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PRODUCT DESCRIPTION 

 
The rated capacity of wind generation in California is expected to grow rapidly in the future 
beyond the approximately 2100 MW in place at the end of 2005.  The main drivers are the state’s 
20 percent Renewables Portfolio Standard requirement in 2010 and the low cost of wind energy 
relative to other renewable energy sources.   

As wind is an intermittent generation resource and weather changes can cause large and rapid 
changes in output, system operators will need accurate and robust wind energy forecasting 
systems in the future.  In response to this need, the California Energy Commission (Energy 
Commission) and EPRI initiated a new project in 2003 to develop and test short- and 
intermediate-term (or next-hour and next-day) forecast algorithms that builds on the results of 
previous project completed in 2002.   

Volume 2 of the final report describes the detailed results of the short- and intermediate-term 
forecast algorithm research and high-resolution numerical modeling of wind flow over complex 
terrain. Volumes 1, 3, and 4 present the executive summary of the research results and the 
detailed results of the wind tunnel modeling of wind flow over complex terrain and development 
of the California Wind Generation Research Dataset (CARD).   

Results and Findings 
The short-term forecast research developed and tested an artificial neural network (ANN) 
algorithm to generate five-minute/three-hour regional wind energy generation forecasts for the 
four largest California wind resource areas, updated every five minutes. The mean absolute 
errors of the ANN forecasts were lower than those of a simple persistence forecast algorithm 
after the first 15 to 20 minutes of the three-hour forecast time horizon.  

The intermediate-term forecast research initially screened several forecast algorithm 
improvements to identify those that would yield the greatest reduction of mean absolute forecast 
error vs. the previous forecasting evaluation at the Altamont and San Gorgonio projects, 
completed in 2002.   Relative to the previous California project, the mean absolute error of the 
wind energy forecasts decreased from 14.1 percent to 11.9 percent of rated capacity at Altamont 
and from 16.6 percent to 13.0 percent at San Gorgonio.  The improved forecast algorithm was 
then tested at five wind projects in California. 

Numerical modeling of wind flow over the complex terrain at Altamont Pass showed significant 
variations of wind speeds and directions both between individual wind turbines and between the 
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wind turbines and nearby met towers.  In addition, atmospheric stability appears to significantly 
affect the wind plant power curve, for example the relationship between the power output of a 
group of wind turbines and the wind speed measured at the met tower.  

Challenges and Objectives 
Electricity systems with significant intermittent wind capacity create a challenge to the system 
operator.  Rapid changes of wind generation relative to load require rapid dispatching of 
generation and transmission resources to balance generation vs. load, regulate voltage and 
frequency, and maintain system performance within limits established by Control Performance 
Standards 1 and 2 (CPS1 and CPS2).  This is especially true during periods when wind 
generation is fluctuating rapidly relative to system load, for example during passage of 
thunderstorms and weather fronts.  Wind energy forecasts can help the system operator anticipate 
rapid changes of wind energy generation vs. load and make informed decisions.  The objectives 
are to develop and demonstrate the capabilities of wind energy forecasting technology for same-
day and longer-term forecasts. 

Applications, Values, and Use 
The improved wind energy forecasting algorithms developed in this project have already been 
incorporated into regional wind energy forecasting systems in California that generate daily 
forecasts for several wind projects in the state and for a large utility company.  The results also 
provide the basis for collaborating with electricity grid operators to customize wind energy 
forecast system content, format, and method of delivery to meet the needs of the system operator, 
while continuing to develop and test further algorithm improvements.  

EPRI Perspective 
Volume 2 of the final report from the California Regional Wind Energy Forecasting 
Development project describes the research and results on short- and intermediate-term wind 
energy forecasting system development and testing and numerical modeling of wind flow over 
complex terrain.  The results presented in this report and the companion volumes represent 
significant advances in both short-term and intermediate-term wind energy forecasting 
technology.  It is anticipated that further improvements in forecast accuracy are possible by such 
measures as applying the full two-stage short-term forecast algorithm developed in the project, 
optimizing the use of real-time wind speed and direction data from upwind meteorological 
towers, and ensemble forecasting.  These improvements can be developed and tested in parallel 
with a field demo project to develop a wind forecast display for utility and system operators.  

Approach 
Researchers developed and tested improved wind energy forecasting technology for both the 
next-hour and next-day time frames and for both wind resource areas and individual wind plants; 
conducted wind tunnel and numerical modeling of wind flow over complex terrain; and 
developed a California Wind Generation Research Dataset (CARD) to provide a resource for 
future study of wind energy generation and forecasting in California.  In each case, real-time and 
historical wind resource and energy generation data were collected and used to train and then test 
the forecast system performance.  The forecast performance metric was the mean and mean 
absolute error of the forecasts vs. the observed data for each case.  
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ABSTRACT 

The rated capacity of wind generation in California is expected to grow rapidly in the future 
beyond the approximately 2100 MW in place at the end of 2005.  The main drivers are the state’s 
20 percent renewable portfolio standard requirement in 2010 and the low cost of wind energy 
relative to other renewable energy sources.   

As wind is an intermittent generation resource and weather changes can cause large and rapid 
changes in output, system operators will need accurate and robust wind energy forecasting 
systems in the future.  In response to this need, the California Energy Commission (Energy 
Commission) and EPRI initiated a new project in 2003 to conduct the research on short- and 
intermediate-term (or next-hour and next-day) forecast algorithms and builds on the results of 
previous project completed in 2002.   

Volume 2 of the final report describes the detailed results of the short- and intermediate-term 
forecast algorithm research and high-resolution numerical modeling of wind flow over complex 
terrain. Volumes 1, 3, and 4  present the executive summary of the research results and the 
detailed results of the wind tunnel modeling of wind flow over complex terrain and development 
of the California Wind Generation Research Dataset (CARD). 

The short-term forecast algorithm used an artificial neural network (ANN) algorithm trained 
using five-minute time-series data for wind energy deliveries to the grid in each of the five wind 
resource regions provided by the CA ISO.  Testing showed that the ANN forecast algorithm 
reduces forecast error vs. persistence.  Further testing of the algorithm is needed to assess the 
effect of adding real-time wind speed and direction data and rapid-update weather forecast data 
to the inputs to the ANN forecast algorithm on forecast performance. 

Development of the intermediate-term forecast algorithm assessed the effects of several 
algorithm enhancements on forecast performance relative to the results of the first California 
forecasting project completed in 2002.  Of the six enhancements tested, using improved water 
surface temperature data, segmented wind plant power curves, more sophisticated model 
operating statistics (MOS), and ensemble forecasting gave the greatest improvement. 

High-resolution modeling of wind flow over the complex terrain at Altamont Pass evaluated the 
variation of wind speed and power generation by individual wind turbines under various 
conditions.  The results confirm that atmospheric stability affects the variability of wind speed 
and therefore the plant-scale power curve used in the next-day forecast algorithms.  Hence, in 
addition to wind speed and direction, the plant scale power curve should also be a function of 
stability. 
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1  
INTRODUCTION 

California has good potential for developing new wind generation capacity beyond the 
approximately 2100 megawatts of rated capacity in place at the end of 2005 (American Wind 
Energy Association, 2006).  California’s Renewables Portfolio Standard, which calls for 20% 
renewables in the generation mix by the end of 2010, is expected to result in a large increase of 
the installed wind capacity in the state. Most of the current capacity is located in the five 
principal wind resource areas of the state (Solano, Altamont, Pacheco, Tehachapi, and San 
Gorgonio), shown in Figure 1-1. The new capacity is expected to be installed in these and other 
promising California wind resource areas in Northern and Southern California. 

 

Figure 1-1 California Mean Wind Power Map at 50-m Elevation and 2005 Rated Capacity of 
Wind Generation at Principal Wind Resource Areas (California Energy Commission, 2006) 

Rated Capacity – 2005 (MW) 
Solano County 240.8 

Altamont Pass        548.3 

Pacheco Pass 16.0 

Tehachapi Pass 667.1 

San Gorgonio Pass     616.6 

Others     52.8 

 TOTAL 2141.6 
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Because wind generation is an intermittent resource and large concentrations of wind generation 
can affect electricity grid operations and reserve requirements, development of accurate wind 
energy forecasting tools will become an increasingly critical need for managing wind and other 
intermittent generation resources connected to the California grid.   Accurate next-hour and next-
day forecasts will make it possible to optimize the response to rapid changes in wind generation 
to balance load and supply reserve and regulation resources to the grid.  

In 2002, the California Energy Commission (Energy Commission) and EPRI completed testing 
of two forecasting systems at Altamont and at San Gorgonio (Energy Commission-EPRI, 2003a 
and 2003b; EPRI 2003a). Two wind energy forecasting system developers, Risoe National 
Laboratory and TrueWind Solutions, applied their meteorology-based, meso-scale modeling 
algorithms to generate twice-daily, 48-hour forecasts of hourly wind speed and energy 
generation during a 12-month period.  The host wind projects were the 90 MW Wind Power 
Partners/Windworks project, operated by Powerworks at Altamont Pass, and the 66.6 MW 
Mountain View 1 and 2 wind project, operated by Seawest at San Gorgonio Pass.  Based on the 
monthly and annual mean absolute errors (MAE) of the forecast vs. observed data, the Risoe and 
TrueWind forecasts performed better than simple persistence and climatology forecasts. 
However, the forecast errors were still significant, indicating that additional research is needed to 
incorporate improved forecast technology and forecast performance. 

In 2004, Energy Commission, EPRI, and California Independent System Operator (CA ISO) 
initiated a new 18-month project to build on the first project and develop and test improved wind 
energy forecast algorithms for both short-term forecasts (regional five-minute forecasts over 
three hours) and intermediate-term forecasts (hourly wind plant forecasts over 48 hours) in the 
principal wind resource areas of the state. The project was completed during 2005, and the 
results are presented in the four-volume report California Regional Wind Energy Forecasting 
System Development and Testing (Energy Commission and EPRI, 2006a, 2006b, 2006c, and 
2006d).  

This report, California Regional Wind Energy Forecasting System Development – Volume 2: 
Wind Energy Forecasting System Development and Testing and Numerical Modeling of Wind 
Flow over Complex Terrain, describes the objectives, scope, key results, and recommendations 
of the project.  The other report volumes include Volume 1: Executive Summary; Volume 3: Wind 
Tunnel Modeling of Wind Flow over Complex Terrain; and Volume 4: California Wind 
Generation Research Dataset (CARD) (Energy Commission and EPRI, 2006a, 2006c, and 
2006d). 

Objectives and Scope 

The overall project objectives include both economic and technical goals. 

The overall economic goals include: 

• Support the California Independent System Operator’s (CA ISO) development of a 
viable competitive market for intermittent wind resources. 
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• Pave the way for increasing market penetration of renewable resources. 

The overall technical goals include: 

• Leverage the experiences gained under the prior forecasting efforts to improve forecast 
accuracy. 

• Provide capability to generate accurate forecasts for both short-term and longer-term 
forecast timeframes. 

The specific objectives include: 

• Develop and test short-term forecasting algorithms with higher accuracy than persistence 
forecasts to provide real-time forecasting capability and support system  real-time 
updates to meet dispatching needs. 

• Determine sources of forecast error and assess methods to reduce errors for both next-
hour and next-day forecasts, for example: Improved input data, finer grid sizes in meso-
scale models, and improved statistical models for short-term forecasting and model 
operating statistics. 

• Investigate wind flow and wind plant power curve variations over complex terrain via 
wind tunnel and numerical modeling.  

The project scope includes: 

• Generate real-time weather forecasts real time over a 4-km grid in both Northern and 
Southern California using the COAMPS meso-scale model. 

• Develop and test wind energy forecast systems to provide forecasts for two “look-ahead” 
time horizons: (1) short-term forecasts of five-minute wind energy generation over a 
three-hour period to be issued every five minutes for the principal wind resource areas of 
the state (Solano, Altamont, Tehachapi, and San Gorgonio); and (2) intermediate-term 
forecasts of hourly wind generation over the a 48-hour period issued twice daily or every 
12 hours for wind plants in each of the principal wind resource areas. 

• Conduct numerical and wind tunnel modeling of wind flow and power density at each 
wind turbine location vs. wind speed at a reference meteorological tower to investigate 
the variation of wind flow and wind plant power curve with wind speed and direction, 
atmospheric stability, and other conditions.  

• Generate the California Wind Generation Research Dataset (CARD), a database of daily 
forecasts of hourly wind generation at multiple elevations over 5-km grids in Northern 
and Southern California.   

The project was conducted over the 18-month period, July 2004 through December 2005. 
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Project Participants 

The project participants included the California Energy Commission as program manager, the 
Electric Power Research Institute (EPRI) as project manager,  EPRI subcontractors AWS 
Truewind LLC, the University of California at Davis, and UC Davis subcontractor, Lawrence 
Livermore Laboratory; project advisors, California Independent System Operator, National 
Renewable Energy Laboratory, Southern California Edison, and five wind plant operators who 
together with CA ISO also provided wind resource and power data for their respective wind 
projects, Sacramento Municipal Power District, PPM/High Winds, PowerWorks, Oak Creek 
Energy Systems, and BMR/Mountain View 1 and 2. 

The project consisted of six major tasks:  Task 1: Project Review and Reporting; Task 2: Wind 
Resource Data Collection and Analysis; Task 3: Rapid-Update Wind Speed and Direction 
Forecast Algorithm; Task 4: Regional Short-Term Wind Energy Forecasting System 
Development and Testing; Task 5: Long-Term Wind Energy Forecasting System Development 
and Testing; and Task 6: Wind Tunnel Testing Coupled with Advanced Numerical Model Data. 

Report Organization 

The report consists of seven chapters, including Chapter 1, Introduction.  

Chapter 2, Wind Energy Forecasting Integration into Electricity Grid Operations, addresses the 
next steps to implement the forecast algorithms and display the forecasts and related information 
in a format useful to the system operator.  

Chapter 3, Next-Hour Regional Wind Energy Forecasting System Development and Testing, 
describes the conceptual design of a two-stage short-term forecasting algorithm based on 
artificial neural networks and application of a portion of the algorithm to generate five-minute 
forecasts over three hours for the principal California wind resource areas.   

Chapter 4, Next-Day Wind Plant Energy Forecasting System Development and Testing, 
describes testing of various improvements in data, meso-scale models, and other features of the 
forecast system to assess the potential improvement in forecast performance vs. the earlier work 
and application of the resulting improved forecast system to five wind projects in the principal 
wind resource areas. 

Chapter 5, Numerical Modeling of Wind Flow and Wind Plant Power Curves over Complex 
Terrain, describes the parallel efforts to evaluate wind flow and variation of wind plant power 
curves with wind speed, atmospheric, and other conditions over the complex terrain at Altamont 
Pass by AWS Truewind and University of California at Davis. 

Chapter 6, High-Resolution Weather and Wind Forecasting, describes the application of the 
COAMPS meso-scale model to generate real-time daily weather and wind forecasts over 4-km 
grids in Northern and Southern California.   
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Chapter 7, Conclusions and Recommendations, identifies the key advances made in short- and 
intermediate-term forecasting, numerical modeling of wind flow over complex terrain, and the 
the remaining issues that should be addressed in future work, and recommends specific topics for 
further investigation. 

Chapter 8 presents the references. 
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2  
WIND ENERGY FORECASTING INTEGRATION INTO 
ELECTRICITY GRID OPERATIONS  

Additions of large blocks of intermittent wind generation to the electricity grid can affect the 
reliability, operation, and reserve requirements of the system and create challenges for the 
system operator.  This section addresses the characteristics of wind generation; how wind 
generation affects electricity system operations; why wind energy forecasting is important for 
next-hour and next-day dispatching of system resources; and the content, format, and method of 
delivery of forecasts that would be most useful to system operators. 

Characteristics of Wind Generation 

Important characteristics of wind energy that affect system operation include: 

• Commercial wind turbines employ mechanical and electrical components to convert wind 
energy to electricity and use induction generators and sophisticated electronic controls to 
produce 50 or 60 Hz power, while thermal generation uses fuel combustion to either 
generate steam and drive a single large steam turbine generator or drive a combustion 
turbine.  

• A large wind-generation facility consists of a large number of relatively small generating 
units, which are connected together and act like a distributed generation system.  

• The “prime mover” for a wind plant is, obviously, the wind. The characteristics are 
determined by Mother Nature, not plant operators or system dispatchers. A particular 
wind regime can be characterized quite well in a statistical sense but does not lend itself 
well to deterministic analyses. Consequently, wind plants cannot be reliably scheduled in 
advance, and the capacity value is typically zero to 15 percent of the rated capacity. 

• The wind resource and the resulting output of a large wind plant fluctuate over nearly all 
time scales of potential interest for power system designers and operators: seconds, 
minutes, hours, days, seasons, and so on. Especially when coupled with the uncertainties 
mentioned above, such behavior challenges the validity of applying well-established 
methodologies and analytical approaches for power system engineering. 

How Wind Generation Affects Electricity Grid Operations 

As shown in Figures 2-1 and 2-2, wind generation exhibits both short- and longer-term 
fluctuations over periods from seconds to longer periods due the intermittent nature of wind.  
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Figure 2-1 Typical Variation of Total and Regional One-Minute Wind Generation in 
California on a Summer Day (CA ISO, 2005) 
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Figure 2-2 Buffalo Ridge 115-kV Bus Voltage in kV (Top Trace and Left Scale) and 
Transformer Output in MW (Bottom Trace and Right Scale) (NREL, 2002) 
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Figure 2-1 illustrates the fluctuations of one-minute wind power delivered to the California grid 
during a single 24-hour period on a summer day in California (CA ISO, 2005). The chart 
presents both aggregated wind power data for the state and data for each of the five wind 
resource areas (Solano, Altamont, Pacheco, Tehachapi, and San Gorgonio).  

Similarly, Figure 2-2 illustrates the short-term fluctuations of both wind energy generation and 
115-kV line voltage over a three-day period in March 2002 for 230 MW of wind generators in 
the Buffalo Ridge area of southwest Minnesota (EPRI, 2004). As the wind speed varied over a 
wide range, wind energy generation fluctuated between about 0 and 200 MW, and the line 
voltage varied between about 114 and 123 kV.  Experience in Germany, where more than 15,000 
MW of wind generation is in place, indicates that very large changes in wind output can occur in 
minutes as weather fronts pass through (E.ON Netz, 2004).  

The California diurnal wind generation profile in Figure 2-1 is typical of a summer day in the 
areas affected by the coastal marine layer.  Wind speed and generation build during the afternoon 
as the marine layer spreads from the high-pressure region over the cool Pacific Ocean to the low-
pressure regions over the hot interior valleys. It then reaches a peak in early evening and begins 
to fall off during the early morning hours, reaching a minimum between about 10:00 a.m. and 
2:00 p.m.  

Unfortunately, the diurnal patterns of wind power and system load do not match well.  This is 
especially true during the evening, when system load decreases while wind generation is 
reaching its peak.  The system operator or balancing authority must reduce other generation to 
balance generation and load using decremental bids (800 MW in the example).  In the morning, 
when load is building and wind generation diminishes to its minimum, the reverse situation 
exists.  The system operator must dispatch additional generation or non-spinning reserve to 
balance the system (1000 MW in the example). 

System Operators and Balancing Authorities 

System operators are often single utilities responsible for operating the generation, transmission, 
and distribution system of single and sometimes multiple control areas.  Balancing authorities 
like the California Independent System Operator and other regional transmission operators 
(RTOs) are responsible for balancing the generation and transmission resources for a group of 
control areas covering large regions, as illustrated in Figure 2-3. 

Area Control Error (ACE) 

As defined in Figure 2-3, the Area Control Error (ACE) is an algebraic function of the average 
deviations vs. schedule of generation, load, frequency, and net interchanges with other control 
areas. Each control area is responsible for maintaining ACE within two ranges, referred to as 
Control Performance Standards 1 and 2 (CPS1 and CPS2). 
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Area Control Error - ACE

    Tie-line meter
    Frequency meter

Area 1
ACE

Rest of Interconnection

I

F
F -  frequency, Hz
I  -  net interchange, MW
G - generation, MW
L - load, MW
ACE - area control error, MW
B - bias setting, MW/0.1 Hz
Δ - deviation from schedule

10
10

ACE I B F
G L B F

= Δ − ⋅Δ
= Δ − Δ − ⋅Δ

 

Figure 2-3  Relationship between an Individual Control Area and Rest of Interconnection 
and Definition of Area Control Error (CA ISO, 2005) 

Control Area Objectives 

As shown in Figure 2-4, the principal objectives of area and regional control operators are to 
operate transmission within thermal limits, maintain voltage within voltage stability limits, 
observe transient stability limits, and balance generation against load.  In addition, the regional 
balancing authority balances the overall generation load, maintains scheduled interchanges, and 
supports interconnection frequency.   

To meet these objectives, the operator is responsible for scheduling generation and transmission 
resources for both day-ahead and hour-ahead periods, load following, and system voltage and 
frequency regulation to balance generation and load and meet other objectives.  Figure 2-5 
illustrates the duration of system load vs. upward and downward regulation; day-ahead, hour-
ahead, incremental and decremental scheduling; and five-minute dispatch of generation 
resources.   
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Figure 2-4  Control Area Objectives Focus on Balancing Load and Interchange vs. 
Generation (CA ISO, 2005) 

 

 
 
 

Figure 2-5 Balancing Authority Balances Generation Resources vs. Real-Time Load (CA 
ISO, 2005) 
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System Impacts and Challenges 

The system impacts and operator challenges created by wind generation result from the 
intermittency and short- and longer-term fluctuations of wind generation, due to gusting winds, 
the resulting high ramp rates of wind generation, diurnal and seasonal wind speed and system 
load variations, and movement of weather systems. 

The system impacts include: 

• Unit commitments and scheduling.  

• Voltage regulation/reactive power control.  

• Reserve margins for security and reliability. 

• Transmission bottlenecks during windy periods.  

• Frequency control and regulating reserves.  

• Load following and energy balance. 

The magnitudes of the impacts can vary over wide ranges and depend on several important 
factors:   

• Percentage penetration of rated wind capacity in the generation mix.  

• Geographical dispersion of wind capacity. 

• Diurnal and seasonal correlations between wind generation and system load. 

• Penetrations and types of other generation resources in the mix. 

• Presence of hydro, pumped storage hydro, and peaking capacity in the mix. 

• Adequacy of transmission resources to transmit wind energy during periods of peak 
generation to the population centers.  

Importance of Wind Energy Forecasting 

Wind energy forecasting is one of several mitigation measures available to reduce the impacts of 
wind on power system operation and control (EPRI, 2004, 2005).   

Other mitigation measures include: 

• Power electronics and line compensation to absorb short-term fluctuations and control power 
factor. 

• Integration with hydroelectric generation to absorb both short-term fluctuations and store off-
peak wind energy generated at night when demand is low. 

• Addition of storage and flow batteries, compressed air energy storage, pumped hydro, and 
other energy storage facilities. 
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• Transmission upgrades to relieve bottlenecks during windy periods; and wind energy 
forecasting.  

In combination with load forecasting, wind energy forecasting can support optimal dispatching 
of intermediate and peaking generation, including hydro, fossil, and other dispatchable 
generating units; dispatching of transmission resources; scheduling next-hour and next-day wind 
energy deliveries to the grid; markets for green power and green certificate trading; and other 
uses.  The ongoing CA ISO Participating Intermittent Resources Program (PIRP) provides 
hourly forecasts of next-hour and next-day wind generation to participating wind plant operators 
for use in scheduling next-hour wind energy deliveries to the California grid (CA ISO, 2005).    

Balancing authorities like CA ISO need accurate next-hour and next-day forecasts of hourly 
wind generation to anticipate high ramp rates (CA ISO, 2005).   

For the next-hour market, CA ISO uses five-hour forecasts to prepare accurate dispatch notices 
to send to quick-start generators and they need to receive the forecasts in time to send the notices 
at T-270 min. (270 minutes before the start time).  In addition, the next-hour forecasts are due at 
T-75 min. (75 minutes before the hour) when the next-hour market closes. 

For the next-day market, the forecasts are used to assess hourly energy production and 
anticipated hourly ramps.  The wind energy forecast influences the procurement of ancillary 
services (regulation and operating reserves), preparation of accurate day-ahead generation 
dispatch notices, and effect of wind generation schedules on transmission congestion. 

Forecasting Wind Generation Ramp Rates 

Forecasting of wind generation ramp rates will be particularly important if the rated wind 
capacity in the Tehachapi Mountains increases by 4000 MW from about 670 MW to 4600MW in 
the future. For example, Figure 2-6 forecasts the daily variation of wind generation at Tehachapi, 
based on wind generation data for selected days during April 2005 (CA ISO, 2005).  The daily 
variations cover the entire range from zero to 4600 MW during the 30-day period. 

Very high positive and negative ramp rates occurred on several of the days.  For example, Figure 
2-7 summarizes the extreme range of hourly wind generation and ramp rates that would have 
occurred on April 8, 2005 with 4600 MW of wind capacity at Tehachapi.  During the 24-hour 
period, wind generation varies between zero and 4500 MW, and the ramp rate exceeded minus 
1000 MW/hr during two hours, and reached plus or minus 600 MW/hr during 11 of the 24 hours.  
The two minus-1000 MW/hr ramps occur at 7:00 and 8:00 AM, precisely when load is building 
rapidly.   
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Figure 2-6 Forecast Daily Variation of Hourly Wind Generation at Tehachapi after 
Expansion to 4000 MW Rated Capacity. Based on April 2005 Data (CA ISO, 2005) 

 

 

Figure 2-7  Estimated Hourly Wind Generation (MW) and Ramp Rates (MW/hr) after 
Tehachapi Expansion to 4600 MW. Based on Data for April 8, 2005 (CA ISO, 2005).  

Tehachapi Expanded to 4600 MW 
Hourly MW Data for April 8, 2005  
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Because of the above and other internal studies, CA ISO has concluded that it is important to 
accelerate development and validation of wind energy forecast tools now so that they are ready 
to use when the wind generation capacity in the state grows to a level that reach two to four 
times the current 2200-MW level (CA ISO, 2005). 

Customizing Wind Energy Forecasts for System Operators  

Even the most accurate next-hour and next-day wind energy forecasts for a region will be almost 
useless to the system operator if they are delivered, for example, as simple tables of wind speed 
and wind energy generation forecasts vs. time without additional information that directly 
addresses the needs of the operator with regard to content, format, and method of delivery.   

For example, other forecast information and data may at times be of greater interest to the system 
operator than the actual wind speed and energy forecast, such as the forecast ramp rate of 
regional wind generation, the impact of forecast errors on control area CPS1 and CPS2 
compliance, and the cumulative monthly imbalance of scheduled vs. delivered wind energy. 

Figure 2-8 presents an example of a web-page display developed by AWS Truewind during the 
development of the intermediate-term forecasting system described in Section 4, Next-Day 
Forecast System Development and Testing.  It displays the most recent 48-hour forecast of 
hourly wind generation, in this case for a specific wind project, together with the observed wind 
generation for the site through the most recent hour, plus forecast performance metrics for 
various time periods through the present.    

Examples of other information that could be provided in such a graphical display include: 

• Relative confidence in forecast accuracy based on weather conditions. 

• Range of uncertainty of forecast vs. time superimposed on forecast chart. 

• Archived charts comparing forecast and observed wind speeds and energy generation. 

• Archived forecast performance metrics vs. observed data, for example, mean error (bias, 
ME), mean absolute error (MAE), mean square error (MSE), and skill scores (Skill) over 
different time periods to present (day, week, month, season, and year). 

• Customized forecast and other information, such as next-hour and next-day ramp rates of 
regional wind generation; estimated impacts of forecast errors on CPS1 and CPS2 area 
control error requirements, and the cumulative monthly imbalance between scheduled 
and delivered wind energy.   

For the system operator to “buy in” and trust the forecasts, the operator should also be involved 
in the system customization and initial trial period.  That way the forecast information provided 
and needs of the operator are more likely to merge. 
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Figure 2-8  Example Display of Real-Time Forecasts for Oak Creek Energy Systems Wind 
Project in Tehachapi, California (AWS Truewind, 2005). 



  

 
Wind Energy Forecasting Integration into Electricity Grid Operations 

 2-11

Conclusions 

Wind energy forecasting will become especially important to control area operators and 
balancing authorities like the CA ISO in the future as wind generation concentrated in single 
regions reaches thousands of megawatts.  

Accurate forecasting systems are needed to generate both next-hour and next-day and longer 
forecasts for several reasons: 

• Provide early warning of high hourly ramp rates of wind generation for planning both 
same- and next-day dispatching of generation and transmission resources. 

• Support markets for ancillary services to support intermittent wind generation. 

• Support issuing accurate dispatch notices to quick-start generators 

• Support scheduling of next-hour and next-day deliveries of wind energy to the system.  

Development and validation of the forecasting algorithms needed to meet the needs of the 
control area operators and balancing authorities should begin now. 

The system operators should be actively involved in the development and testing of the 
algorithms to ensure that their needs are met. 
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3  
NEXT-HOUR REGIONAL WIND ENERGY 
FORECASTING SYSTEM DEVELOPMENT AND 
TESTING 

Introduction 

The overall goal was to produce a prototype of an integrated wind generation forecasting system 
that can provide short-term power production forecasts for each of the five wind resource zones 
in California.  The specific functional objective for this short-term forecast system is that it be 
capable of producing forecasts of the regional power production in five-minute intervals for the 
next three hours after forecast delivery.  Thus, each forecast should consist of predictions for the 
next 36 five-minute intervals.  Furthermore, the system should be capable of producing an update 
every five minutes.  

The short-term forecast system is intended to provide a low-cost regional wind generation 
forecasting tool to be used by control area operators and scheduling coordinators at the CA ISO 
for more accurate and economical supplemental energy scheduling, real-time dispatch, load 
following, and AGC control. The ultimate objective is to augment traditional short-term 
statistical forecasting techniques to include a consideration of local and regional atmospheric 
predictors of short-term changes in weather conditions.  The intention is to develop a system that 
will generate regional power production forecasts even in the absence of site-specific monitored 
data by using all of the available local and regional forecasted and observed weather data.   

The work on this task was divided into two phases or subtasks.  The objective of the first phase 
was to formulate a design for a short-term forecast system based on a review of a variety of 
forecasting methods and AWS Truewind’s experience with operational forecast systems and 
ongoing forecast system research and development for longer-term forecasts (hours and days 
ahead).  The goal of the second phase was to implement at least a portion of the system designed 
in Phase 1 and produce an initial assessment of its performance using real-time wind power 
production data from the CA ISO system.   

Forecast System Formulation 

It was recognized that zero- to three-hour forecasts in five-minute intervals will necessarily rely 
heavily upon statistical time series prediction tools.  This is because it is not possible to gather 
sufficient data to initialize a high-resolution physics-based atmospheric model on the scale 
required to make zero- to three-hour forecasts in five-minute intervals, nor is it possible to 
execute such models quickly enough to make their output useful in the forecast process.  
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However, physics-based models that run at moderately high resolution every few hours may 
provide some useful trend information for forecasts for the zero- to three-hour period.  Therefore, 
the formulation of the forecast system began with a focus on statistical methods for time series 
prediction that could be employed in a short-term forecast system.  The methods that were 
reviewed included a number of classical time series prediction methods as well as newer 
techniques based on recent advances in learning theory. A summary of the methods that were 
considered for use in the short-term forecasting system is presented below.  The presentation 
begins with the classical techniques and progresses to the newer and more sophisticated 
techniques.  After the summary of the forecast methods, a proposed design for a complete short-
term forecasting system is presented. 

Alternative Forecast Methods 

Autoregressive Models 

The most basic approach to the prediction of a future value from a time series of data is the 
autoregressive (AR) model.  In this approach the future value of a time series (Xn) is predicted 
from the values at the current time (n-1) and previous times (n-2 through n-p) by the relationship: 

   Xn = c + aiXn− i
i=1

p

∑        (Eqn 3-1) 

where “c” and all p of the “a” variables are empirical parameters that are estimated from the 
training data.  An autoregressive model is simply a linear regression of the current value of the 
series against one or more prior values of the series. The value of p is called the order of the AR 
model.  The parameters of the AR model can be estimated in a variety of ways.  The most 
popular method is the standard linear least squares approach that is used in linear regression.  
The AR model can be expanded by adding time series of other relevant variables. 

Moving Average Models 

Another popular approach to the prediction of future values from a time series of data is the 
moving average (MA) model.  In this approach, the prediction is based upon a linear 
combination of past forecast errors rather than a linear combination of past values.  In this 
approach the future value of a time series (Xn) is predicted from a linear combination of error 
values according to the relationship:  

  Xn = c + biεn− i
i=1

q

∑        (Eqn 3-2) 

where “c” and all q of the “b” variables are empirical parameters that are estimated from the 
training data and ε is the forecast error at each previous interval in the time series.  The 
parameter q determines how many error terms are included in the model and is often called the 
order of the MA model. 
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ARIMA (Box-Jenkins) Models 

Box and Jenkins (1976) developed an approach that combined the autoregressive and moving 
average approaches into a method called the AutoRegressive Integrated Moving-Average 
(ARIMA) model.   Since the ARIMA approach was first popularized by Box and Jenkins, 
ARIMA models are often referred to as Box-Jenkins models.   An ARIMA model predicts a 
value in a time series as a linear combination of its own past values, past errors (sometimes 
called shocks), and current and past values of other time series. When an ARIMA model 
includes other time series as input variables, the model is sometimes referred to as an ARIMAX 
model.   The prediction equation for an ARIMA model for a time series of X values is: 

  Xn = c + aiXn− i + biεn− i
i=1

q

∑
i=1

p

∑       (Eqn 3-3)  

where a, b and c are prediction model parameters to be determined from the training data, Xn-i are 
the current (n-1) and past (< n-1) values of the time series and ε n-i are the current and past values 
of the forecast error. 

The main advantage of the ARIMA approach over other classical methods is the small number of 
values necessary for prediction calculation, its rapid adaptability to changing conditions, and the 
good performance with predicting time series that have a significant deterministic component. Its 
disadvantage is that it has difficulty with time series that have a significant stochastic (non-
deterministic approach) component. 

Artificial Neural Networks (ANN) 

The most popular method currently used for predicting a time series is probably the artificial 
neural network (ANN).  The ANN enables us to describe non-linear processes created by a set of 
complicated phenomena.  The fundamental building block of a neural network is a computational 
element called a neuron.  A neuron receives an input and processes it to generate an output.  A 
neural network consists of a set of neurons that are logically arranged.  

Figure 3-1 presents a schematic of a simple neural network.  Each of the circles in the diagram 
represents a neuron.  The output of a neuron is a function of the net input according to the 
formula: 

    output = f (net input)     (Eqn 3-4) 

The function that translates the net input into the output is called the activation function.  Many 
different activation functions have been used in ANN applications.  The majority of current 
ANN applications employ a sigmoid (S-shaped) activation function.  A sigmoid function may be 
loosely defined as a continuous, real-valued function whose input domain is the entire set of real 
numbers, whose derivative is always positive and whose range is bounded.  The most 
commonly-used sigmoid function is the logistic function.  Another popular sigmoid function 
used in neural network applications is the hyperbolic tangent function.  In practice, the 
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performance of a neural network prediction algorithm, but the rate of learning (training time) can 
be significantly affected by the choice of the activation function. 

The net input to the activation function is a weighted sum of all of the input values plus an offset 
constant.  Thus, if our n inputs to a neuron are xi with i ranging from 1 to n, the net input is 
calculated from 

    netinput = xiwi + w0
i=1

n

∑     (Eqn 3-5) 

where the wi and w0 parameters are the weights for each input.  The operational characteristics of 
a neuron are primarily controlled by these weights and not by the characteristics of the activation 
function as long as some basic criteria are met for the activation function. 

In the neural network configuration shown in Figure 3-1, each hidden layer neuron receives three 
inputs.  Therefore, the output of each hidden layer neuron (HLn) is 

  )( 32 32110 inin wINPwINPwINPwfHL ininn +++=    (Eqn 3-6) 

where INPi are the input layer values, the wi are the associated weights and f() is the activation 
function.  Each of the outputs from the hidden layer neurons is then combined in an analogous 
weighted sum to compute the final output value from 

  NetworkOutput = whl 0 + HL1whl1 + HL2whl 2 + HL3whl 3    (Eqn 3-7) 

where the whli are another set of weights that convert the output from the hidden layer neurons to 
the output value for the network.  It is easy to see from this example that there are a large number 
of weight parameters in even a simple neural network with one hidden layer and three hidden 
layer neurons.  In this case, there are a total of 16 weights: four to calculate the net input to each 
of the three hidden layer neurons and four more to calculate the output value from the output of 
the three hidden layer neurons.  The number of weight parameters will significantly increase if 
additional hidden layers, hidden layer neurons or inputs are added to the network. 

Support Vector Regression (SVR) 

One of the newest tools for creating functions from a set of labeled training data  is a Support 
Vector Machine (SVM).   The SVM concept was first developed by Vapnik and Chervonenkis 
(1974) to address classification problems. The unique aspect of the support vector classification 
function is that it only depends on a subset of the training data because the cost function for 
building the classification function does not care about training points that lie beyond a 
prescribed margin.  For classification, SVMs operate by finding a hypersurface in the space of 
possible inputs. This hypersurface will attempt to split the positive examples from the negative 
examples. The split will be chosen to have the largest distance from the hypersurface to the 
nearest of the positive and negative data points.  
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Figure 3-1 A schematic depiction of the flow of data through an artificial neural network 
(ANN) scheme.  Each circle represents a neuron (or a computational element). 

A version of SVM for regression was first proposed by Vapnik, Golowich, and Smola (1997). 
This method was given the name Support Vector Regression (SVR).  Analogously, the 
regression function produced by SVR depends only on a subset of the training data, because the 
cost function for building the model ignores any training data that is close (within a threshold ε) 
to the regression function.   

To understand the unique attributes of SVR, it is useful to compare SVR to ordinary least 
squares linear regression (OLSLR).  However, it should be noted that SVR can be extended to 
the case of non-linear regression and the linear case is used here only as an illustrative example.   
It is useful to recall that OLSLR builds a regression function by minimizing the cost function 

  Cost Function=
2( pY − iY ) =

2(w iX +b− iY )    (Eqn 3-8) 

over all variables in the training set.   In this function  Yp  = wX + b is the prediction of the 
variable Y by the resulting regression equation.  The regression parameters w and b are selected 
to minimize the cost function when summed over all members of the training set.  SVR, on the 
other hand, specifies that the regression parameters w and b should be selected to meet the 
following criteria: 

   minimize   ||w||2  
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   subject to 

   y − wx − b ≤ ε 

   wx + b − y ≤ ε        (Eqn 3-9) 

These criteria only demand that the regression function produce values within +/- ε of the actual 
data values yi.  Thus, the algorithm to find the regression parameter values assigns no penalty to 
any points that are within +/- ε of the regression function.  A penalty is assigned only to those 
points that lie outside of the +/- ε band around the function.   The ||w||2 criterion serves to 
minimize the slope of the line so that resulting function maximizes its “flatness”.  This criteria is 
related to what can be termed a “learning capacity control.”  This addresses an issue that arises in 
many different approaches to estimating a function from a set of training data including the ANN 
procedure.  Some classes of functions have a high capacity to learn (or fit the empirical data) due 
to their structure and the number of associated parameters.  If the amount of independent data is 
small, there is a high risk that such a function will overlearn (or “overfit”) the data and result in 
poor forecast performance even though it fit the training data very well.  The SVR approach 
addresses this problem by invoking a learning capacity control criteria.  In the linear regression 
case, this is invoked by minimizing the slope of the regression line subject to the other 
constraints.   

The SVR approach has a number of desirable attributes and has been shown to significantly 
outperform other time series prediction approaches in some applications.  However, the approach 
is quite new, and its performance relative to other methods has not been thoroughly documented 
in a broad range of applications.   A version of SVR software was tested on a set of power 
production data in this project.  Its performance was quite erratic and it occasionally had 
problems converging to a solution.  Thus, it was decided that it was best not to utilize SVR at 
this time. 

Short-Term Forecast System Design 

After reviewing the multitude of statistical tools that are available to serve as the core forecast 
method for the short-term forecast system, the Artificial Neural Network (ANN) approach was 
selected as the best choice to serve as the core of the short-term forecast system.  The ANN 
method has an advantage over the traditional AR, MA, or ARIMA approaches because it can 
model more complex, non-linear relationships and can be easily extended to incorporate a variety 
of other variables with relevant predictive information.  SVR and other advanced tools can also 
model very complex, non-linear, multi-parameter relationships.  It may ultimately be recognized 
that some of these tools have advantages over the ANN approach for the short-term power 
production forecasting application.  However, most of these methods, especially SVR, are still 
fairly early in their development process and the documentation and experience with these 
methods is much more limited than with the ANN approach.  The ANN method has been applied 
to a variety of diverse applications with considerable success.  As a result, the strengths and 
weaknesses of the ANN approach have been widely documented, which provides a solid basis 
for its application to predicting short-term power production. 
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As noted previously, the design objective for the short-term forecast system is to go beyond the 
basic use of power production time series information from the individual wind resource regions, 
subregions or wind plants.  In addition to the power production time series data, it is envisioned 
that the following information will also be used in the forecast system:  (1) time series 
information of meteorological parameters from meteorological towers operated by wind 
generators or other members of the wind energy community; (2) meteorological data from 
surface weather observing sites operated by the National Weather Service and other 
organizations; (3) meteorological data from remote sensing systems such as wind profilers, 
Doppler radars and satellite-based sensors; and (4) short-term forecast data from high resolution 
atmospheric physics-based models run in a rapid update cycle mode (assimilation of new data 
and execution of short-term forecasts every few hours or possibly every hour).   

Figure 3-2 presents a schematic of the initial forecast system design schematic created to address 
these design objectives.  The circles represent input or output data, while the rectangles depict 
algorithms (numerical models) that operate on the data.  The system employs a variety of power 
production and meteorological data.  

The four fundamental types of input data are depicted by the circles at the top of the diagram. 
The leftmost circle represents the time series of power production data from a wind resource 
region, a subregion or an individual wind plant.  The next circle to the right represents the time 
series of meteorological data gathered by the sensors on a meteorological tower located at the 
wind plants or sites selected by members of the wind energy community to provide data for wind 
power production forecasting or wind resource assessment.  For example, one participant in the 
California electric grid system maintains a network of 12 anemometers for its own wind power 
production forecasting applications.  These data and similar datasets could be used in the 
proposed short-term forecast system if the parties that own the sensors and the data agree to 
provide the data for this application.  The third circle to the right represents the surface weather 
data available from a variety of other sources.  The principal source is the U.S. National Weather 
Service, but some additional data are potentially available from other public and private sources 
(for example, CalTrans, Air Quality Management Districts, and others).  The rightmost circle 
represents the pool of meteorological data available from the diverse set of remote sensors that 
routinely gather information about the atmosphere.  This includes ground-based remote sensing 
systems such as wind profilers, temperature sounders and Doppler radars, as well as space-based 
systems that provide vertical profiles of temperature and moisture as well as some limited wind 
data.  

The proposed forecast system is designed to use these data sources to produce three somewhat 
independent short-term predictions of the power production.  A separate neural network is then 
trained to ingest these three predictions and produce an optimal final power production 
prediction.  The three different forecast production subsystems are represented by the three 
parallel vertical sequences in the schematic diagram.   

The leftmost subsystem is fundamentally an autoregressive time series prediction scheme.  It 
uses an ANN to exploit the structure contained in the power production time series to directly 
generate a power production forecast.   
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Figure 3-2 A schematic depiction of the proposed short-term (0 to 3 hour) forecast system. 
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The middle subsystem is also fundamentally a time series prediction algorithm, but it is much 
more complex. In this approach, the time series of meteorological data in the region is used to 
generate a wind forecast for the region.  This wind forecast is then converted to a power 
production prediction through the use of a Regional Power Production Model (RPPM).  The 
RPPM is a statistical relationship (a regional scale power curve in a sense) between the regional 
winds and possibly other atmospheric variables such as air density and the concurrent power 
production.   

The third forecast method is based upon the use of a high-resolution physics-based model 
executed in a rapid update cycle mode.  In this mode, the model frequently (for example, every 
hour or two) ingests all of the regional and local in situ and remotely sensed meteorological data 
to create a new initialization state for a short-term three-dimensional simulation of the 
atmosphere near the region to be forecasted.  The grid point output from this simulation is used 
as input to a Model Output Statistics (MOS) procedure that adjusts the raw model predictions to 
account for systematic errors in the simulations due to processes that are too small to be seen on 
the model’s grid or limitations in the model’s formulation or input data.  The output from the 
MOS procedure is a forecast of the meteorological variables that are needed for input into the 
RPPM.  The RPPM is then used to convert the forecast of the meteorological variables to 
forecasts of the power production.    

The final step in the forecast process is to feed the three quasi-independent predictions to an 
ANN scheme, which combines them into a single final power production forecast.  The ANN in 
the final step will weight the three forecasts in a way that is dictated by their performance.  This 
may result in selection of one of the three forecasts in certain situations and a blend of two or all 
three of the forecasts in others. 

The use of three separate forecast subsystems has a number of advantages.  First, it provides a 
backup capability in case one method should fail because data are not available or are corrupted 
due to a software failure.  Second, the three systems take advantage of different data and 
modeling approaches and will likely have substantially different performance characteristics, 
which will likely enable specific methods to outperform the others in certain classes of 
situations.   

For example, forecasts that are predominantly based on time series information will likely lack 
the ability to anticipate large changes in power production due to rapidly changing weather 
conditions, since there likely will be no signal of the upcoming large change in the recent history 
of the power production.  However, a physics-based model initialized with regional and local 
meteorological data may exhibit considerable skill in forecasting major weather events.  On the 
other hand, the physics-based models may find it difficult to forecast routine subtle changes in 
winds and therefore power production, since they may not provide the necessary spatial 
resolution of the computational grid or sufficiently detailed three-dimensional input data to 
accurately specify the initial conditions for the model.  In those cases, which occur frequently, a 
time series prediction is likely to be superior.   

A third advantage is that the existence of three preliminary forecasts provides an opportunity to 
employ an ensemble forecast approach.   It has been demonstrated in other meteorological 
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applications that the composite of an ensemble of forecasts often statistically outperforms each 
of the individual members of the ensemble.  In addition, the availability of an ensemble of 
forecasts can provide an indication of the confidence that should be placed in the forecast.  If all 
of the members of the ensemble are in close agreement, then the user is usually justified in 
placing more confidence in the forecast.  However, if the forecasts by the ensemble members are 
widely separated, the uncertainty in the forecast is typically higher. 

The next step in the development is to implement and test the system.  Unfortunately, the 
implementation of the entire system was beyond the scope of this project.  In addition, a 
complete input dataset was not available to test the system even if it had been fully implemented.  
Therefore, only one of the three prediction subsystems was implemented and tested in this 
project.  The method that was tested was the leftmost column in Figure 3-2, which applied ANN 
to the regional power production time series data provided by the CA ISO. 

Regional Power Production Data  

The CA ISO provided a regional wind power production time-series dataset consisting of one-
minute aggregated wind power production and capacity data for five wind resource regions and 
for all of 2004.  The regions were Altamont, Solano, Pacheco, Tehachapi, and San Gorgonio.  
Data were missing for the following time periods:  (1) 0200 PST to 0255 PST on 4 April;  (2) 
0000 PDT 16 May to 0005 PDT 3 June; and (3) 2300 PST 31October to 0000 PST 1 November.  
The dataset was used for all of the forecast performance experiments and evaluation that were 
conducted under this task. 

Table 3-1 shows an example of the raw one-minute data.  Several issues were noted in the initial 
examination of the raw one-minute data.  One issue was that the actual production values for the 
Solano County region were always equal to or greater than the reported capacity values.  Thus, 
according to the dataset, the Solano County wind plants always produced at 100% or more of the 
reported capacity for all of 2004.   Another issue was that no capacity information was reported 
for the Pacheco region.  This made the Pacheco data unusable, since the capacity data are crucial 
to the forecast procedure.  No installed capacity information was provided with the dataset.  
Therefore the “installed capacity” was assumed to be the maximum availability reported for a 
five-minute interval during the year.  These values were: San Gorgonio  556.71 MW,  Tehachapi 
659.71 MW, Altamont 827.3 MW, and Solano 171.4 MW.   

The raw one-minute data were converted to five-minute data by AWS Truewind.  The five-
minute data intervals were synchronized with the clock hour so that a five-minute interval began 
and ended on each clock hour.  The conversion to five-minute intervals was done by averaging 
all of the valid one-minute data within each five-minute interval.  Any one-minute interval for 
which data were missing was excluded from the averaging process.  If there were no valid one-
minute data within a five-minute averaging interval, the five-minute interval was assigned a 
missing data flag. The five-minute data were used for all of the forecast experiments. 
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Table 3-1 An example of the raw one-minute regional power production data provided by the CA ISO for 2004. 

.

Zone Zone Zone Zone Zone System
Actual Availability Actual Availability Actual Availability Actual Availability Actual Availability Actual Availability

7/6/04 0:01 270.27 608.10 153.95 316.40 238.00 554.46 9.60 166.49 152.10 919.35 921.98

7/6/04 0:02 271.24 608.10 153.81 316.40 235.07 510.06 9.60 167.87 153.48 918.63 925.15

7/6/04 0:03 268.87 608.10 149.82 316.40 229.77 554.46 9.60 168.27 153.87 907.37 917.25

7/6/04 0:04 267.83 608.10 151.62 316.40 227.67 554.46 9.60 168.39 154.00 906.15 907.58

7/6/04 0:05 269.09 608.10 159.00 316.40 222.09 554.46 9.60 168.43 154.03 909.24 912.68

7/6/04 0:06 269.32 608.10 155.71 316.40 220.48 554.46 9.60 168.46 154.06 904.59 910.26

7/6/04 0:07 270.06 608.10 150.04 316.40 222.66 554.46 9.60 168.48 154.09 901.88 903.98

7/6/04 0:08 269.34 608.10 151.63 316.40 220.63 554.46 9.60 168.51 154.12 900.75 906.87

7/6/04 0:09 270.13 608.10 150.34 316.40 219.81 554.46 9.60 168.54 154.15 899.45 904.77

7/6/04 0:10 272.29 608.10 149.29 316.40 224.21 554.46 9.60 168.57 154.18 905.00 904.55

      Solano Total  EMS
Date/Time

     Altamont     Tehachapi  San Gorgonio      Pacheco
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Temporal Variability of Power Production 

It is important to understand the temporal variability characteristics of any variable that is to be 
forecasted.  Therefore, before the forecast performance experiments were conducted the five-
minute regional power production data for 2004 were analyzed to understand the time scales and 
amplitudes of the temporal variability of the power production.   

One standard approach to the analysis of the temporal variability of a parameter is the 
construction of a lagged autocorrelation plot.  This was done for four of the five regions 
(excluding Pacheco) for which data were supplied.  The lagged autocorrelation values represent 
the correlation between the current value of the power production and the value at a previous 
time offset from the current time by the lag period.  A high autocorrelation coefficient for a 
particular time scale indicates that there often are trends in the data on that time scale.   

Figure 3-3 shows a plot of the lagged autocorrelation values for each region.  This depiction 
reveals that the autocorrelation is high for all four regions and drops off very slowly with time.  
However, the rate of decrease varies somewhat between the regions.  In general, the 
autocorrelation decreases more rapidly with time for the two Northern California regions than for 
the two Southern California regions.  This suggests that one- to three-hour trends in the data are 
more prominent in the Southern California regions than they are in the Northern California 
regions.   The autocorrelation data also indicated that there were substantial seasonal differences 
in each of the regions.   

Figures 3-4 and 3-5 show two examples of the seasonal variation in the autocorrelation structure.  
These charts show the lagged autocorrelation for the six cold season (October to March) and the 
six warm season (April to September) months for the Altamont (Northern California) and San 
Gorgonio (Southern California) regions.   The seasonal variation is quite different in these two 
regions.  In the Altamont region (Figure 3-3), the lagged autocorrelations decrease much more 
rapidly over the zero to three hour period during the cold season than they do during the warm 
season.  However, after approximately three hours, the warm season autocorrelations decrease 
more rapidly than do during the cold season.   As a result, the cold and warm season 
autocorrelations gradually approach each other during the three- to eight-hour period.  After a lag 
period of approximately eight hours, the autocorrelation is approximately the same in both 
seasons.  In contrast, the lagged autocorrelations decrease at approximately the same rate during 
the zero- to three hour period for both seasons for the San Gorgonio region.  After three hours, 
the autocorrelation decreases much more rapidly in the warm season than in the cold season.  As 
a result, the autocorrelation for the warm season during the eight- to 12-hour period is much 
lower than it is in the cold season.  These results indicate that there are substantial differences in 
the temporal variability characteristics of the power production from region to region and from 
season to season within a region.  This suggests that different forecast system configurations (for 
example, different predictors) may be necessary to achieve optimal performance in different 
regions and seasons. 

Another tool that is useful in analyzing the temporal variability of a parameter is wavelet 
analysis.  An overview of wavelet analysis is presented in Torrence and Compo (1998).  Wavelet 
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analysis decomposes a time series into time-frequency space.  This enables one to determine 
both the dominant modes of variability and how those modes vary in time. In essence, a wavelet 
analysis transforms a one-dimensional time series into a two-dimensional time-frequency image. 

Figures 3-6 and 3-7 show wavelet power (the square of the wavelet amplitude) spectrum plots of 
the Tehachapi data for December and July 2004.  The highest wavelet power during December is 
associated with the two- (2880 minutes) to four-day (5760 minutes) time scales and that wavelet 
power is highly variable over time.  In fact, much of it is concentrated into two time intervals – 
one early in the month and one later in the month - that correspond to stormy periods.  In 
contrast, the July analysis (Figure 3-7) indicates that there is substantial power for wave periods 
of about one day (1440 minutes).  One possibility for future forecast systems is to use tools such 
as the ANN to predict the power production in frequency space and then integrate over all 
frequencies to obtain a prediction of the total power production.  This would enable different 
predictors (or even different methods) to be used to make forecasts for different portions of the 
frequency spectrum. 

Initial Forecast Performance Evaluation 

This section presents the results from a series of forecast experiments designed to (1) evaluate 
the sensitivity of the forecast performance to a few of the most important configuration options 
in the ANN-based forecast system; and (2) assess the general level of performance that can be 
obtained from an ANN-based zero- to three-hour-ahead forecast system for the prediction of the 
regional wind power production within the CA ISO system.   

The first objective was addressed by a series of three forecast experiments.  The first series of 
experiments tested the impact of variation in the number and type of inputs to the ANN scheme.  
The second series evaluated the sensitivity of the forecast performance to the size of the training 
sample.  The third series of experiments examined the impact of the number of hidden nodes 
(middle column of the schematic in Figure 3-1) used in the ANN formulation.  The results of 
these experiments are presented below.  The second objective was addressed by setting the ANN 
forecast  system to the “best” configuration found in the sensitivity experiments and producing 
forecasts for each of the wind power production regions for which data were available.  

Specification of Predictors  

Table 3-2 presents the list and descriptions of the fixed set of predictor variables used in the 
forecast experiments and also assigns a label to each predictor variable.  The  discussion of the 
experimental results uses these labels to refer to the input parameters used in each experiment.  

The first predictor variable is the most recent power production and is labeled PP1 (“Power 
Production”).  It is defined as the power production during the five-minute interval immediately 
preceding the forecast production time.  If the forecast production time is designated as 0 
minutes, then the PP1 predictor is the power production for the zero-to-five-minute interval. 
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Figure 3-3 Autocorrelation of the five-minute power production for four wind power 
production regions in California based on data for the calendar year 2004. 
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Figure 3-4 Autocorrelation of the five-minute power production for the Altamont region for 
the cold (October to March) and warm (April to September) seasons of 2004. 
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Figure 3-5 Autocorrelation of the five-minute power production for the San Gorgonio 
region for the cold (October to March) and warm (April to September) seasons of 2004. 
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Figure 3-6 Wavelet amplitude spectrum of the power production data for the Tehachapi 
region for December 2004 based on the Derivative of Gaussian (DOG) wavelet function. 

 

Figure 3-7 Wavelet amplitude spectrum of the power production data for the Tehachapi 
region for July 2004 based on the Derivative of Gaussian (DOG) wavelet function. 
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Table 3-2 Description of predictors used in the 0 to 3 hour forecast experiments- 

 
Predictor Label Description 

PP1 
The reported power production from the most recent interval prior to the forecast production 
time (i.e. the 0 to -5 minute interval for 5 minute data with a forecast production time of 0 
minutes); 

PPTR1 The change in power production between the most recent interval (P1) and the immediately 
prior   interval regardless of the forecast look-ahead interval  

PPTRO1 

The change in power production change between the most recent interval and the preceding 
interval corresponding to the same offset time as the forecast look-ahead period ( for example, 
the change from the -35 to -30 minute interval to the -5 to 0 minute interval for a 30-minute 
ahead forecast) 

PPO2 
The power production from the preceding interval that corresponds to the same offset time 
period from the forecast product time as the forecast look-ahead period (i.e. the -35 to -30 
minute interval for a 30-minute forecast) 

PPTRO2 
The change in power production over a time period preceding the PPO2 interval by a period 
that is equal to the forecast look-ahead period ( for example, the change from the -40 to -35 
minute interval to the -10 to -5 minute interval for a 30 minute ahead forecast); 

PP2 The power production from the second most recent interval prior to the forecast production 
time (i.e. the -5 to -10 minute interval) 

PPDA 
The power production from the day-ago interval corresponding to the forecasted interval (i.e. 
if the forecast is for the 2:30 p.m. to 2:35 p.m. interval, the production for that time period 
from the previous day is used as the input); 

PPTRDA 

The change in power production between the forecast production time and the 
forecasted interval from the previous day (i.e. if a forecast is made at 2 p.m. for the 
2:30 to 2:35 p.m. interval, the input is the previous day’s change in production 
between the 1:55 p.m. to 2:00 p.m. interval and the 2:30 p.m. to 2:35 p.m. interval; 

ERR 

The forecast error for the forecast with the same look-ahead period for the most 
recent interval preceding the forecast production time (i.e. for a forecast for the 2:30 
to 2:35 p.m. interval made at 2 p.m. (a 30-minute forecast), the ERR predictor is the 
forecast error for the 30-minute ahead forecast (the one made at 1:30 p.m.) for the 
1:55 p.m. to 2:00 p.m. interval).  

The fifth predictor labeled “Power Production Trend Offset 2” or PPTRO2  is the change in 
power production over a time period preceding the PPO2 interval that is equal to the forecast 
look-ahead period.  Thus for a 30-minute forecast, PPTRO2 is the change in power production 
from the -65 to -60 minute interval to the -35 to -30 minute interval.  Thus, the use of PPTRO1 
and PPTRO2 together provide information about the second derivative of the power production 
(the rate of change of the trend in the power production). 

The sixth predictor is labeled PP2 (Power Production 2” and is the power production for the 
period immediately preceding the most recent interval regardless of the forecast look-ahead 
period.  Thus, PP2 is always the power production for the -10 to -5 minute interval. 

The seventh predictor is the power production from the previous day for the clock time of the 
forecasted interval.  Its label is PPDA (“Power Production Day Ago”). Thus, if the forecast is for 
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the 2:30 p.m. to 2:35 p.m. interval, the PPDA input value is the power production for that time 
period on the previous day. 

The eighth variable is the change in power production between the forecast production time and 
the forecasted interval from the previous day.  That is, if a forecast is made at 2:00 p.m. for the 
2:30 to 2:35 p.m. interval, the input is the previous day’s change in production between the 1:55 
p.m. to 2:00 p.m. interval and the 2:30 p.m. to 2:35 p.m. interval.  The label for this predictor is 
PPTRDA (“Power Production Trend Day Ago”). 

The ninth variable is the error of the forecast with the same look-ahead period for the most 
recent interval preceding the forecast production time.  Thus, for a forecast for the 2:30 to 
2:35 p.m. interval made at 2:00 p.m. (a 30-minute forecast), the ERR predictor is the forecast 
error for the 30-minute ahead forecast (the one made at 1:30 p.m.) for the 1:55 p.m. to 2:00 p.m. 
interval). 

Sensitivity Tests 

The period extending from June 1 to July 31, 2004, was selected as the test period.  This period 
was selected primarily because it is during the time of the year when the wind power production 
is near its peak in most parts of California, which means that the accuracy of forecasts for grid 
management is most critical.  A secondary factor is that there are very few missing data during 
this period.  The Tehachapi region was used as the venue for these experiments.  

Three sets of experiments were executed.  The first set tested the impact of the changes in the 
number and type of inputs to the ANN scheme.  A comparison was also made between the 
performance of a multiple linear regression scheme and the ANN scheme.  The second set of 
experiments evaluated the impact of changes in the training sample size.  Training sample sizes 
ranging from 3.5 days to two months were tested.  The third and final set of experiments 
examined the impact of the number of hidden nodes used in the ANN configuration. 

All of the experiments employed a three-layer feedforward neural network.  This configuration 
consists of an input layer, one hidden layer, and an output layer and is depicted in Figure 3-1.  
The training process was the same for all of the experiments and was based on the use of 
simulated annealing and the conjugate gradient algorithm.  First, simulated annealing was used 
to initialize the hidden layer weights.  A regression was then used to initialize the output weights.   
After initialization, a conjugate gradient algorithm was employed to minimize the mean-squared 
output error.  When a minimum is found, simulated annealing is used to attempt to break out of 
what may be a local minimum.  If annealing reduces the error, the conjugate gradient method is 
used again.  The cycle then repeats itself indefinitely until either a termination criteria is reached 
or several iterations in a row produce only trivial improvement.  The termination criteria 
consisted of an error threshold or a maximum number of iterations.  

The evaluation of the forecasts was primarily based on two parameters: the mean absolute error 
as a percentage of the region’s installed capacity and the skill score.  The mean absolute error 
(MAE) is the average absolute error of the forecasts and is defined as, 
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   MAE =
| Fi − Oi

i=1

N

∑ |

N
      (Eqn 3-10) 

where F is the forecasted value, O is the corresponding reported value, and N is the number of 
forecast intervals in the evaluation sample.  The general definition of a skill score is the 
percentage reduction of an evaluation parameter relative to a reference forecast.  In this context, 
the evaluation parameter is the MAE and the reference forecast is generally a persistence 
forecast.  However, in some cases the reference forecast will be defined as another type of 
forecast.  Thus, the skill score is calculated from   

   Skill =
(MAEref − MAEeval )

MAEref

      (Eqn 3-11) 

where MAEeval is the MAE of the forecast being evaluated and MAEref is the MAE of the 
reference forecast. 

Number and Type of Inputs 

The first series of experiments was designed to evaluate the impact of the number and type of 
input variables on the forecast performance.  In this series, the variables listed in Table 3-2 were 
used in different combinations as inputs to the ANN procedure.  All the experiments described in 
this section used a training sample size of one month, which in this case was June 2004, and 
were evaluated using the data for July 2004.   

Two Input Variables 

The first and most basic input experiment provided two inputs to the ANN algorithm.  These 
were the most recent value of the power production (PP1) and the most recent trend in the power 
production (PPTRO1) as described in Table 3-2.  Figure 3-8 presents the mean absolute errors of 
the ANN and persistence forecasts as percentages of the installed rated capacity in the Tehachapi 
region, vs. the forecast look-ahead time.   

The MAEs of both the persistence and the two-input ANN forecasts are just under 1% of the 
installed capacity for the first five-minute interval and are quite similar during the first 30 
minutes of the forecast period.  The MAEs gradually diverge after about 30 minutes with the 
ANN method producing the lower MAE values.  At the end of the forecast period (180 minutes), 
the MAE of the ANN forecast is almost one full percentage point lower than that of the 
persistence forecast.   

Another way to view the relative performance of the ANN and persistence forecasts is through 
the skill score parameter.  Figure 3-9 presents the skill score of the ANN forecast   
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Mean Absolute Error: 0-3 hr Forecasts
Tehachapi Region: July 2004
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Figure 3-8 Mean absolute error (% of capacity) vs. look-ahead time for the 2-input ANN and 
persistence forecasts for the Tehachapi region.  The two inputs to the ANN algorithm were 
PP1 and PPTRO1 from Table 3-2. 

Skill Score vs. Persistence: 0-3 hr Forecasts
Tehachapi Region: July 2004
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Figure 3-9 Skill score relative to persistence vs. look-ahead time for a 2-input ANN forecast 
for the Tehachapi region.  The two inputs to the ANN algorithm were PP1 and PPTRO1 
from Table 3-2. 
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relative to persistence vs. the forecast interval. The skill score is negative for the first three 
forecast intervals (0-15 minutes), which indicates that the persistence forecast has a lower MAE 
than the ANN forecast during this period.  However, the skill scores rise rapidly from near 0% to 
+10% during the 20- to 70-minute period.  After 70 minutes, the skill score declines slightly but 
remains in the +10% to +15% range.   

The skill score pattern indicates that the recent trend information appears to provide little value 
for the first three forecast intervals (0-15 minutes).  The trends on this time scale typically 
change rapidly and in what appears to be a fairly random fashion.  As a result, this short-term 
trend information often misleads the forecast process and results in a MAE that is actually 
slightly higher than that of a persistence forecast.  As the look-ahead time scale increases, the 
recent trend information becomes more valuable, and the skill scores exhibit a substantial 
increase.  The peak in the skill score just after the two-hour look-ahead time frame is probably an 
indication that the most recent linear trend cannot be projected too far into the future.  

An obvious question is: how does the forecast performance differ between a more sophisticated 
method, such as ANN, and a simple linear regression method, when using a set of two basic 
variables?  To address this question, the PP1 and PPTRO1 variables were used to train a two-
variable multiple linear regression (MLR) model.  Figures 3-10 and 3-11 present the MAEs for 
the two methods and the skill score of the ANN forecast relative to the MLR-based forecast.   

The MAE values and the skill scores indicate that the ANN scheme generally outperforms the 
MLR method by an average of about 5% to 10% over the three-hour forecast period. The skill 
score chart (Figure 3-11) indicates that the ANN method outperforms the MLR method by the 
widest margin during the first two forecast intervals (0-10 minutes) and during the 100- to 140-
minute interval.   

Four Input Variables - Recent Power Level and Trend 

The second experiment added two additional variables to the ANN input.  The two additional 
variables were PP2 (the power production from a preceding interval offset from the forecast 
production time by the length of the forecast look-ahead period) and PPTRO2 (the change in 
power production over a time interval ending at beginning of the PP2 interval [PPTRO2]).   

Thus, the four input variables (PP1, PPO2, PPTRO1, and PPTRO2) consisted of two recent 
power production variables and two recent trend variables.  The presence of PPTRO1 and 
PPTRO2 together provides information about the second derivative of the power production (the 
rate of change of the linear trend in the power production).   

Figures 3-12 and 3-13 respectively present the skill scores for the four-input ANN configuration 
relative to persistence and the two-input ANN scheme from Experiment 1.  These charts indicate 
only modest improvements in the MAE.  However, the improvement is not equally spread across 
the forecast period.  The four-input scheme yields a 3% to 4% lower MAE during the 25- to 70-
minute-ahead period and a 4% to 6% lower MAE during the 150- to 180-minute-ahead period.   
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Mean Absolute Error: 0-3 hr Forecasts
Tehachapi Region: July 2004
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Figure 3-10 Mean absolute errors (% of capacity) vs. look-ahead time for the 2-input ANN 
and the 2-input MLR forecast methods.  The inputs to both forecast algorithms were the 
PP1 and PPTRO1 variables described in Table 3-2. 
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Figure 3-11 Skill score of the 2-input ANN forecast relative to the 2-input MLR method vs. 
look-ahead time.  The two inputs for both methods were the PP1 and PPTRO1 variables 
described in Table 3-2. 
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Skill Score vs. Persistence: 0-3 hr Forecasts
Tehachapi Region: July 2004
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Figure 3-12 Skill score of the 4-input ANN forecasts (Exp. 2) relative to persistence vs. 
forecast look-ahead time.  The four inputs to the ANN algorithm were PP1, PPO2, PPTRO1, 
and PPTRO2 as described in Table 3-2. 
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Figure 3-13 Skill score of the 4-input ANN method (Exp. 2) relative to a 2-input ANN 
method (Exp. 2) vs. forecast look-ahead time. The  inputs to the four-input ANN forecast 
were PP1, PPO2, PPTRO1, and PPTRO2 as described in Table 3-2. 
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The two-input scheme actually yields a slightly lower MAE for most of the intervening 70- to 
150-minute period.  The end result is that the skill score of the four-input scheme relative to 
persistence (Figure 3-13) rises more rapidly than that of the two-input scheme during the 20- to 
60-minute look-ahead period and reaches a peak just over +14% at the 60-minute look-ahead 
time.  The skill vs. persistence then declines slightly to near the +10% level and remains near 
that level through the 120-minute mark.  It then rises gradually to about +17% near the end of the 
three-hour forecast interval.  The peak skill score is about 2 percentage points higher and occurs 
later in the forecast period than for the two-input ANN scheme.  Thus, in general, the forecast 
performance of the four-input scheme is better during the first hour and the last half hour of the 
forecast period, but about the same or worse during the intervening hour and a half.   

Four Input Variables - Recent Power Level and Trend on Previous Day 

The third experiment also made four inputs available to the ANN procedure.  Two of the 
predictors were the same as those used in Experiments 1 and 2 (PP1 and PPTRO1).  However, 
instead of providing additional information about the recent power production level and trend as 
in Experiment 2, information about the power production level and trend from the previous day 
was provided via the variables PPDA and PPTRDA.   

Figures 3-14 and 3-15 present the skill scores for this four-input ANN scheme relative to 
persistence and the two-input scheme from Experiment 1.  These skill scores indicate that the 
information from the previous day yields much more of a reduction in the MAE than the 
additional information about the recent trends (Experiment 2).  The skill score relative to the 
two-input scheme from Experiment 1 (Figure 3-15) is slightly negative for the first two five-
minute intervals but then rises fairly continuously to a high around +18% near the end of the 
three-hour period.  Clearly, the previous day’s information is more valuable than the recent trend 
information, especially for the longer look-ahead periods. The only advantage for the additional 
recent trend information employed in Experiment 2 is in the very short-term look-ahead periods.   

The resulting skill-score vs. persistence for the four-input ANN with the previous day’s 
information exhibits a rapid rise to +10% in the first 40 minutes and then continues to rise at a 
slower rate to a peak around +28% at the end of the three-hour period.  This peak is much higher 
than the +15% and +17% persistence-based skill score peaks seen in Experiments 1 and 2.  The 
skill score is above the Experiment 1 and 2 peaks for all of the last two hours of the forecast 
period.  This underscores the value of the information from the previous day, at least during July 
in the Tehachapi region.  

Six Input Variables 

The fourth input experiment combined the four inputs from Experiment 2 and two additional 
variables added in Experiment 3.  This resulted in a total of six ANN input variables—PP1, 
PP2O, PPDA, PPTRO1, PPTRO2, and PPTRDA.   

Figures 3-16 and 3-17 present the skill scores of the six-input configuration against persistence 
and the two-input scheme from Experiment 1.  The six-input configuration yields a substantial 
positive skill score relative to the two-input scheme from Experiment 1 throughout  
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Skill Score vs. Persistence: 0-3 hr Forecasts
Tehachapi Region: July 2004
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Figure 3-14 Skill score of the four-input ANN forecast (Exp. 3) for persistence vs. forecast 
look-ahead time.  The four inputs to the ANN algorithm were PP1, PPDA, PPTRO1, and 
PPTRDA as described in Table 3-2. 
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Figure 3-15 Skill score of the four-input ANN method (Exp. 3) using variables PP1, PPDA, 
PPTRO1 and PPTRDA against a 2-input ANN method (Exp. 1) using variables PP1 and 
PPTRO1 vs. forecast look-ahead time. 
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Skill Score vs. Persistence: 0-3 hr Forecasts
Tehachapi Region: July 2004
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Figure 3-16 Skill score of the six-input ANN forecast method relative to persistence vs. 
forecast look-ahead.  The six inputs to the ANN algorithm were P1, P2, PDA, PTR1, PTR2, 
and PTDA variables described in Table 3-2. 
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Figure 3-17 Skill score of the six-input ANN forecast method relative to a two-input ANN 
method vs. forecast look-ahead time. The inputs to the six-input ANN algorithm were  the 
P1, P2, PDA, PTR1, PTR2, and PTDA, and the inputs to the two-input algorithm were the P1 
and PTR1 variables described in Table 3-2. 
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most of the forecast period, except for the first two intervals.   However, the forecast 
performance relative to the Experiment 1 scheme is generally no better than and, for some 
intervals, is worse than that of the four-input scheme using the previous day’s information in 
Experiment 3.  The only forecast improvements of the six-input scheme compared to  the four-
input method from Experiment 3 occurred during first interval (0 to 5 minutes) and in the 
vicinity of the 120-minute mark.  Overall, the performance of this six-input scheme is not much 
different from that of the four-input scheme in Experiment 3. 

Seven Input Variables – Forecast Error 

The fifth and final input experiment was built upon the six-input scheme from Experiment 4 by 
adding the error variable ERR as an additional input.  This variable provides information about 
the recent forecast errors to the prediction scheme.   

Figures 3-18 and 3-19 present the skill scores for this seven-input forecast vs. persistence and the 
six-input configuration from Experiment 4. It is clear from these charts that the seven-input 
configuration yields substantially lower skill scores (the MAE is higher) relative to the six-input 
scheme used in Experiment 4 for almost every interval in the forecast period.  

The fact that the addition of the error parameter makes the forecast performance somewhat worse 
for almost all look-ahead periods is rather puzzling.  To gain some insight into why this 
occurred, researchers conducted a further analysis of the forecast performance for all input 
configurations of the ANN scheme.  The focus was on the comparison between how well a 
specific configuration performed on the training sample versus how well it performed on the 
evaluation sample.   

Figure 3-20 shows the training skill scores for four of the ANN configurations for each forecast 
look-ahead period. This chart indicates that the training skill score increases for every forecast 
look-ahead period as inputs are added.  The four-input scheme always has a higher training skill 
score than the two-input scheme.  In fact, the training skill scores for the seven-input scheme are 
very high, with scores in the +40% to +50% range in the latter half of the forecast period.   

However, the corresponding chart for the evaluation sample presents a very different picture 
(Figure 3-21).  The six-input configuration achieves a higher peak skill score than the seven-
input scheme for almost all intervals, even though its performance in the training sample was 
much better than that of the six-input configuration.  

The occurrence of better performance in the training sample and worse performance in the 
independent evaluation sample is a classic symptom of “overfitting.”  That is, the seven-input 
ANN scheme was able to more closely fit data in the training sample, but the relationships 
resulting from this better fit to the training data were not representative of the relationships in the 
evaluation period.  Thus, either the seven-input scheme was fitting noise in the data or it was 
modeling relationships that were not independent of time they changed from the training to the 
evaluation samples).  The result is poor performance in the evaluation sample.  
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Skill Score vs. Persistence: 0-3 hr Forecasts
Tehachapi Region: July 2004

-30%
-25%
-20%
-15%
-10%

-5%
0%
5%

10%
15%
20%
25%
30%

5 10 15 20 25 30 35 40 45 50 55 60 65 70 75 80 85 90 95 10
0

10
5

11
0

11
5

12
0

12
5

13
0

13
5

14
0

14
5

15
0

15
5

16
0

16
5

17
0

17
5

18
0

Forecast "Look-Ahead" Period (minutes)

ANN (7 inputs)

 

Figure 3-18 Skill score relative to persistence vs. forecast look-ahead time.  The inputs to 
the ANN algorithm were the P1, P2, PDA, PTR1, PTR2, and PTDA and ERR variables as 
described in Table 3-2. 

Skill Score vs 6-input ANN: 0-3 hr Forecasts
Tehachapi Region: July 2004
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Figure 3-19 Skill score of the seven-input ANN forecast method relative to a 6-input ANN 
method vs. forecast look-ahead time. The inputs to the ANN algorithm were the P1, P2, 
PDA, PTR1, PTR2, PTDA, and ERR variables described in Table 3-2. 
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Skill Score vs. Persistence: Training 
Sample
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Figure 3-20 Skill scores of the training sample generated using the ANN algorithm with 
two, four, six, and seven inputs relative to persistence vs. forecast look-ahead time for the 
training sample (June 2004). 

Skill Score vs. Persistence: Evaluation Sample
Tehachapi Region: July 2004
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Figure 3-21 Skill scores of the evaluation sample generated using the ANN algorithm with 
two, four, six, and seven inputs relative to persistence vs. forecast look-ahead time (July 
2004). 
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Figure 3-22 presents the skill score differences between training and evaluation samples for 
different input configurations and vs. the forecast look-ahead time.  It illustrates how the skill 
score from the training sample to the evaluation sample for each of four ANN configurations.  
Interestingly, the change for the two-input configuration is near zero and actually slightly 
positive it performed better in the evaluation sample) for the latter half of the period.  Ideally, 
this is the relationship one would want to see between the training and evaluation samples.  The 
four-input and six-input configurations generally exhibit decreases in skill scores between 0% 
and 10% for most intervals, and the six-input scheme exhibits a generally more negative, 
especially during the third hour of the forecast period. However, the skill score difference of 
seven-input configuration is much more negative than those of the three other configurations for 
all of the forecast intervals.  It is clear that the relationships that were identified in the training 
sample do not hold in the evaluation sample for this configuration.  This is most likely an acute 
case of overfitting.   

However, it is curious that the addition of one additional input variable was able to trigger such a 
significant increase in overfitting.  This may be attributable to the nature of the seventh 
parameter, the forecast error (ERR), which in essence provides information about how well the 
forecast scheme fits the data.  This feedback on forecast performance may implicitly reduce the 
number of degrees of freedom in the data and result in greater overfitting than another type of 
parameter.  Typically, overfitting issues can be addressed by increasing the training sample size.  
This is addressed in the next set of sensitivity experiments. 

The conclusions of the input sensitivity experiment are that information from the previous day is 
very important for forecast performance, and that “overfitting” may be a problem with as few as 

Skill Score Difference: Evaluation - Training 
Sample

-40%

-30%

-20%

-10%

0%

10%

20%

5 10 15 20 25 30 35 40 45 50 55 60 65 70 75 80 85 90 95 10
0

10
5

11
0

11
5

12
0

12
5

13
0

13
5

14
0

14
5

15
0

15
5

16
0

16
5

17
0

17
5

18
0

Forecast "Look-Ahead" Period (minutes)

ANN (2 inputs) ANN (4 inputs) ANN (6 inputs) ANN (7 inputs)

 

Figure 3-22 Difference in the skill scores relative to persistence between the training and 
evaluation samples by forecast look-ahead time for the ANN method with two, four, six, 
and seven inputs for the Tehachapi region. 
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seven inputs with a one-month training sample.  The conclusion of the input sensitivity 
experiment is that information from the previous day is very important for forecast performance 
and that “overfitting” may be a problem with as few as seven inputs with a one-month training 
sample. 

Training Sample Size 

The second series of forecast experiments assessed the impact of changing the size of the 
training sample. The version of the ANN scheme used for this set of experiments was the six-
input configuration used in Experiment 4 of the “input number and type” experiment series. 
There were six hidden nodes. This configuration used the PP1, PPO2, PPDA, PPTRO1, PPTRO2 
and PPDA variables as input.  The ERR variable was not used.  The evaluation sample was 
identically the same for all of the training sample size experiments.  It consisted of the entire 
month of July 2004.  Five different training sample sizes were used: 3.5 days (1/2 week), one 
week, two weeks, one month and two months.  All of the training samples ended on the last day 
of June 2004.  Thus, the 3.5-day sample employed the last 3.5 days of June as the training 
sample, while the two-month sample consisted of the entire months of May and June 2004.   
While the 3.5 day training sample may appear to be small, it must be remembered that five-
minute data are being used.  A 3.5 day training sample consists of 1008 intervals. As in the 
“input number and type” experiments, the Tehachapi region data were used. 

Figures 3-23 and 3-24 present the MAE and skill score relative to persistence vs. look-ahead 
period for each of the training sample size experiments are depicted in Figures 3-23 and 3-24.   

The most striking feature of these two charts is that the performance of the forecasts based on the 
3.5-day training sample is very poor.  Clearly, that is an inadequate training size for this ANN 
configuration.  As the sample size increases, the MAE decreases and the skill scores vs. 
persistence increase for all look-ahead periods. In general the largest improvement for most look-
ahead periods is between the 3.5-day and one-week sample sizes.  However, the improvement 
from one week to two weeks is also substantial for most intervals and in some cases is greater 
than for the 3.5-day to one-week change.  The best performance occurred using the two-month 
training sample size for all look-ahead periods, although the improvement over the one-month 
sample size is typically modest.    

An obvious question is the degree to which the overfitting symptoms change as the training 
sample size changes.  This issue is addressed by Figure 3-25.  As noted previously, a large 
decrease in the skill score from the training sample to the evaluation sample is a symptom of 
overfitting.  Ideally, the performance should be similar in the training sample and the evaluation 
sample.   The forecasts based on the 3.5-day training sample show a huge decrease in skill 
between the training sample and the evaluation sample.  It is typically in the -70% to -100% 
range.  This a strong indication of overfitting.  The forecasts based on the one-week and two-
week sample sizes show a more modest (-20% to -50%) but still substantial decrease in skill 
from training to evaluation sample.  The decrease for the one-month training sample is in the  5% 
to -15% range and one might consider this to be an acceptable decrease in skill considering in the 
evaluation sample.  Thus, one could justifiably argue that a two-month training sample is needed 
for combination of this ANN configuration and the characteristics of this dataset. 
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MAE by Training Period by Forecast 
Hour 
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Figure 3-23 Mean absolute error (% of capacity) vs. look-ahead time for a six-input ANN 
forecast procedure with training sample sizes of 3.5 days, 1 week, 2 weeks, 1 month, and 
2 months. 
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Figure 3-24 Skill scores relative to persistence vs. look-ahead time for a six-input ANN 
forecast procedure with training sample sizes of 3.5 days, 1 week, 2 weeks, 1 month, and 
2 months. 
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Skill Difference (Evaluation-Training)  by Forecast Hour
Tehachapi Region: May - July 2004
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Figure 3-25 Difference in persistence-based skill scores between the training and 
evaluation samples vs. look-ahead time for ANN-based forecasts with training sample 
sizes of 3.5 days, 1 week, 2 weeks, 1 months and 2 months for the Tehachapi region. 
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Figure 3-26 The average CPU time (seconds) on a single Intel P4 Xeon 2.2 GHz processor 
required to train the six-input ANN for each training sample size. 
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Although the performance data suggest that the two-month training sample is the best choice in 
this case, it is necessary to consider the computational time necessary to train the network if an 
application to a real-time forecast environment is contemplated.  Figure 3-26 depicts the average 
CPU time required to train the network for all look-ahead periods and for each sample size.  The 
CPU used is an Intel P4 Xeon with a 2.2 GHz clock speed.  This data indicate that the training of 
this ANN configuration with a two-month dataset is a very substantial computational task.  Of 
course, the clock time required for this task could be greatly reduced by performing the 
calculations in a parallel processing mode on multiple CPUs.   

Number of Hidden Nodes 

The third series of experiments evaluated the impact of changing the number of hidden nodes in 
the ANN configuration on the forecast performance.  The number of hidden nodes in an ANN 
configuration determines the amount and complexity of the interaction among the input variables 
during the generation of the output from the network.  When a low number of hidden nodes is 
employed, the interaction among the input variables is implicitly restricted to be simpler and 
more linear.   The use of a zero hidden node configuration results in essentially a linear model in 
which the output is a weighted linear combination of all of the inputs.  The use of a higher 
number of hidden nodes means that the interaction of the input variables is potentially more 
complex and non-linear.  It should also be noted that the use of a larger number of hidden nodes 
means that there are more weighting coefficients in the network.   Since these are parameters 
whose values are chosen to enable the network fit the training data, the use of a higher number of 
hidden nodes means that there is a higher risk of overfitting since the larger number of training 
parameters enables a closer fit to the sometimes noise-related details of the training sample.  

The version of the ANN scheme used for this set of experiments was the same six-input 
configuration used in the training sample size experiments. The six inputs were the PP1, PPO2, 
PPDA, PPTRO1, PPTRO2 and PPDA variables.  The ERR variable was not used.  The 
evaluation and training samples used in the hidden-nodes experiments were identical to those 
used in the previous experiments. June 2004 was used as the training sample and July 2004 
served as the evaluation sample.  Seven experiments were executed to evaluate the impact of 
using zero to six hidden nodes.  

Overall, the forecast performance differences among the number of hidden node configurations 
tested in this series of experiments were modest, as illustrated by the MAE and persistence-based 
skill scores vs. forecast hour curves illustrated in Figures 3-27 and 3-28 for five of the hidden 
node experiments.  The experiments with three and five hidden nodes are not shown on the 
charts to enhance the readability of the charts.  However, those configurations produced results 
that were quite similar to the four-node forecasts.  
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Figure 3-27 Mean absolute error (% of capacity) vs. forecast look-ahead time for an ANN 
forecast procedure with zero, one, two, four and six hidden nodes.  All experiments used a 
one-month training sample (June 2004) and a one-month evaluation sample (July 2004). 
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Figure 3-28 Skill scores relative to persistence vs. forecast look-ahead time for an ANN 
forecast procedure with zero, one, two, four and six hidden nodes. All experiments used a 
one-month training sample (June 2004) and a one-month evaluation sample (July 2004). 
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Skill Difference (Evaluation-Training) by Forecast Hour
Tehachapi Region: May - July 2004
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Figure 3-29 Difference in the persistence-based skill scores between the training and 
evaluation samples vs. forecast look-ahead time for an ANN procedure with zero, one, two, 
four and six hidden nodes for the Tehachapi region. 
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Figure 3-30 The average CPU time (seconds) on an Intel P4 Xeon 2.2 GHz processor to 
train an ANN with a one-month training sample and the specified number of hidden nodes. 
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Although MAE and skill scores for the all of the hidden node configurations exhibited a high 
degree of similarity, there were a couple of notable exceptions.   

One is the significantly higher MAEs and lower skill scores for the zero- and one-node forecasts 
during the first hour.  The departure from the performance of the higher hidden node number 
configurations is greatest for the first forecast interval 0 to 5 minutes ahead) and gradually 
decreases as the forecast look-ahead period increases until the zero- and one-node performance is 
almost indistinguishable from the two-, four- and six-hidden node configurations for look-ahead 
periods of about 80 minutes and longer.  The poor performance of the zero- and one-node 
configurations during the early portion of the three-hour forecast period suggests that the 
performance of the very short-term forecasts is more dependent upon complex non-linear 
relationships that can’t be modeled by a simple linear-type structure than the forecasts for the 
longer look-ahead periods in the three-hour forecast window.  This is also supported by the fact 
that the two-input ANN scheme outperformed a multiple linear regression model by a greater 
margin during the first hour than the second hour of the forecast window (recall Figure 3-11).    

The other departure from the overall similar performance is the higher MAE and lower skill 
score of the six-node configuration for a couple of intervals during the third hour of the forecast 
period.  These appear to be anomalies, possibly attributable to a modest degree of overfitting in 
the six-node training process.  

Some insight into the overfitting issue can be gained by the examining the change in skill score 
from the training sample to the evaluation sample for the hidden node experiments.  This change 
in skill score is shown for five of the hidden node configurations in Figure 3-29.  The zero-node 
and one-node forecasts have a positive change for all forecast intervals.  This means the forecasts 
performed better in the evaluation sample than in the training sample.  The positive changes are 
generally around 5% except for the first 25 minutes of the forecast period.  There are very large 
positive differences during the initial 25 minutes of the forecast period for both the zero- and 
one-node configurations. The cause of this is not clear.  However, it is not present in any of the 
configurations with two or more hidden nodes.  The two-node configuration has the greatest 
similarity between the performance in the training and evaluation samples.  The skill difference 
between the two samples is very close to zero for most of the intervals during the three-hour 
forecast period with a tendency for negative differences during the early portion of the forecast 
period and positive differences towards the end of the period.  The skill score differences are 
negative for all forecast intervals for the four- and six-node configurations.  The negative values 
are large for the six-node configuration, especially during the latter half of the three-hour 
forecast window.  This may be an indication that the six-node configuration is on the verge of 
experiencing overfitting issues.  

Of course, in an operational forecast environment, the time it takes to train the network can be an 
issue especially if the training is to be done frequently.  Thus, in planning a forecast system, the 
computational requirements for different forecast system configurations should be considered.  
The average CPU time required to train each hidden-node configuration of the ANN using a one-
month training sample is depicted in Figure 3-30.  These CPU times are for a single Intel P4 
Xeon processor with a 2.2 GHz clock speed and 1 GB of RAM.  The ANN executable used in 
these tests was compiled from C++ source code.  A separate network was trained for each 
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forecast interval.  There are 36 forecast intervals in the three-hour forecast period, so each bar in 
the chart represents the average training time for 36 different networks with the specified number 
of hidden nodes.  Thus, the total CPU time required to train networks for all 36 forecast intervals 
in the three-hour forecast window is 36 times the values shown in Figure 3-30.  The zero-node 
configuration required an average of only 25 seconds to train.  The two-node configuration 
required more than 10 times that amount, while the six-node configuration required more than 
100 times more CPU time for training.  In an operational environment, it would be possible to 
use multiple CPUs in a parallel processing environment to accelerate the training of the 
networks. 

In summary, the “number-of-hidden-node” experiments indicated that for a one-month training 
sample from the Tehachapi region, a two- or three-node configuration produced a good 
combination of performance and reasonable CPU times for training.  The use of a zero- or one-
node configuration produced much worse performance during the first hour of the forecast 
period.  The six-node configuration did not perform much better than the configurations with two 
to four hidden nodes and required substantially more CPU time for training.   There was also 
some indication that the five- and six-hidden node configurations experienced some overfitting 
issues.  This issue might be addressed by employing a larger training sample, but of course that 
would further increase the training time. 

Multi-Region Forecast Performance Results 

To assess the forecast performance over a broader spectrum of regions and establish an estimate 
of the performance level of a forecast for the aggregated power production of all wind generation 
on the CA ISO system, forecasts were generated for 2004 for four of the five regions for which 
data were supplied by CA ISO.  The Pacheco region was not addressed because availability and 
capacity information were not available in the data files for this region.   

The same ANN configuration was used to generate forecasts for each of the four regions.  This 
configuration included a total of six inputs.  They were the PP1, PPO2, PPDA, PPTRO1, 
PPTRO2, and PPDA variables listed in Table 3-2.   The number of hidden nodes was set to two, 
and a training sample size was one month.   As was the case in the sensitivity experiments, a 
separate network was trained for each five-minute look-ahead interval.  Thus, 36 different 
networks were used to generate forecasts for the 36 five-minute intervals in the three-hour 
forecast period. 

Figures 3-31 through 3-36 present selected performance statistics from this year of simulated 
short-term forecasting.  The ME (bias) and MAE are expressed as a percentage of regional 
capacity.  The capacity value used in the calculation of these statistics is based on the maximum 
available capacity reported for each region for any reporting interval during the calendar year of 
2004.  This may not be the same as the installed capacity for a region, since all of a region’s 
installed capacity may not have been available for any interval during the year and the installed 
capacity may have changed during the year.  The maximum annual availability values used in the 
ME and MAE as a percentage of capacity calculations were:  San Gorgonio  556.71 MW,  
Tehachapi 659.71 MW, Altamont 827.3 MW and Solano 171.4 MW, and the aggregated mean 
rated capacity of the four regions was 2215.2 MW. 
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Mean Error (Bias): 0-3 hr Forecasts
CA ISO Regions: January - December 
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Figure 3-31 Mean error (bias) as a percentage of region capacity vs. look-ahead period for 
2004 for ANN-based forecasts for each of four California wind resource areas and the 
aggregated areas. 
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Figure 3-32 Average magnitude (% of capacity) of the monthly mean error (bias) vs. look-
ahead period for 2004 for ANN-based forecasts for each of four California wind power 
production regions and the aggregated production for all four regions. 
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Figure 3-33 Mean absolute errors of ANN-power production forecasts (% of capacity) vs. 
forecast look-ahead period during the six cold season months (November through April), 
for the four California wind resource areas and the aggregated areas. 

 

Figure 3-34 Skill scores of ANN-power production forecasts relative to persistence vs. 
forecast look-ahead period for the six cold season months (November through April) for 
the four California wind resource areas and the aggregated areas. 
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Figure 3-35 Mean absolute errors of ANN power production forecasts (% of capacity) vs. 
look-ahead period for the six warm season months (May through October) for the four 
California wind resource areas and the aggregated areas. 

 
Figure 3-36 Skill scores of ANN power production forecasts relative to persistence vs. 
forecast look-ahead period for the six warm season months (May through October) for 
each of four California wind resource areas and the aggregated areas.  
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Figure 3-31 shows the forecast bias (mean error) for the year vs. look-ahead period for each 
region.   This chart indicates that even though no bias compensation scheme was employed, the 
forecast bias for the year is quite low for most look-ahead periods and regions.  The bias is 
generally near or below 0.5% of capacity for almost all forecast look-ahead periods for the San 
Gorgonio, Tehachapi and Altamont regions as well as the four-region aggregate.   The exception 
is the Solano region.  The magnitude of the annual mean error exceeded 1.0% for several 
forecast look-ahead periods for Solano.   

For some market and grid management applications, the magnitude of the forecast bias over 
intervals shorter than one year is important.  Therefore, the average magnitude of the monthly 
bias for each region and look-ahead period was computed.  This is depicted in (Figure 3-32). The 
pattern is very similar for the San Gorgonio, Tehachapi and Altamont regions and the four-
region aggregate.  The average magnitude of the monthly forecast bias is near zero for all of 
these regions for approximately the first 30 minutes of the forecast period.  After this time, the 
average magnitude of the monthly bias rises slowly and reaches the 1% level near the end of the 
three-hour forecast period.  Once again the Solano region is the exception.  The average 
magnitude of the monthly bias is larger for Solano for all look-ahead periods and rises much 
more rapidly after the first 30 minutes than it does for the other regions.   

There was a substantial difference in the MAE and skill score values between the cold season 
and warm season months.  This is not surprising since there is a marked difference in the 
characteristics of the warm season and cold season wind regimes over most of California. 
Therefore, the MAEs and skill scores for the forecasts are presented separately for the two 
seasons.  The cold season is defined as November through April, and the warm season is the 
period from May to October.  Figures 3-33 and 3-34 present the MAE and skill scores for the 
cold season months, and Figures 3-35 and 3-36 present those for the warm season months. 

To understand the variation in forecast performance between the cold and warm seasons, it is 
necessary to understand the differences in wind regimes between the two seasons.  During the 
cold season the wind over most of California is predominantly controlled by large-scale weather 
systems.  The temporal patterns in the wind speed in most parts of California during the cold 
season are characterized by relatively long periods (several days) with low wind speeds and little 
variability that are interrupted by short periods with high wind speeds and considerable 
variability in the wind.  The short periods of high winds are typically associated with large-scale 
storm systems moving through the state.  The longer periods of relatively light winds are 
associated with the intervals between storms.  In contrast, the variability of the wind during the 
warm season is mostly controlled by small-scale circulation resulting from the differences in the 
heating and cooling of the earth’s surface (for example, land vs. water) on the regional scale.  
These circulations have a strong diurnal pattern associated with the daily cycle of daytime 
heating and nighttime cooling.  The wind patterns tend to be similar each day, but the amplitude 
and phase of the diurnal cycles are modulated by often subtle changes in the larger scale 
atmospheric environment 

The MAE and skill scores in Figures 3-31 through 3-36 indicate that there is indeed a fairly 
significant difference in the forecast performance between the two seasons.  However, the 
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characteristics of the MAE differences between the two seasons vary substantially among the 
regions.   

Solano Region 

The Solano region is clearly an outlier in both seasons, although it is less of an outlier in the cold 
season.  The MAEs for the Solano region are substantially higher than those for the other three 
regions in both seasons.   In the cold season, the MAE for the Solano region rises from about 
1.5% for a five-minute ahead forecast to approximately 10% for a three-hour forecast (Figure 3-
34).  The Solano MAEs are substantially higher for all look-ahead periods for the warm season 
(Figure 3-36).  For the warm season the MAEs rise from just under 2% for a five-minute ahead 
forecast to about 12% for a three-hour ahead forecast.  For both seasons the MAEs for the Solano 
region are more than twice as large as the average MAE for the other three regions.  The higher 
MAEs for Solano appear to be attributable to two factors.   

First, the capacity of the Solano region is substantially lower than that of the other regions.  In 
addition,, the Solano region hosts only two wind plants, which are next to each other.  This 
combination means that there is a smaller number of turbines in the region, and their deployment 
has less geographic diversity.  This results in a reduced “ensemble effect,” in which uncorrelated 
variations in the output of individuals or clusters of turbines offset each other to produce a less 
volatile aggregated output.   

A second factor is that the winds have a higher degree of variability at the location of the two 
wind plants in this region than in many other wind production regions in California.   

A third factor is that there appears to be a larger number of hours with wind speeds in the middle 
of the turbine power curve where the power production is most sensitive to changes in the wind 
speed.   

Altamont Region 

The behavior of the MAE is quite different for the Altamont region, which is only a short 
distance to the south of the Solano region.  However, the rated capacity of the Altamont region is 
much greater than that of the Solano region (827 MW vs. 171 MW).  During the cold season, the 
MAEs for the Altamont region rise from about 0.5% for a five-minute ahead forecast to 
approximately 2% for a three-hour ahead forecast.  The MAEs for the warm season are 
somewhat higher, but well below those recorded for the Solano region.   

Tehachapi Region 

The MAEs for the two Southern California regions have more similarity to each other than those 
for the two Northern California regions.  The Tehachapi region exhibits the least difference in 
MAEs between the two seasons.  During the cold season, the MAE for the Tehachapi region 
rises from about 0.5% for a five-minute ahead forecast to just under 7% for a three-hour ahead 
forecast.  The MAE values are slightly lower during the warm season, when they rise from about 
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0.5% for the 5-minute forecast to just over 6% for a three-hour ahead forecast.  This is the only 
region for which the MAEs are not lower during the cold season.   

San Gorgonio Region 

The MAEs for the San Gorgonio region increase from about 0.5% for a five-minute forecast to 
just over 4% for a three-hour forecast for the cold season while they increase from 0.5% to about 
6% for the warm season.  The MAEs for the four-region aggregated power production forecasts 
are lower than the MAE for any individual region for the warm season and are lower than the 
MAEs for three of the four regions for the cold season.  Only the Altamont region has a lower 
MAE for the cold season.            

The MAEs for the cold season are generally lower because there are many forecast intervals 
during the cold season (the quiet periods between storms) for which the forecasted and the 
reported power production are zero because the wind speed is below the turbine start-up speed.  
These periods produce many intervals for which the forecast error is zero and reduce the overall 
MAE for those months.  The short-term forecast MAE during the storm periods is relatively 
high, but these periods are relatively short and the overall MAE is more heavily weighted toward 
the errors during the longer quiet periods.   

During the warm season, a substantial portion of the forecast performance variations are 
attributable to the diurnal cycle.  The MAE is higher when significant changes in wind speed and 
production occur during ramp up and down periods, and it is lower the portions of the day when 
the wind speed and production are changing more slowly. 

The skill score charts (Figures 3-34 and 3-36) depict a more dramatic difference between the 
seasons.  The skill score is near 0% for all four regions during the cold season.  The Tehachapi 
region has the highest skill score (generally 0 to +5%) for almost all look-ahead periods during 
the cold season.  The Solano region has the lowest skill score for the cold season with skill 
scores of -5% to -10% for most look-ahead periods.  Surprisingly, the skill score for the 
aggregated power production during the cold season is rather high with values slightly over 20% 
for most look-ahead times after the first 10 minutes.  The skill scores for all regions and most 
look-ahead periods are much higher for the warm season (Figure 3-36).   Once again, the 
Tehachapi region has the highest skill scores, and the Solano region produced the lowest scores. 

The bottom line from the one-year of testing of the autoregressive component of the short-term 
forecast system is that the MAEs are higher during the warm season than during the cold season, 
but the skill scores were much higher during the warm season. The forecasts of the aggregated 
power production for all four regions had considerable skill in both the warm and cold seasons, 
although the skill was somewhat higher during the warm season. 
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Skill Score vs. Persistence: 0-3 hr Forecasts
Warm Season
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Figure 3-37 Average skill scores of the regional and aggregate ANN forecasts relative to 
persistence vs. forecast look-ahead period during the six warm season months for the 
four California wind resource areas.  
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Figure 3-38 Average skill scores the regional and aggregate ANN forecasts relative to 
persistence vs. forecast look-ahead period during the six cold season months for the four 
California wind power resource areas. 
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Conclusions 

The key results of the short-term forecast system development and testing are: 

1. Review of statistical and physics-based forecast methods and analysis of the spatial and 
temporal characteristics of the wind speed and direction variability to provide the 
foundation for the design of a robust short-term forecasting system capable of producing 
forecasts of the 5-minute regional energy production for the next 3-hour period updated 
every 5 minutes; 

2. Design of a two-stage forecast system with the first stage consisting of a mini-ensemble 
of three forecast methods that each produces an independent power production forecast, 
and a second stage that weights each of the three forecasts from the first stage based on 
their recent performance to produce a single composite forecast and an estimate of 
forecast uncertainty; and 

3. Initial testing of one of the three forecast methods (the autoregressive method) in the 
first-stage of the proposed forecast system with one year (2004) of regional wind power 
production data supplied by the CA ISO.  

The main conclusions are: 

1.  The autoregressive component of the three-method first stage of the proposed forecast 
system produced a reduction in the regional power production forecast error of a 
persistence forecast for the warm season (May –October) that ranged from near 5 to 10% 
for the first 30 to 60 minutes of the 3-hr forecast period to the 15% to 20% range during 
the latter stages of the period; and 

2. The autoregressive method showed no improvement over persistence for the cold season, 
but that is to be expected due to the character of the wind during the California cold 
season and is one of the reasons for incorporating two other methods into the forecast 
system. 

Recommendations 

The recommended next steps are: 

1. Implement and evaluate the two other component forecast subsystems and the ensemble 
compositing subsystem that were not implemented in this project;  

2. Implement and evaluate the performance of the entire forecast system for several months 
in different seasons for each of the wind resource areas in California; and  

3. Test the system in an operational environment and obtain feedback from CA ISO 
personnel. 

Another approach would be to test and implement the same subsystem tested in this project and 
then develop the other components while the single subsystem forecast system is in production.  
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The results produced in this project suggest that this approach could yield a 5% to 20% 
improvement over a persistence forecast, especially during the warm season. 

 





 

 4-1

4  
NEXT-DAY WIND PLANT ENERGY FORECASTING 
SYSTEM DEVELOPMENT AND TESTING 

Introduction  

The objective was to formulate and test new forecast methods and datasets that have the 
potential to improve the forecast performance of one- to 48-hour wind power production 
forecasts relative the performance in the previous Energy Commission-EPRI wind energy 
forecasting project (Energy Commission  and EPRI, 2003a and 2003b).   

Previous California Wind Energy Forecasting Project Results 

In the previous project, 48-hour forecasts were generated for two California wind plants 
twice each day and for one year (October 2001 to September 2002) by two forecast 
providers: AWS Truewind, LLC (AWST) and Risoe National Laboratory (Risoe) of 
Denmark.  Each forecast provider generated and delivered two 48-hour forecasts per day of 
the hourly average power production (kW) and the average hourly wind speed and direction 
for one meteorological tower for each wind plant.  A morning forecast was delivered at 8:00 
a.m. PST. The first forecast hour from this forecast was the hour ending at 9:00 a.m. PST 
and the forecast period extended until the hour ending at 8:00 a.m. PST two days later.  The 
evening forecast was delivered 12 hours later at 8:00 p.m. PST and had a forecast period 
that was offset by 12 hours from the morning forecast.   

It is important to note that these forecasts were generated in a “next-day” mode.  This meant 
that the forecasts were produced without real-time data from the wind plants.  The real-time 
data from the wind plants is very important for the performance of forecasts during 
approximately the first six to nine hours of the forecast period.  However, the real-time data 
from the plant has little impact the quality of the forecasts after this period.  

The two wind plants that participated in this project were the Mountain View 1 and 2 wind 
plant in the San Gorgonio Pass of Southern California and the PowerWorks plant located in 
the Altamont Pass.  The rated capacities of the Mountain View and PowerWorks wind 
plants are 66.6 and 90 MW, respectively. Because the AWST forecast performance was as 
good as or better than that of Risoe, the AWST forecasts from the previous project are used 
as the baseline to measure improvements in forecast performance in the current project.     

Tables 4-1 and 4-2 present the forecast performance statistics for AWST’s eWind forecast 
system from one year of forecasting in the previous project are listed in.  The performance 
statistics include the monthly and annual mean absolute errors (MAE) of the wind energy 
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and speed forecasts and the skill scores of the forecasts relative to persistence and 
climatology (Skill- P and Skill-C).  The skill score is the percentage reduction of the MAE 
relative to the MAE for the persistence or climatology forecast; Skill Score = (1 – 
MAE/MAE-P) x 100%. 

Table 4-1 eWind monthly and annual forecast performance statistics for the Mountain 
View wind plant from the previous Energy Commission-EPRI project (Energy 
Commission PIER EPRI, 2003) 

MAE (kW) %MAE (1) Skill-P Skill-C MAE (m/s) Skill-P Skill-C
Oct-01 10,295 15.5% 44.2% 44.9% 2.68 42.6% 31.6%
Nov-01 9,293 14.0% 34.0% 47.4% 2.68 42.2% 43.1%
Dec-01 10,366 15.6% 31.5% 29.9% 3.50 28.9% 9.5%
Jan-02 6,918 10.4% 48.1% 50.4% 2.47 43.3% 28.7%
Feb-02 9,446 14.2% 27.4% 56.1% 3.27 24.1% 28.4%
Mar-02 10,995 16.5% 45.2% 49.2% 4.17 39.0% 29.6%
Apr-02 15,095 22.7% 22.3% 18.8% 3.68 36.3% 32.2%
May-02 9,523 14.3% 49.7% 40.8% 2.73 57.9% 41.6%
Jun-02 10,786 16.2% 42.3% 27.9% 2.58 54.2% 42.9%
Jul-02 12,433 18.7% 41.0% 22.1% 2.93 44.0% 35.0%
Aug-02 13,346 20.0% 35.1% 14.9% 2.83 43.1% 36.4%
Sep-02 13,679 20.5% 18.8% 33.1% 3.15 26.0% 16.3%
Annual 11,037 16.6% 37.5% 36.4% 3.05 41.0% 31.7%

Power Forecast Wind Speed - M V I -1Month

 

Table 4-2 eWind monthly and annual forecast performance statistics for the 
PowerWorks wind plant from the previous Energy Commission-EPRI project (Energy 
Commission PIER-EPRI, 2003) 

Month
MAE (kWh) % MAE (1) Skill-P Skill-C MAE (m/s) Skill-P Skill-C

Oct-01 13,725 15.3% 34.6% 37.6% 1.92 32.5% 25.8%
Nov-01 5,664 6.3% -9.8% 43.2% 1.91 34.4% 22.8%
Dec-01 6,319 7.0% 3.9% 38.1% 2.44 23.5% 0.3%
Jan-02 2,167 2.4% 28.6% 76.4% 2.08 8.3% 30.2%
Feb-02 2,234 2.5% 35.2% 77.4% 1.91 23.4% 31.6%
Mar-02 10,372 11.5% 28.6% 36.5% 2.17 31.0% 22.7%
Apr-02 18,350 20.4% 30.7% 18.9% 2.11 30.8% 15.8%
May-02 20,567 22.9% 36.2% 21.5% 1.89 38.3% 18.9%
Jun-02 16,445 18.3% 39.8% 30.0% 1.88 38.2% 20.9%
Jul-02 17,676 19.6% 31.0% 10.1% 1.55 28.0% 8.0%

Aug-02 17,248 19.2% 31.0% 32.9% 1.63 28.2% 21.9%
Sep-02 18,734 20.8% 20.2% 17.2% 1.69 31.6% 25.5%
Annual 12,702 14.1% 30.9% 30.9% 1.93 29.9% 20.9%

Energy - All Clusters Wind Speed - Tower #438

 

These performance statistics represent all forecast hours (one to 48 hours) and both forecast 
cycles (morning and afternoon).  Thus, the statistics for a 30-day month are based upon a 
forecast data sample consisting of 48 forecast hours per forecast cycle, two forecast cycles 
per day, 30 days per month.  This yields a total sample size of 2,880 hours for a 30-day 
month.  However, plant power production and meteorological data were not available for all 
of these hours due to various communication and measurement instrumentation problems.  
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Therefore, the monthly and annual statistics are based on (in some cases substantially) less 
than the maximum number of hours.  

Mountain View 1 and 2 Wind Project 

In the previous project, the AWST forecasts achieved an annual mean absolute error (MAE) 
of 16.6% of the 66.6 MW rated capacity for the Mountain View plant.  The monthly MAE 
values ranged from 10.4% in January 2002 to 22.7% in April 2002.  A large amount of the 
variability in the monthly MAE values is related to the relationship between the error in the 
power production forecasts and the forecasted power production due to the nature of a 
typical turbine power curve.   

This relationship can be understood by considering a typical power curve for a wind turbine.  
Figure 4-1 shows an example power curve for a GE 1.5 MW turbine, which has the same 
general shape as that of almost all wind turbine power curves. The power curve shape 
indicates that the sensitivity of the predicted power production to errors in the prediction of 
the wind speed varies over the wind speed range.  At wind speeds less than 6 m/s near the 
lower end, and greater than 11 m/s at the upper end of the wind speed range, a 1-m/s error in 
the wind speed prediction results in a much smaller error in the power production than when 
the wind speed is in the steeply sloped portion (within the 6- to 11-m/s range) of the power 
curve.  Thus, forecasts that have the same error in the wind speed prediction will generate 
larger power production errors if the wind speeds are in the steeply sloped portion of the 
power curve.   

Figure 4-2 illustrates the impact of wind speed prediction error on the forecast errors in the 
previous Energy Commission-EPRI project.  It shows the MAE for each of 20 forecasted 
power production bins for all the verified forecast hours for the Mountain View plant during 
Oct 2001 through Sept 2002.  Each bin has a width of 5% of installed capacity.  The MAE is 
below 15% for forecasted production levels that are below 10% or more than 80% of 
installed capacity (near the bottom or top of the power curve).  However, the MAE is above 
20% when the forecasted production is between 15% and 65% of installed capacity the 
middle of the power curve). This chart indicates that there is a factor of two or more 
difference between the typical MAE of a forecast near the lower or upper end of the power 
curves and those in the middle of the curve.   

This relationship is responsible for a substantial portion of the monthly variability of the 
MAE.  For example, during January the number of hours with a forecasted production at the 
low end of the power curve is much higher than in July.  Therefore, the MAE will tend to be 
much lower in January than in July.  A good example of the impact of this effect can be seen 
by comparing the wind speed and power production MAE for February 2002 and August 
2002.  The wind speed MAE for August (2.83 m/s) is 0.44 m/s lower than the MAE for 
February (3.27 m/s).  However, the MAE of the power production forecasts is 20.0% of 
rated capacity for August and only 14.2% for February. Thus, based on MAE, the wind 
speed forecasts are much better in August, but the power production forecasts are much 
better in February.  As one might expect from the above discussion, the explanation is that 
there are many more hours in February with wind speeds near the bottom end of the power 
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curve (and hence creating less sensitivity to error) than during August. Thus, when 
analyzing the performance of a wind power production forecast system, one must consider 
the distribution of the forecasted hours on the plant-scale power curve for the particular 
months under consideration and look at the relative errors of the wind speed and the power 
production forecasts. 
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Figure 4-1 Power curve for a GE 1.5 MW turbine (from the GE Power website at 
http://www.gepower.com/prod_serv/products/wind_turbines/en/15mw/tech_data.htm) 

MAE by Forecasted Production Level: Mountain View: 
Forecast Hours 1-48: Oct. 2001 to Sept. 2002
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Figure 4-2 The MAE of generation forecasts (% of installed capacity) and the 
percentage of hours for 20 forecasted power production bins for the Mountain View 
wind plant. Each bin is labeled by the forecasted production at the upper end of the 
bin. 
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PowerWorks Wind Project 

The forecast performance for the PowerWorks wind plant was generally similar to that for 
the Mountain View plant.  The annual MAE of the power production forecasts 14.1%, 
which is slightly lower than that achieved for the Mountain View plant.  However, the range 
was substantially greater.  The lowest monthly MAE was 2.4% during January 2002, and 
the highest was 22.9% for May 2002.  Interestingly, the MAE of the wind speed forecasts 
for meteorological tower M438 was lower for May (1.89 m/s) than it was for January (2.08 
m/s).  In part, this is another example of the power curve effect discussed in the previous 
paragraphs.  However, it is also a result of the fact of the greater variability of the wind 
speed within the area of the PowerWorks facility during the warm season than during the 
cold season.      

Screening of Improved Data and Forecast Methodologies 

The objectives were to identify and test candidate forecasting data and methodologies to 
determine the impact of each improvement on forecast performance and to identify those 
that offer the greatest potential for improved performance for a wide range of weather 
regimes and locations.  The methodologies were tested using the data from the previous 
Energy Commission-EPRI project for the Mountain View 1 and 2 and PowerWorks wind 
projects.  

It was not practical to execute a large number of forecast method experiments for the full 
12 months of the previous forecast evaluation period for both wind plants.  Therefore, it was 
decided to test each forecast system improvement using a three-month data sample for each 
of the two wind plants. To further reduce the computational task, it was decided that only 
the morning forecast cycle would be used in the test period.  This was considered to be a 
reasonable approach because the performance of the afternoon cycle is generally highly 
correlated with the performance of the morning cycle.  Therefore, little additional 
information would be gained by testing the changes on both the morning and evening 
forecast cycles for the same months.   

The test months were selected independently for the PowerWorks and Mountain View 
plants.  The two main selection criteria were that (1) plant data were available for a large 
fraction of the hours in the months (a low level of missing data),  (2) the forecast 
performance was below the average for that plant; and (3) the months should be distributed 
so that there is a winter, summer, and transition-season month in the test sample for each 
plant.  

Table 4-3 shows the test months selected for each plant.  December 2001 was the winter 
month selected for both plants.  This was the winter month with the highest power 
production and wind speed MAE for both plants.  The transition month was May 2002 for 
PowerWorks and April 2002 for Mountain View.  In each case, this was the month of the 
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highest monthly MAE for each wind plant.  The summer test month was July 2002 for 
PowerWorks and August 2002 for Mountain View.  

Table 4-3 Test wind resources and months for evaluation of candidate data and 
methodologies. 

MAE (kW) MAE (%) Skill - P MAE (m/s) MAE (%) Skill - P
Dec-01 9,657 14.6% 35.0% 3.43 54.9% 32.7%
Apr-02 15,638 23.7% 29.2% 3.69 26.1% 41.9%
Aug-02 13,199 20.0% 41.7% 2.73 23.0% 49.2%

MAE (kW) MAE (%) Skill - P MAE (m/s) MAE (%) Skill - C
Dec-01 6,579 7.3% 1.2% 2.51 46.4% 18.5%
May-02 20,370 22.6% 38.2% 1.83 23.3% 45.6%
Jul-02 18,083 20.1% 40.0% 1.54 19.8% 32.3%

Mountain View
Power Production Wind Speed @ Catellus

Power Production Wind Speed @ Tower 438

Month

Month

PowerWorks

 

In the case of PowerWorks, the performance for the three summer months was fairly 
similar, but July had a slightly higher power production forecast MAE, and the skill scores 
for both the power production and wind speed forecasts were lower than for the other 
summer months.  For Mountain View, August 2002 was selected because it had the highest 
power production forecast MAE and lowest skill score for the summer months.   

Table 4-3 also shows the power production and wind speed MAEs and skill scores for the 
morning forecast cycle from the previous project.  These provide the reference points for 
comparison of the forecast performance of the candidate methodologies in the current 
project. 

Forecasting  Experiment Plan 

The forecast system experiments were designed to test possible improvements to each part 
of the forecast system.   Figure 4-3 is a schematic overview of the components of the eWind 
forecast system.  The system is divided into two major components: data and numerical 
models.  There are three fundamental types of data used in the forecasting process: (1) 
regional weather data; (2) time series of power production and meteorological data from the 
wind plant; and (3) off-site local meteorological data.  There also three major types of 
numerical models used in the forecast system: (1) physics-based atmospheric models; (2) 
statistical prediction models and (3) a plant output model.   

There are, of course, almost an infinite number of different configuration and new 
techniques that can be implemented within the general framework of the eWind system 
depicted in Figure 4-3.  Obviously, it was possible to test only a very small subset of the 
possible changes within the resource limitations of this project.  The improvements tested 
within this task were selected based upon two criteria: (1) those that had the greatest 



 
 
Next-Day Wind Plant Energy Forecasting System Development and Testing 

 4-8

promise of improving the forecasts; and (2) those that could be tested with the data available 
for this project and within the resource limitations of the project.  

Table 4-1 lists the six focus areas of the forecasting improvements that were tested.   

 

Figure 4-3  A schematic depiction of the main components of the eWind forecast 
system. 
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Table 4-4 Focus areas and associated experiments. 

Focus Area Experiments 

(1) Additional or improved input data for the 
physics-based simulations 

4-km MODIS and Pathfinder Water Surface 
Temperature (WST) was used to initialize the 
physics-based model 

(2) Higher resolution (i.e. smaller grid cells) for 
physics-based model 

4-km and 1-km physics-based simulations were 
executed 

(3) “Next-generation” physics-based models Forecast simulations were executed with the WRF 
model 

(4) Advanced statistical models for MOS Stratified multiple linear regression and artificial 
neural network methods were used for MOS in 
place of the screening multiple linear regression  

(5) More sophisticated formulation for plant output 
model 

Median-based power curve plus residual 
formulation was used 

(6) Forecast Ensembles An ensemble of MASS and WRF model forecasts 
was used in place of the single MASS forecast 

Focus Area 1 addresses the input data into the physics-based model.  There are many 
emerging datasets that have the potential to improve the simulation of winds in physics-
based models.  In this project the impact of higher-resolution water surface temperatures 
from the current generation of satellite sensors was evaluated.   

Focus Area 2 assessed the impact of the resolution of the physics-based model grid.  Smaller 
grid cells mean that the physics-based model can simulate more of the local-scale weather 
features that determine the evolution of the wind at the wind plant.   

Focus Area 3 assesses the impact of employing the “next generation” of physics-based 
atmospheric models in place of the MASS model currently used in the eWind system.   

Focus Area 4 examines the impact of using more sophisticated statistical techniques for the 
Model Output Statistics (MOS) component of the forecast system.  

Focus Area 5 investigates the sensitivity of the forecast performance on the formulation of 
the plant scale power curve.   

Finally, Focus Area 6 examines the impact of employing a forecast based on a composite of 
individual forecasts from different methods.   

Forecasting Experiment Results  

This section documents the results of the forecast performance experiments in each of the 
six focus areas.  The results are reported below in separate sections for each focus area.   
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Focus Area 1:  Water Surface Temperature (WST)  

The strongest power-generating winds in California typically occur during the warm season 
because they are driven by the large-scale sea breeze circulation created by the contrast 
between the relatively cool Pacific Ocean and the warm, usually dry interior.  The strength 
of the circulation is directly related to the magnitude of the temperature difference, so the 
day-to-day temperature variations of both water and land surfaces are important.  Some of 
the most productive wind energy regions are close enough to the ocean that the onshore 
flow during the day sometimes brings a distinct marine boundary layer to the wind 
generation area (for example, Altamont Pass and San Gorgonio Pass).  Variations in the 
temperature and depth of these marine layers are likely to have a considerable effect on the 
wind speeds through these mountain passes.  In addition to the ocean itself, the temperatures 
of bodies of water such as the San Francisco Bay and the Salton Sea may be significant. 

Water surface temperatures are also a factor in the formation and transport of the marine 
stratocumulus cloud layer, which plays an important role in modulating the sea breeze 
circulation.  When the marine cloud layer moves onshore in the San Francisco Bay Area or 
the Los Angeles basin, the winds in the Altamont and San Gorgonio Passes tend to 
strengthen.  For all of these reasons, accurate estimates of sea surface temperatures are 
necessary for the correct simulation of power-generating winds in California. 

Along with many other surface and atmospheric properties, physics-based atmospheric 
models require the specification of an initial water surface temperature (WST) field.  It has 
long been recognized that the accurate representation of spatial and temporal variations of 
WST is very important for the correct simulation of sea breezes, coastal cyclogenesis, and a 
range of other phenomena.   The simplest way to specify WSTs for a physics-based model 
simulation is to access a database of climatologically averaged values.  Weekly or monthly 
climatological WST datasets are available from a variety of sources – NCAR, NCEP, 
USGS, the Naval Research Laboratory, and others.  The obvious weakness of climatological 
data is that actual WSTs can vary significantly from climatological values on global (for 
example, El Niño-Southern Oscillation) scales, and transient smaller-scale features can 
produce significant atmospheric effects.   

A better option is to use WST fields based upon measurements at or just before a forecast 
simulation is initialized.  This approach permits WST anomalies to be included in the 
model’s initial state.  A dataset often used in meso-scale models is the NOAA 
Optimum Interpolation Sea Surface Temperature Analysis, which uses available in situ and 
satellite SST observations to perform an objective analysis on a 1-degree (~110 km) global 
grid (Reynolds and Smith, 1994).  These analyses have been archived from 1981 to the 
present, and weekly and monthly analyses are available in near-real time.  Figure 4-4 shows 
an image from this dataset.   

Beginning in the mid-1980s, global AVHRR Oceans Pathfinder SST datasets have been 
derived from Advanced Very High Resolution Radiometer (AVHRR) instruments, which 
have been 
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Figure 4-4  A graphical depiction of the NOAA optimum interpolation WST analysis on 
a 1-degree global grid for March 2005. 

carried aboard a series of NOAA polar-orbiting satellites (Kilpatrick et al., 2001).  A joint 
effort by NOAA, NASA, and the University of Miami has resulted in successive versions of 
Pathfinder datasets that have been quality-controlled and distributed in a variety of 
resolutions as high as 4 km.  Temporal averaging is done at daily, eight-day and monthly 
intervals.  A significant problem with purely satellite-derived datasets (as opposed to 
objectively-analyzed fields such as the NCEP OI) is that some data pixels are flagged 
as missing, or classified as low quality.  These quality problems can be caused by 
issues such as persistent cloud cover, problems with atmospheric aerosols, and 
uncertainty regarding sea ice coverage.  A model using this kind of dataset must 
include logic to override questionable satellite-derived values with climatological or 
other information.  NOAA has a program called CoastWatch, which distributes real-
time AVHRR SST data for U.S. regions at resolutions as high as 1 km.  At least one 
meso-scale modeling group is preparing composites of these data and using the data 
to initialize WSTs in MM5 simulations. 

A similar but improved satellite-derived WST source, the MODIS Sea Surface 
Temperature dataset, has been available since 2002.  The MODerate Resolution 
Imaging Spectroradiometer (MODIS) instrument (Brown and Minnett, 1999) has been 
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aboard NASA’s Terra and Aqua satellites.  Building on knowledge gained from the earlier 
AVHRR missions, the MODIS instrument and algorithm produce more accurate values of 
WST.  Datasets are produced on a similar global grid for a similar range of resolutions, as 
high as 4 km.  Cloud contamination and other issues continue to result in flagging of some 
areas and time periods.  Figure 4-5 is an example MODIS image, and it illustrates the fine-
scale structure of the WST field.   
 

 
 

Figure 4-5 Sample MODIS water surface temperature image. 

During the previous wind power production forecast project, the NCEP OI database of 
historical WST at one-degree (about 110 km) resolution and weekly intervals was used to 
specify the WST fields.  The one-degree NCEP OI data is too coarse to properly resolve 
important gradients of WSTs in inland lakes and coastal oceans.  The result is that the water 
surface temperature for lakes as large as the Salton Sea in Southern California is poorly 
known, and the initialization process may make an assumption that differs significantly 
from reality. 

In an attempt to assess the impact of WST specification on the day-ahead power production 
forecasts, a new set of day-ahead power production forecasts that utilized the new higher 
resolution specification of the WSTs were produced for the PowerWorks and Mountain 
View wind plants for the three test months at each plant.  The new set of forecasts was 
based upon the use of either the (1) AVHRR Pathfinder global data at 4-km resolution, 
which is available from the mid-1980’s to the present; or the (2) Aqua MODIS global data 
at 4-km resolution, which is available from July 2002 to the present.  The Pathfinder data 
was used for the test months before July 2002, and the MODIS data was used for July 2002 
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and later months.  Both datasets can be downloaded from a NASA ftp site in the form of 
global Hierarchical Data Format (HDF) files.   

The most common problem with satellite-derived data is that persistent cloud cover over 
some locations may make it difficult for the instrument to cleanly infer WST, and 
instrument problems can sometimes result in missing data for some areas. One issue is that 
these datasets consist of both weekly and monthly composites.  After examining the MODIS 
weekly data for July 2002, it was discovered that the data quality was very poor for one of 
the weeks.  This would result in a poor initialization of WST if used in real-time forecast 
runs.  It is unclear whether the missing WST values were caused by persistent cloud cover, 
instrumentation problems, or something else.  The WST data in the monthly file were much 
more complete; the monthly data should probably be preferred when both are available.  
Another problem was encountered – only a fraction of the MODIS WST data values were 
valid for the grid points over the Salton Sea of Southern California; the rest of the grid 
points have flagged values.  To prevent a subsequent surface temperature analysis from 
spreading land temperature values (which might differ significantly from water 
temperatures) over the flagged portions of the Salton Sea, a change was made to the model’s 
data preprocessor to spread the valid WST values to nearby water points before doing an 
analysis of surface temperature.  

Figures 4-6 through 4-8 illustrate how the NCEP OI and MODIS datasets may differ. These 
figures depict the WST field used to initialize a physics-based model forecast simulation at 
0000 UTC August 23, 2002 (4:00 p.m. PST 22 August, 22).  The forecast simulation from 
this initial state is used to produce the 48-hour power production forecast delivered at 8:00 
a.m. PST (1600 UTC) on August 23.   

Figures 4–6 and 4-7 respectively show the WST specification from the NCEP OI (110 km) 
and the MODIS datasets.  Figure 4-8 presents the difference between the MODIS and NCEP 
OI WST values for the coastal area of the Pacific Ocean immediately to the west of the Los 
Angeles Basin. 

A comparison of Figures 4-6 and 4-7 reveals the considerable amount of additional detail 
that is present in the MODIS WST dataset.  This is not surprising since the NCEP OI 
employs a grid of 110 km while the MODIS dataset has a resolution of 4 km.  The added 
detail most likely provides a much better representation of the surface water temperatures 
near the coast, which is probably the most significant region for the prediction of winds in 
the wind power production areas of California.  In addition to the added detail for the 
coastal waters, small inland bodies of water, such as the Salton Sea are represented in the 
MODIS dataset but not in the NCEP OI dataset.  The impact of this on the specification of 
the temperature of the Salton Sea is very significant.  When the NCEP OI is used to specify 
the WST, the temperature of the Salton Sea is specified to be similar to that of the coastal 
waters, because the initialization procedure uses the only available information (the ocean 
water temperatures) to estimate the Salton Sea temperature.  However, the MODIS dataset 
indicates that the actual temperature of the Salton Sea is much warmer than that of the ocean 
water. 
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Figure 4-6 Initial skin temperature (degrees F) specification for the August 23, 2002, 
forecast simulation based on the NCEP OI Water Surface Temperature (WST) 
analysis. 

 

Figure 4-7 Initial skin temperature (degrees F) specification for the August 23, 2002, 
forecast simulation based on the MODIS Water Surface Temperature (WST) dataset. 
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Figure 4-8 Difference in the initial skin temperature (degrees F) specification between 
the NCEP OI and MODIS WST for the August 23, 2002, forecast simulation. 

The temperature difference map in Figure 4-8 indicates that the WST from the MODIS 
dataset is about one- to three-degree F warmer than that of the NCEP OI dataset for most of 
the coastal area to the west of the Los Angeles Basin.  In fact it is over three-degree F 
warmer in the area immediately to the west of Los Angeles. 

Figure 4-9 illustrates the impact of the change from the NCEP OI to MODIS specification 
of the WST values for the August 23, 2002, 48-hour forecast of power production for the 
Mountain View wind plant in San Gorgonio.  The actual reported power production for the 
forecast period is shown in black.  The reported data for the last four hours of the forecast 
period are missing.  The thin blue line in Figure 4-9 represents the forecast generated by the 
physics-based simulation employing the NCEP OI WST specification.  It should be kept in 
mind that this forecast is the output of a Model Output Statistics (MOS) procedure that uses 
the physics-based model data as input.  The forecast based on the NCEP OI WST data has 
the same general pattern as the reported values but is well below the reported values for all 
hours.  The forecast based on the MODIS WST specification, depicted by the bold red line 
band, is clearly more accurate than the NCEP OI WST specification, especially on the 
second day of the forecast period. 

The results from the August 23, 2002, forecast represent only one case, and no conclusions 
can be drawn about the value of higher-resolution WST data for wind energy forecasting 
from the example.  Figure 4-10 presents a broader view of the impact of the higher-
resolution satellite-based WST data.  It shows the hour-by-hour difference between the 
absolute  
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Figure 4-9 Forecasted and observed power production for the Mountain View wind 
plant and forecast period beginning at 9 a.m. PDT August 23, 2002. 

 

Change in Hourly Absolute Error: MODIS vs NCEP OI WSTs
Mountain View I and II Day-Ahead Hourly Power Production Forecasts: August 2002

-20%

-10%

0%

10%

20%

30%

40%

50%

8/
1

8/
2

8/
3

8/
5

8/
6

8/
7

8/
8

8/
10

8/
11

8/
12

8/
13

8/
15

8/
16

8/
17

8/
18

8/
20

8/
21

8/
22

8/
23

8/
25

8/
26

8/
27

8/
28

8/
30

8/
31

Date
 

Figure 4-10  Change in hourly absolute forecast error (% of installed capacity) for 
MODIS vs. OI WSTs for the Mountain View wind plant for August 2002.  Positive 
values indicate forecasts based on MODIS data have a smaller absolute error. 
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wind energy forecast errors for the forecasts using the NCEP OI data vs. those using the 
MODIS data for the Mountain View wind plant and August 2002.  Positive values indicate 
the forecasts based on the MODIS WST data have a lower hourly absolute error than those 
based on the NCEP OI data.  The chart indicates that the MODIS-based forecasts are better 
for a substantial majority of the hours and are rarely worse. The largest improvement occurs 
on August 23, which is, not by coincidence, the case example shown in Figures 4-6 through 
4-8.   

The comparison of forecast performance for August 2002 in Figure 4-10 certainly provides 
a more persuasive argument about the positive impact of more detailed WST data on wind 
power production forecasts in California than a single case.  However, one might still argue 
it is for only one month at one wind plant.  Figure 4-11 presents the change in the mean 
absolute error (MAE) for all six of the test months, which include three months of 
forecasting for the PowerWorks wind plant and three months for forecast production for the 
Mountain View wind plant.  As in Figure 4-10, a positive change means that the MODIS-
based forecasts are better, and a negative change indicates the OI-based forecasts are better.  
The black bars depict the change in the MAE of the raw physics-based model forecasts 
(without the MOS procedure).  These forecasts are produced by interpolating the forecasted 
grid point values of wind speed and direction from the physics-based model grid to the wind 
plant site.  The red bars show the change in the MAE for the forecasts that used an MOS 
procedure on the physics-based model data.  The same MOS procedure was used for both 
sets of forecasts. 

Interestingly, the forecasts derived directly from the raw physics-based model data showed 
little change in performance.  The change for the three months of PowerWorks forecasts 
exhibited only noise-level differences from zero.  There was a slightly more significant 
positive change for two of the three months for Mountain View with the largest impact 
being a 3.2% improvement for August 2002.  However, the results for the forecasts that also 
employ the MOS procedure were much more impressive.  All six months showed a 
substantial positive change (MODIS-based forecasts are better) in the MAE, ranging from a 
minimum improvement of 7.3% for December for PowerWorks to a maximum of 18.5% for 
Mountain View for the same month.  The reduction in MAE is more significant for the 
Mountain View plant than for the PowerWorks plant.  In fact, the reduction in MAE for all 
three of the Mountain View tests months is greater than the largest monthly reduction in 
MAE achieved for the PowerWorks wind plant. 

The fact that the forecasts based on the raw physics-based model data showed little 
improvement indicates that the direct simulation of the winds by the physics-based model at 
the site of the plants was not significantly improved by the use of the more detailed WST 
data.  However, the MOS procedure employs a number of physics-based model parameters 
(not just the near-surface wind speed and direction) to find signals that predict the behavior 
of the winds at the wind plant sites.  The results indicate that some combination of the 
physics-based model parameters from the MODIS-based simulations are a better set of 
predictors for the wind plant winds than any set from the OI-based simulations.  These 
results indicate that the use of more detailed WST data can have a significant positive 
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impact on wind power production forecasts for plants in the Altamont and San Gorgonio 
Passes and likely in other wind resources areas in California.   
 

Percentage Reduction in Mean Absolute Error: MODIS vs OI WSTs
Day-Ahead Power Production Forecasts for PowerWorks (POW) and Mountain View (MVW) 
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Figure 4-11 Percentage reduction in the mean absolute error of the power production 
forecasts for the PowerWorks and the Mountain View wind plants.  Positive values 
indicate a reduction in MAE when switching from the use of OI WST data to MODIS 
data while negative values indicate an increase. 

Focus Area 2:  Model Resolution Experiments 

Most of the wind power production regions in California are located within areas of 
complex terrain that exhibit large variation in elevation and slope over relatively short 
distances.  In addition, the areas of complex terrain are typically near the coast lines of bays 
and the ocean that have a complex structure.  The numerical simulation of the wind in this 
type of environment requires a computational grid with small grid cells to resolve the fine 
scale structure of the terrain and coastlines.  Therefore, one might expect that forecasts 
generated from a physics-based model that employs a grid with smaller grid cells higher 
resolution) will achieve a higher level of forecast performance than those generated from a 
coarse grid. 

The impact of physics-based model grid resolution on forecast performance was addressed 
through a set of numerical experiments.  Power production forecasts were produced for the 
three test months at the PowerWorks and Mountain View wind plants based from 
simulations produced on four different resolutions of the physics-based model grid.  Grids 
with cell sizes of 40 km, 10 km, 4 km, and 1 km were used.  Figure 4-12 shows the single 
40-km grid used to produce forecasts for both wind plants.  However, separate 10-km, 4-km 
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and 1-km grids were used to produce the higher resolution forecasts for each plant.  Figures 
4-13 and 4-14 show the sets of higher resolution grids used to generate forecasts for the 
PowerWorks plant in Altamont Pass and the Mountain View wind plant in San Gorgonio 
Pass.   

 

Figure 4-12 A depiction of the geographical area covered by the coarsest resolution 
grid (40 km grid cell size) used to study the effect of physics-based model grid 
resolution on the performance of day-ahead power production forecasts for the 
PowerWorks and Mountain View wind projects. 

Two different types of forecasts were generated from each grid.  The first type was based 
directly upon an interpolation of the wind speed and direction from each model grid to the 
locations of the anemometers for each plant.  The power production was then directly 
estimated by using a plant output model.   The second set of forecasts used a MOS 
procedure to predict the wind speed and direction at the wind plants from the physics-based 
model data from each grid. 

Figures 4-13 and 4-14 present the MAE as a function of the physics-based model grid cell 
size for the raw  and MOS-adjusted power production forecasts at the PowerWorks wind 
project.  A casual glance at Figures 4-13 and 4-14 indicates that there is a substantial 
variation in the dependence of the MAE on the grid cell size of the physics-based model 
among the three months.  The MAE has very little dependence on the grid cell size for 
December 2001.   

Actually, a close look at the MAE values indicates that there is a tendency for the MAE to 
decrease as the grid cell size decreases.   At PowerWorks, the monthly MAE for December 
ranges from a high of 6.4% of installed capacity for the 40-km model to a low of 5.7% of 
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installed capacity for the 1-km model.  The MAEs of the 10-km and 4-km models are within 
this range of 5.9% and 6.0%, respectively.    

 

Figure 4-13 A depiction of the geographical areas covered by the three nested grids 
used to study the impact of physics-based model grid resolution (or the horizontal 
size of the grid cells) on the performance of day-ahead power production forecasts 
for the PowerWorks wind plant in Altamont Pass.  The upper image depicts the 
domain of the 10-km grid (Grid B).  The lower left image illustrates the area covered 
by the 4-km grid (Grid C), and the lower right image shows the region encompassed 
by the 1-km grid (Grid D).  A contour plot of the terrain representation on each grid is 
shown in each image.  The terrain elevations are in meters above sea level. 
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Figure 4-14 A depiction of the geographical areas covered by the three nested grids 
used to study the impact of physics-based model grid resolution (or the horizontal 
size of the grid cells) on the performance of day-ahead power production forecasts 
for the Mountain View wind plant in San Gorgonio Pass.  The upper image depicts the 
domain of the 10-km grid (Grid B).  The lower left illustrates the area covered by the 4-
km grid (Grid C), and the lower right shows the region encompassed by the 1-km grid 
(Grid D).  A contour plot of the terrain representation on each grid is shown in each 
image.  The terrain elevations are in meters above sea level. 
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MAE by Physics-based Model Resolution
Raw Physics-based Foreacsts:  PowerWorks - Altamont Pass
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Figure 4-15 Mean absolute error by physics-based model grid cell size for the 1-to 48-
hour raw physics-based forecasts of the hourly power production for the 
PowerWorks wind plant for the three forecast test months 
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Figure 4-16 Mean absolute error by physics-based model grid cell size for the 1- to 48-
hour MOS-adjusted physics-based forecasts of the hourly power production for the 
PowerWorks wind plant for the three forecast test months 
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One issue that could be raised when attempting to interpret the power production forecast 
MAE values is that there are a large number of hours during December when the wind speed 
falls near or below the turbine start-up speed.  It might be argued that the lack of 
dependence of MAE on grid cell size is due to the fact that if the wind speeds are below the 
start-up speed, the power production forecast is not sensitive to errors in the wind speed 
forecast since the forecast will be for zero production regardless of the forecasted wind 
speed as long as it is forecasted to be below the start-up speed.   Hence, it might not matter 
much if one version of the model has a higher wind speed error than the other.   

However, the composite MAE of the wind speed forecasts for the 11 PowerWorks 
anemometers indicate that the relationship of MAE to grid cell size is similar for the 
underlying wind speed forecasts.  The MAE of the 40-km model wind speed forecasts is 
2.18 m/s, while the MAEs for the 10-km, 4-km, and 1-km models are 2.19 m/s, 2.21 m/s, 
and 2.28 m/s, respectively.  Thus, there is actually a slight increase in the wind speed 
forecast MAE as the grid-cell size is reduced.      

In contrast, there is a very strong relationship between the MAE and the grid cell size for of 
May 2002 and July 2002, with July having the strongest relationship.  For July, the MAE of 
the 40-km model was 47.6% of installed capacity, while the 1-km model produced an MAE 
of 23.7%.  Similarly, for May, the MAE decreased from 40.3% of installed capacity for the 
40-km model to 24.9% for the 1-km model.  Interestingly, for May and July, there is a 
roughly linear trend in the reduction in MAE as the grid cell size is decreased.  The MAE of 
the wind speed forecasts for the 11 PowerWorks anemometers exhibit a similar pattern with 
a fairly linear decrease from near 5 m/s for the 40-km grid to just above 3 m/s for the 1-km 
grid. 

The reason for this dramatic difference in the dependence of the MAE of the raw forecasts 
on the model grid cell size is most likely tied to the differences in the character of the 
weather that affects the Altamont Pass area in the cold and warm seasons.   

During the winter, most of the variations in wind speed and direction in this area are driven 
by large-scale weather systems that typically move into the area from the Pacific Ocean. 
These large-scale systems can be fairly well simulated by a physics-based model with a 
relatively large grid cell size.   

In contrast, during the warm season, the wind variability in the Altamont Pass area is 
predominantly controlled by the small-scale circulations that are driven by the differences in 
temperature and pressure between the air over the cold waters of the San Francisco Bay and 
the adjacent Pacific Ocean and the inland areas.  This results in a strong diurnal wind speed 
cycle as the inland areas heat during the day and cool at night, causing larges changes in the 
temperature differences between the coastal and inland areas.  The small-scale circulations 
that result from these temperature gradients require a physics-based model with very small 
grid cells because of the complex nature of the terrain and land-water boundaries that 
determine the details of the temperature and wind patterns and the shallow nature of these 
near-surface flows. 
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Figure 4-17 presents the incremental change in MAE resulting from application of the MOS 
procedure to the output of the physics-based model as a function of grid size.  In general, the  
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Figure 4-17 The incremental reduction of the mean absolute error (MAE) of the 48-
hour wind energy forecasts vs. grid-cell size for the PowerWorks wind plant obtained 
by applying a MOS procedure to the raw physics-based model data. Positive values 
represent a decrease, negative values an increase in MAE. 

MOS procedure reduces the MAE values.  The MOS procedure has very little impact on the 
MAE for December 2001, regardless of the grid cell size.  In contrast, the MOS procedure 
provides a much more significant improvement, for at least some grid-cell sizes, for May 
2002 and July 2002, and the reduction in MAE is generally greater in July than in May.  The 
impact of the MOS procedure is greatest for the 40-km physics-based model,  

Figures 4-18 and 4-19 present the MAE vs. physics-based model grid cell size for the raw 
and MOS-adjusted power production forecasts at Mountain View. 

Interestingly, the MAE forecast pattern is somewhat different from that seen in the MAE 
data for the PowerWorks plant.  For the Mountain View plant, the MAE of the power 
production forecast for December 2001 shows somewhat more dependence on the grid cell 
size than it did for the PowerWorks plant.   The MAE of the forecasts based on the 40-km 
grid was 23.9% of the installed capacity.  

The MAEs produced by the forecasts from 10-km, 4-km, and 1- km grids were all 
substantially lower than this value.  The lowest MAE for this month was produced by 4-km 
grid, which yielded an MAE of 15.0% of installed capacity.  However, the MAEs for the 10-
km and 1-km grids were only modestly higher with MAE values of 16.8% and 15.9%, 
respectively. 
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The MAE patterns for the two warm season months, April and July, were also somewhat 
different for the Mountain View wind plant.  The pattern for April was the most similar to 
the pattern seen in the warm seasons for the PowerWorks plant.  There is a well-defined 
monotonic decrease in MAE as the grid-cell size decreases.  The PowerWorks plant 
exhibited the same pattern during both May and July.  However, the decrease in MAE was 
not as linear for the Mountain View plant as it was for the PowerWorks plant.  There is a 
large decrease from the 40-km to the 10-km grid, and then a more linear decrease for the 10-
km through 1-km grids.  The Mountain View MAE vs. grid-cell size pattern for August is 
quite different from that seen for the PowerWorks plant.   

 

MAE by Physics-based Model Resolution
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Figure 4-18  Mean absolute error vs. physics-based model grid resolution for 1- to 48-
hour raw physics-based forecasts of the hourly power production for the Mountain 
View wind plant for the three forecast test months. 
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MAE by Physics-based Model Resolution
MOS Physics-based Foreacsts:  Mountain View - San Gorgonio Pass

0%

10%

20%

30%

40%

50%

60%

Dec 2001 Apr 2002 Aug 2002
Month

40 km 10 km 4 km 1 km

 

Figure 4-19  Mean absolute error vs. physics-based model grid resolution for 1- to 48-
hour Model Output Statistics (MOS)-adjusted, physics-based forecasts of the hourly 
power production for the Mountain View wind plant for the three forecast test months 

Thus, the main characteristic of the relationship of grid-cell size to power production 
forecast MAE for the Mountain View plant is that there is substantial difference in MAE 
between the 40-km grid and all of the finer scale grids, but there is less difference when the 
grid cell size is reduced below 10 km.  The reason for this is not clear.   

Even a cursory glance at Figure 4-19 indicates that the MOS-adjusted forecasts show 
relatively little dependence on the grid-cell size of the physics-based model.  The largest 
change in MAE occurred for December, when the MAE for the MOS-adjusted forecasts 
from the 40 km grid was 21.2%, and those from the other grids were all 4 to 5 percentage 
points lower.  The 4-km grid yielded the lowest MAE of 16.2% of installed capacity.   

The dependence of MAE on grid cell size was even less prominent during April and August.  
During both months, the MAE decreased monotonically with grid-cell size.  However, the 
rate of decrease was fairly small. For April, the MAE decreased from 26.9% for the 40-km 
grid to 24.7% for the 1-km grid.  For August, the MAE declines from 21.7% to 20.1% from 
the 40-km grid to the 1-km grid. 

Figure 4-20 presents  the MAE of the Mountain View power production forecast after MOS 
adjustment vs. month and grid cell size. As in the case of the PowerWorks forecasts, there is 
little improvement in the MAE after applying the MOS procedure for December 2001.  In 
fact, the MOS procedure actually increased the MAE slightly for all grid-cell sizes below 40 
km.  The MOS benefit was larger for April 2002, but most of the benefit occurred for the 
40-km grid, and there was modest or no improvement using the higher resolution grids.  The 
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forecasts for August received the largest and broadest benefit from application of the MOS 
procedure.  The MAE was reduced by more than 20% of the installed capacity for the 40-
km grid, and the three grids with smaller grid cell sizes all yielded MAE reductions of about 
10%.  

Two significant conclusions can be drawn from the forecast experiments that tested the 
effect of the physics-based model grid cell size on the performance of the power production 
and wind speed forecasts.  The first conclusion is that the dependence of performance of the 
raw physics-based model forecasts on the grid-cell size has a strong seasonal dependence.  
The MAE of the forecasts produced directly from the raw physics-based model data the raw 
forecasts) had much less dependence on the model grid-cell size during the cold season than 
during the warm or transition seasons for both the Mountain View and PowerWorks wind 
plants. 

The second conclusion is that MOS-adjusted forecasts generally show much less 
dependence on the grid cell size than forecasts made directly from the underlying physics-
based model data.  In a sense, the MOS procedure serves to compensate for subgrid scale 
effects that are missing from the physics-based model simulations.  Thus, the improvements 
associated with the MOS procedure are larger for the large grid cell sizes (for example, 40 
km), which have a larger range of features that fall into the subgrid category, than for grids 
with small grid cells.  Thus, the MOS procedure acts as an grid resolution equalizer. 

 

Reduction in MAE from MOS by Model Resolution
Mountain View Power Production Forecasts

-10%

0%

10%

20%

30%

40%

50%

60%

Dec 2001 Apr 2002 Aug 2002

Month

40 km 10 km 4 km 1 km

 

Figure 4-20 The increment of reduction  in the mean absolute error of the 1-to-48 hour 
ahead hourly power production forecasts for the Mountain View wind plant obtained 
by applying a MOS procedure to the raw physics-based model data. Positive values 
represent a decrease in MAE from the raw physics-based model forecasts, negatives 
values denote an increase in MAE.  
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The overall implication is that there is not a strong incentive to run the physics-based 
models with a very high resolution grid.  While forecasts derived directly from  physics-
based models that employed a finer grid (smaller grid cells) often yielded substantially 
lower errors (especially during the warm season) for the two wind plants used in  this 
experiment, the MOS adjustment eliminated a substantial amount of that advantage by 
reducing the errors more for the coarse grid models.   Since there is a much greater 
computational cost to execute a physics-based model with a fine grid than to run a coarse 
grid model and apply the MOS adjustment, the coarse grid model with MOS is the more 
economical choice.  

Of course, this conclusion is based on forecast experiments for a total of six months for two 
wind plants.  Therefore, it is difficult to frame this as a general conclusion that can be 
applied to a broad range of wind plants in different locations.  It will certainly be necessary 
to conduct similar experiments for wind plants in other locations and climate regimes before 
a more general conclusion can be rigorously justified.   
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Focus Area 3:  Next-Generation Physics-based Models 

A key component of most wind power production forecast systems is typically a physics-
based model, which is based upon the fundamental principles of physics: the conservation of 
mass, momentum, and energy and the equation of state for air.  

In the previous Energy Commission-EPRI forecast project, the eWind forecasts used the 
Mesoscale Atmospheric Simulation System (MASS) model (Kaplan et al., 1982).  The 
MASS model was developed during the 1980s as part of NASA’s research and development 
of new remote sensing systems.  The model has evolved over the ensuing 20 years by 
incorporating new representations of various physical processes as they became available.  
However, certain components of the model are difficult to modify because they require a 
fundamental change in the basic structure of the modeling system and associated software.  
Several new models have been developed in recent years to take advantage of recent 
advancements in numerical techniques, software structures, and representations of 
atmospheric physics.  Three prominent “next generation” physics-based atmospheric models 
are the Coupled Ocean Atmosphere Modeling System (COAMPS) (Hodur, 1997), Weather 
Research and Forecasting (WRF) model (Michalakes et al., 2004) , and the Operational 
Multiscale Model with Grid Adaptivity (OMEGA) (Bacon et al., 2000).  

Coupled Ocean Atmosphere Modeling System (COAMPS) 

COAMPS was developed by the Marine Meteorology Division (MMD) of the Naval 
Research Laboratory (NRL). The atmospheric components of COAMPS are used 
operationally by the U.S. Navy for short-term numerical weather prediction for various 
regions around the world.  The COAMPS website provides additional information at 
http://www.nrlmry.navy.mil/coamps-web/web/home. 

The atmospheric portion of COAMPS is a complete three-dimensional data assimilation and 
forecast system that includes data quality control, analysis, initialization, and forecast model 
components. Features include a globally relocatable grid, user-defined grid resolutions and 
dimensions, nested grids, an option for idealized or real-time simulations, and code that 
allows for portability between mainframes and workstations.  

The nonhydrostatic atmospheric model includes predictive equations that address 
momentum, non-dimensional pressure perturbation, potential temperature, turbulent kinetic 
energy, and mixing ratios of water vapor, clouds, rain, ice, grauple, and snow, and contains 
advanced parameterizations for boundary layer processes, precipitation, and radiation.   

The portions of COAMPS that are still under development and testing include the ocean 
quality control, analysis, initialization, and forecast model and the NRL Atmospheric 
Variational Data Assimilation System (NAVDAS).  The latter is a three-dimensional 
variational data assimilation system that will replace the current analysis method in 
COAMPS, which is based on three-dimensional multivariate optimum interpolation method.  
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The COAMPS model was not available at AWS Truewind for this project.  However, the 
Lawrence Livermore National Laboratory (LLNL) used the COAMPS model to generate 
simulations for the real-time forecasting phase of the work.  Unfortunately, COAMPS 
simulations were not available for the test months used in the test phase, shown in Table 4-
1.  Therefore, a comparison of the performance of COAMPS-based forecasts with those 
based on other physics-based models was deferred until the forecasting evaluation phase of 
the project began.   

Operational Multiscale Model with Grid Adaptivity Model (OMEGA) 

OMEGA is a novel multiscale atmospheric simulation system for advanced, high-resolution 
weather forecasting and the prediction of dosage and hazard levels due to the atmospheric 
release of aerosols and gases. It has a horizontal grid resolution that ranges from 100 km to 
1 km and a vertical resolution that ranges from a few meters to 1 km.  OMEGA represents a 
significant advance in the field of weather prediction. Operational forecast models in current 
use are scale-specific. Their fixed rectangular grid structure limits the resolution of both the 
input boundary conditions and the resulting atmospheric simulation. The OMEGA model 
grid, which is unstructured in the horizontal, adapts to the underlying surface features and 
can dynamically adapt to atmospheric phenomena as they evolve. 

The major advantages of OMEGA over the current state-of-the-art include the ability to 
resolve the surface terrain down to scales of less than 1 km and the resulting local 
perturbations of the larger scale wind field. This local wind field perturbation is of extreme 
importance in wind energy applications as well as in a number of other applications such as 
the dispersion of atmospheric aerosols.  However, to calculate the local perturbation, it is 
important to include all of the physical parameters and processes, that affect the local flow. 
These include, not only topography, but also land use, land/water composition, vegetation, 
soil moisture, snow cover (if appropriate), and surface moisture and energy budgets. The 
inclusion of this additional physics, some of which is only appropriate because of the 
increased spatial resolution, represents an additional advance in the state-of-the-art.  The 
OMEGA model website provides additional information at http://vortex.atgteam.com/.  

The original plan was to generate forecast simulations using the OMEGA model for the six 
test months.  However, the time required to setup the OMEGA software and the 
computational requirements of OMEGA simulations made it impossible to execute OMEGA 
simulations within the available resources.  Therefore, no forecast experiments were 
conducted using the OMEGA model.  

Weather Research and Forecasting Model (WRF) 

The Weather Research and Forecasting Model (WRF) is a next-generation meso-scale 
numerical weather prediction system designed to serve both operational forecasting and 
atmospheric research needs.  It features multiple dynamical cores, a three-dimensional 
variational  (3DVAR) data assimilation system, and a software architecture that allows for 
computational parallelism and system extensibility. WRF is suitable for a broad spectrum of 
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applications across scales ranging from meters to thousands of kilometers. More information 
is available on the WRF website, which can be found at http://www.wrf-model.org/. This 
site provides information on the WRF effort and its organization, references to projects and 
forecasting involving WRF, and links to the WRF users' page, real-time applications, and 
WRF-related events. 

The WRF development effort has been a collaborative partnership, principally among the 
National Center for Atmospheric Research  (NCAR), the National Oceanic and Atmospheric 
Administration (the National Centers for Environmental Prediction (NCEP) and the Forecast 
Systems Laboratory  (FSL), the Air Force Weather Agency (AFWA), the Naval Research 
Laboratory, Oklahoma University, and the Federal Aviation Administration (FAA). WRF 
allows researchers the ability to conduct simulations reflecting either real data or idealized 
configurations. WRF provides operational forecasting a model that is flexible and efficient 
computationally, while offering the advances in physics, numerics, and data assimilation 
contributed by the research community.  The WRF has a rapidly growing community of 
users, and workshops and tutorials are held each year at NCAR. The latest version of the 
model is Version 2.0, and the most recent release is WRF V2.0.3.1 (December 2004). 

MASS and WRF Model Experiments 

As noted previously, it was not possible to execute experiments with COAMPS and 
OMEGA models in the screening phase of this task.  Thus, the only “next generation” 
model for which forecast simulations could be produced was the WRF model.   

The WRF software is still in the later stages of its development, and all of the planned 
capabilities were not available at the time the experimental simulations were generated.  
One of the capabilities that was not available for this project was the ability to execute a 
one-way nested simulation.  This capability is necessary to permit the use of embedded 
higher resolution grids within a large scale coarse grid.  This was the capability used to 
execute the multiple resolution MASS simulations under Focus Area 2.  Without the 
availability of this functionality, it was only possible to execute a WRF simulation on a 
single grid.   

A 40-km grid was used to make the results comparable with the simulations from the MASS 
40-km grid.  Unfortunately, at this scale, the physics-based models do not capture most of 
the meso-scale and local-scale features within the vicinity of the wind plants.   

Another limitation of the WRF software at the time of the screening phase work was that 
only a limited number of grid point datasets could be used for the specification of the initial 
conditions and lateral boundary conditions for the simulation.  Unfortunately, the NCEP 
Global Forecast System (GFS) dataset used for the MASS simulations in this project could 
not be used by the WRF software.  Hence, a different dataset had to be used for the 
initialization and the specification of the lateral boundary conditions for the WRF 
simulations.  The dataset used for this purpose was based on the output from the NCEP Eta 
model on a 40-km grid.   
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Thus, the comparison between the MASS-based forecasts and WRF-based forecasts is 
clouded by the fact that the two models used different initialization and lateral boundary 
condition datasets.   

A third issue was the fact that the Eta data required for the WRF initialization could not be 
obtained in a timely manner for all of the test months.  Thus, the test months for this 
experiment had to be modified.  The months of December 2001, April 2002 and June 2002 
were used for the Mountain View wind plant and the months of December 2001, May 2002 
and June 2002 were used for the PowerWorks plant. 

Figures 4-21 and 4-22 compare the monthly MAEs of the wind energy forecasts based on 
the MASS and WRF 40-km simulations for the six evaluation months.  No comparison 
could be made for June 2002 for the Mountain View wind plant because no corresponding 
40-km MASS simulation data were available for the month.   

The wind energy forecasts from the raw (for example, interpolated directly from the model 
grid) WRF wind speed data yielded a lower monthly mean absolute error than those based 
on the raw MASS wind speed data in four of the five test months (Figure 4-21).  The 
MASS-based forecasts yielded a lower MAE only for the PowerWorks wind plant for 
December 2001.  The WRF also yielded a lower MAE for four of the five comparison 
months for the MOS-based forecasts.  Curiously, they were not the same months as for the 
raw forecasts.   

Interestingly, the relative wind speed errors for the forecasts from the two models were 
somewhat different (Figures 4-23 and 4-24).  The MAEs are lower for the MASS-based 
forecasts for all three of the PowerWorks evaluation months and for both the raw and MOS-
adjusted forecasts.  The WRF-based wind speed forecasts yielded a lower MAE for the two 
months for which a comparison was possible for the Mountain View wind plant. 

Analysis of the MAE variation with forecast hour provides further insight into the nature of 
the differences in the forecast errors between the two models.   

Figures 4-25 and 4-26 present the MAEs vs. forecast hour for the raw and the MOS-adjusted 
WRF and MASS forecasts at the PowerWorks wind plant during May 2002.  The MAEs of 
the raw WRF and MASS forecasts are virtually identical throughout the entire 48-hour 
period.  The only exception is that the raw WRF forecasts exhibit a slightly lower MAE 
during the 3 to 15 hour look-ahead period.  This period accounts for virtually all of the 
difference in the monthly MAE for the PowerWorks plant in May shown in Figure 4-21.  It 
is also interesting to note that there is a strong diurnal oscillation in the MAE patterns for 
both models.  There are MAE minimums at 3 and 27 hours, which correspond to 11:00 a.m. 
PDT, and peaks at 15 and 39 hours, which correspond to 11:00 p.m. PDT.   

The most obvious difference between the raw and MOS-adjusted forecasts at Mountain 
View in Figures 4-25 and 4-26 is that the diurnal MAE cycle is almost completely absent in 
the MOS-adjusted forecasts.  The MOS-adjusted WRF and MASS forecasts are less similar 
than the corresponding raw forecasts.  Furthermore, over the entire 48-hour period the 
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MOS-adjusted MASS forecasts have a lower MAE than the MOS-adjusted WRF forecasts 
even though the relationship for the raw forecasts was the opposite.  The majority of the 
MAE advantage of MASS over the WRF in the MOS-adjusted forecasts occurs during the 
18- to 33-hour look-ahead period.   

Mean Absolute Error: WRF vs. MASS
Day-Ahead  Power Production Forecasts from Raw Physics-based Model Data 
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Figure 4-21 Comparison of the mean absolute error of 1- to 48-hour ahead forecasts 
of the hourly power production for the three screening phase test months for the 
PowerWorks and Mountain View wind plants from the raw (no MOS) WRF (black bars) 
and MASS (red bars) physics-based model simulations. 
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Mean Absolute Error: WRF vs. MASS
Day-Ahead  Power Production Forecasts  from MOS-adjusted Physics-based Model Data 

 PowerWorks (POW) and Mountain View (MVW) 

0%

5%

10%

15%

20%

25%

30%

35%

40%

45%

50%

POW-Dec POW-May POW-Jun MVW-Dec MVW-Apr MVW-Jun
Location/Month

WRF MASS

 

Figure 4-22 Comparison of the mean absolute error of 1- to 48-hour forecasts of the 
hourly power production for the three screening phase test months for the 
PowerWorks and Mountain View wind plants from the MOS-adjusted WRF (black bars) 
and MASS (red bars) physics-based model simulations. 

Mean Absolute Error: WRF vs. MASS
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Figure 4-23 Comparison of the mean absolute error of 1- to 48-hour forecasts of the 
meteorological tower wind speed for the three screening phase test months for the 
PowerWorks and Mountain View wind plants from the raw (no MOS) WRF (black bars) 
and MASS (red bars) physics-based model simulation data. 
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Mean Absolute Error: WRF vs. MASS
Day-Ahead Wind Speed  Forecasts  from MOS-adjusted Physics-based Model Data 
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Figure 4-24 Comparison of the mean absolute error of the 1- to 48-hour forecasts of 
the meteorological tower wind speed for the three test months for the PowerWorks 
and Mountain View wind plants from the MOS adjusted WRF (black bars) and MASS 
(red physics-based model simulation data bars). 
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MAE by Forecast Hour: WRF vs MASS (40 km Grid)
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Figure 4-25 MAE of the power production forecasts by forecast look-ahead hour from 
the raw WRF (black line with rectangle markers) and MASS (red line with diamond 
markers) model simulation data for the PowerWorks wind plant for May 2002. 



 
 
Next-Day Wind Plant Energy Forecasting System Development and Testing 

 4-36

MAE by Forecast Hour: WRF vs MASS (40 km with MOS)
PowerWorks Wind Plant: May 2002
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Figure 4-26 MAE of the power production forecasts by forecast look-ahead hour from 
the MOS-adjusted WRF (black line with rectangle markers) and MASS (red line with 
diamond marker) model simulation data for the PowerWorks wind plant for May 2002. 

Figures 4-27 and 4-28 show another snapshot of the differences between the MASS and 
WRF forecasts via the MAE vs. forecast hour depictions for the Mountain View wind plant 
for April 2002.  The MAEs of the  raw WRF forecasts are significantly lower MAE for a 
majority of the forecast hours (Figure 4-27), although there appears to be a diurnal cycle to 
the MAE differences.  The MAE differences between the two models are less prominent in 
the MOS-adjusted forecasts (Figure 4-28).  The MOS-adjusted WRF forecasts exhibit a 
substantially lower MAE in the 24-to-33 hour look-ahead period, but the WRF MAEs are 
almost the same as the MOS-adjusted MASS MAEs for almost all of the other hours in the 
forecast period.  The 24- to 33-hour period accounts for almost all of the monthly MAE 
advantage of the MOS-adjusted WRF for April 2002 Mountain View forecasts shown in 
Figure 4-22. 

In addition to the differences in the overall performance between two different forecast 
methods, it is important to evaluate the performance variations during a period of time.  This 
makes it possible to determine if (1) there are well-defined situations in which one method 
performs better than the other; or (2) there is substantial temporal continuity in performance 
patterns so that once it is determined that one method is performing better, that information 
can be used to select the best performing method for some future time period.   

Figures 4-29 and 4-30  show the differences in the hourly absolute error of the MOS-
adjusted WRF and MASS forecasts for one of the evaluation months for the PowerWorks 
and the Mountain View wind plants.  Positive differences in both charts indicate that the 
WRF-based forecasts have a lower absolute error.  Addition of the 24-hour moving average 
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(black line) of the hourly values is also increases the visibility of the patterns on times scales 
of a day or more.   

The character of the performance differences for the May 2002 forecasts for the 
PowerWorks wind plant (Figure 4-29) appears to change in the middle of the month.  For 
the first 18 days of the month, the WRF-based forecasts have a slight tendency to 
outperform the MASS-based forecasts but, except for a big advantage to MASS for a few 
hours on May 10 and a similar one to the WRF on May 15, the differences were consistently 
small.  The amplitude of the differences was much greater during the second half of the 
month with alternating periods of one to three days in which each model significantly 
outperformed the other.  The reason for this change in the character of the differences is not 
clear.  It may be related to a change in the weather regime or other factors.  

The temporal pattern of the error differences is somewhat different in the other illustrated 
month:  April 2002 for the Mountain View plant (Figure 4-30).  This month is characterized 
by short periods (one to two days) in which the WRF-based forecasts significantly 
outperform the MASS-based forecasts, interspersed with longer periods in which the 
differences have low amplitude oscillations around zero difference.  Most of the monthly 
MAE reduction produced by the WRF-based forecasts is accumulated in seven or eight days 
of the month when the WRF-based forecasts had a substantial performance advantage.  The 
performance difference is generally insignificant on the other days. 

Overall, the performance of the two models was fairly similar, especially when the MOS 
procedure was applied.  However, the limited test sample suggests that the WRF may have a 
slight performance advantage over MASS. This advantage was more evident for the 
Mountain View wind plant than for the PowerWorks plant.  The results of the screening 
phase suggest that it will be worthwhile to examine the performance of the WRF model over 
a larger sample and to explore the benefits of using both models in an ensemble forecast 
system.  This was done in the second phase of this task. 

 



 
 
Next-Day Wind Plant Energy Forecasting System Development and Testing 

 4-38

MAE by Forecast Hour: WRF vs MASS (40 km Grid)
Mountain View Wind Plant: April 2002
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Figure 4-27 MAE of the power production forecasts by forecast look-ahead hour from 
the raw WRF (black line with rectangle markers) and MASS (red line with diamond 
marker) model simulation data for the Mountain View wind plant for April 2002. 

MAE by Forecast Hour: WRF vs MASS (40 km with MOS)
Mountain View Wind Plant: April 2002
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Figure 4-28 MAE of the power production forecasts by forecast look-ahead hour from 
the MOS-adjusted WRF (black line with rectangle markers) and MASS (red line with 
diamond markers) model output data for the Mountain View wind plant for  April 2002 
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Difference in Hourly Absolute Error: WRF vs MASS
PowerWorks Day-Ahead Hourly Power Production Forecasts: May 200
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Figure 4-29 Difference between the hourly absolute errors of the WRF and MASS 
MOS-adjusted power production forecasts (red line for the PowerWorks wind plant 
and May 2002.  Positive differences indicate that the WRF-based forecasts have a 
lower absolute error.  The black line is a lagged 24-hour moving average. 

Difference in Hourly Absolute Error: WRF vs MASS
Mountain View Day-Ahead Hourly Power Production Forecasts: April 2002
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Figure 4-30  Difference between the hourly absolute errors of the WRF and MASS 
MOS-adjusted 1- to 24-hour power production forecasts (red line) for the Mountain 
View wind plant  and April 2002.  Positive differences indicate that the WRF-based 
forecasts have a lower absolute error.  The black line is a lagged 24-hour moving 
average. 
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Focus Area 4: Model Output Statistics Formulation 

The Model Output Statistics (MOS) component of a day-ahead wind power production 
forecast system converts the grid-based predictions of a physics-based atmospheric model to 
point-specific (for example, at a wind plant) forecasts of the variables of interest for a 
particular application.  A well-structured MOS procedure will correct systematic physics-
based model errors that result from the omission of atmospheric features that are too small 
to be resolved by the physics-based model grid, as well as those from deficiencies in the 
representation of physical processes within the physics-based model.  

Screening Multiple Linear Regression (SMLR) 

In the previous Energy Commission-EPRI project, AWST used a Screening Multiple Linear 
Regression (SMLR) procedure for the MOS component of the forecast system.  In this 
approach a large set of physics-based model variables is selected as a pool of candidate 
predictors.  The SMLR algorithm then uses a training sample to select the candidate 
predictor with the most predictive power.   This is defined as the candidate predictor with 
the highest R2 value when evaluated over the entire training sample.  The candidate 
predictor that is selected through this process becomes the first predictor of the ultimate 
statistical prediction equation.  The selected predictor is then removed from the pool of 
candidate predictors and the process is repeated.  A second predictor is then selected based 
on the criteria of the maximum increase in R2.  The process is repeated until an iteration 
yields an increase in R2 that is below a specified threshold.  At this point, it is assumed that 
no additional significant predictive information is available in the training sample and the 
process is terminated.  The selected predictors and associated coefficients form the MOS 
prediction equation. 

There are, of course, many more sophisticated and elegant procedures that could be used in 
place of this basic SMLR approach.  Table 4-5 lists several more sophisticated approaches 
tested under Focus Area 4.  These are listed in Table 4-5.  The first method is the SMLR 
technique described above, which was also the MOS method used in the previous project. 
This method became the baseline method to evaluate the performance of the other methods 
in the current project. 

Two-Stage SMLR (SMLR2) 

The first alternate method tested was a two-stage SMLR, which is assigned the label 
SMLR2 in Table 4-5.   In the first stage, only physics-based model variables are used to 
create one prediction equation for all forecast hours (hours 1 to 48 in this case).  The first 
stage results in a wind speed forecast for all forecast hours. The second stage uses the wind 
speed prediction from stage 1 and additional predictors, such as the recent forecast errors, to 
generate a separate forecast equation for each forecast look-ahead hour.  Ultimately, the 
wind speed forecast from stage 2 is converted to a power production forecast using a plant 
output model. 
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Table 4-5 MOS Techniques used in the Focus Area No. 4 Experiments 

Technique Name Identifier Salient Characteristics 

Screening Multiple Linear Regression SMLR Predictors selected sequentially 
from a pool of 56 physics-based 
model variables 

Two-stage SMLR SMLR2 Two stages of SMLR; recent error 
parameters included in second 
stage 

SMLR2 with Direct Power Prediction SMLR2-DP Direct prediction of power 
production from physics-based 
model variables (i.e. no plant 
output model) 

Stratified Two-Stage SMLR SMLR2-ST Training samples are stratified by 
forecasted wind speed 

Artificial Neural Network ANN Artificial neural network with one 
hidden layer 

SMLR2 with Direct Power Prediction (SMLR2-DP) 

The second alternate method is a variant of the SMLR2 scheme.  In this scheme (designated 
as SMLR2-DP) the power production is predicted directly from the physics-based model 
variables instead of first predicting the wind speed at the wind plant’s anemometer site and 
then using a plant output model to forecast the power production as in the SMLR and 
SMLR2 schemes.  The reasoning is that some model variables may implicitly provide useful 
information about variations in power production.   

Stratified Two-Stage SMLR (SMLR2-ST) 

The third approach is a stratified two-stage SMLR.  The approach is conceptually similar to 
the SMLR2 scheme except that separate prediction equations are derived for subsets of the 
training sample.  The content of the subsets are determined through the use of one or more 
stratification parameters.  The selection of stratification parameters was subjective although, 
in principle, some type of cluster analysis could be used to define the subsets optimally.  In 
these experiments, the physics-based model wind speed for the wind plant site was selected 
as the stratification parameter.  This parameter was used to divide the training sample into 
four subsets, each having approximately the same sample size.  The SMLR procedure was 
then independently applied to each subset. 

Artificial Neural Network (ANN)  

The fourth alternative is a method based upon an artificial neural network (ANN) model.  
The basic computational element of an ANN is called a neuron.  A neuron accepts input 
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values and processes them into an output (a response) value.  An ANN is typically 
composed of a set of inputs, one or more hidden layers of neurons and a set of outputs.  
Figure 4-31 shows an example of a neural network.  Each circle represents a neuron. The net 
input into each neuron consists of a weighted sum of all the individual inputs into that 
neuron.  The output of the neuron is obtained by allowing an activate function to operate 
upon the net input.  The training of the network consists of finding an optimal set of weights 
from the training sample data.    

In the application of ANN for the day-ahead MOS forecast in this project, a feed forward 
network with one hidden layer and one output was used.  Within this general structure, 
several different network configurations were evaluated on a couple of the test months.  The 
alternate ANN configurations were generated by varying the number of input and hidden 
layer neurons.  A total of 56 different variables were available from the physics-based 
model to serve as input into the ANN.  Experiments were conducted by using a subset of the 
set of 56 variables as the inputs as well as varying the number of hidden layer neurons.  
After evaluating the results, it was decided that all 56 variables would be used as input and 
that a total of three hidden layer neurons would be used.  It was thought that the use of all 56 
physics-based model variables as inputs would provide the best comparison to the SMLR 
schemes since it used all 56 variables in their screening process.  The selection of three 
hidden layer neurons was based on the fact that the use of larger number of hidden layer 
neurons in the preliminary tests yielded no better and often worse performance.  The use of 
large numbers of hidden neurons with a relatively small training sample size can result in 
overfitting problems, since each additional neuron introduces new parameters (or the 
weights) into the ANN prediction system.   

 

Input
Layer

Hidden
Layer

Output
Layer  

Figure 4-31 A schematic depiction of the Artificial Neural Network (ANN) configuration 
used for the forecast experiments in Focus Area 4. 
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Figures 4-32 and 4-33 present the monthly MAEs of the hourly power production forecasts 
for the entire 1- to 48-hour forecast period for all  five MOS techniques for the PowerWorks 
and Mountain View wind plants, respectively.   These results are based on the 4- km MASS 
simulations produced in the Focus Area 3 experiments.   

There was generally very little difference between the performance of the SMLR2 method 
and that of the SMLR method with the exception of August 2002 for the Mountain View 
wind plant.  Curiously, the SMLR method performed very poorly for this month, and all of 
the other methods including the SMLR2 method performed much better than it did.  
However, in view of the results for the other five months, this appears to be the result of an 
anomaly in the SMLR performance and is probably not representative of the typical 
performance relationship between SMLR and the SMLR2 methods. 

The SMLR-DP method, which directly predicts the power production from the physics-
based model output data, generally did not perform quite as well as the SMLR2 method.  
The monthly MAE for the SMLR-DP method was higher during four of the six test months, 
including all three of the months for the PowerWorks wind plant.  The MAE was slightly 
lower during April and August 2002 for the Mountain View wind plant.  In the view of the 
small sample and the small difference, the appropriate conclusion is most likely that there is 
no significant performance difference between the SMLR-DP and SMLR2 methods. 

The stratified SMLR2 approach (SMLR2-ST) produced a substantial and consistently lower 
MAE than the unstratified SMLR2 scheme.   The SMLR2-ST methods yielded a lower 
MAE than the SMLR2 method in all six of the test months, and the average magnitude of 
the improvement was 10%.  Although the sample size is limited, the results clearly suggest 
that the SMLR2-ST method produces a significant improvement over the SMLR2 scheme. 

The ANN method yielded net forecast performance results that were very similar to those 
produced by the SMLR2-ST method.  Each method exhibited a lower MAE in three of the 
months.  The actual net improvement statistics indicated that the ANN method had a slight 
performance advantage over the SMLR2-ST method with a net percentage reduction in 
MAE of 0.35%, and the net MAE reduction increment was 0.55% of installed capacity.   
However, these net error reductions are small relative to the monthly variations of MAE 
changes.   

For example, the ANN method outperformed the SMLR2-ST method by an increment of 
0.9% of installed capacity or 5.6% of the SMLR2-ST MAE of 16.1% of installed capacity 
for July 2002 for the PowerWorks plant.  However, the ANN method performed worse than 
the SMLR2-ST method by an increment of 0.5% of installed capacity (4.1% of the SMLR2-
ST MAE)   In view of the limited sample size, the small net difference in the results, and 
large variability in the monthly results, the most reasonable conclusion from these results is 
that there is no significance difference in the performance between the two methods. 
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Mean Absolute Error by MOS Method
Day-Ahead Power Production Forecasts for the PowerWorks Wind Plant
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Figure 4-32 Comparison of the monthly MAE of 1- to 48-hour forecasts of the hourly 
power production for the three test months at the PowerWorks wind plant for the five 
MOS procedures listed in Table 4-5. 

Mean Absolute Error  by MOS Method
Day-Ahead Power Production Forecasts for the Mountain View Wind Plant
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Figure 4-33 Comparison of the monthly MAE of 1- to 48-hour forecasts of the hourly 
power production for the three test months for the Mountain View wind plant for the 
five MOS procedures listed in Table 4-5. 
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Mean Absolute Error by MOS Method
Day-Ahead Wind Speed Forecasts for the PowerWorks Wind Plant
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Figure 4-34 Comparison of the monthly MAE of 1- to 48-hour forecasts of the hourly 
average wind speed for the three test months for 11 anemometer locations at the 
PowerWorks wind plant for the five MOS procedures listed in Table 4-5. 

Mean Absolute Error by MOS Method
Day-Ahead Wind Speed Forecasts for the Mountain View Wind Plant
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Figure 4-35 Comparison of the monthly mean absolute error of 1- to 48-hour forecasts 
of the hourly average wind speed for the three test months for the Catellus 
anemometer site in the Mountain View wind plant for the five MOS procedures listed 
in Table 4-5.  
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Figures 4-34 and 4-35 summarize the performance of the same five MOS methods for the 
wind speed forecasts is depicted.  Not surprisingly, the performance is quite similar to that 
of the power production forecasts.  The SMLR and SMLR2 methods yield very similar 
results except for  August 2002 at the Mountain View wind plant.  The net differences of the 
monthly MAEs for the other five months is only -0.19 m/s or an average of approximately -
0.04 m/s per month.  The SMLR2 method yielded an MAE that was 0.75 m/s lower for 
August 2002, but it appears this occurred because the SMLR method yielded an 
anomalously high MAE for that month.  The SMLR and SMLR-DP methods exhibited 
identical MAEs for all six months.  This is because they use the same procedure to produce 
the wind speed forecasts.  The crucial difference is that the SMLR-DP method directly 
predicts the power production from the physics-based model variables (without the use of a 
plant output model,) and the SMLR2 method uses a separate plant output model to create 
the power production forecasts from the wind speed forecasts.  As in the case of the power 
production forecasts, the SMLR2-ST and the ANN methods both produce a significant 
MAE reduction relative to the SMLR, SMLR2, and SMLR-DP methods during all six test 
months. 

Analysis of the MAEs. vs. forecast look-ahead period in Figures 4-36 and 4-37 can provide 
an understanding of the characteristics of the MAE reduction produced by the SMLR2-ST 
scheme relative to the SMLR2 scheme.  These charts indicate that a substantial portion of 
the MAE reduction for both wind plants is attributable to significantly lower errors during 
the first 24 hours of the forecast period.  The performance differential is especially 
prominent for the Mountain View wind plant (Figure 4-37).    

During the 1- to 24-hour period, the SMLR2-ST method reduces the MAE by an increment 
of 4.3% of installed capacity, which is a 23.7% improvement over the SMLR2 method.  
However, during the 25- to 48-hour look-ahead period, the MAE reduction increment is 
only 1.7% of installed capacity, which corresponds to an improvement of 9% over the 
SMLR2 method.  This MAE pattern is also present in the May 2002 forecasts for the 
PowerWorks wind plant, but it is less prominent.  The improvement percentage of SMLR2-
ST over SMLR2 is 13.3% for the first 24 hours and 9.7% for the second 24 hours.  Another 
noteworthy feature on the charts of Figures 4-36 and 4-37 is that the structures of both the 
SMLR2 and SMLR2-ST curves are quite similar for both wind plants. 

Some insight into the variability of the performance differences between the SMLR2 and 
SMLR2-ST methods can be gained from the time series of the hour-by-hour differences in 
the absolute error between the two methods.  Figures 4-38 and 4-39 show the time series for 
the first 24 hours of the forecast period for May 2002 for the PowerWorks and Mountain 
View plant, respectively.  These charts indicate that the SMLR2-ST method consistently 
outperforms the SMLR2 scheme (for example, the 24-hour running average rarely falls 
below zero).   In addition, there are a number of episodes in which the SMLR2-ST scheme 
outperforms SMLR2 by a large margin. 
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Figure 4-36 Mean absolute error of the power production forecasts vs. forecast “look-
ahead” hour from the raw SMLR2 (blue line with rectangle markers) and stratified 
SMLR2 (yellow line with triangle markers) MOS procedures for the PowerWorks wind 
plant for May 2002. 

 

Figure 4-37 Mean absolute error of the power production forecasts vs. forecast “look-
ahead” hour from the raw SMLR2 (blue line with rectangle markers) and stratified 
SMLR2 (yellow line with triangle markers) MOS procedures for the Mountain View 
wind plant for April 2002. 

M ean Absolute Error  by Forecast Hour
Power  Production Forecasts for the PowerWorks Wind Plant: May 2002 

0% 

5% 

10% 

15% 

20% 

25% 

30% 

35% 

0 3 6 9 12 15 18 21 24 27 30 33 36 39 42 45 48
Forecast Look-ahead Hour

MAE (% of Capacity) 

SMLR2 Strat SMLR2

M ean Absolute Error  by Forecast Hour
Power Production Forecasts for the Mountain View Wind Plant: April 2002 

0% 

5% 

10% 

15% 

20% 

25% 

Å 3 6 9 12 15 18 21 24 27 30 33 36 39 42 45 48
Forecast Look-ahead Hour

MAE (% of Capacity) 

SMLR2 Strat SMLR2



 
 
Next-Day Wind Plant Energy Forecasting System Development and Testing 

 4-48

Difference in Hourly Absolute Error: Strat SMLR2 vs SMLR2
PowerWorks Day-Ahead Hourly Power Production Forecasts: May 2002
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Figure 4-38 Differences between the hourly absolute errors of the SMLR2 and SMLR2-
ST MOS 1- to 24-hour forecasts (red line) of the hourly power production of the 
PowerWorks wind plant for May 2002.  Positive differences indicate that the SMLR2-
ST forecasts have a lower absolute error.  The black line is the lagged 24-hour moving 
average. 

Difference in Hourly Absolute Error: Strat SMLR2 vs SMLR2
Mountain View Day-Ahead Hourly Power Production Forecasts: April 2002
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Figure 4-39 Differences between the hourly absolute errors of the SMLR2 and SMLR2-
ST MOS 1- to 24-hour forecasts (red line) of the hourly power production of the 
Mountain View wind plant for April 2002.  Positive differences indicate that the 
SMLR2-ST forecasts have a lower absolute error.  The black line is the lagged 24-hour 
moving average.  
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Conclusions 

Three conclusions were derived from the six months of experimental forecasts using the set 
of four alternate MOS procedures.   

First, the two-stage screening multiple linear regression method (SMLR2), which included 
the use of parameters that measured the recent forecast error in the second stage, yielded no 
significant improvement over the baseline SMLR scheme.   

Second, the use of a direct power prediction version (no explicit plant output model) of the 
SMLR2 scheme did not yield any significant improvement over the SMLR2 scheme, which 
used a plant-scale power curve to predict the power production.  In fact, the overall 
performance of SMLR2-DP was generally slightly worse for the six test months.    

Finally, the most significant conclusion is that both the stratified SMLR scheme (SMLR2-
ST) and the ANN scheme produced a significant reduction in the MAE relative to the 
baseline SMLR scheme for all six of the test months.   

Figure 4-40 presents a summary of the percentage MAE reduction achieved by the SMLR2-
ST method relative to the SMLR2 method for each of the six months.  These two schemes 
appear to offer substantial potential to yield significant forecast improvements.  However, 
the ANN scheme requires much more computational power for training and, based on the 
results from this limited sample, does not produce any additional benefit in forecast 
performance over the SMLR-ST scheme.  Therefore, the SMLR2-ST method was selected 
for use in the one-year evaluation period in  the second phase of this task.    

Percentage Reduction in Mean Absolute Error
MOS Experiment: Stratified SMLR2 vs. SMLR2

Day-Ahead  Power Production Forecasts for PowerWorks (POW) and Mountain View (MVW) 
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Figure 4-40  The percentage reduction in the MAE of the SMLR2-ST power production 
and wind speed forecasts relative to forecasts produced by the SMLR2 method for 
the sample of six test months at the PowerWorks and the Mountain View wind plants. 
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Focus Area 5:  Plant Output Model Formulation 

The plant output model is the link between the meteorological conditions at a wind plant 
and the plant’s power production.  There are several ways to formulate a plant output model.  
In fact, it is possible to totally avoid the use of an explicit plant output model by training the 
MOS procedure discussed in the previous section to directly forecast the power production 
from the output data of the physics-based model.  This is the approach used by the SMLR2-
DP method.  However, the results in the previous section indicated that this approach 
generally did not perform as well as the technique of first forecasting the wind speed at one 
or more anemometer locations within the wind plant and then using a plant output model to 
forecast the power production.  This is generally consistent with AWST’s overall 
experience, which indicates that it is usually better to use the MOS procedure to make a 
prediction of the relevant meteorological parameters at the wind plant site and then to use 
those predicted quantities as input into an explicit plant output model to produce the power 
production predictions. The plant output model can be formulated as a statistical or a 
physical numerical model.    

Physical Plant Output Models 

In the physical model approach, a representation of the turbine layout and an explicit model 
of the wind flow throughout the area of the wind plant are employed.  The model accounts 
for flow variations within the plant domain due to terrain and roughness effects and also 
calculates the impact of the effects of turbine wakes on nearby turbines.  The wake effects 
may become particularly important for certain wind directions that result in air flow along 
the rows of turbines rather than across the turbine rows.  Once the relevant meteorological 
conditions (for example, wind speed, direction, and air density) at each turbine are known, 
the power production for each turbine can be calculated from the manufacturer’s power 
curve for the particular wind turbine. The individual power production values for each 
turbine can then be aggregated to obtain a prediction of the power production for the entire 
wind plant.   Physical models of this type can provide a great deal of insight into the reasons 
for variations in power production but they are very complex, often use significant 
computational resources, and require detailed knowledge of the wind plant layout and the 
terrain and roughness variations in the vicinity of the plant.  This makes physical plant 
output models difficult to configure and operate. 

Statistical Plant Output Models 

The other major type of plant output model is the statistical model.  In this approach, power 
production and meteorological data from the plant are used to construct an empirical 
relationship between the plant-scale power production and the meteorological conditions.  
The simplest model of this type is commonly known as a “plant-scale power curve.”  This is 
simply an empirical equation derived from the plant’s power production data and the wind 
speed data from one or more of the plant’s anemometers.  The power curve is used in the 
forecast process to calculate the forecasted power production from meteorological 
predictions of the wind speed at the plant’s anemometer locations.  This is the approach that 
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was used in the first Energy Commission-EPRI forecasting project.  However, data from 
wind plants indicate that there are substantial deviations from the behavior modeled by this 
basic type of “plant-scale power curve.”  Thus there is an opportunity to improve the wind 
power production forecasts if a significant fraction of the variability of the deviations from 
the wind-speed-based power curve can be forecasted. 

Plant Scale Power Curves  

Figures 4-41 and 4-42 show two examples of plant-scale power curves.  The black triangles 
show the hourly power production and average hourly wind speed data from turbine clusters 
M127 and M225 in the PowerWorks wind plant for July 2002.  The red circles denote the 
power production prediction from  a basic plant-scale power curve applied to the wind speed 
measured at the anemometer associated with each cluster.  The plant-scale power curve used 
in this calculation is based on a polynomial curve fit to the median hourly power production 
values for a set of 1-m/s wind speed bins based on data from June 2002.  Thus, any 
systematic changes in the operating characteristics of the wind plant between June 2002 and 
July 2002 will result in a systematic difference between the hourly point values (black 
triangles) from July and the power curve predictions (red circles) based on the June data.   
The data from the PowerWorks wind plant in Altamont Pass were used to analyze the 
magnitude of this source of forecast error and to experiment with ideas to reduce this type of 
forecast error.   

The relationship between the predictions from the power curve and the July 2002 data is 
quite good for the M127 cluster (Figure 4-41).  The predictions from the power curve are 
roughly in the center of the cloud of points formed by the July power production and wind 
data. This is confirmed by the fact that the overall bias in the power curve predictions is 
+0.3% of the installed capacity.  This indicates that the relationship between the wind speed 
measured by the anemometer and the power production was roughly the same in June and 
July for the M127 turbine cluster.  In addition, the vertical spread of power production 
values for a particular wind speed is relatively small.  This means that an accurate prediction 
of the anemometer wind speed will yield a good prediction of the power production for this 
cluster.  For the M127 cluster, during July, a perfect forecast (MAE = 0.0 m/s) for hourly 
wind speed at the anemometer site would have yielded an MAE for the power production 
prediction of 4.2% of the installed capacity. 

In contrast, the power curve predictions of the July 2002 power production from turbine 
cluster M225 are not as good (Figure 4-42).  There are many more points above the power 
curve than there are below the curve.  This indicates that the power curve tended to provide 
a power production value that was too low for a particular wind speed during July.  In fact, 
the prediction bias (predicted minus reported values) over all hours of the month was -6.7%. 
This indicates that there was an apparent change in the relationship between the wind speed 
measured at the anemometer site and the power production between June and July.  In 
addition to this change, the spread of the power production values at a particular wind speed 
is generally much greater for cluster M225 than it was for cluster M127.      
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Figure 4-41 Hourly power output vs. measured hourly average wind speed (black 
triangles) for the PowerWorks M127 cluster for July 2002 and hourly power output 
estimates (red circles) using a plant-scale power curve derived from June 2002 data. 

 

Figure 4-42 Hourly power output vs. measured hourly average wind speed (black 
triangles) for the PowerWorks cluster M225 for July 2002 and hourly power output 
estimates (red circles) using a plant-scale power curve derived from June 2002 data. 
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The reason for the offset relative to the June values and the greater spread relative to the 
cluster no. 127 data is not known.  It is most likely related to variations in the wind patterns 
within the arrays of cluster M225 turbines.  It is also possible that it could be related to 
measurement issues (for example, an anemometer that is out of calibration or has other 
maintenance issues).  Regardless of the cause, both of these factors introduce additional 
error into the power production predictions for cluster M225.  In this case a perfect wind 
speed forecast for the anemometer site will result in a mean absolute error of 8.5% of 
installed capacity for the power production predictions.  This is very large in comparison 
with the typical day-ahead forecast error of about 15% to 20% of installed capacity.  It is 
approximately twice the MAE associated with the M127 cluster for the same month.  This 
illustrates how the variability in the relationship between the wind speed measured at the 
anemometers sites and the concurrent power production can have a significant impact on the 
accuracy of the power production forecasts. 

Modeling Deviations from the Power Curve 

One possible approach to improve the power production predictions is to model the 
deviations from the power curve.  To do this, it is necessary to identify parameters that 
explain a substantial amount of the variance from the power curve predictions.  One 
possible parameter is the wind direction.   

Figures 4-43 and 4-44 are scatter plots that show the relationship of the deviation from the 
power curve to the wind direction for PowerWorks clusters M127 and M225.   The most 
striking characteristic of these plots is that there is a very limited range of wind directions 
for both of these anemometer sites during July 2002.  This is quite typical for these sites, 
especially during the summer months.  The range is slightly greater for tower M225 than it 
is for M127.  There appears to be very little relationship between the deviation from the 
empirical plant-scale power curve and the wind direction for cluster M127 (Figure 4-43).   

However, the pattern is somewhat different for cluster M225 (Figure 4-42).  In cluster M225 
the more southerly wind directions (180 to 210 degrees) tend to have a significant positive 
deviation, while the more westerly directions (210 to 240 degrees) tend to yield deviations 
that are near zero or negative.  Thus, it appears that wind direction may be a useful predictor 
for cluster M225 but not for M127. 

Another possible parameter is the hour of the day. Figures 4-45 and 4-46 show the 
relationship of the deviation between the empirical plant-scale power curve and the hour of 
the day. These charts indicate that there is a distinct relationship between the hour of the day 
and the deviation from the power curve for both the M127 and M225 clusters.  For the 
M127 cluster (Figure 4-45), negative deviations from the power curve predictions tend to 
occur during the mid-afternoon to late evening period (3:00 p.m. to midnight PDT).  
Positive deviations tend to occur during the period from slightly after sunrise to early 
afternoon (7:00 a.m. to 2:00 p.m. PDT).  The red line in Figure 4-45 is a least squares 
polynomial curve fit to the deviation and hour of the day data.  This indicates that the 
amplitude of the diurnal oscillation in the deviations is about 600 kW (about 6% of installed 
capacity).  The diurnal pattern for the M225 cluster is somewhat different from that for the 
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M127 cluster.  The large positive deviations for the M225 cluster tend to occur during the 
afternoon and evening (2:00 p.m. to midnight PDT), while the smaller positive or negative 
deviations tend to occur during the morning hours.  The least squares polynomial curve fit 
(red line in Figure 4-46) indicates that the amplitude of the oscillation for the M225 cluster 
is about 1900 kW (14.6% of installed capacity).  The analysis of the data from the M127 
and M225 clusters indicate that the use of the wind direction and the hour of the day 
parameters to model the variation in the deviations from the power curve has some potential 
to reduce the forecast error associated with these deviations.  The quality of the deviation 
relationships varies substantially from cluster to cluster within the PowerWorks plant and 
also between wind plants.  Therefore, a thorough analysis of the wind and power production 
data from each plant must be done to identify the parameters that can explain the variance of 
the power curve variations. 

 

 
Figure 4-43 Hourly deviation (kW) from the median based power curve as a function 
of wind direction at Tower M127. 
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Figure 4-44 Hourly deviation (kW) from the median based power curve as a function 
of the wind direction at Tower M225. 
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Figure 4-45 Hourly deviation (kW) from the median-based power curve as a function 
of the hour of the day (UTC) for the PowerWorks M127 cluster for July 2002. 
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Figure 4-46 Hourly deviation (kW) from the median-based power curve as a function 
of the hour of the day (UTC) for the PowerWorks M225 cluster for July 2002. 

To estimate the effect of a more sophisticated approach to the plant output model on the 
accuracy of the power production forecasts, the deviations from the median-based power 
curve were modeled for both the PowerWorks and Mountain View wind plants through the 
use of the wind direction and the time of day parameters.  Forecasts with this new plant 
output model were then produced for all six of the evaluation months.  Figure 4-47 
illustrates the resulting reduction in the power production forecast MAE for each plant and 
evaluation month.  Interestingly, the percentage MAE reduction for the PowerWorks wind 
plant is in the 6% to 9% range for all three of the evaluation months, whereas it is 2% or less 
for all three months for the Mountain View wind plant.  The reductions are relative to a 
plant output model that did not model the deviations.   

The significantly greater effect for the PowerWorks plant may be because of the more 
complex terrain within the turbine arrays at that site.  It may also be because the wind 
direction and time of day are not the best parameters to model the deviations from the power 
curve for the Mountain View plant.  Thus, there may further performance gains to be 
realized by further extending the sophistication of the plant output model.  However, this 
initial attempt at improving the plant output model produced a significant improvement in 
forecast performance. 
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MAE Reduction due to 
Modeling of Power Curve Deviations

0%

2%

4%

6%

8%

10%

12%

POW-Dec POW-May POW-Jul MVW-Dec MVW-Apr MVW-Aug

Location/Month
 

Figure 4-47 Reduction in MAE of the power production forecasts due to the modeling 
of the deviations from the median-based plant-scale power curve for the three test 
months for the PowerWorks (POW) and Mountain View (MVW) wind plants. 

 

Focus Area 6:  Forecast Ensembles 

Forecast ensemble models are statistical models that produce an optimal forecast by 
compositing forecasts from a number of different techniques (Sivillo, et al., 1997).   The use 
of forecast ensemble models is based on research that has demonstrated that a composite of 
forecasts from an appropriate ensemble of forecast-generating techniques is often superior to 
those produced by any one member of the ensemble. A conceptual schematic of the 
ensemble forecasting process is depicted in Figure 4-48.  

The fundamental concept is that if the errors in the forecasts produced by the different 
methods are unbiased and have a low degree of correlation with one another, the random 
errors from the individual forecasts will tend to offset each other, with the result that a 
composite of the forecasts will have a lower error than any individual forecast. If all of the 
input forecasts are highly correlated, the impact of an ensemble forecast will be minimal.  
This means that the underlying forecast methods must be quite different in how they 
construct the relationships between the raw observational data and their forecasts or the 
type, amount, or quality of input data going into the methods must be significantly different.  
This "ensemble effect" is a well-known technique used by meteorologists in intermediate 
and extended-range forecasting. The spread of the forecasts produced by the ensemble may 
also be related to the forecast uncertainty if the differences in the ensemble members are 
related to the primary factors that introduce uncertainty into the forecasts. 
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Figure 4-48 A conceptual schematic of the ensemble forecast method.  

This ensemble approach can be applied to most forecast look-ahead time periods (hour-
ahead, day-ahead).  There are two fundamental strategies that can be used to generate an 
ensemble of forecasts.  One strategy is to use the same forecast models and vary the input 
data within their range of uncertainty.  Complex methods such as “breeding methods” are 
sometimes used to determine the initial perturbations that lead to greater forecast differences 
(Toth and Kalnay, 1997).   The other strategy is to use the same input data and employ 
different forecast models or different configurations of the same model.  The relative value 
of either strategy depends upon the sources of uncertainty in the forecast procedure.  In 
practice, the sources of uncertainty vary with location, season, and other factors, and thus 
the choice of the ensemble components and the number of members must be determined 
from experience and experimentation.  

The National Centers for Environmental Prediction (NCEP) has an ongoing program of 
experimentation with ensembles, mostly for global-scale forecasting.  Ensembles for 
medium-range forecasts (0-14 days) have been used operationally in North America and 
Europe since the 1990s.  Short-range ensembling (0-3 days) is promising but less advanced.  
It continues to be the subject of active research.  Hamill et al. (2000) list as the three most 
important current issues:  “(1) how or how best to use ensemble information to improve data 
assimilation strategies; (2) how to address model errors in ensemble forecasts, and (3) how 
to appropriately use and interpret the voluminous information from ensembles”. 

For some types of forecasting problems, a need for extremely high resolution or physical 
complexity in the physics-based simulations may make ensemble forecasting impractical.  
But the promise of both a better consensus forecast (for example, the ensemble mean 
forecast) and a useful estimate of uncertainty for each forecast continues to drive 
development. The relationship between ensemble spread and forecast skill is complex 
(Whitaker and Louge, 1998) and is sensitive to the details of the ensembling methods.  
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A comprehensive investigation of the potential benefits the ensemble method in wind power 
production forecasting is certainly beyond the scope of this project.  However, it is possible 
within the scope of this project to investigate the benefits of constructing an ensemble of the 
different methods explored in this project’s experiments.  One of the most basic tests of the 
ensemble concept for wind power production forecasting is to construct an ensemble mean 
forecast from forecasts made by two different physics-based models.  In the screening phase 
of this project, forecasts from the MASS and WRF models were generated under Focus 
Area 3.  An ensemble mean forecast was constructed by averaging those two forecasts after 
the MOS adjustment procedure was applied to each.  The result was that the ensemble mean 
forecast reduced the overall MAE of the best overall forecast by 0.8% for the five test 
months for which both forecasts were available.  This is hardly a substantial improvement, 
but the size of the ensemble (two) was very small, and evidence from other studies indicates 
that the benefit from constructing an ensemble mean forecast is more significant for larger 
ensemble sizes.    

A somewhat more extensive investigation of the benefits of the ensemble approach will be 
possible in the evaluation phase, since a greater variety of methods will be available during 
the one year of experimental forecasting under the second part of the next-day forecast 
development and testing task. 

Testing of Improved Forecast Algorithm at Five California Wind 
Projects 

The objective of the second phase of the day-ahead wind power production forecast 
development and evaluation task was to apply and evaluate the performance of the most 
promising next-day wind energy forecast methodologies identified in the previously 
described first phase of the effort over a one-year period at wind plants in the principal 
California wind resource areas.   

Based on the substantial improvements in forecast performance  relative to that in the 
previous Energy Commission-EPRI project, the improved forecast methodologies used in 
the one-year evaluation period included: 

• Higher-resolution water surface temperature data from the MODIS sensor. 

• “Next generation” physics-based atmospheric models.  

• A stratified two-stage screening multiple linear regression (SMLR2-ST) scheme for 
the Model Output Statistics (MOS) component of the forecast system. 

• Modeling deviations the empirical plant-scale power curve.  

• Ensemble forecasting using a portfolio of models. 
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Experimental Design  

There are a number of factors that must be considered when a forecast evaluation project is 
designed.  These include (1) the forecast delivery time and the length of the forecast look-
ahead period (also called the forecast time horizon); (2) the specific parameters that will be 
forecasted and evaluated; (3) the data that will be available for input into the forecast 
process; (4) the sites for which forecasts will be made; and (5) the performance statistics 
that will be used to evaluate the forecasts.  The following subsections provide a summary of 
these factors for the one-year forecast evaluation project conducted in the second phase of 
this task.  The design of this forecast evaluation experiment was formulated to be as similar 
as possible to the forecast evaluation project conducted within the previous Energy 
Commission-EPRI project to facilitate a comparison of the results from the two projects. 

Forecast Delivery Time and Look-Ahead Period 

The delivery time of operational forecasts can be a critical factor in an operational 
environment since power production schedules often have to be submitted within a 
particular time frame to adhere to market or grid management rules.  Although power 
production forecasts can be produced and delivered for any delivery time, there are certain 
forecast production times that are better suited to take advantage of the most recent set of 
comprehensive atmospheric data.  This is because the most comprehensive set of 
atmospheric measurements is gathered twice per day at 0000 UTC (4:00 p.m. PST) and 
1200 UTC (4:00 a.m. PST).  For this project the forecast delivery times were set at 8:00 a.m. 
PST(1600 UTC) and 8:00 p.m. PST (0400 UTC).  This means that the first hour of the 
forecast period is the hour ending at 1700 UTC (9:00 a.m. PST) and 0500 UTC (9:00 p.m. 
PST).  This is the same forecast delivery time as that used in the earlier Energy 
Commission-EPRI forecasting project.   

The primary time scale of the forecast, which is also known as the look-ahead period, 
determines, in part, the methods that will be used in the production of the forecasts.  The 
primary focus of this task, as was the case in the previous Energy Commission-EPRI 
project, is the day-ahead time frame.  The forecast time period was set to the 1- to 48-hour 
period after forecast delivery time to be consistent with the time frame of the previous 
project.  Thus, the morning forecasts (those delivered at 8:00 a.m. PST) extended from the 
hour ending at 9:00 a.m. on the day of forecast delivery to the hour ending at 8:00 a.m. two 
days after the day of forecast delivery.  Similarly, the evening forecasts extended from the 
hour ending at 9:00 p.m. on the day of forecast delivery to the hour ending at 8:00 p.m. two 
days after the day of forecast delivery  

Input Data 

It was assumed that no real-time data from the wind plants was available to the forecast 
system.  The same assumption was made in the previous project.  This assumption has a 
large impact on the performance of the forecasts for the first few hours of the forecast 
period.  This is because the wind power production and the trends in the production 
typically have at least a moderate degree of persistence over time scales of a few hours.  
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Thus, knowledge of the wind speed and direction and the power production at times 
immediately preceding the forecast delivery time provides a considerable amount of 
information about the power production over the next few hours.  Forecasts that do not have 
access to this information will typically not perform even as well as a simple persistence 
forecast for the first few hours of the forecast period.   However, the effect of recent data 
from the wind plant on the performance of longer period forecasts (beyond about six to nine 
hours) is very minimal.  

The decision not to use real-time wind plant data in the forecasting process was based on 
three factors: (1) near real-time data was not available from all of the participating wind 
plants; (2) the focus of the task was on day-ahead forecasting for which real-time plant data 
does not play an important role; and (3) a desire to maintain consistency with the forecast 
evaluation done in the previous project, which did not use real-time data from the wind 
plant.  The bottom line is that the forecasts produced for the first few hours of the forecast 
period in this task were not as good as they could have been had they used recent data from 
the wind plant. 

Forecast Parameters 

The forecasted parameters consisted of the hourly total power production from each wind 
plant and an average hourly wind speed and direction for one or more anemometer site on 
each wind plant for each hour in the 48-hour forecast period.  In some cases, power 
production data were available for clusters of turbines within the wind plant.  In those cases, 
forecasts of the power production were made for each cluster for which data was available, 
and then the predictions for each cluster were aggregated to produce the power production 
prediction for the entire wind plant.  However, only the forecasts of the production of the 
entire wind plant were evaluated in this task.   

The wind speed and direction was forecasted for a site within the wind plant at which wind 
speed and direction measurements were available. In some cases, the wind speed and 
direction data were available from several meteorological towers within the wind plant.  If 
sufficient information was available to associate each tower with a cluster of turbines for 
which power production data were available, then wind speed and direction forecasts were 
made for each meteorological tower to support the power production predictions for each 
cluster.  In those cases, the wind speed and direction predictions for only one of the towers 
were used in the forecast evaluation process. In cases in which there were more than one 
meteorological tower but no information about the relationship of the towers to turbine 
clusters was available, a composite of wind speed and direction from all of the towers was 
constructed, and the wind speed and direction forecasts were made for the composite wind 
speed and direction data.  The composite was constructed from all of the available data for a 
particular hour.  Thus, if data from one or more towers were missing for a particular hour, 
the composite was constructed from the data received from the other towers. 
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Wind Plant Forecast Sites 

The number of wind plants for which forecasts were generated in this plant was determined 
by the number of California wind plants that were willing to permit the use of their data in 
the forecast production and evaluation process.  Five California wind plants agreed to 
provide power production and meteorological data for use in the generation and evaluation 
of power production and wind speed forecasts for their plants. The participating plants 
included: (1) the Mountain View plant, a 66.6-MW facility in the San Gorgonio Pass of 
Southern California; (2) the Oak Creek plant, a 34.5-MW plant in the Tehachapi Pass, 
which is adjacent to the Mojave Desert; (3) the PowerWorks wind plant with a rated 
capacity of 90 MW in the Altamont Pass and located just to the east of the San Francisco 
Bay Area; (4) the 15.18-MW SMUD wind plant located in the Montezuma Hills in Solano 
County; and (5) the 162-MW High Winds Energy Center, which is adjacent to the SMUD 
plant in Solano County.  Additional details about each wind plant are provided in the 
forecast performance section. 

Performance Metrics 

A variety of metrics can be used to assess the performance of forecasts of the wind power 
production and related meteorological variables such as wind speed, wind direction, and 
temperature.  The basic performance metrics used in this study are similar to those used in 
the previous Energy Commission-EPRI project (Energy Commission and EPRI, 2003).   
These included the mean error (ME), the mean absolute error (MAE), and the skill scores 
with respect to climatology and persistence. The definition of each of these metrics and 
some insight as to what they actually measure is provided in the following paragraphs.  

The mean error (ME) is defined as 

     ME = ( ( iF
i=1

i= N

∑ − iO )) /N    (Eqn 4-1) 

where Fi is the forecasted quantity for a particular hour i, and Oi is the corresponding 
observed (measured) quantity for the same hour.  The summation is over all N hours in the 
verification sample under consideration. Since positive errors (forecast too high) and 
negative errors (forecast too low) will offset each other in the summation, the ME represents 
the net error, which is often referred to as the bias. 

A parameter that is widely used and provides more information about the typical level of 
error in a forecast is the mean absolute error (MAE).   The definition of the MAE is 

     MAE = ( | iF
i=1

i= N

∑ − iO |) /N    (Eqn 4-2) 

where, as before, Fi is the forecasted quantity for a particular hour i,  and Oi is the 
corresponding observed (measured) quantity for the same hour.  The summation is over all 
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N hours in the verification sample under consideration.  Since the absolute value of the 
difference between the forecasted and observed quantity is used in the summation, errors of 
opposite sign do not offset each other, and the MAE represents the average magnitude of the 
forecast error,   For the power production forecasts, the MAE can be expressed in several 
ways.  One approach is to express the MAE in standard power units such as MW or kW.  
However, these will vary substantially from plant to  plant because of the variations in the 
size of the plant.  Hence, to facilitate comparison in forecast performance among wind 
plants, the MAE is typically expressed as a percentage of the plant’s installed capacity.  This 
is sometimes referred to as the Mean Absolute Percentage Error (MAPE).  Since the 
capacity factor (the ratio of actual production to the plant’s installed capacity) varies 
substantially among plants and often from season to season at a particular plant, the MAE is 
sometimes expressed as a percentage of the actual production for the period that is being 
used to evaluate the forecast performance. Since capacity factors are often in the 30% to 
40% range, the MAE as a percentage of production is typically about 2.5 to 3 times larger 
than the MAE as a percentage of capacity.  However, capacity factors are sometimes 
significantly higher or lower than the 30% to 40% range, and the ratio of MAE-capacity to 
MAE-production may in some cases be substantially larger or smaller than the typical value 
of three. 

Another metric that is widely used in forecast performance evaluations is the skill score.  In 
general, the skill score measures the percentage improvement in a forecast performance 
metric relative to a reference forecast. The concept can be applied to any performance 
metric and reference forecast combination.  In this investigation, the performance metric to 
be used in the skill score computation is the MAE, and the reference forecasts are 
persistence and climatology forecasts. This yields two difference skill scores.  The skill 
score relative to a persistence forecast (Sp) is defined as: 

    pS = 1− eWindMAE
persistenceMAE

    (Eqn 4-3)  

The skill score relative to a climatology forecast (Sc) is defined as: 

    cS = 1− eWindMAE
c lim ato log yMAE

    (Eqn 4-4) 

Persistence and climatology forecasts are often used as reference forecasts in skill score 
computations because they are simple forecasts that can be generated at lost cost, require 
very little knowledge, and represent basic forecast concepts – a forecast of no change 
(persistence) from the value at the time the forecast is made and a forecast of the long-term 
average of the quantity (climatology).  The details of how the persistence and climatology 
forecasts were produced in this project are presented in the next section, which describes all 
of the forecast methods. 
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Forecast Methods 

Forecasts were generated for each participating wind plant from an ensemble of forecast 
methods.  The ensemble approached served two purposes.  First, it provided a way to 
evaluate the performance of a number of different forecast methods over an extended period 
for several wind plants.  Second, it provided an opportunity to evaluate the effect of 
constructing a composite forecast from a suite of individual forecast methods.  This has 
proven to be a useful forecast tool in a number of other meteorological applications.  The 
use of the ensemble forecast method was actually beyond the original scope of the project.  
It was originally envisioned that modifications would be made to the forecast system used 
by AWST in the previous Energy Commission-EPRI project (Energy Commission and 
EPRI, 2003) and that a single forecast made by a modified forecast system would be 
produced and evaluated in this task.  However, it was felt that with a  modest additional 
effort  and no increase in the project budget, a number of different forecast methods could 
be evaluated, and an initial assessment of the ensemble approach could be made.   

The ensemble of methods employed in this project included three different physics-based 
models, four different MOS approaches, and one explicit plant output model formulation.  
This produced a potential total of 12 different forecasts for each forecast cycle for each 
participating wind plant.  However, not all methods were available for the entire forecast 
evaluation period.  This was primarily due to limitation in obtaining or generating numerical 
forecast simulation data from the different physics-based models. Consequently, the 
comparison between some of the methods and construction of the ensemble forecasts had to 
be limited to a subsample of the one-year evaluation period. 

Physics-Based Models 

Three physics-based atmospheric models were used to produce the wind speed and energy 
forecasts for each of the wind plants.  These models were the Mesoscale Atmospheric 
Simulation System (MASS), the Weather Research and Forecasting (WRF) model, and the 
Couple Ocean Atmosphere Mesoscale Prediction System (COAMPS) model.    A brief 
description of each modeling system and how it was employed to generate the forecasts for 
this project is presented in the following subsections. 

Mesoscale Atmospheric Simulation System (MASS) 

The MASS model was developed in the 1980s as part of NASA’s research activities in the 
development of new remote sensing systems (Kaplan et al, 1982).  Version 5 of the MASS 
model was used to generate the eWind forecast simulations for the previous Energy 
Commission-EPRI forecast evaluation project (Energy Commission and EPRI, 2003). 
Version 6 was employed in this project.  

The MASS-6 forecast simulations were generated on a nested grid system. An outer matrix 
of 100 by 80 grid cells with a cell size of 20 km was used to simulate the larger scale flow 
over the southwestern United States and the adjacent Pacific Ocean and Mexico.  This is 
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referred to as the “A” grid.  Figure 4-49 shows the geographical domain covered by the A 
grid. Two higher-resolution grids were nested inside of the A grid.  Both high-resolution 
grids employed an 80 by 80 matrix of grid cells and a grid cell size of 5 km. 

 

Figure 4-49 The geographical domain covered by the100 X 80 matrix of 20-km grid 
cells used to produce the parent coarse grid MASS-6 simulations for the project. 

One of the nested grids was centered over the Bay Area of Northern California and was used 
to generate forecast data for the PowerWorks, SMUD and High Winds wind plants.  The 
other high resolution grid was centered over Southern California and was used to produce 
forecast data for the Oak Creek and Mountain View wind plants.  Figures 4-50 and 4-51 
present the two grids. 

Coupled Ocean/Atmosphere Mesoscale Prediction System (COAMPS) 

The Coupled Ocean/Atmosphere Mesoscale Prediction System (COAMPS) was developed 
by the Marine Meteorology Division (MMD) of the Naval Research Laboratory (NRL)  
(Hodur, 1997). The atmospheric components of COAMPS are used operationally by the 
U.S. Navy for short-term numerical weather prediction for various regions around the 
world. Additional information about the COAMPS modeling system was presented earlier 
in this report and is also available at http://www.nrlmry.navy.mil/coamps-web/web/home.   

The COAMPS simulations used to produce the power production and wind speed forecasts 
in this project were generated at the Lawrence Livermore National Laboratory (LLNL). 
These simulations were run twice per day using a 12-km and a nested 4-km grid.  The areas 
covered by these grids are shown in Figure 4-52.  The 4- km grid did not cover the area 
required to forecast for all five wind plants.  Therefore, only the output from the 12-km grid 
was used to produce the forecasts for the evaluation phase of this task. 
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Figure 4-50 The geographical domain covered by the 80 X 80 matrix of  5-km grid cells 
used to produce the high resolution MASS-6 simulations over Northern California. 

 
Figure 4-51 The geographical domain covered by the 80 X 80 matrix of  5-km grid cells 
used to produce the high resolution MASS-6 simulations over Southern California. 
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Figure 4-52 The geographical domain covered by COAMPS 12-km (left) and 4-km 
(right) grids used to produce forecast simulation for this project. 

Weather Research and Forecasting Model (WRF)  

The Weather Research and Forecasting (WRF) Model is a next-generation meso-scale 
numerical weather prediction system designed to serve both operational forecasting and 
atmospheric research needs. It features multiple dynamical cores, a three-dimensional 
variational (3DVAR) data assimilation system, and a software architecture allowing for 
computational parallelism and system extensibility. WRF is suitable for a broad spectrum of 
applications across scales ranging from meters to thousands of kilometers.  Additional 
information about the WRF model was presented earlier in this report and is also available 
on the WRF website, which can be found at http://www.wrf-model.org/.  This site provides 
information on the WRF effort and its organization, references to projects and forecasting 
involving WRF, and links to the WRF users' page, real-time applications, and WRF-related 
events. 

Real-time simulations for the California region were generated with Version  2.0.3.1 of the 
WRF model for this project.  Unfortunately, the version of the WRF software available at 
the time the forecast systems were setup did not provide for one-way nested simulations 
such as those used in the MASS and COAMPS configurations.  Therefore, the WRF 
simulations were restricted to a single-grid domain.  The domain used for the WRF forecast 
simulations is depicted in Figure 3-5.  The WRF grid was a 100 X 100 matrix of grid cells 
overlaid on this domain.  The grid-cell size was 10 km, which yields a physical domain size 
of 1000 km by 1000 km.  The model grid also included 25 vertical layers.  
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A 40-km grid point dataset from NCEP’s Eta model  (the Eta 212 dataset) was used for the 
specification of the initialization and lateral boundary conditions for the WRF simulations.  
This dataset is actually generated from a version of NCEP’s Eta model that employs a 22 
km grid for the model calculation, but NCEP interpolates the model to the 40-km grid for 
dissemination. 

 

 

Figure 4-53 The geographical domain covered by the 100 X 100 matrix of  10-km grid 
cells used to produce the WRF simulations for the project.  

Model Output Statistics Methods 

The Model Output Statistics (MOS) component of a day-ahead wind power production 
forecast system serves to convert the grid-based predictions of a physics-based atmospheric 
model to point-specific (for example, at a wind plant) forecasts of the variables of interest 
for a particular application.  In the process of doing this, a well-structured MOS procedure 
will correct systematic physics-based model errors that result from the omission of 
atmospheric features that are too small to be resolved on the physics-based model grid and 
deficiencies in the representation of physical processes within the physics-based model.  It is 
possible to use a variety of statistical techniques and configurations of those techniques to 
serve as the MOS component of a wind power production forecast system.  Four different 
approaches were used in this project.  These are described in the following subsections. 
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Screening Multiple Linear Regression (SMLR) 

In the previous project (Energy Commission and EPRI, 2003), AWST used a Screening 
Multiple Linear Regression (SMLR) procedure for the MOS component of the forecast 
system.  In this approach, a large set of physics-based model variables is selected as a pool 
of candidate predictors.  The SMLR algorithm then uses a training sample to select the 
candidate predictor with the most predictive power.   This is defined as the candidate 
predictor with the highest R2 value when evaluated over the entire training sample.   The 
candidate predictor that is selected through this process becomes the first predictor of the 
ultimate statistical prediction equation.  The selected predictor is then removed from the 
pool of candidate predictors, and the process is repeated.  A second predictor is then 
selected based on the criteria of the maximum increase in R2.  The process is repeated until 
it yields an increase in R2 that is below a specified threshold.  At that point it is assumed that 
no additional significant predictive information is available in the training sample and the 
process is terminated.  The selected predictors and associated coefficients form a linear 
regression equation that serves as a MOS prediction equation. 

Two-Stage Screening Multiple Linear Regression (SMLR2) 

A second method employed in this project is a two-stage SMLR, which is assigned the label 
SMLR2.   In the first stage, only physics-based model variables are used to create one 
prediction equation for all forecast hours.  The first stage results in a wind speed forecast for 
all forecast hours. The second stage uses the wind speed prediction from Stage 1 and 
additional predictors such as the recent forecast errors to generate a separate forecast 
equation for each forecast look-ahead hour.  Ultimately, the wind speed forecast from Stage 
2 is converted to a power production forecast using a plant output model. 

SMLR2 with Direct Power Production Prediction (SMLR2-DP) 

A variant of the SMLR2 scheme was also employed as a separate forecast method.  In this 
scheme (designated as SMLR-DP) the power production is directly predicted from the 
physics-based model variables instead first predicting the wind speed at the wind plant’s 
anemometer site(s) and then using a plant output model to forecast the power production as 
in the SMLR and SMLR2 schemes.  The reasoning is that some model variables, such as the 
turbulent kinetic energy, may provide useful information about variations in power 
production.   

Stratified SMLR2 (SMLR2-ST) 

A fourth method was a stratified SMLR2 scheme.  The approach is conceptually similar to 
the SMLR2 scheme except that separate prediction equations are derived for subsets of the 
training sample.  The content of the subsets are determined through the use of one or more 
stratification parameters.  The selection of stratification parameters in this application of the 
scheme was subjective although in principle some type of cluster analysis could be used to 
define the subsets in an optimal manner.   In this project, the physics-based model wind 
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speed for the wind plant site was selected as the stratification parameter.  This parameter 
was used to divide the training sample into four subsets, each having approximately the 
same sample size.  The SMLR2 procedure was then independently applied to each subset.  

Plant Output Models 

The plant output model is the link between the meteorological conditions at a wind plant 
and the plant’s power production.  There are a large number of ways in which a plant output 
model can be formulated.  In fact, it is possible to totally avoid the use of an explicit plant 
output model by training the MOS procedure discussed above to directly forecast the power 
production from the output data of the physics-based model.  This is the approach used by 
the SMLR2-DP method.  The results obtained in the screening phase of this task indicate 
that this approach generally did not perform as well as the technique of first forecasting the 
wind speed at one or more anemometer locations within the wind plant and then using a 
plant output model to forecast the power production.  This is generally consistent with 
AWST’s overall experience, which indicates that it is usually better to use the MOS 
procedure to make a prediction of the relevant meteorological parameters at the wind plant 
site and then to use those predicted quantities as input into an explicit plant output model to 
produce the power production predictions.  

The plant output model can be formulated as a statistical or a physical numerical model.  A 
discussion of the merits of each approach was presented earlier in this report.  The statistical 
approach was employed for the plant output model used for all forecast methods that 
utilized an explicit plant output model in the one-year forecast evaluation experiment.  In 
the statistical approach power production and meteorological data from the plant are used to 
construct an empirical relationship between the plant-scale power production and the 
meteorological conditions.  The simplest model of this type is commonly known as a “plant-
scale power curve.”   This is simply an empirical equation derived from the plant’s power 
production data and the wind speed data from one or more of the plant’s anemometers.  This 
type of curve is used in the forecast process to calculate the forecasted power production 
from meteorological predictions of the wind speed at the plant’s anemometer locations.  
This is the approach that was used in the previous Energy Commission-EPRI forecasting 
project.  The approach was extended in this project to include the statistical modeling of the 
deviations from the plant-scale power curve based on the wind direction and the time of day.  

Reference Forecasts 

Two types of reference forecasts were employed in this project: persistence and climatology.  
These reference forecasts represent simple forecast techniques that are based on simple 
forecast concepts such as “no change” or “long-term averages”.  These forecasts are used to 
calculate  the skill scores and provide a reference point for the value of the more advanced 
and complex forecast methods. 
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Persistence Forecast 

The persistence forecast is based on the concept that there will be no change in the 
forecasted quantity throughout the forecast period.  In this project the persistence forecast 
was assumed to be value of the forecasted quantity for the hour ending at the forecast 
delivery time.  Thus, the persistence power production forecasts for the morning forecast 
cycle (delivered at 8 AM) used the reported power production for the 7:00 a.m. to 8:00 a.m. 
hour as the forecast for all hours in the 48-hour forecast period.  Similarly, the persistence 
forecast for the evening forecast cycle (delivered at 8:00 p.m.) employs the reported 
production for the 7:00 p.m. to 8:00 p.m. hour as the forecast for each of the 48 hours in the 
forecast period. 

Climatology Forecast 

The climatology forecast is based on the concept that the forecasted quantity will revert its 
long-term average value for the entire forecast period.  The long-term average can be 
defined in many ways.  For the purposes of this project, the long-term average consisted of a 
separate estimate of the long-term average for each hour of the day for each month of the 
year from the available data.  Ideally, climatological averages should be constructed from 
many years of data, but this is not typically available for most wind plants.  Multi-year 
monthly diurnal climatological averages of the power production and wind speed were 
available for the Mountain View and PowerWorks wind plants, and these were the basis for 
the climatological forecasts for these wind plants. Unfortunately, multi-year climatologies 
were not available for the Oak Creek, SMUD, and High Winds plants.  For these plants, a 
pseudo-climatology was constructed by computing the monthly average value of the power 
production and wind speed for each hour of the day from the available measured data for 
each month.  This pseudo-climatology forecast had a big advantage over a typical 
climatology forecast since the average was from the actual month for which the forecasts 
were made.  The forecast errors associated with this climatological forecast represented only 
the deviations from the average diurnal values for the month.  This is a substantial 
advantage, and one would expect that the skill score relative to this type of climatological 
forecast would be substantially lower than that relative to a true climatological forecast.  

Ensemble Forecasts 

Forecast ensemble models are statistical models that produce a forecast by compositing 
forecasts from a number of different forecast techniques (Sivillo, et al, 1997).  The 
availability of forecast based on three physics-based models and four different MOS 
procedures provides an opportunity to at least obtain an initial estimate of the effect of 
employing an ensemble forecasting approach to the wind power production forecast 
application.  To address this objective, an ensemble-mean forecast was generated by 
constructing an average of all of the 12 individual forecasts available for the final four 
months of the forecast evaluation period. 
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Forecast Performance Evaluation Results by Wind Project 

This section presents the performance results for each of the five wind plants for the one-
year forecast evaluation period extending from July 2004 to June 2005.  The forecast 
performance results are presented by wind plant beginning with the southernmost plant, 
Mountain View in San Gorgonio Pass and proceeding northward to the High Winds and 
SMUD wind plants in Solano County.  

As noted previously, 48-hour forecasts of the hourly power production and wind speed were 
generated on a twice-daily cycle with scheduled delivery times of 8:00 a.m. and 8:00 p.m. 
PST each day. To construct a more detailed evaluation of the forecast performance, a 
comprehensive analysis was done only for the forecasts generated during the morning 
forecast cycle (the forecasts scheduled for delivery at 8:00 a.m. each day).  A review of the 
performance statistics indicates that the differences in forecast performance between the 
morning and afternoon cycles were not significant and that all of the significant conclusions 
from the analysis of the performance of the morning forecast cycle would apply to the 
combined pool of the afternoon and morning forecast cycles.  Furthermore, it is the morning 
forecast cycle that is typically most important to forecast users since the required scheduling 
of output for the next day typically occurs early in the day and utilizes a forecast for the next 
day that is available early on the day that the schedules are to be submitted.  As a result, 
only the results from the morning forecast cycle are presented in this report. 

There were a total of 17,520 forecast hours in the forecast evaluation pool for the morning 
forecast cycle, which represents the product of the 365 days in the forecast period and 48 
forecast hours per forecast cycle.  Unfortunately, the actual number of hours in the 
verification pool varied significantly by wind plant and type of forecast and in many cases 
was substantially less than the maximum possible number of forecast hours.  This reduction 
in the size of the verification pool was due to several factors.  The most prominent factor 
was unavailable (or missing) observational data from the wind plants.  The amount of 
unavailable data varied substantially among the participating wind plants and is documented 
in the sections that present the forecast performance results for each plant.  

Another factor that limited the size of the verification pool in some cases was the 
availability of output data from the physics-based models.  The MASS-6 forecast 
simulations, which were generated by AWST, were available for the full 48-hour forecast 
period for every day of the forecast evaluation period.  The WRF model forecast 
simulations, which were also produced by AWST, were available only for the four-month 
period from March to June 2005.  The COAMPS model forecast simulations, which were 
generated by Lawrence Livermore National Laboratory, were available for all 12 months of 
the forecast evaluation period, but the simulations did not extend far enough in time to cover 
the full 48-hour forecast period.  In fact, the COAMPS data covered only the first 32 hours 
of the forecast period.  Thus, all of the COAMPS forecast performance results presented in 
this report are for a 32-hour forecast period, whereas those for the MASS-6 and WRF 
models are for a 48-hour period. 
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Mountain View 1 and 2 Wind Project, San Gorgonio Pass 

The Mountain View wind plant is located on the eastern side of the San Gorgonio Pass of 
Southern California.  SeaWest, Inc. installed it in 2001.  The project consists of 111 turbines 
manufactured by Mitsubishi Heavy Industries.  Each turbine is rated at 600 kW, which 
yields a rated capacity of 66.6 MW for the wind plant. The project is spatially divided into 
two separate groups of turbines, one group with a rated capacity of 44.4 MW (Mountain 
View I) and a second group with a rated capacity of 22.2 MW (Mountain View II). The 
turbines are mounted on 50-meter and 60-meter tubular steel towers.   

The power production and meteorological data for this wind plant were obtained through the 
CA ISO PIRP data communication system.  The power production data consisted of the 
energy output of the Mountain View I and Mountain View II turbine clusters at 10-minute 
intervals.  Data were available from three meteorological towers.  The Catellus tower is the 
westernmost of the three towers and since the prevailing direction of the strongest winds at 
this site is from the west, this tower provides the best representation of the winds entering 
the domain of the wind plant.  Wind speed and direction forecasts were made for all three 
meteorological towers, but the forecast performance analysis were done only for the 
Catellus tower. 

Figures 4-54 and 4-55 show the number of hours available to the forecast verification pool 
for each month for the power production and  Catellus wind speed forecasts.  The available 
hours are the hours for which both forecast and observational data are available, which 
enables forecast errors to be calculated.  The forecast data used to compile this chart were 
from the MASS-6 forecasts, which were available for every possible forecast hour for the 
entire year. Therefore, the unavailable hours shown in these two charts are solely 
attributable to missing observational data. There were a total of 17,520 possible forecast 
hours (365 days times 48 forecast hours for each day’s forecast).  A quick glance at these 
two charts indicates that there was a substantial amount of unavailable observational data 
during the one-year forecast evaluation period.  In fact, power production data were not 
available for 26.8% of the hours, and the Catellus anemometer data were not available for 
17% of the hours  during the one-year period.  Therefore, the MASS-6  forecast verification 
statistics for the Mountain View wind plant shown are based on 12,820 hours of data for the 
power production forecasts and 14,544 hours for the wind speed forecasts.  The size of the 
verification pool was smaller for the forecasts based on the COAMPS and WRF models 
since output from those models was not available for all of the possible forecast hours. 

Although power production data were not available for 26.8% of the hours during the one-
year period, the distribution of missing data hours was quite uneven. August 2004 (62% 
unavailable) and November 2004 (46.3% unavailable) had particularly large fractions of 
missing power production data.  On the other hand, July 2004, February 2005, and June 
2005 had missing data for less than 10% of the forecast hours.   

There was also considerable variability in the availability of the wind speed data.  The worst 
month was August 2004, when data was unavailable for 73.9% of the forecast hours. 
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Figure 4-54  Number of hours for which sufficient data were available (green) and 
unavailable (red) to compute forecast performance statistics for the Mountain View 
power production forecasts. 

 
Figure 4-55  Number of hours for which sufficient data were available (green) and 
unavailable (red) to compute forecast performance statistics for the wind speed 
forecasts for the Catellus Meteorological Tower at the Mountain View wind plant. 
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Overall Forecast Performance 

Table 4-6 presents the forecast performance statistics by month for the best performing 
MASS-6 forecast MOS method, which was the SMLR2-ST method for the Mountain View 
plant.   The MAE of the power production forecasts for all verifiable forecast hours during 
the one-year period (12,728 hours) was 13.0% of the installed capacity.  This is 
approximately 3.6 percentage points lower than the annual MAE achieved by the eWind 
forecast system for the one-year period from October 2001 to September 2002 in the 
previous Energy Commission-EPRI project (See Table 5-2 in Energy Commission and 
EPRI, 2003 for statistics comparable to those in Table 4-6).  This represents an MAE 
decrease of about 21.7% from the previous project.   

A substantial portion of this decrease is most likely attributable to the improvements made 
to the forecast system, but some of it may be attributable to differences in wind regime 
characteristics between the 2001-02 evaluation period and the 2004-05 period.  The monthly 
MAE values for the 2004-05 period ranged from 3.6% for December to a high of 17.4% for 
March.  

The annual skill score relative to persistence was 40.6%.  This was somewhat higher than 
the persistence-based skill score of 37.5% during the 2001 to 2002 period.  The monthly 
skill scores ranged from -1.0% for December 2004 to a high of 56.1% for May 2005.  The 
annual skill score with respect to climatology was 47.9%, which was substantially higher 
than the climatology-based skill score of 36.4% achieved in the previous project. 

The annual MAE of the wind speed forecasts was 2.65 m/s, which is 27.5% of the mean 
annual wind speed.  The monthly MAE values ranged from a low of 2.21 m/s for February 
2005 to a high of 3.15 m/s for September 2004.  The annual skill score with respect to 
persistence for the wind speed forecasts was 40.1%.  The lowest monthly skill score vs. 
persistence was the 14.1% for December 2004, while the highest was 55.3% for April 2005.  
The annual skill score with respect to climatology was 32.0% and ranged from 14.1% for 
December 2004 to 48.6% for April 2005.   
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Table 4-6 Monthly MAE and skill scores for the overall best performing power 
production and wind speed forecast method (MASS-6 SMLR2-ST) for the Mountain 
View wind plant 

% MAE(1) %MAE (2) Skill-P Skill-C MAE (m/s)% MAE (3) Skill-P Skill-C
Jul-04 14.9% 27.4% 50.0% 28.6% 2.26 19.1% 50.2% 28.5%
Aug-04 16.0% 36.4% 36.5% 22.6% 2.52 21.0% 45.5% 36.4%
Sep-04 16.9% 54.9% 25.4% 50.8% 3.15 35.9% 29.1% 29.3%
Oct-04 14.4% 61.9% 40.1% 50.6% 3.07 38.8% 31.1% 23.0%
Nov-04 11.4% 78.1% 38.8% 52.5% 2.80 40.6% 37.0% 22.1%
Dec-04 3.6% 159.6% -1.0% 78.5% 2.67 48.1% 14.2% 14.1%
Jan-05 6.2% 85.8% 23.6% 69.0% 2.51 44.8% 34.4% 26.9%
Feb-05 10.1% 62.5% 29.8% 64.6% 2.21 36.1% 31.6% 42.9%
Mar-05 17.4% 40.6% 30.7% 47.3% 3.09 30.6% 39.1% 41.4%
Apr-05 17.1% 29.2% 52.9% 46.7% 2.80 22.8% 55.3% 48.6%
May-05 13.6% 20.5% 56.1% 40.9% 2.49 18.4% 52.2% 24.9%
Jun-05 15.7% 23.2% 27.6% 18.1% 2.27 14.9% 48.4% 32.9%
Annual 13.0% 36.5% 40.6% 47.9% 2.65 27.5% 40.1% 32.0%

(1)  MAE as % of rated capacity  (2) MAE as a % of production;  (3) MAE as % of average wind speed

Month
Power Production Forecast Wind Speed Forecast - Catellus

 
 

Figure 4-56 shows the error distribution for the one year of power production forecasts. 
Separate error distributions for the first and second 24 hours are shown on this chart. The 
error distributions for the two periods are quite similar.  Both are characterized by a strong 
central peak in the -5% to +5% range with a rapid decrease in the frequency on either side of 
this peak and a long tail of very low frequencies for medium and large negative and positive 
errors.  In general, the positive and negative sides of the distribution are fairly symmetric 
with positive   errors of a particular magnitude occurring about as frequently as negative 
errors of the same magnitude.  There is a substantial asymmetry in the +5% to -5% range of 
errors.  The frequency of errors in the -5% to 0% bin is much greater than that in the 0 to 
+5% bin.  This is because errors of exactly zero are included in the -5% to 0% bin.  There 
are a large number of hours during the winter months when the forecasted and observed 
wind speeds are both below the turbine start-up threshold and the forecasted and observed 
power production are both zero.  This results in many hours of exactly zero error and 
accounts for this asymmetry. 

Figure 4-57 shows the cumulative error distribution for the power production forecasts. The 
vertical axis represents the percentage of forecasts where the absolute error is less than or 
equal to the value on the horizontal axis.  This chart can be used to estimate an overall 
confidence level for the forecasts.  For example, 90% of the forecasts have an absolute error 
that is less than 40% of capacity.  Once again, separate error distributions are shown for the 
first and second 24 hours of the forecast period, and the distributions for these two periods 
are very similar.  

Previous studies have indicated that there is a strong relationship between the forecasted 
level of power production and the magnitude of the forecasted error.  This is predominantly 
a result of the shape of the turbine power curve.  The sensitivity of power production error 
to the error in the wind speed forecasts is greatest in the middle portion of the power curve 
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and least at the top and bottom of the curve.  As a result, one would expect that even if the 
wind speed forecast error were the same for all wind speeds, the power production forecast 
error would peak for wind speeds and power production values that are in the middle of the 
power curve.  The chart in Figure 4-58 indicates that this is indeed the case for the Mountain 
View plant.  This chart presents the MAE for 21 bins of forecasted production from 0% to 
100%.  Each represents a 5% interval of forecasted production. The MAE is near 25% of 
installed capacity when the forecasted production is in the 35% to 65% range but  falls to 
near or under 10% when the forecasted production is near zero or the plant capacity.  

Figure 4-59 shows that the magnitude of the wind speed forecast error has much less 
dependence on the forecasted wind speed than the power production error has on forecasted 
power production.  This chart shows the MAE for 20 bins of width one m/s for forecasted 
wind speeds ranging from zero to 20 m/s.  The bin labeled “0” represents wind speed 
forecasts of exactly zero.  All other bins are labeled by the wind speed value at the upper 
end of the bin,  The magnitude of the error is generally lower for forecasts of low wind 
speeds.  The MAE is under 2 m/s for wind speeds under 3 m/s.  The MAE values rise as the 
forecasted wind speeds increase and are near 3 m/s for forecasted wind speeds in the 6 to 13 
m/s range.  The MAE is generally lower above the 13 m/s mark.  There are some rather 
large MAE values in the 18 m/s and 19 m/s bins, but the sample size for these bins is very 
small.  The fact that the magnitude of the wind speed errors peak in the 6 to 13 m/s range 
greatly exacerbates the power production forecast errors because this is the portion of the 
power curve that has the greatest sensitivity to wind speed forecast error. 
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Power Production Forecast Error Distribution
Mountain View : July  2004 - June 2005
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Figure 4-56  Error frequency distribution for hours 1 to 24 (red) and 25 to 48 (blue) of 
the forecasts for the Mountain View wind plant.  The data sample includes a total of 
12,820 forecast hours during the July 2004 to June 2005 period  and are included in 
the data sample.  

Cumulative Absolute Error Distribution
Mountain View: July 2004 - June 2005

0%
10%
20%

30%
40%
50%
60%
70%

80%
90%

100%

2% 6% 10
%

14
%

18
%

22
%

26
%

30
%

34
%

38
%

42
%

46
%

50
%

54
%

58
%

62
%

68
%

10
0%

Absolute Error (% of Capacity)

Hours 1-24 Hours 25-48

 

Figure 4-57  Cumulative absolute error frequency distribution (% of hours with an 
absolute error less than or equal to the value on the horizontal axis) for hours 1 
through 48 of the forecasts for the Mountain View wind plant.  The data sample 
includes a total of 12,820 forecast hours are included in the data sample. 
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MAE by Forecasted Power Production
Mountain View: July 2004 - June 2005
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Figure 4-58  Mean Absolute Error (MAE) of the Mountain View power production 
forecasts vs. the forecasted power production.  The MAE is shown for 21 bins of 
forecasted production. Each has a width of 5% of installed capacity and is labeled by 
the value at the upper end of the bin. 
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Figure 4-59  Mean Absolute Error (MAE) of the Catellus wind speed forecasts vs. the 
forecasted wind speed.  The MAE is shown for 21 bins of forecasted wind speed. 
Each has a width of 1 m/s and is labeled by the value at the upper end of the bin. 
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Forecast Performance vs. Time Horizon 

An important consideration for using wind power production forecasts is the rate of 
degradation of the forecast performance as the forecast time horizon (look-ahead period) 
increases.  If the performance of the forecasts decreases rapidly with increasing look-ahead 
period, then it is useful and perhaps critical to have frequent forecast updates.  On the other 
hand, if the degradation is slow, then the need for frequent updates is reduced.   

This issue was addressed in the analysis of the forecast performance by constructing an 
MAE vs. forecast time horizon chart.  Figures 4-60 and 4-61 show the charts for the 
Mountain View power production and the Catellus wind speed forecasts.  The charts show 
the MAE for each look-ahead hour for the MASS-6 SMLR2-ST forecasts (labeled eWind) 
and the persistence and climatology reference forecasts.  

The MAE of the power production forecasts rises in a fairly linear fashion from 11% to 12% 
during the first few hours of the forecast period to 14% to 15% by the end of the forecast 
period.  The MAE of the persistence forecasts rises rapidly from about 5% for the first hour 
to near 25% by the 12th hour of the forecast period.  The MAE of the persistence forecasts 
then actually decreases to a minimum of about 20% near the 24-hour mark.  This minimum 
is a reflection of the fact that there is a pronounced fairly regular diurnal cycle in the 
Mountain View power production, especially during the warm season.  The persistence 
forecasts outperform the eWind forecasts for the first couple of hours of the forecast period.  
The eWind forecasts begin to outperform the persistence forecasts at forecast hour three and 
outperform persistence by a wide margin after that time.  As noted previously, the fact that 
persistence outperforms the eWind forecasts for the first couple of hours is the result of not 
using the most recent data from the wind plant and its vicinity in the forecast process.   The 
MAE of the climatology forecasts exhibits a significant diurnal pattern ranging from a high 
near 27% at forecast hours 6 and 30 (3:00 p.m. PST) to a minimum of about 22% near 
forecast hours 12 and 36 (9:00 p.m. PST).     

A linear fit to the eWind MAEs indicates that the average rate of error growth over the 48-
hour period is 0.06% of installed capacity per hour or about 1.4% of installed capacity per 
day.  This is a growth rate of 11.1% per day relative the overall MAE of 13.0% for the 48-hr 
period.  

The MAE of the Catellus wind speed forecasts increases from near 2.6 m/s during the first 
12 hours of the forecast period to about 3.0 m/s at the end of the 48-hour period.  The MAE 
of the persistence forecasts rises rapidly from about 1.5 m/s for the first hour to more than 
four m/s by forecast hour 12.  It decreases slightly in the few hours after the 12-hour mark 
but then slowly increases for the remainder of the forecast period, reaching 5 to 6 m/s during 
the last 12 hours of the forecast period.  It is interesting to note that there is not a well-
defined MAE minimum near the 24-hour mark as there is in the persistence MAE pattern 
for the power production forecasts. The MAE of the climatology forecasts remains near 4 
m/s throughout the forecast period.  A linear least squares fit of the eWind hourly MAE data 
indicates that the average rate of increase in MAE is 0.0074 m/s per hour or about 0.18 m/s 
per day. 
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Power Production MAE by Forecast Time Horizon 
Mountain View: July 2004 - June 2005
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Figure 4-60  MAEs of power production forecasts vs. forecast time horizon for 12 
months of eWind (red line with diamond markers), persistence (green line with square 
markers), and climatology (blue line with triangle markers)  forecasts for the Mountain 
View wind plant. 
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Figure 4-61  MAEs of power production forecasts vs.  by forecast time horizon for 12 
months of eWind (red line with diamond markers), persistence (green line with square 
markers) and climatology (blue line with triangle markers) wind speed forecasts for 
the Mountain View wind plant. 
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This is a growth rate of 6.7% per day relative to the overall MAE for the entire 48-hr period 
of 2.65 m/s.  This is little bit more than half of the percentage growth rate in power 
production forecast error.  The lower percentage rate for the wind speed forecast error is 
probably a reflection of the fact that wind speed forecast errors are magnified when the wind 
speeds are in the steeply sloped portion of the power curve. 

Physics-Based Model Comparison 

The generation of forecasts from three different physics-based models in this project 
provided an opportunity to determine the sensitivity of the forecast performance to the 
choice of physics-based model and also to assess the relative performance of the three 
different models. The performance comparison analyzed the forecast error statistics for 
forecasts generated using the same MOS method from all three models.  The selected 
method was the SMLR2-ST scheme.   

Table 4-7 presents the performance statistics for the SMLR2-ST forecasts for all three 
models.  The comparison of the monthly forecast performance statistics is made more 
difficult by the fact that the forecasts from the three models were not generated for the entire 
one-year forecast period and did not have the same forecast length.  As noted previously, the 
MASS-6 forecasts were produced for all 12 months of the evaluation period and for all 48 
hours.  The COAMPS forecasts were also produced for all 12 months but these only 
extended to 32 hours beyond the forecast delivery time. The WRF forecasts were only 
available for 4 of the 12 months but did extend throughout the entire 48-hour forecast 
period. 

Table 4-7  Monthly MAE as a percentage of rated capacity for the 1- to 48-hour 
Mountain View power production and wind speed forecasts produced from the output 
of the three physics-based models used in this project. 

MASS 6 COAMPS WRF MASS 6 COAMPS WRF
Jul-04 14.9% 19.7% 2.26 2.96
Aug-04 16.0% 16.8% 2.52 2.53
Sep-04 16.9% 18.0% 3.15 3.26
Oct-04 14.4% 19.3% 3.07 3.94
Nov-04 11.4% 12.2% 2.80 3.19
Dec-04 3.6% 4.0% 2.67 2.56
Jan-05 6.2% 4.9% 2.51 2.23
Feb-05 10.1% 12.7% 2.21 2.59
Mar-05 17.4% 22.4% 22.7% 3.09 3.45 3.86
Apr-05 17.1% 17.7% 16.5% 2.80 3.11 2.82
May-05 13.6% 17.0% 16.3% 2.49 2.69 2.61
Jun-05 15.7% 16.8% 18.1% 2.27 2.45 2.62
Annual 13.0% 15.0% 18.4% 2.65 2.92 2.98

Mar - Jun 16.0% 18.5% 18.4% 2.66 2.92 2.98

Month Power Production Forecast MAE Wind Speed Forecast MAE
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Since the COAMPS statistics do not include the last 16 hours of the forecast period, when 
errors are expected to be slightly higher, the calculated COAMPS errors would be expected 
to be lower than those for the other two models if all models performed similarly. 

The performance statistics indicate that the forecasts based upon the MASS-6 model 
significantly outperformed the other two models.  Over the entire 12-month period, the 
MAE of the MASS-6 power production forecasts was 2 percentage points (13.3%) lower 
than the forecasts from the COAMPS output data.  In addition the MASS-6 forecasts had a 
lower MAE in 11 of the 12 months.  Similarly, the MAE of the MASS-6 wind speed 
forecasts was 0.27 m/s (9.2%) lower than the COAMPS forecasts, and the MAE was lower 
in 10 of the 12 months.   

A comparison with the WRF-based forecasts was, of course, only possible for the four 
months of March through June 2005.  The MAE of the MASS-6 power production forecasts 
was 2.4 percentage points lower for those four months (13.0%).  In addition, the MASS-6 
forecasts yielded a lower MAE during three of the four months.   The exception was April 
when the WRF-based forecasts yielded a lower MAE by 0.6 % of capacity.   

The relative performance was similar for the wind speed forecasts. The MAE of the 
forecasts based on the MASS-6 output was 0.32 m/s (10.7%) lower.  The MASS 6-based 
forecasts yielded a lower MAE during all four months, although the difference for April 
2002 was only 0.02 m/s.    

Interestingly, the difference in the MAE of the raw wind speed forecasts was even greater.  
The raw forecasts are based on the wind speeds that are directly interpolated from the 
physics-based model’s computational grid.  The MAE of the raw MASS-6 wind speed 
forecasts for the Catellus anemometer site for the entire four-month comparison period was 
3.16 m/s while the MAE of the raw WRF forecasts for the same period was 3.60 m/s.  This 
represents a 12.2% lower MAE for the raw forecasts from the MASS-6 simulations.  Thus, 
the MOS procedure improved the WRF-based forecasts more than it improved the MASS-6 
forecasts. 

The performance of the forecasts based on the COAMPS and WRF models was much more 
similar.  For the four months for which a comparison was possible, the MAE of the 
COAMPS and WRF forecasts was essentially the same.  The WRF-based forecasts had an 
MAE of 18.4% while the COAMPS-based forecasts recorded a slightly higher MAE of 
18.5%.  On a monthly basis, each model yielded a lower MAE during two of the months.    
The MAE of the wind speed forecasts was also quite similar, with the COAMPS model 
having a slightly lower MAE of 2.92 m/s compared to 2.98 m/s for the WRF-based 
forecasts.   

The performance statistics clearly indicate that the forecasts based on the MASS-6 model 
had a distinct advantage for the Mountain View site while the forecasts based on the WRF 
and COAMPS models performed similarly.  The reason for this is not readily apparent.  
These results are somewhat consistent with the results from the earlier Energy Commission-
EPRI project in which the power production and wind speed forecasts for the Mountain 
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View plant based on forecast simulations from the MASS model significantly outperformed 
those from Risoe’s Prediktor forecast system.  In that project, the Prediktor system 
employed the U.S. National Weather Service’s Eta model as the physics-based model input 
for its forecasts.  In the context of this project, the superior performance of the MASS-6 
model for this wind plant may be related to the fact that the MASS-6 model was run at a 
higher resolution than the other two models.  However, in experiments done in the screening 
phase of this task, it was shown that the use of higher physics-based model resolution 
beyond about 10 km did not yield a substantial improvement in the MAE of the wind speed 
or power production forecasts after an MOS scheme was applied.  Another possibility is that 
the MASS-6 model system and associated databases have been modified to better account 
for the geophysical properties of the Earth’s surface near San Gorgonio Pass, including an 
improved representation of the vegetation and soil moisture associated with the extensive 
irrigation in the Coachella Valley east of San Gorgonio Pass.  Experiments conducted by 
AWST have indicated that a detailed representation of the effect of irrigation on the 
geophysical surface properties in a physics-based model is an important factor in the 
accurate simulation of the winds in San Gorgonio Pass.  Unfortunately, it is difficult to 
reach a definitive conclusion on this issue without conducting a set of additional 
experiments.   

Forecast Ensembles 

An ensemble mean forecast of the power production and the wind speed was generated from 
the 12 forecasts produced for the Mountain View wind plant for the four months (March to 
June 2005) for which all 12 forecasts were available.  The 12 ensemble members consisted 
of each combination of four MOS methods and the three physics-based models.   

Table 4-8 presents the MAEs for the power production and wind speed forecasts for several 
combinations of the 12 ensemble members as well as for the ensemble-mean forecast.  For 
the power production forecasts, the MAE of the ensemble-mean forecast was 0.4% of rated 
capacity higher than the MAE of the best performing individual forecast (MASS-6 SMLR2-
ST) for the entire four-month period.  It was also 0.7% of rated capacity higher than the 
MAE of a composite forecast constructed by using the best performing forecast for each 
month.  However, the MAE was 1.5% of capacity lower than the average MAE for all 12 of 
the individual methods. 

The MAE of the ensemble-mean wind speed forecasts for the four-month period was 0.04 
m/s lower than the MAE of the best performing individual forecast method.  This represents 
an MAE reduction of 1.5% relative to the best individual forecast.  In addition, the MAE of 
the ensemble mean forecast was lower than that of the best overall forecast during three of 
the four months. The ensemble-mean forecast performed much worse than the best overall 
forecast during March, and this prevented the overall MAE reduction from being 
substantially higher than 1.5%. The MAE reduction by the ensemble-mean method was 
approximately 6% for the other three months.  The MAE of the ensemble-mean forecast was 
also slightly lower (0.01 m/s) than the average MAE of the composite of the best monthly 
forecast methods. 

 



  

 
Next-Day Wind Plant Energy Forecasting System Development and Testing 

 4-85

Table 4-8  Monthly MAE for the March to June 2005 period for ensemble forecasts of 
the power production (% of capacity) and wind speed (m/s) for the Mountain View 
wind plant.   

Ensemble-12 Best Overall Best Monthly Average Ensemble-12 Best Overall Best Monthly Average
Mean Method Method of MAEs Mean Method Method of MAEs

Mar-05 19.7% 17.4% 17.3% 20.8% 3.38 3.09 3.09 3.58
Apr-05 16.8% 17.1% 16.5% 17.9% 2.63 2.80 2.77 2.93
May-05 14.2% 13.6% 13.6% 16.0% 2.25 2.49 2.39 2.58
Jun-05 15.0% 15.7% 15.3% 16.9% 2.24 2.27 2.27 2.47

4-months 16.4% 16.0% 15.7% 17.9% 2.62 2.66 2.63 2.89

Wind Speed Forecast MAE
Month

Power Production Forecast MAE

 
Note: The ensemble forecasts are the: (1) average of all forecasts in a 12-member ensemble (“Ensemble-12 Mean”), (2) 
individual method with the lowest MAE for the 4-month period (“Best Overall Method”), (3) composite of the individual 
methods with lowest MAE in each month (“Best Monthly Method”); and (4) average MAE of all 12 members of the 
ensemble (“Average of MAEs”).   

In summary, the ensemble-mean forecast method had a skill score of -0.4% relative to the 
best performing individual power production forecast method and a skill score of +1.5% 
relative to the best wind speed forecast method for this four-month period.  These overall 
skill scores would have been more favorable had the ensemble-mean method not performed 
very poorly during March.  During this month the forecasts based on the MASS-6 model 
significantly outperformed forecasts based on the other two physics-based models, which 
created a great disparity in performance among the ensemble members and resulted in a 
degradation of the performance of the ensemble-mean forecast. 

Oak Creek Energy Systems, Tehachapi 

The Oak Creek wind plant is located on a series of ridges in the Tehachapi Pass of Southern 
California.  The rated capacity is 34.5 MW and the plant consists mostly of NEG-Micron 
turbines. 

The power production and meteorological data for this wind plant were obtained through a 
direct ftp from an Oak Creek computer system.  The power production data consisted of the 
energy output of the entire plant at one-minute intervals.  The meteorological data consisted 
of wind speed and direction data from a single meteorological tower.  The one-minute 
power production and wind data were aggregated to hourly data by AWST.  The hourly data 
were used to train the MOS algorithms and compute the verification statistics.   

Unfortunately, the data link between Oak Creek and AWST could not be set up until 
November 2004.  The data for November 2004 were used as the initial training data for the 
MOS component of the forecast system and to construct the statistical plant output model.  
Therefore, forecasting began on December 1, 2004, and continued through the end of the 
forecast evaluation period on June 30, 2005.  Thus, only seven months of evaluation 
statistics were produced for the Oak Creek wind plant.   

Figures 4-62 and 4-63 present the number of hours available to the forecast verification pool 
for each month for the Oak Creek power production and wind speed forecasts.  The 
available hours are the hours for which both forecast and observational data are available, 
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which enables those hours to be included in the verification pool.  The forecast data used to 
compile this chart were from the MASS-6 forecasts, which were available for every possible 
forecast hour for the entire year. Therefore, the unavailable hours shown in these two charts 
are solely attributable to missing observational data. There were a total of 10,272 possible 
forecast hours (214 days in the December 2004 to June 2005 period times 48 forecast hours 
for each day’s forecast) during the seven months of forecasting for the Oak Creek wind 
plant.   

 

Figure 4-62  Number of hours for which sufficient data were available (green) and 
unavailable (red) to compute verification statistics for the PowerWorks power 
production forecasts. 
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Figure 4-63 Number of hours for which sufficient data were available (green) and 
unavailable (red) to compute verification statistics for the PowerWorks power 
production forecasts.  

A quick glance at these two charts indicates that there was only a very small fraction of 
missing data during this period.  The power production data was missing for only 501 of the 
10,272 forecast hours (4.9%) during the seven-month period.  Therefore, the MASS-6  
power production forecast verification statistics for the Oak Creek wind plant are based on 
9,771 hours of data (an average of 45.7 hours per forecast cycle).  A total of 435 of the 501 
missing data hours were in the months of December, February, and June with June having 
the highest percentage of missing data hours at 12.3%.  March and May were the best 
months for data availability with unavailable data for less than 1% of the forecast hours for 
each month.  The size of the verification pool was smaller for the forecasts based on the 
COAMPS and WRF models since output from those models was not available for all of the 
possible forecast hours during the seven-month period    

The availability of the wind speed and direction data was not quite as high as that of the 
power production data.  The wind speed data was missing for 733 of the 10,272 forecast 
hours (7.1%).  This meant that a total of 9,539 forecast hours (an average of 44.6 hrs per 
forecast cycle) was included in the wind speed verification pool for the Oak Creek wind 
plant.  As in the case of the power production data, December, February, and June 
accounted for a majority of the missing data.  A total of 504 of the 733 (68.8%) missing data 
hours were in those three months.  The largest percentage of missing data hours was in June 
when data were not available 13.8% of the hours.  
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Overall Forecast Performance 

Table 4-9 presents the forecast performance statistics by month for the best performing 
forecast method that used the output from the MASS-6 model.  In contrast to the Mountain 
View wind plant, the best forecast performance for the Oak Creek wind plant over the entire 
seven-month period was achieved by the SMLR2-DP method.  This is the method that uses 
a two-stage linear regression and directly predicts the power production without the use of 
an explicit plant output model.  All of the MOS methods that used an explicit plant-scale 
output model performed significantly worse for the Oak Creek plant than the SMLR2-DP 
method.  This was true for all three of the physics-based models. This appeared to be related 
to the fact that the plant-scale output model for the Oak Creek plant was constructed from 
data only for November 2004, which were the only Oak Creek data available at the time 
forecasting began in December 2004.  This limited sample apparently yielded a somewhat 
unrepresentative plant-scale output model.  As a result, the direct prediction method, which 
constructs an implicit plant output model each forecast cycle from a rolling lagged 60-day 
sample of physics-based model output and observed power production data, yielded better 
results.    

The MAE of the power production forecasts for all verifiable forecast hours during the 
seven-month period (9,771 hours) was 15.0% of the installed capacity.  The monthly MAE 
values ranged from a low of 11.7% for December 2004 and February 2005 to a high of 
19.6% for April 2005. 

The annual skill score vs. a  persistence forecast was 33.2%. The monthly skill scores 
ranged from -0.9% for December 2004 to a high of 42.0% for May 2005.  The annual skill 
score with respect to climatology was 27.1% and ranged from -34.7% for December 2004 to 
54.1% for June 2005.  It should be noted that the skill score relative to a climatology 
forecast was not based upon true climatology data, because none was available for this 
plant.  Instead, a pseudo-climatology was constructed by computing averages for each hour 
of the day from the months immediately before and after the month for which the 
climatology was desired. 

The annual MAE of the wind speed forecasts was 2.03 m/s, which is 40.6% of the mean 
wind speed for the seven-month period.  This is actually quite a bit lower than the MAE of 
2.65 m/s recorded for the Mountain View wind plant.  Thus, although the power production 
forecasts had a higher MAE than the Mountain View wind plant, the wind speed forecasts 
actually had a substantially lower MAE.   The monthly MAE values range from a low of 
1.68 m/s for February 2005 to a high of 2.34 m/s for March 2005.  The annual skill score 
with respect to persistence for the wind speed forecasts was 32.8%.  The lowest monthly 
skill score was the 9.9% recorded for December 2004 while the highest monthly skill score 
was 44.7% for April 2005.  The skill score with respect to climatology was 43.8% and 
ranged from -1.4% for December 2004 to 62.1% for April 2005.  As in the case of the 
power production forecasts, the climatology-based skill score was based on a pseudo-
climatology using data from the 2004-05 period and not on a  true climatology.   
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Table 4-9  Monthly MAE and skill scores for the overall best performing power 
production and wind speed forecast method (MASS-6 SMLR2-DP) for the Oak Creek 
wind plant. 

% MAE(1) %MAE (2) Skill-P Skill-C MAE (m/s) % MAE (3) Skill-P Skill-C
Jul-04
Aug-04
Sep-04
Oct-04
Nov-04
Dec-04 11.7% 141.8% -0.9% -34.7% 2.12 89.4% 9.9% -1.4%
Jan-05 12.2% 87.6% 26.2% 15.8% 1.80 58.5% 30.9% 28.4%
Feb-05 11.7% 85.9% 12.9% 3.1% 1.68 53.2% 17.6% 39.6%
Mar-05 17.2% 62.6% 38.5% 31.1% 2.34 46.0% 38.9% 22.5%
Apr-05 19.6% 48.0% 40.2% 33.3% 2.26 36.1% 44.7% 62.1%
May-05 17.1% 30.1% 42.0% 21.4% 2.00 25.2% 32.0% 18.6%
Jun-05 15.4% 35.3% 35.4% 54.1% 1.95 27.7% 37.1% 70.3%
Annual 15.0% 57.1% 33.2% 27.1% 2.03 40.6% 32.8% 43.8%

(1)  MAE as % of rated capacity  (2) MAE as a % of production;  (3) MAE as % of average wind speed

Month
Power Production Forecast Wind Speed Forecast 

 

 

Figure 4-64 shows the error distribution for the seven months of power production forecasts.  
The chart shows two error distributions.  One is for the first 24 hours of the forecast period, 
and the other is for the second 24 hours. The error distributions for the two periods are quite 
similar.  Both are characterized by a strong central peak in the -5% to +5% range, with a 
rapid decrease in frequency on either side of this peak and a long tail of very low 
frequencies for medium and large negative and positive errors.   There is a very noticeable 
asymmetry between the negative and positive tails of the distribution.  Negative errors of a 
particular magnitude occur substantially more frequently than positive errors of a similar 
magnitude.  For example, errors in the range of -30% to -25% of capacity occur about 4% of 
the time during forecast hours 1 to 24.  However, positive errors of a similar magnitude 
occur during only about 1% of the hours.     

This asymmetry is actually slightly greater during forecast hours 1 to 24 than during hours 
25 to 48.  Curiously, there is very little evidence of a similar asymmetry in the wind speed 
error distribution (not shown). 
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Power Production Forecast Error Distribution
Oak Creek : Dec 2004 - June 2005
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Figure 4-64  Error frequency distribution for hours 1 to 24 (red) and 25 to 48 (blue) of 
the forecasts for the Oak Creek wind plant.  The data sample includes 9,771 forecast 
hours during the December 2004 to June 2005 period. 

Figure 4-65 shows the cumulative absolute error distribution for the 9,771 power production 
forecast hours that could be verified.  Once again, separate error distributions are shown for 
the first and second 24 hours of the forecast period.  As noted previously, the distributions 
for the first and second halves of the forecast period are very similar. The chart indicates 
that 50% of the errors (or the median error) are less than 10% for forecast hours 1 to 24 and 
11% for hours 25 to 48.  

As noted earlier, there is a strong relationship between the forecasted level of power 
production and the magnitude of the forecasted error because of the impact of the shape of 
the power curve on the sensitivity of power production forecast error to the error in the wind 
speed forecast.  

Figure 4-66 indicates that the MAE is very low when the forecasted level of production is 
low and rises to a broad peak near 25% of capacity when the forecasted production is 
between 20% and 50% of installed capacity.  Above a forecasted production level of about 
50%, the MAE decreases as the forecasted production level decreases, and the MAE 
declines to the 15% to 20% of capacity range for forecasted production levels above 70% of 
capacity. 
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Cumulative Absolute Error Distribution
Oak Creek: Dec 2004 - June 2005
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Figure 4-65  Cumulative absolute error frequency distribution (% of hours with an 
absolute error less than are equal to the value on the horizontal axis) for hours 1 to 24 
(red line) and 25 to 48 (blue line) of the seven months of power production forecasts 
for the Oak Creek wind plant.  The data sample includes 9,771 forecast hours. 

MAE by Forecasted Power Production
Oak Creek: December 2004 - June 2005

0%

5%

10%

15%

20%

25%

30%

0% 5% 10
%

15
%

20
%

25
%

30
%

35
%

40
%

45
%

50
%

55
%

60
%

65
%

70
%

75
%

80
%

85
%

90
%

95
%

10
0%

Forecasted Power Production (% of Capacity)
 

Figure 4-66  MAE of the Oak Creek power production forecasts vs. the forecasted 
power production.  The MAE is shown for 21 bins of forecasted production. Each has 
a width of 5% of installed capacity and is labeled by the value at the upper end of the 
bin. 
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Figure 4-67 illustrates that the magnitude of the wind speed forecast error has much less 
dependence on the forecasted wind speed than the power production error has on the 
forecasted production.  The chart depicts the MAE for 20 bins with a width of 1 m/s for 
forecasted wind speeds ranging from 0 to 20 m/s.  The bin labeled “0” represents wind 
speed forecasts of exactly zero.  All other bins are labeled by the wind speed value at the 
upper end of the bin.  The magnitude of the error is generally lower for forecasts of low 
wind speeds.  The MAE is under 2 m/s, which is below the overall MAE of 2.03 m/s for 
wind speeds under 4 m/s.  The MAE of the wind speed forecasts gradually rises as the 
forecasted wind speeds increase and approaches 3 m/s for forecasted wind speeds above 10 
m/s.  The MAE values are somewhat erratic above 14 m/s.  As indicated by the lighter 
shading of the bars in the chart, this is mostly attributable to the fact that the sample size in 
those bins is too small to yield statistically significant results.  For example, the 17 m/s bin 
has an anomalously large MAE of 8.2 m/s, but there are only two hours that fall into that bin 
while the 16 m/s bin has a very low MAE of 1.93 m/s but is based on a sample size of four.    

Performance vs. Forecast Time Horizon 

An important consideration is the rate of degradation of the forecast performance (increase 
in forecast error) as the forecast time horizon increases.  If the performance of the forecasts 
decreases rapidly with increasing look-ahead period, then it is useful and perhaps critical to 
have frequent forecast updates.  On the other hand, if the degradation is slow then 
production and wind speed forecast MAEs based on the MASS-6 SMLR2-DP forecast 
method, the best performing method for the Oak Creek wind plant.  

The MAE of the power production forecasts rises from just under 15% at the start of the 
forecast period to just more than 15% at the end of the forecast period.  The rate of increase 
is somewhat obscured by oscillations of the forecast performance.  The MAE of the 
persistence forecasts rises rapidly from about 5% for the first hour to near 15% by the 6th 
hour of the forecast period.  The MAE then rises more slowly and levels out near 30% 
towards the end of the forecast period. The persistence forecasts outperform the eWind 
forecasts for the first couple of hours of the forecast period.  The MAEs of the persistence 
and the eWind forecasts are very similar by hour three and remain similar through hour nine.  
After that time the MAE of the persistence forecasts rises much more rapidly than the eWind 
forecasts.   
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Figure 4-67  MAEs of the Oak Creek wind speed forecasts  vs. the forecasted wind 
speed.  The MAE is shown for 21 bins of forecasted wind speed. Each has a width of 1 
m/s and is labeled by the value at the upper end of the bin.  Bins represented by 
lightly shaded bars have a sample size of less than 30. 
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Figure 4-68  MAE of power production forecasts at the Oak Creek wind plant vs. 
forecast time horizon (the look-ahead interval) for seven months of eWind (red line 
with diamond markers), persistence (green line with square markers), and climatology 
(blue line with triangle markers) forecasts. 
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Wind Speed Foreacst MAE by Forecast Time Horizon 
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Figure 4-69  MAE of wind-speed forecasts at Oak Creek wind plant vs. forecast time 
horizon (the look-ahead interval) for seven months of eWind (red line with diamond 
markers), persistence (green line with square markers), and climatology (blue line 
with triangle markers). 

As noted previously, the fact that persistence outperforms the eWind forecasts for the first 
couple of hours is the result of not using the latest data from the wind plant and its vicinity 
in the forecast process.   The MAE of the climatology forecasts is generally in the 20% to 
25% range, but it is somewhat noisy because of the limited amount of data used to construct 
the climatology. A linear fit to the eWind curve indicates that the average rate of error 
growth over the 48-hour period is 0.04% of installed capacity per hour or about 1.0% of 
installed capacity per day.  This is somewhat lower than the MAE growth rate of 1.4% of 
capacity per day recorded for the Mountain View wind plant.  This represents a growth rate 
of 6.7% per day relative the overall MAE of 15.0% for the 48-hr period.  

The MAE of the Oak Creek wind speed forecasts increases from about 1.7 to 2.0 m/s during 
the first 6 hours to about 2.1 to 2.3 m/s during the last 12 hours of the forecast period.  The 
MAE of the persistence forecasts rises rapidly from about 1 m/s for the first hour to 3 m/s by 
forecast hour 3.  It then rises more slowly and reaches the 3.5 to 4 m/s level near the end of 
the forecast period.   The SMLR2-DP forecasts begin to outperform persistence at hour 
three, although the difference is modest until about hour 12.  After hour 12, the SMLR2-DP 
forecasts have a substantial and growing advantage over persistence as time increases.  The 
MAE of the climatology forecasts remains between 3 and 4 m/s throughout the forecast 
period.  The MAE exhibits a fairly well-defined diurnal cycle with minima at forecast hours 
3 and 27 and what appears to be just after forecast hour 48.  All of these minima correspond 
to about 11:00 a.m. PST.  The maxima occur between forecast hours 12 to 15 and 36 to 39, 
which correspond to 8:00 p.m. to 11:00 p.m. PST.  A linear least squares fit to the eWind 
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forecast error data indicates that the average rate of increase in MAE is 0.0085 m/s per hour 
or about 0.20 m/s per day.  This is a growth rate of 9.9% per day relative to the MAE for the 
entire 48-hour period of 2.03 m/s.  This is slightly less, on a percentage basis, than the 
growth rate of the power production error.  This is somewhat different from the results for 
the Mountain View wind plant, where the percentage power production forecast error 
growth rate was twice as large as that for the wind speed forecasts. 

Physics-Based Model Comparison 

The generation of forecasts from three physics-based models provided an opportunity to 
determine the sensitivity of the forecast performance to the choice of physics-based model 
and to assess the relative performance of the three models.  The performance comparison 
analyzed the forecast error statistics for forecasts generated by the same MOS method from 
all three models.  For the Oak Creek wind plant, the best performing method, as noted 
earlier, was the SMLR2-DP method.   

Table 4-10 presents the performance statistics for SMLR2-DP forecasts from all three 
models.  The comparison of the monthly forecast performance statistics is complicated by 
the fact that the forecasts from all three models were not generated for the entire seven-
month forecast period.  As noted previously, the MASS-6 forecasts were produced for all 
seven months of the evaluation period and for all 48 hours.  The COAMPS forecasts were 
also produced for all seven months, but these extended out only to 32 hours beyond the 
forecast delivery time.   The WRF forecasts were only available for four of the seven 
months but did extend throughout the 48-hour forecast period.  Since the COAMPS 
statistics do not include the last 16 hours of the forecast period when errors are expected to 
be slightly higher, the COAMPS errors would be expected to be lower than those for the 
other two models if all models performed similarly. 

The power production forecasts based on the MASS-6 simulations significantly 
outperformed those based on the COAMPS simulations.  Over the entire seven-month 
period, the MAE of the MASS-6 power production forecasts was 1.5% of capacity (12.6%) 
lower than the forecasts generated from the COAMPS output data.  In addition, the MASS-6 
forecasts exhibited a lower MAE during five of the seven months.  However, a close 
examination of the monthly MAE data in Table 4-10 indicates that there is a well-defined 
pattern in the relative performance of the two models. The COAMPS-based power 
production forecasts yielded modestly lower (about 1.0% of rated capacity) during 
December and January. The MAEs of the two forecasts are fairly similar during February 
and March.  However, the MASS-6 forecasts outperformed the COAMPS-based forecast by 
a wide margin (3% to 6% of capacity) during April, May, and June. This pattern suggests 
that there might be seasonal pattern in the performance differences between the two models 
with the COAMPS model performing better during the cold months and the MASS model 
performing better during the warm season months.     

 



 
 
Next-Day Wind Plant Energy Forecasting System Development and Testing 

 4-96

Table 4-10 Monthly MAE as a percentage of capacity for the 1- to 48-hour Oak Creek 
power production and wind speed forecasts by the three physics-based models. 

MASS 6 COAMPS WRF MASS 6 COAMPS WRF
Jul-04
Aug-04
Sep-04
Oct-04
Nov-04
Dec-04 11.7% 10.7% 2.12 1.65
Jan-05 12.2% 10.9% 1.80 1.65
Feb-05 11.7% 12.1% 1.68 1.63
Mar-05 17.2% 17.3% 18.9% 2.34 2.25 2.51
Apr-05 19.6% 22.4% 20.6% 2.26 2.45 2.13
May-05 17.1% 23.2% 22.4% 2.00 2.42 2.43
Jun-05 15.4% 18.4% 16.9% 1.95 2.17 1.85
Annual 15.0% 16.5% 19.8% 2.03 2.03 2.24

Mar - Jun 17.3% 20.3% 19.8% 2.14 2.32 2.24

Month Power Production Forecast MAE Wind Speed Forecast MAE

 

 

Curiously, the overall MAE of the MASS-6 and COAMPS wind speed forecasts for the 
seven months were the same (2.03 m/s). The COAMPS-based wind speed forecasts 
significantly outperformed the MASS-based wind speed forecasts during December and 
January and outperformed the MASS-based forecasts by a smaller margin during February 
and March.  However, the MASS-based wind speed forecasts yielded much lower MAEs 
during April, May, and June.   

A direct  comparison with the WRF-based forecasts was possible only during March 
through June 2005.  The MAE of the MASS-6 power production forecasts was 2.5% of 
rated capacity lower for these four months.  This represents an MAE reduction of 13.0%.  In 
addition, the MASS-6 forecasts yielded a lower MAE during all four months.   

However, the wind speed forecast performance differences were not as clearly defined. The 
MAEs of the wind speed forecasts based on the MASS-6 output were 0.1 m/s (4.5%) lower 
for the entire four-month comparison period, but each model yielded significantly lower 
MAEs during two of the four months, April and June for the WRF-based forecasts, and 
March and May for  the MASS-6 atmospheric simulations.   

Overall, it is reasonable to conclude that there is no significant difference in the wind-speed 
forecast performance between the two models.  But it is still interesting to note that the 
MASS-6 power production forecasts yielded a significantly lower MAE (1.0% of capacity) 
even during  the month when the WRF-based wind speed forecasts yielded the largest MAE 
advantage over the MASS-6 forecasts.    
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The comparison between the COAMPS and the WRF power production forecasts appeared 
to show a slight advantage for the WRF-based forecasts.  For the entire four-month 
comparison period, the WRF-based forecasts yielded a  lower MAE by a margin of only 
0.5% of rated capacity.  The WRF-based forecasts also yielded a lower MAE during three of 
the four months.  However, the COAMPS forecasts yielded a substantially lower MAE 
(1.6% of capacity) during March.   

The four-month MAEs of the wind speed forecasts also gave a slight advantage to the WRF-
based forecasts by 0.08 m/s.  However, each model yielded the lower MAE during two of 
the months, and each model exhibited a  substantially lower MAE during one of those 
months.  Overall, it is hard to argue that there is any significant difference in performance 
between the two models. 

The overall conclusion of the physics-based model testing at Oak Creek is that the MASS-6 
model showed a fairly well-defined advantage in the power-production forecast 
performance However, the wind-speed forecast performance differences were less decisive.  
The MASS-6 forecasts showed a slight edge in most of the overall statistics, but the month-
by-month performance was fairly evenly split.   

Forecast Ensembles 

An ensemble mean forecast of the power production and the wind speed was generated from 
the 12 forecasts produced for the Oak Creek wind farm during the four test months (March 
to June 2005) for which all 12 forecasts were available.  The 12 ensemble members included 
each combination of four MOS methods and three physics-based models.   

Table 4-11 presents the MAE for the power production and wind speed forecasts for various 
combinations of the 12 ensembles members as well as for the ensemble-mean forecast.  For 
the power production forecasts, the MAE for the ensemble-mean forecast was 1.6% of 
capacity higher than the MAE for both the best overall and the best monthly forecast 
methods.  However, the MAE of the ensemble-mean forecast was 1.8% of capacity lower 
than the average MAE of all 12 of the individual forecast methods.   

The poor performance of the ensemble-mean forecast relative to the best overall and best 
monthly methods can be traced to the fact that all methods that used an explicit plant output 
model performed poorly at the Oak Creek plant. Since three of the four MOS methods for 
each model used the same explicit plant output model, the ensemble mean was heavily 
weighted by forecasts that shared essentially the same error.  An ensemble mean forecast 
will tend to do poorly when the majority of the forecasts share a significant error (or the 
errors are correlated).   

The situation was somewhat different for the wind speed forecasts.  For the four-month 
period, the ensemble mean forecast yielded an MAE that was 0.07 m/s (3.3%) lower than 
the best overall method and only 0.02 m/s higher than the composite of the best monthly 
methods.  It was also 0.18 m/s lower than the average MAE of all of the methods.  In 
practice the ensemble mean would have been the best forecast option since one would 
typically not know what the best monthly method is until a month is over. 
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The conclusion from the analysis of the Oak Creek ensembles is that the ensemble-mean 
forecast would have been the best choice for an operational wind speed forecast.  However, 
the ensemble-mean method did not perform well for the power production forecasts.  This 
was because errors associated with the use of the same explicit plant output model degraded 
the performance of nine of 12 ensemble members (those that depend on the explicit plant 
output model) for the power production forecasts.  The three forecasts that did not use the 
explicit plant output model (those that employed the SMLR2-DP method) significantly 
outperformed the nine methods that used the explicit plant output model and the ensemble-
mean method. 

Table 4-11 Monthly MAE for the March to June 2005 period for ensemble forecasts of 
the power production (% of capacity) and wind speed (m/s) for the Oak Creek wind 
plant. 

Ensemble-12 Best Overall Best Monthly Average Ensemble-12 Best Overall Best Monthly Average
Mean Method Method of MAEs Mean Method Method of MAEs

Mar-05 19.2% 17.2% 17.2% 19.8% 2.36 2.34 2.25 2.46
Apr-05 20.6% 19.6% 19.6% 22.5% 2.16 2.26 2.13 2.32
May-05 21.0% 17.1% 17.1% 23.7% 2.03 2.00 2.00 2.24
Jun-05 14.6% 15.4% 15.4% 17.0% 1.73 1.95 1.82 1.97

4-months 18.9% 17.3% 17.3% 20.7% 2.07 2.14 2.05 2.25

Month
Power Production Forecast MAE Wind Speed Forecast MAE

 
Note: The ensemble forecasts include: (1) averaging all the forecasts in a 12-member ensemble (“Ensemble-12 Mean”), 
(2) the individual method with the lowest MAE for the 4-month period (“Best Overall Method”), (3) a composite of the 
individual methods with lowest MAE in each month (“Best Monthly Method”); and (4) the average MAE of all 12 members 
of the ensemble (“Average of MAEs”).  

 

PowerWorks Wind Project, Altamont Pass 

The PowerWorks wind plant is located in the Altamont Pass of Northern California and has 
a rated capacity of 90 MW.  This plant employs an older wind turbine model, which was 
installed during the mid- to late-1980s.  The US Windpower 56-100 turbine is typical of 
turbines installed at that time.  This turbine is rated at 100 kW and mounted on 60- and 80- 
foot lattice towers.  It is a downwind-facing free-yaw machine with a three-blade, variable-
pitch, 56-foot (18 meter) diameter rotor.  The power curve for this turbine has a cut-in wind 
speed of approximately 5 m/s, a rated wind speed of 12 m/s, and a cut-out wind speed of 20 
m/s.   

At the start of the previous Energy Commission-EPRI forecasting project, PowerWorks, 
Inc., suggested that, to represent the range of wind conditions that exist at that site, the plant 
should be divided into 10 distinct groups of wind turbines, each associated with a nearby 
meteorological tower.  The overall rated capacities of the turbine groups range from 17.5 
MW (175 turbines associated with tower M723) to 3.4 MW (34 turbines associated with 
Tower M427).  One of the towers, M438, reports ambient temperature and relative humidity 
in addition to wind speed and direction.  In the previous project, PowerWorks, Inc. arranged 
with the Altamont Infrastructure Company to provide daily files containing the previous 
day’s 30-minute power production, wind speed, and wind direction data.  The arrangement 
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continued throughout the current project.  Tower M427 was selected as the site for the wind 
speed forecasts in this project. 

Figures 4-70 and 4-71 show the number of hours available to the forecast verification pool 
for each month for the power production and Tower M427 wind speed forecasts.  The 
“available hours” are the hours for which both forecast and observational data are available.  
There were a total of 17,520 possible forecast hours (365 days times 48 forecast hours for 
each day’s forecast).  There were very few hours of missing data for the PowerWorks wind 
plant.  In fact, power production data were unavailable for only 48 hours during the entire 
one-year period.  This represents an unavailable data rate of only 0.3%.  The only months 
with unavailable data hours were October, December and January.  The month with the 
largest percentage of missing data was December, which had a total of 30 unavailable data 
hours.   Therefore, the power production forecast verification statistics are based on 17,472 
hours of the possible 17,520 forecast hours.   The size of the verification pool is smaller for 
the forecasts based on the COAMPS and WRF models because forecasts from those models 
were available for fewer hours than the forecasts from the MASS model. 

Although the wind speed data availability was not as high,  the wind speed data availability 
from Tower M427 was also quite good.   The wind speed and direction data for M427 were 
missing for only 620 of the 17,520 forecast hours (3.5%).  February 2005 exhibited the 
highest number of missing data hours with a total of 218 (16.2%).  All other months 
exhibited less than 10% missing data hours and most were less than 5%.  Thus, the wind 
speed verification statistics were based upon a total sample size of 16,900 hours.  

 Verification Hours by Month
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Figure 4-70  Number of hours for which data were available (green) and unavailable 
(red) for the computation of verification statistics for the PowerWorks power 
production forecasts produced by the best performing forecast method (MASS-6 
SMLR2-ST). 
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 Verification Hours by Month
Wind Speed Forecasts: PowerWorks Tower 427
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Figure 4-71  Number of hours for which data were available (green) and unavailable 
(red) for the computation of verification statistics for the wind speed forecasts for 
PowerWorks Tower M427 by the best performing forecast method (MASS-6 SMLR2-
ST). 

 

Overall, the availability and the quality of the data from the PowerWorks sites was excellent 
throughout the entire one-year period.  Thus, the forecast verification statistics are probably 
among the most representative of all of the sites. 

Overall Forecast Performance 

Table 4-12 presents the forecast performance statistics by month for the best performing 
MOS method in combination with the MASS-6 forecast method, which was the SMLR2-ST 
MOS method.  The MAE of the power production forecasts for all 17,472 verifiable forecast 
hours during the one-year period was 11.9% of the installed capacity.  This is approximately 
2.2% of capacity lower than the annual MAE of 14.1% achieved by the eWind forecast 
system for the year of forecasting in the previous Energy Commission-EPRI forecasting 
project (see Table 5-1 of Energy Commission and EPRI, 2003 for the comparable forecast 
performance statistics from the previous project). The monthly MAE values ranged from 
2.0% during January 2005 to a high of 19.5% during August 2004. The annual skill scores 
were 26.5% and 9% relative  to persistence and climatology, repectively.     

The annual MAE of the wind speed forecasts for Tower M427 was 2.52 m/s, which is 
34.4% of the mean wind speed for the one-year period.  The monthly MAE values range 
from a low of 2.08 m/s for December 2004 to a high of 3.11 m/s for September 2004.  The 
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annual skill score with respect to persistence was 28.2%.  The lowest monthly skill score 
was the 11.5% recorded for November 2004 while the highest monthly skill score was 
38.4% for April 2005.  The skill score with respect to climatology was 12.4% and ranged 
from 1.7% for December 2004 to 27.9% for March 2005. 

Figure 4-72 shows the error distribution for the one year of power production forecasts.  
Separate distributions are shown for the first and second 24 hours of the forecast period.  
The error distributions for the two periods are quite similar.  Both are characterized by a 
strong central peak in the -5% to +5% range with a rapid decrease in the frequency on either 
side of this peak and a long tail of very low frequencies for medium and large negative and 
positive errors.  The sharp peak in the -5% to 0% bin is a result of the fact that errors of 
exactly zero are included in the -5% to 0% bin. 

Table 4-12 Monthly MAE and skill scores for the overall best performing power 
production and wind speed forecast method (MASS-6 SMLR2-ST) for the PowerWorks 
wind plant 

% MAE(1) %MAE (2) Skill-P Skill-C MAE (m/s)% MAE (3) Skill-P Skill-C
Jul-04 19.2% 34.8% 37.8% 3.4% 2.60 21.7% 34.8% 2.7%
Aug-04 19.5% 40.0% 38.8% 25.5% 2.68 24.3% 38.4% 22.7%
Sep-04 17.0% 67.0% 20.1% 39.9% 3.11 37.6% 22.3% 12.9%
Oct-04 16.8% 129.4% -17.9% 16.3% 2.85 44.0% 12.5% 1.7%
Nov-04 3.9% 120.9% 37.5% 62.1% 2.49 61.2% 11.5% 5.7%
Dec-04 4.1% 204.5% 7.3% 60.7% 2.08 54.7% 14.7% 7.1%
Jan-05 2.0% 123.2% 14.2% 79.4% 2.15 49.6% 31.3% 8.9%
Feb-05 2.5% 150.6% -21.1% 78.5% 2.09 48.4% 20.4% 14.3%
Mar-05 6.3% 88.4% 29.2% 65.9% 2.41 41.8% 31.1% 27.9%
Apr-05 15.5% 82.1% 24.8% 39.3% 2.68 32.7% 31.3% 13.0%
May-05 16.2% 56.4% 24.8% 41.6% 2.53 27.2% 36.6% 14.7%
Jun-05 18.5% 64.4% 36.3% 23.9% 2.51 2.3% 36.7% 8.7%
Annual 11.9% 58.5% 26.5% 38.9% 2.52 34.4% 28.2% 12.4%

(1)  MAE as % of rated capacity  (2) MAE as a % of production;  (3) MAE as % of average wind speed

Month
Power Production Forecast Wind Speed Forecast - Tower 427

 

 

There are a fairly large number of hours for which the forecast and observations are zero 
during the low output months during the cold season.  This results in an error of exactly zero 
and thus many more hours fall into the -5% to 0% bin than the 0% to +5% bin.   There is a 
slight asymmetry between the positive and negative sides of the distribution. This is 
especially apparent for the bins in the 10% to 30% error range on either side of the central 
peak.  The positive errors are substantially more frequent than the negative errors in this 
range.  For example, the frequency of errors in the +10% to +15% bin is about 5% but the 
frequency of error of a similar magnitude but of the opposite sign is less than 4%.  Thus, 
positive errors of this magnitude occur more than 25% more frequently than negative errors.  
This is true for the bins up to about 30%.  Beyond 30% the differences are slight.  The 
asymmetry is slightly greater for the 25 to 48 hour forecast period than for the 1 to 24 hour 
period.  
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Figure 4-73 shows the cumulative error distribution for the 17,472 power production 
forecast hours that could be evaluated is shown in.  This chart shows the frequency of 
absolute errors that are equal to or smaller than error shown on the horizontal axis. Once 
again, separate error distributions are shown for the first and second 24 hours of the forecast 
period.  As noted previously the distributions for the first and second half of the forecast 
period are very similar.  This suggests that the performance of the forecasts degrades only 
slightly from the first to the second day of the forecast period.  This chart indicates that the 
median error (50% frequency) is approximately 5.6% of the capacity for hours 1 to 24 and 
about 6.3% of capacity for hours 25 to 48.  It also shows that 75% of the 1 to 24 hour 
forecast hours have an absolute error that is less than 18.0% of the capacity while 75% of 
the 25 to 48 hour forecast hours have an absolute error that is less than 18.6% of capacity. 

Power Production Forecast Error Distribution
PowerWorks : July 2004 - June 2005
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Figure 4-72  Error frequency distribution for hours 1 to 24 (red) and 25 to 48 (blue) of 
the power production forecasts for the PowerWorks wind plant.  The data sample 
includes 17,472 forecast hours. 
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Cumulative Absolute Error Distribution
PowerWorks: July 2004 - June 2005
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Figure 4-73  Cumulative absolute error frequency distribution (% of hours with an 
absolute error less than are equal to the value on the horizontal axis) for hours 1 to 48 
of the power production forecasts for the PowerWorks wind plant.  The data sample 
includes 17,472 forecast hours. 

As noted earlier, there is a strong relationship between the forecasted level of power 
production and the magnitude of the forecasted error predominantly due to the shape of the 
turbine power curve.   Figure 4-74 illustrates this relationship for the PowerWorks power 
production forecasts.  The MAE is very low for low levels of forecasted production and 
rises to a peak just under 25% of capacity when the forecasted production is near 40%.  The 
MAEs are generally slightly lower for forecasted production levels above 40%, but they do 
not decrease as much as they did for some of the other wind plants in this project.  In fact, 
the errors become quite large for forecasted production above 90%.  This may be related to 
the fact that when the forecasted production is near plant capacity, the wind speed will 
sometimes reach the turbine shut-down speed and the production will decrease to very low 
levels resulting in a large error.  This may happen more frequently for the PowerWorks 
plant, because the turbines are older and the shut-down speed is lower (20 m/s) than it is for 
new plants with modern turbines (typically 25 m/s). 
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MAE by Forecasted Power Production
Power Works: July 2004 - June 2005
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Figure 4-74  MAE of the PowerWorks power production forecasts vs. the forecasted 
power production.  The MAE is shown for 21 bins of forecasted production. Each has 
a width of 5% of installed capacity and is labeled by the value at the upper end of the 
bin. Bars with light shading denote bins with a sample size of less than 30 hours. 

MAE by Forecasted Wind Speed
PowerWorks Met Tower 427: July 2004 - June 
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Figure 4-75  MAE of the 1 to 48 hour PowerWorks Tower M427 wind speed forecasts  
vs. the forecasted wind speed.  The MAE is shown for 21 bins of forecasted wind 
speed. Each has a width of one m/s and is labeled by the value at the upper end of the 
bin. Bars with light shading denote bins with a sample size of less than 30 hours. 
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Forecast Performance vs. Time Horizon 

An important consideration is the rate of degradation of the forecast performance as the 
look-ahead period increases.  If the performance of the forecasts decreases rapidly with 
increasing look-ahead period then it is useful and perhaps critical to have frequent forecast 
updates.  On the other hand, if the degradation is slow then the need for frequent updates is 
reduced.  This issue is addressed by constructing MAE vs. forecast time horizon charts for 
the PowerWorks power production and the M427 wind speed forecasts (Figures 4-76 and 4-
77). These charts illustrate the MAE for each look-ahead hour for the best performing 
eWind forecast method (MASS-6 SMLR2-ST) along with the persistence and climatology 
reference forecasts.  

There is a gradual upward trend in the MAE of the eWind power production forecasts from 
near 10%, during the first few hours of the forecast period, to 13% to 14% towards the end 
of the (Figure 4-76).  However this gradual upward trend is somewhat obscured by a 
pronounced diurnal cycle in the MAE. A linear fit to the eWind MAE curve indicates that 
the average rate of error growth over the 48 hour period is 0.04% of installed capacity per 
hour or about 1.0 % of installed capacity per day.  This is a growth rate of 8.4% per day 
relative to the overall MAE of 11.9% for the 48 hour period. The MAE of the persistence 
forecasts increase from about 5% for the first forecast hour to approximately 10% for 
forecast hour six. The MAE remains near 10% through hour nine and then rises rapidly to a 
peak near 20% between hours 12 and 15. After 15 hours, the persistence forecast MAE  
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Power Production MAE by Forecast Time Horizon
PowerWorks: July 2004 - June 2005
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Figure 4-76  MAE of power production forecasts at the PowerWorks wind plant vs. 
forecast time horizon for 12 months of eWind (red line with diamond markers), 
persistence (green line with square markers) and climatology (blue line with triangle 
markers) forecasts. 
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Figure 4-77  MAE of wind-speed forecasts at Tower M427 at the PowerWorks wind 
plant vs. forecast time horizon for 12 months of eWind (red line with diamond 
markers), persistence (green line with square markers) and climatology (blue line with 
triangle markers) forecasts. 
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exhibits a pronounced diurnal pattern.  The persistence forecasts significantly outperform 
the eWind forecasts for the first three hours of the forecast period.  The MAEs for the two 
forecasts are very similar for hours three through nine.  The eWind forecasts substantially 
outperform the persistence forecasts after forecast hour nine. The MAE of the climatology 
forecasts remains in the 17% to 21% range for most of the forecast period and exhibits a 
well-defined diurnal pattern.  The eWind forecasts outperform the climatology forecasts 
throughout the forecast period by a substantial margin. 

The MAE of the M427 wind speed forecasts increases from near 2.2 m/s during the first 12 
hours of the forecast period to about 2.8 m/s at the end of the 48 hour period (Figure 4-77). 
As in the case of the power production forecasts, the MAE exhibits a pronounced diurnal 
cycle.  A linear least squares fit to the eWind forecast error data indicates that the average 
rate of increase of the MAE is 0.0052 m/s per hour or about 0.13 m/s per day.  This is a 
growth rate of 5.0% per day relative to the MAE for the entire 48 hour period of 2.52 m/s.  
The performance characteristics of the persistence and climatology forecasts are similar to 
those seen in the corresponding power production forecasts although the amplitude of the 
diurnal cycles is somewhat less for the wind speed forecasts.  This is most likely because the 
diurnal pattern in the power production errors are magnified by the sensitivity of the steeply 
sloped portion of the power curve to wind speed forecast errors.  In general, the eWind 
forecasts outperform persistence after about nine hours and outperform the climatology 
forecasts throughout the forecast period. 

Overall, the MAE vs. forecast time horizon charts for the PowerWorks plant indicate that 
the error growth rate for the power production forecasts is very slow (1.0% of capacity per 
day) and that the eWind forecasts outperform persistence by a substantial margin after about 
nine hours and perform significantly better than climatology throughout the 48-hour forecast 
period. 

Physics-Based Model Comparison 

The forecast performance comparison of the three physics-based models was based on the 
applications using the same MOS method, SMLR2-ST, which was the best-performing 
MOS method at the PowerWorks plant.     

Table 4-13 presents the forecast performance statistics for SMLR2-ST forecasts for all three 
models.  The comparison of the monthly forecast performance statistics is complicated by 
the fact that the forecasts from all three models were not generated for the entire one-year 
forecast period, as described previously.  

The statistics in Table 4-13 indicate that the performance of the forecasts based upon the 
MASS-6 and WRF models was, in general, very similar and slightly better than that of the 
forecasts based on the COAMPS model.  For the four months for which a comparison was 
possible, the MAE of the power production forecasts from both models was 14.1% and the 
MAE of the wind speed forecasts was also essentially the same, with the MASS-6 forecasts 
having an insignificantly lower MAE by 0.01 m/s.  However, the performance of the 
forecasts from the two models was substantially different on a monthly basis.  Each model  
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Table 4-13  Monthly mean absolute (MAE) of power production (% of capacity) and 
wind speed (m/s) for forecasts generated from three different physics-based models 
for the PowerWorks wind plant. 

MASS 6 COAMPS WRF MASS 6 COAMPS WRF
Jul-04 19.2% 20.2% 2.60 2.53
Aug-04 19.5% 23.0% 2.68 3.11
Sep-04 17.0% 20.7% 3.11 3.52
Oct-04 16.8% 16.4% 2.85 2.97
Nov-04 3.9% 4.9% 2.49 2.70
Dec-04 4.1% 3.0% 2.08 1.91
Jan-05 2.0% 2.1% 2.15 2.14
Feb-05 2.5% 1.8% 2.09 1.95
Mar-05 6.3% 5.1% 7.3% 2.41 2.35 2.58
Apr-05 15.5% 16.2% 14.4% 2.68 2.74 2.45
May-05 16.2% 17.5% 15.7% 2.53 2.77 2.53
Jun-05 18.5% 21.1% 18.9% 2.51 2.85 2.58
Annual 11.9% 12.4% 14.0% 2.52 2.61 2.54

Mar - Jun 14.1% 15.0% 14.1% 2.53 2.68 2.54

Month Power Production Forecast MAE Wind Speed Forecast MAE

 

had a lower MAE for two of the four months.  The MASS-6 forecasts yielded a 1.0% lower 
MAE for March and a  0.5% lower MAE for June while the WRF-based forecasts yielded 
1.1% and 0.5% lower MAEs for April and May.   

The MAEs of the wind speed forecasts exhibited a similar pattern, with MASS-6 yielding a 
lower MAE during two months WRF yielding a lower MAE for one month, both models 
yielding the same MAE out to two decimal places for the fourth month.  There was no 
evidence of a systematic pattern in the relative performance between the two models on a 
multi-month or seasonal basis.  Of course, a four month sample is most likely inadequate to 
diagnose seasonal patterns in the relative performance of the forecasts.  There may be 
systematic patterns on shorter time scales that are embedded within the four months of 
forecast data.  However, this possibility was not investigated in this project.   

Unlike the comparison of the MASS-6 and WRF forecasts, the comparison between the 
MASS-6 and COAMPS forecasts was available for the entire 12-month period.  The 
forecast verification data indicate that the forecasts based on the MASS-6 numerical 
simulations outperformed the COAMPS-based forecasts by a modest margin.  The actual 
difference is probably slightly larger since, as noted earlier, the COAMPS forecasts ended at 
32 hours into the forecast period and the last 16 hours of the forecast period normally have 
larger errors than the first 32 hours.  However, as noted in the previous section, the rate of 
error growth with increasing forecast time horizon is fairly slow   

The MASS-6 power production forecasts produced a 12-month MAE that was 0.5% of rated 
capacity (4.0%) lower than that generated by the COAMPS-based forecasts.  An 
examination of the monthly data indicates that the MASS-6 forecasts yielded a lower MAE 
during eight of the 12 months.  There is some indication of a seasonal pattern in the relative 
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performance of the two sets of forecasts.   The MASS-6 forecasts recorded a lower MAE 
during all six of the months in the warm season period from April through September, even 
though the months were in two separate years.  However, the COAMPS-based forecasts 
yield a lower MAE for four of the six months during the cold season, extending from 
October through March.  The largest difference in favor of the COAMPS forecasts occurred 
during March, when the MAE of these forecasts was 1.2% of capacity lower than that 
achieved by the MASS-6 forecasts.   

The MAE pattern of the wind speed forecasts was fairly similar to that for the power 
production forecasts.  For the entire 12-month period, the MAE of the MASS-6 forecasts 
was 0.09 m/s (3.4%) lower than that of the COAMPS-based forecasts.  On a monthly basis, 
the MASS-6 forecasts had a lower MAE in seven of the 12 months.  The monthly MAE 
pattern is quite similar to that of the power production forecasts with the MASS-6 forecasts 
yielding a lower MAE during five of the six months during the April through September 
period and COAMPS recording the lower MAE during four of the six months in the October 
through March period.  The only significant difference between the power production and 
wind speed forecasts on a monthly basis occurred during July 2004, when the MASS-6 
forecasts produced a power production MAE that was 1.0% of capacity lower than the 
COAMPS-based MAE, while the COAMPS wind speed forecasts generated an MAE that 
was 0.07 m/s lower. 

The comparison of the WRF and COAMPS forecasts was limited to the four-month March 
through June period.  For the entire period, the WRF-based forecasts yielded a power 
production MAE that was 0.9% of capacity lower than the COAMPS forecasts and a wind 
speed MAE that was 0.14 m/s lower.  The WRF forecasts yielded a lower MAE during three 
of the four months.  However, the pattern is somewhat suggestive of the seasonal MAE 
pattern seen in the comparison of the MASS-6 and COAMPS forecasts.  COAMPS recorded 
the lower MAE during March while the WRF MAE was lower during April, May and June.  
That is consistent with the pattern of the COAMPS forecasts performing relatively better 
during the cold season months that was also observed in the comparison between the 
MASS-6 and COAMPS forecasts.  One possible explanation is that the rate of error growth 
with increasing forecast time horizon is greater during the cold season.  This causes the 
missing 16 hours at the end of the forecast period in the COAMPS forecasts to have a 
greater impact on the performance statistics for the cold season. 

Forecast Ensembles 

An ensemble-mean forecast of the power production and the wind speed was generated 
from the 12 different forecasts produced for the PowerWorks wind plant for the four months 
(March to June 2005) for which all 12 forecasts were available.  The 12 ensemble members 
included each combination of the four  types of MOS-based forecasts and the three physics-
based models.   

Table 4-14 presents the MAEs of the power production and wind speed forecasts for various 
combinations of the 12 ensemble members as well as for the ensemble-mean forecast for 
each of the four months.  The MAE of the ensemble of power production forecasts based on  
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Table 4-14 Monthly MAE for the March to June 2005 period for ensemble forecasts of 
the power production (% of capacity) and wind speed (m/s) for the PowerWorks wind 
plant. 

Ensemble-12 Best Overall Best Monthly Average Ensemble-12 Best Overall Best Monthly Average
Mean Method Method of MAEs Mean Method Method of MAEs

Mar-05 6.2% 6.3% 5.1% 6.4% 2.33 2.29 2.26 2.43
Apr-05 14.6% 15.5% 14.0% 15.1% 2.52 2.65 2.45 2.65
May-05 16.1% 16.2% 15.7% 17.0% 2.40 2.56 2.39 2.59
Jun-05 18.6% 18.5% 18.1% 19.6% 2.40 2.43 2.43 2.62

4-months 13.9% 14.1% 13.2% 14.5% 2.41 2.48 2.38 2.57

Month
Power Production Forecast MAE Wind Speed Forecast MAE

 

Note: The ensemble forecasts include: (1) averaging all the forecasts in a 12-member ensemble (“Ensemble-12 
Mean”), (2) the individual method with the lowest MAE for the 4-month period (“Best Overall Method”), (3) a 
composite of the individual methods with lowest MAE in each month (“Best Monthly Method”); and (4) the mean 
MAE of all 12 ensemble members (“Average of MAEs”).  

the  mean of the 12 ensemble members was 0.2% of capacity lower than the MAE of the 
best performing individual forecast (MASS-6 SMLR2-ST) for the four-month period.  This 
is an MAE reduction (or skill score) of 1.4% relative to the best performing individual 
method.  The MAE of the ensemble-mean forecasts was also 0.6% of capacity lower than 
the average MAE of all 12 individual forecasts, but it was 0.7% of capacity higher than the 
composite four-month MAE of the best performing forecast for each month.  

The MAE of the ensemble mean wind speed forecasts for the four-month period was 0.07 
m/s lower than the MAE of the best performing individual wind speed forecast method.  
This represents an MAE reduction of 2.8% relative to the best individual forecast.  The 
ensemble-mean forecast had a lower MAE than the best overall individual forecast for three 
of the four months.  The MAE of the ensemble-mean forecast was also 0.16 m/s lower than 
the average MAE of all 12 ensemble members.  However, the ensemble-mean forecast had 
an MAE that was 0.03 m/s higher than the composite of the best performing method for 
each month. 

In summary, the ensemble-mean forecast outperformed the best performing individual 
forecast method by 1.4% for the power production forecasts and 2.8% for the wind speed 
forecasts. The ensemble-mean forecast also produced a lower MAE during three of the four 
comparison months for both the power production and wind speed forecasts.   

The ensemble-mean forecasts did not perform as well as the composite of the best method 
for each month for either the power production or wind speed forecasts, but it would be 
difficult to apply the latter approach to real time operations, since it would require a 
prediction of which method will perform best for the upcoming month.   

SMUD Wind Project, Solano 

The Sacramento Municipal Utility District (SMUD) operates a 15.2-MW wind plant in the 
Montezuma Hills of Solano County.  The plant consists of 23 660-kW Vestas turbines on 
land owned by the utility.  Sixteen of those turbines have hub heights of 50 meters and were 
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installed in 2003.  The other seven have hub heights of 65 m and were installed in 2004.  
The plant is located on a series of low 200- to 300-foot hills just to the north of the 
Sacramento River. 

The power production and meteorological data for this wind plant were obtained through the 
CA ISO PIRP data communication system.  The power production data consisted of the 
energy output at 10-minute intervals.  The 10-minute data were aggregated to one-hour 
intervals for use in the forecast algorithms.  Meteorological data available from one 
meteorological tower included wind speed and direction, temperature and pressure data at a 
height of 50 meters.  The meteorological data were also supplied at 10-minute intervals and 
aggregated to one-hour intervals for use in the forecasting procedure.   

The SMUD facility became a PIRP participant during the summer of 2004.  As a result, a 
full stream of data was not available until July 2004.  The July data were used as the initial 
training set for the MOS algorithms and forecasts began in August 2004.  Thus, only 11 
months of forecasts could be generated for the SMUD wind plant. 

Figures 4-78 and 4-79 show the number of hours in the forecast verification pool when both 
power production and wind speed data are available at the same time.  The forecast data 
used to compile this chart was from the MASS-6 forecasts, which were available for every 
possible forecast hour for the verification period.  Thus, the unavailable hours in these charts 
are solely attributable to missing observational data.  There were a total of 16,032 possible 
forecast hours (334 days times 48 forecast hours for each day’s forecast) in the 11-month 
period.  Power production data were unavailable for 3,286 (20.5%) of these forecast hours.   

Approximately half of the missing power production data hours occurred during October 
and November.  Data were missing during 40.7% of the forecast hours in October and 
74.9% of the  hours in November.  January also yielded substantial unavailable data 
(32.9%). The unavailable data resulted in a forecast verification pool size of 12,746 forecast 
hours.  The size of the verification pool was smaller for the forecasts based on the COAMPS 
and WRF models, since output from those models was not available for all of the possible 
forecast hours.  
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 Verification Hours by Month
Power Production Forecasts: SMU
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Figure 4-78  Number of hours for which data were available (green) and unavailable 
(red) for the computation of verification statistics for the SMUD power production 
forecasts. 
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Wind Speed Forecasts: SMU
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Figure 4-79  Number of hours for which data were available (green) and unavailable 
(red) for the computation of verification statistics for the wind speed forecasts for the 
SMUD meteorological tower. 
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The availability of wind speed data was similar to that of the power production data.  In fact, 
for a large majority of the hours, the availability status of the meteorological and power 
production data was the same—either both were available or unavailable. The wind speed 
data was unavailable for 3,406 forecast hours.  This represents 21.3% of the forecast hours 
in the 11-month period.  As was the case with the power production data, the months with 
the most unavailable wind speed data were October, November and January. 

Overall, there was a substantial amount (~20%) of unavailable power production and wind 
speed data during the 11-month period and a large fraction of the missing data hours were in 
the months of October, November and January.  Therefore, the representativeness of the 
statistics for these months is questionable as it is for months immediately after these months, 
since training samples for those months will include many of the hours with missing data in 
the prior months. 

Overall Forecast Performance 

Table 4-16 presents the forecast performance statistics by month for the best performing 
MASS-6 forecast and MOS method, which was the SMLR2-ST method at the SMUD wind 
plant.       

Table 4-15 Monthly MAE and skill scores for the overall best performing power 
production and wind speed forecast method (MASS-6 SMLR2-ST)  for the SMUD wind 
plant. 

% MAE(1) %MAE (2) Skill-P Skill-C MAE (m/s) % MAE (3) Skill-P Skill-C
Jul-04
Aug-04 20.3% 33.7% 42.7% 15.5% 2.00 20.5% 38.9% 14.0%
Sep-04 18.9% 49.9% 43.0% 22.0% 2.07 28.1% 45.0% 17.0%
Oct-04 18.6% 88.7% 11.7% 11.3% 2.22 39.1% 5.6% 9.5%
Nov-04 10.1% 113.6% 61.8% -2.4% 1.88 33.1% 32.4% -18.8%
Dec-04 12.8% 102.2% 40.8% 24.8% 2.31 55.9% 27.0% 9.3%
Jan-05 6.5% 94.2% 51.1% 32.6% 1.74 51.5% 15.4% -5.0%
Feb-05 9.1% 90.8% 37.8% 17.3% 1.85 43.8% 19.0% 2.2%
Mar-05 14.2% 75.4% 35.6% 31.3% 2.06 40.3% 32.8% 25.2%
Apr-05 19.4% 63.4% 33.0% 10.2% 1.93 29.5% 32.7% 15.4%
May-05 19.8% 55.1% 27.0% 3.5% 1.88 25.1% 29.1% 3.2%
Jun-05 19.9% 43.2% 38.4% 5.0% 1.68 20.4% 37.6% 5.9%
Annual 16.0% 60.8% 37.1% 16.1% 1.98 35.9% 31.3% 10.9%

(1)  MAE as % of rated capacity  (2) MAE as a % of production;  (3) MAE as % of average wind speed

Month
Power Production Forecast Wind Speed Forecast 

 

The MAE of the power production forecasts for all verifiable forecast hours during the 11-
month period (12,746 hours) was 16.0% of the installed capacity or 60.8% of the average 
production for the 11-month period.  The monthly MAE as a percentage of capacity ranged 
from 6.5% for January 2005 to a high of 20.3% for August 2004.  The monthly MAE ranged 
from 33.7%of rated capacity during August and 113.6% during November 2004.  The skill 
scores relative to persistence and climatology were respectively 37.1% and 16.1%.  
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The 11-month MAE of the wind speed forecasts for the 50-meter tower was 1.98 m/s, which 
is 35.9% of the mean wind speed.  The monthly MAE values ranged from 1.68 m/s during 
June 2005 and 2.31 m/s during December 2004.  The skill score relative to persistence was 
31.3%.  The lowest monthly skill score was the 20.4%  during June 2005, and the highest 
skill score was 51.5% during January 2005.  The 11-month skill score relative to 
climatology was 10.9%.   

Figure 4-80 presents two error distributions for the 11 months of power production 
forecasts.  One is for the first 24 hours of the forecast period and the other is for second 24 
hours. The error distributions for the two periods are quite similar.  Both are characterized 
by a strong central peak in the -5% to 0% bin with a rapid decrease in the frequency on 
either side of this peak and a long tail of very low frequencies for medium and large 
negative and positive errors.  The sharp peak in the -5% to 0% bin is a result of the fact that 
errors of exactly zero are included in the -5% to 0% bin.  There are a fairly large number of 
hours for which the forecast and observations are zero during the low output months in the 
cold season.  This results in an error of exactly zero and, thus, there are many more hours 
that fall into the -5% to 0% bin than the 0% to +5% bin.   There is a slight asymmetry 
between the positive and negative sides of the distribution.  There is a slightly greater 
frequency of negative errors (forecast is too low) of a particular magnitude than there is of 
positive error of the same magnitude.  This is most noticeable in the 10% to 30% of capacity 
range.  Another noteworthy feature of the error distribution is that the frequency of very 
large errors (greater than 60% of capacity) is much greater on the negative side of the 
distribution than it is on the positive side.  This indicates that the power production is more 
likely to be close to the rated capacity when it was forecast to be near zero, than the reverse 
situation, that the actual power is close to zero when it is forecast to be close to rated 
capacity.   

Figure 4-81 presents the cumulative error distribution for the 12,476 power production 
forecast hours that could be evaluated. This chart shows the frequency of absolute errors 
that are equal to or smaller than the error shown on the horizontal axis. Separate error 
distributions are shown for the first and second 24 hours of the forecast period.  As noted 
previously, the distributions for the first and second half of the forecast period are very 
similar.  This indicates that the quality of the forecasts does not degrade very much from the 
first to the second day of the forecast period.  This cumulative error distribution indicates 
that the median error (50% frequency) is approximately 9.5% of the capacity for hours 1 to 
24 and about 10.7% of capacity for hours 25 to 48.  It also indicates that 75% of the 1- to 
24-hour forecast hours have an absolute error that is less than 23.6% of the capacity while 
75% of the 25- to 48- hour forecast hours have an absolute error that is less than 25.2% of 
capacity. 

As noted earlier, there is a strong relationship between the forecasted level of power 
production and the magnitude of the forecasted error due mostly to the shape of the turbine 
power curve.   Figure 4-82 illustrates this relationship for the 11-months of SMUD power 
production forecasts.  The MAE is about 15% of rated capacity when the forecasted 
production is relatively low but rises to a broad peak between 20% and 25% when the 
forecasted production is between approximately 40% and 80% of capacity.  This 
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corresponds to the steeply sloped portion of the power curve.  The MAE tends to decrease 
as the forecasted production level rises above 80% and is near the 15% level when the 
forecasted production is near the rated capacity (95% to 100%).   
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Figure 4-80  Error frequency distribution for hours 1 to 24 (red) and 25 to 48 (blue) of 
the forecasts for the SMUD wind plant.  The data sample includes 12,746 forecast 
hours. 
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Cumulative Absolute Error Distribution
SMUD: August 2004 - June 2005
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Figure 4-81  Cumulative absolute error frequency distribution (% of hours with an 
absolute error less than are equal to the value on the horizontal axis) for hours 1 to 48 
of the forecasts for the PowerWorks wind plant.  The data sample includes 12,746 
forecast hours. 

MAE by Forecasted Power Production
SMUD: August 2004 - June 2005
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Figure 4-82  MAE of the SMUD 1- to 48-hour power production forecasts vs. the 
forecasted power production.  The MAEs are shown for 21 bins of forecasted 
production. Each has a width of 5% of installed capacity and is labeled by the value at 
the upper end of the bin. Bars with light shading denote bins with a sample size of 
less than 30 hours. 
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MAE by Forecasted Wind 
Speed
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Figure 4-83  MAE of the 1- to 48-hour SMUD Met Tower wind speed forecasts vs. the 
forecasted wind speed.  The MAEs are shown for 21 bins of forecasted wind speed. 
Each has a width of 1 m/s and is labeled by the value at the upper end of the bin. Bars 
with light shading denote bins with a sample size of less than 30 hours. 

Forecast Performance vs. Time Horizon 

An important consideration in the use of wind power production forecasts is the rate of 
degradation of the forecast performance as the forecast time horizon (the look-ahead period) 
increases.  If the performance of the forecasts decreases rapidly with increasing look-ahead 
period then it is useful and perhaps critical to have frequent forecast updates.  On the other 
hand, if the degradation is slow then there is less of a need for frequent updates.   

This issue was addressed in the forecast performance analysis by constructing MAE vs. 
forecast time horizon charts for the SMUD power production and wind speed forecasts 
(Figures 4-84 and 4-85).  These charts illustrate the MAE for each look-ahead hour for the 
best performing eWind forecast (MASS-6 SMLR2-ST) and the persistence and climatology 
reference forecasts.  It should be noted again that the climatology forecasts for the SMUD 
plant were simply the monthly averages for each hour of the day and not a true climatology 
since a multi-year climatological dataset was not available for this plant.  There is a gradual 
upward trend in the MAE of the eWind power production forecasts from near 15% during 
the first few hours of the forecast period to the 18% to 20% range towards the end of the 
forecast period.  However this gradual upward trend is somewhat obscured by a noticeable 
diurnal cycle in the MAE.  There is a peak in the MAE around forecast hours 18 and 42 
(2:00 a.m. PST) and a minimum near forecast hour 30 (2:00 p.m. PST).  Thus, the larger 
errors tend to occur in the middle of the night and the smaller errors during the middle of the 
day.  
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A linear fit to the eWind MAE curve indicates that the average rate of error growth over the 
48-hour period is 0.07% of installed capacity per hour or about 1.7% of installed capacity 
per day.  This is on the high end of the range of error growth rates calculated for the wind 
plants in this project.  The persistence forecasts outperform the eWind forecasts for the first 
two hours of the forecast period and the MAE values are about the same for forecast hour 
three.  The eWind forecasts significantly outperform the persistence forecasts after forecast 
hour three.   

The MAE of the wind speed forecasts gradually increases from slightly under 2 m/s during 
the first 12 hours of the forecast period to just over 2 m/s towards the end of the 48-hour 
period (Figure 4-85).   There is much less evidence of a diurnal cycle in the wind speed 
forecast MAE than there is in the power production forecast MAE pattern. A linear least 
squares fit of the hourly eWind wind speed forecast MAE data indicates that the average rate 
of increase in MAE is 0.0044 m/s per hour or about 0.11 m/s per day.  The MAE of the 
persistence forecasts rises rapidly from near 1 m/s for forecast hour one to near 2 m/s by 
forecast hour five.  The persistence forecasts have a lower MAE than the eWind forecasts 
for hours one through three and a similar MAE to the eWind forecasts for hours four through 
six.  The eWind forecasts decisively outperform the persistence forecasts after forecast hour 
six. 

Overall, the MAE vs. forecast time horizon charts for the SMUD plant indicate that the error 
growth rate for the day-ahead power production forecasts is higher than for the other plants 
in this project, but the wind speed forecast error growth rate is near the average of the other 
wind plants.  This suggests that the forecasts of power production for the SMUD plant are 
more sensitive to wind speed forecast errors than those for most of the other wind plants 
addressed in this project.  Interestingly, the eWind power production forecasts began to 
outperform persistence forecasts earlier in the forecast period than at the other wind plants 
in this project.  
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Power Production MAE by Forecast Time Horizon 
SMUD: August 2004 - June 2005
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Figure 4-84  MAE by forecast time horizon for 11 months of eWind (red line with 
diamond markers), persistence (green line with square markers) and climatology 
(blue line with triangle markers) power production forecasts for the SMUD wind plant. 
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Figure 4-85  MAE by forecast time horizon for 11 months of eWind (red line with 
diamond markers), persistence (green line with square markers) and climatology 
(blue line with triangle markers) wind speed forecasts for the 50 m level at SMUD 
Meteorological Tower. 
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Physics-Based Model Comparison 

A performance comparison among the forecasts generated by the three physics-based 
models employed in this project was done by analyzing the forecast error statistics for 
forecasts generated by the same MOS method applied to the output from all three physics-
based models.  The best performing MOS method for all three models for the SMUD wind 
plant was the SMLR2-ST scheme.  Table 4-16 presents the forecast performance statistics 
for the SMLR2-ST MOS-adjusted forecasts and the three physics-based models.  
Comparison of the monthly forecast performance statistics is complicated by the fact that 
the forecasts from all three models were not generated for the entire one-year forecast 
period, as described previously. 

The statistics in Table 4-16 indicate that the overall performance of the forecasts based upon 
the MASS-6, WRF and COAMPS models was fairly similar with perhaps a slight advantage 
for the MASS-6 and WRF forecasts over the COAMPS forecasts.  For the four months for 
which a comparison was possible, the MAE of the power production forecasts from the 
MASS-6 model was 18.3% while the MAE for the WRF-based forecasts was 19.0%.  The 
difference in overall performance was mostly attributable to the performance during March 
when the MASS-6 forecasts yielded an MAE that was 2.2% of capacity lower than that of 
the WRF-based forecasts.  The MASS-6 forecasts had a smaller advantage during April and 
the MAEs were very similar during May and June, with the WRF-based forecasts having a 
slight advantage for May and the MASS-6 forecasts during June.   

The MAEs of the wind speed forecasts from the two models exhibited a similar pattern to 
that of the power production MAEs.  The overall MAE of the wind speed forecasts was 
essentially the same although MASS-6 showed a slight numerical advantage with an MAE 
of 1.89 m/s versus a 1.90 m/s MAE for the WRF-based forecasts.  As in the case of the 
power production forecasts, the MASS-6 wind speed forecasts yielded a much lower MAE 
(0.26 m/s lower) than the WRF-based forecasts for the month during March.  However, the 
wind speed MAE values during April and June were essentially the same, while the WRF-
based forecasts yielded a significantly lower MAE (0.19 m/s lower) during May. Overall, it 
is hard to argue that there is a substantial overall difference in performance between the two 
models. However, there may be some seasons when there are significant differences, but it 
was not possible to identify them using the four-month sample.. 

A comparison between the MASS-6 and COAMPS forecasts was available for the entire 11-
month period.   The forecasts based on the MASS-6 output data generally outperformed the 
COAMPS-based forecasts by a modest amount.  The actual difference is probably slightly 
larger since, as noted earlier, the COAMPS forecasts ended at 32 hours into the forecast 
period and the last 16 hours of the forecast period typically have larger errors than the first 
32 hours.  However, as noted in the previous section, the rate of error growth with 
increasing forecast time horizon is fairly low so the impact of this difference on the MAE 
comparison is most likely quite modest.   The MASS-6 power production forecasts 
produced an 11-month MAE that was 0.4 % of rated capacity (2.5%) lower than that 
generated by the COAMPS-based forecasts.  An analysis of the monthly data indicates that 
the MASS-6 forecasts yielded a lower MAE during 7 of the 11 months.  In addition, there 
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were two other months (February and May) in which the COAMPS-based forecasts yielded 
a lower MAE by just 0.1% of capacity.  If the MAE values were adjusted to account for the 
shorter COAMPS look-ahead period, the MAE of the COAMPS-based forecasts would most 
likely have been slightly higher than that of the MASS-6 forecasts.  There is no suggestion 
of a seasonal pattern in the relative performance of the MASS-6 and COAMPS forecasts.   

The data in Table 4-16 indicate that the MASS-6 wind speed forecasts had a slightly greater 
advantage over the COAMPS-based forecasts than the power production forecasts.  The 
MASS-6 wind speed forecast MAE was lower by 0.12 m/s (5.7%) over the 11-month 
period.  In addition, the MASS-6 forecasts yielded a lower MAE during 9 of the 11 months.  
MASS-6 had a substantially greater advantage in the MAE values for the raw wind speed 
forecasts that were interpolated directly from the three-dimensional grid of output data from 
the two models.  For the entire 11-month period, the raw MASS-6 wind speed forecasts 
exhibited an MAE of 2.52 m/s while the raw COAMPS forecasts exhibited an MAE of 3.18 
m/s.   

The comparison of the WRF and COPAMPS forecasts was limited to the four-month March 
through June period.  For the entire period, the COAMPS-based forecasts yielded a power 
production MAE that was 0.3% of rated capacity lower than that for the WRF-based 
forecasts.  Each model yielded a lower MAE during two  of the four months.  

Although the WRF-based power production forecasts yielded a slightly higher overall MAE 
than the COAMPS-based forecasts, the WRF-based wind speed forecasts actually yielded a 
lower overall MAE by 0.08 m/s (4.2%).  Each model yielded a lower wind speed MAE 
during two of the four months.  The main reason was that the WRF-based forecasts yielded 
a significantly lower MAE during May, when its wind speed forecast MAE was 0.21 m/s 
(11.1%) lower. 

The overall forecast performance by the three physics-based models for the SMUD wind 
plant was fairly similar.  The performances statistics suggest that the forecasts based on the 
MASS-6 simulations had a slight and probably insignificant edge in performance for both 
the power production and wind speed forecasts.  There was no significant difference in 
forecast performance between the forecasts based on COAMPS and WRF physics-based 
models. 
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Table 4-16 Monthly MAE of power production (% of capacity) and wind speed (m/s) for 
forecasts generated by the three physics-based models for the SMUD wind plant. 

MASS 6 COAMPS WRF MASS 6 COAMPS WRF
Jul-04
Aug-04 20.3% 21.4% 2.00 2.11
Sep-04 18.9% 21.4% 2.07 2.19
Oct-04 18.6% 20.0% 2.22 2.48
Nov-04 10.1% 15.2% 1.88 2.52
Dec-04 12.8% 12.0% 2.31 2.24
Jan-05 6.5% 6.6% 1.74 2.26
Feb-05 9.1% 9.0% 1.85 1.87
Mar-05 14.2% 15.3% 16.4% 2.06 2.26 2.32
Apr-05 19.4% 21.2% 20.0% 1.93 2.15 1.94
May-05 19.8% 19.7% 19.5% 1.88 1.90 1.69
Jun-05 19.9% 18.6% 20.2% 1.68 1.62 1.66
Annual 16.0% 16.4% 18.9% 1.98 2.10 1.92

Mar - Jun 18.3% 18.7% 19.0% 1.89 1.98 1.90

Month Power Production Forecast MAE Wind Speed Forecast MAE

 

Forecast Ensembles 

An ensemble-mean power production forecast and the wind speed was generated from the 
12 different forecasts produced for the SMUD wind plant for the four months (March 2005 
through June 2005) for which all 12 forecasts were available.  The 12 ensemble members 
consisted of each combination of the four MOS methods and the three physics-based 
models.   

Table 4-17 presents the MAEs for the power production and wind speed forecasts for 
several combinations of the 12 ensemble members as well as for the ensemble-mean 
forecast.  For the power production forecasts, the MAE of the ensemble-mean forecast was 
0.3% of rated capacity lower (1.7%) than the MAE of the best performing individual 
forecast method (MASS-6 SMLR2-ST) for the entire four-month period. It was also 1.5% of 
capacity lower than the average MAE of all 12 of the individual forecasts.  The MAE of the 
ensemble-mean power production forecast was even 0.2% of capacity lower than the 
composite of the best performing forecast for each month.  

The MAE of the ensemble-mean wind speed forecasts for the four-month period was 0.05 
m/s lower than the MAE of the best performing individual wind speed forecast method, 
which is an MAE reduction (or skill score) of 2.6%. The MAE of the ensemble-mean 
forecast was also 0.12 m/s lower than the average MAE of the 12 ensemble members.  
However, in contrast to the power production forecasts, the ensemble-mean wind speed 
forecast yielded an MAE that was slightly higher (0.02 m/s) than the best monthly forecast 
composite. 

In summary, the ensemble mean yielded a skill score of 1.7%, relative to the best 
performing individual power production forecast method, and a skill score of 2.6%, relative  
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Table 4-17  March to June 2005 period for ensemble forecasts of the power 
production (% of capacity) and wind speed (m/s) for the SMUD wind plant 

Ensemble-12 Best Overall Best Monthly Average Ensemble-12 Best Overall Best Monthly Average
Mean Method Method of MAEs Mean Method Method of MAEs

Mar-05 14.4% 14.6% 14.2% 15.5% 2.16 2.32 2.06 2.29
Apr-05 18.4% 17.7% 17.7% 19.7% 1.88 1.95 1.92 2.02
May-05 17.4% 18.6% 18.6% 19.5% 1.66 1.68 1.66 1.81
Jun-05 18.3% 18.7% 18.6% 19.6% 1.57 1.54 1.54 1.66

4-months 17.1% 17.4% 17.3% 18.6% 1.82 1.87 1.80 1.94

Month
Power Production Forecast MAE Wind Speed Forecast MAE

 
Note: The ensemble forecasts include: (1) averaging all the forecasts in a 12-member ensemble (“Ensemble-12 Mean”), 
(2) the individual method with the lowest MAE for the 4-month period (“Best Overall Method”), (3) a composite of the 
individual methods with lowest MAE in each month (“Best Monthly Method”); and (4) the mean MAE of all 12 ensemble 
members (“Average of MAEs”). 

to the best wind speed forecast method for the four-month test period.  This means that, for 
the SMUD wind plant and the specific four-month period, the best forecast performance 
would be achieved by using the ensemble-mean forecast over any of the individual 
forecasts. 

The ensemble-mean forecasts yielded a slightly higher MAEs than those generated using the 
best method for each month.  However, there is currently no technique that can reliably 
determine in advance which method will perform best during a particular month, and this 
approach cannot currently be used in practice.  However, the results indicate that further 
improvements in performance might be achieved if an effective technique to select or more 
heavily weight the best performing forecast for a given day, week, month or other time 
period could be formulated. 

High Winds Wind Project, Solano 

The High Winds Energy Center is located in the Montezuma Hills of Solano County.  The 
plant is built on a series of low (200 to 300 foot) hills just to the north of the Sacramento 
River and is adjacent to the SMUD wind plant.  The plant was constructed in 2003.  It 
consists of 90 Vestas 1.8 MW turbines with a hub height of 65 meter, which yields a rated 
capacity of 162 MW.   

The power production and meteorological data for this wind plant were obtained through the 
CA ISO PIRP data communication system.  The power production data consisted of the 
energy output for the entire wind plant in 10-minute intervals.  The 10-minute data were 
aggregated to one-hour intervals for use in the forecast algorithms.  Data were available 
from six meteorological towers.  The meteorological towers provided wind speed and 
direction, temperature and pressure data at a height of 65 meter.  The meteorological data 
were also supplied at 10-minute intervals and aggregated to one-hour averages.  The wind 
data from the six towers were also aggregated into a single composite wind speed and 
direction for the wind plant.  The wind speed and direction forecasts were made for the 
composite wind speed and direction data for the wind plant.  



 
 
Next-Day Wind Plant Energy Forecasting System Development and Testing 

 4-124

The wind speed and direction forecasts were made for the composite win speed and 
direction and not for the individual towers.  This approach was employed because no 
information about the specific locations of the meteorological towers and turbines was 
available for this wind plant.  It would be reasonable to expect that some improvement in 
power production forecast performance could be obtained by assigning clusters of turbines 
to individual meteorological towers and then forecasting the wind and power production for 
each cluster in a manner similar to what was done for the PowerWorks wind plant in 
Altamont Pass.  

Figures 4-86 and 4-87 show the number of hours available to the forecast evaluation pool.  
The “available hours” are the hours for which both forecast and observational data are 
available.  MASS-6 forecasts were available for all forecast hours during the 12-month 
period.  Thus, any unavailable hours were attributable to missing observational data.  There 
were a total of 17,520 possible forecast hours (365 days times 48 forecast hours for each 
day’s forecast) during the 12-month period.  Power production data were unavailable for 
only 764 (4.4%) of these forecast hours.  Most of the missing data hours occurred during 
December when power production data were not available for 608 hours (40.8% of the 
December hours).  The percentage of unavailable data hours for each of the other 11 months 
was 3.3% or less.  Thus, 16,756 hours were available to the power production forecast 
evaluation pool. The size of the evaluation pool is smaller for the forecasts based on the 
COAMPS and WRF models since output from those models was not available for all of the 
possible forecast hours. 

 The availability of wind speed data was not quite as high as that of the power production 
data.  Wind data was unavailable for 1,526 (8.7%) of the forecast hours. The majority of the 
unavailable wind speed data was for the months of September and December, which 
together accounted for 1,086 of the unavailable data hours.  However, 808 of these hours 
occurred during December.  The fraction unavailable wind data was quite low for the other 
10 months, with no month having an unavailable data percentage greater than 6%. 

In summary, the availability of power production and wind data for the High Winds plant 
was very good with the exception of  December, which had a large fraction of unavailable 
power production and wind speed data. 
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Figure 4-86  Number of hours with available and unavailable data for the computation 
of power production forecast verification statistics for the High Winds wind plant for 
the July 2004 to June 2005 period. 

 

Figure 4-87  Number of hours with available and unavailable data for the computation 
of wind speed forecast verification statistics for the High Winds wind farm for the July 
2004 to June 2005 period. 
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Overall Forecast Performance 

Table 4-18 presents the forecast performance statistics by month for the best performing 
MASS-6 forecast MOS method (SMLR2-ST) at the High Winds plant in the Solano area.   

The MAE of the power production forecasts was 16.8% of the installed capacity or 50.7% 
of the average production for all verifiable forecast hours during the one-year period (16,756  

Table 4-18 Monthly MAE and skill scores for the overall best performing power 
production and wind speed forecast method (MASS-6 SMLR2-ST) for the High Winds 
wind plant 

% MAE(1) %MAE (2) Skill-P Skill-C MAE (m/s) % MAE (3) Skill-P Skill-C
Jul-04 17.6% 24.5% 25.9% -14.3% 1.75 16.0% 23.8% -5.6%
Aug-04 18.2% 29.1% 42.1% 18.8% 1.93 19.0% 37.3% 12.9%
Sep-04 18.7% 50.8% 36.0% 23.9% 2.34 31.1% 32.3% 12.2%
Oct-04 19.4% 70.9% 21.0% 25.3% 2.54 39.0% 23.4% 14.1%
Nov-04 11.9% 86.3% 26.0% 33.1% 2.55 60.2% 19.5% 16.3%
Dec-04 17.7% 100.9% 35.9% 12.7% 2.69 53.3% 35.9% 12.6%
Jan-05 8.8% 90.2% 15.5% 34.1% 2.12 60.9% 17.4% -6.2%
Feb-05 12.1% 89.0% 18.9% 19.0% 2.14 50.1% 17.6% 1.5%
Mar-05 17.9% 74.1% 20.7% 28.3% 2.36 43.6% 32.0% 23.8%
Apr-05 19.3% 61.3% 28.7% 13.4% 2.07 30.2% 27.1% 14.4%
May-05 20.9% 53.8% 19.1% -1.3% 2.03 25.7% 25.2% -1.3%
Jun-05 19.3% 39.0% 37.1% 11.1% 1.66 18.8% 36.1% 8.0%
Annual 16.8% 50.7% 28.6% 17.5% 2.16 31.9% 27.1% 9.9%

(1)  MAE as % of rated capacity  (2) MAE as a % of production;  (3) MAE as % of average wind speed

Power Production Forecast Wind Speed Forecast 
Month

 

hours).  The monthly MAE ranged from a low of 8.8% of rated capacity during January 
2005 and a high of 20.9% during May 2005.  As a percentage of the average monthly 
production, the MAE ranged from 24.5% during August 2004 to 100.9% during December 
2004.  The skill scores relative to persistence and climatology were 28.6% and 17.5%, 
respectively. It should be noted again that, since a multi-year climatological dataset was not 
available, the climatology forecasts for the High Winds plant were simply the monthly 
averages for each hour of the day and do not represent true climatology data. 

The annual MAE of the wind speed forecasts was 2.16 m/s, which is 31.9% of the mean 
wind speed for the 12-month period.  The monthly MAE values range from a low of 1.66 
m/s during June 2005 to a high of 2.69 m/s during December 2004.  The skill score of wind 
speed forecasts relative to persistence was 27.1%.  The lowest monthly skill score was the 
17.4% recorded during January 2005, while the highest was 37.3% during August 2004.  
The skill score vs. climatology was 9.9%, but was not based on a true climatology as noted 
in the discussion of the power production forecast performance.  

Figure 4-88 shows the error distribution for the one-year of power production forecasts. The 
chart shows two error distributions.  One is for the first 24 hours of the forecast period, and 
the other for the second 24 hours. The error distributions for the two periods are quite 



  

 
Next-Day Wind Plant Energy Forecasting System Development and Testing 

 4-127

similar.  Both are characterized by a strong central peak in the -5% to 0% bin, with a rapid 
decrease in the frequency on either side of this peak and a long tail of very low frequencies 
for medium and large negative and positive errors.  The sharp peak in the -5% to 0% bin 
occurs because errors of exactly zero are included in the -5% to 0% bin.   

There are a fairly large number of hours for which the forecast and observations are zero 
during the low output months in the cold season.  This results in an error of exactly zero 
and, thus, there are many more hours that fall into the -5% to 0% bin than the 0% to +5% 
bin.   There is a noticeable asymmetry between the positive and negative sides of the 
distribution.  There is a greater frequency of negative errors (the forecast is too low) of a 
particular magnitude than there is of positive errors of the same magnitude. 

Figure 4-89 illustrates the cumulative error distribution for the 16,756 power production 
forecast hours that could be verified.  This chart shows the frequency of absolute errors that 
are equal to or smaller than the error shown on the horizontal axis. Separate error 
distributions are shown for the first and second 24 hours of the forecast period.  As noted 
previously, the distributions for the first and second half of the forecast period are very 
similar.  This indicates that the quality of the forecasts degrades only slightly from the first 
to the second day of the forecast period.  The median forecast error (50% frequency) is 
approximately 10.6% of the rated capacity for hours 1 to 24, and about 11.7% of capacity 
for hours 25 to 48.  The chart also shows that 75% of the forecast hours during the first 24-
hour period yield absolute errors that are less than 24.1% of the rated capacity, while 75% of 
the forecast hours for the second 24-hour period have absolute errors that are less than 
25.4% of capacity. 

As noted earlier, there is a strong relationship between the forecasted level of power 
production and the magnitude of the forecasted error due primarily to the shape of the 
turbine power curve. Figure 4-90 illustrates this relationship for the 12 months of High 
Winds power production forecasts.  The MAE is below 15% when the forecasted production 
is 5% of capacity or lower, but the MAE increases immediately to 20% when the forecasted 
production rises above 5% and remains near 20% in a very broad peak, until the forecasted 
production rises above 65%.  Above 65%, the MAE generally decreases as the forecasted 
production increases.  The MAE is in the 10% to 15% range when the forecasted production 
is between 80% and 95% and the MAE is well below 5% when the forecasted production is 
above 95%.  This implies that forecasts that anticipate the production will be near full 
capacity or near zero have a high degree of reliability for the High Winds plant. 
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Power Production Forecast Error Distribution
High Winds: July 2004 - June 2005
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Figure 4-88  Error frequency distribution for hours one to 24 (red) and 25 to 48 (blue) 
of the forecasts for the High Winds wind plant.  The data sample included 16,756 
forecast hours during the July 2004 to June 2005 period. 
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Figure 4-89  Cumulative absolute error frequency distribution (% of hours with an 
absolute error less than are equal to the value on the horizontal axis) for hours 1 to 48 
of the forecasts for the High Winds wind plant. The data sample included 16,756 
forecast hours. 
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Figure 4-90  MAE of the High Winds 1- to 48-hour power production forecasts vs. the 
forecasted power production.  The MAE is shown for 21 bins of forecasted 
production. Each has a width of 5% of installed capacity and is labeled by the value at 
the upper end of the bin. Bars with light shading denote bins with a sample size of 
less than 30 hours. 
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Figure 4-91  MAEs of the 1- to 48-hour High Winds wind speed forecasts vs. the 
forecasted wind speed.  The MAE is shown for 21 bins of forecasted wind speed. 
Each has a width of 1 m/s and is labeled by the value at the upper end of the bin. Bars 
with light shading denote bins with a sample size of less than 30 hours. 
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The magnitude of the wind speed forecast error also has some dependence on the forecasted 
wind speed, but not as much as the magnitude of the power production forecast error has on 
the forecasted level of production.  Figure 4-91 illustrates this relationship for the High 
Winds plant.  In general, the chart is quite similar to the pattern shown for the SMUD plant 
in Figure 4-83.   

The MAE is generally below 2 m/s for wind speeds under 5 m/s, except for forecasts of 
exactly zero wind speed, which yield MAEs slightly above 2 m/s.  However, this MAE 
value is based on a very small sample size, since there were only 10 hours with a forecasted 
speed of exactly zero during the 12-month period.  The MAE values rise as the forecasted 
wind speeds increase and reach a peak near 2.7 m/s for forecasted wind speeds between 5 
and 6 m/s.  The MAE is generally lower when the forecasted wind speed is above this range.  
In fact, the MAE is close to 2 m/s throughout the 8 to 15 m/s range of forecasted wind 
speeds.  The wind speed forecast error peak near 6 m/s is towards the lower end of the 
steeply sloped portion of the power curve where the sensitivity to wind speed forecast error 
is greatest and thus contributes to the rapid rise in error as the forecasted production rises 
above 5%.  

Forecast Performance vs. Time Horizon 

An important consideration of using wind power production forecasts is the rate of 
degradation of the forecast performance as the forecast time horizon increases the look-
ahead period.  If the performance of the forecasts decreases rapidly with increasing look-
ahead period, then it is useful and perhaps critical to frequently update the forecasts.  On the 
other hand, if the degradation rate is low, then the need for frequent updates is reduced.   

This issue is addressed in the analysis of the forecast performance by the MAE vs. forecast 
time horizon charts for the High Winds power production and wind speed forecasts, shown 
in Figures 4-92 and 4-93.  These charts show the MAE for each look-ahead hour for the 
MASS-6 SMLR2-ST forecasts (labeled eWind) and the persistence and climatology 
reference forecasts.  

There is a gradual upward trend in the MAE of the power production forecasts.  The MAE 
rises from near 15% during the first few hours of the forecast period to the 17% to 19% 
range towards the end of the forecast period.  There is very little evidence of a diurnal 
pattern in the MAE as there was for some of the other wind plants.  A linear fit to the eWind 
MAE curve indicates that the average rate of error growth over the 48-hour period is 0.07% 
of installed capacity per hour or about 1.7% of installed capacity per day.  This is on the 
high end of range of error growth rates calculated for the other wind plants and is almost 
exactly the same as the error growth rate calculated for the nearby SMUD wind plant.  The 
MAE of the persistence forecasts rise rapidly from about 7% for forecast hour one to near 
15% by forecast hour four. The persistence forecasts outperform the SMLR2-ST forecasts 
for the first three hours of the forecast period and the MAE values are about the same for 
forecast hours four through eight.  The eWind forecasts significantly outperform the 
persistence forecasts after forecast hour eight.  The eWind forecasts outperform the 
climatology forecasts throughout the forecast period although, as is typical, the skill relative 
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to a climatology forecast (or the gap in the MAE between the eWind and the climatology 
forecast) gradually decreases as the forecast time horizon increases. 

Wind Energy Forecast MAE by Forecast Time Horizon 
High Winds: July 2004 - June 2005
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Figure 4-92 MAEs of power production forecasts at High Winds wind plant  vs. 
forecast time horizon for 12 months of eWind (red line with diamond markers), 
persistence (green line with square markers) and climatology (blue line with triangle 
markers) forecasts. 
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Figure 4-93  MAEs  of wind speed forecasts at High Winds wind plant  based on 
eWind (red line with diamond markers), persistence (green line with square markers) 
and climatology (blue line with triangle markers) forecasts. 
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The MAE of the wind speed forecasts increases very slowly from just over two m/s, during 
the first 12 hours of the forecast period, to near 2.2 towards the end of the 48-hour period 
(Figure 4-94).   There is no indication of the diurnal cycle in the wind speed forecast MAE 
pattern that was fairly prominent in the MAE pattern for some of the other wind plants.  A 
linear least squares fit to the eWind wind speed forecast MAE data indicates that the average 
rate of increase in MAE is 0.0024 m/s per hour or about 0.06 m/s per day.  The MAE of the 
persistence forecasts rises rapidly from near one m/s for forecast hour one to near two m/s 
by forecast hour five.  The persistence forecasts yield a lower MAE than the eWind forecasts 
during forecast hours one through four and a similar MAE to the eWind forecasts for 
forecast hours five through eight.  The eWind forecasts decisively outperform the 
persistence forecasts after forecast hour eight. 

Overall, the MAE vs. forecast time horizon charts for the High Winds plant indicate that the 
error growth rate for the power production forecasts is similar to that calculated for the 
nearby SMUD plant and on the high end of the error growth rates for the other wind plants 
participating in this project.  However, the wind speed forecast error growth rate is much 
lower than that of the SMUD plant and on the low end of the distribution of values for the 
wind plants in this project. 

Physics-Based Model Comparison 

A performance comparison among the forecasts generated by the three physics-based 
models employed in this project was done by analyzing the forecast error statistics for 
forecasts generated by the same MOS method from the output of all three models.   

Table 4-19 presents the forecast performance statistics for SMLR2-ST forecasts from all 
three models.  As noted previously, the comparison of the forecast performance statistics is 
complicated by the fact that the forecasts from all three models were not generated for the 
entire one-year forecast period. 

The statistics in Table 4-19 indicate that the overall performance of the MASS-6, WRF and 
COAMPS forecast models was fairly similar, with perhaps a slight advantage for the 
MASS-6 forecasts. The relative performance of the three models was quite similar to that at 
the SMUD wind plant.  For the four months for which a comparison was possible, the MAE 
of the MASS-6 power production forecasts was 18.6% vs. 19.0% for the WRF forecasts.  As 
in the case of the SMUD plant, the net difference in overall forecast performance was due to 
2% for capacity lower MAE of the MASS-6 vs.WRF forecasts.  The forecast performance 
differences for each of the other three months were less than 0.3% of rated capacity, with 
MASS 6 having a slight advantage during April and WRF during May and June.  Thus, 
there was virtually no difference in the performance for 3 of the 4 months. The MAEs of the 
wind speed forecasts from the two models exhibited a similar pattern. 
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Table 4-19  Monthly MAEs of power production (% of capacity) and wind speed (m/s) 
for forecasts generated by the three physics-based models for the High Winds wind 
plant.  

MASS 6 COAMPS WRF MASS 6 COAMPS WRF
Jul-04 17.0% 16.5% 1.75 1.63
Aug-04 17.6% 19.5% 1.93 1.97
Sep-04 18.1% 18.8% 2.34 2.50
Oct-04 18.7% 18.1% 2.54 2.57
Nov-04 11.5% 12.2% 2.55 2.75
Dec-04 17.1% 16.0% 2.69 2.87
Jan-05 8.4% 7.1% 2.12 2.25
Feb-05 11.7% 11.1% 2.14 2.12
Mar-05 17.2% 19.1% 19.2% 2.36 2.70 2.68
Apr-05 18.6% 18.8% 18.7% 2.07 2.17 2.07
May-05 20.2% 20.4% 19.9% 2.03 2.07 1.91
Jun-05 18.6% 19.0% 18.4% 1.66 1.70 1.61
Annual 16.2% 16.3% 19.0% 2.16 2.25 2.08

Mar - Jun 18.6% 19.3% 19.0% 2.03 2.16 2.08

Month Power Production Forecast MAE Wind Speed Forecast MAE

 

For the entire four-month period, the MAEs of the MASS-6 forecasts were 0.05 m/s (2.4%) 
lower than those of the WRF-based forecasts.  However, as in the case of the power 
production forecasts, this net difference was largely attributable to the fact that the MASS-6 
MAE was 0.32 m/s (11.9%) lower than the MAE of the WRF-based forecasts during March.  
The differences were much smaller during the other three months, with the WRF-based 
forecasts showing an advantage during May and June.  

Unlike the case of the MASS-6 and WRF forecasts, it was possible to compare the 
performance of the MASS-6 and COAMPS forecasts during the entire 12-month period.  
The forecast performance of the two models was similar, with a very slight edge to the 
MASS-6 forecasts. The slight edge of the MASS-6 model is probably slightly larger than 
indicated by the data in Table 4-19 because, as noted earlier, the COAMPS forecasts ended 
at 32 hours into the forecast period and the last 16 hours of the forecast period normally 
yield larger errors than the first 32 hours.  However, as noted in the previous section, the 
rate of error growth with increasing forecast time horizon is fairly low so the impact of this 
difference in forecast periods is most likely modest.    

The MASS-6 power production forecasts yielded a 12-month MAE that was 0.1% of rated  
capacity (0.6%) lower than the MAE of the COAMPS forecasts.  The monthly data indicate 
that the MASS-6 forecasts yielded a lower MAE during seven of the 12 months.  There is no 
discernable pattern in the relative performance.  The MAE differences often switch signs 
from month to month and there is no suggestion of a seasonal pattern.  All of this suggests 
that there is very little overall difference in performance of the power production forecasts 
between these two models for the High Winds wind plant.  

The performance difference was slightly greater for the wind speed forecasts. The MASS-6 
wind speed forecasts yielded a 12-month MAE that was lower by 0.09 m/s (4%), and the 
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monthly data show that the MASS-6 forecasts yielded the lowest MAE during 10 of the 12 
months.  MASS-6 also yielded a substantially lower MAE values for the raw wind speed 
forecasts that were interpolated directly from grid point output data from the two models.  
For the entire 12-month period, the raw MASS-6 wind speed forecasts yielded an MAE of 
2.79 m/s vs. 3.8 m/s for the  COAMPS forecasts.  This indicates that the COAMPS forecasts 
received a  greater benefit from the MOS procedure than the MASS-6 forecasts.   

The comparison of the WRF and COAMPS forecasts was limited to the four-month March 
through June period.  During the four-month period, the MAE of the WRF-based forecasts 
was 0.3% of capacity lower than that of the COAMPS-based forecasts.  The WRF-based 
forecasts yielded a lower MAE during three of the four months, although none of the 
differences were greater than 0.5% of capacity.   

The WRF-based wind speed forecasts also yielded a lower overall MAE by 0.08 m/s 
(3.7%).  The MAE of the WRF-based forecasts was lower for all four months although, 
during three of the four months, the difference was 0.1 m/s or less. 

Figure 4-94 illustrates the dependence of the relative forecast performance of the three 
models on the forecast time horizon.  As one might expect, the overall pattern is fairly 
similar for the three models but there are some systematic differences. The COAMPS-based 
forecasts yield much larger errors during hour three to hour nine of the forecast period.  
Another observation is that the amplitude of the diurnal MAE pattern was greater for the 
WRF-based forecasts than for the other two models.  The WRF-based forecasts produced a 
substantially lower MAE during forecast hours 0 to 6 and 24 to 30. This corresponds to the 
8:00 a.m. to 2:00 p.m. period of the first and second days of the forecast period.  However, 
the WRF-based forecasts produced larger errors for the period extending from late afternoon 
to late evening, especially on the second day of the forecast pattern.  There is potential to 
improve forecast performance by exploiting patterns such as those described above via an 
intelligent ensemble forecast that weights forecasts that are likely to perform better during 
specific time windows more heavily.  

In summary, the overall forecast performance by the three physics-based models for the 
High Winds wind plant was fairly similar.  The performances statistics suggested that the 
forecasts based on the MASS-6 simulations had a slight edge in performance for both power  
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Figure 4-94  MAEs  of power production forecasts for the High Winds wind plant 
based on the MASS-6, COAMPS and WRF physics-based models vs. forecast time 
horizon the look-ahead interval) for four months (March to June 2005). 

production and wind speed forecasts, and that the WRF-based forecasts had a slight edge 
over the COAMPS-based forecasts for the four-month period.    

Forecast Ensembles 

An ensemble-mean forecast of the power production and the wind speed was generated 
from the 12 different forecasts produced for the High Winds wind plant for the four months 
(March 2005 through June 2005) for which all 12 forecasts were available.  The 12 
ensemble members consisted of each combination of the four different MOS methods and 
the three physics-based models.   

Table 4-20 presents the MAEs of the power production and wind speed forecasts for several 
combinations of the 12 ensemble members as well as the ensemble-mean forecast.   

For the power production forecasts, the MAE of the ensemble-mean forecast was 0.1% of 
capacity (0.5%) higher than the MAE of the best performing individual forecast (MASS-6 
SMLR2-ST) during the entire four-month period and 0.8% of capacity (4.5%) higher than 
the composite of the best performing forecast for each month.  The best overall method 
yielded a lower MAE than the ensemble-mean during three of the four months.  However, 
the ensemble- mean yielded a substantially lower MAE (1% of capacity) during the one 
month that it did achieve a lower MAE.  This was the largest absolute difference between 
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the best overall method and the ensemble mean among the four months for which a 
comparison could be made.   

The best monthly method produced a lower power production forecast MAE than the 
ensemble-mean method during all four of the comparison months.  Thus, the performance of 
the ensemble-mean forecast for the High Winds wind plant was not quite as good as it was 
for some of the other wind plants.   However, the MAE of the ensemble-mean was 0.9% of 
capacity lower than the average MAE of all 12 of the individual forecasts.  

Table 4-20 Monthly MAE for the March to June 2005 period for ensemble forecasts of 
the power production (% of capacity) and wind speed (m/s) for the High Winds wind 
plant. 

Ensemble-12 Best Overall Best Monthly Average Ensemble-12 Best Overall Best Monthly Average
Mean Method Method of MAEs Mean Method Method of MAEs

Mar-05 18.8% 18.6% 17.9% 19.1% 2.47 2.33 2.33 2.63
Apr-05 18.0% 17.1% 17.1% 18.7% 1.96 2.06 2.01 2.12
May-05 18.5% 18.3% 18.3% 20.2% 1.80 2.01 1.85 2.01
Jun-05 18.4% 19.4% 17.1% 19.1% 1.56 1.69 1.61 1.68

4-months 18.4% 18.3% 17.6% 19.3% 1.95 2.02 1.95 2.11

Wind Speed Forecast MAE
Month

Power Production Forecast MAE

 
Note: The ensemble forecasts include: (1) averaging all the forecasts in a 12-member ensemble (“Ensemble-12 Mean”); 
(2) the individual method with the lowest MAE for the four -month period (“Best Overall Method”); (3) a composite of the 
individual methods with lowest MAE in each month (“Best Monthly Method”); and (4) the mean MAE of all 12 ensemble 
members (“Average of MAEs”). 

 

   

The MAE of the ensemble-mean wind speed forecasts for the four-month period was 0.07 
m/s (3.5%) lower than the MAE of the best performing individual wind speed forecast 
method.  In addition, the ensemble-mean forecast yielded a lower MAE during three of the 
four comparison months. During those months the ensemble-mean method yielded skill 
scores of 4.8%, 5.5% and 7.7% with respect to the best overall method.   In addition, the 
MAE of the ensemble-mean forecast was also the same (1.95 m/s) as that of the composite 
forecast created by using the best performing forecast for each month.  However, the 
ensemble-mean method yielded a lower wind speed forecast MAE during three of the four 
comparison months.  The ensemble-mean forecast was 0.16 m/s lower than the average 
MAE of all of ensemble members. 

In summary, the ensemble-mean forecast method yielded a skill score of -0.5% relative to 
the best performing individual power production forecast method, and a skill score of 3.5% 
relative to the best performing wind speed forecast method during this four-month period.   

Thus, the ensemble-mean was clearly the best choice for a wind speed forecast as it clearly 
outperformed all 12 ensemble members.  However, that was not the case for the power 
production forecasts since the best performing individual method slightly outperformed the 
ensemble-mean method.   In addition, the composite of the best method for each month had 
a substantial advantage over the ensemble-mean.  There is currently no method to reliably 
determine in advance which method will perform best in a particular month.  Therefore, this 
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approach cannot currently be used in practice.  However, the results indicate that further 
forecast performance improvements on the order of 5% to 10% might be achieved in some 
cases if an effective technique to select the best performing forecast for a given day, week, 
month or other time period could be formulated. 

Summary  

The next-day wind energy forecasting algorithm research and testing was performed in two 
phases.  The first phase conducted a series of experiments to screen potential methods to 
improve  forecast performance, as measured by the reduction in forecast error relative to that 
in the previous Energy Commission-EPRI wind energy forecasting project (Energy 
Commission and EPRI, 2003).  The second phase applied and tested the most promising 
methods at five wind projects in California for periods ranging from several months to a full 
year, depending on data availability. In both phases, the forecast performance was measured 
by the mean errors, mean absolute errors, and the skill scores of the 48-hour forecasts of 
hourly wind speed and energy generation vs. the observed data.  The results of each phase 
are summarized below. 

Screening of Improved Data and Forecast Methodologies 

The improved data and forecast methodology screening experiments were designed to test 
potential methods of reducing forecast error and were chosen according to two criteria: (1) 
those that had the greatest promise of improving the forecasts; and (2) those that could be 
tested with the data available for this project and within the resource limitations of the 
project.  

Table 4-21 describes the six potential enhancements of the forecast algorithm tested in 
experiments and summarizes the impact of the forecast system modifications within each 
focus area on the performance of the wind power production forecasts.  

The MAE reductions in Table 4-21 represent the combined net reductions for each of the 
forecast system modifications at both the Mountain View and PowerWorks wind plants 
during a six-month test period relative to the MAEs in the previous Energy Commission-
EPRI wind forecasting evaluation (EPRI-Energy Commission PIER 2003).  For a variety of 
reasons, the baseline method are not the same for each focus area, as noted in Table 4-21.  

The most significant reductions of the mean absolute error (MAE) resulted from Focus 
Areas 1, 3, 4, and 5.  In order of decreasing improvement of MAE, the four modifications 
are: 

• Stratified 2-stage Screening Multiple Linear Regression (SMLR) Model Output 
Statistics (MOS) method (15.8%) 

• MODIS and Pathfinder Water Surface Temperature (WST) data (12.3%) 

• Plant scale power curve based on deviations from power curve (4.6%).  
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Table 4-21 Summary of the net reduction in the power production forecast MAE 
associated with the forecast system modifications in each focus area. 

Focus Forecast System MAE
Area Modification Reduction (%)

MODIS and Pathfinder WST data (4 km)
BASELINE: NCEP OI WST (110 km) 
1 km physics-based model grid
BASELINE: 10 km physics-based model grid
WRF with 40 km grid as the physics-based model
BASELINE:  MASS with 40 km grid
Stratified 2-stage SMLR scheme
BASELINE: Screening Multiple Linear Regression 
Model deviations from power curve
BASELINE: Speed-based plant-scale power curve
Mean of an ensemble of forecasts
BASELINE: "Best" single forecast method

5

6

12.3%

-4.7%

4.0%

15.8%

4.6%

0.8%

1

2

3

4

 

• Physics-based WRF atmospheric model using the 40-km grid (4.0%). 

Focus Area 2, using a higher resolution grid smaller grid cells) for the physics-based model, 
did not produce a net improvement in forecast performance for the six test months.  Indeed, 
the MAE of the power production forecast increased by 4.7% when the grid size was 
reduced to 1 km from the 10 km used in the previous Energy Commission-EPRI project.   

However, there is more to the story.  Before applying the Model Output Statistics (MOS) 
adjustments, the MAEs of the raw unadjusted forecasts substantially decreased by reducing 
the grid size from 10 km to 1 km.  But after applying the MOS adjustments, the MOS-
adjusted forecasts based on the 10-km and 1-km physics-based models were very similar.  
In effect, the MOS procedure compensated for the higher error of the raw 10-km vs. the 1-
km physics-based models and tended to equalize the performance of the 10-km and 1-km 
grids.  Thus there was no net benefit realized from reducing the grid size. 

Focus Area 6, using an ensemble-mean forecast in place of the best individual method, 
yielded an MAE reduction of only 0.8%.  However, the performance of the ensemble-mean 
approach was most likely reduced by limiting the number of ensemble members to two (a 
MASS-based a WRF-based forecast) in this screening phase experiment.  Other 
investigations (for non-wind energy applications) reported in the meteorological literature 
indicate that a fairly large number of ensemble members is needed to realize a more 
substantial potential impact of the ensemble-mean approach.  The second phase of this task 
conducted a more meaningful test of the ensemble approach, in which 12 different forecast 
methods were employed for a portion of the one-year forecast evaluation period for five 
wind plants. 

It should also be noted that the MAE reductions listed in Table 4-21 are not likely to be 
additive for at least two reasons.  First, the MAE changes associated with the forecast 
system modifications are not likely to be highly correlated with each other.  Therefore, in 
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general, they will frequently offset each other.  Second, some of modifications may provide 
alternate ways to eliminate the same systematic error.  For example, systematic errors 
associated with mis-specifying water surface temperatures may be reduced by using an 
improved water surface temperature database or perhaps by using a more sophisticated 
MOS formulation that can statistically correct physics-based model errors attributable to the 
poor WST data. 

Forecast Evaluation at Five California Wind Projects 

Hourly power production and wind speed forecasts were generated twice daily for a 48-hour 
look-ahead period and for five wind plants in California over the 12-month period, July 1, 
2004 to June 30, 2005.  The wind plants were: (1) the 66.6 MW Mountain View I and II 
wind plant in the San Gorgonio Pass; (2) the 34.5 MW Oak Creek wind plant in Tehachapi 
Pass; (3) the 90 MW PowerWorks wind plant in Altamont Pass; (4) the 15.18 MW SMUD 
wind plant in Solano County; and (5) the 162 MW High Winds wind plant also in Solano 
County.   

Forecasting Protocol 

The forecasts generated predictions of the hourly power production, wind speed and wind 
direction for a 48-hour period beginning at 8:00 a.m. PST and 8:00 p.m. PST each day. 
Three different physics-based models and four different Model Output Statistics (MOS) 
procedures were used to produce an ensemble of 12 different forecasts for each of the wind 
plants.  The forecasts were generated in a mixture of real-time and historical modes 
although all forecasts only used data that was or would have been available to the forecast 
system in an operational real-time mode. 

To permit a more detailed analysis of the forecast performance a comprehensive analysis of 
the forecast performance was conducted only for the forecasts generated during the morning 
forecast cycle the forecasts delivered at 8:00 a.m. each day).  A review of the performance 
statistics indicates that the differences in forecast performance between the morning and 
afternoon cycles were not significant and that almost all of the conclusions from the analysis 
of the performance of the morning forecast cycle would apply to the combined pool of both 
the afternoon and morning forecast cycles. 

Overall Forecast Performance Results 

The annual mean absolute errors (MAEs) and skill scores of the forecast for all 48 forecast 
hours for both the power production and wind speed forecasts for each of the wind plants 
are presented in Table 4-22.  In each case, the results are for the forecast method that gave 
the lowest forecast error over the entire one-year period.  

One’s impression of the forecast performance is tied somewhat to which performance 
parameters are considered.   The average MAE as a percentage of a plant’s installed 
capacity for all five wind plants was 14.5%.  It ranged from a low of 11.9% for the 
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PowerWorks plant to a high of 16.8% for the High Winds plant.   However, the average 
MAE as a percentage of the actual plant production was 52.7% and ranged from a low of 
36.6% for the Mountain View plant to a high of 60.8% for the SMUD plant.  The average 
skill score relative to a persistence forecast was 33.2% and ranged from a high of 40.5% for 
the Mountain View plant to a low of 26.5% for the PowerWorks plant.  The average skill  

Table 4-22  Mean absolute error of the best performing individual power production 
and wind speed forecasts for the entire 48-hour forecast period for each of the five 
participating wind plants. 

 

score with respect to a climatology forecast was 29.5% and ranged from 47.7% for the 
Mountain View plant to 16.1% for the SMUD wind plant. 

For the Mountain View wind plant, the wind energy forecast MAE decreased from 16.6% of 
rated capacity in the previous Energy Commission-EPRI project to 13.0%, and the wind 
speed MAE for the Catellus Tower decreased from 3.05 m/s to 2.65 m/s.  In addition, the 
skill score vs. persistence increased from 37.5% to 40.5% and the skill score vs. climatology 
increased from 36.4% to 47.7%.   

For the PowerWorks wind plant, the wind energy forecast MAE decreased from 14.1% of 
rated capacity to 11.9%, while the wind speed forecast MAE for PowerWorks Tower M438 
decreased from 1.93 m/s to 1.78 m/s.  In addition, the skill score of the power production 
forecasts vs. climatology increased from 30.9% to 38.9%.  These statistics indicate that the 
forecast system enhancements substantially improved forecast performance relative to the 
previous Energy Commission-EPRI project.  

The average MAE of the power production forecasts for all five participating wind plants 
was 14.5% of installed capacity and 52.7% of the average production.   The skill scores of 
the power production forecasts were 33.2% vs. persistence and 29.5% vs. climatology.   

It should be noted that the skill scores relative to climatology are most likely too low.  This 
is because no climatological data were available for three of the wind plants and the actual 
monthly mean wind energy generation for each hour of the day was assumed for the 
climatology value instead of independently-collected climatology data.  Therefore, the 
forecast error of the resulting climatology forecast is lower than would be expected if actual 
climatology data had been used. The average mean absolute error of the wind speed forecast 
was 2.27 m/s, which is 34.1% of the average wind speed.  

MAE MAE Skill Skill MAE MAE Skill Skill
% of Capcity % of Prod vs Persistence vs Climatology m/s % of Speed vs Persistence vs Climatology

Mountain View 13.0% 36.6% 40.5% 47.7% 2.65 27.5% 40.1% 27.0%
Oak Creek 15.0% 57.1% 33.2% 27.1% 2.03 40.6% 32.8% 43.8%

PowerWorks 11.9% 58.5% 26.5% 38.9% 2.52 34.4% 28.2% 12.4%
SMUD 16.0% 60.8% 37.1% 16.1% 1.98 35.9% 31.3% 10.9%

High Winds 16.8% 50.7% 28.6% 17.5% 2.16 31.9% 27.1% 9.9%
Overall 14.5% 52.7% 33.2% 29.5% 2.27 34.1% 31.9% 20.8%

Site 
Power Production Forecast MAE Wind Speed Forecast MAE
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Variability of Power Generation Forecast Error 

The forecast performance results raise a number of issues and questions about the nature of 
the variability in forecast performance.  For example, the annual power-generation forecast 
MAE exhibits considerable variability between the wind plants, ranging from 11.9% of 
rated capacity at the PowerWorks plant to 16.8% at the High Winds plant.  

Furthermore, the performance statistics indicate that the wind speed forecast MAEs are not 
highly correlated with the wind power production forecast MAEs.   For example, the SMUD 
wind plant had the lowest wind speed MAE but the second highest power production MAE, 
while the Mountain View wind plant had the highest wind speed MAE but the second 
lowest wind energy forecast MAE.  Clearly, the magnitude of the wind speed MAE is not 
the controlling factor for the wind power production MAE.  

An obvious question is: what factors are responsible for this variability?   It is clearly of 
critical importance to understand the factors that contribute to forecast performance 
variability in order to determine the direction of future efforts to improve forecast 
performance. 

Therefore, a detailed analysis of the forecast errors for three wind plants was conducted. By 
eliminating the differences in wind speed errors between the wind plants, it was possible to 
gain considerable insight.  This was done by assuming a constant two meter/sec wind speed 
error, randomly distributed between positive and negative deviations from the observed 
values for all hours of the year. The resulting wind energy forecast MAEs were 8.8% of 
rated capacity at the Mountain View 1 and 2 wind plant and 13.1% and 14.7% at the High 
Winds and SMUD wind plants, respectively.   Thus, even with virtually identical overall 
wind speed error magnitudes, the wind power production MAEs still vary significantly 
between the wind plants.   

The principal reason for the energy-forecast MAE variation between plants appears to be 
related to differences in the maximum slopes of the plant-scale power curves and the wind 
speed frequency distributions between the plants.   

Figure 4-71 shows empirical plant-scale power curves for each of the three wind plants.  
The general shapes of the curves imply that the sensitivity of wind energy forecast error to 
wind speed forecast error varies with wind speed.  When the wind speed is in the range 
corresponding to the steeply-sloped middle section of the plant-scale power curve, the wind 
energy forecast error should be most-sensitive to wind speed forecast errors.  Thus, the 
maximum wind energy forecast errors should occur at sites where the wind speed spends 
many hours in the middle range of the power curve. 
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Empirical Plant-Scale Power Curves
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Figure 4-95 Empirical median plant-scale power curves derived from measured wind 
energy generation and wind speed data for three of the participating wind plants 

However, the maximum slopes of the power curves also vary between the wind plants, and 
plants with higher maximum slopes should also exhibit higher wind energy forecast errors.  
The slopes are mostly determined by the correlation between the wind speeds at the 
individual wind turbine locations.  This was verified by the “constant 2 m/s error 
experiment”.  The SMUD wind plant with the steepest-slope power curve also exhibited the 
highest wind energy forecast MAE when a constant wind speed forecast error of 2 m/s was 
assumed.  The Mountain View plant with the lowest maximum power curve slope exhibited 
the lowest energy forecast MAE. 

Ensemble Forecasts 

Applications and testing of ensembles of individual forecast methods have demonstrated 
improved forecast performance in other meteorological forecast applications.  To assess the 
potential of ensemble forecasting of wind power production, a composite forecast was 
generated from the ensemble of the 12 individual forecasts that were generated in this 
project.  The 12 individual forecasts consisted of each combination of four MOS procedures 
and three physics-based models.  The full suite of methods was only available for the four-
month period, March 2005 through June 2005, so the evaluation of the ensemble approach 
was limited to that period.   

Table 4-24 summarizes the wind speed and energy forecast MAEs for four combinations of 
power generation and wind speed forecasts from the 12-member ensemble.  The first 
columns of the power production and wind speed sections list the MAEs of the ensemble-
mean forecasts.  The forecasts were constructed by calculating the average of all available 
members of the 12-member ensemble for each hour of every forecast cycle. 
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The next columns to the right (labeled “Best Overall Method”) list the MAEs of the method 
that yielded the lowest MAE over the entire four-month period for each wind plant.  This is 
the method that would typically be used in an operational forecast environment, since it 
would most likely be classified as the best method when reviewing performance statistics 
compiled over a long period. 

Table 4-23 Mean absolute errors of ensemble power production (% of rated capacity) 
and wind speed (m/s) forecasts for the five participating wind plants 

Ensemble-12 Best Overall Best Monthly Average Ensemble-12 Best Overall Best Monthly Average
Mean Method Method of MAEs Mean Method Method of MAEs

Mountain View 16.4% 16.0% 15.7% 17.9% 2.62 2.66 2.63 2.89
Oak Creek 18.9% 17.3% 17.3% 20.7% 2.07 2.14 2.05 2.25

PowerWorks 13.9% 14.1% 13.2% 14.5% 2.41 2.48 2.38 2.57
SMUD 17.1% 17.4% 17.3% 18.6% 1.82 1.87 1.80 1.94

HighWinds 18.4% 18.3% 17.6% 19.3% 1.95 2.02 1.95 2.11
4-months 17.0% 16.6% 16.2% 18.2% 2.17 2.24 2.16 2.35

Month
Power Production Forecast MAE Wind Speed Forecast MAE

 
Notes: The ensemble forecasts include: (1) averaging all the forecasts in a 12-member ensemble 
(“Ensemble-12 Mean”), (2) the individual method with the lowest MAE for the 4-month period (“Best Overall 
Method”), (3) a composite of the individual methods with lowest MAE in each month (“Best Monthly 
Method”); and (4) the average MAE of all 12 members of the ensemble (“Average of MAEs”). 

The next columns to the right, labeled ”Best Monthly Method,” list the composite MAEs of 
the forecasts created by using the methods with the lowest MAEs for each of the four 
months.  It  would be difficult to use this approach in an operational environment, since one 
would have to identify which method was going to perform best during a particular month 
before the month began. However, it may be possible to develop an “intelligent ensemble 
composite” that varies the weight placed on different members of the ensemble in the 
ensemble-composite forecast as a function of parameters which indicate which ensemble 
members are likely to perform better for a particular forecast cycle.  This is a possible area 
for future research. 

The rightmost columns, labeled “Average of MAEs,” represent the average MAEs of all 12 
ensemble members.  These are the forecast MAEs that are most likely if one had no 
knowledge about the relative performance of the forecast methods and randomly selected a 
forecast method each day.  

The results indicate that the performance of the ensemble mean forecasts of wind speed was 
substantially better than that of power production.    

For the wind speed forecasts, the ensemble-mean method clearly outperformed the best 
overall method.  The five-plant average MAE for the ensemble-mean wind speed forecasts 
was 3.1% lower than the composite MAE of the best overall forecast for each wind plant.  
In fact, the MAE of the ensemble-mean was only very slightly higher than the MAE of the 
“Best Monthly Forecast”.  Furthermore, the ensemble-mean forecast had a lower MAE than 
the best overall method for all five of the wind plants.   The ensemble-mean forecast also 
had an MAE that was almost 8% lower than that of the average MAE of all of the ensemble 
members.   
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However, for the power production forecasts, ensemble mean method had a slightly higher 
four-month average MAE (17.0%) than the composite of the best overall method for each 
plant (16.6%).  Much of the  difference is attributable to very poor forecast performance at 
the Oak Creek plant, because one plant output model significantly outperformed all others, 
due to unusual systematic variations in the plant-scale power curve.   Excluding the Oak 
Creek plant, the performance of the ensemble-mean power production forecast was about 
the same as that of the best overall method for each plant.  This is still not as good as the 
performance of the ensemble-mean for the wind speed forecasts.  The reason for this is not 
clear but may be related to the fact that there was less diversity in plant output models than 
in other parts of the system.  This will require further investigation. 

These limited tests indicate that the ensemble approach appears to have at least modest 
potential to improve wind speed forecast performance.   

The simple approach of constructing an average wind-speed forecast from all ensemble 
members could reduce wind speed MAE by 3% to 5% relative to the best overall forecast 
method. The improvement could increase further if an intelligent ensemble composite can 
be constructed by weighting certain ensemble members more heavily when key parameters 
indicate they are more likely to produce better forecasts.   

For power production forecasts, further refinements of the ensemble forecasting approach 
are needed.  One possibility is to explore ways in which the uncertainty in the plant-scale 
power curve relationship can be addressed by the forecast ensemble. Another approach is to 
apply adjustments to the plant-scale power curve to account for variations in atmospheric 
stability. One way to do this would be to use rapid-update, high-resolution simulations of 
the wind flow field around the wind turbines to estimate deviations from a reference plant-
scale power curve based on atmospheric stability and other parameters. The next section 
discusses an initial investigation of this concept. 

Conclusions 

The results of the screening-phase next-day forecast experiments indicated that: 

1. The largest positive impacts on forecast performance occurred using improved 
higher-resolution water surface temperature values as input to the physics-based 
model and a more sophisticated statistical procedure in Model Output Statistics 
(MOS) component of the forecast system; 

2. Using a higher resolution grid for the physics-based model generally improved the 
performance of the raw physics-based model forecast, but did not significantly 
improve the performance of forecasts after the MOS procedure was applied; 

3.  The use of a next generation physics-based model (the WRF) and a more 
sophisticated plant output model yielded modest improvements in forecast 
performance in the experimental sample, but the significance of these improvements 
for a larger sample was questionable; and 
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4.  Forecasts generated by computing the mean from an ensemble of two forecasts from 
different physics-based models produced an insignificant improvement in 
performance, but this disappointing performance may have been attributable to the 
small size and limited diversity of the ensemble in the screening phase of the project.  

The results of the one-year forecast evaluation experiment at five wind projects indicated 
that: 

1. The composite annual mean absolute error (MAE) of the 48-hour power production 
forecasts was 14.5% of installed capacity and 52.7% of average production for the 
entire one-year period and the five participating wind plants; 

2. The composite annual MAE of the 48-hour wind speed forecasts was 2.27 m/s or 
34.1% of the mean wind speed for the one-year period at the meteorological tower 
sites within each wind plant; 

3. There was a considerable improvement in forecast performance between the forecast 
evaluation conducted in the previous (2001-02 period) and current (2004-05 period) 
projects for the two wind projects that participated in both projects; the MAE of the 
annual power production forecast MAE decreased from 16.6% to 13.0% at the 
Mountain View 1 and 2 plant at San Gorgonio, and from 14.1% to 11.9% at the 
PowerWorks plant at Altamont Pass;   

4. Ensemble forecasting yielded a 2% to 5% reduction in the MAEs of the wind speed 
forecasts, but there was no significant improvement in the MAE of the power 
production forecasts.     

5. The annual power production forecast MAEs varied significantly among the wind 
plants, ranging from 11.9% to 16.8%; 

6. The annual power production MAE was not well-correlated with the wind speed 
forecast MAE, with low power production MAEs often occurring with high wind 
speed MAEs, and vice versa; and 

7. A substantial portion of the power production forecast MAE variability between 
wind plants is due to differences between the wind speed frequency distributions and 
the maximum slopes of the wind plant-scale power curves.  

8. In addition, the high-resolution wind flow simulations described in Section 5 
indicate that atmospheric stability in the surface boundary layer affects the 
relationship of wind speeds and power generation between individual wind turbines 
and thus causes temporal variations in the plant-scale power curve.  It may be 
possible to improve forecast performance by modeling the impact of anticipated 
changes in atmospheric stability on the plant-scale power curve. 
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Recommendations 

Although significant progress was made in the improvement of the accuracy of power 
production forecasts and the understanding of the characteristics of forecast errors in this 
project, there are still many promising paths to pursue to further improve day-ahead power 
production forecast performance.    

Ideally, the development of power production forecasting technology should be viewed as 
an ongoing cyclic process.   The first step in each development cycle is a forecast evaluation 
experiment for a set of wind plants similar to the one performed in the second phase of this 
task.  Next the data from this evaluation experiment should be thoroughly analyzed to 
understand the error ranges and characteristics of the current state-of-the-art technology. 
The combination of an understanding of the error characteristics of the current state-of-the 
art forecast systems and awareness of new data or modeling technology will enable 
modifications to the forecast system that can be tested in the evaluation phase of a new 
development cycle. 

At present, the most promising opportunity for further improvement of forecast performance 
is the emergence of higher-resolution and more accurate measurements of  atmospheric and 
ground and water surface variables by satellite-based and ground-based remote sensing 
systems.  The challenge will be to effectively use the high volumes of data produced by 
these systems to obtain the maximum possible improvement in the performance of power 
production forecasts on the day-ahead or other look-ahead time scales.  It is recommended 
that the next phase of wind energy forecasting research continue in California focus 
developing techniques to effectively utilize the next generation of remotely-sensed data.
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5  
NUMERICAL MODELING OF WIND FLOW AND WIND 
PLANT POWER CURVES OVER COMPLEX TERRAIN 

Introduction 

A significant source of uncertainty and error in wind power production forecasts is attributable to 
the scatter in the relationship between the average wind speed over a prescribed time interval ( 
for example, an hour) measured at one or more meteorological towers within a wind plant and 
the average plant power production over that interval.  The scatter in this relationship means that 
even if a perfect forecast is made for the wind speed and direction at the meteorological tower(s), 
there will still be a substantial error in the power production forecasts.   

Typically, the mean absolute error of the power production forecasts for a wind plant given a 
perfect wind forecast for the plant’s meteorological towers is about 5% of a plant’s installed 
capacity.  This is a substantial portion of the typical mean absolute error of state-of-the-art next-
day power production forecasts of about 15% to 20% of installed capacity.  Some of the power 
production error associated with the perfect meteorological tower wind speed forecast is 
associated with non-meteorological factors such as variations in turbine availability and turbine 
performance.  However, most of this error is attributable to the variation in wind speed and 
direction within the plant’s domain, which causes the wind speed experienced by each turbine to 
be different from that measured at the meteorological tower.   

The objective of the numerical modeling of wind flow over complex terrain task is to improve 
the accuracy of plant-scale wind power production forecasts by constructing generic (not case 
specific) relationships between the wind speed and direction at a plant’s meteorological tower 
and the wind speed and direction at each turbine location within the farm based on data from 
very high resolution physics-based numerical simulations of the wind flow within and in the 
vicinity of the wind plant for a representative sample of cases.  The vision is that once 
relationships have been constructed, they will be used to estimate the wind speed at each turbine 
location from the measured or forecasted speed at the meteorological tower.  The wind speed at 
each turbine location can then be used to calculate the power production of the turbine through 
the use of the manufacturer’s power curve.  Ultimately, the calculated power production for each 
turbine can be aggregated to yield a power production estimate for the entire wind plant. 

The approach that is typically used to construct a prediction of a plant’s power production from a 
forecast of the wind speed at a plant’s meteorological tower is the empirical plant-scale power 
curve method.  In this approach, a plant-scale power curve is created by statistically fitting a 
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curve to a sample of wind speed measurements from a meteorological tower within the wind 
plant and the corresponding measured power production values.   The resulting plant-scale power 
curve is then used to calculate the power production from a forecasted wind speed for the 
meteorological tower site.  

Figure 5-1 shows an example of such an empirical plant-scale power curve and a sample of 
hourly wind speed and power production data.  This example is for PowerWorks, Inc. 
meteorological tower M127 in the Altamont Pass and a cluster of turbines in the vicinity of this 
tower.   The black markers depict the hourly data from July 2002, and the red line depicts the 
predicted power production for the same set of July 2002 hours based on an empirical power 
curve constructed from June 2002 power production data and the wind speed measurements at 
Tower M127 (or a perfect forecast of the hourly wind speeds at M127).    

Figure 5-1 indicates that there is a fair amount of scatter in the hourly data relative to values 
predicted by the empirical power curve.   This scatter represents error in the power production 
forecast.  As noted previously, much of this scatter is attributable to the fact that winds near the 
ground can be highly variable with time and over small distances, particularly in complex terrain 
such as in the Altamont Pass.  Therefore, the actual wind speeds experienced simultaneously at 
individual turbines in the cluster may differ significantly from each other and that measured by 
the anemometer on the meteorological tower.  The plant-scale power curve implicitly accounts 
for the average relationship between the wind speeds at the meteorological tower and those at the 
turbine sites, but power production forecast error will be caused by situations in which the 
distribution of wind speed over the cluster departs from the average conditions represented by 
the plant-scale power curve.  The challenge is to construct a more accurate model of the 
relationship between the wind speed measurements at the meteorological tower and the speeds at 
the individual turbines.   

Researchers at the University of California at Davis (UC Davis) used a boundary layer wind 
tunnel to model the airflow over the cluster of wind turbines associated with Tower M127.  They 
calculated the ratio of wind speeds at each turbine to the speed at the meteorological tower by 
measuring the simulated steady-state wind speed in the boundary layer wind tunnel at the 
meteorological tower and each of the 87 turbine locations. The UC Davis group measured the 
wind speed ratios for four different wind directions by rotating the terrain model within the wind 
tunnel. 

In this task, the wind speed ratios will be inferred from a set of high-resolution, physics-based, 
atmospheric numerical model simulations for the same conditions simulated in the boundary 
layer wind tunnel.  The question is whether a numerical model can correctly simulate wind speed 
differences between individual turbines, and whether the simulated differences calculated from a 
few detailed simulations can improve the prediction of the plant power output over a longer 
period of time. 



  

 
Numerical Modeling of Wind Flow and wind plant power curves over Complex Terrain 

 5-3

Plant-scale Power Curve
PowerWorks Cluster # 127: July 2002 Data
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Figure 5-1  Hourly power output vs. measured hourly average wind speed (black triangles) 
for the PowerWorks cluster 127 for July 2002 and hourly power output estimates (red 
circles) using a plant-scale power curve derived from hourly data from June 2002. 

  
High-Resolution Numerical Simulations of the Airflow over the Altamont Pass 

In recent years, AWS Truewind has routinely used a physics-based atmospheric numerical model 
to forecast power production for a large fraction of California wind farms.  Typically the model 
is configured to begin with a coarse outer grid with a 30- to 40-km resolution, then to nest down 
through higher resolution grids, to a final grid resolution of about 5 km.  The output from the 
highest resolution grid is then used to drive a statistical technique, usually some version of a 
Model Output Statistics (MOS) scheme.  The final result is a statistical forecast of wind speed 
over time at one or more locations for a given wind farm, which is then used to predict the wind 
plant power output through the use of an empirical plant-scale power curve.   

For operational forecasting, the grid size of the highest resolution grid is limited by the 
computational resources required to execute the simulations in the time required to produce a 
useful forecast.  The model time step decreases as the grid size decreases, so more time steps and 
more computational time are required for higher resolution simulations to simulate the same time 
period.  Because of this limitation, it is difficult to run a model in real time with grid cells small 
enough (less than 1 km) to fully resolve the complex terrain of the Altamont Pass, which is only 
a few kilometers wide.  To use an atmospheric numerical model to explicitly simulate wind 
speeds at each of the 93 turbines in the Tower M127 cluster, an even higher resolution (perhaps 
25 or 50 m) would be required.  As available computer power continues to increase, it may be 
feasible to run those kinds of simulations within a few years, but for the current project, a limited 
set of experimental high resolution simulations were executed in an attempt to understand the 
variability of the wind speeds in the M127 cluster of turbines, and evaluate whether the 
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knowledge gained enables us to predict the plant power output better than the typical plant power 
curve approach.  

The MASS Model 

Version 6.4 of the Mesoscale Atmospheric Simulation System (MASS) was used in this 
investigation.  MASS was originally developed in the 1980’s (Kaplan et al. 1982) as a research 
model.  It has since been used for a wide range of research and commercial applications, and in 
recent years some of the model’s databases and physical parameterizations have been optimized 
for a number of wind energy applications.  MASS is a three-dimensional physics-based model 
which uses a set of mathematical equations that represent the basic physical principles of 
conservation of mass, momentum and energy and the equation of state for moist air.  

Model Configuration 

A set of five sequential nested model grids were used to model the Tower M127 area.  Each grid 
consisted of a matrix of 125x125 horizontal grid points and 25 vertical levels extending from the 
ground up to 100 mb (about 16 km above sea level).  The outermost (coarsest resolution) grid 
employed a grid cell size of 30 km, followed by nested grids with grid cell sizes of 8 km, 2 km, 
500 m and 100 m.  Figure 5-2 shows the terrain field for the highest resolution 100 m grid 2; the 
high terrain feature near the middle of the grid is Brushy Peak, the 519 m hill where the Tower 
M127 cluster is located.  Because the terrain dataset also has a 100-m resolution, the  height of 
the hill on the model grid is a little lower, between 450 and 500 m in the model.  Figure 5-3 
shows a wider view of the Altamont Pass terrain and also depicts the locations of each of the 
11 PowerWorks, Inc. meteorological towers.   

Each 30-km simulation was initialized with archived grid point data from the National Center for 
Environmental Prediction’s (NCEP’s) “Aviation” or “AVN” model, which has since been 
designated the Global Forecast System (GFS).  Rawinsonde and surface observations were 
assimilated with an optimum interpolation analysis scheme to produce an initial state at 
1200 UTC (0400 PST) on the first day of the simulation period.  A 24-hr, 30-km simulation 
ending at 1200 UTC the next day was executed.  A simulation using a grid with 8-km grid cells 
employed the output from the parent 30-km simulation for initial and boundary conditions, and 
was run over the same 24-hr period.  Next, the 2- km simulation used the output from the 8-km 
simulation for initial and boundary conditions.  The 2-km simulation extended for a 12-hr period 
beginning at 0000 UTC (1600 PST) on the second day. The output from the 2- km simulation 
was then used to supply the initial and boundary conditions for a nested simulation with 500-m 
grid size.   The 500-m simulation was run for the same 12-hr period as the 2-km simulation.  
Finally a 100-m simulation was run for six hours, beginning at either 0000 UTC or 0600 UTC 
(2200 PST).  The 100-m simulation used the output from the 500-m simulation to supply its 
initial and boundary conditions.  Figure 5-2 shows the geographical area covered by the 100-mm 
grid and the terrain elevation of the grid cells. 

For each grid, a 4-km satellite-derived water surface temperature (WST) dataset was used to 
initialize water temperatures.  The 4-km WST data is valuable because it has sufficient resolution 
to represent the water temperature of the San Francisco Bay reasonably well.  The temperature of 
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the water in San Francisco Bay is an important factor the development of winds in the Altamont 
Pass. Especially during the warm season, the winds in the Bay Area are primarily forced by the 
difference in air temperature between the cool marine areas to the west of the Pass and the much 
warmer land areas in the valley to the east of the Pass.  The December 2001 and May 2002 
simulations used the AVHRR Pathfinder WST dataset, which extends back into the mid-1980s.  
For the July 2002 simulations, the WST dataset from the MODIS Aqua satellite was used.  This 
satellite was launched just prior to July 2002 and the data from this sensor did not become 
available until July 2002.   The MODIS WST data are thought to be somewhat better than the 
Pathfinder data due to advances in instrumentation and processing. 

 

Figure 5-2  The area encompassed by the domain and the associated terrain 
representation for the 100-m MASS model grid.  The color shading indicates the terrain 
elevation above sea level in meters. 
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Figure 5-3  A broader view of the terrain of the Altamont Pass.  The terrain is shaded in 
meters, and the locations of each of the 11 PowerWorks, Inc. meteorological towers are 
denoted by the “+” symbol and the associated 3-digit tower identification number. 

Ten Case Studies 

Ideally, 100-meter simulations would be executed over a long time period, but these very high-
resolution simulations require very short model time steps (about 0.5 second), so they take a long 
time to execute, even on the relatively fast Intel or AMD processors used by AWS Truewind.  
A single 6-hour 100 meter simulation took about a day and a half to complete.  Therefore, a set 
of ten case studies were chosen from the model runs executed in Subtask 6.1 for three months: 
December 2001, May 2002 and July 2002.  It was decided to limit the 100-meter simulations to 
the nighttime hours (1600 PST-0400 PST) because the winds through the Pass are usually 
strongest at night, and therefore most relevant to power production.  Table 5-1 lists the ten cases 
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chosen from the three months.  Cases were chosen to represent a range of conditions, including 
high, moderate and low wind speed cases.  Some of the cases were well-simulated by the 1-km 
simulations performed in Subtask 6.1 of this project, while others were not handled as well by 
the model.  Five cases include 100 meter simulations that begin at 0000 UTC (1600 PST) and 
five begin at 0600 UTC (2200 PST).  The initialization time of the 100 meter simulations was 
assigned randomly so that each month had at least one simulation beginning at each time.   

Table 5-1  Ten Cases Chosen for Numerical Simulations Using a 100-m Grid. 

Date Period of 100 m simulation Comments 

2 December 2001 0000-0600 UTC Storm event - 14 m/s winds at Tower 
M427; fairly good simulation 

15 December 2001 0600-1200 UTC Low wind speed day (about 2-3 m/s in 
model and observations all day) 

20 December 2001 0600-1200 UTC 
Weaker storm event than Dec 2:  pretty 
good simulation of winds with the 1 km 
model 

6 May 2002 0000-0600 UTC 
Very high wind speeds (22 m/s at tower 
M427), 1 km simulation has a large low 
bias 

19 May 2002 0000-0600 UTC Low wind speeds for May; 1 km 
simulation was very good 

30 May 2002 0600-1200 UTC Moderate wind speeds:  1 km simulation 
was pretty good 

16 July 2002 0000-0600 UTC Average diurnal wind speed day; pretty 
well simulated at 1 km 

19 July 2002 0000-0600 UTC 

Noticeable diurnal cycle but the wind 
speeds are well below the typical July day 
(peak of about 10 m/s at tower M427).  
Well simulated at 1 km 

24 July 2002 0600-1200 UTC 

One of the windiest days of the month (20 
m/s at tower M427), not that well 
simulated (wind speeds are 5 m/s or a little 
more too low at the peak)  

25 July 2002 0600-1200 UTC Average wind speed and diurnal cycle; 
quite well simulated at 1 km 

 

Figure 5-4 shows simulated wind vectors at turbine hub height (18 meters above the ground) 
from the 100 meter simulation, several hours into the 16 July 2002 simulation.  Some basic 
features of high wind events in the Altamont Pass can be seen – the sluggish flow just upstream 
of the Pass, speed-up over high terrain such as at the Brushy Peak location of the Tower M127 
cluster and the higher terrain to the northwest. 
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Figure 5-4  The 18-m wind field at 0430 UTC 16 July 2002 (8:30 p.m. PST), several hours 
into the 100 m simulation.  Wind vectors are shown against a shaded terrain elevation 
background.  The length of the vectors is proportional to the wind speed; a 10 m/s scale 
arrow is shown at the bottom.  The maximum winds at this time are about 25 m/s.  For 
readability, a vector is shown for every fourth grid point 400 m between points instead of 
the actual 100 m spacing of the computational grid).   

Predicting Plant Power Production from Inferred Turbine Wind Speeds  

Turbine Wind Speed Ratios From Simulations 

Since almost all of the 93 turbines associated with Tower M127 have a hub height of 18 meter, 
the 18 meter wind speed was extracted from each of the ten 100-m simulations listed in Table 5-
1.  Wind speed data were extracted every 15 minutes during the 6-hr simulations.  The ratio of 
the simulated wind speed at each turbine location to the Tower M127 simulated wind speed was 
calculated for each turbine site.  Figure 5-5 shows how these ratios vary with time during the 
course of the simulation for the 16 July 2002 case.  The figures include curves for only 33 of the 
93 turbine locations, because the turbines are close together and several 100-meter cells contain 
more than one turbine.  
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Each of the wind speed ratios begin with a value of 1 at the beginning of the simulation because 
the 100 meter simulation was initialized at the same time as its 500-m parent simulation.  
Therefore, the initial spatial differences are from the 2-km simulation that served as the parent 
for the 500-m simulation, and the entire M127 cluster is contained within one 2-km grid cell. 
Differences in neighboring 100 meter grid cells develop as smaller-scale wind features develop 
during the simulation.  Most of the turbines have lower wind speeds than Tower M127, indicated 
by ratios less than 1, because the tower is on a higher-elevation, more favorable position for 
strong winds than a majority of the surrounding turbines.  The mean ratio for all of the turbines 
declines during the course of the simulation, and the wind speeds at some individual turbine 
locations decline to as little at 60% of the M127 wind speed. 

The evolution of the turbine wind speed ratios for different cases indicates the complexity of the 
wind flow through the Altamont Pass.  Figure 5-6 shows the evolution of the wind speed ratios 
vs. time for the 19 May 2002 case.  In this case, the ratios are very steady and spread over a 
smaller range of values than the 16 July case.  In contrast, Figure 5-7 shows the results for the 
December 6, 2001, case – the ratios are highly variable throughout the simulation as the wind 
speeds at M127 oscillate between 1 and 10 m/s.  At some turbines, the wind speeds increase to as 
much as four times those at Tower M127.   
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Figure 5-5  Evolution of turbine wind speed ratios over the 6-hr 100 m simulation 
beginning at 0000 UTC 16 July 2002. 
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19 May 2002
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Figure 5-6  Evolution of turbine wind speed ratios over the 6-hr 100 m simulation 
beginning at 0000 UTC 19 May 2002. 

 

2 December 2001
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Figure 5-7  Evolution of turbine wind speed ratios over the 6-hr 100 m simulation 
beginning at 0000 UTC 2 December 2001. 
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The wild oscillations of Figure 5-7 might suggest that the turbine-to-turbine wind speed 
variations are too unpredictable to use as the basis for plant power production forecasting, but 
meaningful patterns emerge when the combined behavior of all of the turbines in the cluster is 
examined.  To calculate a plant power output based on inferred wind speeds at individual turbine 
locations, an average ratio at each of the turbine locations was calculated by averaging ratios 
every 15 minutes over the six hours of all ten cases, a total of 250 values at each turbine location. 
The estimated latitudes and longitudes for the meteorological tower and each of the turbines that 
were used for the extraction were kindly provided by Dave Lubitz at UC Davis (Lubitz 2005).   

Figure 5-8 compares these mean ratios to the ratios calculated from the data gathered from the 
flow simulations in the UC Davis wind tunnel when the wind direction was set to the 
climatologically dominant direction of 240 degrees.  There is no apparent correlation between 
the two sets of ratios.  When the wind tunnel ratios are plotted against mean ratios from 
individual cases, some show a modest correlation, with linear correlation coefficients no higher 
than 0.3.  The weak to non-existent correlation between the ratios derived from numerical 
simulations and those derived from wind tunnel simulations ratios probably reflects the 
complexity of the wind flow in the area, and the very different approaches used to simulate the 
flow.  The most significant difference is probably due to the fact that the boundary layer wind 
tunnel always simulates a flow regime with neutral static stability, while the numerical model 
simulates flow for a wide range of stabilities.   

Figure 5-9 shows the mean wind speed ratios calculated for each of the ten cases and compares 
the results to those generated using the wind tunnel data. The two approaches produce 
significantly different mean turbine wind speed ratios for each of the ten simulated cases, the 
mean ratio of the ten cases, and for two wind directions from the wind tunnel data.   Although 
some individual turbine locations exhibit higher mean wind speeds than the meteorological 
tower, the mean wind speed of the entire cluster is less than that of the meteorological tower in 
every case, because Tower M127 is located in one of the windier ridge top locations.  

When the wind tunnel models flow from the southwest direction (“Wind Tunnel-240” in Figure 
5-9), the mean turbine wind speed ratio is 0.97.  For southeast winds (“Wind Tunnel-150”), the 
mean ratio decrease to 0.91, because wind farms in the Altamont Pass are oriented along 
ridgelines to optimize production when the wind is from the dominant southwest direction.  
Ratios for the ten model-simulated cases range from 0.85 to 0.99, even though nine of the ten 
cases experienced wind directions from the southwest.  The single case with winds from the 
southeast instead of southwest, the December 2, 2001 case, actually yielded the highest mean 
wind-speed ratio of any case, 0.99.  The differences between the ratios from the numerical model 
and wind tunnel simulations cannot be explained by wind direction.  The analysis presented in 
the following sections indicates that the boundary layer stability appears to be the key factor.  
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 Turbine Wind Speed Ratio Comparison
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Figure 5-8  Comparison of mean turbine wind speed ratios calculated from the 100-m 
simulations to those calculated from the UC Davis wind tunnel data for the dominant wind 
direction of 240 degrees.  Points representing 31 turbine locations are shown, which are 
the 33 locations resolved by the 100-m grid, minus two turbine locations which were 
outside the wind tunnel domain. 
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Figure 5-9  The mean wind speed ratio over all turbine locations for each of the ten 100 m 
numerical simulations and for simulations of two wind directions in the UC Davis wind 
tunnel. 
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The Importance of Stability 

Averaged over all seasons and times of day, the lower atmosphere is stably stratified, meaning 
that vertical motion is minimized and horizontal wind speeds are almost always large compared 
to vertical wind speeds.  The atmosphere tends to become less stable during the day as incoming 
solar radiation warms the surface, and more stable at night as the surface cools.  Stability can be 
difficult to quantify, but a common approach is to examine the vertical profile of potential 
temperature.  With strong daytime surface heating, the lowest few hundred meters of the 
atmosphere become well-mixed and the potential temperature is nearly constant with height, 
indicating near neutral (sometimes referred to as low) stability.  With strong surface cooling on a 
clear night, or when the overlying air mass is cool and stable, the potential temperature will 
increase with height.   

Figure 5-10 shows the 100-meter numerical simulation of potential temperature profiles at the 
meteorological tower location for the 100 meter simulation on  December 2, 2001, the case with 
the highest mean turbine wind speed ratio.  Even though the atmosphere tends to be more stable 
during the winter, these profiles are nearly neutral, with only small increases of potential 
temperature with height.   

Under neutral stability, an air parcel experiences little resistance to uplift and flow around hills 
and other obstacles, and higher winds from aloft easily mix all the way down to the surface.  So 
it can be expected that wind speeds at less favorable turbine locations and lower elevations may 
still be comparable to those at more favorable locations such as M127.  Although the wind speed 
ratios for this case were highly variable (Figure 5-7), when averaged over the entire simulation, 
the average wind speed ratios at the turbine locations (0.99) are close to unity, and  the average 
wind speeds at the turbine locations are very close to those at met tower, as expected for low 
stability.   

In contrast, the December 15 , 2001 case had the lowest mean turbine wind speed ratio, and the 
potential temperature profiles demonstrate that it is far more stable (Figure 5-11).  The strong 
increase of potential temperature with height in the lowest 200 meter indicates the presence of a 
shallow stable layer which there is resistance to  uplift and flow over obstacles, resulting in flow 
stagnation or “blocking” at lower elevation locations. Also, the stable boundary layer will resist 
mixing of stronger, higher-level winds down to the surface.  In stable flow in complex terrain, 
cool stable air will tend to pool in the lower elevations, allowing the more “exposed” higher-
elevation locations to experience the strongest winds.  The mean turbine wind speed ratio of 0.85 
for this case suggests that the model is responding appropriately to stable conditions, by reducing 
the wind speed at many turbine locations.   

The stability in the lowest 200 meter for the 16 July 2002 case increases significantly during the 
6-hour simulation (Figure 5-12), which extends from the late afternoon (4:00 p.m. PST) into the 
evening (10:00 p.m. PST).  The evolution of turbine wind speed ratios during the simulation 
(Figure 5-5) mirrors the stability increase, as the ratios for many turbines decrease steadily.  
Stability often increases during the evening because of the radiational cooling of the earth’s 
surface.   
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However, for a midsummer evening, high-wind speed case at Altamont Pass, the wind speed 
ratios are likely to be affected by stabilization of the lower levels of the atmosphere due to the 
intrusion of the cooler marine layer from the ocean.  The marine layer is transported across the 
Pacific coast and the Berkeley Hills by the large-scale sea breeze, accumulated on the Livermore 
plateau, and finally drained down to the much warmer Central Valley through the Altamont Pass.   

Under the hypothesis that stability has a key, systematic influence on the turbine-to-turbine 
variation in wind speeds across the M127 turbine cluster, an effort was made to quantify that 
relationship.  Stability is a difficult parameter to precisely quantify because it varies vertically as 
well as horizontally, and there is no standard way to measure it.  Several parameters were tested 
without success, partly because near-surface stability is sometimes inferred from parameters that 
depend on a correlation between stable conditions and low wind speeds and turbulence levels in 
stable boundary layers.  But the wind flow pattern in the Altamont Pass often involves the 
unusual combination of strong winds and high stability.   

Stull (1988) defines several stability parameters that may be calculated from only the potential 
temperature profile.   One of these parameters, the cooling integral depth scale is defined as: 

  HΔθ =
θ0 −θ z( )[ ]

0

h

∫ dz

θ0 −θs( )
     (5-1) 

 

where θ0 is the potential temperature at h, the top of the layer being considered, and θsis the 
potential temperature at the surface.  The cooling integrated depth scale can be used to calculate 
the bulk turbulence scale from 

  B =
HΔθ

θ0 −θs( )
       (5-2) 

Stull (1988) notes that “Large values of B correspond to deep SBLs (stable boundary layers) 
with small surface temperature change, while small values correspond to shallow HΔθ and large 
surface cooling.”  For the ten simulated cases, larger values of the bulk turbulence scale were 
found for near-neutral cases, while smaller values were found for the more stable cases.   

Figure 5-13 plots the mean turbine wind speed ratio plotted vs. the median bulk turbulence scale 
(B) for each case.  The layer from the surface to 400 meter was used for these calculations 
( h = 400m ) on the assumption that the depth of the layer should be approximately the same as 
the difference in elevation between the Livermore plateau (about 120 meter) and the hills in 
Altamont Pass (about 500 meter).  A larger set of simulations might yield a better general 
stability parameter than the bulk turbulence scale, but the parameter provides a reasonable initial 
indicator to parameterize the influence of stability.  The biggest problem is that both the bulk 
turbulence scale and turbine wind speed ratios vary strongly with time during the transition from 
a daytime  
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Figure 5-10  Hourly vertical profiles of potential temperature (in degrees Kelvin) from the 
100 m simulation at Tower M127 from 0100 to 0600 UTC 2 December 2001.  The vertical 
coordinate is height above ground level (AGL) in meters. 

 

Figure 5-11  Hourly vertical profiles of potential temperature (in degrees Kelvin) from the 
100 m simulation at Tower M127 from 0700 to 1200 UTC 15 December 2001.  The vertical 
coordinate is height above ground level (AGL) in meters. 
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Figure 5-12  Hourly vertical profiles of potential temperature (in degrees Kelvin) from the 
100 m simulation at Met Tower 127 from 0100 to 0600 UTC 16 July 2002.  The vertical 
coordinate is height above ground level in meters. 
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Figure 5-13  The median bulk turbulence scale (defined by Eqn 5-2) vs. the mean turbine 
wind speed ratio for each of the ten high-resolution numerical simulations.   Each data 
point represents one of the ten simulated cases listed in Table 5-1.   
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near-neutral boundary layer to a more stable nocturnal boundary layer, necessitating averaging 
over many time periods. 

Calculating Plant Power Production 

Given a set of turbine wind speed ratios and either an observed or forecasted wind speed at 
M127, the prediction of plant power proceeds exactly as it does for the wind tunnel approach.  
The turbine wind speed ratios are multiplied by the meteorological tower wind speed to infer the 
wind speed at each turbine.   

The 93 wind turbines were installed during the 1980’s and are identical Kenetech 56-100 wind 
turbines, except that some have 18-m (60-ft) heights and some have 24-m (80-ft) hub heights.  
The manufacturer’s power curve is used to calculate a power generation for each turbine ( Pturb , 
in kW) for the wind speed (Uturb , in m/s): 

Pturb =
0, Uturb ≤ 4.8319;
−0.0224Uturb

3 +1.8448Uturb
2 −11.559Uturb +15.308, 4.8319 < Uturb <12.1704;

107.5, Uturb ≥12.1704;

⎧ 

⎨ 
⎪ 

⎩ ⎪ 
 (5-3) 

 

The calculated power production for each turbine is then aggregated to calculate the total power 
production for the M127 cluster of turbines.  Dave Lubitz at UC Davis provided Perl code that he 
used for the wind tunnel calculations (Lubitz 2005). Portions of this code were incorporated into 
the AWST code to perform the similar task.   

Figure 5-14 shows the plant power production predicted by the turbine ratios from the high-
resolution numerical simulations and the observed wind speeds for July 2002, compared to the 
observed hourly power production.  It should be compared to Figure 5-1, which shows a 
statistical plant-scale power curve for the same month. This chart indicates that the turbine ratios 
derived from the numerical simulations appear to systematically under-predict power output for 
wind speeds in the middle of the steep part of the curve, and over-predict power for the higher 
wind speeds.   

Evaluating Plant Power Predictions 

The set of turbine wind speed ratios derived from the ten high-resolution numerical simulations 
were used to produce plant-scale power production predictions from a set of either measured or 
forecasted M127 wind speeds.  These predictions were compared to the predictions based on the 
empirical plant-scale power curve (similar to the one shown in Figure 5-1) and the turbine ratios 
derived from the UC Davis boundary layer wind tunnel data.  First the turbine wind speed ratios 
averaged over all 60 hours of the high-resolution simulations were tested.  These mean ratios 
were then modified to account for stability variations and tested again.   
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Power Predictions Using Observed Wind Speeds 

Two datasets were used to evaluate the plant power production predictions: (1) a collection of 10 
months of hourly M127 observed wind speed, wind direction and total cluster 127 power 
production, along with forecasts of the same parameters from numerical model simulations 
produced for an earlier EPRI project (EPRI 2002). It will be referred to as the “Dec 2001-Sep 
2002” dataset; and (2) a collection of over three years of half-hourly M127 observed wind speed, 
wind direction and plant power production data, where an attempt has been made to correct the 
power to 100% turbine availability, using information on offline status.  It will be referred to as 

Plant Power Prediction from Simulations,
 July 2002 Observed Wind Speeds
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Figure 5-14  Hourly power output vs. measured hourly average wind speed (black 
triangles) for the PowerWorks M127 turbine cluster for July 2002, and hourly power output 
predictions (red circles) using the numerically-simulated mean turbine wind speed ratios. 

the “Jun 2001-Jul 2004” dataset.  For the latter dataset, only the hourly values were used, and the 
power values were multiplied by two in order to consistently use energy units of kWh.  

For operational wind forecasting, AWS Truewind frequently recalculates the empirical plant-
scale power curve as new data become available.  The plant-scale power curve used for the 
experiments in this project was: 
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P127 =

0, U127 ≤ 5.2 ||U127 > 25;
−0.009U127

5 +1.1427U127
4 − 47.393U127

3 + 786.41U127
2 −

4418.5U127 + 7588.5,
5.2 < U127 ≤ 22;

−2600U127 + 65000, 22 < U127 ≤ 25;

⎧ 

⎨ 
⎪ ⎪ 

⎩ 
⎪ 
⎪ 

 (5-4) 

where U127  is the wind speed at M127 and P127  is the power output for the associated cluster. 

For the Dec 2001 to Sep 2002 dataset, the measured M127 wind speeds were used to predict the 
hourly plant power output in kWh by three methods: (1) the plant-scale power curve given in 
Equation 5-4; (2) the mean turbine wind speed ratios calculated over the 60 hours of high-
resolution model simulations; and (3) the turbine wind speed ratios calculated in the UC Davis 
wind tunnel with the prevailing southwest wind direction (240 deg).  Using the wind tunnel 
ratios, power predictions at the 87 of 93 wind turbines included in the wind tunnel were 
accumulated; there was no increase to account for the omitted turbines and no density correction 
was made.   

Before spending a good deal of effort to evaluate those three methods, it may be useful to first 
compare the plant power curve method to a much simpler approach (Figure 5-15).  If the 
observed wind speed at M127 is assumed to prevail at each of the 93 turbine locations, and the 
manufacturer’s power curve given by Equation 3-3 is used to calculate the power production for 
each turbine, the total plant power production is severely over-predicted, as shown by the large 
positive mean error (ME) and larger mean absolute error (MAE) of the “Manufacturer’s Power 
Curve” on the right side of the chart.  The MAE and ME are expressed as a percentage of the 
hourly plant capacity, which is 9997.5 kWh for the M127 cluster.  The positive bias is high, 
because most of the turbines frequently experience significantly lower wind speeds than Tower 
M127.  The plant power curve accounts for this tendency because the data used to construct the 
curve account for its effect.  Both the numerical model and wind tunnel approaches predict that 
lower wind speeds than an most of the turbine locations will typically have lower wind speeds 
than the at the M127 tower.  

Figure 5-16 compares MEs and MAEs for each of the methods.  The empirical plant power curve 
technique yielded the lowest MAE of the three methods, and the MAEs of the wind tunnel and 
numerical simulation methods were only 0.1% higher and 9.4% higher. The numerical 
simulation method yielded a significantly lower ME at 0.4%.  Figure 5-17 shows the same 
comparison for the lengthier June 2001 to July 2004 dataset.  The results are almost identical for 
both datasets, so the relative performance seems to be robust, and unaffected by the attempt to 
account for offline turbines in the June 2001 to July 2004 dataset.   

Figure 5-18 compares the three methods for each of the ten months of the December 2001 to 
September 2002 dataset.  The relative performance shows clear seasonal trends – both the 
empirical plant power curve and wind tunnel methods yielded significantly lower MAE’s (by as 
much as 2.5%) than the numerical simulation method for the five months from April through 
August, with the empirical plant power curve being the best.  For the other five months, the 
numerical simulation method outperforms the other two, with MAE’s as much as 1.2% lower.  In 
most cases, the wind tunnel method errors are between the other two.  The reason for this 
seasonal variation in relative performance is not clear.  The numerical simulations were executed 
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for cases in months when the simulation method performed both better and worse than the other 
methods. Figure 5-19 shows the monthly ME values for the three methods.  The numerical 
simulation method has smaller absolute ME’s than the other two in eight out of ten months.  All 
three methods have relatively large positive biases in January and February. 

The coherent seasonal differences in the performance of the methods suggest that some 
improvement might be achieved by predicting the power with the best method for each month.  
Figure 5-20 shows a modest improvement in both MAE and ME if the power is predicted using 
the empirical plant power curve from April through August and with the average turbine ratios 
from the numerical simulations in the other five months.   
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Figure 5-15  Comparison of two reference methods of predicting the plant power output 
using measured M127 wind speeds from the Dec 2001 to Sep 2002 dataset.  The “Plant 
Power Curve” method uses Equation 4-1, and the “Manufacturer’s Power Curve” method 
assumes that the M127 wind speed is uniform across all of the turbines and the 
manufacturer’s power curve (Equation 3-3) can be used to calculate the power output of 
each turbine.  The mean error (ME) and mean absolute error (MAE) of the hourly power 
output (kWh) are expressed as a percentage of hourly capacity of the M127 cluster, which 
is 9997.5 kWh.   
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 Plant Power Prediction by Three Methods
Dec 2001-Sep 2002 Observed Wind Speeds
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Figure 5-16  Comparison of mean error (ME) and mean absolute error (MAE) for three 
methods of predicting the plant power output using observed M127 wind speeds from the 
Dec 2001 to Sep 2002 dataset. 
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Figure 5-17  Comparison of mean error (ME) and mean absolute error (MAE) for three 
methods of predicting the plant power output using observed M127 wind speeds from the 
June 2001 to July 2004 dataset. 
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Monthly MAE of Three Methods
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Figure 5-18  Monthly comparison of the mean absolute error (MAE) for the three methods 
of predicting the plant power output using observed M127 wind speeds from the 
December 2001 to September 2002 dataset. 

 

Monthly ME of Three Methods

-2

0

2

4

6

8

10

Dec-01 Jan-02 Feb-02 Mar-02 Apr-02 May-02 Jun-02 Jul-02 Aug-02 Sep-02

P
la

n
t 

P
o

w
e
r 

M
E
 (

%
 C

a
p

a
ci

ty
)

Plant Power Curve Simulations Wind Tunnel

 

Figure 5-19  Monthly comparison of the mean error (ME) for the three methods of 
predicting the plant power output using observed M127 wind speeds from the Dec 2001 to 
Sep 2002 dataset. 
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Figure 5-20  Comparison of the mean error (ME) and mean absolute error (MAE) produced 
by the empirical plant power curve for all months and those produced by employing the 
plant power curve for its best-performing months (April-August) and the mean turbine 
ratios from the numerical simulation method for the other five months. 

Power Predictions Using Forecasted  Wind Speeds 

Since the objective is to ultimately improve the performance of real power production forecasts, 
it is important to see how the methods perform using forecasted rather than observed winds.   To 
test the performance of the methods in a forecasting application, forecasts were produced from 
all three methods using forecasted M127 wind speed data for the December 2001 to September 
2002 period.   The forecasted wind speed data was obtained from the eWind forecasts produced 
in the previous Energy Commission-EPRI wind forecasting project (EPRI 2002).  These 
predictions are based upon a MOS-adjustment to the data from a 10 km physics-based model 
simulation. The MOS (statistical) forecasts were derived from physics-based model data for a 
period 18 to 41 hours after the initialization of the simulation.  Therefore, the set of statistical 
forecasts may be of varying quality.   

Figure 5-21 compares the three methods over the entire December 2001 to September 2002 
dataset.  The empirical plant power curve again has the lowest MAE, but only by a very small 
margin.  But this time the plant power curve also has a lower ME, and the numerical simulation 
method has a significant negative bias that the other two methods do not have.  Figures 5-22 and 
5-23 show the monthly MAE and ME values, respectively.  The relative performance of the three 
methods is similar to what was seen in the forecasts based on the observed wind speed data, but 
all three methods showed different seasonal performance trends.  Using observed wind speeds, 
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January and February were the most biased months for all three methods (Figure 5-19), but 
March, April and September were the most biased when using forecasted winds.  Merging the 
plant power curve and numerical simulation method by month as in the previous section again 
improved the MAE by a few tenths of a percent of capacity, but the merged ME was not as good 
as the plant power curve ME.   

Plant Power Prediction by Three Methods
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Figure 5-21  Comparison of three methods of predicting the plant power output using 
forecasted M127 wind speeds from the December 2001 to September 2002 dataset.   
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Monthly MAE of Three Methods
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Figure 5-22  Monthly comparison of the mean absolute error (MAE) for the three methods 
of predicting the plant power output using forecasted M127 wind speeds from the Dec 
2001-Sep 2002 dataset. 
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Figure 5-23  Monthly comparison of the mean error (ME) for the three methods of 
predicting the plant power output using forecasted Met Tower 127 wind speeds from the 
Dec 2001-Sep 2002 dataset.   
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Power Predictions with Stability Modification 

As noted previously, the static stability of the lowest few hundred meters of the atmosphere over 
the Altamont Pass clearly influenced the turbine wind speed ratios, with more stable conditions 
leading to smaller mean ratios as the wind speed difference widened between the better exposed 
locations such as Tower M127 and many of the less favorably-sited turbines.  An obvious 
question is whether we can use stability information to make better turbine wind speed 
inferences and therefore better plant power production predictions.   

From the ten high-resolution simulations, the bulk turbulence scale was extracted at the Tower 
M127 site every hour through the 6-hr simulations.  At these 70 times, the mean turbine wind 
speed ratio was calculated from the bulk turbulence scale using the simple linear relationship 
shown in Figure 5-13: 

    R stab =
B +116.73( )

153.25
      (5-5) 

 

A zero or negative value of B indicates neutral or unstable conditions, so the largest mean turbine 
ratio found in the ten cases (0.99) was used, and R stab  was not allowed to be smaller than 0.85, 
the smallest mean ratio found for the most stable simulated case.  Once this stability-adjusted 
mean turbine wind speed ratio was calculated for a given time, the wind speed ratios at 
individual turbines were adjusted: 

    Rstab =
R stab

R 
⎛ 

⎝ 
⎜ 

⎞ 

⎠ 
⎟ R       (5-6) 

 

where Rstab  is the stability-adjusted wind speed ratio at a turbine, R  is the mean turbine ratio 
over all cases, and R is an unadjusted wind speed ratio at the turbine.   

Figure 5-24 shows the effect of applying the stability correction on the mean absolute forecast 
errors.  Even without the stability correction, the “Mean Ratios” forecast yielded significantly 
lower MEs and MAEs than the empirical plant power curve and wind tunnel methods.  This 
seems logical since these are the exact time periods used for the calculation of the mean ratios.   
The addition of the stability correction (“Stability-modified” on the plot) further reduces both the 
MAE and ME, a very encouraging result.  This suggests that the model is able to resolve 
important stability differences and their effect on the complex flow, even using the very simple 
stability function in Equation 5-5.   
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However, the value of the stability correction doesn’t seem to extend outside the 60 hours of the 
high-resolution simulations.  When the same bulk turbulence scale parameter was extracted from 
the much coarser 8 km simulations which cover the ten 24-hour simulations, the adjustment of 
turbine wind speed ratios results in a lower ME but the MAE increases from 8.6 to 9.0% (Figure 
5-25).   

The reason for this could be that the coarser simulations do not resolve the terrain well enough to 
correctly simulate the near-surface stability in a complex area such as the Altamont Pass.  It is 
also likely that using high-resolution 100 meter simulations at night (either from 4:00 p.m. to 
10:00 p.m. or 10:00 p.m. to 4:00 a.m. PST) means that the stability relationship derived from 
them doesn’t handle the daytime hours as well – in other words, it’s unavoidably biased toward 
the nighttime hours.  A larger sample of simulations is needed to investigate the impact of 
broadening the range of daytime hours it is possible that an improved stability parameter might 
be found.  
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9.9

7.2

5.1

9.9

13.0
12.1 11.7

13.1

-5

0

5

10

15

20

Plant Power Curve Mean Ratios Stability-modified Wind TunnelP
la

n
t 

P
o

w
e
r 

E
rr

o
r 

(%
 C

a
p

a
ci

ty
)

ME MAE

 

Figure 5-24  Comparison of four methods of predicting the plant power output using 
observed M127 wind speeds from the ten 6-hr periods simulated by the high-resolution 
numerical model.  The “Plant Power Curve” and “Wind Tunnel” methods are the same as 
in previous plots.  The “Mean Ratios” method is the same as “Simulations” in previous 
plots, and “Stability-modified” refers to predictions in which the turbine wind speed ratios 
were adjusted for stability.   
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Stability-Modified Predictions from 
Low Resolution Simulations
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Figure 5-25  Comparison of four methods of predicting the plant power output using 
observed M127 wind speeds only from the ten 24-hr periods simulated by the model.  The 
four methods are the same as in Figure 5-24.   

Summary and Conclusions 

A set of high-resolution, physics-based numerical simulations were used to simulate the wind 
speed distribution down to the level of individual turbines for the Tower M127 turbine cluster 
within the PowerWorks wind plant in the Altamont Pass of California.  The 100 meter 
simulations contained 33 grid cells in the cluster, with one to five turbines falling in each grid 
cell.  For a set of ten 6-hour simulations, the ratio of the wind speed at each turbine location to 
the speed at M127 was calculated at each time and averaged together to obtain a set of mean 
turbine wind speed ratios.  These ratios were found to be quite different from those obtained 
from the UC Davis boundary layer wind tunnel.  These numerical simulation-derived ratios were 
used to infer wind speeds at turbine locations given a wind speed at M127.  The power 
production for each turbine was calculated from the manufacturer’s power curve, and the power 
at all the turbines in the cluster was combined to predict the total plant power output. 

When this method was driven with two datasets of observed wind speeds covering either ten 
months or 3 years, its predictions yielded mean absolute errors (MAE) from 0.3 to 0.4% (of plant 
capacity) higher than those obtained through the use of an empirical (statistical) plant-scale 
power curve, and 0.1 to 0.3% higher than those obtained using the wind tunnel method.  The 
mean error (ME) of the numerical simulation method however, was about 2% lower than either 
of the other two methods.  When using ten months of forecasted wind speeds, the MAE’s of the 
three methods were almost indistinguishable, but the ME of the numerical simulation method 
was about 3% worse than the other two methods.  In general, the overall performance of the 
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simulation and wind tunnel methods were very comparable to the empirical plant power curve, 
but the empirical plant power curve almost always had a slightly lower MAE. 

The ten simulated cases were characterized by a wide range of stability in the lowest few 
hundred meters of the atmosphere.  The high wind speed cases in July had relatively high 
stability.  Some of the December cases were also very stable, probably a result of the presence of 
a wintertime cold stable air mass, and strong radiational cooling at the surface when skies were 
clear.  One of the December cases and two of the May cases were not very stable, and under this 
near-neutral stability, it would be expected that the numerical simulations would behave more 
like the neutral stability flow simulated in the wind tunnel.   

Averaging the turbine wind speed ratios over all cases has the effect of choosing a moderate 
value of stability.  These mean ratios (mean ratio of 0.90) were much smaller than those obtained 
in the neutral wind tunnel (mean ratio of 0.97), because the inclusion of stable cases tends to 
lower the wind speed at many of the turbines due to terrain blocking and increased resistance to 
mixing down higher winds from aloft.  Since the wind tunnel method always assumes neutral 
stability, one would expect it to systematically over-predict the wind speed at the turbine 
locations for cases that are on the stable side of neutral.  However, 6 of the 93 turbines were not 
modeled in the wind tunnel domain and were neglected in the power production predictions 
produced by the wind tunnel method.  This amounts to an implicit lowering of the turbine wind 
speed ratios.  With that implicit adjustment, the wind tunnel method performed similarly to the 
other two methods, even though the density correction and wind direction factors were not 
included.   

It was demonstrated that modifying the turbine wind speed ratios in a very simple way using a 
stability parameter calculated from the 100 meter simulation data improved the power prediction.  
The MAE of the stability-corrected power prediction was 1.3% of plant capacity lower than the 
other two methods, and the ME was 4% lower.  This encouraging result is tempered by the fact 
that the same stability correction didn’t help when applied outside the time frame of the 100 m 
simulations.  In that test, the stability at the met tower was extracted from a much coarser 8 km 
simulations.  The lack of improvement suggested that the 8 km runs do not resolve the 
meteorology of the Pass well enough to provide a useful source of stability information.  One 
strategy would be to run operational simulations to as high a resolution as possible, perhaps 2 or 
1 km – the stability from these higher-resolution runs may be sufficiently dependable to improve 
the power forecasting by applying a stability correction to the turbine wind speed ratios.   

Another approach would be to use the understanding of the effect of stability on the M127 wind 
speed-plant power relationship to improve the empirical plant power curve.   Perhaps a set of 
stability classes could be defined, and an empirical plant power curve could be derived for each 
class.  Alternately, a more sophisticated statistical approach that included a relevant stability 
parameter as an input could be utilized. 
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6  
HIGH-RESOLUTION WEATHER AND WIND FLOW 
FORECASTING 

Introduction 

Accurate forecasting of wind energy generation begins with an accurate forecast of the weather 
conditions in the region and accounting for local terrain, bodies of water, and other surface 
features that affect the wind speed and direction at the location of each wind turbine.  The 
National Atmospheric Release Advisory Center (NARAC) at the Lawrence Livermore National 
Laboratory (LLNL) has the capability to generate accurate weather and wind speed and direction 
forecasts at very fine grid resolution using the latest musicale models.  As a result, LLNL joined 
the project team to generate high resolution wind speed and direction forecasts for use in the 
project.  

The principal objectives of LLNL’s involvement was to provide real-time wind speed and 
direction forecasts for use in development of improved wind energy forecasting algorithms and 
to support wind tunnel and numerical modeling of wind flow over complex terrain. 

This section of the report describes LLNL’s three-dimensional real-time weather forecast model, 
the design of the experiment to  at the location with the complex terrain.  The assessment of 
weather forecast accuracy would help quantify the source of wind energy forecast errors from the 
atmospheric forecast model and/or wind-tunnel module for further improvement in the wind 
energy forecasting system. 

COAMPS Model and Experiment Design 

A modified version of the Naval Research Laboratory's (NRL’s) three-dimensional Coupled 
Ocean/Atmosphere Mesoscale Prediction System (COAMPS), Version 2.0.15 was used in this 
study (Chin et al. 2000, 2001 and 2005).  COAMPS consists of a data assimilation system, a 
nonhydrostatic atmospheric forecast model, and a hydrostatic ocean model. 

In this study, we use only the data assimilation and the atmospheric model to provide real-time 
forecasts.  The atmospheric forecast model is composed of a compressible form of the dynamics, 
nest-grid capability, and parameterizations of subgrid-scale turbulence, surface momentum and 
heat fluxes, explicit ice microphysics, subgrid-scale cumulus clouds, shortwave and longwave 
radiation, and urban canopy physics.  The terrain-following vertical coordinate is also used to 
simulate airflow over an irregular surface.  The model terrain is given from one-km resolution 
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terrain database using Silhouette average method with filter.  Hodur (1997) provides additional 
details of the COAMPS model, and Chin et al. (2005) address newly-implemented physics. 

The model domain contains 31 grid points in the vertical direction, with the grid size varied to 
maximize resolution at lower levels.  The vertical consists of nine grid points below 127-meter 
elevation, with the grid spacings of 4, 4, 4, 6, 10, 16, 24, 34 and 50 meters, starting at ground 
level.  The grid spacing aloft gradually increases to 800 meter at 3.152-km altitude.  Above this 
level, the grid size is uniformly set at 800 m up to 7.592-km altitude.  Then, the grid size 
gradually increases to 5.0 km at 24.352-km altitude.   

In the horizontal direction, a total of three nested domains are used.  Both zonal and meridional 
coordinates have 61 grid points for all nested grids.  A uniform grid size of 36 km is used for the 
outer coarse  grid (nest_1), the grid sizes of the inner grids are each one third of the size of the 
previous grid,  for example, the middle grid size is 12 km (nest_2), and the inner grid size is 4 
km (nest_3).  with a constant size ratio of three to define the inner nest grids.  

The time series of the forecasts use time steps of 90 and 45 seconds for non-sound and sound 
wave calculations, respectively.  The time steps for the finer-grid domains are reduced in 
proportion to the nest-grid size ratios.  The rigid boundary condition is imposed at the vertical 
boundary.  A sponge-damping layer is placed above 10.052 km to minimize the reflection of 
internal gravity waves off the rigid upper boundary.  The Davies (1976) boundary condition is 
applied to the lateral boundaries with a nudging zone of seven grid points at each lateral 
boundary.  A time filter with a coefficient of 0.2 is applied to control computational instability 
associated with the leapfrog time approximation in the model. 

In this study, two watches of 48-hour forecasts (00Z and 12 Z, respectively) are performed daily 
over California for a grid centered at the Altamont Pass and during the 12 months from July 
2004 to June 2005.  However, due to the size limit of huge forecast data storage, only the nested-
grid data for the first week of each month are stored and used to assess the forecast errors with 
respect to the measurements at 11 available tower observations.  Nonetheless, the yearly forecast 
data of the finest grids were stored at UC Davis for a separate study to evaluate the wind energy 
forecast errors.  In this study, the forecast errors are measured by the mean absolute errors of the 
wind speed and direction forecast vs. the observed data for each forecast hour, which avoids the 
self-canceling effect of under-and over-prediction present in the mean forecast error. 

Measurements for Model Validation 

A total of 11 meteorological tower stations at the Altamont Pass are used to calculate the mean 
absolute forecast errors for wind speed and direction. These observations are available in 30-
minute averages and Table 2-1 shows the coordinates and the heights of the met tower 
measurements for the 11 towers.  All tower measurements occur at 18-meter elevation, except 
those for towers 225 and 438 at 24 meters, and tower 832 at 30 meters.  The model forecast is 
interpolated to the same location as the observations in both the horizontal and vertical (height 
above the ground) directions to compute the absolute forecast errors.   
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Quality assurance of tower measurements shows great uncertainty in the wind direction 
observations.  In particular, the measured wind direction at station 624 reported a constant value 
of 0.3 ~ 0.5 throughout the year of interest.  In the mean time, five other stations, Nos. 427, 821, 
826, 832, and 922, exhibit a small range of fluctuation (few degrees) with respect to a wind angle 
around a few tens of degrees.  This category of wind direction measurements may arise from the 
channeling effect of the local terrain, and does not necessarily imply poor quality.  All of six met 
towers are designated as uncertain (UNC) stations, and the remaining five stations with reliable 
wind direction measurements are referred to as REL stations in this study.  The separation of 
reliable and uncertain stations is also used to gauge its impact on the forecast errors. 

Results 

The mean absolute errors of forecast wind speed and direction were derived for each month 
using the forecast and observed data for each forecast hour throughout the 48-hour forecast 
period, and averaging over the available met towers and 14 weekly forecasts (two forecasts per 
day, seven days per week).  Normally, the mean absolute errors were calculated using the 
forecasts for the first week of each month.  Occasionally, the forecast period was shifted several 
days to accommodate the availability of station measurements. 

The forecast errors for a warm month (June 2005) clearly exhibit the dependence of wind speed 
error on the grid resolution using the data from all stations (Figure 6-2a), but the wind direction 
error does not show the same dependence (Figure 6-2b).  The observed station wind speed of the 
warm month sometimes reaches 20 m/s.  The absolute error of forecast wind speed is about six 
m/s with the coarser grid resolution (36 km) and can decrease to four m/s in the higher resolution 
forecast (4 km).  With the separation of UNC and REL stations, the impact of grid resolution on 
wind speed errors remains unchanged (Figures 6-2c and 6-2e).  In contrast, the wind direction 
error is significantly reduced with increasing grid resolution using REL stations, while the error 
is fairly large at UNC stations and shows an opposite dependence on the grid resolution (Figures. 
6-2d and 6-2f). 

In contrast, Figure 6-3 presents the forecast errors for a cold month (December 2004), which 
show different patterns relative to that of the warm-months.  Unlike the warm months, there is no 
clear dependence of forecast errors on grid resolution in the cold month, even with the separation 
of REL and UNC stations.  In addition, the magnitude of wind speed errors is noticeably reduced 
in the cold month as a result of weaker winds (< 10 m/s, except for the storm periods).  Although 
the resolution impact is weak during the cold months, the separation of UNC and REL stations 
still exhibits qualitative improvement in the forecast error for both wind speed and direction.  
Therefore, only the results from the REL stations are shown for the rest of months under 
investigation to gauge a complete seasonal variation of forecast errors. 

Figures 6-4, 6-5, 6-6, and 6-7 illustrate the detailed month-to-month variations of the forecast 
errors using the measurements from only REL stations.  A noticeable change of grid resolution 
impact on the wind speed error appears at two transition times; (1) during October and 
November, and (2) during March and April.  However, this pattern is not strong for the wind 
direction errors during the warm months before October 2004, most likely because the COAMPS 
physics changed in September 2004 with the consideration of soil moisture impact on the re-
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distribution of surface latent and sensible heat fluxes, and the resulting development of planetary 
boundary layer.  As a result, this new physics act to improve the surface energy budget and its 
related surface temperature and wind forecast.  Therefore, a clear grid resolution impact on the 
wind direction starts to appear in the warm months after October 2004.  This new physics also 
reduces the forecast errors of wind speed in the warm months. 

As shown in Table 6-1, the finest resolution (4-km in the nest_3 domain) used in the simulations 
is still not fine enough as the resolved model terrain heights in the nest_3 domain at most of the 
measurement stations substantially differ from the actual terrain heights.  The LLNL terrain 
database indicates that the model needs at least one more nest to properly represent the local 
terrain forcing to reduce the forecast errors. 

To illustrate the impact of inaccurately modeled terrain forcing, Figure 6-8 shows the vertical 
profiles of forecast horizontal winds during warm and cold months.  The evolution of these 
forecast winds exhibits strong nocturnal winds at the Altamont Pass.  The vertical wind shear in 
the lowest 100 meters is also large, particularly during the warm months.  To estimate the 
quantitative impact of the modeled terrain on forecast winds, Figure 2-9 compares the forecast 
errors for June 2005 and December 2004 with the terrain calibration, i.e., comparing forecast vs. 
measured wind at the actual station height. As expected, the main differences appear during the 
warm months, particularly when the wind speed error exceeds one m/s for each grid resolution.  
This suggests that simply improving the modeled terrain geometry is not sufficient to reduce the 
forecast errors. 

The yearly forecast results clearly indicate that the forecast errors over the Altamont Pass area 
can be characterized by a semi-annual variation.  In the warm months when the synoptic-scale 
front activity is weak, the model exhibits a strong grid resolution impact on the forecast accuracy 
as a result of the improved representation of local terrain with increasing grid resolution.  In 
contrast, the cold months coincide with the prevailing frontal activity so that the local terrain 
becomes a secondary forcing for the model forecast.  Therefore, there is no clear dependence of 
forecast errors on grid resolution during the cold months.  In addition, the large forecast error of 
wind direction in the cold months may arise from the improper model terrain geometry. 

Summary  

NARAC’s real-time wind prediction system, COAMPS, was used to generate real-time 48-hour 
forecasts of wind speed and direction at three grid resolutions, 36, 12, and 4 km, and each grid 
was centered at a location near the complex terrain of Altamont Pass.  The forecasts were 
generated twice daily at 00Z and 12Z) for one year starting from July 1, 2004.  The model 
outputs were used to support development of the next day wind energy forecasting algorithms 
and numerical modeling of wind flow over the wind turbines associated with specific met towers 
and the resulting wind plant power curve (described in Chapters 4 and 5 of this report, Volume 
2), and wind tunnel modeling and wind energy forecasting at University of California at Davis 
(described in Volume 3). However, only the validation of COAMPS forecast is presented in this 
report.  The evaluation of the overall wind energy forecasting system is covered by UC Davis in 
a separate report. 
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The month-to-month variation of wind forecast errors clearly exhibits a semi-annual fluctuation 
with prominent dependence on the grid resolution in the warm months (i.e., strong wind power 
period) when the frontal activity is weak; the large forecast errors are systematically reduced 
with increasing grid resolution for both wind speed and direction.  However, this dependence 
diminishes when synoptic-scale frontal activity prevails in the cold months. 

The remaining question to be addressed from this research outcome is whether the grid 
resolution dependence would continue with decreasing grid size or if this dependence tendency 
converges at a certain grid size in the strong wind power period.  Although the increasing grid 
resolution can resolve a better representation of model terrain geometry (magnitude and shape), 
further study of Silhouette terrain representation and the use of finer resolution terrain database 
are highly recommended to improve the forecast accuracy for the airflow over the complex 
terrain. 

Due to the computational limitation of a shared memory model, it becomes infeasible to meet the 
real-time forecast requirement for simulations with further increased resolutions. The implication 
of this research strongly supports the value of high-performance computing to further improve 
the wind energy forecast.  To this end, NARAC is in transition to convert COAMPS to the 
distributed memory code to allow faster and higher resolution real-time forecast.  During recent 
testing of MPI (message passing interface), COAMPS demonstrated its readiness for the 
operational use later in 2005. 
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Table 6-1 Station information for meteorological towers at Altamont Pass.  Station and 
modeled terrain heights are also shown for different grid resolutions. 
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Figure 6-1 Resolution of terrain elevation (meters) vs. grid size (km) of the nested domain:  
(a) Δx = 12 km (nest_2), (b) Δx = 4 km (nest_3), (c) Δx = 1.333 km (nest_4), and (4) Δx = 0.444 
km (nest_5).  The letters mark the locations of the met towers used.
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Figure 6-2 Weekly mean absolute errors of NARAC forecasts averaged over the selected 
stations for June 1-7, 2005.  The colored lines represent the results for different horizontal 
resolutions (36, 12, and 4km, respectively).  The left panels present MAEs for wind speed 
forecasts, and the right panels for wind direction.  The top panels (a and b) are the 
forecast errors using the measurements from all stations, the middle ones (c and d) using 
5 reliable stations, and the bottom plots (e and f) using uncertain measurements from the 
remaining 6 stations. 
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Figure 6-3 Weekly mean absolute errors of NARAC wind speed (left) and wind direction 
(right) forecasts averaged over the selected stations for December 2004. 
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Figure 6-4 Weekly mean absolute errors of NARAC wind speed (left) and wind direction 
(right) forecasts for July 2004 (a and b), August 2004 (c and d), and September 2004 (e and 
f), respectively. 
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Figure 6-5 Weekly mean absolute errors of NARAC wind speed (left) and wind direction 
(right) forecasts for October 2004 (a and b), November 2004 (c and d), and January 2005 (e 
and f), respectively. 
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Figure 6-6 Weekly mean absolute errors of NARAC wind speed (left) and wind direction 
(right) forecasts for February 2005 (a and b), March 2005 (c and d), and April 2005 (e and f), 
respectively. 
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Figure 6-7 Weekly mean absolute errors of NARAC wind speed (left) and wind direction 
(right) forecasts for May 2005. 

 
Figure 6-8 Vertical profiles of forecast horizontal winds at station 127 from the nest_3 
domain (Δx = 4 km), (a) from 00Z of July 01 2004, and (b) from 00Z of December 01, 2004. 
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Figure 6-9 Weekly mean absolute errors of NARAC wind speed (left) and wind direction 
(right) forecasts with calibration of modeled terrain height for June 2005 (a and b) and 
December 2004 (c and d). 
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7  
CONCLUSIONS AND RECOMMENDATIONS 

The overall project objective was to further develop technology that would ultimately improve 
the accuracy of wind power production forecasts on both the short-term and day-ahead time 
scales.    

Within this broad objective, the specific project objectives were: 

1. Design a short-term forecast system that could produce 5-minute forecasts of wind power 
production for the next three hours with an update frequency of 5 minutes and conduct an 
initial performance assessment of the system; 

2. Assess the potential improvement in day-ahead power production forecasts that could be 
achieved using new datasets, forecast techniques, and other enhancements, and test the 
performance of a modified forecast system over a one-year period for a set of wind plants 
representing the major wind power generation regions of California; 

3. Evaluate the potential forecast benefit of improved plant-scale power output models 
constructed from data generated by very high resolution numerical simulations and 
simulations in a boundary layer wind tunnel; and 

4. Create a California wind generation Research Database (CARD) that consists of one year of 
simulated values of meteorological variables relevant to wind generation research and 
planning on a high resolution grid. 

Conclusions 

All four of these objectives were achieved, and significant advances were made in the 
understanding of both short-term and day-ahead forecasting issues. 

Short-Term Forecast System Design and Evaluation 

The first objective was addressed by designing a two-stage forecast system based upon the 
artificial neural network (ANN) method.   

The first stage of the system consists of a mini-ensemble of three different forecast methods that 
exploit different input datasets and predictive tools.  The second stage of the system is composed 
of an artificial neural network that weights each of the three forecasts from the first stage 
according to their recent performance characteristics and creates an “optimal” composite 
forecast.   
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A limited version of this forecast system was tested with regional power production data for 
2004 provided by the CA ISO.  This version utilized only one method, an autoregressive 
approach, in the first stage of the system.  This limited version of the system demonstrated 
considerable skill relative to a persistence forecast during the warm season, but virtually no skill 
during the cold season.   The lack of skill during the cold season was expected, and it is 
anticipated that the other two forecast methods included in the first stage of the system will 
provide most of the forecast skill during the cold season. 

Next-Day Forecast Model Improvements 

The second objective was addressed in two phases.  

The first phase conducted a screening evaluation of the potential of six enhancements of the 
forecast algorithm to improve forecast performance via a series of forecast experiments using a 
subset of the data from the previous Energy Commission-EPRI forecasting project.  Several of 
the modifications produced substantial improvement in forecast performance and others 
appeared to have little impact on forecast performance.  However, in some of the experiments, 
there were circumstances that raised questions about the representativeness of the results.  
Therefore, a broad set of the enhancements was implemented in the revised eWind forecast 
system.   

The second phase evaluated the performance of the revised eWind forecast system based on one-
year of daily 1- to 48-hour forecasts at each of five California wind plants.  Two of the five wind 
plants had also participated in the previous Energy Commission-EPRI project, which enabled a 
direct comparison of forecast performance for the same wind plants.  Almost all of the annual 
statistics for these two plants showed substantial improvement between the previous to the 
current project.  In addition, an analysis of the forecast errors in this project provided 
considerable insight into the factors which are responsible for the variations in forecast 
performance vs. wind plant, season, weather regime and other factors.  This analysis provides 
excellent guidance for decisions about the future direction of research and development efforts to 
improve wind power production forecast performance. 

Improved Plant-Scale Power Curve Models 

The third objective was addressed by executing a set of high-resolution, physics-based numerical 
simulations to model the wind speed distribution down to the level of individual turbines.  The 
modeling was based on the Tower M127 turbine cluster at the PowerWorks wind plant in the 
Altamont Pass of California.   

For a set of ten 6-hour simulations, the ratio of the wind speed at each turbine location to the 
speed at M127 was calculated at each time and averaged together to obtain a set of mean turbine 
wind speed ratios.  These numerical simulation-derived ratios were used to infer wind speeds at 
turbine locations given a wind speed at M127.  The power production for each turbine was 
calculated from the manufacturer’s power curve, and the power at all the turbines in the cluster 
was combined to predict the total plant power output.   
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In general, the overall performance of these simulation-derived plant power predictions were 
very comparable to those produced by the empirical plant power curve, but the empirical plant 
power curve almost always had a slightly lower mean absolute error.  Similar predictions based 
on results from the UC Davis boundary layer wind tunnel were also quite comparable. 

The ten simulated cases represented wide range of  atmospheric stabilities in the lowest few 
hundred meters of the atmosphere.  It was demonstrated that modifying the turbine wind speed 
ratios in a very simple way using a stability parameter calculated from the 100 meter simulation 
data improved the power production forecast performance.   

The resulting mean absolute error of the stability-corrected power prediction was 1.3% of plant 
capacity lower than the baseline method, and the mean error was 4% lower.  It may be feasible to 
improve plant power predictions by running operational simulations to as high a resolution as 
possible, perhaps at one- or two-kilometer grid size.  The atmospheric stability levels indicated 
by these higher-resolution runs may be sufficiently dependable to apply the stability correction to 
the turbine wind speed ratios and improve the power-production  Forecast performance. 

California Wind Generation Research Dataset (CARD) 

The fourth objective was addressed by compiling the California wind generation Research 
Dataset (CARD).  The CARD database was generated from the physics-based numerical 
simulations that generated the year of daily 48-hour power production forecasts related to the 
second objective.   

The CARD database consists of hourly data for hourly wind speed, direction, power density, 
ambient temperature, and water/air mixing ratio at multiple levels for the one-year period, July 1, 
2004 to June 30, 2005, over two grids with grid cell sizes of 5 km.  One grid is centered near the 
Altamont and Solano wind resource areas of Northern California. The other grid is centered to 
the east of the Los Angeles Basin and includes the Tehachapi and San Gorgonio wind generation 
regions. 

Recommendations 

The project accomplishments provide a foundation for both further improvements of wind power 
production forecast systems and implementation of the improved forecast methods and the 
resulting forecasts by system operators and other decision-makers in an effective manner.    

Recommendations for further research and implementation: 

1. Implement and conduct a one-year test of the full two-stage short-term (0 to 3 hour) forecast 
system concept developed in the project, including the two forecast methods and the second-
stage ANN model that were not implemented and tested in current project.  

It is anticipated that the full system will provide significantly better forecast performance 
than the single forecast method tested in this project. 
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2. Address the issues associated with the operational implementation of the short-term forecast 
system at CA ISO.   

The sequential steps might include (1) obtain feedback about the needs and desires of the 
anticipated operational users of the short-term forecast products at CA ISO via a meeting 
with the operational users to inform them of the characteristics of the short-term forecast 
products that could be made available and to get their feedback on how, where and when 
they should be interfaced into the operational environment; (2) develop and implement a 
real-time operational test in which potential users would be able to access the forecast data 
within the operational environment; (3) after the test period, obtain feedback from the users 
to provide bases for further refinement of the system; (4) design and implement a revised 
system that better meets the needs of the user.   

This entire process can be conducted in parallel with item (1) above. 

3. Conduct another development-evaluation cycle for the day-ahead (1- to 48-hour) forecast 
algorithm.   

There are a number of new remotely-sensed data that will soon become available and have 
the potential to improve day-ahead as well as short-term forecasting.  The use of these 
datasets should be explored in the next forecast system development-evaluation cycle in 
conjunction with the results of an extended analysis (beyond what was done in this project) 
of the errors in the forecasts produced in this project. 

4. Formulate forecast performance metrics that provide a better measure of the power 
production forecast performance characteristics that are most critical to users of the forecast 
data.   

This will likely vary from user to user.  However, it is important to define the ranges of 
forecast characteristics that are important to users and to design metrics to evaluate them.  
For example, recent discussion in wind forecasting sessions at wind industry meetings has 
indicated the forecasts for periods in which there are large upward ramps in the wind power 
production are particularly critical to many users.  A metric that isolates the performance 
during those periods may be of greater value to some users than generic metric such as the 
overall MAE or skill score used in this project.  A broad investigation of this issue is needed. 
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