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Preface

The Public Interest Energy Research (PIER) Program supports public interest energy research
and development that will help improve the quality of life in California by bringing
environmentally safe, affordable, and reliable energy services and products to the marketplace.

The PIER Program, managed by the California Energy Commission (Energy Commission),
conducts public interest research, development, and demonstration (RD&D) projects to benefit
California’s electricity and natural gas ratepayers. The PIER Program strives to conduct the
most promising public interest energy research by partnering with RD&D entities, including
individuals, businesses, utilities, and public or private research institutions.

PIER funding efforts are focused on the following RD&D program areas:

e Buildings End-Use Energy Efficiency

¢ Energy-Related Environmental Research

e Energy Systems Integration

¢ Environmentally Preferred Advanced Generation

e Industrial/Agricultural/Water End-Use Energy Efficiency
¢ Renewable Energy Technologies

e Transportation

In 2003, the California Energy Commission’s Public Interest Energy Research (PIER) Program
established the California Climate Change Center to document climate change research
relevant to the states. This Center is a virtual organization with core research activities at
Scripps Institution of Oceanography and the University of California, Berkeley, complemented
by efforts at other research institutions. Priority research areas defined in PIER’s five-year
Climate Change Research Plan are: monitoring, analysis, and modeling of climate; analysis of
options to reduce greenhouse gas emissions; assessment of physical impacts and of adaptation
strategies; and analysis of the economic consequences of both climate change impacts and the
efforts designed to reduce emissions.

The California Climate Change Center Report Series details ongoing Center-sponsored
research. As interim project results, the information contained in these reports may change;
authors should be contacted for the most recent project results. By providing ready access to
this timely research, the Center seeks to inform the public and expand dissemination of climate
change information, thereby leveraging collaborative efforts and increasing the benefits of this
research to California’s citizens, environment, and economy.

Identification of External Influences on Temperatures in California is the final report for the Detection
and Attribution of Climate Change in California project (contract 500-02-004, work
authorization MR-025) conducted by the University of California, Merced. The information
from this project contributes to PIER’s Energy-Related Environmental Research Program.



For more information on the PIER Program, please visit the Energy Commission’s website
www.energy.ca.gov/pier/ or contract the Energy Commission at (916) 654-5164.
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Abstract

This study used nine different observational datasets to estimate California-average
temperature trends during the periods 1950-1999 and 1915-2000. Observed results were
compared to trends from a suite of control simulations of natural internal climate variability. On
the longer (86-year) timescale, increases in annual-mean surface temperature in all
observational datasets are consistently distinguishable from climate noise. On the shorter
(50-year) timescale, results are sensitive to the choice of observational dataset. For both
timescales, the most robust results are large positive trends in mean and maximum daily
temperatures in late winter/early spring, as well as increases in minimum daily temperatures
from January to September. These trends are inconsistent with model-based estimates of natural
internal climate variability, and thus require one or more external forcing agents to be
explained. Observational datasets with adjustments for urbanization effects do not yield
markedly different results from unadjusted data. These study results suggest that the warming
of California’s winters over the second half of the twentieth century is associated with human-
induced changes in large-scale atmospheric circulation. The authors also hypothesize that the
lack of a detectable increase in summertime maximum temperature arises from a cooling
associated with large-scale irrigation. This cooling may have, until now, counteracted the
warming induced by increasing greenhouse gases and urbanization effects.

Keywords: Climate change, climate change detection, temperature trend, California climate
change, anthropogenic climate change
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Executive Summary

Introduction

No matter what energy policies are adopted, climate change is likely to have significant societal
impacts in California. These will likely include effects on the water supply, flood risk, levee
vulnerability, air quality, agriculture, and human health. Development of adaptation measures
generally takes years or longer; it is therefore important to anticipate societal impacts of climate
change, so that appropriate adaptation measures can be ready when they are needed.

Confident predictions of future climate change in California, and of associated societal impacts,
requires understanding of historical climate changes. This means accurate characterization of
climate trends, and attribution of those trends to specific influences, either natural or
anthropogenic. External factors thought to be influencing climate in California include solar
variability, volcanic eruptions, several classes of aerosols, atmospheric greenhouse gases, and
land-use changes (especially urbanization and irrigation). A first step in understanding
historical climate trends is to determine if these trends result from one or more of the external
factors just named, or are manifestations of natural internal climate variability (due for example
to the El Nifno or the Pacific Decadal Oscillation).

Purpose

The purpose of this project was to examine California’s climate trends to better characterize
their cause.

Project Objectives
The project’s objectives were to:

e Characterize recent climate trends in California.
e Determine if these trends are a result of external influences.

e If so, identify what specific factor(s) (such as increasing greenhouse gases) are
responsible.

Project Outcomes

This project focused on trends in near-surface temperature because this variable has been well-
observed and has direct societal relevance. The research team used eight different observational
datasets to estimate temperature trends during 1950-1999 and 1914-1999. These were obtained
by fitting a least-squares line to time series of California-average temperatures from each
dataset. In general, trends among different datasets were quite consistent. Researchers
compared observed trends from these datasets to trends from a suite of control simulations of
natural internal climate variability. These latter trends were obtained through the same
procedure that was applied to observations: the control simulations were divided into
overlapping segments of 50 and 86 years and fit a least-squares line to each segment, thus



obtaining a large sample of estimated trends due to natural internal variability. The research
team then compared observed trends to the ninety-fifth percentile estimated trend from natural
variability. Observed increases in annual-mean surface temperature are distinguishable from
estimated climate noise in some but not all observational datasets. The most robust results are
large positive trends in mean and maximum daily temperatures in late winter/early spring, as
well as increases in minimum daily temperatures from January to September. These trends are
inconsistent with model-based estimates of natural internal climate variability, and thus cannot
be explained without invoking one or more external forcing agents.

Conclusions

This study’s results suggest that the warming of California’s winters over the second half of the
twentieth century is associated with human-induced changes in large-scale atmospheric
circulation. The authors hypothesize that the lack of a detectable increase in summertime
maximum temperature arises from a cooling associated with large-scale irrigation. This cooling
may have, until now, counteracted the warming induced by increasing greenhouse gases and
urbanization effects.



1.0 Introduction

Human-induced climate change is a reality. Human effects on climate have been identified in
many different aspects of the climate system, at global, hemispheric scales (e.g., Santer et al.
1996; Mitchell et al. 2001; Hegerl et al. 1997; Tett et al. 1999; Stott et al. 2000) and continental
scales (Stott 2003; Zwiers and Zhang 2003; Karoly et al. 2003; Karoly and Braganza 2005).
Attempts to detect anthropogenic effects at regional or even grid-point scales are more recent
(Spagnoli et al. 2002; Santer et al. 2006; Karoly and Wu 2005. In California, there is great political
and scientific interest in the question of how human-caused climate change will manifest itself.
Will nighttime temperatures increase more than daytime temperatures? Will there be more
warming in winter than in summer? How will precipitation and snow be affected? How
uncertain are expected changes? Impacts on agriculture, water availability, human health, and
other factors depend on answers to these and related questions.

Identification of “fingerprints” of anthropogenic climate change at the scale of California would
enhance confidence in model projections of the regional aspects of climate change and their
possible societal impacts. Part of such fingerprinting work consists in documenting the
background “noise” of natural internal climate variability and determining whether or not
observed trends are too rapid to be explained by this noise alone. It is impossible to determine
noise characteristics from short instrumental records in which signals and noise convolved, but
natural internal variability can be estimated from long climate model control simulations with
no changes in external factors.

Attribution attempts to identify causal factors responsible for any detected change. Rigorous
attribution of observed changes in California’s climate to specific forcings would require so-
called “single forcing” experiments—simulating changes in only one forcing at a time. These
were not available for a broad range of climate models. Hence, the research team instead
considered “20CEN" experiments! driven by historical changes in combined anthropogenic and
natural external forcings, and then determined if these forced simulations would yield results
consistent with observed changes. Consistency between the observed and 20CEN climate
changes (and inconsistency between the observed changes and control run results) would imply
that significant changes have been detected in California’s climate, and that these changes can
be attributed to external forcing(s). Inconsistencies would point toward errors in (or neglect of)
important forcings and/or errors in the model response to the imposed forcings.

In small domains, detection of externally forced climate change poses special challenges. Global
models are less skillful on subcontinental scales (Stott and Tett 1998), and high-resolution
observational datasets are not always available. Furthermore, the noise of internal climate
variability generally increases with decreasing domain size, often leading to a degradation of
signal-to-noise (S/N) ratios, thus hampering identification of external factors. Finally, forcings
that may be of considerable importance in understanding regional climate change (e.g., land-
use change, aerosols) are often highly uncertain and spatially and temporally heterogeneous.

" The 20CEN runs are historical experiments for the climate of the twentieth century forced by combinations of
external factors (e.g., greenhouse gases, sulfate aerosols, volcanic aerosols, solar irradiance).



The research team focused on indices of California’s climate based on daily surface air
temperatures: monthly mean temperature (Tave), monthly mean night- and daytime
temperatures (Tmin, Tmax) and their difference, and the diurnal temperature range (DTR). All are
well observed in California, and their changes can have important societal impacts. The
research team considered both seasonal and annual mean trends in these indices.



2.0 Project Methods

Observed California-mean trends in each quantity were estimated for 1950-1999 from a
minimum of four and a maximum of seven gridded datasets (Table 1), as well as from stations
of the U.S. Historical Climatology Network (USHCN and USHCN-U).2

Table 1. Observational datasets, including their spatial and temporal resolution

Acronym Affiliation Period” Region Res Tave Tmin Tmax DTR Reference
UW1  University Washington 1949-1999  U.S.  1/8° Y Y Y Maurer et al. (2002)
UW2  |[University Washington 1915-2003 West U.S. 1/8° Y Y Y Hamletand Lettenmaier (2005)
UDvI1.02 | University Delaware 1950-1999 Global 1/2° Willmott and Matsuura (1998)
NOAA NOAA NCDC 1851-2000 Global 5° Eischeid et al. (1995)
HadCRUT2v Hadley Center 18562003 Global  5° Jones and Moberg (2003)
CRU2.0  University East Anglia 1901-2000 Global 1/2° Mitchell et al. (2004)
CRU2.1 University East Anglia 1901-2002 Global 1/2° Mitchell and Jones (2005)

USHCN | Oak Ridge Nat. Lab.  variable US. N/A Karl et al. (1990)
USHCN-U | Oak Ridge Nat. Lab.  variable US. N/A Karl et al. (1990)

* in complete years

T S A T R

<
<

Use of multiple datasets enabled the research team to assess the robustness of the detection
results to observational uncertainty. All datasets (except UW1) are well-suited for long-term
trend analysis and include some form of adjustment for non-climatic influences (e.g., changes in
instrumentation and station location). The number and coverage of California stations varies
between the different observational products. Most datasets are predominantly based on
adjusted HCN records. UW1 and UW2 datasets, however, have higher station coverage over
California, and include both HCN and Cooperative network observations. The CRU2.0, CRU2.1,
UWI1, and USHCN datasets were not adjusted for urbanization effects, while the HadCRUT2v,
UW?2, and USHCN-U datasets attempt to account for urbanization. None of the observational
datasets account for the effects of other human-induced changes in land-surface properties,
such as conversion to crop-land, irrigation or other factors.

Although the datasets analyzed here rely on similar raw data and are not completely
independent, the processing choices made by dataset developers can differ markedly from
group to group, leading to uncertainty in the magnitude (and sometimes even the sign) of the
observed trends (see Figures 1 and 2). Here, the main period of interest is 1950-1999, because it
contains the most reliable historical records and is covered by all datasets. However, the
research team also examined temperature changes over 1915-2000, the longest period covered
by most datasets.

2 The USHCN-U dataset accounts for urbanization, whereas the USHCN dataset does not.
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Figure 1. Spatial patterns of annual-mean temperature trends (°C/decade) in different
observational datasets. At each grid-cell, trends were estimated by a least-squares linear fit to
times series of temperature anomalies over 1950-1999. Trends that are not statistically different
from zero at the 80% confidence level are in white. The 150 meter contour roughly delineates
California’s Central Valley.
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Figure 2. As for Figure 1, but for trends in diurnal temperature range

The research team investigated whether observed historical trends in California exceed climate
“noise” by comparing recent observed 50-year trends in Tyye, Tmin, Tmax, and DTR to distributions of
modeled linear trends from unforced control simulations (this approach has been used by
Karoly et al. 2003 and Santer et al. 2006). For this purpose, the authors used 22 (for Tave) or 6 (for
Tmin, Tmax, and DTR) long control simulations. After establishing that some observed trends are
inconsistent with results of unforced simulations, the research team compared the observed Tave
(Tmin, Tmax, and DTR) trends to those from 69 (15) 20CEN historical runs performed with 22 (8)
different models. The 20CEN runs were forced by combinations of external factors (e.g.,
greenhouse gases, sulfate aerosols, volcanic aerosols, solar irradiance) that are model-
dependent (Table 2). All simulations were performed in support of the Intergovernmental Panel
on Climate Change (IPCC) Fourth Assessment Report (AR4).



Table 2. Characteristics of 20th century climate simulations and their associated models
and included external forcings that were used to estimate natural internal climate variability.
See PCMDI website (www-pcmdi.linl.gov) for more details.

Model Designation  Resolution Originating group(s) l: I: Forcings Y, Yn L N, Ny
CCSM3 T85 NCAR, USA 6 2 ABCEFJK 280 509 230 19 -
GFDL-CM2.0 2.0 x2.5° GFDL, USA 3 - ABCEFIJK 1 500 500 46 -
GFDL-CM2.1 2.0 x2.5° GFDL, USA 3 - ABCEFIJK 1 500 500 46 -
GISS-EH 4.0 x 5.0° GISS, USA 5 — ABCDEFGHI 183 227 400 36 -
GISS-ER 4.0 x5.0° GISS, USA 9 - ABCD_EiFGHU 1?0 2‘}0 500 46 —
MIROC3.2(medres) T42 CCSR/NIES/FRCGC, Japan 3 3 ABCEFGHLK 230 279 500 46 46
MIROC3.2(hires) T106 CCSR/NIES/FRCGC, Japan 1 1 ABCEFGHIUK 1 100 100 6 6
MIUB/ECHO-G T30 MIUB/METRI/MD S —  ACDIK 186 220 341 30 -
MRI-CGCM2.3.2 T42 MRI, Japan 5 - ACJK 185 220 350 31 -
PCM T42 NCAR, USA 4 2 ABCJK 451 197 629 58 —
UKMO-HadGEM1 1.25 x1.87° UKMO, UK 2 — ABCDEFIJK 1?2 2(?9 172 13 -
BCCR-BCM2.0 T63 BCCR, Norway 1 1 AC 185 299 250 21 21
CCCma-CGCM3.1(T47) T47 CCCma, Canada 5 - AC 185 285 100 96 -
CCCma-CGCM3.1(T63) T63 CCCma, Canada 1 - AC 185 219 350 31 -
CNRM-CM3 T63 CNRM, France 1 - ABCE 193 242 500 46 -
CSIRO-MkK3.0 T63 CSIRO, Australia 3 3 AC 187 225 380 34 34
ECHAMS5/MPI-OM T63 MPI, Germany 3 - ABCD 215 265 506 46 -
FGOALS-g1.0 T42 LASG/IAP, China 3 - AC 185 219 350 31 -
GISS-AOM 3.0 x 4.0° GISS, USA 2 2 ACH 1§5 2%0 251 21 21
INM-CM3.0 4.0 x 5.0° INM, Russia 1 1 ACJ 187 220 330 29 9
IPSL-CM4 2.5 x3.75° IPSL, France 1 - ACD 1$6 2§5 500 46 —
UKMO-HadCM3 2.5 x3.75° UKMO, UK 2 - ABCD 185 220 342 30 -
TOTAL - 69 15 - - 9

Ra, Re: number of 20th century climate realizations available for Tave and for Tmin, Tmax.

Forcing used in the 20th century runs (Santer et al. 2006): A: Greenhouse gases; B: Ozone; C: sulfate aerosol
direct effects; D: sulfate aerosol indirect effects; E: black carbon; F: organic carbon; G: mineral dust; H: sea salt;
I: land-use change; J: Solar Irradiance; K: volcanic aerosols.

Y1, YN, L: model-specific choices for the starting year, the ending year, and the length (in years) of the control
runs.

Na, Nb: number of overlapping 50-year linear trends obtained from each control run for Tave and for Tmin,

Tmax, and DTR (when data are supplied).
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To create distributions of model-derived unforced trends, linear trends were fitted, for each
control simulation, to overlapping 50- or 86-year segments (separated by 10-year intervals) of
the California-average temperature time series. These multi-model distributions reflect noise
uncertainties arising from differences in a wide range of model properties (e.g., physics,
parameterizations, resolution), and provide the best available model estimates of natural
internal variability. The significance of observed trends was assessed in two ways: (1) by
comparing observed trends with the 95% confidence intervals of the unforced trend
distributions, computed by assuming a Gaussian distribution of trends and multiplying the
standard error of the distribution (s&) by 1.96, and (2) by determining the empirical probability
that the magnitude of the unforced trends exceeds that of observed trends. The two methods
give very similar results, validating the assumption of the Gaussian distribution of trends
(Figure 3). While none of the control runs has a statistically significant overall temperature
trend for the California domain, some integrations do show residual drift at the beginning of
the run (Santer et al. 2006). Additionally, one shows a sudden jump that seems pathological.
The research team opted to retain these control-run drifts, thus inflating st and making it more
difficult to reject the null hypothesis that an observed trend is due to natural internal variability.

The significance-testing procedure outlined above was applied to annual- and seasonal-mean
(January-March [JEM], April-June [AM]], July-September [JAS], and October-December
[OND]) values of the four indices considered here. The research team used this somewhat
unconventional seasonal definition because observed trends in December are very different
from those in January (see below).

The reliability of the significance-testing results depends crucially on the fidelity with which the
models used here simulate the natural internal variability of the real-world climate system. This
is difficult to assess, particularly on the multi-decadal timescales of interest here, without multi-
century observational records uncontaminated by human influences. However, observational
data are of adequate length to make meaningful comparisons of modeled and observed
temperature variability on annual and decadal timescales (e.g. Stott 2003; Braganza et al. 2004).
Accurate simulation of natural variability on these shorter time scales would enhance
confidence in the detection results of externally-forced multi-decadal trends.
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Figure 3. Observed temperature trends over 1950-1999 (solid dots) and model-derived estimates
of the 95% confidence interval natural internal variability. Climate noise estimates are based on
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multi-model unforced 50-year trend distributions (see main text). The horizontal dotted lines

represent the 95% confidence intervals of the trend distributions and were computed as 1.96 x
Sg, the standard error of the sampling distribution of unforced trends. Results are for (a) daily-

mean temperature; (b) daily minimum temperature; (c) daily maximum temperature; and (d)
diurnal temperature range. Vertical bars represent the standard error for the trend accounting

for the temporal autocorrelation of the regression residuals (Santer et al. 1999) x 1.641 to assess
the statistical significance of the trends (one-tailed t-test). Circles are closed when the empirical

probability for the magnitude of the unforced trends to exceed that of observed trends is less
than 5%. Data from different USHCN stations are equally weighted.
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Figure 4. Same as Figure 3, but observed trends are computed over the period 1915-2000, and

the range of natural internal variability is based on multi-model unforced 86-year

trend distributions.

The research team compared the observed interannual and decadal variability of each
temperature index with corresponding values from the 20CEN realizations. The (varying)

length of the observational record dictated the period used for calculating model and observed
temporal standard deviations. All standard deviations were computed after first removing the
overall linear trend from the area-average data, which constitutes a zero-order estimate of the
influence of external forcing. The interannual variability is simply the standard deviation of the
residuals. The decadal standard deviation is computed after low-pass filtering the regression

residuals with a Lynch and Huang (1992) digital filter with half-power at a period of 119

months (Santer et al. 2006). The results of this variability comparison are discussed in Section 4.
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3.0 Project Results

All gridded observational datasets show a consistent pattern of increasing annual-mean
temperatures and decreasing annual-mean DTR over the period 1950-1999. Over most
California, these observed trends are different from zero with a high degree of statistical
significance (Figures 1 and 2). Similar results are found for the USHCN station data. Such
consistency across multiple datasets increases confidence in the reality of these annual-mean
Tave and DTR changes. Annual-mean Tave increased by 0.36°C to 0.92°C over 1950-1999,
depending on the observational dataset considered. Using the distribution of the unforced
trends, four of the nine observed trends (for USHCN, USHCN-U, UW2, and CRU2.0) are
significantly different from the model-derived internal climate variability at the 5% confidence
level or better (Figure 3). Tave changes are largest in wintertime and exceed model-derived noise
estimates in all nine observational datasets. This strongly suggests that external forcing(s) are
required to explain the observed JFM trends in Tave. Two datasets (USHCN and UW2) have
significant Tave trends in spring. No observational dataset yields significant Tave trends in
summer or fall.

This analysis of daily-mean temperatures masks interesting information in the diurnal cycle of
temperature change. Substantial nighttime warming occurs in every month except in December
(not shown), and trends in Tmin are inconsistent with internally generated climate noise in every
season except OND (Figure 3b). In contrast, monthly trends in observed daily maximum
temperatures exceed estimated internal variability only in late winter/early spring (Figure 3c),
with largest warming of Tmax in January and March (1.5°C over 50 years), reduced warming in
February (0.5°C over 50 years), and cooling in December. Observed trends in DTR exceed the
estimated noise during summer only (Figure 3d), reflecting the much greater increase in
minimum temperature than in maximum temperature in those months. Although the
amplitude of nighttime warming is smaller in USHCN-U than in the USHCN dataset, the
detection results are not sensitive to the inclusion of adjustments for urbanization effects
(compare USHCN versus USHCN-U, CRU2.0, and CRU2.1 versus HadCRUT2v, and UW1
versus UW2).

Californian temperature changes over 1915-2000 are even more difficult to explain by internal
climate noise alone (Figure 4). In all but one dataset, the estimated increase in annual-mean Tave
is significant at the 5% level. Positive detection is not limited to the winter season, but extends
to the spring and summer seasons for most observational datasets. Similarly, trends in Tmin and
DTR are inconsistent with internally generated climate noise during all seasons. Again, those
results are not sensitive to the inclusion or exclusion of urbanization adjustments. Enhanced
detectability at longer timescales is an expected characteristic of a slowly evolving greenhouse-
gas signal, as is evident in Santer et al. (1996, 2006). The research team considered next whether
observed changes in California temperature indices are consistent with results from 20CEN
simulations with combined anthropogenic and natural forcings (Table 2). In general, the models
failed to reproduce the observed seasonality of changes in Tave, Tmin, Tmax, and DTR (Figure 5,
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lower panels). While most simulations capture the observed JAS trends in Tave, Tmin, and Tmax
(but not DTR), they tend to underestimate the observed JFM trends in Tave, Tmin, and Tmax.

Such deficiencies in the simulation of regional trends are not surprising, and have a number of
possible explanations. First, many of the 20CEN runs examined here do not incorporate changes
in spatially and temporally heterogeneous forcings like land use, carbonaceous aerosols,
indirect aerosol effects, and others (Santer et al. 2006). These forcings have probably contributed
significantly to regional-scale climate change. Second, even models that include some
representation of heterogeneous and highly uncertain forcings may lack the spatial resolution to
reliably represent the climate response to the imposed forcings: the entire state of California is
represented by a minimum of five and maximum of 35 grid-boxes in the AR4 models analyzed
here. Third, comparison of multiple 20CEN realizations performed with the same model reveal
that individual realizations can have very different 50-year trends. Reliable estimation of the
true response to the imposed forcing changes may require larger ensemble sizes than were
available in the IPCC AR4 database (Table 2). Finally, the model-versus-observed differences
may reflect real model errors, both at large scales and at regional scales.

Karoly et al. (2003) performed a detection analysis similar to that performed for this study,
focusing on land surface temperature changes over North America (between 30N° to 65°N).
They found that the increase in annual-mean surface air temperature from 1950 to 1999 and
from 1900 to 1999 (in HadCRUT2v) could not be explained by natural internal variability. This
study’s results for Californian temperature changes over the last 50 and 86 years are broadly
consistent with Karoly et al.’s findings. However, while Karoly et al. reported an observed DTR
decrease that was indistinguishable from control-run noise, over 1950-1999, distinctly different
from unforced variability over the period 1900-1999, this study’s researchers obtained
significant annual-mean DTR decreases at both timescales in most observational datasets.

The conclusion of this study’s researchers that external factors are perturbing the climate in
California depends on the reliability of the model-based noise estimates. As discussed above, it
is not possible to evaluate the model noise simulations on the multi-decadal timescales that are
most relevant to the detection issues addressed here. However, observational data are of
adequate length to test model simulations of interannual and decadal-timescale noise;
nonetheless, confidence in the trend significance results presented here would be diminished if
the models systematically underestimated noise on these shorter timescales. There is no
evidence that this is the case (Figure 5, top panels). For Tave, while Stott and Tett (1998) found
that an earlier version of the Hadley Centre models used here (HADCM?2) generally
underestimated climate variability at spatial scales below 2000 kilometers, none of the AR4
models have interannual variability below the lower end of the range of observational
estimates—and only two models (GISS-ER and MRI-CGCM2.3.2) systematically underestimate
the decadal variability (i.e., each 20CEN realization lies below the observational range).

Confidence in this study’s model-based estimates of longer-timescale climate noise is increased
by the fact that most AR4 models do not underestimate decadal variability, but that does not
rule out systematic errors in those estimates. For Tmin, Tmax, and DTR indices, fewer
observational datasets and simulations are available. None of the models examined here
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systematically underestimates the magnitude of decadal variability for either Tmin Or Tmax.
Interannual and decadal variability in DTR is however systematically underestimated by three
models, suggesting that their covariability between Tmin and Tmax is too high in these models,
while these indices are more decoupled in other models and in the observations.

In the following section, the research team attempted to understand the pronounced seasonality
of observed temperature trends in California. Christy et al. (2006), using their own
observational temperature dataset, reported rapid nighttime warming in the Central Valley
over 1910 to 2003, but not in surrounding mountains. They attribute this warming to the effects
of large-scale irrigation (an interpretation questioned by Bonfils et al. 2006), but do not identify
the physical mechanism responsible for the change. Bereket et al. (2005) attribute nighttime
warming in the Valley to increased population, urbanization, and road construction. None of
these mechanisms, however, explains the pronounced seasonal variations in temperature
trends.
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Figure 5. Comparison of statistical properties of four simulated and observed temperature indices
in California. Simulations are forced 20CEN historical runs. Upper panels: standard deviations of
filtered and unfiltered anomaly data for 1915-1999 (except for UW2, UW1, and UD, see text). Lower
panels: 1950-1999 trends in summer (JAS) and winter (JFM). Observational datasets are in black
and include a 10 trend confidence interval adjusted for temporal autocorrelation effects.
Individual realizations from 22 global climate models are in grey. Vertical and horizontal lines
denote the minimum and maximum observed values, and facilitate comparison with model
results.

In JFM, observed trends in Tmin, Tmax, and Tave are unlikely to be explained by natural internal
variability alone. A larger JFM warming trend is consistent with a stronger snow-albedo
feedback in this season, but the spatial pattern of the observed warming does not clearly
support this interpretation. A more plausible explanation is that a trend towards warmer
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California winters is associated with a long-term change in large-scale atmospheric circulation
over the North Pacific Ocean. This change is characterized by a southward shift of wind fields
over the central North Pacific and a northward shift over the west coast of North America
(Dettinger and Cayan 1994, their Figure 10d). Analysis of trends in NCEP-50 observed JAS

700 millibar (mb) height anomalies reveals that the circulation-change patterns identified by
Dettinger and Cayan are very pronounced in January and March (months characterized by
robust detection in trends of Tmin, Tmax, and Tave), with a concurrent warming in coastal sea
surface temperatures. This circulation change is less pronounced in February and is
qualitatively different in December, consistent with observed temperature trends. The results of
other studies suggest that greenhouse gas forcing is likely to be implicated in this seasonal
circulation shift. First, Zwiers and Zhang (2003) found that the combined effects of greenhouse
gas and sulfate aerosol forcing caused significant North American warming in wintertime only.
Then, Shindell et al. (2001) linked increasing greenhouse gas concentrations with increased flow
of warm air from the Pacific Ocean to western North America, consistent with Dettinger and
Cayan’s analysis. Finally, Gillett et al. (2005) detected an anthropogenic signal in DJF sea-level
pressure trends over 1948-1998, with a coherent decrease over the North Pacific and an increase
over the west coast of North America—features that coincide with those noted by Dettinger and
Cayan. Gillett et al. also found that models underestimate this circulation change, which may
explain why the rise in JEM Tave in the AR4 simulations is weaker than in observations (Figure 5,
lower panel).

In summer, the externally forced trend toward warmer nights is captured by at least one
realization of every model (except for the single realization of the BCCR-BCM2.0 model).
However, most models overestimate the daytime warming (which is weak in the observations,
and not separated from the noise). Consequently, significant changes in DTR are not
reproduced by the models. One interpretation of this result is that the 20CEN simulations
neglect an important regional forcing. An obvious candidate is irrigation, which is widely
employed in California, and is generally not represented in 20CEN simulations performed with
global models. Although the effect of irrigation on nighttime temperature remains uncertain,
irrigation causes daytime evaporative cooling (Lobell et al. 2006; Kueppers et al. 2006). At the
global scale, the much smaller annual-mean increase in Tmin than in Tmax (Karl et al. 1993) is not
captured by global models. This may be due to either an absence of a significant cloudiness
trend that is present in observations (Braganza et al. 2004) or to the lack of prognostic
photosynthesis in most global models (Bonfils et al. 2004). In the Central Valley, summertime
cloudiness is probably too low to be implicated in explaining differential Tmin and Tmax trends.
Irrigation is a more credible hypothesis, and it appears consistent with the observed cooling of
summer days and warming of summer nights in the Central Valley, and daytime and nighttime
warming elsewhere. In summary, the JAS trends in Figure 3 can be interpreted in several ways.
One explanation is that trends in Tmax over California are due to natural climate fluctuations
alone. A more plausible interpretation (in view of the large temporal changes in irrigation in the
Central Valley, the likely physical impacts of these changes, and their absence in 20CEN
simulations) is that irrigation-induced cooling of Tmax has obscured a warming signal arising
from the combined effects of greenhouse gases and urbanization.
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4.0 Conclusions and Recommendations

This research shows that external forcing(s) are perturbing the climate of California in certain
seasons. The domain size used in this study is smaller than that used in most previous regional-
scale detection studies. However, by employing multiple observational and model datasets, the
research team gained confidence in both the robustness of the observed signals and their
detection relative to model noise estimates. This study’s researchers hypothesize that the rise in
late winter/early spring temperatures (Tave, Tmin, Tmax) is associated with long-term changes in
large-scale atmospheric circulations that are human-induced. It is also likely that the lack of a
significant Tmax trend in summer reflects a partial offsetting of the positive radiative effects of
greenhouse gases and urbanization by the negative radiative effects of irrigation. More work is
needed to solidify these findings.

One implication of these findings is that anthropogenic forcings may be more readily detectable
in regional-scale ocean surface temperature changes (Santer et al. 2006) than in regional-scale
land-surface temperature changes with current simulations. The latter are more strongly
influenced by local factors, such as land-use (e.g., irrigation, urbanization). High-resolution,
multi-decadal transient simulations of the effects of individual forcings would help to
characterize the regional signatures of these forcings. Such simulations have not been
performed to date, in part due to computational limitations, and in part because reliable
information on the forcings themselves (e.g., detailed descriptions of historical land-use
patterns) is not always available. Finally, in the case of forcings like aerosols there are still
significant uncertainties in both our understanding of their climatic effects and our ability to
correctly model these effects. Nevertheless, this study represents a credible first step towards
the identification and physical interpretation of the effects of external forcings on California’s
climate.

Recommended follow-on research involves improving understanding of historical climate
trends in California and their significance. Further analysis of observations is recommended, to
allow observed trends to be described more confidently. Improved knowledge of past forcing
trends is needed, and might be obtainable through historical research. In particular, further
research might improve knowledge of historical land cover and land use practices (including
irrigation and urbanization). Improved estimates of the noise of internal climate variability on
50-100 year time scales are also needed. These cannot be obtained from instrumental
observations, because these records are too short and are also contaminated by effects of human
activities. It might be possible to improve or at least evaluate model-derived estimates of
internal climate variability by developing and applying time series of climate-sensitive
geological quantities. (For example, one multicentury record of estimate flow on the Sacramento
River is already available; Meko et al. 2001.)

Modeling studies are needed to characterize the climatic signatures of specific forcing agents:
greenhouse gases, aerosols, urbanization, irrigation, other land-use changes, solar variability,
and volcanic eruptions. This would entail performing a series of simulations in which forcing
factors (e.g., greenhouse gases, aerosols) are varied one at a time, to allow the climatic effects of
each to be understood in isolation. Ideally, for each forcing factor, multiple simulations would
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be performed with multiple models. This would allow uncertainties in climatic effects of each
forcing to be estimated. Once the climatic signatures of each forcing agent are known, they
should be searched for in the recent observational record. This combination of modeling and
analysis of observations would go a long way towards understanding the causes of observed
climate trends in California.

4.1. Benefits to California

The understanding that recent climate changes in California result at least partly from human
activities constitutes a fundamental change in thinking on the subject of climate change and its
societal impacts in California. The phenomenon of human-induced climate change must now be
regarded as both real and immediate; therefore, the need for assessment of potentially harmful
societal impacts is immediate. This project has stimulated increased interest in characterizing
and understanding recent climate trends in California. This improved understanding of
historical climate trends will lead to more accurate projections of future climate change and its
societal impacts.
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6.0 Glossary
AM] April-June
BCCR-BCM2.0  Bjerknes Centre for Climate Research Bergen Climate Model, version 2

CDIAC Carbon Dioxide Information and Analysis Center

CIRES Cooperative Institute for Research in Environmental Sciences
DTR diurnal temperature range

GCPS Global Climate Perspectives System

IPCC Intergovernmental Panel on Climate Change

JAS July-September

JEM January-March

mb millibar

NCDC National Climatic Data Center

NCEP National Centers for Environmental Prediction

NOAA National Oceanic and Atmospheric Administration

OND October-December

PCMDI Program for Climate Model Diagnosis and Intercomparison
PIER Public Interest Energy Research Program

SE standard error of the distribution

S/N signal-to-noise

UD University of Delaware

USHCN United States Historical Climatology Network

UW1, UW2 University of Washington temperature datasets
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