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Preface

The Public Interest Energy Research (PIER) Program supports public interest energy research
and development that will help improve the quality of life in California by bringing
environmentally safe, affordable, and reliable energy services and products to the marketplace.

The PIER Program, managed by the California Energy Commission (Energy Commission),
conducts public interest research, development, and demonstration (RD&D) projects to benefit
California’s electricity and natural gas ratepayers. The PIER Program strives to conduct the
most promising public interest energy research by partnering with RD&D entities, including
individuals, businesses, utilities, and public or private research institutions.

PIER funding efforts are focused on the following RD&D program areas:

¢ Buildings End-Use Energy Efficiency

e Energy-Related Environmental Research

e Energy Systems Integration

e Environmentally Preferred Advanced Generation

¢ Industrial/Agricultural/Water End-Use Energy Efficiency
e Renewable Energy Technologies

e Transportation

In 2003, the California Energy Commission’s Public Interest Energy Research (PIER) Program
established the California Climate Change Center to document climate change research
relevant to the states. This Center is a virtual organization with core research activities at
Scripps Institution of Oceanography and the University of California, Berkeley, complemented
by efforts at other research institutions. Priority research areas defined in PIER’s five-year
Climate Change Research Plan are: monitoring, analysis, and modeling of climate; analysis of
options to reduce greenhouse gas emissions; assessment of physical impacts and of adaptation
strategies; and analysis of the economic consequences of both climate change impacts and the
efforts designed to reduce emissions.

The California Climate Change Center Report Series details ongoing Center-sponsored
research. As interim project results, the information contained in these reports may change;
authors should be contacted for the most recent project results. By providing ready access to
this timely research, the Center seeks to inform the public and expand dissemination of climate
change information, thereby leveraging collaborative efforts and increasing the benefits of this
research to California’s citizens, environment, and economy.

Quantifying Volatility and the Probability of Daily Precipitation Extremes is the final report for the
Climatic Data Collection, Analyses, and Modeling project (contract number 500-02-004, work
authorization number MR-025) conducted by Scripps Institution of Oceanography and
University of Nevada, Reno.



For more information on the PIER Program, please visit the Energy Commission’s website
www.energy.ca.gov/pier/ or contract the Energy Commission at (916) 654-5164.



www.energy.ca.gov/pier/
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Abstract

Standard statistical approaches to modeling daily precipitation cannot account for observed
volatility, and they typically underestimate the probability of extreme events. This can result in
dangerously incorrect risk assessment for practical applications and hinder climatic studies of
extreme meteorological events. This study used stochastic theory to quantify volatility of daily
precipitation amounts at hundreds of weather stations across North America and to identify a
mathematically and physically consistent model for the probability of daily precipitation
extremes. The study’s results indicate that, characteristically, precipitation volatility can be
explained by heavy-tailed probability models but not by the customary distributions with
exponential tails. Moreover, by examining geographical structures in extreme precipitation
behavior, this study shows that the degree of volatility observed at specific locations is
determined by the diversity in precipitation-producing mechanisms. These results represent a
fundamental development in stochastic modeling of precipitation extremes in climate, and they
have immediate and vital practical implications.

Keywords: Precipitation, extremes, probability, weather, climate, geography, families of
distributions, exponential tails, heavy tails, Pareto distribution
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Executive Summary

Introduction

Standard statistical approaches to modeling daily precipitation cannot account for observed
volatility, and they typically underestimate the probability of extreme events. This can result in
dangerously incorrect risk assessment for practical applications and hinder climatic studies of
extreme meteorological events. To quantify probabilities of extreme precipitation in current and
future climates, analysts need to use a mathematical model that is consistent with observations
and theory.

Purpose

This study used stochastic theory to quantify volatility of daily precipitation amounts at
hundreds of weather stations across North America and to identify a mathematically and
physically consistent model for the probability of daily precipitation extremes.

Project Objectives

By investigating the nature of probability tails across many different climatic regimes, the
authors aim to understand and explain the climatic and geographic factors that determine
precipitation volatility —the quality that fundamentally determines the size and frequency of
precipitation extremes.

Project Outcomes

The study’s results indicate that, characteristically, precipitation volatility can be explained by
heavy-tailed probability models but not by the customary distributions with exponential tails.
Moreover, by examining geographical structures in extreme precipitation behavior, this study
shows that the degree of volatility observed at specific locations is determined by the diversity
in precipitation-producing mechanisms.

Conclusions

These results represent a fundamental development in stochastic modeling of precipitation
climate extremes, and they have immediate and vital practical implications. Wherever
stochastic modeling of regional precipitation extremes is of interest, a classification of local
precipitation into exponential or heavy-tailed families of probability distribution functions is
the logical first step toward choosing a specific probability distribution function to represent
local precipitation. This work provides, for the first time, an efficient method to do just that.

Recommendations

The authors recommend that the approach presented here for determining the form of the
correct stochastic model be applied for estimating probabilities of specific precipitation



extremes, n-year events, return periods, and others, and for the quantification of extreme
precipitation probability for use in climate research.

Benefits to California

This research provides a more robust quantification of extreme event probabilities essential to
safe engineering design, hazard assessment, and other applications—as well as for fostering
further investigations of hydrologic weather extremes and climate in the state.



1.0 Introduction

A correct parametric approach to modeling the probability of high-frequency hydrologic
extremes is required to appreciate weather in the context of climate variability and change, and
for the accurate estimation of extreme event probabilities necessary for important practical
applications. The urgency of this problem is amplified by the prospect that global hydrologic
change may disproportionately manifest itself in increased frequency of extreme precipitation.
This view is supported by theoretical reasoning (Allen and Ingram 2002; Trenberth et al. 2003;
Karl et al. 2003) and climate projections (Zwiers and Kharin 1998; Semenov and Bengtsson 2002;
Hegerl et al. 2004; Wehmer 2004; Groisman et al. 2005), as well as empirical evidence for
increasing trends in the frequency of extreme daily precipitation worldwide (Groisman et al.
2005; Tsonis 1996; Easterling et al. 2000; Folland and Karl 2001; Groisman et al. 1999; Groisman
et al. 2004).

It is difficult, however, to define and account for high frequency precipitation extremes without
a reasonable probability distribution model. Results derived from probability theory were used
to develop an efficient automated scheme to distinguish between heavy and exponential
precipitation probability tails in hundreds of daily station records spanning five decades over
the North American continent.! These results suggest that daily precipitation extremes at a vast
majority of the stations are not exponential, but more closely follow a power law —which means
that statistical distributions traditionally used to model daily rainfall (e.g., exponential, Weibull,
Gamma, lognormal) generally underestimate the probabilities of extremes.

The degree of this distortion—that is, its volatility —depends on regional and seasonal climatic
peculiarities. It is most severe in regions that experience precipitation from a variety of large-
scale (also known as synoptic) atmospheric systems producing wildly different precipitation
rates. However, even at stations that experience precipitation exclusively from consistent
synoptic sources, the heavy-tailed models may be superior to the exponential models and can
lead to more realistic and safer estimates of extreme event probabilities, return periods, n-year
events, and design limits. The correct choice of the distribution function is therefore essential to
safe engineering design, hazard assessment, and other applications. It will also facilitate further
investigations of extreme weather events and climate.

A plethora of theoretical probability distribution functions (PDFs) is available for modeling any
type of environmental data, including rainfall. The correct PDF choice is not trivial. At best, it
can be determined from a combination of physical reasoning and a careful examination of the
connection between data and mathematics. At worst, it is dictated by convention and involves
no thorough investigation of the reason why a particular PDF should fit the data.

! The tail of an exponential probability distribution function decays exponentially, while that of a heavy-tailed PDF
decays as a power law, allowing more probability of occurrence for extreme events. When seen in a graph, heavy
probability tails are thicker than exponential tails, providing reasonable probability for the occurrence of observed
extremes—events that tend to be treated as “outliers” or improbable events according to the exponential model.



Needless to say, the two approaches can lead to significantly different results. The latter
paradigm seems to be the typical approach to modeling daily rainfall with exponentially tailed
PDFs. This approach, however, often leads to discarding extremely large events as outliers. If
the extreme events are of primary importance, a more flexible approach is needed to encompass
them into the body of the statistical model.

An alternative is provided by heavy-tailed distributions, such as Pareto (Johnson et al. 1994) or
the stable laws (Samorodnitsky and Taqqu 1994). The stable laws arise naturally as
approximations to sums of random quantities such as total precipitation accumulated over a
time period. Heavy-tailed behavior has been documented in precipitation and streamflow data
measured at specific locations or regions for time series of extreme values, such as annual peak
record streamflow (Smith 1989; Katz et al. 2002) and precipitation (Katz et al. 2002), as well as
threshold exceedances for streamflow (Anderson and Meerschaert). Heavy tails have also been
suggested as reasonable models for daily precipitation amount at a large number of U.S.
stations (Smith 2001). However, in cutting edge climate and hydrology research exponentially
tailed PDFs are still typically used to model daily rainfall, including extremes (Tsonis 1996;
Groisman, Karl, and Easterling 1999; Zolina et al. 2004).



2.0 Project Approach

This study sought to investigate the heaviness of the PDF tail for all heavy and extreme daily
precipitation events at hundreds of weather stations over North America and to examine the
spatial structure of the result. To document heavy-tail behavior, the research team focused on
an approach for differentiating between exponential and heavy-tailed precipitation
distributions.

The team was specifically interested in extreme precipitation observations—events that are
traditionally called “outliers” because they are unaccounted for by the tails of traditional PDFs,
those with exponentially decaying probabilities of extreme events. According to power laws for
the heavy-tailed distributions, these probabilities decay much slower. Thus, the heavy-tailed
models allow greater variability and can explain observed extreme events larger than those
predicted by the exponential models. This study applied these laws to daily precipitation
extremes observed at many stations and compared the performance of heavy tails with that of
the traditional exponential tails.

The research team was immediately confronted by the fact that many choices exist for the
specific PDF form with exponential (e.g.,, Gamma; Weibul; double, stretched or extended
exponential) and heavy tails (e.g., Cauchy, Pareto). To resolve the problem of distributional
multiplicity (that is, to avoid having to choose specific PDFs from the exponential and heavy-
tailed families), researchers applied the results of the peak-over-threshold (POT) theory (Reiss
and Thomas 2001). Because the researchers were primarily interested in estimating
probabilities of large (extreme) events, the POT method helps focus the search for the
reasonable models and provides a rigorous mathematical foundation for the results. The POT
method involves examination of the data falling above a threshold —that is, excesses over the
threshold. For any data value X and threshold u, X is the exceedance; that is, the (conditional)
value of X given that X exceeds u. Excesses X['l-u are considered over the threshold u.

The Balkema-de Haan-Pickands theorem (Balkema and de Haan 1974; Pickands 1975) provides
the limiting distribution of excesses. The theorem states that when the threshold (u) increases,
the distribution of the excesses Xl-u converges to a Generalized Pareto (GP) distribution. Any
GP distribution has to be one of three kinds: exponential, Pareto, or Beta. The importance of this
result for practical applications is: no matter what the specific original distribution of X is, the
excess XlUl-u over any threshold u is (approximately) one of only three distributions. The three
distributions of the excesses correspond to the tails of the original distribution of X. If X has
exponential tail, then X"I-u will have an approximately exponential distribution. If X has heavy
tail, then X-u will have an approximately Pareto distribution. Beta distribution has finite
support and it is not considered here. The problem of finding the correct PDF for describing
daily extreme event probabilities reduces, therefore, to classifying excesses at a particular
station. It is necessary to seek a decision rule (ideally a formal statistical test) for classifying the
over-threshold precipitation excesses into either exponential or Pareto models.

The research team approached this problem using ideas from the theory of likelihood ratio tests
(Lehmann 1997). The approach was to consider the ratio of the maxima of the likelihoods of the



observed sample under the null (Pareto in the numerator) and alternative (exponential in the
denominator) models. The logarithm of the likelihood ratio statistic is:

S:)Jp 0 LPareto (ﬂa! S)
L=I a>0,5> ,
Og( Sup Lexp (Jdo_) )
o>0

(ﬂa,s) and L, (ﬂc) are the likelihood

functions of the sample under Pareto and exponential hypotheses, respectively. Researchers
used a Pareto distribution with the survival function S(x) = P(X>x) = (1/(1+x/sa))* and an
exponential distribution with the survival function S(x) = P(X>x) = exp(-x/0).

where Xis the observed sample (of excesses) and L

Pareto exp

In the Pareto case, the a parameter determines the thickness of its tail and is of primary
importance. The scale parameter s is of secondary importance. In the exponential case, o is the
scale parameter. Note that as the tail parameter o increases, the Pareto survival function
converges to the exponential one. This fact adds particular difficulty to differentiating between
the two distributions as a increases.

To compute the log likelihood ratio (L), both likelihoods are first maximized (via maximum
likelihood estimates of the parameters), and then the natural logarithm of their ratio is taken as
the likelihood ratio statistic. The intuition behind this approach is as follows. If the sample (i.e.,
excesses over threshold) is more likely to come from the Pareto distribution, then the maximum
Pareto likelihood will be larger than the exponential one. Thus, the ratio will be greater than one
(L > 0). If the sample is most likely to come from the exponential distribution, the ratio will be
less than one (L <0).

The research team programmed and tested the computation of L from the numerical point of
view, ran several simulation studies, and applied the method to the precipitation data.
Although researchers chose the thresholds in an intuitive manner, fairly robust and meaningful
results were obtained for daily precipitation.? The problem of choosing the optimal threshold is
recognized as a very difficult and still open one (Smith 1987; Davidson and Smith 1990; Smith
1994; Gross et al. 1994).

The research team has computed L for a subset of over ten thousand available station records of
daily rainfall distributed across Canada (Vincent and Gullett 1999), the United States (Groisman
et al. 2004), and Mexico (Miranda 2003) —all quality controlled and homogenized at the
National Climatic Data Center. The five-hundred-sixty best-quality stations were selected to
give a reasonable coverage (with at least one station within a 70 kilometer radius) over North
America. The selection used the most stringent quality standards in well-sampled regions and

% Here, results are presented based on median threshold, although reasonable deviations in threshold choice do not
substantially affect the results in most regions.



relaxed these standards to include all stations in regions with the poorest coverage: Alaska,
Northern Canada, and parts of Mexico. In mountainous regions, the researchers always
included the highest station along with the best-quality station. At least 80% of the data was
required to be present at all stations for the common observational time period: January 1, 1950
to December 31, 2001. This study compared fits to excesses over local medians derived from
Pareto probability models to those obtained from the widely used exponential models. Figure 1
shows the L at each station.

To help interpret the result presented in Figure 1, note again that the Pareto distribution can
approach the exponential; therefore, values of L smaller than zero, indicating exponential tails,
rarely occur (fewer than 5% of the stations, blue circles on Figure 1). Values close to zero,
therefore, represent approximately exponential tails (blue and green circles on Figure 1), while
the positive magnitude of L is, in theory, a measure of the “heaviness” of the empirical
precipitation tail. Although a formal likelihood ratio test for the acceptance or rejection of the
null hypothesis (exponential tails) is being developed (Kozubowski et al. 2007), this study’s
current, rather informal result suggests a spatially coherent dependence of tail type on
geographical location with respect to climate.

First, the vast majority of local tails are, strictly speaking, non-exponential (i.e., L > 0). The
degree of departure from the exponential model depends on the peculiarities of regional
climatic regimes. Precipitation at stations with a large variety of meteorological influences (i.e.,
frontal, thunderstorm, tropical cyclone, intense and organized convection) tends to display
highly non-exponential tails. This occurs especially where extreme weather interacts with
noteworthy topography (such as the Mexican Gulf coast or the front range of the Rockies), the
regions of hurricane landfalls (such as the Gulf and East coasts of the United States), and along
the Tornado Alley in the middle of the country. In the Great Plains and the Midwest, especially
the north, heavy precipitation events can appear more extreme relative to typically light winter
snow accumulations (see below).

Close to exponential behavior, on the other hand, occurs where precipitation is reasonably
frequent and preferably of one type (i.e., generated by similar-type systems). For example, the
exclusively convective summer precipitation along the central Mexican high plateau, as well as
isolated regions of almost exclusively frontal-system-generated precipitation along the
windward side of gently sloping topography (such as the Sierra Nevada and Rocky Mountains),
result in nearly exponential tails.

A simple way to classify precipitation into frontal and convective types is to consider winter
and summer data separately. Figure 2 presents L computed for the cold and warm half-year
separately.



Log likelihood ratio, all data
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Figure 1. Log likelihood ratio (L) computed for daily excesses over
local median at each of the 560 stations. Values close to zero (blue
and green circles) represent approximately exponential tails, while
yellow, red, and black circles represent heavier tails.

The frontal-system-generated precipitation over the southwestern and eastern United States in
winter (Figure 2a) and the thunderstorm-generated rainfall over the Mexican high plateau in
summer (Figure 2b) tend to result in lighter, more exponential tails.

On the other hand, seasonal precipitation PDFs with notably heavy tails are produced by all of
the following:

e Landfalling tropical cyclones along the East and Gulf Coasts in summer.

e Qccasional extreme snowstorms in winter and thunderstorms in summer mixed in with
the usually mild precipitation over the northern Great Plains.

e Rare convective storms in otherwise dry California summer.

e Rare but intense winter precipitation associated with the nortes (on-shore winds) along
the Mexican Gulf Coast from southern Texas south to the Isthmus of Tehuantepec.



a. Cold season data (November — April) b. Warm season data (May — October)
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Figure 2. Log likelihood ratio (L), as in Figure 1. Plates (a) and (b) show L for precipitation in
the winter half-year (November—April) and the summer half-year, respectively.

Generally, L computed for all precipitation data (Figure 1) is an aggregation of seasonal values,
reflecting the volatility of precipitation in different seasons. It is clear, for example, that the
volatility (large values of L) observed along the East Coast of the United States is primarily due
to summertime precipitation, while the lighter-tailed behavior of precipitation in the
southwestern United States, generally, is mostly due to consistent midlatitude cyclones in
winter.3

The most general comparison of Figures 1 and 2, however, indicates that daily precipitation tails
are heavier when all seasons’” data is considered compared to individual seasons, clearly
illustrating the idea that the diversity of precipitation-producing systems is essentially
responsible for precipitation volatility. Moreover, notably heavy precipitation tails observed in
all seasons along the precipitous Mexican part of the Gulf Coast (as well as along the steep front
range of the Rockies) testify to the additional effect of sharp topography in enhancing
precipitation volatility.

Figure 3 helps provide a visual, intuitive feel for what the measure L represents. with respect to
the form of the probability tails and their fit to the data. It shows probability plots for stations
selected to represent specific precipitation regimes and to span (roughly) the range of L. These
probability plots show how heavy and extreme events are accounted for by exponential and

% Summer storms in this region of infrequent but intense winter accumulations are generally rare and localized in
space and time, so as to make their effect on the whole insignificant. A short-lived convective downpour, even if it
happens to rain out over a gauge, will not typically add up to the amount generated over a day by an intense frontal
cyclone in winter. In the northern plains, however, where summertime daily accumulations, are significantly larger
than those in winter, the effect of including all seasons’ data strongly inflates the cumulative tail relative to the
already heavy seasonal tails.



Pareto models. Figure 3 presents graphical pairs—scatter plots of the quantiles of the empirical
distribution against the quantiles of a theoretical model: exponential or Pareto.

As in the calculation of L (Figures 1 and 2), the daily station data used are excesses over local
median of the daily amounts recorded on wet days (i.e., moderate to extreme events). In this
type of plot, the best model is the one that scatters along a straight line. Table 1 presents
precipitation statistics at these selected stations for the common observational period 1950-2001:
L, probability of precipitation (that is, percent of days with recorded precipitation), median
daily total on days with precipitation, maximum recorded daily total, the estimated 100-year
event assuming exponential and Pareto tails, and the Pareto probability of exceeding the 100-
year event estimated assuming an exponential tail.

Station Log P[p > 0] | median(pp>0) | Maxos(p) | 100-yr event Pareto

likelihood Exp and Pareto | P[p > Pexp™]

ratio (L) (%) (mm) (mm) (mm) (%)

Sacramento 1.38 16 4.3 95 79 and 90 2.3

Nashville 6.32 26 7.1 153 115 and 145 4.7

St. Louis 20.9 30 4.1 142 101 and 158 9.4

Houston 51.3 27 5.1 253 167 and 343 15.7

Miami 118.8 36 4.6 377 149 and 412 28.0

Williston 149.1 26 1.5 125 49 and 200 35.1

Table 1. Precipitation statistics at selected stations for the common observational period
1950-2001

One example of an approximately exponential station, is the Sacramento airport (Sacramento
FAA AP) (40.52°N, 123.82°W, 640m, Figure 3a), located in California’s Central Valley, where
rain is produced almost exclusively by frontal systems in the winter half year. Both exponential
and Pareto models fit these data reasonably well, and L is close to zero. However, the shape of
the Pareto tail still differs significantly from the exponential tail, especially beyond the observed
range. In the 52 years of analyzed data at Sacramento, the median daily total precipitation was
4.3 millimeters (mm) and the maximum was 95 mm. Although both models seem to fit the
observed data well, model choice can lead to significant differences in inferences regarding the
probabilities of hitherto unobserved extremes. For example, based on the observed record and
assuming the exponential (Pareto) model, the estimated 100-year event is 79 (90) mm/day. The
Pareto model implies that the 100-year event estimated by the exponential model is 2.3 times as
likely to occur—that is, a 43-year event.

10
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Figure 3. Probability plots for excesses over threshold (local median, see Table 1) at selected
stations. Sorted observed excesses displayed in mm along the x-axis are plotted against the
corresponding theoretical quantiles derived from the fitted exponential (blue e’s) and Pareto (red
p’s) models.

Exponential tails become progressively less adequate as stations with progressively larger L are
considered. This is readily visible on the probability plots (Figure 3b—f) and by comparing
expected values of 100-year events with the observed 52-year station maxima (Table 1). Pareto
tails perform reasonably well —certainly better by comparison with the exponential for all
stations considered. This is not to say that they perform perfectly well, though. For large values

of L, Pareto tails tend to overestimate the observed probabilities of extremes, as exemplified by

11



above-median precipitation recorded at Williston, North Dakota (Figure 3f). The true
probabilities of extremes appear to lie somewhere between those given by exponential tails and
those given by Pareto tails.

This type of behavior is typical of stations with the largest observed values of L, which tend to
cluster in the northern Great Plains and scatter into Canada. These high-latitude northern plains
stations, where the most volatile precipitation behavior tends to be associated with snowfall
(i.e., it occurs in winter, see Figure 2) and where light precipitation events (i.e., light and dry
snow) are typically accompanied by strong winds, small precipitation totals tend to be severely
underestimated (Golubev and Bogdanova 1996; Groisman, Peck, and Quayle 1999; Bogdanova
2002).

Heavy wintertime precipitation events are associated with wet snow that is efficiently caught
by the gauge, and, therefore, totals on such days can appear more extreme in relation to the
underestimated modest precipitation. Moreover, the effect of “false” precipitation due to
blowing snow events increases the frequency of light precipitation, decreases the median, and
further inflates the relative magnitude of heavy and extreme precipitation. Therefore, in high-
latitude plains regions, the research team suspects that true precipitation tails may appear
somewhat more in line with Pareto tails than observations suggest, although they are probably
less heavy.

Considering summer and winter data separately results in a smaller L (30-50 for both seasons)
and tails in line with the Pareto model. Increasing the threshold to the 70th—80th percentiles has
a similar effect on all data at such stations (result not shown). Summer and winter daily (as well
as total precipitation) amounts typically differ by a factor of three in these northern plains
regions (result not shown) and mixing all seasons” data probably requires a higher threshold
choice. The “blowing snow” effect may aggravate this necessity. In either case, the example of
northern plains stations results points to the need of an objective system for choosing
thresholds. Nevertheless, the choice of median as threshold adapted here works well for daily
precipitation at most other North American locations considered.

The above-median data at a vast majority of the stations is more in line with the Pareto model.
Even at high-latitude plains stations, where the truth appears to lie between Pareto and
exponential models, Pareto is clearly the safer choice. The comparison of 100-year events
estimated using the exponential and Pareto models with the observed 52-year station maxima
(Table 1) reinforces the choice of heavy over exponential models to describe probabilities of
extreme precipitation events. Assuming, as this study’s results suggest, that the Pareto model is
correct in most cases, the choice of exponential model may lead to a severe underestimation of
extreme precipitation risk. In Miami, for example, the 100-year event estimated by the
exponential model corresponds to a 3.6-year event estimated by Pareto; that is, the Pareto model
predicts that the 100-year event is 28 times more likely to occur than the exponential model
does.

The elegant part of the statistical methodology adapted here is that it allows us to simply
evaluate whether the tails of an empirical distribution are exponential or heavy, regardless of
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the specific form of the PDF from the exponential or heavy-tailed families of distributions. So, it
is not necessary to test whether the data is or is not exponential, Gamma, Weibull, Double (or
sometimes “stretched” or “extended”) exponential, or any other exponentially tailed PDF
commonly used to model daily rainfall. These are accepted or rejected under the broad
umbrella of the exponentially tailed family of distributions. Although theoretical questions
related to the choice of threshold and rigorous hypotheses testing remain to be solved, the
Pareto/exponential likelihood ratio for peaks over threshold has already proven a useful and
efficient tool in diagnosing tail behavior and distinguishing between exponential and heavy
tails.
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3.0 Results

Results reported here confirm that most of the precipitation exceedance probabilities follow the
Pareto law and therefore, most precipitation PDF tails follow a power law (that is, they are
heavy, not exponential). Threshold exceedances at stations that may have approximately
exponential tails can also be thought of as limiting, special cases of the Pareto model (i.e., Pareto
with a very large tail parameter). That is because as a increases, the Pareto distribution gets
close to the exponential and the L statistics may not be sensitive enough for high values of a.
But such cases appear to be extremely rare in North America and, in practice, the heavy tail is
clearly superior. The divergence from exponential is a matter of degrees. The most closely
exponential tails are found at stations where similar systems and consistent processes produce
virtually all of the precipitation. How far from exponential the tails are depends on location and
season. Places that receive precipitation from a variety of systems tend to exhibit severely non-
exponential precipitation tails; diversity is the mother of volatility. Severe diversity in
topography also appears capable to fatten precipitation tails.
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4.0 Conclusions and Recommendations

This report is meant as a first step to relate hydrologic weather extremes to climate. It is based
on a physically and mathematically consistent attempt to choose a correct model for describing
the probability of extreme precipitation events. More rigorous statistical results are yet to be
worked out. However, this study’s empirical results, although admittedly involving
comparisons and value judgments, strongly suggest the superiority of heavy tails to the
traditional exponential. An intriguing consequence of the heavier tail is that shifts in central
tendency are not necessarily amplified in the tail, as they are in the exponential model.
Therefore, the effect of climate change on precipitation extremes may be least severe for stations
with the heaviest tails. The authors believe that the spatial structure and coherence of these
results and their solid grounding in climate and weather patterns over the North American
continent shows the great scientific potential and practical benefits of using stochastic methods
for the extremes in climate research.
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