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 DISCLAIMER  

 This report was prepared as the result of work 
sponsored by the California Energy Commission. It 
does not necessarily represent the views of the 
Energy Commission, its employees, or the State of 
California. The Energy Commission, the State of 
California, its employees, contractors and 
subcontractors make no warrant, express or implied, 
and assume no legal liability for the information in 
this report; nor does any party represent that the 
uses of this information will not infringe upon 
privately owned rights. This report has not been 
approved or disapproved by the California Energy 
Commission nor has the California Energy 
Commission passed upon the accuracy or adequacy 
of the information in this report.  
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PRODUCT DESCRIPTION 

 
The rated capacity of wind generation in California is expected to grow rapidly in the future 
beyond the approximately 2100 MW in place at the end of 2005. The main drivers are the state’s 
20 percent Renewable Portfolio Standard requirement in 2010 and the low cost of wind energy 
relative to other renewable energy sources.  

As wind is an intermittent generation resource and weather changes can cause large and rapid 
changes in output, system operators will need accurate and robust wind energy forecasting 
systems in the future. In response to this need, the California Energy Commission (Energy 
Commission) and EPRI initiated the California Regional Wind Energy Forecasting System 
Development Project in 2003 to develop and test short- and intermediate-term (for example, 
next-hour and next-day) forecast algorithms with improved forecast accuracy relative to the 
results of a previous project completed in 2002.  

Volume 3 of the final report presents the detailed results of the research on wind tunnel and 
empirical modeling of wind flow over the complex terrain at Altamont Pass. Volumes 1, 2, and 4 
present the executive summary of the research results and the detailed results of the research on 
short- and intermediate-term forecasting,  high-resolution wind flow modeling over complex 
terrain, and development of the California Wind Generation Research Dataset (CARD).  

Results and Findings 
Wind tunnel testing of a scale model of a portion of the Altamont Pass wind resource area 
demonstrated the complex wind flow and the variation of wind speeds and power densities 
between individual wind turbines and nearby meteorological towers. Wind energy forecasts 
based on an empirical method that matches conditions to historical conditions provided more 
accurate forecasts than persistence. 

Challenges and Objectives 
Electricity systems with significant intermittent wind capacity create a challenge to the system 
operator. Rapid changes of wind generation relative to load require rapid dispatching of 
generation and transmission resources to balance generation vs. load, regulate voltage and 
frequency, and maintain system performance within limits established by Control Performance 
Standards 1 and 2 (CPS1 and CPS2). This is especially true during periods when wind generation 
is fluctuating rapidly relative to system load, for example, during passage of thunderstorms and 
weather fronts. Wind energy forecasts can help the system operator anticipate rapid changes of 
wind energy generation vs. load and make informed decisions. The overall project objectives are 
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to develop and demonstrate the capabilities of wind energy forecasting technology for both 
same-day and longer-term forecasts. 

Applications, Values, and Use 
The wind plant power curve developed via wind tunnel testing of a scale model of the wind plant 
site provides a superior method for estimating wind generation as a function of wind speed, 
direction, and other conditions measured by a nearby meteorological tower, especially in 
complex terrain as exists at Altamont Pass.  

EPRI Perspective 
The wind tunnel and empirical modeling described in this report addressed the variability of 
wind turbine/meteorological tower wind speed ratios between adjacent turbines and the 
performance of a forecasting algorithm based on numerical weather forecasts and the model 
results. Together with the complementary high-resolution numerical modeling described in 
Volume 2, this research is likely to contribute to further improvements in the accuracy of both 
next-hour and next-day wind power forecasting. Other volumes of the final report include 
Volume 1 (Executive Summary, 1013262), Volume 2 (Next-Hour and Next-Day Forecasting, 
1013263), and Volume 4 (California Wind Generation Research Dataset (CARD), 1013265).  

It is important to continue research on wind energy forecasting in California both to implement 
the forecast algorithms to provide real-time forecasts to utility and the California Independent 
System Operator (CA ISO) system operators and to complete the development and testing of 
accurate same-day and next-day forecast algorithms.  

Approach 
Researchers developed wind tunnel and “empirical” plant-scale power curves for a wind farm in 
the Altamont Pass, California; investigated wind flow over generalized terrain in the wind tunnel 
to inform development of the empirical power curve method; and developed and operated an 
automated wind power forecasting system that operates on a desktop PC. The forecast system 
uses a database searching technique to forecast power production  
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ABSTRACT 

The rated capacity of wind generation in California is expected to grow rapidly in the future 
beyond the approximately 2100 MW in place at the end of 2005. The main drivers are the state’s 
20 percent Renewable Portfolio Standard requirement in 2010 and the low cost of wind energy 
relative to other renewable energy sources.  

As wind is an intermittent generation resource and weather changes can cause large and rapid 
changes in output, system operators will need accurate and robust wind energy forecasting 
systems in the future. In response to this need, the California Energy Commission (Energy 
Commission) and EPRI initiated the California Regional Wind Energy Forecasting System 
Development Project in 2003 to develop and test short- and intermediate-term (for example next-
hour and next-day) forecast algorithms with improved forecast accuracy relative to the results of 
a previous project completed in 2002.  

Volume 3 of the final report presents the detailed results of the research on wind tunnel and 
empirical modeling of wind flow over the complex terrain at Altamont Pass. Volumes 1, 2, and 4 
present the executive summary of the research results and the detailed results of the research on 
short- and intermediate-term forecasting,  high-resolution wind flow modeling over complex 
terrain, and development of the California Wind Generation Research Dataset (CARD).  

Wind tunnel investigations were conducted of the effect of wind direction and hill geometry on 
wind speed-up above a hill. Field data from an Altamont Pass, California, site were used to 
evaluate several speed-up prediction algorithms, both with and without wind direction 
adjustment. These algorithms were found to be of limited usefulness for the complex terrain case 
evaluated. Wind tunnel and numerical simulation-based methods were developed for 
determining a wind farm power curve (the relation between meteorological conditions at a point 
in the wind farm and the power production of the wind farm). Together with two other methods 
based on fits to historical data, the methods ultimately exhibited similar power production 
forecast performance, with annual mean absolute errors of 5 to 7 percent of rated wind capacity. 
A series of experiments and investigations were conducted to inform the development of a day-
ahead wind power forecasting system. An experimental near-real time wind power forecasting 
system was designed and constructed that operates on a desktop PC and forecasts 12 to 48 hours 
in advance. The system uses model output of the Eta regional-scale forecast (RSF) to forecast the 
power production of a wind farm in the Altamont Pass, California, from 12 to 48 hours in 
advance. The complex terrain at Altamont Pass complicates wind flow and therefore 
downscaling of the RSF forecast data to the wind farm. Because forecasts based on application 
of the geostrophic drag law and regression methods to predict surface wind speeds did not 
perform well, an alternate database matching method was developed. The method searches for 
the historical date that provides the best match to current conditions, and the forecast is based on 
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the historical data for that date. Testing showed the alternate method forecasts both wind speed 
and power production more accurately than persistence 
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1  
INTRODUCTION 

California has good potential for developing new wind generation capacity beyond the 
approximately 2100 MW of rated capacity in place at the end of 2005 (American Wind Energy 
Association, 2006). California’s Renewables Portfolio Standard, which calls for 20% renewables 
in the generation mix by the end of 2010, is expected to result in a large increase of the installed 
wind capacity in  the state. Most of the current capacity is located in the five principal wind 
resource areas of the state (Solano, Altamont, Pacheco, Tehachapi, and San Gorgonio), shown in 
Figure 1-1. The new capacity is expected to be installed in these and other promising wind 
resource areas in Northern and Southern California. 

 
Figure 1-1 California Mean Wind Power Map at 50-m Elevation and 2005 Rated Capacity of 
Wind Generation at Principal Wind Resource Areas (California Energy Commission, 2006) 

Rated Capacity – 2005 (MW) 
Solano County 240.8 

Altamont Pass        548.3 

Pacheco Pass 16.0 

Tehachapi Pass 667.1 

San Gorgonio Pass     616.6 

Others     52.8 

 TOTAL 2141.6 
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Wind generation is an intermittent resource and can not be dispatched or brought on-line on 
demand to meet an increase in load unless the wind is blowing at sufficient speed to generate the 
required power. Large concentrations of wind generation in one area can affect electricity grid 
operations, load following, and reserve requirements. System operators will need increasingly 
accurate wind forecast tools to manage wind and other intermittent generation resources 
connected to the California grid.  Accurate next-hour and next-day forecasts will make it 
possible to optimize the response to rapid changes in wind generation to balance load and supply 
reserve and regulation resources.  

First Energy Commission-EPRI Wind Energy Forecasting Project, 2001-
2003 

In 2002, the California Energy Commission (Energy Commission) and EPRI completed testing 
of two forecasting systems at Altamont and at San Gorgonio (Energy Commission and EPRI, 
2003a and 2003b; EPRI 2003a). Two wind energy forecasting system developers, Risoe National 
Laboratory and TrueWind Solutions, applied their meteorology-based, meso-scale modeling 
algorithms to generate twice-daily, 48-hour forecasts of hourly wind speed and energy 
generation, during a 12-month period. The host wind projects were the 90-MW Wind Power 
Partners/Windworks project, operated by Powerworks at Altamont Pass, and the 66.6-MW 
Mountain View 1 and 2 wind project, operated by Seawest at San Gorgonio Pass. Based on the 
monthly and annual mean absolute errors (MAE) of the forecast vs. observed data, the Risoe and 
TrueWind forecasts performed better than simple persistence and climatology forecasts. 
However, the forecast errors were still significant, indicating that additional research is needed to 
incorporate improved forecast technology and forecast performance. 

Current Regional Wind Energy Forecasting System Development Project, 
2004-2005  

In 2004, Energy Commission, EPRI, and California Independent System Operator (CA ISO) 
initiated a new 18-month project to build on the first project and develop and test improved wind 
energy forecast algorithms for both short-term forecasts (regional five-minute forecasts over 
three hours) and intermediate-term forecasts (hourly wind plant forecasts over 48 hours) in the 
principal wind resource areas of the state. The project was completed during 2005, and the 
results are presented in the four-volume report, California Regional Wind Energy Forecasting 
System Development and Testing (Energy Commission and EPRI, 2006a, 2006b, 2006c, and 
2006d). 

This volume of the final report, California Regional Wind Energy Forecasting System 
Development – Volume 3: Wind Tunnel Modeling of Wind Flow over Complex Terrain, describes 
the detailed investigation of using wind tunnel data, empirical models, and numerical weather 
forecasts to generate wind energy forecasts. The other report volumes include Volume 1: 
Executive Summary; Volume 2: Wind Energy Forecasting System Development and Testing and 
Numerical Modeling of Wind Flow  over Complex Terrain;  and Volume 4: California Wind 
Generation Research Dataset (CARD) (Energy Commission and EPRI, 2006a, 2006b, and 
2006d). 
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Objectives and Scope 

The primary objective was to develop and evaluate the performance of a wind farm power 
method incorporating wind tunnel data. During this study, the initial work and methods of Cheng 
(2002), as reported in the EPRI reports on the previous project, (Energy Commission and EPRI, 
2003a and 2003b), were revised and improved, incorporating additional refinements such as 
including wind direction and air density dependence in the database of wind tunnel 
measurements and in the power prediction algorithm. Additionally, several other plant power 
curves were developed for comparison purposes. 

Another objective was to develop and test an alternate wind farm power curve method based on 
“empirical” algorithms. This was done to allow the development of a plant power curve at sites 
for which performing a full set of wind tunnel tests is not feasible. A wind tunnel investigation of 
flow over generalized terrain was performed to inform the development of this method. The 
initial method of developing this power curve was to apply the “speed-up” prediction methods 
used in wind engineering. Ultimately, it was found that these methods would not likely provide 
sufficient accuracy for wind power forecasting application. An alternative method was developed 
based on using two-dimensional potential flow simulations of the terrain near the wind farm. 
When compared to the wind tunnel power curve, the power curve based on the potential 
simulation method was almost as accurate. 

Another objective was to develop a next-day automated wind power forecasting system that 
could operate on a desktop computer, without requiring computationally intensive numerical 
methods. It was realized that it would be difficult to achieve forecasting accuracy better than the 
commercial forecasters that have significant resources at their disposal. Therefore, the goal of 
this system was to be able to test various methods of performing each step in the forecasting 
process leading to the final predictions. 

Report Organization 

The report consists of seven chapters, including Chapter 1, Introduction.  

Chapter 2, Atmospheric Boundary Layer Wind Tunnel Application to Wind Energy Forecasting, 
describes the application of the wind tunnel modeling data collected in the wind tunnel to a wind 
energy forecasting system.  

Chapter 3, Wind Speed-Up Over Hills, describes wind tunnel and empirical modeling of wind 
flow over idealized hill shapes.  

Chapter 4, The Wind Farm Power Curve, describes development of a wind plant power curve 
using wind tunnel measurements and other methods. 

Chapter 5, Downscaling and Forecasting, describes development of a desktop PC wind energy 
forecasting system based on download of Eta model wind forecasts, downscaling the forecasts to 
the wind plant met tower location, and matching conditions to historical conditions to develop a 
forecast.   
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Chapter 6, Summary, summarizes the results and key findings of the project. 

Chapter 7 presents the references. 
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2  
ATMOSPHERIC BOUNDARY LAYER WIND TUNNEL 
APPLICATION TO WIND ENERGY FORECASTING 

Figure 2-1 shows a schematic of the wind power forecasting system implemented at UC Davis 
during this project. The system operates on a desktop PC. Eta and COAMPS regional scale 
model outputs are automatically downloaded as they become available. Archived model output 
data also can be used. Using the downloaded model output, one of several methods is selected to 
forecast the wind speed and direction at the wind farm meteorological tower. The forecast 
performance can be checked by comparing the forecast and actual wind speed and direction data 
from the wind farm meteorological tower data provided by the wind farm operator. Next, the 
wind speed and direction at the meteorological tower are used to predict the wind speed and 
power production of the wind farm. The power production forecast performance can be checked 
by comparing the forecast and actual wind farm power production data. The accuracy of the 
power production model alone can be determined by replacing the forecast wind speed and 
direction with the actual wind speed and direction recorded at the meteorological tower as inputs 
and comparing the resulting forecast and actual recorded power production.  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

Download Regional Scale Forecast 

Forecast Wind Speed and Direction at Wind 
Farm Meteorological Tower 

Use Wind Speed and Direction at 
Meteorological Tower to Predict Power 

Production of Wind Farm 

Provide Forecast to Clients 

 
Figure 2-1 Schematic of UC Davis wind power forecasting system.UC Davis Atmospheric 
Boundary Layer Wind Tunnel 

Atmospheric boundary layer wind tunnels (ABLWTs) have been used to simulate near-surface 
winds for over 40 years and have been shown to be capable of predicting wind fields in complex 
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terrain, dispersion of airborne pollutants, and wind-induced pressure distributions on buildings 
(Cermak, 2003).  

The UC Davis ABLWT is designed for simulating neutral atmospheric boundary layer flows past 
surface objects. It is an open-return type tunnel, as seen in Figure 2-2, composed of five sections: 
an entrance section, a flow development section, a test section, a diffuser section, and a 56-
kW(75 hp) DC motor and fan. A bell-shaped entrance section provides a small contraction area 
ratio. An air filter, to screen out airborne particles and reduce the large-scale pressure 
fluctuations, is followed immediately by a honeycomb flow straightener and a series of spires to 
"pre-form" the boundary layer. 

A 12-m (39-ft)-long flow development section is used to generate a mature boundary layer at the 
test section. An adjustable ceiling and diverging walls in the development section maintain a 
zero-pressure-gradient flow throughout the tunnel. Roughness elements, placed on the floor of 
this section, generate the proper boundary-layer height in the test section. The test section is 3.7 
m (12 ft) long, 1.7 m (5.5 ft) high and 1.2 m (4 ft) wide. Plexiglas® windows on each side allow 
observation, and a sealing sliding door provides access. The tunnel ceiling height increases in the 
downwind direction to maintain a horizontal pressure gradient of zero. Measurements are made 
using a three-dimensional traversing probe system that is mounted to the ceiling of the test 
section. This system allows for precise placement of a sensor at any point within the test section. 
Small 1-milliwatt (mW) lasers were mounted on the traverser to sight vertical height and 
horizontal position to within 1 mm. 

Mean velocity and turbulence intensity were measured using a TSI Inc. single wire, end-flow 
hot-wire probe, Model 1210-20. A 90o angle adapter, TSI Model 1152, was used to provide 
access to upstream points when attached to an end-flow probe. The right angle bend was used to 
limit the undesirable flow interactions of the model with the probe support by orienting the hot 
wire directly upwind of its support. A TSI single sensor, plug-in, Model 1150, 50-cm probe 
provided support and electrical connection with the signal conditioner. A three-dimensional 
traversing probe system is mounted to the ceiling of the test section (Figure 1-2, Section B-B). 
This system allows for precise placement of a sensor at any point within the test section. Small 1-
mW lasers are mounted on the traverser to sight vertical height and horizontal position to within 
±0.5 mm. 

A 10-m shielded tri-axial cable connects the hot wire to a two-channel constant temperature 
thermal-anemometry unit with a signal conditioner, TSI model IFA 100. The analog signal from 
the signal conditioner is passed to a 12-bit analog-to-digital (A/D) converter (United Electronics 
Industry Win 30 DS) and then to a Pentium 166 computer for analysis and data storage by a 
National Instruments LabView program. The A/D conversion process causes no loss in accuracy 
of the measurement data. LabView was used to sample the hot-wire signal at a rate of 1000 Hz in 
all of the work documented here. 
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Figure 2-2 Schematic of UC Davis Atmospheric Boundary Layer Wind Tunnel. 

Before testing begins, each hot-wire anemometer is calibrated against a pitot-static tube 
connected to a precision manometer. The output voltage of the hot wire and the wind speed at the 
pitot-static tube are recorded over the expected range of wind speeds. A third-order polynomial 
curve is fit to the data to generate the calibration curve. The hot-wire voltage is logged for a 
minimum of 30 seconds at each point being measured. Post-processing of the signal data is 
performed by custom written software that uses the calibration curve and logged hot-wire 
readings to calculate mean wind speed, RMS wind speed, and turbulence intensity. Thermal 
anemometry has been widely used in measuring turbulent characteristics for its ease in handling 
fast fluctuations in turbulence. Typically, hot-wire measurements made close to the surface have 
an uncertainty of less than ±5% of the true values. 

Simulation of the Atmospheric Boundary Layer 

The boundary layer within the wind tunnel simulates the same turbulent characteristics found in 
the full-scale atmospheric boundary-layer. It is important that the atmospheric boundary-layer 
approaching the modeled region have the same characteristics as it does in full-scale. Otherwise, 
the changes in local velocity over the model will not be accurately simulated. The region upwind 
of the modeled terrain is a flat region of the Livermore Valley, so it was not necessary to build a 
specific model of this upwind region.  

The relationship between the mean velocity U and height above the surface z, for a boundary-
layer of height δ and a mean velocity at height δ of U∞, is described by the power law: 
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The wind tunnel power-law exponent α must closely match the full-scale value of α. Using the 
empirical power law estimation methods, from Counihan (1975) and a full-scale surface 
roughness, zo estimated at 15.6 cm, from a wind study done by Chapman and Gouveia (1987), α 
was estimated to be 0.17 for the approach to Altamont Pass. However, using the empirical 
method from Jensen (1958), and a geostrophic wind speed, U∞ of 30 mph and δ of 457 m (1160 
ft), from meteorological data used in the study, α was estimated to be 0.20. 

Given this range of the power-law exponent α, this full-scale condition was achieved in the UC 
Davis ABLWT by systematically arranging a pattern of 3.5” x 5.75” x 0.75” (thin blocks) and 
3.25” x 7.75” x 1.5” (thick blocks) wooden blocks over the entire flow-development section of 
the wind tunnel. The block pattern roughly consisted of half of each type of block configured in 
alternating sets of four and five blocks per row. The simulated power-law exponent α is equal to 
0.19. 

In addition, the approaching mean velocity profile should also agree with the logarithmic, or 
“law-of-the-wall,” wind profile, within the lower region of the boundary layer: 
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where κ is von Karman constant. The surface layer, the lower 10 to 15% of the boundary layer, 
is governed by Eqn. 1.2. For proper wind tunnel modeling, the model must be geometrically 
scaled to remain within this bound. From previous data, the simulated atmospheric boundary 
height of the ABLWT is about 0.7 m, although this will vary over the complex terrain model.  

Boundary-layer similitude also requires surface matching of roughness Reynolds numbers and 
Rez independence, in which Rez is greater than 2.5 as described by Schlichting (1979). The 
roughness Reynolds number ( zRe = *u oz /ν), is about 14 when the wind tunnel free-stream 
velocity U∞ = 3.1 m/s, friction velocity, *u = 0.22 m/s, and the roughness height zo = 0.00095 m. 
Therefore, with Rez well above 2.5, the simulated atmospheric flow is aerodynamically “rough,” 
similar to conditions seen in full-scale conditions. 

Altamont Pass 

A portion of the Altamont Pass wind resource area, near Livermore, California, was used as the 
case study for several of the experiments in this research project. The site is located about 50 km 
east of San Francisco (Figure 2-3), where wind conditions can be influenced by diurnal sea 
breezes, and a series of rolling hills that separate the San Francisco Bay Area from the San 
Joaquin Valley. Although no longer the largest wind energy producer, the Altamont Pass still 
contains one of the world’s largest concentrations of wind turbines. 
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Figure 2-3 Location of Altamont Pass, California. 
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The case study wind farm consists of 900 Kennetech 56-100 wind turbines owned by 
Powerworks. The turbines are arrayed along ridgelines in the Pass. For reporting purposes, the 
turbines are divided into 10 clusters, each of which has an associated meteorological tower. For 
example, the cluster associated with meteorological tower 127 (“Met 127”) consists of 93 
turbines. 

The winds in the Altamont Pass area are strongest during the summer and lowest during the 
winter. For a site approximately 1 km east of the Met 127 site tested in this study, Davis and 
Nierenberg (1980) observed a monthly average wind speed of 10.3 mph during July 1979, versus 
7.3 m/sec for December 1979. The level of seasonal variation was similar for several other sites 
they observed within the Altamont Pass region. Winds tend to blow from the southwest in the 
summer, while direction is more variable in the winter (see Figure 2-4). 

Winds also can vary significantly over relatively short distances due to the effects of complex 
terrain. Holets (1985) compared observations from eight hilltop sites in the Altamont Pass area 
and found significant variation between sites. For 11 summer days in 1981, Holets observed 
average wind speed differences between the sites of 3.7 m/sec to 4.6 m/sec. Brown and Watt 
(1988) observed a mean annual wind speed ratio of 0.83 comparing a reference site to a nearby 
anemometer mast.  

It has been observed that stable conditions often result in high near-surface wind speeds in the 
lowest 100 m above ground (Nierenberg, 1989). McCarthy (1987) observed that a deep marine 
inversion layer, relative to the height of the pass, often resulted in good (eastern) lee slope flow, 
while a shallow inversion layer resulted in separation zones on the lee (eastern) slope, 
and"spotty" flow in general. McCarthy observed that stably stratified flow is an important factor 
in producing high winds on the lee (eastern) slope of the pass. 
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Figure 2-4 Wind speed vs. direction at Altamont Pass Met 127 meteorological tower during 
January 2003 (left), showing typical winter winds, and June 2003 (right), showing typical 
summer winds. 
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It should be noted that while there is great confidence in the power production figures provided 
by Powerworks (since this is also metered by the utilities purchasing the power, and is also 
required by the state of California in order to receive tax credits associated with wind energy 
production), the meteorological data appears to be of lower quality. In addition to the Met 438 
barometer being inoperable, a qualitative analysis of the remained constant over long time 
periods, suggesting a "stuck" wind vane.  

One year out of 2.5 years of data for Met 127 were deemed to contain unreliable wind direction 
data. The following time periods between June 25, 2001 and June 11, 2005 have unreliable wind 
direction data: June 25 to Aug. 17, 2001, Sept 27 and 28, 2001, April 12 to July 1, 2002, March 2 
to March 27, 2003, April 9 to May 31, 2003, Aug. 21, 2003 to May 24, 2004, and October 11, 
2004, to June 11, 2005. 

Eta Regional Scale Forecast 

The primary regional scale forecast (RSF) used in this study was the NOAA Eta 40 km model. 
On January 25, 2005, the Eta model was renamed the North American Mesoscale, or “NAM” 
model. For consistency, the term “Eta” refers to the Eta/NAM model. 

The Eta model is a regional-scale, non-hydrostatic operational weather forecasting system. It is 
maintained by the United States National Weather Service (NWS). The model is run twice a day, 
at 00:00 and 12:00 GMT, and produces forecasts at three-hour intervals from zero hours ahead 
(the so called "initialization run" since this is essentially the observed data interpolated over the 
domain) to 84 hours ahead. Immediately after a forecast is completed, it is made available on 
several FTP servers for downloading by the public. 

The Eta model provides predictions of weather conditions on a 40-km square grid overlaid across 
the continental United States and surrounding regions. The grid itself is based on a Lambert 
conformal projection centered on the central United States. Grid points and, therefore, vector 
components are generally not aligned exactly along true north-south or east-west. Figure 2-5 
shows the locations of the model grid points in the Altamont Pass area. 

At each grid point, a large number of predicted parameters are available. Table 2-1 summarizes 
the most important parameters in this study. The Eta model forecasts many parameters in 
addition to those in the table. There are multiple vertical levels above each grid point, each level 
denoted by the air pressure in millibars. For most atmospheric observations, there are 39 main 
levels, ranging from the highest at 50 mb to the lowest at 1000 mb. Additional parameters are 
reported that are either level insensitive or may occur at different pressure heights. These 
parameters are associated with additional levels that include the surface, and various elevations 
above ground for variables that are critical near the surface. For example, Eta predicts wind 
speeds 10 m above ground using data from the two lowest regular levels. This information is 
provided for diagnostic purposes only (Black, 2003), since it can not be representative of any 
specific location at such a low grid resolution. 

All time references in the Eta model are at Greenwich Mean Time (GMT), effectively the time 
observed in the time zone of London, England. To convert GMT to Pacific Standard Time, it is 
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necessary to subtract six or seven hours from the time expressed in GMT, depending on whether 
Daylight Saving Time is being observed. Note that many meteorological records, even if 
expressed in the local time zone, do not observe Daylight Saving Time, because it results in a 
one-hour discontinuity in the records when it starts or ends. 

 
 

 
Figure 2-5 Locations of Eta model grid points in the vicinity of the Altamont Pass wind 
farm. Numbers adjacent to the points indicate the Eta-modeled terrain height in meters. 
The location of the Oakland radiosonde launch site is also indicated. 
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Table 2-1 Selection of parameters available from Eta model output. 

 

 

 

 

 

 

 
 
 
 

*   nnnn is replaced by the pressure height of the reading. For all readings indicated with (*), available  
pressures range from 25 to 1000 mb in steps of 25 mb. The physical (as opposed to pressure) height 
above sea level of a reading can be determined by looking at the "HGT: nnnn mb" record for  pressure. 

Observation Symbol Units 
Sea-level pressure MSLET:MSL Pascals 
Sea-level pressure again PRMSL:MSL Pascals 
U comp. of wind speed at 10 m above 
ground 

UGRD:10 m above gnd m/sec 

V comp. f wind speed at 10 m above ground VGRD:10 m above gnd m/sec 
Height of level above sea level HGT:nnnn mb* Meters 
U comp. of wind speed UGRD:nnnn mb* m/sec 
V comp. of wind speed VGRD:nnnn mb* m/sec 
W comp. of wind speed VVEL:nnnn mb* m/sec 
Air temperature TMP:nnnn mb* Kelvin 
Relative Humidity RH:nnnn mb* Percent 
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3  
WIND SPEED-UP OVER HILLS 

 

Wind-tunnel and computer simulations have been shown to accurately predict flow in complex 
terrain (Bowen, 2003); however, often only a few representative wind directions and locations in 
the flow field are measured. In many cases, it is not feasible to conduct wind-tunnel or numerical 
simulation studies of a site, but is still necessary to estimate local topography and atmospheric 
stability effects on the flow field. 

A tool that could reasonably predict the results of an ABLWT investigation without requiring a 
wind tunnel test or significant computational resources would have many applications, including 
rapid wind resource assessment and the development of wind plant-scale power curves for use in 
forecasting applications. Review of the available methods for predicting the results of an 
ABLWT simulation without resorting to a full computational fluid dynamics solution indicate 
they are limited to those that applying empirical formulae to extreme simplifications of the 
problem, for example calculate the wind speed at the peak of a hill of ideal shape and oriented a 
right angle to the wind direction (for example Weng et al., 2000). Postulating that it might be 
possible to extend the applicability of these existing methods to address situations such as non-
perpendicular wind directions and more complex three-dimensional hill shapes, further 
investigation indicated that only limited data are available to address these cases, and that 
general data such as the impacts of variable wind direction were not available in the literature. 
Therefore, experiments were designed to investigate the impact of varying wind direction 
relative to the hill orientation. 

Speed-Up Prediction Background 

Much work has been done developing simplified models for predicting wind "speed-up" in 
complex terrain. Speed-up is the increase of near-surface winds above a hill as compared to the 
wind over a flat surface at the same height above the surface. It is expressed in dimensionless 
units as the fractional speed-up ratio: 
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=Δ         (3.1) 

where U is the wind speed at height z above the hill, and Uo is the upstream speed of the hill at 
the same height. It is assumed that the approach to the hill is a flat surface with the same surface 
roughness as the hill.  
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Jackson and Hunt (1975) developed an analytical method to predict speed-up over a two-
dimensional, smooth hill without flow separation, which was subsequently improved (Hunt et al. 
1988). They approached the problem by dividing the region above the hill into several layers. An 
outer layer was defined where the flow is far enough removed from the surface that it can be 
modeled as potential flow. A middle layer is located below the outer layer where the flow is not 
affected by friction with the surface but is close enough to the hill that it can not be considered 
irrotational flow. The inner layer is adjacent to the surface, and the flow is dominated by surface 
friction. Other researchers have made minor extensions of the Jackson and Hunt methods. For 
example, Mason and Sykes extended the method of Jackson and Hunt (1975) to a single three-
dimensional axisymmetric hill. The body of work based on Jackson and Hunt remains essentially 
the only satisfactory analytical method of estimating speed-up over hills. 

Kaimal and Finnigan (1994) extended the results of Jackson and Hunt (1975) to formulate a set 
of widely used simple guidelines to estimate the maximum speed-up ΔSmax expected over simple 
topographic features with slopes low enough to not experience separation (i.e., geometric 
divergence angles of less than 15° to 18° relative to the mean flow direction: 

 1max /6.1 LhS ≈Δ  for axisymmetric hills     (3.2a) 

 1max /0.2 LhS ≈Δ  for 2D ridges      (3.2b) 

Here L1 is the horizontal distance from the hill peak of height h to the point on the slope at height 
h/2 (the "half-height" of the hill). This set of equations is generally considered to usually be 
accurate to ±15%.  

Numerous experimental studies investigated speed-up over two-dimensional hills. Gong and 
Ibbetson (1989) performed wind tunnel tests on a two-dimensional ridge and a circular hill, both 
with cosine squared cross-sections. Miller and Davenport (1998) conducted wind tunnel tests of 
two-dimensional model hills and presented tables of speed-up values for different approach 
slopes and upwind conditions. Weng et al. (2000) also present guidelines for two-dimensional 
hills, based on hill geometry and surface roughness and also report the results of several wind 
tunnel tests. Taylor (1998) conducted numerical simulations of flow over low- and moderate- 
slope hills and presented an equation to predict speed-up based on hill parameters. Kim et al. 
(1997) experimentally and numerically investigated the effects of hill slope on speed-up over 
two-dimensional sine wave hills. Finite volume numerical simulations were conducted for flow 
over four actual hills for which field data were available (Kim et al., 2000). 

The surface roughness of the surrounding terrain affects speed-up over a hill (Weng et al. [2000], 
Miller and Davenport [1998]), especially as the ratio of surface roughness to hill length scales 
decreases. In numerical and field studies of actual hills, Kim et al. (2000) observed that the flow 
field over a hill is affected by the presence of other hills nearby, and that these hills must be 
included for accurate results. Lange and Hojstrup (2001) evaluated the accuracy of predictions 
made by the WAsP® program for the power output of proposed offshore wind turbines (which 
are in very simple terrain) and found that, while predictions were good overall, observed errors 
in the prediction correlated with the presence of land at distances of about 10 km from the sites.  
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Further complicating matters, flow separation occurs in the lee of steep hills. Finnigan (1988) 
compiled separation data from multiple field and wind tunnel studies. Separation did not occur 
when maximum slopes were less than 0.27 (15°), always occurred when maximum slope was at 
least 0.32 (18°), and was intermittent when slopes were between these values. For two-
dimensional, sinusoidal hills, Kim et al (1997) and Miller and Davenport (1998) both used the 
criterion that separation occurred for hills with slopes exceeding 0.4 (22°). Once separation 
occurs, accurate speed-up predictions became significantly more difficult. A number of studies 
addressed flow over actual three-dimensional terrain. Perhaps, the most significant such study 
was conducted at Askervein Hill, Scotland (Taylor and Teunissen, 1987). 

There have been several empirical speed-up prediction algorithms published that provide 
formulae or look-up tables to predict speed-up for arbitrary hills. The ESDU (1990) wind speed 
prediction algorithm incorporates a correction factor for sites on or near two-dimensional 
escarpments that was derived from wind tunnel data and field work of Bowen and Lindley 
(1977) and the numerical studies of Deaves (1980). The correction factor (called KL) is presented 
in a series of lookup graphs for different escarpment slopes. 

Taylor and Lee (1984) present a simple speed-up prediction algorithm (the “original 
Guidelines”) that allowed the prediction of ΔS above a hilltop at various heights above ground z. 
Speed-up can be predicted over a hill that is either isolated or located among regularly repeating 
hills, as would occur in rolling terrain. The original Guidelines predict a maximum speed-up 
ΔSmax based on hill height h and the hill half-length L1. It is then assumed that ΔS varies 
exponentially with height z: 

 1max / LBhS =Δ         (3.3a) 

( )1max /exp LAzSS −Δ=Δ        (3.3b) 

where A and B are constants given in Table 3-1, that depend on the type of hill and surrounding 
terrain. The original Guidelines can be applied in cases of moderate to high wind speeds on hills 
with maximum slopes <0.3, L1/zo > 100 and L1 < 2 km. 

Weng et al. (2000) refined the original Guidelines using a series of numerical simulations, 
including some non-linear, and based on the results proposed a set of “new Guidelines.” The new 
Guidelines allow for the variation of surface roughness zo, and the prediction of speed-up at the 
tops of steeper hills, with slopes up to about 0.5. The non-linear equations in the new Guidelines 
are: 
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where the constants Ai and Bi, given in Table 2-1, depend on the hill and surrounding terrain 
types. 

Table 3-1 Constants used in original and new guidelines for different hill and terrain types. 

 Original New 
Topography A B A1 A2 A31 A32 B1 B2 B3 B4 

Isolated 2D hill 3.0 2.0 -0.63 -1.36 -0.55 0.69 2.40 -0.051 0.029 -0.51
Isolated 3D hill 4.0 1.6 -0.64 -1.49 -0.34 0.64 2.05 -0.048 0.24 -0.40
2D rolling terrain 3.5 1.55 -0.60 -1.64 -2.03 0.90 2.20 -0.049 -0.64 -0.19
3D rolling terrain 4.4 1.1 -0.63 -1.92 -1.67 0.64 1.58 -0.036 0.069 -0.85
2D escarpment 2.5 0.8         

 

There have been only minimal laboratory investigations of speed-up over non-symmetric three-
dimensional hills that have different horizontal lengths and widths (i.e., aspect ratios not equal to 
one) in addition to different heights. Lemelin, Surry and Davenport (1988), hereafter referred to 
as LSD, used a series of numerical simulations with the MS3DJH/3R model to derive a set of 
speedup prediction formulae to predict speedup anywhere above an elliptic paraboloid hill 
defined by three length scales: in the direction of the approach wind L1, perpendicular to the 
approach wind L2, and peak height h.  

12 LLA =   pp Lh=φ        (3.5a) 
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where hp and Lp are the local height of the hill and the local primary hill half-length at the point 
of interest. The values of the constants are C1 = 2.3, C2 = 0.4 and C3 = 2.0. At the hill top, hp = h 
and Lp = L1. Then the equations become 
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This model was derived for low to moderate slopes (simulations were done at h/L = 0.28) and 
150 ≤ L1/zo ≤ 100,000. While the LSD formulation appears to be unique in that it includes the 
hill aspect ratio, the equations do not predict the negative speed-up values that occur at the base 
of very steep hills, and like most methods, it only considers winds at right angles to the hill. 

No comprehensive results could be found that determine speed-up as a function of the approach 
direction of the wind. Also, most non-field studies investigated either two-dimensional, semi-
infinite hills with the approaching wind direction perpendicular to the long axis of the model, or 
three-dimensional axisymmetric circular hills for which the flow is not direction dependent. 

If these studies address wind direction at all, most empirical speed-up prediction methods use 
simple correction factors to account for the wind direction. Baker (1985) conducted model and 
full-scale tests of 27° (0.51) slope railroad embankments and found the speed-up algorithm 
outlined by ESDU (1990) worked well when the flow was perpendicular to the embankment. 
Baker noted that for non-orthogonal winds, only the velocity component normal to the 
embankment is accelerated and derived the following equation to modify the ESDU “KL” factor 
(KL = 1 + ΔS) to include wind direction, where the speed-up factor is: 

 ( ) 1sincos)1()( 2
1222 −+Δ+=Δ θθθ OSS      (3.7) 

and θ is the angle of the wind direction off perpendicular and ΔSo = ΔS(θ = 0°) is the ΔS that 
would be estimated with a wind direction perpendicular to the embankment. 

An FAA (1988) model of speed-up for a two-dimensional ridge, given in a document on the 
siting of wind shear detectors near airport runways, is similar to the original Guidelines, except 
that the model adds a wind direction correction in which the horizontal length scale of the ridge 
is measured across the ridge in the same direction as the wind is blowing. The half-length of the 
hill is the length in the direction of the approach wind, calculated using the relation Lo = L1/cos 
θ,. L1 and Lo are the half-lengths of the hill in the directions perpendicular to the ridgeline and 
aligned with the wind, respectively. θ is the angle of the approach wind direction relative to the 
direction normal to the ridgeline. (i.e. θ = 0° is a wind normal to the ridge, θ = 90° is a wind 
parallel to the ridgeline.) 

Speed-Up At Altamont Pass 

The speed-up prediction schemes outlined above exhibit a wide variability of accuracy when 
used to predict the speed-up over actual hills. Weng et al. (2000) compare their Guidelines, as 
well as those of Taylor and Lee (1984) with field measurements from several sites. The accuracy 
of both methods depended most strongly on the site characteristics. For example, the Askervein 
Hill predictions agreed well with actual measurements, while predictions for Nyland Hill 
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significantly underestimated ΔS at all heights. Geographic sensitivity is significant for all of the 
prediction schemes outlined above. 

It was desired to assess the degree of accuracy that might be achieved at the Altamont Pass case 
study site, especially since most of the field data used to evaluate the prediction schemes are 
from single hills surrounded by relatively flat terrain. Fortunately, field data were found that 
could be applied directly to the unmodified prediction schemes. As shown in Figure 3-1, the 
Powerworks meteorological tower 438 (“Met 438”) is situated on the crest of a ridgeline that is 
oriented approximately perpendicular to the prevailing summer wind direction of 240°. The 
fully-instrumented LLNL meteorological tower is situated on a bearing of 240° from Met 438, 
about 4.5 km away in flat terrain, providing reference conditions for speed-up factor calculations.  
 

Figure 3-1 Map of western side of Altamont Pass showing location of LLNL meteorological 
tower and Powerworks meteorological towers 438 and 624. North is up. 
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Figure 3-2 Elevation transect from LLNL meteorological tower to Met 438. Dotted line 
shows hill slope approximation used for prediction schemes. 
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As shown in Figure 3-2, the terrain between the LLNL tower and Meteorological Tower 438 
consists of mostly flat plain, followed by a steep uniform rise to the ridge crest location of 
Meteorological Tower 438. The prediction scheme parameters can be directly estimated. The hill 
type is assumed to be a two-dimensional ridge with h = 235 m and L = 503 m. The land use is 
open grassland with zo = 15 mm. Using these parameters, the prediction schemes were used to 
predict the speed-up at z = 24.4 m (the height of the Met 438 anemometer). Table 3-2 shows the 
predicted speed-up factors, which range between 0.62 and 0.935. This range of variation is 
typical for these methods. 

Table 3-2 Speed-up factors predicted by various prediction methods for Meteorological 
Tower 438 relative to the LLNL tower, at a height of z = 24.4 m above ground. 

 

Calculation of the measured speed-up factor at a given time was complicated by the differing 
observation heights at the LLNL tower (10 m and 40 m) and Meteorological Tower 438 (24.4 
m). A power law profile was fit to the LLNL 10-m and 40-m wind speed readings and used to 
extrapolate the LLNL wind speed to 24.4 m. Equation 3.1 was then used to calculate ΔS. 

This method was used to generate a dataset of speed-up observations at Met 438 on a half-hourly 
basis between July 1, 2001, and June 30, 2003. Observations when the wind direction was 
between 235° and 245° were used in the comparison purposes. 

All of the prediction schemes are limited to address only the case of a neutrally stable 
atmosphere. It has already been observed that stability significantly impacts flow in the Altamont 
Pass. The observations were grouped by Pasquil-Gifford stability class (“A” = unstable, “C” = 
neutral, “F” = very stable). Table 3-3 shows the average speed-up factor calculated for Met 438, 
as well as the standard deviation, and the number of times each stability class was observed 
when winds were between 235° and 245°. The average speed-up under neutral (class “C”) 
conditions was ΔS = 0.87, which is within the range of values in Table 3-2. Interestingly, the 
least sophisticated methods (such as Eqn. 3.2b) gave the best predictions in this case. 

Neutral conditions correspond to a minimum speed-up. It is believed that under stable 
conditions, winds can be high aloft but are prevented from mixing down to the plains. Under 
unstable conditions, it is believed that additional heating of the terrain to the east of the Pass 
results in a relative increase in wind speeds through the Pass. It should be noted that the standard 
deviation of ΔS within a stability class remains very high, suggesting that, at any given time, 
there may be a significant variation in actual conditions. This result suggests that the ability of 
the prediction schemes to accurately predict ΔS at an arbitrary, specific time is limited. 

Prediction Method ΔS at Anemometer Height 
Equation 2.2b 0.935 
FAA 0.808 
Lemelin, Surry and Davenport 0.784 
Taylor and Lee 0.808 
Weng et al. (Linear) 0.691 
Weng et al. (Non-Linear) 0.620 
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Table 3-3 Observed ΔS and standard deviation for each stability class at Meteorological 
Tower 438. Wind direction between 235 deg and 245 deg, July 1, 2001, to June 30, 2003. 

Pasquil-Gifford 
Stability Class ΔS 

Standard 
Deviation 

Number of 
Observations 

A 1.12 0.47 6 
B 1.27 1.67 133 
C 0.87 0.52 200 
D 1.52 1.10 563 
E 2.93 1.74 151 
F 3.28 2.38 51 
All 1.64 1.47 1104 

 

Defining the wind direction is somewhat problematic, since in reality it is possible for the wind 
direction at the one meteorological tower to be different from the direction at the second. ΔS is 
dependent on which tower is used to define wind direction and the range of wind directions that 
are included in the average. Table 3-4 illustrates this feature by tabulating the ΔS determined 
increasingly wider wind direction ranges based on both the LLNL tower and Met 438. 

Table 3-4 Average ΔS observed for different wind direction inclusion criteria, such as 
which location was used to measure the wind direction, and how size range of directions 
included. 

Wind Direction Anemometer Average ΔS Num. Observations 
Range Location All Data Class C All Data Class C 

235 245 LLNL 1.64 0.87 1104 200 
225 255 LLNL 1.58 0.89 3409 614 
210 270 LLNL 1.52 0.85 6398 1169 
235 245 M438 1.51 0.81 1463 315 
225 255 M438 1.62 0.83 4803 991 
210 270 M438 1.98 0.85 9214 1565 

 

By relaxing the requirement that the LLNL tower be upwind of Meteorological Tower 438 to 
calculate ΔS, the variation of ΔS with respect to wind direction can be investigated. Figure 3-3 
presents the results. The wind direction at Meteorological Tower 438 was used as the 
representative wind direction in this case, since at off angles, the wind direction might vary 
appreciably in the plain relative to a ridge top location. As the wind vector varies northward from 
240° (which is 0° relative wind direction), ΔS decreases as the wind direction becomes more 
aligned with the ridgeline until the a relative wind direction reaches about 60°. For negative 
relative wind directions and those at larger angles, ΔS increases when perhaps it would be 
expected to decrease. This could be due to a low number of observations and the fact that the 
actual ridge is different from the idealized two-dimensional modeled ridge, especially to the 
southeast where the ridgeline changes direction and increases in height.  
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Figure 3-3 Average speed-up factor at Meteorological Tower 438 as a function of wind 
direction relative to the perpendicular to the ridgeline. A wind direction of 240° is 
perpendicular to the ridgeline and therefore corresponds to a relative wind direction of 0°. 
The chart also shows the number of observations included in each average. For 
comparison, results from the Taylor and Lee prediction scheme with a Baker wind 
direction modification are also shown.  

The observed speed-up was also investigated for Powerworks meteorological tower 624 (“Met 
624”). It is also situated near the entrance to the Pass, although it is on a promontory, has more 
terrain complexity in the direction of LLNL, and is not aligned as well relative to LLNL and the 
prevailing wind direction. For Meteorological Tower 624, h = 196 m and L = 656 m. In this case, 
for class “C” field measurements, ΔS was 0.96, although the lower slope of this hill 
(Meteorological Tower 624, h/L = 0.30) would have caused us to predict a lower ΔS than for 
Meteorological Tower 438 (h/L = 0.47).  

Overall, the observed speed-up factors exhibited significant variability, even within the same 
stability class and wind direction range. Further application of the unmodified prediction 
schemes to sites within the Altamont Pass was hampered by the extremely complex terrain that 
made it difficult to estimate h and L at a given site, the fact that winds rarely blow 
perpendicularly to the ridgeline, and the lack of nearby flat reference sites.  
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Wind Tunnel Tests of Generalized Hills 

For speed-up predictions to be applicable to wind energy uses, the wind direction must be 
factored into the prediction algorithm. Additionally, the algorithm must include more than 
circular or two-dimensional hill shapes. Since very little systematic data were available in the 
literature documenting how speed-up varies based on these parameters, researchers decided to 
conduct a series of tests of generalized hills in the ABLWT . 

Test Specifications 

For this test, a mechanical height probe and the laser spotting system were used to position the 
hot-wire anemometer. Hot-wire measurements were taken at 1000 Hz for 90 seconds. This 
corresponds to a full-scale time period of 46 to 286 minutes and Altamont Pass wind speeds from 
4 to 25 m/s. A power law exponent of  α = 0.19 was achieved by systematically arranging a 
pattern of 8.9 x 14.6 x 1.9 cm (thin blocks) and 8.3 x 19.7 x3.8 cm (thick blocks) wooden blocks 
over the flow-development section of the wind tunnel. The block pattern roughly consisted of 
half of each type of block configured in alternating sets of four and five blocks per row. The 
artificial grass used in the test section (mean height of 3 mm) was extended upwind and under 
the blocks. Additionally, the first three rows of blocks upwind of the test section were replaced 
with smaller blocks (Figure 2-4) to create a smooth flow transition from the roughness elements 
to the hill model. Figure 3-5 shows typical mean velocity profiles produced by this arrangement. 

 Hill Models 

Three different hill models were manufactured from polystyrene foam. All of the hills had a 
sinusoidal cross-section and a height of h = 38 mm. An axisymmetric hill with a circular base 
was produced by revolving the cosine cross-section. An elliptical hill was made by stretching the 
circular hill so that the resulting elliptical footprint had a base length four times longer than the 
base width. A semi-infinite ("two-dimensional") hill model also was constructed with a cosine 
cross-section. Model surface roughness was maintained on the circular and elliptical hills by 
reproducing the topography using 2.5 mm steps, while the two-dimensional model was covered 
in artificial grass. The equation of the height of the surface z(x,y) of these hills is 

( ) ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
++= 2

1222
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22
yAx

L
hhz π       (2.8) 

where x and y are the horizontal distances from the hill peak. L1 and L2 are the half-lengths of 
the hill in the x and y directions. The half-length is the distance from the peak to the point on the 
slope where z = h/2. The aspect ratio of the hill is A = L2/L1. For the circular, elliptical, and two-
dimensional models, A = 1.0, 4.0 and 0 respectively. All models had a primary half-length L1 of 
71.5 mm. See Figure 3-6 for details. 
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Figure 3-4 Roughness element arrangement used in ABLWT development section for 
generalized hill tests. The two-dimensional hill model at θ = 0° and the measurement probe 
support with sighting laser and height probe installed are also visible. 
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Figure 3-5 Dimensionless velocity profiles in empty UC Davis Atmospheric Boundary 
Layer Wind Tunnel test section with artificial grass covering floor at three locations: at 
center, and 68 cm upwind, and downwind of center. 

 
Figure 3-6 Schematic diagram of the hill models. 
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Effects of Model Roughness 

The model surface must be rough enough to maintain a turbulent flow over the model surface. 
Generally, this means that the roughness Reynolds number must be greater than about 2.5. 
Practically, this means that the model must not be "aerodynamically smooth." Model roughness 
can be provided by coating or covering the surface in a suitable material. Previous investigators 
of speed-up over two-dimensional hills used studded rubber sheets (Gong and Ibbetson, 1989), 
artificial grass (Kim et al., 1997), uniformly spread sand (Baker et al., 1985), and textured wall 
paper (Carpenter and Locke, 1999).  

Roughness also can be achieved by using "steps" or "terraces." This latter type of roughness can 
be a by-product of model construction. If the terrain is carved from a large block of material 
using mapped contours to guide the cutting tool, the result is a "stepped" model where the edge 
of each step follows one of the mapped contour lines. The maximum step size depends on the 
scale of the features modeled, since larger steps cause a greater departure from geometric 
similarity. Derickson and Peterka (2004) tested a 1:4000 scale model of complex terrain of 
Lantau Island, Hong Kong, in an ABLWT, using a model with 3-mm steps. The space between 
the steps was then carefully filled with plaster to make a "smoothed" model, and the test was run 
again. Little difference was observed in the resulting near-surface velocity profiles measured at 
several points on the model.  

However, if the steps become too large, they begin to interfere with the properties of the flow. 
Lindley et al. (1981) modeled Gebbies Pass, New Zealand, at 1:4000 scale in both stepped and 
"smooth" configurations, and found the stepped model performed very poorly. This may be 
attributable to the large step size of 1 cm, and the fact that the range between the highest and 
lowest points of the model encompassed only 11 steps. Although generally low, the effect of 
model roughness is most pronounced at and downstream of separation points on the model, since 
the exact location of a separation point is a strong function of perturbations in the local model 
geometry and generally unsteady in time. Miller and Davenport (1998) performed ABLWT tests 
on two-dimensional sinusoidal hill models with maximum slopes of 0.5 (steep enough to expect 
lee side flow separation), and reported up to 40% greater velocities at the surface on the hill 
peak, although the difference decreased rapidly with height and was minimal above z/h ≈ 0.5. 

The circular and elliptical hill models in this study were fabricated with 2.5 mm steps. The two-
dimensional ridge was covered in artificial grass to ensure a consistent surface roughness 
regardless of orientation in the wind tunnel. For all three hills, artificial grass covered the entire 
floor of the test section. Previous experiments showed that if the test section floor was left as an 
untreated bare plywood surface, an internal boundary layer formed in the test section, causing 
unacceptable variation in velocity measurements with test section position. 

Two-Dimensional Ridge and Three-Dimensional Circular Hill 

Most previous wind tunnel studies concentrated on two hill configurations: two-dimensional 
ridges with the wind blowing perpendicularly across the ridge and three-dimensional 
axisymmetric hills with a circular "footprint". Both of these configurations were tested in the UC 
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Davis ABLWT. Results were reasonably consistent with other studies. Interestingly, Eqns. 3.2 a 
and b overpredicted the maximum speed-up ΔSmax, generally by more than 15%, for every data 
set except Gong and Ibbetson's (1989), which show very good agreement between measurements 
and Eqns. 3.2 a and b. 

 Hill Aspect Ratio 

Combining results from the 0° and 90° wind direction tests of the three hill models, it is possible 
to observe how ΔS changes as a function of the hill aspect ratio A. Figure 3-7 shows the hilltop 
speed-up profiles for four of the aspect ratios tested. (A = 0 is not plotted as ΔS ≈ 0.) The figure 
also presents the speed-up data predicted by the LSD method. 

Equation 3.6b was optimized by varying the constants C1, C2 and C3 to “best fit” the wind tunnel 
data in Figure 3-7. Best fit was determined by minimizing the total absolute error between the 
wind tunnel measurements and the LSD prediction for the five profiles. The minimum average 
absolute error of 0.023 was obtained using almost the same constants specified by LSD: C1 = 
2.3, C2 = 0.2 (instead of 0.4) and C3 = 2.0.  
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Figure 3-7 Hilltop speed-up factor profiles for four hill aspect ratios: A = 0.25, 1, 4 and 
infinity. WT is the wind tunnel measurement. LSD is the predicted speed-up using Eqn. 
3.9b with C1 = 2.3, C2 = 0.2, C3 = 2.0. 
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Hill Shoulder 

It is interesting to note the variation of the speed-up factor at the “shoulder” measurement 
locations as the aspect ratio is changed. The shoulder locations are those where x = 0 with a 0° 
wind. Measurement points available included y = 0 (the hilltop) and y = L2 (the “shoulder face”). 
Wind tunnel width limitations precluded taking base measurements (y = 2L2) for A = 4. It is 
apparent that the values of ΔS peak for the circular hill (A = 1), as shown in Table 2-5. This 
effect is believed to be due to lateral (“y direction”) acceleration of the flow horizontally on the 
windward face of the hill, in addition to the longitudinal (“x direction”) acceleration that is the 
primary cause speed-up. 

Table 3-5 Measured values of ΔS at the shoulder location (x = 0, y = L2, � = 0°) at different 
heights above ground z, for hills of different aspect ratio A = L2/L1. 

A
z [mm] Infinity 4 1 0.25 0

5 0.677 0.487 0.532 0.249 -0.043
7.5 0.626 0.409 0.437 0.239 -0.027
10 0.560 0.331 0.360 0.174 -0.024

12.5 0.504 0.257 0.289 0.158 -0.018
15 0.443 0.210 0.250 0.150 -0.009
20 0.399 0.169 0.225 0.115 0.004
30 0.310 0.099 0.157 0.085 0.011
50 0.242 0.051 0.095 0.063 0.017
75 0.189 0.006 0.081 0.053 0.027  

 

Effects of Wind Direction 

Measurements were taken at five similar points on both the two-dimensional and elliptical hills: 
at the base and half-height on both windward and leeward slopes, and at the hilltop. Profiles also 
were taken at both half-height points along the long axis of the elliptical hill. Measurements were 
taken at z = 5, 7.5, 10, 12.5, 15, 20, 30, 50 and 75 mm above each point, giving a range of z/h 
between 0.13 and 1.97. The elliptical and two-dimensional models were rotated and individually 
tested in the ABLWT to simulate wind from 0°, 15°, 30°, 45°, 60°, 75° and 90° relative to the 
short axis of the hill. Since the models were symmetric, this was sufficient to characterize the 
velocity profile for wind from +90° to –90° at 15° intervals. As the two-dimensional hill model 
was rotated, additional sections were added to the model so that it extended to flush interfaces 
with both side walls of the test section at angles up to 75°. For the 90° test, the two-dimensional 
hill model was terminated at the downwind edge of the test section and two meters upwind into 
the development section by smoothly bringing the artificial grass surface down to floor level 
over approximately 0.5 meters.  

Additionally, for each model and wind direction, profiles of mean velocity and turbulence 
intensity were taken upwind of the hill location for all directions up to 60°. This was not possible 
for the 75° and 90° directions, where portions of the hill models themselves were effectively 
upwind. For these directions, an average of the mean velocity profiles for the other directions 
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was used to calculate speed-up factors. Since the profiles showed minimal variation, this was not 
considered to have introduced significant error. 

Generally, the range of speed-up factors observed for the two-dimensional hill was somewhat 
greater than the range observed over the elliptical hill. For the top of the two-dimensional hill 
(Figure 3-7), speed-up factors at angles near 0° were the highest (ΔS = 0.677, 0.718) at the 
lowest measurement point 5 mm above the surface and decreased as height above the surface 
increased (ΔS = 0.504 at z = 12.5 mm). At angles greater than 45°, the variation in ΔS decreases, 
as the component of the wind parallel to the slope increases, until at 90°, ΔS < 0.06 for all of the 
measurement points. 

On the slope face (Figure 3-9), ΔS reached a much lower maximum of 0.24, and showed less 
variation with either height or direction than the hilltop. Except for very close to the surface, 
speed-up at a given height varies roughly linearly from a maximum at θ = 0° to ΔS ≈ 0 at θ = 
90°.  

The hill base area is a region of reduced velocity near the surface at low values of θ. For the two-
dimensional hill (Figure 3-10), the minimum ΔS = -0.27 occurs at z = 5 mm and θ = 0°, and 
speed-up factors go to zero by z/h = 2. Similar minimum values of ΔS are observed at θ = 0° for 
the elliptical hill (Figure 2-13, minimum ΔS = -0.30) and circular hill (Figure 2-16, minimum ΔS 
= -0.25). It is interesting to note that for all three hills, ΔS trends uniformly from a minimum at θ 
= 0° to a maximum at θ = 90°. While this maximum is about zero for the two-dimensional hill, it 
is higher for the elliptical hill (maximum ΔS = 0.14). The overall trend is higher still for the 
circular hill. 
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Figure 3-8 Speed-up factor versus wind direction for two-dimensional hill at hilltop. Wind 
from 0° is perpendicular to ridgeline. Wind from 90° is parallel to ridgeline. 
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Figure 3-9 Speed-up factor versus wind direction for two-dimensional hill at half-height on 
slope (“face”). Wind from 0° is perpendicular to ridgeline, with measurement point on 
windward side. Wind from 90° is parallel to ridgeline. 

The variation of ΔS with θ at the hill face measurement point also depends strongly on the hill 
aspect ratio. For the two-dimensional hill, ΔS trends from maximum values at θ = 0° to ΔS ≈ 0 at 
θ = 90° (Figure 2-9). For the elliptical hill (Figure 2-12), the variation of ΔS is less pronounced, 
with ΔS slightly lower at θ = 0° than at θ = 90°. The trend for the circular hill is opposite that of 
the two-dimensional hill. ΔS trends from minimum values at θ = 0° to maximum values at θ = 
90°. 

Some of the variation in ΔS for the base and face points appears to be caused by a “cross flow” 
phenomenon. As the wind strikes the circular hill, a percentage of air is pushed up and over the 
summit, with the remaining air pushed horizontally around the sides of the hill. This would cause 
speed-up factors to be higher around a hill of aspect ratios near one, while this effect would be 
minimal as the aspect ratio approached 0 or ∞.  
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Figure 3-10 Speed-up factor versus wind direction for two-dimensional hill at base of hill. 
Wind from 0° is perpendicular to ridgeline, with measurement point on windward side. 
Wind from 90° is parallel to ridgeline. 
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Figure 3-11 Speed-up factor versus wind direction for elliptical hill at hilltop. The wind 
direction from 0° is perpendicular to the ridgeline, from the  90° wind direction is parallel to 
the ridgeline. 
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Figure 3-12 Speed-up factor versus wind direction for elliptical hill at half-height on slope. 
Wind from 0° is perpendicular to ridgeline, with measurement point on windward side. 
Wind from 90° is parallel to ridgeline. 
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Figure 3-13 Speed-up factor versus wind direction for elliptical hill at base of hill. Wind 
from 0° is perpendicular to ridgeline, with measurement point on windward side. Wind 
from 90° is parallel to ridgeline. 
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Figure 3-14 Speed-up factor versus height for circular hill at hilltop at top, face and base. 
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Figure 3-15 Speed-up factor versus wind direction for circular hill at half-height on slope. 
Point is centered on upwind face when wind is from 0°. Point is on shoulder of hill when 
wind is from 90°. 
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Figure 3-16 Speed-up factor versus wind direction for circular hill at base of hill. Point is 
directly upwind of hilltop when wind is from 0°. Point is on shoulder of hill when wind is 
from 90°. 

Analysis of Prediction Schemes 

For the hilltop of the two-dimensional ridge, the existing speed-up prediction algorithms can be 
modified in a straightforward manner to include wind direction effects. As well as the Baker and 
FAA interpolation methods described earlier, it is also possible to fit simple cosine curve to 
describe wind direction variation. 

 ( ))2cos(5.05.0)( θθ +Δ=Δ OSS      (3-9) 

 )cos()( θθ OSS Δ=Δ        (3-10) 

The Baker method (Eqn. 3.7), the FAA method, and the two cosine fits were applied to the 
speed-up prediction algorithms for the top of the two-dimensional hill. Figure 3-17 shows the 
hilltop ΔS predicted at z = 10 mm by applying each of the four wind direction methods to the 
results of the Weng non-linear prediction algorithm. This allows comparison of the results 
obtained when the different wind direction methods are applied in an otherwise identical 
prediction algorithm. The FAA method was found to be more conservative (i.e., overpredicting 
speed-up) than the others. 
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The method of minimizing error between the predicted and wind tunnel measured speed-up 
factors was used to rank the prediction accuracy of each combination of prediction algorithm and 
wind direction interpolation. For each combination, the mean error (indicating bias) and mean 
absolute error in the predicted speed-up values were calculated for the elliptical and two-
dimensional hill over all wind directions and all measurement heights. Table 3-6 presents the 
results, ordered from “best” to “worst” in the present context. Unfortunately, it is difficult to 
draw significant conclusions at this point, since the accuracy of each prediction algorithm cannot 
be separated from the accuracy of the wind direction interpolation. 
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Figure 3-17 Speed-up factors for the two-dimensional hill top at z = 10 mm predicted by the 
non-linear Weng et al. formulation, using four different wind direction interpolation 
methods. 

It is also noted that this approach of applying the pre-existing prediction algorithms and a wind 
direction interpolation does not translate to points that are not located on the hilltop. Therefore, it 
was necessary to formulate a new speed-up prediction algorithm to accomplish this goal. This 
was done by modifying the LSD method, the available method covering the greatest range of 
phenomena, to incorporate both wind direction dependence and the negative speed-up that are 
observed at the base of a steep hill. 
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Table 3-6 Hilltop speed-up prediction accuracy comparison for each combination of 
speed-up prediction algorithm and wind direction interpolation method. 

Prediction Wind Direction
Algorithm Interpolation Method ME MAE

LSD FAA -0.01 0.08
LSD cos(theta) -0.01 0.08
LSD 0.5+0.5cos(2theta) 0.06 0.10
LSD Baker 0.08 0.11
FAA Baker 0.05 0.12
FAA FAA 0.05 0.12
FAA 0.5+0.5cos(2theta) 0.05 0.12
FAA cos(theta) 0.05 0.12
WTS cos(theta) 0.12 0.20

W Non-Linear cos(theta) 0.13 0.20
WTS FAA 0.13 0.20

W Non-Linear FAA 0.14 0.20
W Linear cos(theta) 0.16 0.22
W Linear FAA 0.17 0.23

WTS 0.5+0.5cos(2theta) 0.21 0.25
W Non-Linear 0.5+0.5cos(2theta) 0.22 0.26

W Linear 0.5+0.5cos(2theta) 0.25 0.28
WTS Baker 0.35 0.36

W Non-Linear Baker 0.36 0.36
W Linear Baker 0.42 0.42  

 

Modified LSD Prediction Scheme 

A speed-up factor prediction scheme is presented below. This method is valid only when 
considering a point on the upwind side or ridgeline of the hill. It is based on the LSD method, 
with modifications that account for the negative speed-up factors that occur near the surface at 
the base of steeper (h/L1 > 0.4) hills. Wind direction is also included by using a modified LSD 
method to estimate the speed-up at the point of interest for wind directions between θ = 0° and θ 
= 90° from its two orthogonal components. For wind directions between 0° and 90°, the speed-
up factor is calculated as follows: 
 

1. Calculate hill slope: 
pp Lh=φ  

 
2, Calculate expected maximum speed-up at hilltop and minimum speed-up at base. 

If 4.0<=φ :  φ75.1max =ΔS   0min =ΔS   
If 4.0>φ :  7.0max =ΔS   ( ){ } 14.05.2expmin −−−=Δ φS  
 

3. Calculate the expected speed-up for a wind blowing parallel to the x axis, adjusted for 
position on hill face and height above the surface: 
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4. Next, using the un-modified LSD method (Eqns. 2.5a, 2.5b), calculate ΔSorth, the 

expected speed-up at the point if the wind was blowing from the “side” of the hill. That 
is, calculate the speed-up for wind parallel to the y axis, instead of wind parallel to the x 
axis. This can be done most easily by rotating the hill 90° in the coordinate system, 
noting that A, Lp and the coordinates of the point are all changed by this operation and 
then applying Eqns. LD1 and LD2. 

  
5. Finally, interpolate vector between ΔSnorm and ΔSorth to get ΔS at the required wind 

direction θ: 
 

θθ sincos orthnorm SSS Δ+Δ=Δ  
 

Applying this method to all of the points and heights measured in the wind tunnel, the mean 
absolute error of the ΔS predictions was 0.052, compared to 0.076 for the original LSD method, 
using the Baker wind-direction interpolation.  

Generalized Hill Test Conclusions 

The variation of speed-up over an elliptical hill varies considerably depending on the hill aspect 
ratio, wind direction, and the position of the point of interest on the hill. For the specific case of 
the hilltop of the two-dimensional ridge tested, a simple cosine of the wind direction was found 
to be a better interpolating factor than the other methods considered. 

The wind tunnel test results highlighted the limitations of current empirical speed-up prediction 
models. For the most part, current models do not include the negative speed-up that occurs at the 
base of steep hills, effects of non-orthogonal wind directions, or the local horizontal component 
of flow acceleration that occurs on the sides of hills with aspect ratios near one. A method of 
extending the LSD method (currently the most complete model) to include these effects was 
developed, which are most pronounced for steeper hills, while maintaining the validity of the un-
modified LSD method for hills with smaller slopes. 
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4  
The Wind Farm Power Curve 

The primary factor determining the power output of a wind turbine is the wind speed at turbine 
hub height. The function that predicts the power production of a turbine based on an input wind 
speed is called the power curve of the wind turbine. If the concept of the power curve is extended 
to an entire wind farm, it is called the "wind farm power curve" or "plant-scale power curve". In 
this case, the input wind speed is a reference wind speed within or near the wind farm, usually 
the wind speed measured at the wind farm’s meteorological tower. The power output indicated 
by the plant-scale power curve at a given wind speed predicts the power production of the entire 
wind farm. 

Determining an accurate wind farm power curve is more difficult than determining the power 
curve of a single turbine. The wind farm power curve is sensitive to additional factors such as 
wind direction, atmospheric stability, topography, and turbine wake effects on downwind 
turbines. The main difficulty is estimating how the wind speed at each turbine location varies 
relative to the wind speed at the meteorological tower (or other wind speed reference location). 
As described below, a novel approach is to use an ABLWT to map the variation of wind speed 
over the wind farm site. Individual turbine power curves could then be used to estimate the wind 
farm's power production if the wind speed at the meteorological tower is known. Alternatively, a 
numerical potential flow solver can be used to map the wind speed variation by simulating 
potential flow over the local terrain. Both of these methods are applied to the Altamont case 
study wind farm, and the results are compared to power curves generated using  “traditional” 
methods using historical data and statistical analysis. The performance of the power curves is 
also evaluated in a forecast mode using a forecast archive supplied by AWS Truewind.  

Power Curve Derived From Wind Tunnel Data 

Wind Tunnel Modeling of Altamont Pass Terrain 

Simulation of terrain in the atmospheric boundary layer wind tunnel (ABLWT) requires 
construction of a model of the terrain capable of simulating the full-scale three-dimensional flow. 
The scale of the terrain surface features of the model must be large enough so that the hot-wire 
anemometer, which has a finite length on the order of several millimeters, has sufficient 
resolution to measure flow variations caused by the surface features. The wind tunnel simulates a 
fully turbulent flow. 

The first ABLWT investigation of the Altamont Pass wind farm site was performed at UC Davis 
by James Cheng in 2002. He demonstrated that the ABLWT could be used to predict the power 
output of wind turbines in complex terrain with reasonable accuracy (Cheng, 2002, White and 
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Cheng, 2002). This study involved a wind tunnel test simulating two clusters of wind turbines 
owned by Powerworks, Inc., in the Altamont Pass region. A model of the terrain was constructed 
at 1:2400 scale that simulated a region 2.6 km wide by 8.8 km long, with the long axis aligned 
with 240°, the prevailing wind direction format Altamont Pass. Wind-speed measurements were 
made at each turbine site at the scale hub height. Turbine wake effects were not considered. On-
site meteorological ("met") towers recorded wind speed, which was used in conjunction with the 
wind tunnel measurements and the wind-turbine power curve to predict the power output of the 
wind farm for given meteorological conditions. The predicted power production was compared 
to the recorded power production, and the average error was 20% during the summer months and 
±40% during the winter months, when power production was lower and more erratic. The tests 
also demonstrated that the wind tunnel predictions of near-surface winds were most accurate 
during seasons and times of day when neutral or unstable flow occurs (Cheng et al., 2004). This 
phase of the project was completed as part of the first California Energy Commission and 
Electric Power Research Institute California Wind Forecasting Project (EPRI 2003a and 2003b). 

The research documented here is the continuation of the work initiated by Cheng (2002). 
Additional terrain models were constructed to characterize wind speed distributions when the 
wind direction was varied among four directions for one of the turbine clusters in the original 
study (called "Met 127").  

Five wind tunnel model sections, each 46 by 48 inches, were constructed to simulate the Met 127 
turbine cluster and surrounding areas (Figure 4-3). The first three sections were produced by a 
contractor, and reproduce the terrain in dense polystyrene foam in 2.5 mm steps (Figure 4-1). 
These three panels were used by Cheng (2002) and by the author to simulate the 240° and 60° 
wind directions. Two additional panels were constructed by the author. These panels were 
constructed in 12.7 mm steps. The steps were then filled with a plaster compound to form the 
shape of the terrain (Figure 4-2). The plaster surfaces were intentionally left rough to maintain 
turbulent flow along the surface. The expanded model was tested over four simulated wind 
directions, and the original prediction scheme used by Cheng (2002) was enhanced to use both 
wind speed and direction measured at the met tower as well as ambient air density to predict the 
power production of the Met 127 turbine cluster. 

Wind speed and turbulence intensity were measured for many turbine locations on the model at 
simulated hub height, and for the met tower at anemometer height. In some cases, where turbines 
were closely spaced along ridgelines, every other turbine position was measured. Wind speeds 
for unmeasured turbine locations were estimated by averaging the measured wind speeds at the 
adjacent turbine locations on either side. The measurements were made for each of the simulated 
wind directions, θ = 60º, 150º, 240º and 330º. At the end of the test, the resulting database  
presented in Appendix A contained four measurements of wind speed at the met tower and at 
each turbine location measured (Uturb,tunnel), one for each of the wind directions tested. 
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Figure 4-1 Model in wind tunnel simulating 60° wind direction. Met 127 turbine cluster is on 
center yellow panel. Met 225 turbine cluster (only tested for 240°) is on rearmost panel. 
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Figure 4-2 Model in wind tunnel simulating 150° wind direction. Wind blows towards 
camera. 

 

Figure 4-3 Map of modeled terrain, with area covered by model panels outlined. Mapped 
area is 9.6 km by 7.3 km. Contour interval is 20 m. North is vertically upward. 
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For each turbine location, four wind speeds Uturb,tunnel(θ = 60º, 150º, 240º, 330º) were measured; 
however, winds blow from all directions, and Uturb,tunnel(θ) is a continuous function of  θ. 
Therefore, a curve was fit to the four points of wind speed data as a function of position along 
the ridge line of the wind farm areas. This fit used a cubic spline with a matching condition at 0° 
and 360°. For a wind turbine on a long ridge, Uturb,tunnel(θ) can be expected to exhibit two 
maximums that occur when the wind direction is roughly normal to the ridgeline, and two 
minimums when the wind is roughly parallel to the ridgeline.  

Figure 4-4 shows the interpolated dimensionless wind speed, R = Uturb,tunnel/Uref versus the true 
wind direction in radians for Meteorological Tower 127, where Uref is a reference "free-stream" 
wind speed measured outside the simulated boundary layer. A Matlab program was written to 
automatically perform these interpolations for each turbine location and store the results in a 
look-up file. 
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Figure 4-4 Curve fit predicting dimensionless wind speed (R) as a function of wind 
direction in radians. 

Once the wind at each wind turbine site is characterized for all wind directions, the data can be 
used to predict the wind speed at each turbine site, or collectively for an area, and for a given 
wind speed and direction associated with a specific met tower. The wind farm operator provides 
the 30-minute average wind speed and direction values at the met tower, Umettower,full-scale(θ) , 
recorded every half hour. Using this information, the full-scale predicted wind speed at the 
turbine is 

scalefullmet
tunnelmettower

tunnelturb
scalefullturb U

U
U

U −− = ,
,

,
, )(

)(
θ

θ
     (4.1) 
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where θ is the wind direction observed at the met tower. 

The wind speed at each turbine site is applied to the wind turbine power curve to predict the 
power produced by each turbine or turbine area. For the Kennetech 56-100 turbines associated 
with Meteorological Tower 127, the electricity production in kilowatts (E) is described by the 
following segmented function of the mean wind speed at hub height in meters per second (U): 
  
 E = 0 : U ≤ 4.8319 
  
 E = -0.0224U3+1.8448U2-11.559U+15.308 : 4.8319 < U < 12.1704 
  
 E = 107.5 : U ≥ 12.1704 ≤ U ≤ 19.7 
 
 E = 0 : U > 19.7      (4.2) 
 

This power curve was originally measured by the wind turbine manufacturer, Kennetech, and 
supplied by Powerworks (EPRI 2003b). Figure 4-5 illustrates the power curve described by Eqn. 
4.2. 

Kennetech 56-100 Wind Turbine Power Curve
Air Density of 1.16 kg/m^3

Least squares fit to cubic portion of curve:
P = -0.0224U3 + 1.8448U2 - 11.559U + 15.308

R2 = 1
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Figure 4-5 Power curve for a Kennetech 56-100 100 kW rated wind turbine. Power curve for 
a Kennetech 56-100 100 kW-rated wind turbine. 
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Air density affects the power production, and according to theory, the energy E available in the 
wind is proportional to air density ρ. Therefore, the predicted energy E from Eqn. 3.2 is adjusted 
by multiplying by the air density ratio, ρ/ρo,  

 EE
o

i ρ
ρ

=          (3.3) 

where ρ is the actual density, as determined primarily by temperature, and ρo is the reference 
density of the power curve. The result Ei is the predicted power production for turbine number i. 

Once the energy being produced by each turbine is predicted (Ei), the total power production of 
the wind farm over a half-hour period is determined by summing over all the turbine locations. 
The turbines that are offline are accounted for now by correcting the power estimate based on the 
number of turbines that are offline. This is done at this point, rather than at the individual turbine 
level, since the online status was recorded for the aggregate of all turbines in each cluster, but not 
for individual turbines at the Altamont site.  

( ) ∑
=

⋅⋅=
N

i available

online
incitotal t

t
tUEP

1

)(       (4.4) 

where tinc = 0.5 hours, and the ratio tonline/tavailable is the ratio of operating (or online) turbines in 
the farm over the total number of turbines in the farm. The resulting power prediction Ptotal is an 
estimate of the power production of the wind farm for a half-hour period and is in units of kWh / 
½h. 

Programs were written in both Matlab and Perl to perform the prediction scheme outlined above. 
First a Matlab program generates the interpolated R values for each wind turbine location. The 
resulting look-up table provides an R value for each turbine for each integer degree of wind 
direction. Powerworks made available power production, turbine online status, and 
meteorological tower data for 10 of their Altamont Pass wind turbine clusters, including the Met 
127 cluster. The data were provided via FTP from a secure server in the form of ASCII text files, 
each containing either one day or one month of data for all 10 sites. The data were continuously 
archived for use in this project since June 26, 2001. Matlab and, later, Perl programs were 
written to extract data for a desired met tower from a set of these files and store the data in a 
single text file in comma-separated (CSV) format. 

Matlab and Perl programs were then written to read in the interpolated R values and 
meteorological data and perform the series of calculations described above. The resulting 
predictions of power production were then compared to the actual power production recorded by 
Powerworks for the wind turbine cluster. 

Atmospheric Stability 

The wind tunnel models simulate a neutrally stable atmosphere. However, it has been observed 
at Altamont Pass that high winds often occur at night under stable conditions. Therefore, it was 
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expected that the wind tunnel would predict wind power production with greater accuracy during 
neutral or unstable flow regimes than during stable flow. While the Powerworks meteorological 
towers did not provide enough data to directly quantify the stability at the wind turbine cluster 
locations, for example by calculating Richardson numbers or Monin-Obukov lengths, it was still 
possible to get a first order approximation by observing that at certain times of day and seasons, 
the flow would, on average, be expected to be stable, while at other times it would be expected to 
be neutral or unstable. To estimate wind tunnel accuracy, it was decided to compare the relative 
wind speeds predicted for two meteorological towers for which wind speed data were available 
from Powerworks. For the 240° wind direction, measurements were taken at two meteorological 
tower sites, Met 127 and Met 225, roughly 2 km to the east of Met 127. The Met 127 to Met 225 
wind speed ratio measured in the wind tunnel was 0.98. 

The wind speeds observed at Met 127 and Met 225 were compared for the period between July 
1, 2001, and June 30, 2002. It was observed that the median wind speeds were 6.84 m/s (15.3 
mph) at Met 127 and 6.35 m/s (14.2 mph) at Met 225. The average ratio of Met 127/Met 225 
wind speed ratio for the one year period was 1.19, with a standard deviation of 0.36, indicating 
that Met 127 generally experiences stronger winds than Met 225, even though the wind tunnel 
predicted that the wind speeds should be nearly equal. 

It is believed that this variation is due to the neutral stability conditions in the wind tunnel during 
all measurements, while actual conditions exhibit varying degrees of stable flow in the Altamont 
Pass. Table 4-1 presents the average wind speed ratios observed for different seasons and for 
different three-hour time intervals. It is not surprising that the wind tunnel prediction of 0.98 is 
very close to the observed ratio between the hours of 15:00 to 18:00 local time, corresponding to 
hours 15 through 17 in Table 4-1 during spring and summer. At these times, strong solar heating 
of the surface can be expected to produce locally unstable conditions much of the time. 
Conversely, larger discrepancies are observed during night periods, and the fall and winter 
seasons, when cool surface conditions can be expected to produce stable flows most of the time. 

Error Assessment of Prediction Scheme 

Cheng (2002) performed a sensitivity analysis to determine the effect of wind speed on power 
production, using the power curve defined in Eqn. 4.2. An arbitrary mean wind speed of 10 m/s 

Table 4-1 Average Met 127/Met 225 wind speed ratio for different seasons and times of 
day. (Winter is Dec., Jan., and Feb., spring is Mar., Apr., and May, and so on.) Wind tunnel 
prediction of average wind speed ratio for neutral conditions was 0.98. 

Hours Winter Spring Summer Fall
0-2 1.25 1.18 1.35 1.23
3-5 1.30 1.17 1.28 1.22
6-8 1.22 1.14 1.21 1.24
9-11 1.19 1.08 1.18 1.15
12-14 1.18 1.08 1.13 1.12
15-17 1.31 1.06 1.07 1.17
18-20 1.27 1.11 1.14 1.30
21-23 1.17 1.19 1.30 1.22  
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was selected for the energy production comparison. For the first comparison group, a change in 
the mean wind speed of ± 0.1 m/s produced a change of in energy variation was ± 15%. Finally, 
at ± 1 m/s difference of wind speed, energy production varied by ± 30%. This analysis indicates 
that even with a fairly accurate wind speed estimate, the predicted power generation can vary 
significantly due to small uncertainty in wind speeds, since power is related to wind speed cubed. 

The uncertainty in the final estimate of electrical energy production from a single turbine can be 
estimated by propagating the uncertainties of the input variables through Eqns. 4.1, 4.2, and 4.3. 
This analysis was performed using an Excel spreadsheet. The input variables this prediction 
scheme are two wind tunnel measurements, Uturb,tunnel(θ) and Umet,tunnel(θ), and the recorded wind 
speed at the meteorological tower Umettower,full-scale(θ), all of which enter Eqn. 4.1.  

For analysis purposes, independence of error between Uturb,tunnel(θ) and Umet,tunnel(θ) could not be 
assumed, however, uncertainty in Umettower,full-scale(θ) was taken to be independent of the two wind 
tunnel measurements. Therefore, the uncertainties of the two wind tunnel measurements were 
summed, and the result added in a quadrature to predict the estimated percent uncertainty of the 
predicted wind speed at hub height Uturb,full-scale. This uncertainty then was propagated through 
Eqn. 4.2 and then through Eqn. 3.3, adding in quadrature the uncertainty of ρ and E from Eqn. 
4.2. Uncertainty discussed here refers to "±" uncertainty. That is, a 10% uncertainty in the value 
of 5 would be 5 ± 10% or 5 ± 0.5. 

It became apparent that the power curve itself is a fairly significant potential error source. The 
third order polynomial in U causes any uncertainty in U to be magnified in the resulting 
predicted power. Generally, the uncertainty (expressed as percentage) of the result of the power 
curve was four times the percentage uncertainty of the input wind speed.  

Uncertainty also varied with the uncertainty of the input R values, and the input met tower wind 
speed. Table 4-2 summarizes the resulting uncertainties of the power production predicted by the 
power curve (Eqn. 4.2) for different uncertainty levels of the R values and the wind speed 
measured at the meteorological tower. The meteorological tower and turbine R values are 
assumed to exhibit the same uncertainties. It should be noted that this table presents an extreme 
range of possible uncertainties: uncertainties of zero are unlikely to occur, while R value 
uncertainties of 0.1 and wind speed uncertainties of 1 m/s are both excessively conservative in 
practice. 

Table 4-2 Percent uncertainty of predicted power production for different uncertainty 
levels of the R values and met tower wind speeds. Tabulated uncertainties are expressed 
as a percentage of rated turbine capacity (107.5 kW). 
 

Uncertainty in Met Tower   Uncertainty in Wind Tunnel R Values [dimensionless R value]
Wind Speed [m/s] 0 0.01 0.02 0.05 0.1

0 0.0 2.2 4.5 11.1 22.1
0.1 1.2 2.5 4.6 11.2 22.1
0.2 2.4 3.3 5.0 11.4 22.2
0.5 5.9 6.3 7.4 12.6 22.9
1 11.9 12.1 12.7 16.2 25.0  
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The increase in percent uncertainty from the density correction (Eqn. 4.3) was comparatively low 
(less than 1 percent), mainly because the uncertainty of the measured pressure is relatively low, 
the density correction is proportional to pressure, and hence the density correction results in only 
a small change in the predicted power production. 

There are additional sources of error, including the error inherent in the power curve itself. In the 
calculations above, it was assumed that the power curve introduces error only due to the 
propagation of the wind speed uncertainty through the power curve. Lange and Waldl (2001) 
report that the uncertainty of the power prediction from a power curve is proportional to the first 
derivative of the power curve. This means that for intermediate wind speeds, where the power 
production changes rapidly with wind speed, some additional error could be expected due to 
uncertainty in the power curve itself. Additionally, Eqn. 4.2 describes a new turbine, while those 
at the Altamont site were installed over 20 years ago. Although the change in the power curve 
over time is difficult to estimate, it is also a source of potential uncertainty. 

Error Levels of Power Production Prediction Schemes: July 1, 2001 – June 30, 
2003 

Four different power production prediction schemes were compared for the period between July 
1, 2001 and June 30, 2003. A dataset comprised of data from all 11 of the Powerworks 
meteorological towers was assembled that included mean and maximum wind speeds, and means 
and standard deviations of wind directions, as well as the power generated by the associated 
turbine cluster, corrected to 100% turbine availability. The dataset also included the temperature 
and humidity recorded at Meteorological Tower 438, pressure from the LLNL Site 300 
meteorological tower, and an air density calculated from these parameters using the ideal gas law  

All data observations were recorded at half-hour intervals, resulting in 48 observations per day, 
and a total of 35,040 observations over the two-year period. Observed wind speed and direction 
are 30-minute averages. Observations for which all data were not available were removed from 
the dataset, resulting in a final dataset containing 31,035 observations. 

As discussed earlier, during this period, some of the wind direction data are believed to be 
unreliable. Since it is not possible to verify the wind direction data, two datasets were used in the 
analysis. The first contained all of  the observations "as is," while the second excluded 185 days 
of data judged to have unreliable wind direction data. 

Four prediction schemes were considered:  

First, a scheme was implemented that used the measured Met 127 wind speed only and the wind 
tunnel measurements for the 240° wind direction to estimate the power production of the wind 
turbines associated with Met 127. This method replicated the prediction scheme used by Cheng 
(2002).  

The second scheme used the wind tunnel measurements for all four wind directions. The Met 
127 wind speed and direction were used as inputs. The details of the scheme are outlined above, 
except that no density correction was made (Eqn. 4.3).  
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The third and fourth schemes applied Eqn. 3.3 to the second scheme to correct for air density. 
For the third scheme, ρo = 1.16 kg/m3, while for the fourth scheme, ρo = 1.20 kg/m3.  

The dataset was analyzed using statistical analysis software (Intercooled Stata 7.0, Stata 
Corporation). Tables 4-3 and 4-4 summarize the results of the statistical analysis for a variety of 
cases. The observed Met 127 wind direction remained essentially constant at times, indicating a 
stuck vane, for periods ranging from a few hours to several months over the two years of data 
collection. Since these data would introduce artificial error into the direction-dependent 
prediction schemes, the statistical analysis was repeated after removing approximately 185 days 
of observations with unreliable wind direction data from the dataset. Tables 4-5 and 4-6 present 
the results. 

Table 4-3 Uncertainty levels observed for each power production prediction scheme and 
for all conditions, day and night conditions, and conditions corresponding to each 
Pasquill-Gifford stability class observed at the LLNL mast. Uncertainties expressed as 
mean errors (ME) and mean absolute errors (MAE) of the predictions. 

Prediction Type
Total

D
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ight
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tability C

lass A
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G
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lass B
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G

 S
tability C

lass C

P
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tability C

lass D

P
G
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tability C

lass E

P
G

 S
tability C

lass F

ME 240 Degrees Data Only 142 64 227 1 41 3 178 207 213
ME All Directions 86 7 171 -8 1 -54 105 164 164
ME All Directions w/ 1.16 kg/m^3 Ref. Dens. 88 4 179 -9 -4 -61 111 174 167
ME All Directions w/ 1.20 kg/m^3 Ref. Dens. 49 -34 139 -12 -28 -98 53 135 148
MAE 240 Degrees Data Only 277 236 323 33 144 203 380 273 243
MAE All Directions 267 238 297 29 144 211 374 250 210
MAE All Directions w/ 1.16 kg/m^3 Ref. Dens. 271 244 300 29 147 218 379 256 211
MAE All Directions w/ 1.20 kg/m^3 Ref. Dens. 272 256 290 30 154 235 387 239 198
Number of Observations 31035 16179 14856 163 3805 5115 11359 4120 6473  
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Table 4-4 Uncertainty levels observed for each power production prediction scheme for 
different wind directions and actual power production levels. Uncertainties expressed as 
mean errors (ME) and mean absolute errors (MAE) of the predictions. 

Prediction Type

Total

Actual Pow
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1000 kW
 < Actual Pow

er < 4000 kW

Actual Pow
er >= 4000 kW
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ind D

irection Betw
een 225 and 315 D
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irection Betw
een 135 and 225 D
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irection Betw
een 45 and 135 D
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W
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irection Betw
een 335 and 45 D
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W
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irection Betw
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W
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irection Betw
een 135 and 225 D
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W
ind D

irection Betw
een 45 and 135 D

egrees

W
ind D

irection Betw
een 335 and 45 D

egrees

1000 kW < Actual Power < 4000 kW
ME 240 Degrees Data Only 142 177.84 154 -12.76 136 191 89 109 129 142 300 209
ME All Directions 86 141.7 21 -24.78 126 99 26 38 112 -46 -17 -60
ME All Directions w/ 1.16 kg/m^3 Ref. Dens. 88 144.23 29 -32.73 121 107 33 42 104 -28 25 -42
ME All Directions w/ 1.20 kg/m^3 Ref. Dens. 49 135.89 -46 -132.3 60 70 21 17 23 -97 -43 -118
MAE 240 Degrees Data Only 277 213.28 485 185.37 329 324 172 190 463 480 715 502
MAE All Directions 267 189.49 494 193.35 325 306 157 181 461 488 711 539
MAE All Directions w/ 1.16 kg/m^3 Ref. Dens. 271 191.48 501 201.54 332 309 158 184 471 494 709 546
MAE All Directions w/ 1.20 kg/m^3 Ref. Dens. 272 185.71 493 245.27 335 310 156 186 449 496 703 554
Number of Observations 31035 18428 7807 4800 10350 9842 2533 8370 3393 2816 293 1323  

Table 4-5 Uncertainty levels observed for each prediction scheme considering only data 
with wind directions considered reliable, for all conditions, day and night conditions, and 
conditions corresponding to each Pasquill-Gifford stability class observed at the LLNL 
mast. Uncertainties expressed as mean errors (ME) and mean absolute errors (MAE) of the 
predictions. 

Prediction Type

Total

D
ay

N
ight
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 S
tability C

lass A
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G
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tability C

lass B
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 S
tability C

lass C
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lass D

P
G
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lass E

P
G
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tability C

lass F

ME 240 Degrees Data Only 150 84 215 21 65 25 192 193 187
ME All Directions 121 52 187 12 42 -7 152 172 165
ME All Directions w/ 1.16 kg/m^3 Ref. Dens. 122 49 193 10 37 -14 157 179 166
ME All Directions w/ 1.20 kg/m^3 Ref. Dens. 88 16 158 6 17 -46 105 145 150
MAE 240 Degrees Data Only 264 231 296 40 143 195 380 247 215
MAE All Directions 250 221 279 37 134 186 365 232 199
MAE All Directions w/ 1.16 kg/m^3 Ref. Dens. 255 227 282 37 136 193 371 237 199
MAE All Directions w/ 1.20 kg/m^3 Ref. Dens. 252 233 271 38 138 204 374 222 187
Number of Observations 22115 10907 11208 49 2432 3495 7503 3238 5398
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Table 4-6 Uncertainty levels observed in each prediction scheme for different wind 
directions and actual power production levels. Analysis includes only observations for 
which wind direction measurement was considered reliable. Mean errors (ME) and mean 
absolute errors (MAE) are given. 

Prediction Type

Total
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ind D
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W
ind D
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etw
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1000 kW < Actual Power < 4000 kW
ME 240 Degrees Data Only 150 174.39 163 -12.61 155 201 45 110 153 120 175 1081
ME All Directions 121 148.5 107 -15.18 144 151 16 79 136 27 -67 863
ME All Directions w/ 1.16 kg/m^3 Ref. Dens. 122 151.13 109 -24.52 141 155 19 81 132 36 -32 883
ME All Directions w/ 1.20 kg/m^3 Ref. Dens. 88 143.32 32 -128.4 86 119 14 77 51 -36 -91 811
MAE 240 Degrees Data Only 264 207.04 497 178.86 324 329 114 133 469 475 761 1253
MAE All Directions 250 187.35 493 181.23 318 312 104 109 465 480 752 1107
MAE All Directions w/ 1.16 kg/m^3 Ref. Dens. 255 189.54 503 188.94 324 317 105 111 475 491 750 1122
MAE All Directions w/ 1.20 kg/m^3 Ref. Dens. 252 183.57 486 230.96 321 316 103 107 449 489 743 1066
Number of Observations 22115 14902 4619 2594 8125 7088 1885 5017 2573 1836 95 115  

In general, the schemes that incorporate the wind direction in the prediction show smaller 
magnitudes of mean error, indicating less bias error, than the 240° direction prediction. Levels of 
mean absolute error do not show a significant reduction vs. the 240° prediction until the 
observations with suspect wind direction measurements are removed. Even then, the MAE 
values show only a slight improvement (on the order of 10%) relative to the 240° prediction. 

It should be noted that the Altamont Pass most commonly experiences winds from 
approximately 240°, and almost all of the strong winds that produce significant  power come 
from this direction. This means that the 240° prediction scheme and the schemes using all of the 
direction data use essentially the same R values and therefore predict almost identical power 
production. During the two-year test period, the wind direction was in the range 220° to 260° 
42% of the time overall and 78% of the time when the wind speed was exceeded 10 m/s.  

Table 4-6 illustrates another interesting result in the right-most column., Significant mean error 
or bias (ME) occurred in the few instances when the wind direction was from the north (between 
335° and 45°) and generated moderate power (between 1000 and 4000 kWh/0.5h) relative to 
when the wind direction was in the other quadrants. It is believed the reduced power output 
occurred because the wind direction was roughly parallel to the rows of turbines along the 
ridgelines. At these times, wake effects of the turbines become significant, as the turbines are 
spaced only a few rotor diameters apart along the ridges. Also, to reduce turbine wear while 
maximizing power production, the wind farm operator often shuts down every other turbine on 
the ridgelines; this may also account for the significant overprediction in this case. 
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Error Bias 

Tables 4-5 and 4-6 suggest that applying the density correction (Eqn. 4.3) does significantly 
reduce ME or MAE. Also, it was noted that the maximum power production predicted by either 
the 240° only scheme or the all directions scheme, is 4676.25 kWh/0.5h (87 turbines × 107.5 
kWh/0.5h/turbine). However, an analysis of the actual power production showed that this level 
was exceeded 7.5% of the time. For the period July 2001 to June 2003, the 92.5 percentile power 
production was 4677 kWh/0.5h, the 95th percentile was 4795 kWh/0.5h, and the 99.9th 
percentile was 4954 kWh/0.5h. This suggests that the prediction schemes underpredict the power 
production, perhaps because there could be a few additional turbines in the cluster than were 
modeled, or the power curve could be slightly wrong. 

However, Tables 4-3 through 4-6 show that almost all of the ME values are positive, which 
indicates a bias towards overprediction of power. The ME is negative only when the power 
production exceeded 4000 kWh/0.5h, and it is strongly positive when power production was less 
than 4000 kWh/0.5h. Therefore, while it is tempting to simply add a scaling factor to slightly 
increase all of the power production estimates by say a factor of 4950/4676.25, this would also 
be expected to increase the ME and MAE at times of mid- and low-power production. 

The data file supplied by Powerworks Inc. includes 93 turbines in the Met 127 cluster, but the 
wind tunnel records indicate only 87 turbines were modeled. The turbines not modeled are 
numbered 6, 7, 8, 9, 10, and 100. Adding these turbines increases the maximum possible 
predicted power to (93 turbines × 107.5 kWh/0.5h/turbine) 4998.75 kWh/0.5h. Since all but one 
of the missing turbines is located near the edge of the modeled area, the best that can be done is 
to adjust the results by multiplying by the factor 93/87.  

Tables 4-7 and 4-8 show the error levels after applying this correction. The most significant 
result is that, in every case, the mean prediction is higher than the mean observed power 
production. Additionally, the schemes that use all directions of wind data tend to show some 
improvement in both ME and MAE relative to the 240° data case. 

Atmospheric Stability 

Table 4-7 illustrates the impact of atmospheric stability on the accuracy of the prediction 
schemes and the power production of the turbines in the Met 127 cluster. The results support 
previous research that indicated power production in the Altamont Pass is greatest at night and 
under stable conditions (Pasquill-Gifford classes D, E and F) and also show that power 
production varies with stability class.  

For example, the most unstable Class A occurred infrequently (49 of 22,115 observations), and 
power production never exceeded about one-quarter of the wind farm capacity. 

At the other extreme, the most stable Class F conditions occurred about 25% of the time (5,098 
of 22,115 observations), but high power production also did not occur, perhaps because very 
high stability is generally associated with low wind speeds. 
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Table 4-7 Mean and mean absolute errors of power production prediction schemes, 
excluding data points with unreliable wind directions and increasing predicted power 
production by a factor of 93/87 to account for unmodeled turbines. Errors are reported for 
overall data, as well as those observed for day and night and each Pasquill-Gifford 
stability class observed at the LLNL mast. Percentile values are observed Met 127 power 
production corrected to 100% turbine availability. 

Prediction Type

Total

D
ay

N
ight

PG
 Stability C

lass A

PG
 Stability C

lass B

PG
 Stability C

lass C

PG
 Stability C

lass D

PG
 Stability C

lass E

PG
 Stability C

lass F

ME 240 Degrees Data Only 236 162 309 29 110 100 332 282 223
ME All Directions 205 129 279 19 86 66 289 259 200
ME All Directions w/ 1.16 kg/m^3 Ref. Dens. 206 125 285 17 80 59 294 267 201
ME All Directions w/ 1.20 kg/m^3 Ref. Dens. 170 90 248 13 59 24 239 231 184
MAE 240 Degrees Data Only 309 260 355 43 163 214 443 313 248
MAE All Directions 290 246 334 38 149 200 422 295 229
MAE All Directions w/ 1.16 kg/m^3 Ref. Dens. 293 247 338 37 148 202 426 301 230
MAE All Directions w/ 1.20 kg/m^3 Ref. Dens. 271 234 308 37 140 193 393 271 215
Number of Observations 22115 10907 11208 49 2432 3495 7503 3238 5398
Mean Actual Power Production 1099 1052 1145 90 592 1065 1833 1093 343
Standard Deviation Actual Power Production 1628 1567 1684 201 1154 1528 1903 1650 796
25% Percentile Met 127 Power (kWh/0.5h) 0 0 0 0 0 0 0 0 0
50% Percentile Met 127 Power (kWh/0.5h) 24 27 19 0 0 111 1103 0 0
75% Percentile Met 127 Power (kWh/0.5h) 1869 1755 2013 61 572 1771 3849 2117 172
90% Percentile Met 127 Power (kWh/0.5h) 4240 4015 4412 380 2508 3877 4772 4202 1238
95% Percentile Met 127 Power (kWh/0.5h) 4742 4616 4795 661 3573 4574 4856 4649 2294
99% Percentile Met 127 Power (kWh/0.5h) 4897 4867 4908 900 4594 4869 4917 4871 3939

Although predicted power production varies with atmospheric stability as well as wind speed, 
efforts to develop a correction factor based on stability class were not successful. 

Predictions Of Zero Power Production 

It should be noted that, for many hours of the year, the wind speed at Altamont Pass is very low, 
and the turbines do not operate at all, especially during the fall and winter months. Since the 
power production prediction schemes predict non-zero power production only when the Met 127 
wind speed is greater than about 4.78 m/s, they yield "perfect predictions" of zero power 
production at low wind speeds. A large number of perfect zero-power predictions can reduce the 
magnitude of both ME and MAE. While it is true that these are valid predictions, it also leaves 
the impression that the power predictions at higher wind speeds are more accurate than they 
really are. 

Table 4-10 categorizes the number of observations during the two-year data collection period 
according to whether the power production was non-zero and whether the observed wind speed 
at Met 127 resulted in a prediction of non-zero power production. The total number of 
observations in the dataset is 22,115, the sum of the four categories. 
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Table 4-8 Mean and mean absolute errors (ME and MAE) of each power production 
prediction scheme vs. wind direction and actual power production level, excluding 
observations with unreliable wind direction measurements. For all schemes, predicted 
power production is multiplied by a factor of 93/87 to account for unmodeled turbines.  
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ME 240 Degrees Data Only 236 193 338 304 297 295 58 123 333 286 319 1260
ME All Directions 205 166 277 301 285 242 27 89 315 188 61 1027
ME All Directions w/ 1.16 kg/m^3 Ref. Dens. 206 168 280 291 282 246 31 92 311 197 99 1049
ME All Directions w/ 1.20 kg/m^3 Ref. Dens. 170 160 197 180 223 207 25 87 224 120 36 972
MAE 240 Degrees Data Only 309 223 581 315 391 380 123 144 564 540 853 1408
MAE All Directions 290 201 565 316 384 354 109 117 556 522 784 1239
MAE All Directions w/ 1.16 kg/m^3 Ref. Dens. 293 203 574 309 386 359 111 119 563 535 794 1256
MAE All Directions w/ 1.20 kg/m^3 Ref. Dens. 271 197 539 223 348 337 108 115 518 514 771 1195
Number of Observations 22115 14902 4619 2594 8125 7088 1885 5017 2573 1836 95 115  

Table 4-9 Number of observations at Met 127 turbine cluster, categorized by whether the 
predicted and actual power production levels are zero or non-zero. 

Met 127 Power Met 127 Power
Production = 0 Production > 0

Predicted Power (All, No Dens. Cor.) = 0 7109 342
Predicted Power (All, No Dens. Cor.) > 0 3385 11279  

The predicted power was generated using all observations and corrected for the missing six 
turbines by a factor of 93/87. No density correction was applied. 

As already mentioned, a significant portion of the Met 127 wind direction data are suspect, and 
the anemometer may also give erroneous readings. Table 4-11 shows the number of non-zero 
power production observations recorded for low wind speeds, in some cases, less than 1 m/s. 
While in most cases, power production was zero at low wind speed. Table 4-11 indicates there 
are instances of significant power production at low observed wind speed at Met 127. This is 
unexpected because the power curve for the Kennetech 100 turbines (Eqn. 4.2) indicates the cut-
in wind speed is 4.83 m/s, and no power generation should occur at lower wind speeds. This 
suggests that either there is significant uncertainty in the recorded wind speed data at times, or 
the wind speed is even more variable across the site than the wind tunnel predicts. 
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Table 4-10 Number of observations of Met 127 power production for several criteria of Met 
127 recorded wind speed. Mean values, standard deviation and minimum and maximum 
values are reported for each set of observations. For the two year period considered, the 
total number of observations was 22,115. 

Wind Speed Observations of Mean Std. Dev. Min. Max.
Non-Zero Power Prod. kWh/0.5h kWh/0.5h kWh/0.5h kWh/0.5h

< 5 m/s 8607 9.5 71.8 0 2834.9
< 4 m/s 6016 4.8 66.6 0 2834.9
< 3 m/s 3459 2.4 43.5 0 2079.8
< 2 m/s 1353 1.2 20.9 0 496.3
< 1 m/s 156 5.0 35.7 0 325.8  

It is interesting to note that almost all of the extreme cases of non-zero power production and  
low reported wind speed occur during January through March. There are no cases of non-zero 
power production at wind speeds less than 2 m/s and temperatures at or below 0 degrees C or 
273 degrees K. However, there are 10 observations of significant non-zero power production 
when wind speed is less than 2 m/s, all but one of them at temperatures less than 10 degrees C 
above freezing. The five observations above 100 kWh/0.5h production occurred on two days 
during January, suggesting a phenomenon associated with near-freezing temperatures, such as 
frost buildup, or an increase in bearing or lubricant friction in the anemometer. 

Characteristics of the Error in the Prediction Schemes 

There are many possible sources of error that could account for the ME and MAE error levels 
reported in Tables 4-7 and 4-8. Atmospheric stability and other meteorological variations are 
expected to contribute significantly. The power curve (Eqn. 4.2), supplied by the manufacturer, 
represents the power production of a new turbine under optimum conditions, while the turbines 
at Altamont are not new and may have experienced significant wear and tear. Another potential 
source of error is the possibility that bearing wear, siting, or other factors cause the anemometers 
to underreport wind speed. 

To develop a correction factor equation to eliminate some of the remaining error, backward 
selection multiple linear regression was applied to 42 potential predictors, including the 
predicted power using data for all wind directions and the 1.16 kg/m3 density correction from the 
historical dataset for July 2001 to June 2003. Observations with missing predictors were 
excluded, but those with suspected bad wind direction data for Met 127 were included.  

The resulting regression equations predict two variables, the actual power production at Met 127 
and the error in the power production vs. the actual power production. The "improved" power 
prediction is generated by adding the error predicted by the second multiple linear regression 
equation to the power predicted by the wind tunnel scheme. The predictions of both equations 
were disappointing, and the MAE values were slightly higher using four months of test data (July 
2003 to October 2003) when the equations were applied relative to the MAEs for the 
"unimproved" output of the wind tunnel prediction scheme. 
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It appears that the reason the regression-based predictive equations fared so poorly is that the 
equations did not account for all variables. That is, the correlation appears to be poor between the 
magnitude of the error and the power production, or any other predictive variable, such as wind 
speeds, temperatures, or stability class. The power production relative to measured wind speed 
appears to be an inherently "noisy system."  

Met 127 Predicted vs. Actual Power Production
July 1, 2001 to June 30 , 2003
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Figure 4-6 Predicted versus actual power production for the Met 127 turbine cluster between 
July 1, 2001, and June 30, 2003. 

Comparison of Predictions with Varying Input Wind Speeds 

One possible source of error that would affect prediction accuracy is an error bias in the wind 
speed reported by the Met 127 anemometer. As the anemometer ages, bearing deterioration 
would, for example, decrease the rotation speed at a given wind speed, therefore causing it to 
underreport the wind speed. It is known that this anemometer has not been routinely serviced 
during the time of this study. To determine if this could be occurring, the Perl script used to 
predict the power as outlined above was adjusted to predict all four of the schemes, but at several 
different wind speeds. In addition to a "baseline" prediction using the actual reported wind speed, 
additional predictions were generated for each of five adjustments to the measured wind speed, 
including -1.0 m/s, -0.5 m/s, +0.5 m/s, +1.0 m/s. This has the effect of shifting the power vs. 
wind speed curve to the right or left. 

Table 4-12 summarizes the results of the predictions using the five wind speed corrections (-1, -
0.5, 0, +0.5, +1 m/s). It is interesting to note that reducing the input wind speed to simulate a 
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"worn out" anemometer that underreports the true wind speed increased both ME and MAE, 
suggesting that the anemometer is not, in fact, underreporting wind speed. The shift of ME 
values from positive to negative between a correction factors of –0.5 m/s and –1.0 m/s suggests 
the prediction error reaches an overall minimum within this range.  

Table 4-11 ME and MAE for power production schemes after adjusting the input wind 
speed by the specified amounts.  

Input Wind Speed Correction
Units: kWh/0.5h -1.0 m/s -0.5 m/s No Change +0.5 m/s +1.0 m/s
ME 240 -14 106 236 379 533
ME All -37 79 205 341 489
ME All w/ 1.16 Ref. Dens. -35 80 206 342 491
ME All w/ 1.20 Ref. Dens. -64 48 170 303 447
MAE 240 261 261 309 407 545
MAE All 261 254 290 377 505
MAE All w/ 1.16 Ref Dens. 264 257 293 379 506
MAE All w/ 1.20 Ref Dens. 261 245 271 347 466  

These results suggest that the anemometer may overreport the wind speed by 0.5 to 1.0 m/s. Of 
course, it should be noted that other factors also may influence the final accuracy of the 
predictions. 

For the prediction scheme using all wind directions but without a density correction, the –0.5 m/s 
correction also seems to give the best results in the intermediate power production range between 
1000 and 4000 kWh/0.5h. The ME and MAE for the –0.5 m/s correction in this range are –59.6 
kWh/0.5h and 543.1 kWh/0.5h, respectively. For the –1.0 m/s correction, the corresponding 
results are –387.4 kWh/0.5h and 650.8 kWh/0.5h. The results for the uncorrected ("No Change") 
prediction were 276.7 kWh/0.5h and 5645 kWh/0.5h, respectively. 

Optimum Prediction Scheme for Met 127 

Based on the above results, the recommended configuration of the power production prediction 
scheme for operational use is: 

• All-wind-direction input data.  

• Density correction based on 1.20 kg/m3 reference density.  

• Input wind speeds based on the reported values minus 0.5 m/s. 

• Resulting predicted power production multiplied by a factor of 91/87 to account for the six 
missing turbines and an apparent slight optimism in the power curve regarding the maximum 
power production of a turbine. 

Table 4-12 presents the resulting ME and MAE values for the recommended prediction scheme 
and several others. It is believed that, if a more accurate power curve was available, the error 
could be reduced further. In addition, it appears that the power curve used applies to a new 
turbine and may no longer represent the performance of the aging turbines at the site. 
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Table 4-12 ME and MAE for recommended and four other power production prediction 
schemes, based on Met 127 observations between July 1, 2001, and June 30, 2003, 
excluding observations with missing data or unreliable Met 127 wind direction data. Units 
of ME and MAE are kWh/0.5h. 

Directions of Wind-Tunnel Data Used 240 degrees All All All All
Correction Offset For Input Wind Speed None None None -0.5 m/sec -0.5 m/sec
Density Correction None None Ref.: 1.20 kg/m^3 Ref.: 1.20 kg/m^3 Ref.: 1.20 kg/m^3
Final Prediction Multiplier 93/87 93/87 93/87 93/87 91/87
ME 236 205 170 48 23
ME: Actual Power Production < 1000 kWh/0.5 193 166 160 91 87
ME: Actual Power Production 1000 - 4000 kWh/0.5 338 277 197 -128 -176
ME: Actual Power Production >= 4000 kWh/0.5 304 301 180 113 12
MAE 309 290 271 245 241
MAE: Actual Power Production < 1000 kWh/0.5 222 201 197 158 155
MAE: Actual Power Production 1000 - 4000 kWh/0.5 581 565 539 548 548
MAE: Actual Power Production >= 4000 kWh/0.5 315 316 223 206 183  

Predicting Power Using A Statistically-Derived Equation 

Multiple linear regression (MLR) was applied to derive an equation to predict the power 
production of the case study wind farm using the wind speed at the wind farm meteorological 
tower anemometer and the date and time as input data. For use in a forecasting system, the wind 
speed at the meteorological tower anemometer would have to be forecast first. A common 
statistical approach is to predict meteorological conditions at a specific location based on other 
measured data using multiple linear regression to generate a predictive equation for each 
predictand or measurement to be predicted. The method iteratively chooses from the potential 
predictors to minimize the number of predictors while maximizing accuracy. Wilks (1995) gives 
a good description of the statistical processes that were used.  

It was desired to develop and evaluate the accuracy of a purely statistical approach to predicting 
the power production of the Altamont Pass wind turbine clusters. Statistical prediction offers 
several advantages over wind tunnel or CFD-based methods. Statistical prediction is generally 
computationally efficient. McCarthy (1997) generated equations to forecast next-day Altamont 
Pass daily average wind speeds that were programmed into a pocket calculator. Another 
important advantage is that statistical methods can automatically account for inaccuracies in the 
data that introduce errors into physics-based prediction methods, for example when an 
anemometer underreports the wind speed. 

Screening MLR was used to generate an equation to predict the power production of the case 
study wind farm. Two years of historical wind speed vs. time data at the meteorological tower 
during the period July 1, 2001, to June 30, 2003, were used to generate a dataset with 13 
potential predictor variables, including the logarithm and square root of the wind speed, wind 
speed to the first, second and third power, and sine and cosine functions with periods of half day, 
one day, and one year. Wind direction was not included in this equation (or used in the following 
“median-based” power curve) because the wind vane was apparently stuck in a single position 
for periods ranging from hours to months. In addition, within the two-year dataset, during some 
times of the year, the wind direction data are considered unreliable. 
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Screening MLR analysis eliminated the least important potential predictors and yielded the 
following regression equation to predict power P, a percentage of the observed wind farm 
capacity 

50517.17)2cos(59537.4                 
74768.7307626.02281434.28278.11

+−
−−+−=

Y
AUUUP

π
   (4.6) 

where U is the wind speed at the meteorological tower in m/sec; A = 1 if U is greater than the 
cut-in wind speed of the turbine, or A = 0 otherwise, and Y is the time of the year in decimal 
form (i.e., Y = 0 at time 0:00 on Jan. 1, Y = 0, and Y = 1 at time 23:59 on Dec. 311). 

Power Curve Based on Curve Fitting Historical Data 

If historical power production information is available for a wind farm, it also is possible to 
generate a wind farm power curve by performing a best fit to the power production as a function 
of wind speed. 

For the case study wind farm, a power curve was generated using two years of power production 
data for the period, July 2001 to June 2003). Using the "histogram" method, each observation 
was grouped by wind speed in bins covering 1-m/s wind speed increments, i.e., the first bin 
interval was 0 to 1 m/s, the second was 1 to 2 m/s, and so on. For each wind speed bin, the 
median power production was assumed to be the power produced at the bin wind speed. Median 
values were used instead of mean values to reduce the effects of outlying data points on the 
curve fit. Figure 4-8 presents the resulting power curve. 

Power Curve Based On Numerical Simulation 

The ABLWT power curve prediction method has the significant advantage of not requiring an 
historical dataset to implement it. However, it does require the time-consuming tasks of 
constructing terrain models and taking measurements in an ABLWT. A method of deriving a 
power curve quickly, using neither historical data nor a wind-tunnel facility would be very 
useful. The approach of using the "speed-up" prediction methods discussed previously does not 
appear likely to provide the accuracy needed. One difficulty of the methods of Weng et al., 
Lemelin et al, and others is that the hill height and horizontal length scale must be estimated. 
Additionally, the effect of upwind terrain is not included in the speed-up estimate. In complex 
terrain, hills blend into each other, making it difficult to characterize the hill in terms of h and L1. 
Writing a program to estimate h and L1 for large numbers of sites in complex terrain would be 
enormously challenging. 

The analytical method of Jackson and Hunt is based on matching a potential flow solution to a 
viscous solution near the hill surface. Although intended only for smoothly varying hills of 
moderate slope, it has been reported to be surprisingly accurate for steeper terrain. It was 
postulated that perhaps a numerical model simulating potential flow above a transect of the 
terrain surrounding the hill and aligned with the wind direction could provide useful information. 
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A potential flow is much easier to solve than a viscous, turbulent flow, and solutions would 
require far less computational effort. A numerical model would have the additional advantage of 
not requiring "trained eye" intervention to estimate any parameters and would therefore lend 
itself to a fully automated computational process. 

Two-Dimensional Potential Flow Simulation 

Potential flow methods are used to simulate steady, inviscid, non-accelerating flows. Using the 
stream function ψ, the governing equation of the flow reduces to Laplace’s equation ∇2ψ=0. In 
two dimensions, the equation is: 
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When this is solved with appropriate boundary conditions, lines of constant ψ represent 
streamlines. The flow velocity is greatest in regions where the streamlines are close together and 
lowest when they are far apart. The velocity components U and V are calculated from the 
gradients of ψ 
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Laplace's equation can be solved using a finite difference formulation of the equation, by solving 
the resulting set of equations iteratively or using matrix inversion. As the number of grid points 
in the finite difference method increases, iterative methods are often less computationally 
intensive. 

The traditional method of discretizing Laplace's equation generates an equation for ψ(i,j) based 
on ψ at the four surrounding points. Using a Taylor series expansion in each direction, the 
second derivative of  ψ in x is approximated by 
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The value of ψi,j can be estimated by substituting this, and a similar expression for the y 
direction, into Laplace's equation. The result is 
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This equation is valid for all interior points in the domain. The outer points must be specified as 
boundary conditions. 

A program ("Potential.f90") was written in Fortran 90 to solve this equation over a large domain 
that incorporated variable terrain elevation along the lower boundary. Terrain was addressed by 
setting the values in the lower area of the domain to ψ=0 when they were at or below ground 
level. Effectively, the square cell surrounding each grid point was either "all air" or "all terrain." 
Although the program worked as expected, the flow solutions were not ideal. Use of a uniform 
grid required that the grid be relatively coarse near the hill to cover a high enough region above 
the terrain. Combined with the simple terrain boundary condition of setting ψ=0, this meant that 
the streamlines in the solution simulated flow over a "stair-stepped" surface instead of over a 
smoothly varying hill. Streamlines would be highly compressed near these sharp edges, resulting 
in localized extremes of velocity near each step. Results near the surface also varied significantly 
as the grid spacing was changed because the number and location of the steps varied with each 
grid. An improved solution was required. 

After several program iterations, the final version of the program ("Potential10.f90") 
incorporated multiple refinements. The most significant was that for grid points adjacent to the 
surface, ψi,j was approximated using the distance from point (i,j) to the actual surface location, 
instead of to the next grid point, either (i,j-1), (i-1,j) or (i+1,j). Making this modification turned 
out to be rather difficult: a new version of Eqn. 4.10 had to be derived that would allow dx and 
dy to vary, instead of being constants. The Taylor series derivation method quickly resulted in 
equations that would have been computationally expensive to solve. Therefore, an alternative 
discretization of Laplace's equation was developed. 

The new method is limited to the four surrounding points, the same as the initial method. Solving 
Laplace's equation at a point requires estimating the second derivatives at that point. If a function 
is fit between the three points, the second derivatives could be estimated from the fit function. 
The lowest order polynomial function with non-zero second derivatives is a parabola, which 
conveniently can be fit between a set of three points. Letting  

2)( cxbxax ++=ψ         (4.11) 

For this function, d2ψ/dx2 = 2c.  

Assume that ψ(x) is a continuous function. Consider this function at three points: ψi-1. ψi and 
ψi+1. These points are at arbitrary locations xi-1, xi and xi+1 respectively along the x axis, and the 
only constraint is that xi-1 < xi < xi+1. Define dxi-1 = xi – xi-1 and dxi = xi+1 – xi. Substituting these 
values into Eqn. 4.11 results in two equations in two unknowns: 
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Solving for c gives 
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A similar equation can be derived for the y direction. Both versions of 4.13 are then substituted 
into Laplace's equation and solved for ψi,j. At this point, a change of variables is introduced. Let 
dxi-1 = dl, dxi = dr, dyj-1 = dd and dyj = du. The variables dx and dy have already been defined as 
the grid spacing in x and y. Away from the boundaries, this is also the distance between point 
(i,j) and its surrounding points. However, to better model the stream function near the surface, 
the next step will be to introduce "artificial points" on the terrain surface that do not necessarily 
coincide with the regular grid spacing. Therefore, the variables dl, dr, du, and dd are introduced 
to define the distance from the point (i,j) to the adjacent points in the left, right, up, and down 
directions respectively, as shown in Figure 4-7. When these approximations are substituted into 
Laplace’s equation, the result is 
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           (4.14) 

This formulation has the significant advantage of requiring essentially the same computational 
effort as Eqn. 4.10, since all of the denominators involving dx and dy can be pre-calculated 
before iteration begins. Only a simple weighted average needs to be computed during iteration. 
However, the distance from (i,j) to each of the surrounding points can be varied independently. 
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Figure 4-7 Grid layout and variable definitions used in Potential10.f90. 

Near the surface, the stream function is defined as ψ = 0 for all points on and below the surface. 
There may be a discontinuity at the surface, as the potential gradient decreases immediately to 
zero at this point. Simply using the distance to the next grid point that is beneath the surface will 
cause the ψ gradient estimates to be too low because once past the actual surface, ψ = 0 by 
definition. Therefore, it is preferred to use data only at or above the surface to estimate ψ. This is 
done by adjusting dl, dr and dd to be the distance from point (i,j) to the surface when this 
distance is less than the distance to the next grid point. The program assumes no overhanging 
terrain. Therefore dui,j = dyj at all times. 

The terrain elevation as a function of x, h(x), is defined in an input file as a series of regularly 
spaced spot elevations. The terrain elevation between two points is modeled as a linear fit. Then, 
only for grid points immediately adjacent to the surface, 
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These values also are pre-calculated before iteratively solving Eqn. 4.14. 

Determining Speed-Up Factor 

The boundary conditions imposed must represent an equilibrium flow. Since potential flow is 
inviscid, the flow field will not naturally form a boundary layer. Imposing upwind and 
downwind boundary conditions consisting of ψ distributions that correspond to logarithmic or 
power law velocity profiles will result in a flow that is not at equilibrium at the boundaries and in 
turn, will produce a flow field that is not physically realistic. Since evenly spaced streamlines are 
the equilibrium state in a potential flow, boundary conditions consistent with a constant value of 
dψ/dy are used, starting with ψ = 0 at the surface at both side boundaries. 

Once the potential flow field is found, the final potential field is output to a file. Velocity 
components U and V are calculated using Eqns. 4.8. Bernoulli's equation is used to calculate 
pressure distribution. Fields of these variables are also stored in output files by the program. The 
primary measure of interest is the speed-up factor profile above the central point in the domain. 
Speed-up factor is essentially the deviation from the equilibrium potential gradient. Speed-up 
factor is calculated as 
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Program Implementation 

A program called “Potential10.f90” was written that applies Eqns. 4.14 and 4.15 to determine the 
stream function above a two-dimensional slice of complex terrain. The program was written in 
Fortran 90 using Microsoft Fortran Powerstation 4.0. The program should be compilable using 
other Fortran implementations, as only a few non-essential tasks (reading the command line 
arguments and displaying the elapsed iteration time) use the Microsoft libraries. 
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Run parameters, including grid size, names of input files, iteration parameters, are read from a 
setup file that can be specified on the command line when the program is run. If no filename is 
specified, a setup file named “Potential.inp” is assumed.  

Terrain elevations are input to the potential program from two files: one stores a series of 
elevations that start at the point where speed-up is to be determined, with each subsequent 
elevation point being further from the origin in the upwind direction. A second file stores 
elevation points downwind of the origin. Both files contain the same number of points. The 
locations of the points in the file are used to set the size and spacing of the computational grid in 
the horizontal direction. Terrain files are generated from digital elevation model (DEM) files 
using Globalmapper 5.10. A Perl script is used to generate a Globalmapper script file that is used 
to extract elevation transects.  

Each transect is stored in a separate file. These transects can be used directly with 
Potential10.f90; however, an additional Perl script is used to take a weighted average of the 
elevation at each distance out from the origin over a user-specified angle, typically 45°, with 
elevations in the center of the arc weighted highest. The 45° arc was chosen as representative of 
the upwind region that could be reasonably expected to be directly influencing the wind at the 
origin. For example, to simulate a wind from 240° at a met tower, the central upwind transect 
used would be one where the elevation points are on a 240° radial outward from the met tower 
location. However, this transect just might happen to include a small isolated butte that the wind 
blows easily around but is exactly 240° from the met tower. If only the 240° transect was used as 
the two-dimensional representation of the upwind terrain, this small three-dimensional feature 
could appear as a large ridge, potentially leading to an inaccurate solution. To minimize this 
effect, a weighted average is calculated of all the transects between 218° to 262°, and this 
averaged transect is used as the upwind terrain for a 240° wind. A Gaussian distribution was 
considered, since effects of wind direction are often distributed in this way. (Gaussian models are 
the standard in plume dispersion studies, for example.) However, a cosine weighting was 
ultimately used since it is mathematically simpler and does not “tail” at large angles, while still 
giving a distribution similar to Gaussian. For an averaging angle Δθ containing n transects and 
centered at angle θo, the weighting factor wi of the ith transect, oriented at an angle of θi is 

 ∑
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Then the averaged elevation at a given distance from the origin zavg = Σwizi where zi is the 
elevation in the ith transect. 

Data in the input elevation files may be uniformly or variably spaced. For calculating speed-up at 
the central point in the terrain, variable spacing in which the smallest spacing is at the central 
point, and grid spacing increases with distance from the central point, allows the same span of 
terrain to be covered using a much smaller grid, which greatly reduced run times. 

To account for regions of reduced flow in the wakes of hills, the program contains a terrain-
filling algorithm that modifies the input terrain by “filling” in steep slopes so that the maximum 
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slope on the lee side of all hills is less than or equal to the user-specified slope ALPHA. This 
method approximately simulates the recirculation zone and very-low-speed wake regions in the 
lee of a steep hill by removing those areas from inclusion in the flow field (Myllerup et al., 
2004). Several simulations of flow over a cosine hill (Table 3-13) were used to choose ALPHA = 
7° (0.12) for this application. An example of the terrain changes due to filling is shown in Figure 
3-8. ALPHA is set in the setup file. Setting ALPHA = 0.0 turns off the filling routine. 

Table 4-13 Values of �S predicted for cosine hill for: NXIN = 251, DX = 10, Horizontal 
Spacing Factor = 1.0, NY = 90, DY = 1, DELTA = 1.1, UREF = 10, RHO = 1.2. 

ALPHA ΔS (0.5 m) ΔS (10 m) ΔS (99 m) 
0 (No Fill) 0.531 0.482 0.230 

0.04 0.343 0.305 0.155 
0.06 0.373 0.332 0.167 
0.12 0.439 0.394 0.194 
0.25 0.508 0.459 0.221 

 
 

 

Grid Point Elevations - Original vs. Filled (Slope = 0.12) Terraian
Met 926 359 Degree Transect, Averaging Angle 45 Degrees. NX = 69, NY = 90.

Vertical and Horizontal Grid Point Spacing Factors = 1.1. 
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Figure 4-8 Example of the effect of lee slope filling (ALPHA = 0.12) on the Met 926 359° 
terrain transect. Each point on the traces represents the modeled terrain elevation for a 
specific horizontal grid location. Horizontal grid spacing factor is 1.1, resulting in more 
points near the origin, with greater grid spacing at greater distances upwind and 
downwind. 
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The vertical grid spacing is calculated in “Potential10.f90”. Spacing is based on the parameters 
DELTA and DY set in the setup file. The grid spacing at the elevation of the central point is set 
to DY. Starting at the elevation of the central point, grid point locations are extrapolated 
downward until the minimum terrain elevation is reached. Each grid point is spaced DELTA 
times further apart than the previous spacing (DELTA is typically set between 1.0 to 1.25). The 
grid is then generated upward from the central point terrain elevation, again making the spacing 
of each grid point DELTA times the spacing below until the maximum number of grid points, 
NY, has been reached. For a grid point that is i levels removed (either up or down) from the 
central grid point, the vertical distance to the i+1 grid point is DY*(DELTA(i-1)). This approach 
concentrates grid points around the central point, while spacing points farther apart at greater 
distances, especially at high elevations far removed form the surface where flow variations occur 
over much larger length scales. 

Upwind and downwind boundary conditions are set using a constant vertical stream function 
gradient (dψ/dy = UREF) extrapolated upward from the surface on both the upwind and 
downwind boundary. UREF is set in the setup file. For all grid points below surface level, ψ = 0. 
Once ψ is fully defined on the upwind and downwind boundaries, the initial ψ field is calculated 
by linearly interpolating the two end conditions across the domain (again setting ψ = 0 at all 
points below surface level). 

Equations 4.15 are pre-calculated for each grid point. Eqn. 4.14 is then solved iteratively using a 
Gauss-Seidel approach. This method incorporates updated values of ψ in subsequent calculations 
as soon as they are available. A modest increase in convergence rate was achieved by using four 
alternating sweeping methods in calculating updated values of ψ. (For example, the first iteration 
loop loops through “i” and then “j”. The second loops through “j” and then “i”. The third and 
fourth start at maximum values of “i” and “j” and finish at i=1, j=1.) Iteration is complete when 
none of the points in the domain change more than MAXDEV, or when a user-defined maximum 
number of iterations (MAXITERS) is reached. (MAXDEV and MAXITERS are set in the setup 
file.) Output files are generated of the stream function ψ, U and V velocity components, and 
pressure as determined using the Bernoulli equation. Finally, the speed-up factor profile at the 
central point is calculated and appended to a log file along with the run parameters. The 
“extract_profile…” series of Perl scripts can be used to determine the speed-up factors at user-
specified elevations for all of the runs in the log file. 

A large number of simulations (such as many directions around one or more locations) can be 
run by pre-generating the setup file for each run, using a batch file to call “Potential10” for each 
setup. This batch file can quickly be generated using a script such as “run_potential10_bat.pl.” 

 Iteration and Convergence 

Initially, sample calculations were performed to simulate potential flow over both a single cosine 
hill and a offset of typical complex terrains. Results demonstrated that the potential flow 
calculation consistently converged, which was tested by comparing predicted stream function 
distributions and speed-up ratios and confirming that the absolute deviation at all points was less 
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than 0.001 after one more iteration cycle (Table 4-14). That is the calculation converged when 
MAXDEV was set to 0.001 or less. All tests were run with UREF = 10.0.  

It also was found that a relatively large domain above the maximum terrain height was necessary 
when the results were to be used to determine speed-up factors. For example, for the typical 
Altamont Pass terrain, 3000 to 4000 meters of vertical calculation domain was needed above the 
surface to reliably converge to the same near-surface conditions. It was also found that DELTA = 
1.1 would converge consistently to the same results as DELTA = 1.0 (i.e. uniform grid) when the 
domains covered the same physical space. Using DELTA = 1.1 and NY ≥ 90 resulted in 
consistent convergence to a solutions. 

The time required to iterate a solution to the same level of convergence increases rapidly as the 
number of points in the domain increases. For example, solving a domain of 6210 points 
required 9 to 12 seconds (on a 3.2 GHz Pentium 4 computer), while solving a domain of 45,090 
points required 250 to 300 seconds. Using a variable grid density, such as a spacing factor (i.e., 
DELTA) of 1.1 in both the horizontal and vertical directions to reduce the number of grid points 
was the most effective method of reducing run times. 

Table 4-14 Values of ΔS predicted for the Met 127 0° transect. Inputs are NXIN = 35, 
Horizontal Spacing Factor = 1.1, NY = 90, DELTA = 1.1, UREF = 10, RHO = 1.2. Run time is 
the total time for iteration on a 3.2 GHz, Pentium 4 computer. 

ALPHA MAXDEV ΔS (0.5 m) ΔS (10 m) ΔS (99 m) 
Run Time 

(sec.) Iterations 
0.12 0.0000001 0.409 0.354 0.140 12 2363 
0.12 0.000001 0.409 0.354 0.140 12 2363 
0.12 0.00001 0.409 0.354 0.140 12 2363 
0.12 0.0001 0.409 0.354 0.140 12 2341 
0.12 0.001 0.409 0.354 0.140 9 1734 
0.12 0.002 0.409 0.354 0.140 8 1466 
0.12 0.005 0.410 0.355 0.141 6 1174 
0.12 0.01 0.414 0.358 0.143 4 885 

0 (No fill) 0.0001 0.476 0.414 0.153 9 1732 
0 (No fill) 0.0005 0.476 0.414 0.153 9 1732 
0 (No fill) 0.001 0.476 0.414 0.153 8 1584 
0 (No fill) 0.002 0.477 0.414 0.153 7 1341 
0 (No fill) 0.005 0.478 0.415 0.153 6 1101 
0 (No fill) 0.01 0.482 0.419 0.156 4 816 

 

For simulation of Altamont Pass terrain, the following run parameters were found to converge to 
results that could be verified using higher resolution runs with lower convergence criteria: DX = 
10, DY = 1.0, DELTA = 1.1, NY = 90, MAXDEV = 0.001, MAXITERS = 20000, ALPHA = 
0.12, UREF = 10, RHO = 1.2. The Altamont Pass wind turbine and met tower sites were 
simulated using terrain files using 35 elevations and a spacing factor of 1.1 between each 
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elevation, providing approximately 2.5 km of upwind and downwind terrain relative to the 
origin. 

 Initial Validation: Cosine Hills 

The potential programs were initially validated using the simulation of a simple hill of cosine 
cross-section. The hill was modeled at various factors of h/L by setting h = 100 m, and varying L 
from 100 m to 1000 m. The ABLWT tests of the two-dimensional cosine hill at 0° relative wind 
angle are simulated when h/L = 0.54. The domain was uniformly spaced horizontally, with 
variable vertical spacing. (DX = 10, DY = 1.0, DELTA = 1.1, NX = 501, NY = 90). The filling 
function was disabled to simulate a true potential flow, for comparison with previous linear 
results. The speed-up factor at the top of the cosine hill was calculated for eight values of h/L, 
and Figure 4-9 presents the results.  

Figure 4-9 Potential flow solver predictions of hilltop speed-up factor versus height for 
cosine cross-section hills of varying h/L.  

The results agree well with established results. As Jackson and Hunt (1975) showed, speed-up 
factor varies linearly with h/L, consistent with Figure 4-9. Speed-up factor also decays in an 
exponential manner with height. Figure 4-10 compares the results to various empirical speed-up 
prediction methods and the ABLWT wind tunnel results and indicates the potential flow solver 
underpredicts the speed-up factors, especially near the surface. This is also consistent with 
previous researchers who noted that linear or potential-based methods underpredict speed-up 
(Weng et al., 2000). 
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Cosine Hill Speed-Up Factors by Various Methods
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Figure 4-10  Hilltop speed-up factors predicted for cosine hill of h/L = 0.54 by empirical 
prediction methods, potential flow solver and UC Davis wind tunnel. 

Powerworks Meteorological Towers 

Speed-up factors were calculated using “Potential10.f90” for each of the Powerworks 
meteorological towers, and Figure 4-11 presents the resulting speed-up factors as functions of the 
wind direction. The curves were generated by running the model for each tower and wind 
direction from 0° to 359° degrees, in 1-degree increments. A variable grid of 71 by 90 cells was 
used for all simulations, with a spacing factor of 1.1 in both the x and y directions. The speed-up 
factor was calculated at the anemometer height of each meteorological tower. 

Previously, it was noted that, for the 240° wind direction, the wind tunnel measurements 
predicted the wind speed ratio between  Met 127 and Met 225 is U127/U225 = 0.98. Based on the 
actual meteorological data, this ratio appears to be somewhat low. Depending on the time of day 
and season, the ratio actually varied between about 1.06 and 1.35 (Table 4-1), with higher values 
associated with higher atmospheric stability. The ratio of the 240°-model and Potential10.f90 
model predictions is ΔS127/ΔS225 = 0.32/0.24 = 1.33. Assuming an average reference wind speed 
of 7 m/s, this results in U127/U225 = 1.06, which agrees well with the average observed velocity 
ratios for neutral/unstable periods. 

The complexity of the ΔS vs. wind direction curves for the meteorological towers also should 
be noted. While the wind tunnel R value curve for Met 127 was a simple cubic fit through 
four points (Figure 4-4), the “Potential10.f90” results show more complicated dependencies 
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due to local topography. For example, the Met 127 curve shows a sharp reduction of ΔS 
around the 280° direction, where the local ridgeline extends upwind, with even higher terrain 
further upwind. Unless a large number of wind directions can be tested, this level of 
resolution is not easily reached in wind tunnel tests. 

Figure 4-11 Potential10.f90 predictions of speed-up factor as a function of wind direction 
for the Powerworks meteorological towers. 

Power Curve Generation Using the Potential Flow Solver 

The program “Potential10.f90” was used to generate a power curve for the Powerworks Met 127 
turbine cluster. The resulting power predictions are directly comparable to those produced by the 
method based on wind tunnel measurements described previously. The heart of the wind tunnel 
method was a database of velocity ratios (R values) defined as R = Uturb(θ) / Umet(θ), where θ is 
the wind direction. The potential solver method was applied to generate an equivalent database 
using flow field predictions via multiple runs of “Potential10.f90”. 

Elevation transects were determined for winds from 0° to 355°, in 5° steps, for each of the 93 
turbine locations. Each transect contained 35 elevations starting with a 10 meter horizontal 
spacing at the origin, with spacing increased by a factor of 1.1 between each set of successive 
points, so that the final point was 2.454 km from the origin. The program was run for each of the 
94 locations and 72 wind directions. R values for each turbine were then calculated based on the 
potential gradient at the height of the wind turbine or anemometer. The height of the anemometer 
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and most of the turbines is 18.3 m (60 ft), and six of the turbines are at 24.4 m (80 ft) height. 
That is, at a height y = z, 
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The resulting potential flow solver R values were compared to those measured in the wind 
tunnel. Overall, the predictions by the potential solver method were similar to those based on the 
wind tunnel measurements. The mean difference between the corresponding R values predicted 
by the two methods is 0.008, and the mean absolute difference is 0.034. The average predicted R 
value is 0.934. Appendix A presents Tables listing the R-values predicted by both methods for 
all of the turbines and the four wind directions.  

The wind tunnel prediction scheme was rerun using the new set of R values generated by the 
potential solver, and the power prediction accuracies of the potential flow and wind tunnel 
methods were compared. The results are described in the following sections. 

Altamont Wind Farm Power Prediction Accuracy 

Multiple wind farm power curves were derived using four different methods: 1) data from 
measurements in the ABLWT, 2) potential flow simulations of the wind farm area by the 
program “Potential10”, 3) fitting a curve to the median values of power production, binned by 
wind speed, for two years of historical data, and 4) screening multiple linear regression of two 
years of historical data. These methods will be referred to below as “ABLWT”, “Potential10”, 
“Median Fit,” and “SMLR” respectively. 

Each of the methods was used to predict the power production of the Met 127 turbine cluster on 
a half-hourly basis during the period. June 25, 2001, to June 11, 2005. The inputs were the Met 
127 meteorological tower wind speed and direction, temperature from Met 438 (the most 
representative data available), and the time of year. After deleting missing or incomplete data 
(6.9% of the total), 64,685 predictions were produced. The predictions were compared to the 
recorded observations, and ME and MAE values were calculated. Table 4-16 summarizes the 
overall performance of the methods . 

It should be noted the first two years of the dataset include the data used to train the two data fit 
methods (July 1, 2001, to June 30, 2003); therefore the performance of these methods can strictly 
be evaluated only for times outside this time frame. 

Another difficulty is the observed lack of reliability of the wind direction data: 51% of the almost 
four-year dataset includes unreliable wind direction data. It is not possible to construct a 
“representative year” because no reliable data are available during the period, April 12 to May 
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24, in any year. Evaluating ME and MAE for only those periods when wind direction data 
appeared acceptable, the relative performance of the power curves is similar (Table 4-17). 

 
Table 4-15 Overall mean error (ME) and mean absolute error (MAE) of Met 127 power 
predictions, as percentages of observed wind farm capacity for four wind farm power 
curve methods, June 25, 2001, to June 11, 2005. 

Prediction Method ME (%) MAE (%) 
ABLWT (No Wind Direction) 3.24 6.12 
ABLWT (w/ Wind Direction) 1.99 5.74 
ABLWT (w/ Wind Direction and Density) 1.92 5.82 
ABLWT (Optimum) -0.36 5.74 
Potential10 (No Wind Direction) 4.68 7.05 
Potential10 (w/ Wind Direction) 2.47 6.31 
Potential10 (w/ Wind Direction and Density) 2.40 6.31 
Median Historical Data Fit 0.73 5.38 
MLR Historical Data Fit 0.42 6.33 

 

Table 4-16 Mean error (ME) and mean absolute error (MAE) of Met 127 power predictions, 
as percentages of observed wind farm capacity, for four different wind farm power curve 
methods. Includes only observations for which Met 127 wind direction data were 
considered acceptable between June 25, 2001, to June 11, 2005. 

Prediction Method ME (%) MAE (%) 
ABLWT (No Wind Direction) 2.55 6.18 
ABLWT (w/ Wind Direction) 2.06 5.96 
ABLWT (w/ Wind Direction and Density) 1.89 6.01 
ABLWT (Optimum) -0.38 5.80 
Potential10 (No Wind Direction) 4.17 7.21 
Potential10 (w/ Wind Direction) 3.10 6.77 
Potential10 (w/ Wind Direction and Density) 2.92 6.74 
Median Historical Data Fit 0.07 5.49 
MLR Historical Data Fit -0.34 6.49 

 

The MAE of all methods is dependent on the wind speed (Figure 4-13), and the MAE is higher 
in the 5 to 12 m/s range, which corresponds to the steep portion of the Kennetech power curve, 
and very low below 4 m/sec, where power production and predictions are both generally zero. 
The non-zero values of MAE, particularly those between zero and 1 m/s, are due to reported non-
zero power production from the wind farm. 
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Figure 4-12 Mean absolute error (MAE) of Met 127 power predictions versus wind speed, 
as a percentage of observed wind farm capacity. Includes only observations for which Met 
127 wind direction data were considered acceptable between June 25, 2001, and June 11, 
2005. 
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Figure 4-13 Mean absolute error (MAE) of Met 127 power predictions versus actual Met 127 
power production, as percentages of observed wind farm capacity. Includes only 
observations for which Met 127 wind direction data was considered acceptable between 
June 25, 2001, to June 11, 2005. 

The MAE is also a function of the power production (Figure 4-14). It should be noted that power 
production of less than 5% of the farm capacity accounts for 48% of the observations. Basically, 
the turbines are not generating power about half the time, a relatively easy case to predict. The 
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overall MAE is heavily weighted to the no power production case. Looking at MAE as a 
function of the actual power production, it becomes apparent that MAE is generally higher when 
power is being produced, with some decrease again when the farm approaches  maximum power 
production.  

Generally, the ABLWT method outperformed the Potential10 method, mainly due to a tendency 
of the Potential10 simulation to overpredict power production across a wide range of wind 
speeds. It should be noted that the ABLWT method has been more extensively developed than 
the Potential10 method. Therefore, it may be possible to improve the Potential10 method by 
refining the model, especially regarding the treatment of hill wake effects. 

Forecasting with the Power Curves 

Several wind farm power curves were developed based on (1) data from measurements in the 
ABLWT, 2) potential flow simulations of the wind farm area by the program Potential10, and 3) 
fitting a curve to the median values of power production, binned by wind speed, for two years of 
historical data. These methods are referred to as the “Wind Tunnel,” “Potential Simulation,” and 
“Historical Fit” methods, respectively. 

All of the methods were used to forecast the power production of the Met 127 turbine cluster 
hourly for the period from December 1, 2001, to September 30, 2002. AWS Truewind provided 
the input data for the power curves, consisting of next-day forecasts of wind speed and direction 
at the Met 127 meteorological tower. The forecasts simulated a next-day operational forecast 
initialized at 0Z, so the forecast interval was dependent on the time of day. Density corrections 
were not applied.  

After deleting forecasts for which Met 127 data were missing or incomplete (5.1% of the total), 
6922 forecasts were generated for each method. In addition, power production was predicted 
using the actual wind speed and direction recorded at the meteorological tower (simulating a 
“perfect forecast”), and AWS Truewind provided another  forecast of power production. The ME 
and MAE for this forecast were also calculated using the same data.  

Table 4-17 Power curve performance for entire forecast period, December 1, 2001, to 
September 30, 2002. ME and MAE values are expressed as percentage of observed wind 
farm capacity. 

Power Curve Input Data 
Actual Wind Forecasted Wind 

 

ME (%) MAE (%) ME (%) MAE (%) 
Wind Tunnel w/o Wind Dir. 2.59 5.64 0.52 15.29 
Wind Tunnel w/ Wind Dir. 1.60 5.52 -0.68 15.17 
Potential Simulation 1.83 6.32 -0.19 15.63 
Historical Fit 0.03 5.22 -2.53 15.01 
Truewind Forecast   0.25 15.28 



 
 
The Wind Farm Power Curve 

 4-38

Table 4-18 compares the overall performance of the power curves over the entire time period, 
using forecasted and actual meteorological data for inputs, and Tables 4-19 through 4-20 
compare the performance for December 2001, May 2002, and July 2002. AWS Truewind used 
these months to represent periods of low-, medium-, and high power production. 

Table 4-18 Power curve performance for December, 2001. ME and MAE values are 
expressed as percentages of observed wind farm capacity. 

Power Curve Input Data 
Actual Wind Forecasted Wind 

 

ME (%) MAE (%) ME (%) MAE (%) 
Wind Tunnel w/o Wind Dir. 5.93 6.55 1.18 6.36 
Wind Tunnel w/ Wind Dir. 5.08 5.81 0.51 5.93 
Potential Simulation 4.95 5.85 0.73 6.18 
Historical Fit 4.01 5.25 -0.65 5.52 
Truewind Forecast     1.32 6.56 

 

Table 4-19 Power curve performance for May 2002. ME and MAE values are expressed as 
percentages of observed wind farm capacity. 

Power Curve Input Data 
Actual Wind Forecasted Wind 

 

ME (%) MAE (%) ME (%) MAE (%) 
Wind Tunnel w/o Wind Dir. 2.46 6.01 1.62 22.61 
Wind Tunnel w/ Wind Dir. -0.40 6.07 -2.89 22.51 
Potential Simulation -1.95 6.92 -4.75 22.15 
Historical Fit -0.97 5.77 -2.75 22.70 
Truewind Forecast   1.75 22.65 

 
 

Table 4-20 Power curve performance for July 2002. ME and MAE values are expressed as 
percentages of observed wind farm capacity. 

Power Curve Input Data 
Actual Wind Forecasted Wind 

 

ME MAE ME MAE 
Wind Tunnel w/o Wind Dir. 1.21 4.72 0.77 17.22 
Wind Tunnel w/ Wind Dir. 0.89 4.74 -0.14 17.27 
Potential Simulation 3.43 6.84 2.79 18.91 
Historical Fit -1.83 4.74 -3.07 17.49 
Truewind Forecast   -0.29 17.22 

 

When used to predict power production using the actual recorded wind speed and direction, the 
power curve methods all performed in a manner consistent with the previously documented 
applications. The MAEs were between 5 and 7 percent of the observed capacity (Table 4-18). 
Using forecasted wind speed and direction instead of the actual values results in a significant, but 
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reasonable, increase in MAE to approximately 15 % to 16%, depending on the method (Tables 
4-19 to 4-21).  

The power curves are reasonably accurate the resulting power forecast MAEs are similar to those 
for AWS Truewind’s operational power curve. This is a significant result because the wind 
tunnel and potential simulation methods require no historical power production or on-site 
meteorological data. These methods may be of most value in situations where historical wind 
farm data are not available, such as in resource assessment and turbine site selection for new 
wind farms.  
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5  
Downscaling and Forecasting 

Uncertainty of the Eta Regional Scale Forecast (RSF) 

There is a perception that the majority of the uncertainty in commercial wind power forecasting 
results is due to the uncertainty in the output of the RSFs that are used as inputs to the 
forecasting systems. However, the measures of error made available by RSF operators rarely 
assess the error in the specific input variables used by wind power forecasters (such as wind 
speeds at geostrophic levels), or provide only averages of the error levels in a variable over many 
forecasts and therefore cannot be compared directly to specific wind power forecasts. 

Comparison of Interpolation Methods: Bicubic, Bilinear, and Nearest Point 

Weather conditions at a nearby radiosonde launching site (Oakland, CA, USA, 45 km west of 
Altamont Pass. WMO ID# 72943. (See Figure 5-1) were forecasted and compared to 
observations in an attempt to gauge the accuracy of the RSF. Forecasting in this context 
consisted only of interpolating the forecasted variables from the Eta grid points to the Oakland  

 
 

Figure 5-1 Map of Altamont Pass site ("Site") and Oakland radiosonde site ("OAK"). 
Elevations in meters. Map area is 240 km wide. 
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site. No statistical or other corrections were applied. It should be noted that since the Oakland 
site is in different terrain, near sea-level adjacent to the San Francisco Bay, the meteorological 
factors affecting downscaling will be somewhat different, especially for near-surface 
observations. The radiosonde is launched twice daily at 0:00 GMT and 12:00 GMT and reports 
wind speed and direction, temperature, and dew point at various altitudes from the surface to 
well into the stratosphere.  

Initially, bicubic interpolation was used to extrapolate forecast weather conditions from the RSF 
grid points to the sounding location. However, it was suspected that the interpolation method 
itself also introduces error. Therefore, bilinear interpolation and a closest grid point method also 
were implemented to investigate the sensitivity of the error levels to the interpolation method. 
Any or all of these interpolation methods can be used in the UC Davis forecasting system to 
extrapolate gridded RSF data to wind farm meteorological tower locations. By interpolating the 
RSF output to the radiosonde location, many upper level variables forecasted by the RSF can be 
compared to field measurements on a forecast by forecast basis, and the level of uncertainty in 
the data from the RSF can be estimated. 

The three interpolation methods were compared by using archived Eta forecasts for a 21-month 
period from November 30, 2002, through July 31, 2004. The Eta forecasted wind speed at each 
of the surrounding grid points was determined from the horizontal components of the wind speed 
at each grid point. This data then was interpolated to the sounding location using bicubic or 
bilinear interpolation. The third “interpolation” method involved using the data from the closest 
grid point to the sounding location. The radiosonde takes frequent measurements as it rises, 
typically one or more every few hundred meters. Readings were linearly interpolated to the 
pressure of Eta levels for analysis. No statistical or other corrections were applied. 

The overall error level is measured by the mean absolute error (MAE), the absolute value of the 
forecasted minus the actual value. The MAEs of the wind speed forecasts were almost identical 
for the three interpolation methods implemented.  

Figure 5-2 presents the wind speed MAE results at several different levels and at various forecast 
intervals. As expected, error levels increase over longer forecast intervals, and higher levels tend 
to be forecasted more accurately than lower levels. In absolute terms, MAE values varied 
between 1.5 m/s for the initialization runs at 700, 800, and 900 mb to 2.5 to 3 m/s for the 48-hour 
forecasts. The relatively high MAEs observed in the initialization runs “forecasting 0 hours 
ahead” were somewhat unexpected, since the sounding data are used to initialize the Eta model. 
However, the explanation is that the measured data must be interpolated to the grid points and 
modified to agree with other available data, thus increasing the discrepancy between actual and 
interpolated data. Additionally, each model run starts at minus 12 hours to ensure stability and 
consistency by hour zero, so only earlier sounding data are used. This provides additional 
opportunity for the initialization run to diverge from the measured data at hour zero. 
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Mean Absolute Error between 40 km Eta Forecast Using Bicubic 
Interpolation and Measured Values at Oakland Sounding 

Nov 30, 2002 - July 31, 2004
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Mean Absolute Error between 40 km Eta Forecast Using Bilinear 
Interpolation and Measured Values at Oakland Sounding 

Nov 30, 2002 - July 31, 2004
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Figure 5-2 Mean absolute error in Eta forecasted wind speed at Oakland sounding location 
for four different levels as a percentage of the average measured wind speed observed at 
that level. Forecasted winds at the sounding location were determined from gridded Eta 
model output using bicubic interpolation (top), bilinear interpolation (middle), and the grid 
point closest to the sounding location (bottom). Results are given for forecast intervals 
from 0 hours ahead (initialization run) to 48 hours ahead. 
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Mean Absolute Error between 40 km Eta Forecast Nearest Grid 
Point and Measured Values at Oakland Sounding 
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Figure 5-3 Mean absolute error in Eta forecasted wind speed at Oakland sounding location 
for four different levels (Continued). 

Downscaling 

Once a regional-scale forecast (RSF) is obtained, the resulting forecast data are used to forecast 
the near-surface wind speed. This is necessary since the RSF models have such coarse grid 
spacing (Eta's grid spacing is 40 km) that only the largest terrain features, such as large mountain 
ranges, can be represented. Even with much finer grid resolutions, the region near the surface 
where wind turbines are located is the most difficult region to model accurately. The process of 
taking upper-atmosphere RSF model data and extrapolating to surface conditions at a specific 
point is referred to as “downscaling.” 

Geostrophic Drag Law 

Landberg and Watson (1994) used the geostrophic drag law to forecast near surface wind speeds 
from upper air wind speeds taken from an RSF. This method involves the use of a few equations 
that can be solved iteratively with little computational effort. The neutral geostrophic drag law is 
a method of predicting surface shear stress, in the form of the friction velocity U*, based on the 
wind speed at geostrophic height UG: 
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where f is the Coriolis parameter, zo is the surface roughness and κ is von Karmen's constant (≈ 
0.4). A and B are constants. Zilitinkevich found that the median values of A and B reported in 16 
studies gave A = 1.7 and B = 4.5. The angle of the surface shear stress direction from the 
direction of the geostrophic wind angle α is given by 
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Landberg and Watson (1994) used Eqns. 5.1 and 5.2 in conjunction with the logarithmic law 
(Eqn. 2.2) to predict a reference wind speed at turbine hub height from upper atmosphere winds 
forecasted by HIRLAM. While Landberg reported success applying this method to sites in 
Denmark and other parts of northern Europe, the reliability of the geostrophic drag law appears 
to break down in the more complex terrain of the Altamont Pass, and this approach did not 
accurately predict the near-surface winds at the case study wind farm. 

To determine if this method could be applied to the Altamont Pass region, archived initialization 
runs (i.e., “zero hour forecasts”) of Eta model output from November 30, 2002, to July 31, 2004, 
was used to predict the wind speed at the case study wind farm meteorological tower. To use this 
method, first a vertical level in the Eta output had to be chosen as being at the geostrophic height. 
Six different levels evenly spaced between 700 and 950 mb were used as geostrophic level on a 
trial basis. For a specific forecast, the overall wind speed at the geostrophic height was taken 
from the Eta model output. Eqns. 5.1, 5.2, and 2.7 then were used to predict the wind speed that 
would be seen at the meteorological tower if it were situated in flat terrain. A speed-up factor of 
1.5 then was applied to the forecasted wind speed to account for the ridgetop location of the 
meteorological tower. The speed-up factor was determined by comparing wind speeds at 
simulated anemometer height in an ABLWT test of the complex terrain around the 
meteorological tower site, with a test of flat terrain. 

Table 5-1 presents the results of the analysis for geostrophic heights at six different levels. Input 
wind speeds are from geostrophic height in Eta model initialization runs (“0 hour forecasts”) 
between November 30, 2002, and July 31, 2004. The average wind speed measured by the 
meteorological tower was 7.46 m/s. The R values are the correlation coefficients between the Eta 
model wind speed at each given geostrophic height and the measured wind speed at the 
meteorological tower. 

The average forecasted wind speed at the meteorological tower anemometer was low for all of 
the “trial” geostrophic heights, even with the application of the speed-up factor. A closer look at 
the data revealed a significant lack of correlation between the wind speed at geostrophic height, 
and the wind speed at the meteorological tower location, with correlation coefficients ranging 
from 0.04 when compared to the 700 mb wind, to 0.34 when compared to the 950 mb wind. It is  
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Table 5-1 Mean Error (ME) and Mean Absolute Error (MAE) of predictions of wind speed at 
case study wind farm meteorological tower (in m/s) using geostrophic drag law.  

Geostrophic Level            
700 mb 750 mb 800 mb 850 mb 900 mb 950 mb

ME -0.86 -1.76 -2.46 -2.88 -3.03 -3.02
MAE 4.57 4.41 4.34 4.39 4.23 3.90

R -0.04 -0.02 0.00 0.04 0.14 0.34  
 

apparent that this lack of correlation represents a potentially large source of error in a forecast for 
the case study site. 

Multiple Linear Regression 

Burda et al. (1985) reported success predicting the average daily wind speed at an Altamont Pass 
site with an equation derived using multiple linear regression, using inputs of the zonal 
component of the 950 mb Oakland sounding wind speed and the maximum daily air temperature 
in San Francisco. Unfortunately, attempts to use multiple linear regression to derive equations to 
predict the wind speed at the meteorological tower anemometer at a specific time using variables 
from the Eta model output were unsuccessful, with no equation derived, even for specific cases 
(such as for specific times of day or seasons) have an R2 value greater than 0.5. This was 
attributed primarily to the lack of correlation between the meteorological tower wind speed and 
the upper level wind speeds, temperatures and pressures.  

For example, Figure 5-4 shows the relation between the wind speed at 700 mb in the Eta 
initialization runs ("zero hour forecasts") and the wind speed as measured at the meteorological 
tower. 

Forecast Matching 

Due to the lack of success predicting the wind conditions at the wind farm meteorological tower 
from the Eta output using the above methods, it was decided to use the archives of Eta forecasts 
and wind farm data compiled at UC Davis to directly predict the wind farm conditions. 

UC Davis archives the information from each Eta forecast in a separate file after the forecast is 
downloaded. The corresponding data from the wind farm (wind speed and direction, and power 
production) for each forecast time interval are appended to the forecast file, so that each archived 
forecast file contains the measured wind farm conditions at the forecast time for future error 
analysis. A "matching forecast" can be generated by downloading a current Eta forecast and then 
searching the archive for a "matching" archived forecast; one with conditions closest to those 
predicted by the current forecast. Since the two "matched" forecasts are for two times with 
similar weather conditions, it is anticipated that the wind farm conditions for the current forecast 
will be close to those associated with the “matched” archived forecast: the archived wind speed 
and direction (and the power production) are used as a new forecast. 
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Figure 5-4 Comparison of the wind speed measured at the meteorological tower versus the 
wind speed at the 700 mb level of the Eta initialization ("zero-hour forecast") runs. 

It was necessary to develop a means of quantifying the similarity between two Eta forecasts to 
find a match. A scoring system was devised to quantify the degree of difference between a set of 
corresponding variables in the current forecast and an archived forecast. The set of 19 variables 
chosen to compare archived and current forecasts included the "U" and "V" components of wind 
speed, temperature, elevation at 1000 mb, 900 mb, 800 mb, and 700 mb, sea-level pressure, and 
the horizontal components of the pressure gradient, determined via bicubic interpolation. 

The "matching score" S of the two forecasts was then calculated as 
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       (5.3) 

where n is the number of variables (19 in this case), Ai and Fi are the archived and current 
forecast values of variable i (where 1 ≤ i ≤ n), and Ri is a normalizing factor used to weight the 
importance of the variable. (Initially for each variable, R was arbitrarily set equal to the standard 
deviation of the variable observed in the dataset, divided by four to make many of the R values 
close to one. Only the relative values of Ri affect the scoring of the different variables.) A score 
is calculated for each archived forecast, with a lower score indicating greater similarity between 
an archived forecast and the current forecast. For a given current forecast, the wind farm 
conditions are taken from the file of the lowest scoring archived forecast.  
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The accuracy of the matching method was determined by forecasting the wind farm conditions 
corresponding to each of the archived forecasts. When a specific forecast was being determined, 
archive forecasts within four days of the one being used were excluded from the matching 
analysis. This ensures that the forecast is not matched to itself, or to a forecast close in time, 
representing the identical weather conditions in the forecast. Both wind speed at the 
meteorological tower anemometer and wind farm power production were forecast. Table 5-2 
summarizes the ME and MAE results. 

Table 5-2  Observed accuracy of the matching method at forecasting wind speed at the 
case study wind farm meteorological tower anemometer and the wind farm power 
production. Forecasts were prepared for each of the Eta forecasts in the UC Davis archive 
(consisting of forecasts from 0 to 48 hours in the future, initialized at 0:00 and 12:00 GMT) 

 

      Wind Speed    Power Production
           [m/s]  [% Wind Farm Cap.]

ME MAE ME MAE Obs.
All Data -0.05 2.96 -0.46 18.0 12813

Power < 20% 0.84 2.53 8.33 10.6 7632
20% < Power < 80% -0.78 3.26 -6.56 29.5 3293

Power > 80% -2.38 4.22 -25.33 28.1 1888  

Comparison of Matching Method to Persistence 

The matching method was used to forecast four parameters for the Altamont Pass wind farm: 
power production for the entire Altamont farm and for the Met 127 cluster, plus the wind speeds 
at Met 438 and Met 127. The matching forecast MAE also is dependent on the forecast interval. 
For forecast intervals of less than six hours, the persistence method outperforms the matching 
method. However, as shown in Figure 5-4, the matching power forecasts generally have lower 
MAEs during the important 24- to 48-hour “next-day” interval. A comparison with persistence 
for the period between Nov. 20, 2002, and July 31, 2004 showed that the matching method 
exhibited roughly similar accuracy.  

Confidence Interval Estimation 

An unsuccessful attempt was made to develop a forecast confidence interval, or uncertainty, 
based on the standard deviation of the forecast variable in the 25 closest matching historical 
forecasts. As shown in Figure 5-5, there was essentially no correlation between the standard 
deviations of the wind speed or power variables in the  25 lowest scoring forecasts and the actual 
mean absolute errors of the forecast. 

Comparison of Different Matching Variables 

The use of different combinations of matching variables was examined. The original Eta 
forecasting algorithm used 19 variables: U and V components of wind speed, temperature and 
pressure height at 1000 mb, 900 mb, 800 mb, and 700 mb, plus sea level corrected atmospheric  
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Figure 5-5 Mean absolute errors of match and persistence forecasts as functions of 
forecast interval. Forecasts were performed for the period, Nov. 30, 2002, and July 31, 
2004. Results include forecasts of the power production of the entire wind farm (upper 
left), forecasts for the Met 127 turbine cluster (upper right), and forecast wind speeds at 
the Met 438 (lower left) and Met 127 (lower right) meteorological towers.

Figure 5-6 Comparison of Met 127 wind speed forecast MAE versus the standard deviation 
of the Met 127 wind speed in the 25 closest matching historical forecasts.
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Table 5-3 ME and MAE of Eta matching forecasts using different combinations of matching 
Eta variables, compared with persistence forecasting. 

V
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]   
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 438 W

S
 [m

/s]   

Persistence N/A -0.15 -0.40 -0.92 0.10 2.85 17.5 14.9 2.39
All (Baseline Case) 19 -0.09 -0.93 -0.63 -0.15 2.91 17.8 14.5 2.67
Press and 1000 7 -0.06 -0.22 -0.14 -0.14 3.04 18.6 14.9 2.67
Press and Tmp 7 0.04 -0.36 -0.30 -0.08 3.10 19.0 15.6 2.86
All But WS 11 0.03 -0.07 -0.15 -0.09 3.13 19.0 15.6 2.86
WS Only 8 -0.13 -1.28 -0.85 -0.13 3.22 20.5 16.3 2.80
Press and Hgt 7 0.03 0.00 -0.02 -0.05 3.31 20.7 16.9 2.96
WS 700 and WS 1000 4 -0.08 -0.56 -0.38 -0.10 3.41 21.7 17.7 2.92
Press and 700 7 -0.05 -1.05 -0.91 -0.13 3.40 22.3 17.8 3.00
Press Only 3 0.06 0.16 0.19 0.01 3.53 23.5 18.8 3.14
WS 1000 2 -0.03 -0.28 -0.20 -0.04 3.54 23.3 18.8 2.99
WS 700 2 -0.02 -0.12 -0.18 -0.01 4.54 32.5 27.3 3.74  

pressure and the X and Y components of the pressure gradient (as returned by the bicubic 
interpolation). 

Times-Series Matching 

A second application of the matching method was tested, this time using only a historical 
database of the variable to be forecast. The idea was to see if a matching approach could improve 
on persistence. The four days leading up to the time to start forecasting from were compared, on 
a daily interval, to four day sets of data taken from a large set of historical data during the period, 
July 1, 2001, to June 30, 2004. Equation 5.3 was used to calculate a matching score for each 
possible set of data in the historical dataset, with the lowest scoring data set being taken as the 
"match." The four days of data following the matched data set were then used as the forecast of 
the variable of interest from 0 to 96 hours in advance. 

The method was tested by producing daily forecasts of Altamont total power, up to 96 hours 
ahead, for three years (July 2001 to June 2004) of Altamont data, using the same data set as the 
source for the matching files. As in the Eta matching, the closest four days of data were excluded 
from matching for each individual forecast. Since Altamont wind farm data is provided daily, 
with a full day of data (0:00 to 23:30) being reported, each forecast started at 0:00 PST. For 
comparison, corresponding persistence forecasts also were produced, using the last known power 
production before the start of each forecast (i.e. the power production at 23:30 on the day before 
the forecast). Figure 5-6 presents the resulting MAEs of the persistence and time-series matching 
forecasts of power production s. forecast interval. 

Comparison to Other Forecasting Methods 

Previously, Risoe National Laboratory of Denmark, and AWS Truewind, produced energy 
generation forecasts for the same Altamont Pass facility over a one-year period ending 
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September 2002 (EPRI, 2003). A series of match forecasts was performed to be as comparable as 
possible to these previous forecasts, and each forecast covered a one-year period. The Eta 
forecast database contained 16,882 individual forecasts collected between December 2002 and 
March 2005. Each forecast was for a single time between 0 to 48 hours after initialization time.  

Unfortunately, the previous forecasts covered the period October 2001 to September 2002, and it 
was not possible to generate matching forecasts for the same period. Instead, the matching 
forecasts were generated for 2004 to evaluate the matching method. Each 2004 forecast in the 
database was used as the “current” forecast and matched to the most similar forecast in the 
database. Forecasts within four days of the “current” forecast were excluded from the matching 
process to prevent matching two forecasts of the same meteorological events. 

Figure 5-7 shows the matching forecast mean absolute error (MAE) as a percentage of the wind 
farm capacity for the matching method and persistence forecasts, versus the wind speed recorded 
at a nearby meteorological tower. Interestingly, MAE for both methods is highly dependent on 
wind speed, and increases significantly with wind speed. (The variability of MAE at high winds 
is due to the small number of times those high winds occurred.) Performance also varies 
significantly depending on the time of year. During the winter months when turbines are often 
idle for days or weeks at a time, MAE was low for both methods, with persistence outperforming 
matching forecasts (Figure 5-8). During several summer months, when power production is  
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Figure 5-7 Mean absolute error of time-series matching and persistence forecasts of total 
Altamont power production between July 2001 and June 2004. All forecasts start at 0:00 
local time and forecast out to 96 hours in the future. 
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highest at Altamont, the MAE was well above 20% rated capacity for both methods, with match 
forecasting outperforming persistence. 

The energy forecast MAE also is dependent on the forecast interval (Figure 5-9). For forecast 
intervals of less than six hours, the persistence method outperforms the matching method. 
However, as shown below, the matching forecast has lower MAEs in the important 24- to 48-
hour “next-day” interval. Therefore, it appears that the match forecast is of most value for 
predicting next-day power production during the higher power producing summer periods. 

Table 5-4 presents the overall MAE results of the two previous forecasting studies, the match 
forecast, and persistence forecasts. Skill score (S) is defined as S = 1 – MAEf/MAEp, where 
MAEf is the MAE of the trial forecast method and MAEp is the MAE for persistence forecasts 
during the same time period. The match forecasting was less accurate than the more 
sophisticated methods but more accurate than persistence.  

Table 5-4 Mean absolute error(MAE) as a percentage of observed wind farm capacity for 
four different forecast methods at the Altamont Pass wind farm. Skill score is percentage 
improvement in MAE relative to persistence. 

Forecast 
  *Oct. 2001 – Sept. 2002 
  **Jan. – Dec. 2004 

MAE 
[% Cap.] 

Skill Score 
vs. Persistence 

Risø* 14.4 21.6% 

TrueWind* 13.8 30.8% 

Matching** 16.2 7.1% 

Persistence** 17.4 0.0% 
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Figure 5-8 Mean absolute error (MAE) of the match and persistence forecasts as a function 
of wind speed. January 1 to December 31, 2004. 
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Figure 5-9 Mean absolute error (MAE) of the match and persistence forecasts as a function 
of month for the period January 1 to December 31, 2004. 
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Figure 5-10 Mean absolute error (MAE) of the match and persistence forecasts as a 
function of wind speed. January 1 to December 31, 2004. 
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Effect of Database Size 

The most significant factors in match forecasting accuracy are the number of parameters 
matched (as discussed earlier) and the size of the matching database. For evaluation purposes, 
two different database sizes were used to “diagnostically” match forecast the period from 
November 30, 2002, to July 31, 2004. The “small database” consisted of 10,427 archived 
forecasts within this time frame, while the “large database” contained the entire small database, 
plus an additional 8100 forecasts between August 1, 2004, and June 10, 2005. Persistence 
forecasts were also generated for the same time period. Mean and mean absolute errors and skill 
scores were calculated for all three forecast methods. The skill score is the percentage 
improvement of a forecast method relative to persistence.  

Table 5-5 presents the results for the entire forecast set. The results in Table 5-5 include all 
forecasts, from initialization (“nowcasts”) to 48 hours in advance.  

The high skill scores for temperature and humidity are due to the strongly diurnal nature of these 
parameters, which is not well predicted by a persistence forecast at non-24-hour forecast 
intervals (Figure 5-10). For wind speed and power production, the large database match forecast 
generally performs better than the small database. Interestingly, power production match 
forecasts appear to be more skillful than those for wind speed, at least partially due to the broad 
range of meteorological conditions that result in zero power production. 

Since persistence performs well for forecasts less than six hours in advance, while next day 
performance is the goal here, the forecast performance is next determined as a function of 
forecast interval. Figures 5-11 and 5-12 present the forecast MAE as a function of forecast 
interval for wind speed and power production, respectively. 

Table 5-5 Overall performance of small and large database matching forecasts relative to 
persistence for six parameters. 

 Persistence Small Database Large Database 
Forecasted Parameter ME MAE ME MAE S (%) ME MAE S (%)
Met 127 Wind Speed (m/s) -0.13 2.85 -0.09 2.91 -2.26 -0.08 2.83 0.73 
Met 438 Wind Speed (m/s) 0.08 2.44 -0.15 2.67 -9.48 -0.26 2.66 -8.79 
Met 127 Power (% Cap.) -0.16 17.40 -0.93 17.75 -2.04 -1.51 17.15 1.42 
Total Power (% Cap.) -0.77 16.25 -0.70 16.16 0.59 -1.18 15.47 4.86 
Met 438 Relative Humidity (%) -2.35 18.35 0.52 16.76 8.63 1.88 16.01 12.72
Met 438 Temperature (K) 0.68 4.37 -0.04 2.92 33.30 -0.10 2.81 35.81
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Figure 5-11 Mean absolute error (MAE) versus forecast interval for persistence, small 
database match and large database match temperature forecasts. Forecast period is 
November 30, 2002, to July 31, 2004.  
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Figure 5-12 Mean absolute error (MAE) versus forecast interval for persistence, small 
database match and large database match wind speed forecasts. Forecast period 
November 30, 2002, to July 31, 2004. 
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Figure 5-13 Mean absolute error (MAE) versus forecast interval for persistence, small 
database match and large database match power production forecasts. Forecast period is 
November 30, 2002, to July 31, 2004. 

For the 24- to 48-hour power production forecasts, the match method generally outperforms 
persistence, with the large database providing better results than the small database. Forecasts of 
power production seem to benefit most from a large database matching method, while the 
forecasts of meteorological parameters are less sensitive to the database size at this scale. 

Matching Using Different Input Regional Scale Forecasts 

The performance of match forecasting using different RSFs was evaluated by forecasting the 
same time period (June 1, 2004, to May 31, 2005) using databases generated by three forecast 
models, including the 40-km Eta model and two resolutions of the COAMPS model (12-km and 
4-km) provided by the National Atmospheric Release Advisory Center (NARAC) at Lawrence 
Livermore National Laboratory (LLNL). 

For each RSF, an equivalent historical forecast database was compiled. The COAMPS model 
output was provided hourly, while Eta was available only every third hour. For consistency, only 
COAMPS forecasts from every third hour (corresponding to the hours available for Eta) were 
used in the forecast database. Similarly, all results presented below consider only match forecasts 
for every third hour. Nineteen matching variables were used to calculate the similarity score. For 
Eta, the same variables were used as described in the previous sections. For COAMPS, the 
analogous variables were taken from the four levels closest to 1000, 900, 800, and 700 mb 
(Levels 9, 17, 19, and 21). As in the previous investigations, a forecast was generated for each 
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forecast in the historical database, and the closest four days were excluded from matching to 
prevent matching of the same weather phenomenon as in the current forecast. Table 5-6 shows 
the overall error levels for each forecast for several parameters. Power production values are 
normalized by the appropriate observed wind farm capacity (10 MW for Met 127, 100 MW for 
Total). 

Interestingly, for the six variables considered, the best overall performance was achieved using 
the low resolution Eta model, followed by the 12-km COAMPS model. It is postulated that for 
this forecasting method, higher spatial resolution may result in a decrease in accuracy due to the 
ability of the model to forecast a wider range of variability in local conditions. It is believed that 
the relatively poor performance of all the match forecasts compared to persistence is due to the 
small (one year) size of the historical databases used for matching. 

Table 5-6 Overall mean error (ME) and mean absolute error (MAE) of match forecasts of 
several Altamont Pass wind power and meteorological parameters between June 1, 2004, 
and May 31, 2005. Match forecasts were generated using data from three regional scale 
forecasts: 40-km Eta, 12-km COAMPS and 4-km COAMPS. Results for persistence  
forecast are shown for comparison. Total power forecasts are the combined power 
production of all 11 Powerworks turbine clusters.  

40 km 12 km 4 km
Parameter Eta COAMPS COAMPS Persistence
ME - Met 127 Wind Speed [m/s] -0.01 0.00 0.02 0.04
ME - Met 438 Wind Speed [m/s] 0.10 0.10 -0.07 0.25
ME - Met 127 Power [% Cap.] 0.33 0.20 0.61 0.08
ME - Total Power [% Cap.] 0.35 0.27 0.29 -0.27
ME - Met 438 Temp [K] 0.06 0.39 0.31 0.77
ME - Met 438 Rel. Humidity [%] 1.38 -0.18 0.36 -2.43
MAE - Met 127 Wind Speed [m/s] 2.95 3.17 3.11 3.20
MAE - Met 438 Wind Speed [m/s] 2.89 2.91 2.83 2.57
MAE - Met 127 Power [% Cap.] 17.48 19.46 20.48 18.03
MAE - Total Power [% Cap.] 13.46 15.77 16.78 14.96
MAE - Met 438 Temp [K] 2.92 3.37 2.89 4.27
MAE - Met 438 Rel. Humidity [%] 15.65 16.80 15.41 18.43
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Figure 5-14 Mean absolute errors of the Eta- and COAMPS-based power production match 
forecasts as functions of the forecast interval during the period, June 1, 2004, to May 31, 
2005. 
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Figure 5-15 Mean absolute errors of the Eta- and COAMPS-based wind speed match 
forecasts as functions of the forecast interval during the period June 1, 2004, to May 31, 
2005. 
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Figure 5-16 Mean absolute errors of the Eta- and COAMPS-based power production match 
forecasts as functions of the Met 127 observed wind speed during the period, June 1, 
2004, to May 31, 2005. The chart also shows the number of observations in each 1 m/s 
wind- speed bin. 
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Figure 5-17 Mean absolute errors of the Eta- and COAMPS-based wind speed match 
forecasts as functions of the Met 127 observed wind speed during the period, June 1, 
2004, to May 31, 2005. The chart also shows the number of observations for each 1 m/s 
wind speed bin. 
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6  
CONCLUSIONS 

The goal of the wide range of research conducted at UC Davis was to find methods of improving 
wind power forecasting, especially through the use of non-computationally intensive methods. 

A wind farm power curve based on wind tunnel data was developed. This power curve featured 
several refinements of the wind tunnel power curve developed by Cheng (2002), including wind 
direction and air density as additional inputs. Slight improvement, as measured in wind power 
prediction mean absolute error (MAE), was observed over the results of Cheng. Evaluation of the 
new power curve was hampered by the fact that power producing winds at the Altamont Pass 
study site come primarily from the southwest, and the wind direction measurements from the 
study site did not appear to be reliable for significant portions of the study time period. Power 
prediction MAEs of 5 to 7 percent were observed for the new power curve, depending on the 
year and duration of the evaluation period.  

Estimating wind speed at specific times for specific turbine locations in complex terrain using 
“speed-up” prediction methods did not yield sufficient accuracy for use in operational wind 
power forecasting. An alternate approach to the “empirical” power curve method was developed 
based on simulating potential flow over laterally weighted two-dimensional transects of the wind 
farm terrain. This method proved capable of making power predictions based on meteorological 
tower wind speed and direction almost as accurately as the wind tunnel method, without 
requiring construction of a large physical model of the wind farm terrain. It also required only a 
small amount of computational resources and could be applied to any location for which digital 
elevation data is available. When forecasted wind data provided by Truewind was used, both the 
empirical and wind tunnel-based power curves were found to produce forecasts with similar 
MAEs to the Truewind power forecasts. 

Several methods of downscaling from regional scale forecast (RSF) model output to a near-
surface location were investigated. The geostrophic drag law and multiple linear regression were 
not sufficiently accurate to be of use. A forecasting method based on finding (“matching”) past 
RSFs in a database of historical forecasts that are similar to the current RSF was found to be 
more successful. The number of matched RSF variables and the time period covered by the 
database were determined to be the most significant factors in forecasting performance. The 
“matching” method was found to be capable of out-performing a persistence forecast when 
applied to the Powerworks sites at the Altamont Pass, with mean absolute errors decreasing as 
the size of the matching database was increased. It was also observed that the use of a higher 
resolution RSF (as tested using two resolutions of the COAMPS model) did not result in lower 
MAEs with the matching method, when used for wind speed or power production forecasts. 
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A  
APPENDIX - MET 127 R VALUES DETERMINED BY 
ABLWT AND POTENTIAL FLOW SIMULATIONS 

"R values" were calculated for each turbine in the Met 127 turbine cluster. In the Atmospheric 
Boundary Layer Wind Tunnel (ABLWT) tests, R denotes a dimensionless mean wind speed, 
defined as the wind speed at a measurement point divided by a reference wind speed. In this 
instance,  

 
tunnelmet

tunnelturb

U
U

R
,

,=  

where Uturb,tunnel is defined as the hub-height mean wind speed at a turbine location on the wind 
tunnel model, and Umet,tunnel is the mean anemometer-height mean wind speed measured in the 
wind tunnel at met tower 127.  

Table A-1 presents the wind speed ratios calculated using both the Potential10 flow model and 
ABLWT measurements of the wind speed ratio between each wind turbine and the reference 
met-tower location. Four values are calculated for each method, one for each wind direction, 60°, 
150°, 240° and 330°.  

Table A-2 presents the differences between the Potential10 model and ABLWT measurements of 
the wind speed ratios for each turbine. 
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Table A-1 Potential10 and ABLWT Wind Speed Ratios (R) 

Potential10 R Values (Uturb/Umet) ABLWT R Values using (Uturb/Umet)
(Fill = 0.12)

Wind Direction Wind Direction
60 150 240 330 60 150 240 330

Minimum 0.831 0.763 0.840 0.759 Minimum 0.860 0.719 0.769 0.704
Mean 0.953 0.910 0.960 0.913 Mean 0.954 0.913 0.973 0.929
Maximum 1.030 1.041 1.055 1.034 Maximum 1.046 1.004 1.173 1.034

Wind Direction Wind Direction
Turbine 60 150 240 330 Turbine 60 150 240 330

6 1.001 0.988 0.898 1.001 6
7 1.001 0.911 0.908 0.954 7
8 0.988 0.839 0.912 0.919 8
9 0.981 0.802 0.913 0.886 9
10 0.961 0.839 0.936 0.786 10
11 0.979 0.917 0.971 0.915 11 0.975 0.962 1.001 0.937
12 1.001 0.957 0.990 0.964 12 0.980 0.970 1.010 0.952
13 1.008 0.986 1.000 0.994 13 0.985 0.978 1.020 0.967
14 1.023 1.009 0.999 1.013 14 0.994 0.991 1.025 0.981
15 1.022 0.995 0.976 1.000 15 1.003 1.004 1.030 0.994
16 1.018 0.947 0.968 0.959 16 0.996 0.973 1.022 0.962
17 1.016 0.914 0.968 0.925 17 0.988 0.942 1.016 0.930
18 1.005 0.877 0.960 0.888 18 0.974 0.914 1.000 0.908
19 0.990 0.838 0.960 0.850 19 0.959 0.886 0.983 0.886
20 0.993 0.878 0.978 0.845 20 0.969 0.888 1.035 0.862
21 1.030 0.938 1.009 0.935 21 0.980 0.890 1.088 0.837
34 0.854 0.867 0.862 0.878 34 0.896 0.906 0.836 0.923
35 0.854 0.873 0.857 0.884 35 0.896 0.898 0.802 0.908
36 0.835 0.863 0.854 0.870 36 0.896 0.891 0.769 0.892
37 0.831 0.845 0.840 0.848 37 0.911 0.900 0.811 0.904
38 0.862 0.900 0.877 0.893 38 0.939 0.942 0.854 0.920
39 0.895 0.951 0.917 0.959 39 0.963 0.972 0.893 0.977
40 0.934 1.009 0.952 1.019 40 0.987 1.002 0.931 1.034
41 0.956 1.041 0.969 1.034 41 0.970 0.993 0.915 1.025
42 0.948 1.011 0.955 0.993 42 0.952 0.985 0.900 1.017
43 0.922 0.963 0.937 0.954 43 0.950 0.953 0.887 0.997
44 0.903 0.930 0.926 0.924 44 0.948 0.922 0.873 0.978
45 0.891 0.879 0.916 0.895 45 0.917 0.851 0.866 0.916
46 0.868 0.796 0.896 0.858 46 0.886 0.781 0.860 0.855
47 0.878 0.763 0.906 0.806 47 0.873 0.781 0.865 0.827
48 0.899 0.806 0.916 0.777 48 0.860 0.781 0.870 0.799
49 0.929 0.848 0.934 0.840 49 0.892 0.829 0.927 0.845
50 0.938 0.890 0.945 0.884 50 0.925 0.877 0.930 0.890
51 0.957 0.928 0.967 0.935 51 0.924 0.880 0.993 0.907
52 0.965 0.942 0.967 0.947 52 0.924 0.884 1.001 0.924
53 0.959 0.918 0.956 0.920 53 0.929 0.870 0.990 0.921
54 0.942 0.867 0.940 0.879 54 0.934 0.856 0.977 0.918
55 0.932 0.818 0.934 0.829 55 0.930 0.835 0.944 0.893
56 0.932 0.794 0.934 0.798 56 0.926 0.814 0.912 0.868
57 0.941 0.831 0.938 0.826 57 0.925 0.849 0.925 0.870
58 0.952 0.876 0.942 0.880 58 0.924 0.883 0.936 0.872
59 0.963 0.908 0.942 0.920 59 0.945 0.874 0.952 0.890
60 0.961 0.874 0.933 0.896 60 0.966 0.864 0.967 0.909
61 0.954 0.810 0.933 0.849 61 0.930 0.872 0.969 0.886
62 0.923 0.769 0.908 0.807 62 0.937 0.823 0.965 0.842
63 0.906 0.808 0.890 0.759 63 0.884 0.719 0.930 0.704
64 0.952 0.954 0.953 0.986 64 0.942 0.978 1.059 0.947
65 0.992 0.984 0.971 1.021 65 0.944 0.990 1.066 0.973
66 0.999 0.986 0.971 1.008 66 0.947 1.002 1.075 0.999  
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Table A-1 Potential10 and ABLWT Wind Speed Ratios (R) (Cont’d) 

Wind Direction Wind Direction
Turbine 60 150 240 330 Turbine 60 150 240 330

67 1.000 0.971 0.973 0.980 67 0.929 0.965 1.046 0.979
68 0.992 0.955 0.970 0.954 68 0.912 0.927 1.016 0.959
69 0.982 0.954 0.970 0.946 69 0.918 0.948 1.016 0.974
70 0.984 0.982 0.973 0.960 70 0.924 0.969 1.016 0.989
71 0.976 0.996 0.973 0.959 71 0.930 0.978 0.971 0.981
72 0.971 0.995 0.969 0.943 72 0.930 0.987 0.928 0.973
73 0.950 0.958 0.965 0.919 73 0.948 0.940 0.884 0.924
74 0.937 0.908 0.954 0.902 74 0.948 0.964 0.861 0.949
75 0.918 0.857 0.945 0.888 75 0.930 0.949 0.841 0.900
76 0.957 0.881 0.964 0.872 76 0.930 0.937 0.862 0.897
77 0.967 0.877 0.949 0.869 77 0.937 0.926 0.862 0.893
78 0.967 0.878 0.931 0.868 78 0.884 0.930 0.862 0.898
79 0.954 0.894 0.923 0.882 79 0.884 0.935 0.862 0.903
80 0.885 0.870 0.941 0.846 80 0.886 0.838 0.958 0.862
81 0.901 0.892 0.961 0.887 81 0.918 0.894 0.969 0.899
82 0.924 0.917 0.979 0.933 82 0.951 0.950 0.979 0.936
83 0.944 0.951 0.995 0.975 83 0.968 0.966 0.988 0.968
84 0.952 0.971 0.993 0.981 84 0.985 0.983 0.996 1.000
85 0.942 0.971 0.972 0.964 85 0.993 0.987 0.970 0.999
86 0.950 0.996 0.973 0.977 86 1.002 0.992 0.944 0.997
87 0.947 1.021 0.963 0.987 87 0.981 0.974 0.926 1.007
88 0.921 1.002 0.925 0.958 88 0.959 0.956 0.909 1.017
89 0.875 0.855 0.916 0.833 89 0.948 0.814 1.000 0.828
90 0.902 0.875 0.951 0.877 90 0.969 0.883 1.021 0.865
91 0.921 0.907 0.978 0.894 91 0.989 0.951 1.042 0.902
92 0.945 0.947 1.016 0.945 92 0.996 0.966 1.043 0.946
93 0.956 0.991 1.038 0.998 93 1.003 0.980 1.043 0.990
94 0.953 0.998 1.016 0.992 94 1.008 0.978 1.023 0.999
95 0.961 0.992 1.017 0.972 95 1.013 0.975 1.004 1.008
96 0.962 0.973 0.993 0.950 96 0.976 0.961 0.958 0.995
97 0.938 0.881 1.031 0.919 97 0.973 0.915 1.074 0.956
98 0.948 0.892 1.032 0.920 98 0.993 0.911 1.113 0.952
99 0.965 0.912 1.037 0.929 99 1.014 0.907 1.153 0.947

100 0.993 0.938 1.055 0.955 100
101 1.003 0.940 1.050 0.953 101 1.040 0.904 1.173 0.972
102 1.013 0.937 1.054 0.946 102 1.043 0.874 1.148 0.956
103 1.021 0.926 1.048 0.931 103 1.046 0.845 1.124 0.940
104 1.023 0.905 1.049 0.907 104 1.042 0.851 1.111 0.936
105 1.018 0.879 1.041 0.879 105 1.038 0.858 1.098 0.931
106 1.005 0.850 1.023 0.853 106 1.012 0.844 1.036 0.904
107 0.991 0.828 1.000 0.828 107 0.985 0.831 0.977 0.877
108 0.954 0.830 0.967 0.831 108 0.983 0.871 1.025 0.914
109 0.964 0.863 0.972 0.864 109 0.958 0.874 1.074 0.909
110 0.972 0.884 0.965 0.888 110 0.950 0.863 1.068 0.915  
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Table A-2 Differences Between Potential10 and ABLWT Wind Speed Ratios (R) 

Difference Between Potential10 and ABLWT R Values
( Potential10 - ABLWT )

Wind Direction Wind Direction
60 150 240 330 Turbine 60 150 240 330

Minimum -0.080 -0.091 -0.123 -0.083 67 0.071 0.007 -0.073 0.001
Mean -0.003 -0.001 -0.011 -0.016 68 0.081 0.028 -0.045 -0.005
Maximum 0.084 0.089 0.103 0.098 69 0.065 0.006 -0.045 -0.028

70 0.060 0.012 -0.043 -0.029
Wind Direction 71 0.045 0.018 0.001 -0.022

Turbine 60 150 240 330 72 0.041 0.008 0.040 -0.030
6 73 0.002 0.018 0.081 -0.005
7 74 -0.011 -0.056 0.093 -0.048
8 75 -0.012 -0.091 0.103 -0.012
9 76 0.027 -0.056 0.101 -0.025
10 77 0.030 -0.049 0.087 -0.024
11 0.003 -0.045 -0.031 -0.022 78 0.084 -0.053 0.069 -0.030
12 0.021 -0.013 -0.020 0.012 79 0.071 -0.040 0.061 -0.021
13 0.022 0.008 -0.020 0.026 80 -0.001 0.032 -0.017 -0.016
14 0.028 0.018 -0.026 0.032 81 -0.017 -0.002 -0.007 -0.012
15 0.019 -0.009 -0.054 0.006 82 -0.027 -0.033 0.000 -0.004
16 0.022 -0.026 -0.054 -0.003 83 -0.024 -0.016 0.006 0.006
17 0.027 -0.028 -0.048 -0.005 84 -0.033 -0.011 -0.003 -0.019
18 0.032 -0.036 -0.040 -0.020 85 -0.051 -0.016 0.002 -0.034
19 0.031 -0.048 -0.023 -0.036 86 -0.052 0.005 0.029 -0.020
20 0.024 -0.010 -0.057 -0.016 87 -0.033 0.047 0.037 -0.021
21 0.050 0.047 -0.079 0.098 88 -0.038 0.046 0.016 -0.060
34 -0.042 -0.039 0.026 -0.045 89 -0.073 0.041 -0.084 0.005
35 -0.042 -0.026 0.054 -0.024 90 -0.067 -0.008 -0.070 0.012
36 -0.061 -0.028 0.086 -0.022 91 -0.068 -0.044 -0.063 -0.008
37 -0.080 -0.055 0.029 -0.056 92 -0.051 -0.019 -0.027 -0.001
38 -0.077 -0.042 0.022 -0.027 93 -0.047 0.011 -0.005 0.008
39 -0.068 -0.021 0.024 -0.018 94 -0.055 0.020 -0.008 -0.007
40 -0.053 0.007 0.020 -0.015 95 -0.051 0.016 0.013 -0.036
41 -0.014 0.048 0.054 0.009 96 -0.014 0.012 0.035 -0.045
42 -0.004 0.026 0.055 -0.024 97 -0.035 -0.035 -0.043 -0.037
43 -0.028 0.009 0.050 -0.043 98 -0.045 -0.019 -0.082 -0.032
44 -0.045 0.008 0.054 -0.054 99 -0.049 0.005 -0.116 -0.018
45 -0.026 0.028 0.050 -0.021 100
46 -0.017 0.015 0.037 0.004 101 -0.036 0.036 -0.123 -0.019
47 0.005 -0.018 0.041 -0.022 102 -0.030 0.063 -0.095 -0.010
48 0.039 0.025 0.046 -0.022 103 -0.025 0.082 -0.076 -0.010
49 0.036 0.019 0.007 -0.004 104 -0.020 0.054 -0.061 -0.029
50 0.013 0.013 0.016 -0.006 105 -0.020 0.022 -0.057 -0.052
51 0.033 0.048 -0.026 0.027 106 -0.007 0.006 -0.014 -0.051
52 0.041 0.059 -0.034 0.022 107 0.006 -0.002 0.024 -0.049
53 0.030 0.048 -0.034 -0.001 108 -0.030 -0.041 -0.057 -0.083
54 0.008 0.011 -0.037 -0.039 109 0.006 -0.011 -0.102 -0.045
55 0.002 -0.018 -0.010 -0.064 110 0.022 0.020 -0.102 -0.027
56 0.005 -0.020 0.023 -0.071
57 0.016 -0.018 0.014 -0.044
58 0.028 -0.006 0.006 0.008 Absolute Difference Between R Values
59 0.018 0.034 -0.010 0.029 ABS( Potential10 - ABLWT )
60 -0.005 0.010 -0.034 -0.013
61 0.024 -0.061 -0.036 -0.037 Wind Direction
62 -0.013 -0.054 -0.056 -0.035 60 150 240 330
63 0.023 0.089 -0.040 0.055 Minimum 0.001 0.002 0.000 0.001
64 0.010 -0.024 -0.105 0.039 Mean 0.034 0.028 0.046 0.026
65 0.048 -0.007 -0.095 0.048 Maximum 0.084 0.091 0.123 0.098
66 0.053 -0.016 -0.104 0.009  


