
was set to mimic pulses observed in the South Fork American River. The recreational pulses on 
the South Fork occur in the morning, increasing with the concomitant flooding of the riverbank 
before subsiding later in the day. The hatchery rainbow trout were the only species that did not 
strand during the experiments, yet they were larger than the hardhead and Sacramento suckers, 
which might explain why the former are less susceptible to stranding. At the same time, the 
rainbow trout entered the bank substrate with more frequency than the hardhead or 
Sacramento suckers. The trout were also observed nipping and biting at the substrate, indicative 
of a motivation to feed within the apparatus. Trout may search for food in the margin of the 
river when the banks flood, and return to the deep channel. This may explain why they return 
to the main channel in the flume when the waters recede in the flume, unlike the one sucker and 
two hardhead that stranded during the experiment.  The low degree of stranding observed 
during the experiments might also be a function of the experimental apparatus which could not 
mimic the elevated velocities associated with high steam flows that might be expected to 
promote fish movement out of the high velocity areas along the expanding bank area where fish 
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would then be more prone to stranding during receding flows. Thus, these experiments may 
underestimate stranding rates. 
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4.0 Conclusions and Recommendations 

4.1. Field Studies 

4.1.1. Radio-telemetry in South Fork of the American River  

Conclusions. The research team captured three rainbow trout by hook and line, implanted radio 
tags into their peritoneal cavities, and released them into the Chili Bar Reach of the South Fork 
of the American River during the period from 23 July to 5 August 2004. These fish were exposed 
to one and rarely two pulsed flows per day. The team searched for these fish during seven days 
from 3–12 August. One fish was located a short distance upstream seven days latter, one moved 
slowly upstream on the following day before staying in the same reach three and four days 
later. Another was relocated a small distance upstream four days later, occupied the same 
location two days later, and moved a small distance upstream on the following day. The third 
fish was never relocated following tagging. This pilot study demonstrated that it was possible 
to tag and track fish on the South Fork. The paucity of individuals tagged and tracked precludes 
us from making any conclusions as to the affect of the pulsed flows on rainbow trout in the 
American River. However, the low densities of trout in comparison with other sierra streams 
would suggest that there are some factors limiting the trout population in the South Fork; which 
may be a result of or correlated to pulsed flows. 

Recommendations.  More rainbow trout need to be tracked both in the presence and absence of 
pulsed flows within the Chili Bar Reach of the American River. The research team angled for 
rainbow trout for a total of nine days during Year 1, repeatedly fishing in the area between the 
Marshall Gold Discovery Site (rk 9.6) and Gorilla Rock (rk 24.2). Researchers traveled by raft 
and kayak, fishing continuously from the boats (except during rapids), and also stopping at 
locations that the anglers thought looked particularly promising. On all days at least two people 
fished, and on some days three or four. Thus the team fished for a total of about 23 person-days. 
With this amount of effort, ten rainbow trout were caught. Of these, only three rainbow trout 
were of suitable size and condition for tagging. For this reason, the research team concludes that 
it is infeasible to track wild rainbow trout in the main stem of the American River.  

Alternatively, the team will tag and release rainbow trout raised at the local trout hatchery into 
the American River during Year 2. Dennis Redfern, manager of the hatchery, has furnished 50 
individuals that will be grown to a length of 28–36 cm FL in the Center for Aquatic Biology and 
Aquaculture (CABA) by summer, when they will be equipped with electromyogram (EMG)-
recording tags, observed to ensure that the surgical wounds heal properly, and then released 
into the river where they can be tracked in the presence and absence of pulsed flows. He will 
also supply 25 subadults during summer, which will be equipped with smaller position-
determining tags, observed similarly, and released into the river at the same time as the adults 
to assess the effect of pulsed flows on their distribution. Hatchery trout may not respond to 
pulsed flows as wild fish might, but describing their response to these flows is important, 
because they represent the majority of trout presently inhabiting Californian rivers.  

First, the research team will tag 12 small rainbow trout (15–20 cm TL), obtained from the 
hatchery, with position-detecting tags.  The team will also tag 12 large rainbow trout (21–30 cm 
TL), grown to adulthood in CABA, with larger beacons. These tagged individuals will be 
tracked to determine whether they are displaced into the river’s side channels or downstream. It 
will be of considerable value to identify the effect of pulsed flows on hatchery-reared trout, 
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because they are released in the American River annually, and constitute the largest component 
of the trout population within this and other rivers in California. 

Second, the research team will insert 12 EMG-detecting tags with a similar longevity into the 
peritoneum of large, adult rainbow trout. These trout will first be monitored in the laboratory 
and later in the field. The individuals carrying these tags will be tested firstly in the flow 
chamber under varying flow speeds to determine the oxygen consumed at various tail beat 
rates. They will then be released into the American River to be tracked both in the presence and 
absence of pulsed flows. They will record tail beat frequency in the field during pulsed and 
non-pulsed flows, and enable us to calculate the energy expenditure during the two conditions.   

4.1.2. Radio-telemetry in Silver Creek  

Conclusions.  One rainbow trout and six brown trout were tagged with radio tags and tracked 
during a single pulsed flow in Silver Creek, a tributary of the American River. These 
individuals were located on the river after capture, later prior to the pulsed release, during the 
release, and after the release. Little movement was recorded for tagged fish between release and 
later positioning prior to the pulse. No significant movement was detected fish between the pre-
pulse and pulsed condition; although two fish moved upstream and two moved downstream 
between tracking events. Finally, no movement was detected for three fish after the pulsed flow, 
while two fish were located upstream from their previous location and one fish downstream. 
The results indicate that the single pulsed flow did not alter the distribution of fish within the 
Silver Creek study reach.   

Recommendations. This field study indicates that a single, small release of water into a stream 
does not significantly alter the distribution of subadult trout. More frequent stream channel 
maintenance (to promote scouring) releases may be of greater magnitude and frequency, and 
could affect the distribution of fishes. Thus, it is necessary to identify the effect of different types 
of flow releases on fishes in Californian rivers. This is a first-step toward identifying the effect of 
water releases produced for recreational rafting or hydroelectric power on the local fish fauna. 

4.1.3. Snorkel Survey and VIE Marking in Silver Creek 

Conclusions.  Trout did not appear to experience large downstream displacements due to the 
one-day pulse in Silver Creek, or if they were displaced, they had moved back upstream by the 
time of the post-pulse survey. Additional statistical analyses may clarify the response of the 
local trout population to the pulse, particularly with regard to young-of-the-year distribution. 
Preliminary analyses indicate that a one-day pulse may not be harmful to trout, at least not in a 
stream with a large number of velocity refugia (e.g., crevices, boulders, deep pools), and a 
bedrock bottom. The rainbow and brown trout may have been able to take shelter under or 
behind rocks in order to avoid excessive water velocities. However, pulses may negatively 
affect the ability of trout (and other fish) to feed, due to very high flow velocities, and/or 
increased turbidity (decreased effective search distance). More frequent pulses may eventually 
result in decreased growth rates, increased vulnerability to predation (smaller fish are more 
vulnerable), and decreased survival rates. Furthermore, more frequent pulses may disturb the 
habitat and cause indirect impacts on fish, e.g., changes to bank structure, riparian vegetation. 
For example, frequent pulses may prevent riparian plants from growing, resulting in reduced 
cover near the banks for juvenile fish. Reduced plant cover could also lead to increased 
turbidity due to instability of the banks, and resultant increased erosion. This may be 
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particularly important in streams with soil banks, as is the case for sections of the South Fork 
American River between Chili Bar Dam and Lake Folsom, rather than bedrock channels like 
Silver Creek. Furthermore, decreased riparian cover would result in a lower density of 
terrestrial invertebrate prey for fish (fewer invertebrates in plants near stream, and greater 
distance between plants and flowing water during low flow periods). 

Recommendations. The short time frame available for trapping and marking fish precluded 
doing multiple pre-pulse snorkel surveys, in order to determine the variability of fish density 
per pool in the absence of a pulse. In other words, the research team had no measurement of 
how much fish move between pools when flows are steady. Increasing the number of pre- and 
post-pulse surveys would improve the study design. 

The pulse flow release occurred in September, when young-of-the-year trout were well 
developed and likely able to locate and move to low velocity areas to avoid the higher flows.  It 
would be informative to test pulses of similar magnitude at other times of the year, such as 
early summer, when fry may be newly emerged, and less able to locate and use flow refugia. 

The habitat in Silver Creek is relatively complex and heterogeneous, which likely provided a 
wide variety of flow refugia for fish. It would be useful to test the impacts of a similar pulse in a 
stream with less complex habitat to see whether fish are more likely to be displaced as habitat 
complexity declines. Furthermore, the fish community in Silver Creek is very simple, and is 
likely compromised mainly of the two trout species that were observed. A similar magnitude 
pulse might have more dramatic impacts in a stream with a greater number of species that 
prefer slower moving water than trout. This could be tested in conjunction with tests of the 
effect of seasonality and habitat complexity. 

4.2. Laboratory Studies 

4.2.1. Longitudinal Flume  

Conclusions.  Using the longitudinal-displacement experimental flume; featuring a long (15+ 
m) test section, clear panels for behavioral observations, a variable-speed drive to simulate 
pulsed flows, and rocks to simulate American River habitat characteristics; the research team 
found that juvenile rainbow trout, hardhead, and Sacramento suckers trended to remain in the 
section to which they were introduced, throughout the pulsed flow period. Thus, despite open-
channel water velocities up to 0.463 m s-1, these three species were neither displaced 
downstream nor stimulated to swim upstream during or after the flow pulse. While rainbow 
trout and hardhead sought refuge among the rocks during the highest flows, the Sacramento 
suckers occupied more open, smooth–substrate areas. Therefore, with higher velocities than 
could be achieved in this study’s flume, but which may characterize pulsed flows associated 
with some hydroelectric power generation or white-water rafting water releases from California 
reservoirs, Sacramento suckers may be more susceptible to longitudinal displacements. It is 
possible, of course, that these flow-pulse-associated behaviors would change at water velocities 
higher than those that were tested. 

Recommendations. The research team will conduct temperature preference tests on adult 
rainbow trout and hardhead minnows under different flow regimes. These resulting data 
would complement field-derived temperature measurements of fishes’ selected habitats (e.g., 
before and after pulsed flows associated with hydroelectric or white-water rafting activities). 
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Managers will be able to model adult fish distributions based on this study’s resulting thermal 
(as well as hydraulic) maps of stream reaches. The value of the laboratory-derived data would 
be their accuracy (especially if derived from fish with different temperature acclimation 
histories), speed (many species measured within a few months, after set up), and low cost 
(especially after initial investment in equipment).   

4.2.2. Lateral Displacement Flume  

Conclusions. Using the lateral-displacement flume; featuring a main-channel and a pulse-
flooded, gravel river-bank section with draining and non-draining pools and a 10º slope; 
juvenile rainbow trout appeared to resist stranding as pulse-flow waters receded down the 
slope bank. In contrast, with a short acclimation period (simulating the shorter inter-pulsed 
periods that may characterize days with both morning and evening high-hydroelectric-demand 
periods), Sacramento suckers, and especially hardhead, may be stranded via pulse-flow-
associated lateral displacement. All of the stranded fish would be vulnerable to predation in 
their non-draining pools. 

Recommendations. It is necessary to use both laboratory and field methods to determine the 
energetic costs when exposed to various pulsed flows. After determining the relationships 
among swimming velocity, tail beat frequency, and oxygen consumption (metabolic) rate in a 
Brett-type swimming respirometer, it will be possible to estimate the costs (energy, food, or 
oxygen-based) associated with a flow pulse by measuring tail beats, using special radio tags, 
over the flow pulse in the field. The field-based tail beat counts will give accurate estimates of 
stream-habitat energetic costs, because the fish’s behavior in a real stream (e.g., including the 
potential uses of hydraulic cover structures) is incorporated into the measurements.  

4.3. Benefits to California 

Human-manufactured water flow increases (pulses) are common within Californian rivers. 
Although the native stream species evolved with seasonal fluctuations, the increased frequency 
(e.g., for peaking hydroelectric operations) and late-summer timing (for recreational purposes) 
represent significant deviations from the natural hydrograph. The effects of flow pulses on the 
community of species present within the streams are relatively unknown. The field and 
laboratory studies described in this report provide a description of the impacts of pulsed 
releases of water for recreational and commercial purposes on a diversity of species of fishes. 
These include the brown trout, hardhead minnow, rainbow trout, and Sacramento sucker. The 
knowledge resulting from these studies help agencies manage their pulsed flows so that their 
effect on the local fish fauna is minimal.
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6.0 Glossary 

ANOVA analysis of variance 

CABA Center for Aquatic Biology and Aquaculture  

EMG electromyogram 

GPS global positioning system 

PG&E Pacific Gas & Electric 

PIT Passive integrated transponder 

PVC polyvinyl chloride  

RT radio tag 

SE standard error 

SMUD Sacramento Municipal Utility District 

TKN total Kjeldahl nitrogen 

TL  total length 

UC University of California 

USGS United States Geological Survey 

VIE visible implant elastomer 

YOY young-of-the-year 


