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 DISCLAIMER 
 This report was prepared as the result of work sponsored by the 

California Energy Commission. It does not necessarily represent 
the views of the Energy Commission, its employees or the State 
of California. The Energy Commission, the State of California, its 
employees, contractors and subcontractors make no warrant, 
express or implied, and assume no legal liability for the 
information in this report; nor does any party represent that the 
uses of this information will not infringe upon privately owned 
rights. This report has not been approved or disapproved by the 
California Energy Commission nor has the California Energy 
Commission passed upon the accuracy or adequacy of the 
information in this report.  
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Preface 
 
The Public Interest Energy Research (PIER) Program supports public interest energy 
research and development that will help improve the quality of life in California by 
bringing environmentally safe, affordable, and reliable energy services and products to 
the marketplace. 
 

The PIER Program, managed by the California Energy Commission (Energy 
Commission), annually awards up to $62 million to conduct the most promising public 
interest energy research by partnering with Research, Development, and Demonstration 
(RD&D) organizations, including individuals, businesses, utilities, and public or private 
research institutions. 
 

PIER funding efforts are focused on the following RD&D program areas: 
 

• Buildings End-Use Energy Efficiency 
• Energy-Related Environmental Research 
• Energy Systems Integration  
• Environmentally Preferred Advanced Generation 
• Industrial/Agricultural/Water End-Use Energy Efficiency 
• Renewable Energy Technologies 

 

The California Climate Change Center (CCCC) is sponsored by the PIER program and 
coordinated by its Energy-Related Environmental Research area. The Center is managed 
by the California Energy Commission, Scripps Institution of Oceanography at the 
University of California at San Diego, and the University of California at Berkeley. The 
Scripps Institution of Oceanography conducts and administers research on climate 
change detection, analysis, and modeling; and the University of California at Berkeley 
conducts and administers research on economic analyses and policy issues. The Center 
also supports the Global Climate Change Grant Program, which offers competitive 
solicitations for climate research.  
 

The California Climate Change Center Report Series details ongoing Center-sponsored 
research. As interim project results, the information contained in these reports may 
change; authors should be contacted for the most recent project results. By providing 
ready access to this timely research, the Center seeks to inform the public and expand 
dissemination of climate change information; thereby leveraging collaborative efforts 
and increasing the benefits of this research to California’s citizens, environment, and 
economy. 
 

The work described in this report was conducted under the Climate Data Collection, 
Analysis, and Modeling - Phase II contract, contract number 500-02-004, work 
authorization MR-025 by the Scripps Institution of Oceanography at the University of 
California, San Diego.   
 

For more information on the PIER Program, please visit the Energy Commission’s 
website www.energy.ca.gov/pier/ or contract the Energy Commission at (916) 654-5164. 
 

www.energy.ca.gov/pier/
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Abstract 
 

 

For the purpose of producing datasets for regional-scale global change research and 
application, the National Centers for Environmental Prediction (NCEP)/National Center 
for Atmospheric Research (NCAR) Reanalysis for the period 1948–2005 was dynamically 
downscaled to hourly, 10 kilometer (km) resolution over California using the Regional 
Spectral Model.  In order to maintain the large-scale features of the Reanalysis, the Scale 
Selective Bias Correction has been applied to minimize the large-scale errors. Extensive 
validation of the downscaled analysis was performed using station observations and 
gridded precipitation analyses. The downscaled near-surface wind, temperature, and 
precipitation fit better with regional-scale station observations than the Reanalysis used 
to force the regional model.  This advantage of the downscaling was found on all time 
scales, ranging from hourly to decadal scales. The 10 km resolution made the analysis 
over land fit even better than North American Regional Reanalysis, which is performed 
with 32 km resolution with observations assimilated.  However, the downscaling suffers 
from positive bias in precipitation for heavy precipitation. The analyses are also 
inaccurate near the lateral boundary. The apparent advantage of the dynamical 
downscaling upon the statistical downscaling method is that all variables in the 
downscaled analysis are dynamically, physically, and hydrologically consistent. The 
dataset is freely available to the public. 

 
 
 
 
Keywords: Reanalysis, downscaling, NCEP, NCAR, CaRD10, regional spectral model, 
RSM, PRISM, NARR 
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Executive Summary 
 

 

Introduction 

The PIER Climate Change Research Center (Center) plans to develop probabilistic 
climate projections for California at adequate levels of temporal and geographical 
resolution for both impacts and adaptation studies and long-term state planning, such as 
the State Water Plan. Before these projections can be developed, however, it is necessary 
to determine the performance of the tools used to translate the results from global 
climate models to regional scales such as California.  The Regional Spectral Model 
(RSM), a regional climate model, is one of the tools that the Center will use to develop 
climate projections for California. 

Regional Climate Models such as RSM are able to simulate historical weather conditions 
extremely well when they assimilate or use meteorological observations from ground-
level stations and satellites. However, observations are not available to simulate future 
climate conditions in California, so it is also necessary to ensure that the regional climate 
models also perform reasonably well without the guidance of measured meteorological 
observations. 

Project Objectives 

Project objectives were to: 

• Conduct a path-breaking, long-term simulation for California for the last 57 years 
at a very high resolution (10 kilometers, km) to determine how well the RSM 
simulate historical conditions. 

• Verify that the model is able to simulate historical conditions fairly well without 
using meteorological observations to fine-tune it. 

• Determine any model deficiencies that should be corrected before the model is 
used to estimate future climatic conditions in the state. 

Project Approach 

The research team used the RSM model to recreate California’s climate for the time 
period of 1948 to 2005. Various climatic parameters such as temperature, wind speed 
and direction, and precipitation were compared with observations from that time period 
and with the output of another meteorological model that was fine-tuned to replicate 
historical observations, to determine the accuracy of the RSM’s downscaled 
meteorological outputs. 
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Project Outcomes 

The data from the 10 km, hourly downscaling of the RSM model over the West Coast 
from 1948 to 2005 agree well with the available observations, with the exception of large 
precipitation events, where the model overestimates precipitation amounts.  

The downscaled RSM meteorological model fits the observations better than the coarse-
resolution meteorological model that is currently available. The RSM model’s 10 km 
downscaling is now available for the period 1948 to 2005. The outputs contain various 
meteorological values (such as temperature, wind speed, direction, and precipitation) 
and land values (such as soil temperature and moisture) that were estimated for every 
hour of that period. These data are publicly accessible through the Internet. 

Conclusions 

This downscaled analysis is considered to be useful for regional climate research and 
application, and its use is highly encouraged, with the caveat that the downscaled 
analysis is not perfect (especially for large precipitation events). Because this model 
reproduced the historical climate of California so well, it should be ideal for use in 
predicting California’s future climate. 

Recommendations 

It is recommended that the downscaled analysis be further refined to reduce the errors 
observed in the precipitation values.  This work is under way. 

Benefits for California 

This is the first time that a high-resolution, long-period “analysis” of a large number of 
meteorological and surface variables over California is available. Because this 
downscaled analysis has shown that it can reproduce historical climatic variables as well 
as or better than the current coarse-grid climate models, it will enable researchers to 
more fully investigate the affects of greenhouse gas emissions on California’s future 
climate.   
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1.0 Introduction 
Climate research, particularly the application studies for water, agriculture, forestry, 
fishery, and energy management require fine-scale, multi-decadal information of 
meteorological, oceanographic, and land states.  Unfortunately, spatially and temporally 
homogeneous multi-decadal observations of these variables in high horizontal 
resolution are nonexistent. Some long-term surface records of temperature and 
precipitation exist, but the number of observation are very limited and the 
measurements are often contaminated by the changes in instrumentation over time.  
Some climatologically important variables, such as soil moisture, surface evaporation, 
and radiation are not even measured on most of the continental United States and 
around the globe. 

Reanalysis is one  way  to obtain long term homogeneous analysis of needed variables.  
Unfortunately, the horizontal resolution of reanalysis is on the order of 100 to 
200 kilometers (km)—too coarse for many application studies.  Recently, regional 
reanalysis over the continental United States was conducted (North American Regional 
Reanalysis, NARR) (Mesinger et al. 2006).  The horizontal resolution of 32 km and the 
duration of 25 years used in that study are still not completely satisfactory for 
application requirements, but the product is definitely valuable. Exciting results are 
expected soon from studies using the NARR.  

This paper presents another attempt to produce even higher resolution regional 
reanalysis over a longer period for the State of California, using a dynamical 
downscaling technique.  This method (hereafter called CaRD10) is based on the concept 
that small-scale detail can be attained by laterally forcing a high-resolution regional 
model with large-scale analysis. The major assumptions in this process are that the 
small-scale features are purely forced by large-scale motions and that the small-scale 
motions never feed back to the large scale.  This assumption holds well when the large 
scale forcing is strong (e.g., during winter and transient seasons), but may fail when the 
forcing is weak (e.g., during summer).  The essential difference between the dynamical 
downscaling method and data assimilation, which is used in NARR and in all the global 
reanalyses, is that dynamical downscaling does not utilize station observations to correct 
model forecast error.  In this context, the dynamical downscaling can be referred to as 
“regional data assimilation without observation” (von Storch et al. 2000).  As described 
later, dynamical downscaling can be improved by forcing the large scale part of the field 
within the regional domain.  This process reduces the forecast error of the “large scale” 
part of the regional model.  Therefore, the dynamical downscaling can better be referred 
to as “regional data assimilation without regional scale observation.” 

This paper is organized as follows: Section 2 discusses details of the model and 
downscaling procedures.  Section 3 presents validation of the analysis based on station 
observation.  Section 4 discusses comparison to NARR. Section 5 compares precipitation 
with gridded observed precipitation analysis, PRISM (Precipitation-elevation Regression 
Independent Slopes Model) and Higgins data (Higgins et al. 2000). Section 6 concludes 
the paper, and Section 7 describes data availability. 
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2.0 Model and Dynamical Downscaling Procedure 

2.1. The Regional Spectral Model 
The Regional Spectral Model (RSM) (Juang and Kanamitsu 1994) is used in this study.  
The model originates from the one used at the National Centers for Environmental 
Prediction (NCEP), but the code was updated with greater flexibility and much higher 
efficiency (Kanamitsu et al. 2005).  The RSM utilizes a spectral method (with sine and 
cosine series) in two dimensions. A unique aspect of the model is that the spectral 
decomposition is applied to the difference between the full field and the time-evolving 
background global analysis field.  Hereafter, this difference is called perturbation, and the 
background global analysis is called base.  The horizontal derivatives that appear in the 
dynamical forcing terms in the prediction equations are computed for perturbation 
spectral coefficients and the base field separately, and are summed to obtain the total 
forcing.  The transform method of Orszak (1970) is used to evaluate quadratic nonlinear 
terms for both perturbation and the base field.  For the forcing due to nonlinear physical 
processes, the sum of the perturbation and base field (total field) on the transform grid is 
used. After the time derivative is computed as a sum of dynamical and physical forcing 
terms, the perturbation tendency is computed as a difference between total tendency 
and the base field tendency (assumed to be constant for the available time interval of the 
back ground field, namely six hours).  This perturbation tendency is numerically filtered 
using sine and cosine series, and then is used to advance the spectral coefficients of 
perturbation in time.  This procedure mimics the prediction of perturbations, but it is not 
the perturbation equation that is integrated in time.  The procedure is probably better 
named the optimum spectral perturbation filtering method, in which full field minus base 
field (both of which are defined within the domain) is used to apply sine and cosine 
filter. 

The model equations consist of a momentum equation, a thermodynamic equation, a 
mass conservation equation, and a moisture equation.  The primitive equation system is 
used, in which vertical motion is diagnosed rather than predicted. This system of 
equations is based on an approximation that the horizontal scale is larger than the 
vertical scale. This approximation places a limit to the use of horizontal resolution 
depending on the vertical scale of the phenomena.  The regional scale phenomena, such 
as sea breeze, mountain-valley breeze, and many of the flow regimes appearing along 
the coast of California are confined within the marine boundary layer and have the 
vertical scale of 1–3 km. Therefore, the horizontal grid size of the quasi-hydrostatic 
equation model can be as small as 5–10 km. On the contrary, the deep convective system 
which appears in the summertime over the Midwest has a vertical scale of more than 10 
km and therefore, the horizontal resolution of 50 km or larger is preferred.  For the 
downscaling performed in this study, a horizontal resolution of 10 km is used.  Because 
of the use of Mercator projection, the physical grid size varies with latitude, and the 
smallest grid distance can be as short as 7 km in the domain chosen for this study.  The 
use of this rather high resolution is based on the dominance of a relatively small vertical 
scale of phenomena in the region of interest. The choice is also based on the more 
practical desire for water management application that will resolve complex topography 
in California as much as possible. 
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The only difference in the dynamical core used in this study from the original RSM is the 
application of a process-splitting time scheme (Williamson 2002), in which physical 
processes are computed in parallel with the dynamical forcing terms, as opposed to 
computing them in a serial manner.  This scheme saves considerable computational time 
for parallel computing because it reduces the communication between the processors by 
as much as a factor of two.  The time-scheme slightly increases precipitation, but the 
difference is found to be sufficiently small.  Other details of the parallelization and 
optimization of the model are described in Kanamitsu et al. (2005).  

The physical processes included in the model are listed in Table 1. Among these 
processes, particular mention will be given to the Oregon State University Land Scheme 
(Pan and Mahrt 1987) and the radiation.  The land scheme consists of two soil layers, 
10 centimeters (cm) and 190 cm thick, where soil moisture and soil temperature are 
predicted. Evaporation from the land surface is divided into two parts: direct 
evaporation and transpiration.  The formula of Chen and Dudhia (2001a, b) is used for 
direct evaporation (Kanamitsu and Mo 2003). The snow model is a simple 1-layer energy 
balance model.  Specifications of the land surface characteristics are described in Section 
2.4. Other details of the scheme are described in Chen et al. (1996).   

Table 1.  Physics of the regional spectral model 
 Parameterization Reference 

Convection Relaxed Arakawa Schubert Moorthi and Suarez (1992) 

Large scale condensation Evaporation of rain 
included 

 

Shallow Convection Tiedtke scheme  Tiedtke (1983) 

Boundary Layer Non-Local scheme Hong and Pan (1996) 

Surface Layer Monin-Obukhov   

Long wave radiation M.-D. Chou Chou and Suarez (1994) 

Short wave radiation M.-D. Chou Chou and Lee (1996) 

Cloud  Slingo Slingo (1987) 

Gravity wave drag Pierrhumbert Alpert et al (1988) 

Vertical Diffusion Richardson number 
dependent 

  

Land model OSU  Pan and Mahrt (1987) 

      Land characteristics USGS  

      Direct evaporation NCAR Chen et al. (1996)  

Topography Smoothed mean from 
USGS GTOPO30 
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Both short- and long-wave radiation schemes are taken from M.-D. Chou (Chou and 
Suarez 1994; Chou and Lee 1996).  The CO2 concentration is fixed at 348 parts per million 
(ppm) throughout the 50-plus years of integration.  The effect of aerosol is included, but 
a fixed seasonal climatological value by Koepke et al. (1997) is used. As will be 
mentioned later in Section 2.3, since area average temperature and moisture in the 
regional domain is forced to match those of the Reanalysis by Scale Selective Bias 
Correction, the effects of CO2 and aerosol on free atmosphere in the downscaled analysis 
of these variables will be minimal, but the surface fluxes will certainly be affected.  Thus 
the CO2 concentration will probably change the surface temperature, evaporation and 
sensible heat, and eventually impact the land states, such as soil moisture and snow.  
This is one of several simplifications made in this downscaling and caution needs to be 
exercised when the downscaled products are used for diagnostics and application.  

Cloudiness is computed from relative humidity and vertical motion, as well as from 
marine boundary layer depth and intensity (Slingo 1987).  These clouds interact with the 
radiation scheme.  

The physical parameterization schemes used in RSM are fully tested in global model 
with ensemble Atmospheric Model Intercomparison Project (AMIP)-type runs. The skill 
of the simulation is reasonable and comparable to many other global models (Robertson 
et al. 2004).  For the application of the model to high-resolution regional downscaling, no 
explicit tunings of the physical processes are performed.  The results of this lack of the 
tuning will be seen in some of the biases which appear in the simulation. 

2.2. Model Domain and Topography 
The model domain is shown in Figure 1.  The Mercator projection true at 60N is used in 
this study.  The domain covers the area from 29.466N to 45.719N, and 128.203W to 
111.563W.  The model coastline and surface elevation are also shown in Figure 1.  This 
domain is selected to focus on the State of California and the neighboring states, but it 
also incorporates requests from the ocean research community.  Note that the major 
limiting factor of the domain size is computer resource availability.  Unfortunately, the 
choice of the domain affected simulation of winds and precipitation associated with the 
summertime southwest monsoon in the southeastern part of the domain, due to the 
lateral boundary placed just at the northern end of the Gulf of California (as shown 
later). It should also be noted that the lateral boundary nudging zone extends to 
approximately 20–25 grid points from the boundary, further reducing the useable 
domain. These limitations will hopefully be remedied in the simulations over a much 
wider area, currently in progress in collaboration with the Earth Simulator Center in 
Japan. 

2.3. Scale Selective Bias Correction 
The accuracy of the dynamically downscaled analysis depends on two factors: (1) the 
assumption of one-way interaction, and (2) the accuracy of the regional model itself.  
The former is a fundamental assumption in dynamical downscaling, which sets the 
theoretical limit to the methodology.  The latter factor consists of inaccuracies due to 
numerics (accuracy of the discretization method, and the treatment of the time evolving 
lateral boundary conditions) and inaccuracies of the physical processes. These 
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inaccuracies can be reduced in principle by improving each component, but this requires 
diligent and continuous efforts, as seen from the fact that many operational numerical 
forecast centers are spending most of their resources for this sole purpose. 

 

Figure 1.  CaRD10 domain and surface elevation 

In an attempt to reduce the model error, the research team supposed that the growth of 
large scale error spanning the regional domain is the major cause of inaccuracies in the 
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dynamical downscaling procedure, because large scale has large spatial and temporal 
variance.  For example, the large-scale error would appear as errors in the phase and 
amplitude of large-scale features, such as the location and strength of a synoptic scale 
trough.  The error in this scale causes significant error in the large-scale part of the 
mesoscale features (such as the location of the front). Several studies have noted poor 
accuracy of dynamically downscaled analysis (e.g., Roads et al. 2003), which this study’s 
authors consider to be due mostly to the large-scale error. 

An alternative to reducing the error in the regional model is to “nudge” the regional 
solution to “truth.”  This requires knowledge of “truth,” and for the downscaling of 
global analysis, the truth is known on spatial scales for which the global data 
assimilation system provides accurate analysis (more precisely, the analysis with error 
small enough to be within the error of observations).  This scale is a function of the 
average distance of the observation stations, observational error of various observation 
systems used in assimilation, and the resolution of the data assimilation model and 
analysis system.  Considering that the average distance of sounding observation in the 
United States is approximately 250 km (Archer and Jacobson 2003), the scale for which 
the global analysis is accurate over the United States is considered to be 300–400 km.  In 
the present study, since the domain includes ocean area, and since radiosonde 
observation density is less in the early 1950s, 1000 km is chosen as the scale for which 
reanalysis is considered to be “true.”   

The research team specifically designed a scale selective bias correction scheme (SSBC), 
which effectively reduces the error of scales larger than 1000 km (Kanamaru and 
Kanamitsu 2006). The scheme consists of three components: (1) nudging of the large-
scale part of the wind error (deviation) towards zero, which is accomplished by adding a 
term in the momentum equation to reduce the tendency of the large scale part of the 
perturbation, (2) removal of the area average deviation of temperature and moisture at 
every model level, and (3) adjusting the logarithm of surface pressure to the 
corresponding pressure difference between the global and regional topography.  The 
combination of these procedures reduces the large-scale error and improves the 
simulation of precipitation, and the downscaling becomes insensitive to the model 
domain (Kanamaru and Kanamitsu 2006).  As an additional merit, the lateral boundary 
nudging can be considerably reduced.   

It should be mentioned here that the reduction of the large-scale error in the regional 
domain can be achieved by reinitializing the regional model frequently, such that the 
large-scale error does not fully develop during the downscaling integration (Qian et al. 
2003).  The weakness of the method is the time required for the regional detail to spin-
up, which may take up to 48 hours of integration.  Another shortcoming is the 
discontinuity generated by the frequent start-up.  The evolution of the land parameters 
also causes problems, because fine-resolution observed land initial condition is not 
available and the land condition needs to be spun-up every time the integration starts. 

Note that in case of the downscaling global forecast or simulations (such as global 
warming), the error in the lateral boundary forcing will become another source of error, 
but use of global analysis eliminates this problem. 
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2.4. Lateral Forcing, SST and Land Characteristics 
The lateral forcing is taken from NCEP/NCAR1 50-year reanalysis (Kalnay et al. 1996), 
which is the only reanalysis that goes back to the late 1940s.  The 6-hourly reanalysis at 
model sigma levels is used to force the regional model. The RSM model levels are 
chosen to match the Reanalysis model levels, such that vertical interpolation is avoided.  
The tendency of the global field is assumed to be constant during the 6 hours. 

The European Centre for Medium-Range Weather Forecasts (ECMWF) 40-year 
Reanalysis Sea Surface Temperature (SST) is used in the downscaling.  This SST (Fiorino 
2004) is a combination of the SST analysis from the United Kingdom Meteorological 
Office (monthly mean HaDISST, prior to and including 1981)  and the U.S. National 
Centers for Environmental Prediction (weekly NCEP 2DVAR SST, after 1982 inclusive) 
cleaned up at the ice edges and interpolated to daily analysis using the mean conserving 
interpolation scheme (Taylor et al. 2000).  

Land characteristics—namely vegetation, cover, and soil types—are taken from the 
United States Geophysical Survey compilation.  The original 10-min resolution data 
were resampled to 30 min resolution to reduce the data volume size and were then 
utilized in the downscaling.  The Oregon State University Land Model used in this study 
recognizes 12 types of vegetation: 

1. mixed farming tall grassland 

2. tall/medium grassland, shrubland 

3. short grassland meadow and shrubland 

4. tundra 

5. sandy desert 

6. rocky desert  

7. tropical evergreen broadleaved forest 

8. evergreen forest, needle-leaved forest 

9. medium grassland, woodland 

10. deciduous forest 

11. mixed deciduous and evergreen forest 

12. ice 

                                                      
1 National Centers for Environmental Prediction/ National Center for Atmospheric Research  
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It also recognizes 16 types of soil:  

1. sand 

2. loamy sand 

3. sandy loam 

4. silt loam 

5. silt 

6. loam 

7. sandy clay loam 

8. silty clay loam 

9. clay loam 

10.  sandy clay 

11. silty clay 

12. clay 

13. organic materials 

14. water 

15. bedrock  

16. other (land-ice) 

For the vegetation cover, seasonally varying climatology is used.  The vegetation type, 
soil type and vegetation cover in summer are shown in Figure 2 through Figure 4.  

Soil moisture and soil temperature are predicted by the model during the nesting period 
of six hours.  These predicted values are carried to the next nesting period, thus they 
evolve with time during the entire period of downscaling and interact with near surface 
atmosphere.  No attempt to prevent the land state from drifting to its own climatology 
was made.  As shown later, no apparent drift was observed during the 50 years of 
downscaling.   

The topography is taken from the GTOPO30 global digital elevation model and 
interpolated directly to the model grid.  The variance of topography used in the gravity 
wave drag parameterization (Alpert 1988) is computed as a variance of 30 minute 
topography within the regional model grid of 10 km. 

2.5. Integration Procedure 
The downscaling is performed in three streams: 1948–1969, 1968–1989, and 1988–2005.  
The initial condition of the atmosphere and land is taken from the global Reanalysis at 
00UTC on January 1, 1948, linearly interpolated to a regional model grid.  In order to 
avoid spin-up of soil moisture, the three streams overlap over two years: 1968–1969 and 
1988–1989.  The discontinuity in soil moisture after the two-year overlap becomes small.  
The research team compared several grid point values of volumetric soil moisture in the 
layer 10–200 cm between the long continuous RSM run and the NCEP/NCAR 
Reanalysis interpolated to regional grid, which is as large as 0.25, but the discontinuity 
between restart and continuous runs reduced to 0.005 or less after two years.   
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Figure 2.  Vegetation type used in the downscaling.  The color below the numbers 
on the color bar differentiate the vegetation classification (for example, 

classification number 10 as light yellow).  See text for vegetation classification. 
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Figure 3.  Soil type used in the downscaling. The color below the numbers on the 
color bar differentiate the soil type classification (for example, classification 
number 13 as light yellow).  See text for soil type classification. 
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Figure 4.  An example of vegetation cover used in downscaling (August).   
The color bar indicates vegetation cover in fraction. 
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3.0 Validation of the Downscaled Analysis Against Station Observations 
The key to the success of the downscaling is to demonstrate that the downscaled 
analysis fits better with observation than the coarse resolution global analysis, 
particularly with near surface observation in a regional scale.  Since the accuracy of the 
downscaled analysis is expected to vary with the time scale, which is an important 
consideration for climate study, the research team performed the validation against 
surface observations by separating the time scale to hourly, daily, monthly, seasonal, 
and decadal, including long-term trend.  The station observation locations are plotted in 
Figure 5 and listed in Table 2. There are three types of station observations:  (1) Fifteen 
hourly buoy observations (courtesy of Steve Taylor; names start with b), (2) stations 
from the United States Historical Climatology Network2 for monthly and daily means 
(three coast locations, c, six valley locations, v, and two mountain locations, m), and (3) 
12 daily airport station observations from the National Climatic Data Center (NCDC) 
(three-letter abbreviations).  

3.1. Daily Scale 

3.1.1. Wind over coastal ocean  
The research team computed the normalized wind vector anomaly correlation (Breaker 
et al. 1994) and vector Root Mean Square Error (RMSE) of three daily analyses—NARR, 
CaRD10, and R1 (NCEP NCAR Reanalysis)—against fifteen buoy observations during 
January and August, 2000. These are shown in Figure 6.  This validation is of particular 
interest because the effect of local geography on coastal ocean wind is probably much 
simpler than that over land.  Figure 5 shows the locations of the buoys used in this 
comparison. Note that the NARR should fit the buoy observations best, since it uses 
these buoy wind observations in its data assimilation.  In other words, this is not an 
independent validation for the NARR.  The figure clearly shows that for almost all the 
stations, CaRD10 has a higher correlation and lower RMSE than R1 and sometimes the 
downscaling fits even better than the NARR.  The improvement is large for the buoy 
b25, which is located at the south of the Point Conception, an area characterized by 
weaker winds with more temporal and spatial variability.  This location is also known as 
the place where the Catalina Eddy forms (see Section 3.3  on synoptic examples).  The fit 
of the downscaled analysis became slightly worse than the R1 at some buoys, but it is 
not consistent between January and August nor is it systematic, and the differences 
between CaRD10 and R1 are probably not statistically significant. The average vector 
correlation and RMSE for all the buoys compared here are shown in Table 3. Compared 
to R1, the improvement of the RMSE in the downscaling is impressive.  Overall, CaRD10 
is much closer to NARR (which utilized these buoys) than to  R1.   

                                                      
2 See http://cdiac.ornl.gov/epubs/ndp/ushcn/newushcn.html.  

http://cdiac.ornl.gov/epubs/ndp/ushcn/newushcn.html
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Figure 5.  Observation station locations used in downscaling validation.  The 
stations in blue with circles are buoy observation (names begin with b; courtesy 
of Steve Taylor).  The stations in black with square mark are the USHCN stations 
(names begin with c, v, or m) and the stations in brown with plus signs are from 

NCDC (three-letter abbreviation).  The color bar indicates altitude in meters. 
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Table 2.a Buoy station locations 
WMO ID Sign Location Latitude Longitude 

46011 b11 Santa Maria 34.88 N 120.87 W 

46012 b12 Half Moon Bay 37.36 N 122.88 W 

46013 b13 Bodega Bay 38.23 N 123.32 W 

46014 b14 Pt. Arena 39.22 N 123.97 W 

46022 b22 Eel River 40.78 N 124.54 W 

46023 b23 Pt. Arguello 34.71 N 120.97 W 

46025 b25 Santa Monica Basin 33.75 N 119.08 W 

46026 b26 San Francisco 37.75 N 122.82 W 

46028 b28 Cape San Martin 35.74 N 121.89 W 

46042 b42 Monterey 36.75 N 122.42 W 

46047 b47 Tanner Banks 32.43 N 119.53 W 

46053 b53 Santa Barbara E 34.24 N 119.85 W 

46054 b54 Santa Barbara W 34.27 N 120.45 W 

46062 b62 Pt. San Luis 35.10 N 121.01 W 

46063 b63 Pt. Conception 34.27 N 120.66 W 

 

Table 2.b Stations for monthly analysis (data obtained from United States 
Historical Climatology Network) 

COOP ID Sign Location Latitude Longitude 

042910 c1 Eureka WSO 40.80 N 124.17 W     

047916 c2 Santa Cruz 36.98 N 122.02 W 

046175 c3 Newport Beach 
Harbor 

33.60 N 117.88 W 

046506 v1 Orland 39.75 N 122.20 W 

045385 v2 Marysville 39.15 N 121.60 W 

042294 v3 Davis Exp Farm 38.53 N 121.77 W 

043257 v4 Fresno WSO AP 36.78 N 119.72 W 

043747 v5 Hanford 36.30 N 119.65 W 

049452 v6 Wasco 35.60 N 119.33 W 

044713 m1 Lake Spaulding 39.32 N 120.63 W 

048758 m2 Tahoe City 39.17 N 120.13 W 
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Table 2.c Airport stations for daily analysis (data obtained from NCDC) 
COOP ID Sign Location  Latitude Longitude 

040442 BFL Bakersfield 35.43 N 119.05 W 

040822 BIH Bishop 37.37 N 118.35 W 

045115 CQT Los Angeles USC 34.02 N 118.28 W 

043257 FAT Fresno 36.77 N 119.72 W 

045114 LAX Los Angeles 33.93 N 118.40 W 

045085 LGB Long Beach 33.82 N 118.15 W 

047304 RDD Redding 40.50 N 122.30 W 

047630 SAC Sacramento 38.50 N 121.48 W 

047740 SAN San Diego 32.73 N 117.17 W 

048558 SCK Stockton 37.88 N 121.23 W 

047769 SFO San Francisco 37.62 N 122.38 W 

047946 SMX Santa Maria 34.90 N 120.45W 

 

Table 3. Mean vector anomaly correlation and RMSE of winds of three analyses 
and fifteen buoy observations during 2000 

 Correlation RMSE 

 R1 CaRD10 NARR R1 CaRD10 NARR 

January 0.77 0.82 0.86 3.50 2.94 2.17 

August 0.66 0.68 0.70 2.52 1.83 1.70 

 

3.1.2. Wind over Land  
The research team performed similar comparisons on wind over land, using the 12 
airport stations shown in Figure 5.  The station locations are shown in red and crosshair 
marks in Figure 5.  Overall, the fit of the three analyses to the land stations are much 
worse than those over the ocean. This is expected, since the more complex surface 
topography on land produces a stronger influence on winds. The differences in fit 
between the three analyses are more diverse, but CaRD10 seems to be consistently better 
than R1 and NARR, both in terms of correlation and RMSE.  The average correlation and 
RMSE for all the stations are shown in Table 4.  The CaRD10 fits best, due to the detailed 
10 km resolution topography in CaRD10 compared to 32 km in NARR. Although the 
surface wind observations are assimilated in NARR, its information content over land 
seems to be masked by the coarse resolution topography.   
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Table 4. Mean vector anomaly correlation and RMSE of winds of three analyses 
and twelve land station observations during 2000 

 Correlation RMSE 

 R1 CaRD10 NARR R1 CaRD10 NARR 

January 0.49 0.56 0.39 3.90 3.24 3.92 

August 0.39 0.46 0.41 2.62 2.29 2.47 

 

Figure 6.  Comparisons of the vector correlation on the left panels and vector root 
mean square error (RMSE) on the right panels of daily near surface wind analysis 
with buoy observations, for January (upper panels) and August (lower panels) of 
2000.  Note the significant increase (decrease) in the correlation (RMSE) from R1 
(blue) to CaRD10 (green).  
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Figure 7.  Same as Figure 6, but for land stations  

 

3.1.3. Daily Mean and Max/Min Temperature over Land  
Figure 8 is the comparison of correlation of daily mean temperature at 12 land stations in 
California for January and August, 2000 (the same stations as those used for the wind 
verification over land). The CaRD10 correlation ranges from 0.5 to over 0.9.  During 
January, the result is mixed (R1 is best at 5 stations, CaRD10 is best at 6 stations, and 
NARR is best at 1 station).  During August, CaRD10 is best for 6 stations, NARR is best 
for 5 stations, and R1 is best at 1 station.  In terms of mean bias removed RMS, the result 
is about equal for R1, CaRD10 and NARR in January. NARR is the best for 3 stations and 
CaRD10 is best for 6 stations, and in August, NARR is best for 9 stations and CaRD10 is 
best for 3 stations. 
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Figure 8.  Comparisons of the correlation (left panels) and root mean square error 
(RMSE) (right panels) of CaRD10 daily near surface temperature with station 

observations in January (upper panels) and August (lower panels) during 2000   

The correlations of daily max/min temperature with observation for R1 and CaRD10 are 
shown in Figures 9 and 10.  The correlation for NARR is not available for this 
comparison. Daily maximum and minimum temperature correlations and RMS for 
CaRD10 are mixed. CaRD10 at station BIH is worse at both max and min temperatures 
than it is at R1, but is better than R1 in terms of mean temperature. The improvement of 
CaRD10 over R1 is not impressive, but noticeable. 
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Figure 9.  Same as Figure 8, but for daily maximum temperature 
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Figure 10.  Same as Figure 8, but for daily minimum temperature 

Table 5 compares correlation and RMS averaged over all the land observation stations.  
The correlation of CaRD10 is almost always higher than that of R1, except for the daily 
minimum temperature in January.  The CaRD10 correlation is apparently better than 
that of the NARR.  The RMS of CaRD10 is always less than that of R1 (except for the 
daily max temperature in August), but NARR has less RMS error for daily mean 
temperature both in January and August. 

Table 6 presents the mean bias.  The CaRD10 tends to have smaller bias than R1 and 
NARR, particularly in winter.  This is probably because the surface topography of 
CaRD10 is much closer to the real topography. The bias of daily mean and daily 
max/min temperatures at individual airport stations are shown in Figure 11. 
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Table 5. Mean correlation and RMSE of daily mean temperature and max/min 
temperature of three analyses and twelve land station observations during 2000 

  Correlation RMSE 

  R1 CaRD10 NARR R1 CaRD10 NARR 

January 0.77 0.77 0.75 1.73 1.66 1.63 Mean T 

August 0.67 0.71 0.69 1.74 1.73 1.38 

January 0.45 0.47 - 2.47 2.37 - Tmax 

August 0.75 0.75 - 2.35 2.45 - 

January 0.77 0.75 - 2.53 2.47 - Tmin 

August 0.40 0.49 - 2.25 2.17 - 

 

 

Table 6. Mean bias of daily mean temperature and max/min temperature of three 
analyses and twelve land station observations during 2000 

  Bias 

  R1 CaRD10 NARR 

January -2.82  -0.63  -0.85  Mean T 

August -1.70 -1.40  -0.44  

January -3.09 -0.68  -  Tmax 

August -0.69   0.70  -  

January -1.45   1.54  -  Tmin 

August -4.04 -1.98  -  
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Figure 11.  CaRD10 bias of near surface daily mean (top), daily maximum (middle), 
and daily minimum (bottom) temperature at various observation stations for 

January (left) and Aug (right) during 2000. Station locations are shown in Figure 5. 
Note that max/min temperature information was not available for NARR 

The CaRD10 bias is smaller than that of R1 and NARR.  The sign of daily mean 
temperature bias tends to be negative (cold bias),  For the maximum temperature in 
January, CaRD10 tends to have negative or no bias, while an almost uniform positive 
bias is found in the minimum temperature for the same month, which results in 
reduction of the daily temperature range.  In August, although it is not very uniform, 
minimum temperature has a negative bias but the maximum temperature bias is mixed. 

Finally, the daily temperature ranges in summer and winter are compared with a large 
number of land stations in 1996 and are shown in Figure 12 (courtesy of Mary Tyree).   
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The geographical patterns look fairly reasonable for both January and July but CaRD10 
tends to underestimate the temperature range, particularly in January. 

 

 

Figure 12.  Comparison of daily temperature range for January (upper panels) and 
July (lower panels) 1996.  Left observation (courtesy of Mary Tyree), and right 

CaRD10. 
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3.1.4. Precipitation Over Land  
The correlation of daily precipitation in August is low (Table 7), but this is due to 
infrequent precipitation events.  In January, the correlation is above 0.6, except for one 
station.  The bias is quite large, and that bias will be discussed in more detail later.   

Table 7. Correlation and bias (in mm/day) between CaRD10 and daily station 
observation of precipitation for 6 selected stations in California in January and 

August for the period 1948–2003 
 January August 

Station Corr. Bias Corr. Bias 

c2 0.68 1.00 0.50    0.08 

c3 0.66 1.33 0.12   -0.02 

v1 0.60 3.54 0.33  0.05 

v3 0.60 2.43 0.14    0.06 

v6 0.43 2.01 0.03  0.01 

m1 0.84 1.04 0.40    0.10 

 

In general, the correlation between station observation and CaRD10 is reasonable but 
not necessarily excellent.   Due to the non-Gaussian nature of the precipitation events, as 
well as to the instrumental error and the spatial representativeness of station 
observations, validation of daily precipitation against station observation is problematic, 
and further work is necessary. 

3.2. Hourly Scale 
Simple correlation of available hourly buoy wind speed observations during the entire 
two years showed slightly lower correlation than that of the daily observed wind speed 
but it is not clear how reasonably the hourly variations are reproduced in CaRD10.  
Instead, this study validated the hourly scale by compositing the monthly diurnal 
variation from two years of data.  Figure 13 through 20 show the comparison of wind 
speed and wind vector.  We see that the agreement with observation is reasonably good, 
amazingly so at some locations, such as the buoy b42 in April and May and buoy b47 in 
September. At buoy b25 and b42, the dynamical downscaling tends to give larger 
diurnal amplitude, but phase is reasonable.  The agreement is better for station b47.  At 
station b63, the amplitude is reasonable, but the peak is shifted by 4–5 hours during 
April to September.   

Another example of the composite of the diurnal variation of winds is shown in Figure 
21. This is the one month CaRD10 wind time-height composite compared with the 
observed composite taken from the special observation at Piedras Blancas (Ralph et al., 
2000, the particular figure used here is provided courtesy of Paul Neiman). The 
observation is based on the hourly wind profiling radar deployed by National Oceanic 
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and Atmospheric Administration (NOAA).  The timing of the diurnal variation of low 
level wind speed is very well represented by CaRD10, although the variability tends to 
be less (6.5 meters per second (m/s) in observation versus 4.5 m/s in CaRD10).  The 
variation of CaRD10 wind direction is fairly reasonable at around 1000 m above ground, 
but tends to vary too much close the surface. 

Overall, diurnal variation is fairly reasonably reproduced by the downscaling, although 
the detail and accuracy may need further study. 

 

Figure 13.  Comparison of the monthly composited diurnal variation of near 
surface winds for each month in 2000 and 2001 at buoy station b25.  Black lines 

are observation and red lines are CaRD10 
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Figure 14.  Same as Figure 13 but for buoy b42 

 

Figure 15.  Same as Figure 13, but for buoy b47 
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Figure 16.  Same as Figure 13, but for buoy b63 

 

 

Figure 17.  Comparison of the monthly composited diurnal variation of near 
surface wind vector for each month in 2000 at buoy station b25.  Black arrows are 

observation and red arrows are CaRD10. 
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Figure 18.  Same as Figure 17, but for buoy b42 

 

Figure 19.  Same as Figure 17, but for buoy b47 
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Figure 20.  Same as Figure 17, but for buoy b63 

Observation CaRD10

Figure 21. Validation of composite diurnal variation of wind and wind speed at 
Piedras Blancas (35N, 121.3W) 
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3.3. Synoptic Examples 
Comparison of the dynamically downscaled analysis with station observation in terms 
of correlation, root mean square and bias errors is not sufficient to demonstrate the 
meteorological quality of the downscaled analysis.  The integrity of CaRD10 can be more 
clearly demonstrated by showing examples of synoptic events.  This section presents 
three typical mesoscale examples of Catalina Eddy, coastally trapped wind reversal 
(CTWR), and Santa Ana events.  

The Catalina Eddy is well documented by Wakimoto (1987) and Mass and Albright 
(1989).  The research team took a typical case from Mass and Albright (their Figure 2a) 
and examined the surface wind field from CaRD10.  As shown in Figure 22, the 
dynamically downscaled analysis detects the eddy at a reasonable location, 
demonstrating the capability of the dynamical downscaling.   Two discontinuity-like 
features in wind—one starting at Point Conception and the other extending from the 
south central region of the eddy toward the west-south-west direction—are 
undocumented and worth further study.  

A comprehensive review of CTWR is found in Nuss et al. (2000).  The present study 
examined a typical case to see whether dynamical downscaling can reproduce evolution 
of such small scale detail without local observations. As shown in Figure 23, the 
dynamical downscaling provides excellent reproduction of the time evolution of the 
phenomena, which has a relatively short time scale of 24 hours or less.  

An example of a Santa Ana event is taken from the downscaled analysis on October 26, 
2003.  This date is well known for the strong Santa Ana which is associated with a large 
wildfire (the Cedar fire) in Southern California (Keely et al. 2004).  Figure 24 shows 
typical strong offshore wind with very warm temperatures along the southern 
California coast. 

Although these are limited examples, it is clear that dynamical downscaling is capable of 
reproducing synoptically consistent small scale details over ocean and land. 
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Figure 22.  An example of the Catalina Eddy appeared in the CaRD10 at  
1500UTC on May 22, 1984 
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Figure 23.  An example of the evolution of Coastally Trapped Wind Reversal on 
July 21 to 22, 1996 

3.4. Monthly Averages 
Validation of monthly average daily mean and maximum temperature and precipitation 
over land was performed using about 80 land stations during 1984–1996.  The monthly 
average data are more easily available than the daily data, and thus there are more 
observations available for comparison.  Figures 25 and Figure 26 show the fit of CaRD10 
to these observations in January and August.  The monthly mean 2-meter temperature in 
January correlates very well, above 0.7 over the entire domain except 3 stations.  The 
correlation is good along southern coast of California as well as in Nevada and 
Northeastern California.  The correlation tends to be better along the southern coast of 
than toward inland.   On the average, the correlation in August is lower by 0.1, 
compared to January.  In August the  correlation tends to be lower along the coast and 
becomes better toward inland.  The correlation stays above 0.6 over the entire domain.  
The reason for this particular distribution of the skill is not entirely clear, but some 
influence from ocean temperature is suspected.  Our preliminary investigation showed 
that the CaRD10 temperature for coastal land in summer correlates more weakly with 
coastal SST than observed.  This dominant local response may be responsible for the 
poorer fit.  This problem may be due to the overestimated effect of land surface 
atmosphere interaction in the model.  For the daily maximum temperature (Figure 26) 
during January, correlation is mostly over 0.7. The lowest correlation occurs in the 
Central Valley area where the value is in the 0.6 range or lower, but other areas have 
very high correlations.  During August, the correlation tends to be lower, particularly in 
the southern half of the domain. 
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Figure 24.  An example of Santa Ana events, 00Z October 26, 2003 

The correlations of monthly average precipitation are shown in Figure 27. During 
January, the correlation is fairly high in most of California, while it is lower in Nevada 
where less precipitation occurs. During summertime, the correlation is much lower (less 
than 0.6) over most of the domain.  This is partly due to the lack of precipitation during 
this season. 
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January August

Temporal correlation of monthly mean 2m T with observations

Figure 25. Correlation of monthly mean daily mean temperature with observation 
for the period 1948–1996 

January August

Temporal correlation of monthly daily max temperature with obs.

Figure 26. Correlation of monthly mean daily maximum temperature with 
observation for the period 1948–1996 
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January August

Temporal correlation of monthly mean precipitation with obs.

 

Figure 27.  Correlation of monthly mean precipitation with observation for the 
period 1948–1996 

The monthly variation of correlation at selected coastal (3 stations), valley (6 stations) 
and mountain (2 stations) locations is shown in Figures 28 though 30.  The mean 2-meter 
temperature (Figure 28) has high correlation in winter months and drops during the 
summer months.  Somehow, the coastal station displays very poor correlation during 
the summer.  For the stations in the Central Valley, correlation is high in spring and fall, 
and drops down again in summer.  Mountain station skill is mixed.  The correlation of 
max temperature (Figure 29) is about the same as the mean temperature.  The peak skill 
in spring and fall over valley stations is more pronounced for this variable.  For the 
monthly mean precipitation (Figure 30), the correlation is better in winter and worse in 
summer, again reflecting small precipitation events in summer. 

3.5. Trend 
For validation of longer time scales, this study examined the trends for the 1950–1996 
periods at several selected stations (see Figure 5 for the station locations: 3 coastal 
stations, 6 valley stations, and 2 mountain stations, denoted as c1-3, v1-6 and m1-2, 
respectively). Table 8 shows the comparison for the January and August trends. In 
January, the CaRD10 and observation trends agree fairly well, although the magnitude 
of the trend in the CaRD10 is consistently smaller (except for Mountain station m1).  All 
the trends in the observation are positive, while CaRD10 shows a small negative trend in 
the valley at some stations. In August, the CaRD10 trend does not agree with 
observation at all.  Observed trends are all positive (except at one valley station, v6), 
while CaRD10 trends are all negative, with the exception of the mountain stations. 
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Table 8. Comparison of 1950–1996 trend in monthly mean near surface 
temperature between observation and CaRD10 

January August  Station 

Obs. CaRD10 Obs. CaRD10 

c1 +0.04 +0.02 +0.04 -0.04 

c2 +0.05 +0.02 +0.03 -0.05 

Coast 

c3 +0.04 +0.02 +0.02 -0.02 

v1 +0.04 +0.01 +0.00 -0.04 

v2 +0.02 +0.00 +0.02 -0.04 

v3 +0.00 -0.00 +0.01 -0.03 

v4 +0.03 +0.01 +0.05 -0.05 

v5 +0.01 -0.00 +0.02 -0.05 

Valley 

v6 +0.01 -0.00 -0.00 -0.05 

m1 +0.03 +0.05 +0.03 +0.00 Mountain 

m2 +0.05 +0.00 +0.04 +0.12 
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Figure 28.  Variation of correlation of monthly mean temperature with observation 
for the period 1948–1996 at coastal (c1 to c3), central valley (v1 to v6), and 

mountain (m1 and m2) stations 
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c1 c2 c3 v1

v2 v3 v4 v5

v6 m1 m2

 

Figure 29.  Variation of correlation of monthly mean daily max temperature with 
observation for the period 1948–1996 at coastal (c1 to c3), central valley (v1 to v6), 

and mountain (m1 and m2) stations 
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c1 c2 c3 v1

v2 v3 v4 v5

v6 m1 m2

 

Figure 30.  Variation of correlation of monthly mean precipitation with observation 
for the period 1948–1996 at coastal (c1 to c3), central valley (v1 to v6), and 

mountain (m1 and m2) stations 

These conflicting results of CaRD10 need to be examined in detail.  Preliminary research 
suggests several causes. One is that the current downscaling does not take into account 
changes in land use, irrigation, and urbanization, or changes in greenhouse gases and 
aerosol.  The second is that the land surface processes affect near surface temperature 
too strongly in the model.  A third possible reason is the effect of poorly analyzed 
coastal sea surface temperature with a cooling trend affecting the long-term temperature 
trend over land. 

Figure 31 shows the geographical distribution of trends in CaRD10 for January and July.  
In January, the warm trend is apparent over most of the land region.  The positive trend 
is greatest over the Sierra Nevada and Northern California/Oregon, as well as large part 
of Nevada. The Central Valley displays weak or no trend.  During July, most of the area 
shows a negative trend with a slight positive over Nevada and part of Oregon.  There is 
a strong cold trend in coastal ocean surface temperature, which seems to have some 
influence on the negative trend in the Central Valley.  The impact of coastal SST on 
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California is not well documented.  Further study of the possible problem of SST used in 
CaRD10 is warranted. 

Figure 32 compares the trend of near surface temperature between CaRD10 and R1.  
There is very little resemblance between the two figures in January, but the two tend to 
agree better with slight cooling in the valley and warming at other places in August.  
The trend in downscaling at or near the surface may not be controlled by the lateral 
boundary forcing, but by some other mechanism—namely the regional model land 
surface physics and detailed topography. The seasonal variability of this regional 
model’s response—and accordingly the accuracy of the trend in CaRD10—still requires 
more detailed analysis and validation. 

As the last demonstration of the validation of decadal variability, the seasonal variation 
of monthly mean precipitation at 11 coastal, central, and mountain stations were 
compared between two 25 year periods: 1950–1974 and 1975–1996.  The research team 
observed a clear shift in the maximum precipitation month from the December-January 
1950–1974 period to the January–March,1975–1996 period (Figure 33a).  Similar shifts 
were found in the observations (Figure 33b). Although this is just a simple 
demonstration, the CaRD10 is capable of reproducing decadal variability in the 
precipitation. 

 

Figure. 31.  CaRD10 1950–1996 trend of 2-meter temperature for  
January (left) and July (right) 
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Figure 32.  Comparison of 1950–1997 trend of near surface temperature between 
CaRD10 (left) and R1 (right) for January (bottom) and August (top) 
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Figure 33a. Seasonal variation of monthly averaged precipitation in CaRD10 at 11 
selected observation locations.  Black lines are for the period 1950–1974 and red 

lines for 1975–1996.  The horizontal lines are the annual averages. 
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Figure 33b.  Same as Figure 332a, but from station observation 
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4.0  Comparison with North American Regional Reanalysis  
Although there are several differences in the observations used between R1 and NARR 
(for example, satellite-retrieved temperature versus direct use of radiance), when the 
dynamical downscaling is compared with NARR, the large-scale components of the two 
analyses are not expected to be too different.  The major difference should appear in the 
regional scale, since NARR utilizes a dense surface observation network.  It is, however, 
noted that the NARR does not utilize 2-meter temperature observation over land, and it 
is also noted that although near-surface winds and humidity are used, their impact on 
the analysis is found to be “marginal” (Mesinger et al. 2006).  Thus, the only small scale 
observation that significantly impacted NARR was the surface pressure, but how much 
the small-scale surface pressure observations affect the analysis of other variables is not 
very clear.  In addition to conventional surface observations, NARR utilizes observed 
precipitation in the data assimilation.  This distinguishes NARR from other global 
reanalyses and makes it a unique product.  The observed precipitation will add small 
scale information provided by the precipitation analysis to the resulting analysis. 

The downscaling technique used in CaRD10 is less accurate than the data assimilation 
analysis, because it does not utilize regional, small-scale observations.  However, as was 
shown in the comparison of the analyses with station observations, the CaRD10 is not 
necessarily worse than NARR, which is probably due to its finer horizontal resolution. 
Since there is no apparent reason to assume that NARR is closer to the observation, as 
shown in the previous section (with the exception of precipitation), the comparison of 
CaRD10 and NARR is simply a demonstration of how two analyses are similar and/or 
different, and does not provide the quality of the analysis. The exception is precipitation, 
since NARR utilized observed precipitation analysis. 

Figure 34a, b compares January and July mean 2-meter temperature.  The geographical 
patterns are very similar between the two panels, but with more regional detail in 
CaRD10.  NARR is generally warmer than CaRD10 due to the smoother topography 
used in NARR.  Figure 35a, b compares 10-meter winds in January and July.  Again, 
during January, the patterns are very similar, but with more small scale detail in 
CaRD10.  Note the difference in wind vector in the Southern California coast where 
CaRD10 shows much stronger offshore winds than NARR. During July, the patterns are 
similar over most of California and the northern part of the domain, but a large 
difference exists over the northern end of the Gulf of California and along the eastern 
boundary, where strong southerly monsoon flow (Mo et al. 2005) is almost entirely 
lacking in the CaRD10.  The southwesterly flow from over the southern half of Nevada 
is also very weak in CaRD10. This lack of monsoonal southerly jet is due to the 
placement of the lateral boundary, where R1 did not resolve the small-scale monsoonal 
jet due to its coarse horizontal resolution (Mo et al. 2005). 
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Figure 34a.  Comparison of January mean 2-meter temperature between CaRD10 
(left) and NARR (right) 
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Figure 34b.  Same as Figure 34a, but for July 
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Figure 35a.  Comparison of January mean 10-meter wind vector between CaRD10 
(left) and NARR (right) 

CaRD10 NARR

  

Figure 35b.  Same as Figure 35a, but for July 
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Figure 36a, b compares January and July mean precipitation.  Note that the precipitation 
in NARR is based on independent analysis of precipitation (Higgins et al. 2000) and not 
on the model produced precipitation. The patterns are very similar, but the CaRD10 
precipitation amount is much greater, by nearly a factor of two, both in January and 
July. This overestimation of precipitation was also suggested in the comparison with 
station observation detailed in Section 3.  In addition, during July, the monsoonal 
precipitation maximum over Arizona is missing in CaRD10, probably due to the lateral 
boundary placement that weakened the southerly jet over the Gulf of California.   

0     2    4     6     8    10   12   14  16   18   20 0     2    4     6     8    10   12   14  16   18   20

CaRD10 NARR

Figure 36a.  Comparison of January mean precipitation between CaRD10 (left) and 
NARR (right) 
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Figure 36b.  Same as Figure 36a, but for July 

Figure 37a, b compares soil moisture in the layer 10–200 cm underground.  The patterns 
are not very similar in both January and July, reflecting the difference both in 
precipitation and land model between CaRD10 and NARR (OSU scheme versus NOAH 
scheme).  The NARR lacks small-scale detail in soil moisture, due to coarser resolution 
and also to the resolution of the observed precipitation.  Without observation of soil 
moisture, it is difficult to judge the quality of this field. However, the use of observed 
precipitation and an improved land scheme might possibly give an advantage to NARR. 
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Figure 37a. Comparison of January mean soil moisture between CaRD10 (left) and 
NARR (right) 
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Figure 37b.  Same as Figure 37a, but for July 
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Figure 38a, b compares climatology of surface evaporation between CaRD10 and NARR.  
The patterns are different, but some similarity exists. In January, the increased 
evaporation over Sierra can be seen on both analyses, but it is much stronger in CaRD10.  
The enhanced evaporation over the ocean just north of Los Angeles, which is not 
observed in NARR, is worthy of note.  The area is characterized by the strong offshore 
flow as shown in Figure 34a (left), which is not so clear in NARR, although there are 
some weak indications. This strong offshore wind is responsible for enhanced 
evaporation in CaRD10.   
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Figure 38a.  Comparison of surface evaporation (January) between CaRD10 (left) 
and NARR (right) 
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Figure 38b.  Same as Figure 38a, but for July 

Figure 39 compares the climatology of the diurnal variation of near-surface temperature.  
Since NARR is available 3-hourly, the output of the same interval from CaRD10 is used 
for comparison.  In general, the two analyses agree very well.  Interesting features to be 
noted are the strong inflow of oceanic air into the Central Valley through the San 
Francisco Bay Area, branching north and southwards as the flow hits the terrain.  This 
flow feature has large diurnal variation. The other noteworthy feature is the large-scale 
southerly flow which develops over the entire state of Nevada at UTC 18–21. 
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Figure 39.  Comparison of mean diurnal variation of near surface winds in July 
between CaRD10 (left) and NARR (right) 
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Figure 40 a, b compares the trends of the January and July near-surface temperature 
during 1979–2002 (when the NARR is available). In January, overall warming in the 
eastern part of the domain is common to all three analyses, while many small-scale 
details in the CaRD10 and NARR do not agree.  Over the state of California, the weak 
cooling trend over Sierra Nevada and warming in the valley, as well as a strong 
warming in Northern Nevada can be seen on both CaRD10 and NARR, but does not 
appear in R1.  In August (Figure 40b), the trends in CaRD10 and NARR agree better, 
although the trend is much larger in CaRD10.  The pattern of the trend in R1 seems to 
agree with NARR, although it lacks detail. 

 

Figure 40a.  Comparison of 1979–2002 trend between CaRD10 (left), NARR (center) 
and R1 (right) in January 

 

Figure 40b.  Same as Figure 40a, but for August 
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5.0 Comparison of Precipitation with Gridded Analysis 
The validation of precipitation against station observation is problematic due to 
measurement error and representativeness of the observation.  The research team tried 
to overcome this problem by using high-resolution gridded precipitation analysis.  The 
team utilized two products: The Parameter-elevation Regression on Independent Slopes 
Model (PRISM), and the Higgins analysis. PRISM (Daly et al. 1994, 2001, 2002) is a 
method to analyze small-scale precipitation distribution over complex topography, by 
combining various information, such as distance, elevation, cluster, vertical layer, 
topographic facet, coastal proximity, and effective terrain. For PRISM, only monthly 
average analyses were available, and the research team used them for validating 
monthly average and long-term trends.  Higgins analysis (Higgins et al. 2000) is based 
on modified Cressman successive-scan analysis technique, and available daily on  a 
1/8-degree grid. This analysis is used as observed precipitation in the NARR data 
assimilation system. The research team utilized this analysis for computing threat and 
bias scores of the daily CaRD10 precipitation. 

Figure 41 compares the bias of monthly climatology (January and August) against the 
PRISM analysis for CaRD10, NARR, and R1.  It is apparent that the bias in CaRD10 is 
large, exceeding 9 millimeters (mm)/day in some places.  The bias is much smaller in 
NARR due to the use of observed precipitation.  This NARR bias is simply the difference 
of the NARR (Higgins et al. 2000) and PRISM precipitation analyses.  It is interesting to 
note that the patterns of the CaRD10 and NARR biases are very similar, both in winter 
and summer.  Whether this is a problem of PRISM analysis, or the common systematic 
error of numerical models (RSM and NCEP Eta models) is a subject of future research.  It 
is also noted that the R1 bias is much smaller, but the lack of small-scale detail makes it 
difficult to judge the quality of the analysis. 
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Figure 41. Comparison of the precipitation bias against PRISM analysis for 
CaRD10 (top), NARR (middle), and NRR (bottom) in January (left column) and 
August (right column).  Unit in mm/day. 
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Equitable threat scores (Schaefer 1990) and bias scores are good measures of the 
precipitation skill of the model in terms of its spatial extent. The equitable threat score is 
defined as:  

CHHOF
CHH
−−+

−
 

where F is the number of grid points that forecast more than the precipitation threshold. 
O is the number of grid points that observe more than the threshold. H is the number of 
grid points that correctly forecast more than the threshold. CH is the expected number 
of correct forecasts due to chance (F*O/T), where T is the total number of grid points 
inside the verification domain. The threat score of zero indicates random predictions 
and 1 indicates perfect forecast for that particular threshold. The threat score is basically 
the ratio of the correct forecast area to the total area of the forecast and observed 
precipitation. The score is penalized for forecasting rain in the wrong place and not 
forecasting it in the right place. The bias score is defined as F/O. The score does not 
assess the placement of precipitation but indicates if a model is over- or under- 
forecasting areas of precipitation. The best score is 1.0. Scores above (below) 1.0 mean 
wet (dry) bias of precipitation forecast. 

Table 9 shows the daily precipitation skill scores of NARR and CaRD10 against Higgins 
analysis for January and August of 1998.  Not surprisingly, NARR threat scores in 
January are consistently better than those of CaRD10, but CaRD10 scores are still 
reasonable considering precipitation is not assimilated in CaRD10. The imperfect skill of 
the NARR is due to the spatial and temporal interpolation of precipitation, as well as to 
the precipitation assimilation method, which does not reproduce the observed 
precipitation exactly.  Both NARR and CaRD10 show the best skill at the threshold of 
2 mm/day. CarD10 bias scores are better than NARR for smaller precipitation 
thresholds, but a wet bias is apparent in larger precipitation thresholds. These scores 
suggest that CaRD10 precipitation in January covers reasonable areas of precipitation as 
a whole, but the area is too wide and too much precipitation occurs in the wrong places. 
August precipitation is small, and CaRD10 shows no skill in the threat score; while 
NARR shows some skill, although the scores are considerably lower than January. Bias 
scores suggest that CaRD10 is too dry in August. 
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Table 9. Daily precipitation skill scores of NARR and CaRD10 in January and 
August of 1998 against Higgins analysis 

 January August 

Threshold Threat Bias Threat Bias 

(mm/day)NARRCaRD10NARRCaRD10NARRCaRD10NARRCaRD10

0.05 0.25 0.19 0.75 0.96 0.24 0.03 0.50 0.44 

0.1 0.34 0.20 0.82 1.04 0.27 0.03 0.71 0.56 

0.2 0.40 0.22 0.89 1.09 0.27 0.03 1.09 0.59 

0.5 0.48 0.27 0.99 1.13 0.25 0.02 1.66 0.70 

1 0.52 0.30 1.01 1.14 - - - - 

2 0.53 0.32 1.06 1.15 - - - - 

5 0.47 0.30 1.20 1.27 - - - - 

10 0.37 0.24 1.42 1.65 - - - - 

 

Figure 42 is the comparison of the temporal correlation of monthly averaged 
precipitation against the PRISM analysis in January and August, computed for the 1979–
2002 period.  It is very clear that the NARR has extremely high correlation, since it used 
observed precipitation. While the correlation in CaRD10 is lower, particularly in August, 
since there are very few rain events in the region during August, this low correlation in 
summer may not be surprising.  The CaRD10 correlation in winter over the State of 
California is generally above 0.7, which agrees with the correlation against station 
observation shown in Figure 27.  The correlation is particularly low on the lee side of the 
Sierra Nevada. This may be likely due to the lack of cloud water prediction in this 
version of the model, which prevents advection of cloud water to the lee side of the 
mountains, causing difficulties in reproducing precipitation spreading to the east of the 
high mountain ranges.  The correlation of precipitation in the R1 in winter is quite 
respectable, considering its coarse horizontal resolution. The summer correlation is 
much lower, although precipitation events are very scarce in this season. 
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Figure 42.  Comparison of the temporal correlations of monthly mean precipitation 
against PRISM analysis in January (left column) and August (right column) for 

CaRD10 (top), NARR (middle), and NRR (bottom) computed for 1979–2002 period 

Figure 43 compares bias–removed  root mean square difference of precipitation from 
PRISM analysis.  NARR again fits best with PRISM for both months, but some difference 
is apparent along the Sierra Nevada, which also shows up in the CaRD10.  This may 
most likely point to the uncertainties in the observed precipitation over high elevations. 
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Figure 43.  RMS difference of monthly average precipitation between CaRD10 
(top), NARR (middle), and R1 (bottom) with PRISM analysis.  Left column is for 

January and right column is for August.  

Finally, the 1950–1997 trend in precipitation is compared between PRISM and CaRD10, 
as shown in Figure 44.  Both patterns agree quite well, with much more small-scale 
detail in CaRD10.  The tendency of increased precipitation in the south and reduced 
precipitation along the northern California/Oregon coast stands out.  The negative 
tendency along the high Sierra Nevada is very clear in CaRD10, but some hint of it is 
seen in PRISM. 
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Figure 44.  Comparison of 1950–1997 trend in January mean precipitation rate, 
PRISM (left), and CaRD10 (right).  Unit is in mm/day/decade. 

In summary, the comparison with PRISM precipitation analysis indicated that the 
CaRD10 is reasonable in reproducing year-to-year variation of monthly mean 
precipitation, as well as its long-term trend.  However, the absolute amount of 
precipitation has a significant positive bias.  These conclusions agree well with the 
CaRD10 comparison with station observations.  The NARR precipitation agrees nearly 
perfectly with PRISM, since it utilizes observed precipitation.  There is some difference 
in the precipitation analysis used by NARR and PRISM, particularly over high altitude, 
where both analyses show some degree of difference. 
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6.0 Conclusions 
The dynamical downscaling of NCEP/NCAR 50-year Reanalysis was performed over 
the State of California and the neighboring states and ocean. The horizontal resolution of 
the regional model is 10 km and the output is produced every hour.  The integration 
period covers 57 years, from 1948 to 2005. The Scale Selective Bias Correction (Kanamaru 
and Kanamitsu 2006) is applied to reduce the error of the scale greater than 1000 km. 

Comprehensive validation of the downscaled analyses was performed using available 
buoy observation over coastal ocean and various land stations. The analyses were also 
compared with large-scale boundary forcing (R1) to make sure that the regional 
downscaling does provide regional-scale information more accurately than the large- 
scale forcing field. In addition, comparison was made with the NARR and with the 
PRISM precipitation analysis to further ensure the quality of the product. These 
validations were separately performed for hourly, daily, monthly, and decadal trends.   

In general, the quality of the downscaled product is high.  The product is definitely 
better than the coarse-resolution R1, and even better than NARR for some fields. There 
is a large difference in the quality between winter and summer; winter being better and 
summer being more problematic.  The winds over coastal ocean are much improved by 
downscaling, but NARR is better, due to the use of the buoy observation in the data 
assimilation. Over land, the accuracy of CaRD10 near-surface winds and temperature 
frequently outperforms NARR, due to the finer topography resolved by the CaRD10. 
The examination of typical mesoscale events, namely the Catalina eddy, Coastally 
Trapped Wind Reversal, and Santa Ana showed that the downscaling is reproducing 
characteristic features very well.  There are some differences in the skill of the CaRD10 
for daily and monthly mean time scales. The monthly mean skill is generally much 
higher, and seasonal dependency is also different.  The long-term trend of near-surface 
temperature obtained from 1950–1996 agrees fairly well with station observations 
during winter, but the trend is underestimated.  During the summer season, the trend is 
negative over a large part of the domain in CaRD10, while it is positive in the station 
observations. This discrepancy is likely the result of poor representation of land process 
in the model, as well as of the inaccuracies in the coastal sea surface temperature used in 
the CaRD10. 

The precipitation skill showed that the correlation is of the order of 0.5 to 0.6 for daily 
scale and 0.6–0.8 in the monthly scale, which is reasonably good.  However, there is a 
noticeable positive bias in large precipitation events.  Comparison with Higgins analysis 
revealed that the CaRD10 precipitation is more than 1.5 times that of the observed when 
the precipitation exceeds 10 mm per day.  Although the Higgins analysis may not be 
fully trusted, particularly over complex terrain, the overestimation of the CaRD10 is 
most likely. The 1950–1997 trend agrees very well between the CaRD10 and PRISM.  
These precipitation validations seem to suggest that although the absolute magnitude of 
the precipitation may be problematic in some cases, the long-term trend, year-to-year 
variation, and probably day-to-day variation are reasonably good and can be used for 
climate research if researchers are sufficiently cautious. 
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A comparison of the monthly climatology of CaRD10 with NARR showed that the 
CaRD10 near-surface temperature and winds are very similar to NARR with more 
regional detail, especially in winter.  During the summer, CaRD10 winds associated with 
the South West Monsoon and the Gulf of California low-level jet is poorly simulated by 
CaRD10, due to the placement of the lateral boundary. The comparison of soil moisture 
revealed that the two are not very similar.  This is due to the difference in precipitation 
(observed in NARR, and model produced in CaRD10) and to the difference in land 
process parameterization.  The latent heat flux and sensible heat flux are a little more 
similar between the two.   

In summary, the downscaled analysis is useful as additional material for observational 
global change study, but users need to be aware of its strengths and weaknesses before 
applying it to their own objectives.   

Future work will concentrate on the refinement of the downscaling products.  The bias 
in precipitation will be reduced by the use of different convective parameterization.  The 
inclusion of cloud water prediction is also considered. The refinement in snow modeling 
is desirable and will be forcefully pursued. Another ambitious plan is to perform 
downscaling with a coupled regional ocean  model, which will drastically improve small 
scale features over ocean.  The research team is targeting the second version of the 
downscaling over California, starting sometime in 2007.  
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7.0 Data Archive and Availability 
The CaRD10 dataset consists of an hourly GRIB (GRIdded Binary) file.  The total amount 
of data is about 5 terabytes (TB) and the data are stored on local raid disks at Scripps, as 
well as in the file server at the San Diego Supercomputer Center. In addition, daily, 
monthly, seasonal, and climatological averages are produced. Some frequently used 
variables are extracted and stored separately as time series files. The GRIB is a machine-
independent standard file format used internationally by operational weather forecast 
centers. Various utility programs to read, process, and convert the file to other formats 
are available on the Internet.3  

The variables in the output file are classified into two groups: (1) Standard pressure level 
fields, and (2) two-dimensional fields.  Actual variables appearing in these two groups 
of fields are listed in Table 10 and 12, respectively.  Table 11 provides a list of pressure 
levels. The volume of various types of data is listed in Table 13. 

The data are currently available in-house at Scripps online.  They can also be obtained 
by writing to kana@ucsd.edu or hkanamaru@ucsd.edu.  Web access of the entire dataset 
is now in progress (http://cec.sdsc.edu), and should be complete in mid-summer 2006.  

Table 10.  List of pressure level variables in the output file 
 Variable name  Field description and unit 

1 HGTprs Geopotential height (gpm) 

2 UGRDprs East-west wind component (m/s) 

3 VGRDprs North-south wind component (m/s) 

4 TMPprs Temperature (K) 

5 VVEL Pressure vertical velocity (Pa/sec) 

6 RHprs Relative humidity (%) 

7 SPFHprs Specific humidity (Kg/Kg) 

8 ABSV Absolute vorticity (1/sec) 

 

                                                      
3 For example, see the following websites: National Weather Service Climate Prediction Center 
(www.cpc.ncep.noaa.gov/products/wesley/wgrib.html), NCAR Command Language (NCL) 
(www.ncl.ucar.edu), and Grid Analysis and Display System (GrADS) 
(http://grads.iges.org/grads/grads.html).  

www.cpc.ncep.noaa.gov/products/wesley/wgrib.html
www.ncl.ucar.edu
http://grads.iges.org/grads/grads.html
http://cec.sdsc.edu
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Table 11. List of pressure levels 
# Pressure levels (hPa) 

1 1000 

2 925 

3 850 

4 700 

5 600 

6 500 

7 400 

8 300 

9 250 

10 200 

11 150 

12 100 

13 70 

14 50 

15 30 

16 20 

17 10 
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Table 12. List of non-pressure level variables in the output file 
 Name Field description and unit 

1 PRESsfc   Surface Pressure (Pa) 

2 PTEND  Surface Pressure tendency (Pa/s) 

3 PWAT Precipitable water (Kg/m**2) 

4 RHclm Column integrated relative humidity (%) 

5 TMPtrp Temperature at tropopause (K) 

6 PREStrp Pressure at tropopause (Pa) 

7 UGRDtrp u-wind at tropopause (m/sec) 

8 UGRDtrp v-wind at tropopause (m/sec) 

9 VSSH Vertical speed at tropopause (1/sec) 

10 LFTX Surface lifted index 

11 LFTXB Best (4-layer) lifted index 

12 TMPmwl Temperature at max wind level (K) 

13 PRESmwl Pressure at max wind level (Pa) 

14 UGRDmwl u wind at max wind level (m/sec) 

15 VGRDmwl v wind at max wind level (m/sec) 

16 HGTsfc Surface elevation (m) 

17 PRMSL Pressure reduced to MSL (Pa) 

18 UFLX Zonal component of momentum flux (N/m**2) 

19 VFLX Meridional component of momentum flux (N/m**2) 

20 SHTFL   Sensible heat flux (W/m**2) 

21 LHTFL Latent heat flux (W/m**2) 

22 TMPsfc Sfc skin Temperature (K) 

23 SOILW1  Volumetric soil moisture content layer (0-10cm) 

24 SOILW2 Volumetric soil moisture content layer  (10-200cm) 

25 TMPdlr1 Soil temperature layer (0-10cm) 

26 TMPdlr2 Soil temperature layer (10-200cm) 

27 WEASD Water equivalent of accumulated snow depth (kg/m**2) 

28 DLWRF Sfc Downward long wave radiation flux (W/m**2) 

29 ULWRFsfc Sfc Upward long wave radiation flux (W/m**2) 

30 ULWRFtoa Toa Upward long wave radiation flux (W/m**2) 
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Table 12. (continued) 

31 USWRFtoa Toa Upward solar radiation flux (W/m**2) 

32 USWRFsfc Sfc Upward solar radiation flux (W/m**2) 

33 DSWRFsfc Sfc Downward solar radiation flux (W/m**2) 

34 TCDChcl High cloud Total cloud cover (percent) 

35 PREShct Pressure high cloud top (Pa) 

36 PREShcb Pressure high cloud bottom (Pa) 

37 TMPhct Temperature high cloud top (K) 

38 TCDCmcl Middle cloud Total cloud cover (percent) 

39 PRESmct Pressure middle cloud top (Pa) 

40 PRESmcb Pressure middle cloud bottom (Pa) 

41 TMPmct Temperature middle cloud top (K) 

42 TCDClcl Low cloud Total cloud cover (percent) 

43 PRESlct Pressure low cloud top (Pa) 

44 PREScb Pressure low cloud bottom (Pa) 

45 TMPlct Temperature low cloud top (K) 

46 PRATE Precipitation rate (kg/m**2/s) 

47 CPRAT Convective precipitation rate (kg/m**2/s) 

48 GFLUX   Ground heat flux (W/m**2) 

49 LAND Land-sea mask (1=land; 0=sea) (integer) 

50 ICEC   Ice concentration (ice=1; no ice=0) (1/0) 

51 UGRDhag u wind at 10m (m/s) 

52 VGRDhag v wind at 10m (m/s) 

53 TMPhag Temperature at 2m (K) 

54 SPFHhag Specific humidity at 2m (kg/kg) 

55 TMAX Maximum temperature at 2m (K) 

56 TMIN Minimum temperature at 2m (K) 

57 RUNOF Runoff (kg/m**2) 

58 PEVPR Potential evaporation rate (w/m**2) 

59 UGWD Zonal gravity wave stress (N/m**2) 

60 VGWD  Meridional gravity wave stress (N/m**2) 

61 HPBL   PBL height (m) 

62 SRWEQ Snowfall rate water equivalent (kg/m**2/s) 
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Table 12. (continued) 

63 SNOEV Snow sublimation heat flux (W/m**2) 
64 SNOHF   Snow melt heat flux (W/m**2) 
65 QUFLX Column integrated moisture u-flux (m/s) 
66 QVFLX Column integrated moisture v-flux (m/s) 
67 CWAT Plant canopy surface water (kg/m**2) 
68 DSWRFtoa   Toa Downward solar radiation flux (W/m**2) 
69 TCDCclm Total cloud cover (percent) 
70 ALBDO Albedo (percent) 
71 SFCR Surface roughness (m) 
72 VGTYP Vegetation type (nondim) 
73 VEG Vegetation cover (percent) 
74 SLTY Soil type (nondim) 
75 ALHTF Alternate latent hflux (W/m**2) 
76 ECPY Canopy evaporation (w/m**2) 
77 BGRUN Baseflow-groundwater runoff (kg/m**2) 
 

 

Table 13.  Data volumes for various types of outputs 

Types of data Data volume 

57-year hourly data 5 TB 

1-year hourly data  86 GB 

57-year daily data  250 GB 

57-year daily one variable 1.3 GB 

Monthly averages 8 GB 

Monthly hourly averages  220 GB 
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