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PRODUCT DESCRIPTION

Load forecasting is an important part of power system planning and operation. In the past,
forecasting was achieved by extrapolating existing load data combined with other influencing
factors. This method is no longer accurate enough. The Artificial Neural Network Short Term
Load Forecaster (ANNSTLF) is a tool for the quick and accurate prediction of hourly loads that
provides the level of accuracy required by today’s complex and competitive power markets. This
report describes all the deliverables for the continued support and enhancement of the EPRI-
ANNSTLF as implemented at the California Independent System Operator (CA-ISO).

Results & Findings

EPRI-ANNSTLF —as implemented at the CA-ISO—is a viable forecaster capable of meeting all
of the requirements of short-term load forecasting. The overall accuracy of 1.5% or less (Mean
Absolute Percent Error (MAPE)) is below the CA-ISO goal of 2% and acceptable for daily
system and market operations. The delivered CA-ISO ANNSTLF forecaster is easy to use and
will update the hour and half-hour forecasts with minimal manual intervention. ANNSTLF has
many user options for making the forecaster more adaptive, detecting input data problems,
making manual adjustments for special days, and incorporating additional weather variables.

Challenges & Objectives

Accurate hourly forecasts are crucial to CA-ISO decision-making. EPRI improved the
capabilities of ANNSTLF and optimized it for CA-ISO. The key objectives of CA-ISO
customization included the following:

¢ Retraining of all CA-ISO regions to improve performance, including one final retraining with
the modified PG&E region (with the SMUD area removed from the PG&E control area)

* Optimization of weather station weighting factors

* Implementation of half-hour forecaster

Applications, Values & Use

ANNSTLF has already shown considerable improvement in accuracy and ease of use over other
short-term forecasting tools. The delivered CA-ISO ANNSTLF forecaster is easy to use and will
update the hour and half-hour forecasts with minimal manual intervention.

EPRI Perspective

EPRI is continually enhancing the capability and functionality of ANNSTLF to address the
emerging issues of the energy market, such as forward price forecasting, sensitivity of price to
loads, and influence of real-time pricing on load demand. ANNSTLF is in use at more than 40



utilities worldwide. ANNSTLF is more accurate and less time-consuming than previous methods
of load forecasting. The program is also user-friendly and has low maintenance requirements.

Approach

The California ISO consists of three individual regions: PG&E, SCE, and SDG&E. The total
ISO load at any time instant is the sum of the loads of these regions. For each region, there are
several weather stations and for each such weather station, the weather service company
(Weatherbank) provides hourly updates on all weather variables, which also includes a 7-day
forecast for all such variables. The requirements of CA-ISO can be stated as follows:

* Provision of 7 days of hourly forecasts of each region, together with the overall forecast of
the entire ISO

* Provision of capabilities to calculate optimal weighting factors for the weather stations in
each region to optimize the use of weather data in predicting the load

* Provision of capabilities to predict the load every half hour, instead of every hour
* Training of the CA-ISO staff to effectively use EPRI-ANNSTLF and all of its user options
In order to meet these requirements, the approach used by DSI consisted of the following:

* Development of a pre-filer software package (called, “CONVERTER”) which would
perform the following tasks:

— Check the historical load and weather data provided by the customer for data
problems and provide the user with means to fix such problems.

— Create the corrected data files for the ANNSTLF training step

— Integrate the three regions into a single CA-ISO region

— Provide the data needed for the daily and hourly updating of the forecasts
* Actual “training” of ANNSTLF for a three-year period and the updating it daily.

* Development of a program that would optimize the weighting factors for the weather
stations. Two methods were carefully tested, both using the Evolutionary Programming (or
Genetic Algorithm) optimization method. Method 1 was based on maximizing the correlation
between the historical load and the weighted temperatures. Method 2 attempted to maximize
the “mutual information” performance index.

¢ Adapting the EPRI-ANNSTLF to perform half-hour forecasts. In this case, the same neural
network was used for the mid-hour and top-of-the-hour data.

* Intensive training of the CA-ISO staff on the use of ANNSTLF. At least three separate
training sessions were carried out at the CA-ISO with substantial daily and on-line support.

Keywords

Load forecasting
California ISO

Artificial neural networks
Load weather correlation
Energy management
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INTRODUCTION

This Final Report describes all the deliverables for the continued support and enhancement of the
EPRI-ANNSTLF as implemented at the California ISO. The key developments that took place
consisted of the following:

¢ Retraining of all CA-ISO regions to improve performance, including one final retraining with
the modified PG&E region (with the SMUD area removed from the PG&E control area)

* Optimization of weather station weighting factors
* Implementation of half-hour forecaster

* Final training of CA-ISO staff on the use of the ANNSTLF on a regular basis

The report is organized as follows:

* Section 2 provides an overall summary of the delivered ANNSTLF
* Section 3 provides the details of weather station optimization

* Section 4 provides a set of recommendations for future actions

* Section 5 provides a summary of project deliverables

* Appendix A provides a technical paper describing the weather station optimization
procedure.
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THE DELIVERED ANNSTLF

2.1 General
The delivered ANNSTLF consists of two sets of regions as follows:

Set 1: For the middle of the hour forecasts
* Region 1: SDGE1

* Region 2: SCE1

* Region 3: PGE1

* Region 4: CAISO1

Set 2: For the top of the hour forecasts

* Region 6: SDGE2

* Region 7: SCE2

* Region 8: PGE2

* Region 9: CAISO2

The “System Settings” display below provides the actual specification of these regions. Note that

the CAISO “regions” are not true ANNSTLF regions, but they have been created to provide the
sum of the loads and forecasts for the three corresponding composite regions.
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The Delivered ANNSTLF
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Figure 2-1
Designation of CA-ISO Regions in the System Settings Display

The two sets of regions for the half-hour and hourly forecasts can be updated simultaneously
using the following 4 modes:

Hourly updates during the current day: This can be achieved by running the “CurrentDay.bat”
program every time the load changes (i.e. every half hour) in the IO-Data folder. This requires
first the updating of two text files during the day (Load1.txt and Load2.txt). The CurrentDay.bat
program will download the latest actual weather and temperature data from WeatherBank and
then move all the needed data to ANNSTLF. The user will have to “run” the individual regions
(1-3 and 6-8) first and then run the ConvertOut.bat program to update the two CAISO regions.

Daily update at the end of a full day: The daily update is done in a similar manner, but requires
the Load1.txt and Load?2.txt files to be updated for the day before ending at midnight in the
“Weather” for “today.” The updating of the weather data is done by running the
“ConvertInput.bat” program. Once done the ANNSTLF will have to be run for each region (1-3
and 6-8) and then following by running the ConvertOut.bat program.

Initial Catch-up (ICU): Should the user miss several days of updating, then he/she can run the
ICU from the Data Analysis display. The load.hst and atemp.hst files will have to be populated
manually prior to this action. CAISO staff have been trained on running the relevant “Converter”
software to achieve this result.

2-2



The Delivered ANNSTLF

Catch-up (CU): Should the user discover data errors in the last ten weeks, then he/she can correct
the situation by correcting the errors in the load.hst and atemp.hst data files and then run CU
from the Data Analysis display.

In all of the above cases, one may run the “Create_Caisol_Forecast.bat” and
“Create_Caiso2_Forecast.bat” to update the CAISO1 and CAISO2 region folders.

2.2 Performance Information

Using the copy-to-spreadsheet feature of ANNSTLF the half-hour forecasts were merged into
one spreadsheet. The performance data for the months of July and August and September are
given in the table below.

Table 2-1
Summary of CAISO Performance in the Last 3 Months
Standard MAPE
Period Deviation (% Error)
Considered (MW)
July ‘02 706 1.76
Aug ‘02 387 0.99
Sept ‘02 718 1.67
3 Months Average 616 1.45

The actual comparison charts for these three months for one-day-ahead forecasts are given

below.
July 15: Actual vs 1-Day Ahead Forecast
Actual Forecast
40000 - z
= 35000
: ¥
S 30000
a 25000
<
O 20000
=
o 15000
7]
< 10000
© 5000
0 rmrrrrrrrrrr T T T T T T T T T T I T T T T T T T T T T T T T T TTITd
~ [(e] ~ © — © ~— © ~ ©
- - N N o o < <
Time in Half-Hour Intervals
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Figure 2-2
Comparison of Load and 1-Day Ahead Forecast for Half-Hour Intervals for July 15, 2002.

August 15 Actual vs Day-Ahead Forecast Load
Actual
45000 - /
40000 /
< 35000 / #
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Figure 2-3
Comparison of Load and 1-Day-Ahead Forecast for Half-Hour Intervals for Aug. 15, 2002.

September 15,2002 Comparisons
Actual Forecast
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Figure 2-4
Comparison of Load and 1-Day-Ahead Forecast for Half-Hour Intervals for Sept. 15, 2002.
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Figure 2-5
Error Histogram for 3 Months for Top-of-the-Hour Forecast

2.3 Holidays

ANNSTLF performance during holidays is shown in the figure below. The results are consistent

with other regions and tests reported in the ANNSTLEF literature.

All Hours
6 - -
5 |
1T 4 __
< 3 -
= 2 - i
1 I
0 I I I I I I I I I I
Y S ¢ & & & &
Q Q Q Q Q Q Q Q Q Q Q
ARG SRR
& P N S
Holiday Date
Figure 2-6

MAPE for All Hours for Holidays.
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2.4 Performance Using Forecasted Weather

Data on weather forecasts in 2002 was made available in late September. Hence, there is limited
information on system performance. In the figures below we provide data on forecaster
performance using both actual (after-the-fact) and forecasted temperatures. The summary for this
period is as follows:

Table 2-2
Error Comparisons Using Actual and Forecasted Weather Data

After-the Fact 1-Day Ahead 2-Days Ahead
All Hours 1.04% 1.43% 2.32%
Peak Load 1.13% 1.75% 2.87%

Thus, the deterioration in performance due to weather forecast errors is as follows:
* For All Hours: 38%
* For Peak Hours: 55%

Clearly, forecaster performance with forecasted weather should be monitored on a regular basis
to identify the extent of deterioration due to weather forecast errors and to come up with
remedies to improve performance.

EAANNSTLF - [Error Analysis Charts - caiso2] [_[5]X]
D View Window Region Help =& x|

[z]z]z]s]el7]s] > [ro] (£ =[] [@]=] p2] 2]
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]

orkflay

\ L & =

L -
1

T~ = ~
[t N el

~Jo0=-0T
Qo = N W

1.2 3 4 5 6 7 8 910 11 12 13 14 15 16 17 18 19 20 21 22 23 24
»

All Hours Peak Load

Ready 1 ( ( e ]

Figure 2-7
Error Charts for the First Two Weeks of October, 2002 Using Forecasting Weather (Day-
Ahead Forecast)
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Figure 2-8
Error Histogram for Day Ahead Forecast Using Forecasted Weather
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Error Charts Using Actual Weather (After-the-Fact)
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3

OPTIMIZATION OF WEATHER STATION WEIGHTS

Appendix A provides the technical details of optimizing the weather station weights for CAISO
and other test regions also. It demonstrates the following improvements in overall accuracy of
the forecasts as follows:

PGE: Improvement of 5% over original weights (obtained heuristically)
SCE: Improvement of 2%

SDG&E: Improvement of 1%

Overall CAISO: Improvement of 3%

The table below provides a comparison of the original vs the optimal weather station weights.

Considering the overall effort as reported in Appendix A, the following conclusions can be
made:

The optimization algorithm has yielded improvements over the heuristic weights. The
improvement is most noticeable when the number of weather stations and variability of
weather zones is large, e.g. PG&E vs SDG&E as shown above.

The “optimal weights” themselves are quite different from the original heuristic ones. This
demonstrates the fact that relying on heuristics may miss the point sometimes since the key
issue is the relationship between various temperatures readings and the load itself.

In studying the correlation between temperature and load time series, there is a strong
argument for fine-tuning the weighting factors on a seasonal or even monthly basis. Thus
further refinements of the optimization algorithm may be required.
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Optimization of Weather Station Weights

Table 3-1
Comparison of Original and Optimal Weights for the Three CAISO Regions.

PGE Original | Optimal SCE Original | Optimal SDG&E | Original | Optimal
Region Region Region
Weights | Weights Weights | Weights Weights | Weights
Bakersfield Los San
(BFL) 0.14 Angeles- Diego 0.40
0.26 Airport 0.0 (SAN) 0.0

(LAX) 0.20
Fresno El Cajon Not Not
(FAT) 0.14 (ECY) Used

0.0 Used

Santa Rosa 0.0 Riverside 1.0 Santee 1.0
(STS) 0.11 (RAL) 0.20 (SEE) 0.60
Stockton 0.19 Ontario 0.0
(SCK) 0.11 (ONT) 0.20
Redding 0.11 Santa
(RDD) 0.11 Ana 0.20

(SNA) 0.0
Sacramento 011 0.0 Los
(SAC) ' Angeles-

Civic 0.10 0.0
Concord 0.08 0.21 Center
(CCR) ) (CVC)
San 0.03 Long
Francisco 0.08 Beach 0.10
(SFO) (LGB) 0.0
San Jose 0.03
(SJC) 0.08
Arcata 0.17
(AGV) 0.04
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CONCLUSIONS AND RECOMMENDATIONS

Conclusions:

EPRI-ANNSTLF as implemented at the CA-ISO is a viable forecaster capable of meeting
ALL of the requirements of short-term load forecasting.

The overall accuracy of 1.5% or less (MAPE Error) is acceptable for daily system and market
operations,'

Half-hour forecasting is achievable using the standard ANNSTLF. The delivered CAISO
ANNSTLEF forecaster is easy to use and will update the hour and half-hour forecasts with
minimal manual intervention.

Optimization of weather station weights will improve overall performance by a few
percentage points. However, improvements can be attained by adjusting the weights monthly
and/or seasonally.

Staff training is crucial in improving forecaster accuracy. ANNSTLF has many user options
for:

— Detecting input data problems,

— Manual adjustments for special days, controllable load variations, blackouts, etc,
— Making the forecaster more, or less, adaptive

— Incorporation of additional weather variables, if needed.

— The main areas of further accuracy improvement are:

— Holiday forecasting,

— Sub-regional forecasting to yield a finer grain forecasts that more correlated to sub-
regional weather data.

' CA-ISO staff have indicated that their goal was a forecast which is accurate at 2%.
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Conclusions and Recommendations

Recommendations

4-2

Full automation of ANNSTLF is recommended, by this we mean the automatic loading of
weather and load data every half hour, the automatic running of ANNSTLF, and the display
of the updated forecast,

Data pre-filtering for the initial training effort should include an option for optimising the
weather station weights. In this regard, these weights should be adjusted monthly and/or
seasonally.

In conjunction with the automation effort, all safeguards associated with manual user options
(item (1-e) above) should either be partially automated to the extent of generating user
messages and other information for quick user action.

The 32-bit conversion effort should be carried out as soon as possible, as it is a key pre-
requisite to any automation effort,

ANNSTLF should be interfaced with the CIM database, and or, other databases used at the
ISO.

A procedure should be developed for the easy training of new regions, and their consequent
integration with other regions in a hierarchical manner.
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LIST OF DELIVERABLES

ANNSTLF system comprised of the following:

ANNSTLF executable program and associated files

Six (6) trained “regions,” 3 for the half hour and 3 for the top of the hour, plus two
corresponding CAISO regions.

Converter program for pre-filtering the initial data files for any region and placing the data in
appropriate ANNSTLEF text files. These text files can then be used for initial training or
initial catch-up, once the training is completed,

Converter program for integrating forecasted results into the corresponding CAISO folders

A third converter program group for the daily and hourly downloading of weather data into
appropriate text files and the movement of those files plus the user-entered load data updates
into ANNSTLF.

Procedure and results for the optimization of the weather station weights. The genetic
algorithm used for this purpose was not delivered as it is a proprietary commercial package.

At least two intensive CAISO staff training sessions to insure that they fully understand all of
the ANNSTLF user options for improved forecaster performance.

User and procedure manuals for all of the above.
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INFLUENCE OF TEMPERATURE ON SHORT-TERM LOAD
FORECASTING USING THE EPRI-ANNSTLF

The following technical paper details the theory and application of the optimization of weather station
weights as developed for this project. The paper was accepted and presented at the Balkan Power
Conference, Belgrade, Yugoslavia (June 2002).
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Abstract — Close tracking of system load by system
generation at all times is the basic requirement in the operation
of any power system. In the new environment, a Transmission
System Operator (TSO) requires accurate short-term load
forecasts to assure reliable system operation. One such
forecasting tool is the EPRI artificial neural network short-term
load forecaster (EPRI-ANNSTLF) which utilizes a single
temperature variable for each “region” to be forecasted. If there
are two or more weather stations in such a region then a
weighted average temperature is substituted for the single
temperature variable. This paper focuses on the development of a
practical methodology for selecting such weather-station
weighting factors. In the paper, two methods for calculating
weather-station weighting factors for regions with multiple
weather station data are presented. The influence of
temperature on load is measured with correlation coefficient and
by using mutual information theory. Weighting factors for each
weather station are then calculated by maximizing these the two
criteria, which is done by means of evolutionary optimization
technique. The proposed methods are verified on five test regions
with at least three years of data. Results show that application of
proposed methods for calculating the substitutive temperature
always increase the accuracy of the generic short term load-
forecasting model.

Index Terms — load forecasting, temperature, correlation
coefficient, mutual information, neural networks.

Introduction
OAD forecasting has always been a very
important issue in power system planning and
operation. The need for accurate short-term

% University of Ljubljana, Faculty of Electrical Engineering, Trzaska 25,
1000 Ljubljana, Slovenia.

3 Decision Systems International (DSI), Atlanta, Georgia, USA

4 EPR], Palo Alto, California

forecasts increased even more with deregulation:
independent system operator has to provide enough
regulating power to assure system reliability,
producers bidding strategies depend on electricity
consumption, and retail electric providers have to
buy exactly the required energy for their customers,
since

scheduled deviations are penalized. As a result, the
number of electric power utilities that require
efficient short-term load forecasting is increasing.

Application of the artificial neural network
(ANN) technology for forecasting in power
systems has received much attention in recent
years [1]. The main reason why ANN became so
popular lies in its ability to learn complex and non-
linear relationships that are difficult to model with
conventional techniques [2]. Even for input
samples quite different from learning samples
neural network can give good results. That
capability enables the ANN-based system to model
the correlations between the electricity load and
such factors as temperature and other climatic
conditions, time and type of the day effect, season
effect, etc. As a result, the artificial neural network
technology is very suitable for building a generic
short-term load forecasting model.

The advantage of a generic structure is easy
implementation of the model in different
conditions. However, a drawbackis that not all
specifics of a given environment can be embraced.
One such varying property is often the number of
temperature variables, where measurements from
multiple weather stations are available. Based on
considerable research it was recommended that
only one temperature be used for input into the
ANN model [2,3,4], the temperature data have to
be pre-processed and replaced with a a weighted
average temperature.
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In this paper the influence of temperature on
short-term load forecasting is investigated. Two
methods for measuring relationship and
dependency between input and output variable are
used: (i) correlation coefficient and (ii) mutual
information. As a result, two methods for
calculating a substitutive temperature in the pre-
processing phase are proposed by optimising the
correlation coefficient and mutual information. As
a result, a standard genetic algorithm was
implemented to define “optimal” temperature
weights in multiple weather station regions.

The proposed methods were tested on five real
cases. For each region about three years of data
were available, thus enabling a large out-of-sample
period for the verification phase. Results presented
in the paper illustrate that weights obtained with
proposed methods increase the forecaster accuracy.

Measuring input-output Dependency

Two methods were selected for measuring
relationship between temperature and load. For a
given numerical data set (x;y;) where ie{l, 2, ...
N}, a natural way in which to measure linear
correlation is  Pearson’s Product Moment
Correlation [5]. This method is widely used and is
offend referred to as the simple correlation
coefficient. Another way to estimate the relevance
between two variables is by using Shannon’s
concept of mutual information [6]. The method is
based on the entropy concept and is not limited to
linear relationships.

Correlation coefficient

The correlation coefficient is used to determine
whether two ranges of data move together — that
is, whether large values of one set are associated
with large values of the other (positive correlation),
whether small values of one set are associated with
large values of the other (negative correlation), or
whether values in both sets are unrelated
(correlation near zero). The linear correlation
coefficient r is given by the following equation [5]:

rxy) = VY
cov(x, x)cov(y, y) (1)
;2= DG, - )

0,0,

r(x,y)=

where X is mean and o standard deviation for a
given set of data.

Mutual information

The mutual information (MI) measures arbitrary
dependencies between random variables and is
suitable for assessing the information content of
input variables in complex classification tasks. In
the paper a method for calculating MI as proposed
by Bonnlander was selected [7, 8, 9]. The method
first determines the relationship between input and
output variables using nonparametric density
estimation and then measures the relevance of input
variables using Shannon’s concept of mutual
information [6].

Mutual information measures the reduction in
uncertainty of output variable Y due to knowledge
of the input variable X. The uncertainty of output
variable Y with probability p(y) is defined using the
entropy formula:

H(Y) =~ p(y)log p(y) 2)

yeY

while the average uncertainty after knowing input
variable X is the conditional entropy:

H(Y[X) =33 p(y.x)log, p(y|x) 3)

xX yeY

where p(ylx) is the conditional probability for
variable Y given the input variable X. Mutual
Information (MI) between measurement x drawn
from a set X and measurement y drawn from a set ¥
is the amount learned from measurement of x about
the measurement of y:

I(Y;X)=H(Y)-H(Y|X)
1(Y;X) ==Y p(Mlog p(y) + 3 > p(y,x)log p(y}x)
ey

xEX yeY

4
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The MI is therefore the amount by which the
knowledge provided by the input variable decreases
uncertainty about the output variable. Here, an
unbiased estimator of mutual information is utilized

[8].

Multi weather station weights calculation

Load forecasting for needs of a transmission
system operator is ussualy done for the whole
power system, which can cover a large and
geographically diverse teritory. Weather parameters
can differ a lot within this area and usually more
than one temperature measurement is available.
However, in the generic short-term load forecasting
model only one temperature is used as imput. Thus,
a logical consequence is to preprocess the
temperature data and represent multiple weather
stations (MWS) with a substitutive weather station,
which would map all relevant information referring
to the electricity load. Here, a linear combination of
all weather stations' temperatures was used to
calculate the substitutive temperature of the whole
system:

T= f(TWSI’TWSl""’TWSM )

(5)
T =w Ty, + WyTys, +...+ Wy, Ty,

T ... substitutive temperature of the whole system
Tws; ... i-th weather station
w; ... weight for the i-th weather station

M ... number of weather stations

For calculating weights w;, three methods were
implemen-ted:

Heuristics: number of inhabitants P; living in the
area coverd with a given weather station, divided by
total population in the system Pjy,:

i
Wy =

= (6)
‘ nys

Maximized correlation coeficient:

max[f(wl s Waseey Wy )]

maxﬂr(wlTWSl +w, Ty, oot Wy, Tyay ,L)” (7)
= w

Maximized mutual information:
max[l(L;wlTwsl +w,Tye, ot wy, Ty, )] )

max
= Wi

For optimizing the correlation coefficient and
mutual information between load and substitute
temperature a standard genetic algorithm was
implemented [10]. A genetic algorithm is an
iterative procedure that simulates the natural
evolution of a constant-size population of
individuals, each one represented by a finite string
of symbols, known as the genome, encoding a
possible solution in a given problem space. This
space, referred to as the search space, comprises all
possible solutions to the problem at hand. The
standard genetic algorithm proceeds as follows: an
initial population of individuals is generated at
random or heuristically. Every evolutionary step,
known as a generation, the individuals in the
current population are decoded and evaluated
according to some predefined quality criterion,
referred to as the fitness, or fitness function. To
form a new population (the next generation),
individuals are selected according to their fitness.
Many selection procedures are currently in use, one
of the simplest being fitness-proportionate
selection, where individuals are selected with a
probability proportional to their relative fitness.
This ensures that the expected number of times an
individual is chosen is approximately proportional
to its relative performance in the population. Thus,
high-fitness (good) individuals stand a better chance
of reproducing, while low-fitness ones are more
likely to disappear. Selection alone cannot introduce
any new individuals into the population, i.e., it
cannot find new points in the search space. These
are generated by genetically inspired operators, of
which the most well known are crossover and
mutation. Crossover is performed with probability
pc (the crossover probability or crossover rate)
between two selected individuals, called parents, by
exchanging parts of their genomes (i.e., encodings)
to form two new individuals, called offspring; in its
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simplest form, sub strings are exchanged after a
randomly selected crossover point. This operator
tends to enable the evolutionary process to move
toward promising regions of the search space. The
mutation operator is introduced to prevent
premature convergence to local optima by randomly
sampling new points in the search space. It is
carried out by flipping bits at random, with some
(small) probability p,,.

In our case, a real-value encoding scheme is
applied. A chromosome consists of M real numbers
varying between 0 and 1, which represent weights
for each weather station temperature. The
evaluation of a given individual is made in three
steps: (i) first, encoded weights are weighted such
that their sum equals to 1, (ii) a substitute
temperature is calculated (equation 5), and (iii) the
fitness of each individual is equal to the absolute
value of the correlation coefficient between load
and substitute temperature. GA operators for real
encoding schemes are applied: real valued mutation,
intermediate crossover, extended line crossover, and
tournament selection. GA parameters are presented
in table 1:

Table 1: GA parameters.

Parameter Value
Number of individuals 15
Number of generations 100
Real valued mutation 0.01
probability
Intermediate crossover 0.40
probability
Extended line crossover 0.40
probability
Tournament size for 3
tournament selection

The computational time and convergence of
the optimization algorithm are acceptable, since in

almost each run same optimal value is reached. An
example of evaluation process with 200 generations
is show on figure 1.

Best objective values variables of best indiv.
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0.202
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0.289 A
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Figure 1: GA evolution of best objective value and weight values.

Artificial neural network short-term load
forecaster

In the paper the EPRI’s artificial neural network
short-term load forecaster (ANNSTLF) was used
for verification of proposed methods [3]. More than
40 utilities use the forecasting tool in their daily
operation. The model allows only one variable for
temperature per hour, thus it is suitable for testing
the multiple weather station algorithm. The
forecasting tool includes two ANN forecasters; one
predicts the base load and the other the load change.
At the end, the final forecast is computed by
adaptive combination of both outputs. A unique
feature of the model is the adaptive update of the
neurons’ weights during daily operation. This mini-
training with the most recent data enables the
ANNSTLEF to adapt to rapid changes due to weather
swings or seasonal changes, and to embrace the
gradual load growth (seasonal effect and trend
effect). Distinctive features of the ANNSTLF are
also the build-in temperature forecaster and the
powerful and user-friendly graphic interface.

Results

The influence of temperature on short-term load
forecasting and the efficiency of methods and
optimization algorithms for multi-weather stations’
weights calculation were tested on 5 real cases. First
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three regions (PG&E, SCE, SDG&E) are part of the
area covered by CA-ISO (California, USA), fourth
is located in southeast Brazil (ONS SE) and fifth in
Slovenia (ELES). Peak load, base load, load shape
and seasonal effect differ a lot between the five
regions, which can be observed in Table 2 and in
figures 2, 3 and 4 (load demand time series for

PG&E, ONS and ELES).

Table 2: Description of test regions.

PG&E SCE SDG&E | ONS SE ELES
1 2 3 4 5
Ma)}i}w‘z; ]load 21,747 18,183 3,195 34,929 1,838
Min[i}:x;;l/ ]load 8,051 7,519 1,384 16,364 0,674
Ave[rlclgvev ;"ad 12,676 | 11,208 | 2,108 | 25846 | 1,263
Pea[l;/lsves]son s S S Winter’ | Winter
Nur‘xdn\l;ve; of 10 6 2 4 6
Available data 46 46 46 36 30
[months]

L L L L L L
2000 3000 4000 5000 6000 7000 8000 9000

Time [h]

Figure 2: PGE load demand — 2001.

> Winter in Brazil is in June, July, August, September.

600

. ) L . L . L
1000 2000 3000 4000 5000 6000 7000 8000 9000
Time [hour]

Figure 3: ONS SE load demand.

0o

L . L . . s
1000 2000 3000 4000 5000 6000 7000 8000 9000
Time [hour}

Figure 4: ELES load demand — 2001.

It can be seen, that regions from CA-ISO
(PG&E) demonstrate high peaks in summer
due to air conditioning, and high demand in
winter, due to lower temperatures and
daylight time length. ONS load demand is
relatively constant with slight increase in
winter, which is also the case of the
Slovenian power system (December), due to
short daylight time and cold temperatures.
Figure 4 also shows a very low consumption
in beginning of May (Labor holiday) and in
August (vacation time). Consequently, the
correlation coefficient was calculated for
each of the three regions and for each month
of the year separately (Figure 5). Since both
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temperature and load are low during the
night and high during the day (positive
correlation), this can affect the total
temperature-load correlation in  winter,
which is expected to be negative. To
eliminate this hour-effect a daily mean
temperatures and daily mean loads were
used  when  calculating  correlation
coefficient.

;
a.) |
-
05 P -
1 23 456 7 8 9 101112
2 _
b) 8
3 05 ]
o
: JImmlll___ .Ham
3
S5 . .. . s
S 1 23 456 7 8 9 101112
1
c.)
05
1 1 ] | ]

1 2 3 45 6 7 8 9 101112
Month of the year

Figure 5: Monthly correlation coefficients for a.) PG&E, b.) ONS
and c.) ELES region.

The results confirm high positive relationship
between load and temperature during summer
months in California, while negative correlation in
winter months is present in all cases. As shown in
figure 5c, the load-temperature correlation in
Slovenian system is relatively week.

For a reliable verification of the proposed
methods (multi-weather station weight calculation)
a reference case has to be determined. For this
purpose, the ANNSTLF model was trained without
temperatures (7=0) — load and the day-type were
the only two inputs into the model. Next, weather
stations’ weights were calculated for each region
with all proposed methods. The appurtenant
substitute temperatures were then used to train the

artificial neural networks in the model. A total of 4
trainings per region were performed:

e MO: without temperatures (reference case),
e MI: heuristic weights,

e M2: weights by maximizing correlation
coefficient,

e M3: weights by maximizing mutual
information.

Six months of out-of-sample data were left for the
verification phase. The accuracy of the models, and
consequently the efficiency of proposed methods
and optimization algorithm, was compared by mean
average percentage error (MAPE).

As expected, the model using only loads as input
variable (MO) produced the highest error. For
clearance of presentation, the normalized MAPE
was use (MAPE value for a given model was
divided by MAPE of the model M0). Normalized
MAPE values for models trained without
temperatures, models trained using heuristics for
determination of MWS weights and models with
highest accuracy are presented on figure 6 for each
region respectively. MWS weights producing
highest ANNSTLF accuracy were in all cases
calculated using method M2, only in case of PG&E
region the method M3 gave better result.

pge sce sdge ons eles

I [ Without temperature [ Heuristics [J Best w eights f

Figure 6: Comparison between models using different temperature
as an input variable.

“Optimal” weights for each weather station of the
five regions analyzed in this paper are illustrated in
figure 7. It can be observed, that the optimization
method eliminates irrelevant temperature data. For
example, in Slovenian case (ELES) the weather
station three is located in Ljubljana. The capital of
Slovenia is the biggest city and is also
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geographically located in the center of the country.
As aresult, the weight 1 for this weather station is a
logical decision. A sample day-ahead forecast for
ELES region is illustrated in figure 8.

0.5
PGE ] Weights based on heuristics
é: [_] B <Optimal " weights
=
]
1 2 3 4 5 6 7 8 9 10
0.4 .
- SCE
=)
2 0.2 ‘
= Bl al al
0 .
1 2 3 4 5 6
1 1
- SDGE - ONS
g’ -g’ 0 5 -
g 0.5 | 80
0 0
1 2 1 2 3 4
ELES
5
20.5 k
=
0 L - -,
1 2 3 4 5 6
Weather
Figure 7: Weights base on heuristics and “optimal weights”.
1800 K>
17001 q
16001 J
£ 1500
s 1500;
o
8 1400 ‘
)
1300 J
A = Actual load
1200 =-~=- Forecast MO
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Figure 8: A sample day-ahead forecast for ELES region.

MAPE errors of models with “optimal” weights for
multi weather stations are show on figure 9. Five
completely different regions in terms of peak load,
seasonal effect and geographical location were
analyzed.  Notwithstanding, the = ANNSTLF
computational tool produced in all cases accurate
load forecasts with MAPE error varying between

1.5 % and 2 %, which makes ANNSTLF an
efficient generic short-term load forecaster.

1.90
1.80
1.70
1.60
1.50
1.40
1.30
1.20
1.10

MAPE [%]

1.00

pge

Figure 9: MAPE error for all regions.

Conclusions

In the paper, the problem of pre-processing
temperature data from multiple weather station for
short-term load forecasting is addressed. Generic
forecasting models usually allow only one
temperature as input variable, which is also the case
of EPRI’s efficient forecaster AANNSTLF. For this
reason, two methods for optimising weights of
multiple weather station data are tested. As a
criterion, correlation factor and unbiased estimator
of mutual information are optimised by means of
genetic algorithms.

The proposed methods are tested on five systems
with multiple weather stations. Systems are
completely different on from each other in every
respect, thus making the verification phase credible.
Moreover, having a large database of historical
data, at least six months of out-of-sample-data were
employed. The obtained results show that for all
regions the forecaster accuracy was increased, when
proposed methods for calculating multiple weather
stations’ weights were implemented.

Although five completely different regions in terms
of peak load, seasonal effect and geographical
location were analyzed, the ANNSTLF forecasting
model always gave accurate results, which confirms
its generic structure and width range of
implementation possibilities. This now allows
utilities using the EPRI-ANNSTLF to obtain better
accuracy by employing multiple weather stations
per region.
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