SUMMARY OF CONCLUSIONS

Pacific Gas and Electric (PG&E) proposes to transmit the power from the proposed Humboldt Bay Repowering Project (HBRP) to its electric transmission grid through two 60-kilovolt (Kv) and one 115-Kv line connecting the proposed facility to the same Humboldt Bay Power Plant Substation as is used for the existing Humboldt Bay Power Plant. These tie-in lines would be located within the property lines for the existing power generating complex meaning that no off-site lines would be built. Since there would be no residences around the project site, there would be none of the residential electric and magnetic field exposures that have raised concern about human health effects in recent years. The proposed lines would be designed, erected, operated, and maintained by PG&E according to its standard practices, which conform to applicable laws, ordinances, regulations and standards (LORS). Since these lines are of PG&E design, their field and non-field impacts would be similar to those of PG&E lines of the same design and current-carrying capacity. With the adoption of five recommended conditions of certification, all of these impacts would be less than significant.

INTRODUCTION

The purpose of this analysis is to assess the proposed lines’ design and operational plan to determine whether their related field and non-field impacts would constitute a significant environmental hazard in the area around them. All related health and safety LORS are currently aimed at minimizing such hazards. Staff’s analysis focuses on the following issues as related primarily to the physical presence of the lines, or secondarily to the physical interactions of their electric and magnetic fields:

- aviation safety;
- interference with radio-frequency communication;
- audible noise;
- fire hazards;
- hazardous shocks;
- nuisance shocks; and
- electric and magnetic field (EMF) exposure.

The following federal, state, and local laws and policies apply to the control of the field and non-field impacts of electric power lines. Staff’s analysis examines the project’s compliance with these requirements.
<table>
<thead>
<tr>
<th>Applicable LORS</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Aviation Safety</td>
<td></td>
</tr>
<tr>
<td>Federal</td>
<td></td>
</tr>
<tr>
<td>Title 14, Part 77 of the Code of Federal Regulations (CFR), "Objects Affecting the Navigable Air Space"</td>
<td>Describes the criteria used to determine the need for a Federal Aviation Administration (FAA) "Notice of Proposed Construction or Alteration" in cases of potential obstruction hazards.</td>
</tr>
<tr>
<td>FAA Advisory Circular No. 70/7460-1G, "Proposed Construction and/or Alteration of Objects that May Affect the Navigation Space"</td>
<td>Addresses the need to file the "Notice of Proposed Construction or Alteration" (Form 7640) with the FAA in cases of potential for an obstruction hazard.</td>
</tr>
<tr>
<td>FAA Advisory Circular 70/460-1G, "Obstruction Marking and Lighting"</td>
<td>Describes the FAA standards for marking and lighting objects that may pose a navigation hazard as established using the criteria in Title 14, Part 77 of the CFR.</td>
</tr>
<tr>
<td>Interference with Radio Frequency Communication</td>
<td></td>
</tr>
<tr>
<td>Federal</td>
<td></td>
</tr>
<tr>
<td>Title 47, CFR, Section 15.2524, Federal Communications Commission (FCC)</td>
<td>Prohibits operation of devices that can interfere with radio-frequency communication.</td>
</tr>
<tr>
<td>State</td>
<td></td>
</tr>
<tr>
<td>California Public Utilities Commission (CPUC) General Order 52 (GO-52)</td>
<td>Governs the construction and operation of power and communications lines to prevent or mitigate interference.</td>
</tr>
<tr>
<td>Audible Noise</td>
<td>Not to exceed applicable local noise ordinances – (no design-specific federal or state regulations for noise from transmission lines).</td>
</tr>
<tr>
<td>Hazardous and Nuisance Shocks</td>
<td></td>
</tr>
<tr>
<td>State</td>
<td></td>
</tr>
<tr>
<td>CPUC GO-95, “Rules for Overhead Electric Line Construction”</td>
<td>Governs clearance requirements to prevent hazardous shocks, grounding techniques to minimize nuisance shocks, and maintenance and inspection requirements.</td>
</tr>
<tr>
<td>Title 8, California Code of Regulations (CCR) Section 2700 et seq. "High Voltage Safety Orders"</td>
<td>Specifies requirements and minimum standards for safely installing, operating, working around, and maintaining electrical installations and equipment.</td>
</tr>
<tr>
<td>Applicable LORS</td>
<td>Description</td>
</tr>
<tr>
<td>--</td>
<td>---</td>
</tr>
<tr>
<td>National Electrical Safety Code</td>
<td>Specifies grounding procedures to limit nuisance shocks. Also specifies minimum conductor ground clearances.</td>
</tr>
<tr>
<td>Industry Standards</td>
<td></td>
</tr>
<tr>
<td>Institute of Electrical and Electronics Engineers (IEEE) 1119, “IEEE Guide for Fence Safety Clearances in Electric-Supply Stations”</td>
<td>Specifies the guidelines for grounding-related practices within the right-of-way and substations.</td>
</tr>
<tr>
<td>Electric and Magnetic Fields</td>
<td></td>
</tr>
<tr>
<td>State</td>
<td></td>
</tr>
<tr>
<td>GO-131-D, CPUC "Rules for Planning and Construction of Electric Generation Line and Substation Facilities in California"</td>
<td>Specifies application and noticing requirements for new line construction including EMF reduction.</td>
</tr>
<tr>
<td>CPUC Decision 93-11-013</td>
<td>Specifies CPUC requirements for reducing power frequency electric and magnetic fields for CPUC-regulated utilities.</td>
</tr>
<tr>
<td>Industry Standards</td>
<td></td>
</tr>
<tr>
<td>Fire Hazards</td>
<td></td>
</tr>
<tr>
<td>State</td>
<td></td>
</tr>
<tr>
<td>14 CCR Sections 1250-1258, “Fire Prevention Standards for Electric Utilities”</td>
<td>Provides specific exemptions from electric pole and tower firebreak and conductor clearance standards and specifies when and where standards apply.</td>
</tr>
</tbody>
</table>

SETTING

As noted in the Project Description section, the Humboldt Bay Power Plant Substation (to which the proposed HBRP would be connected) would be located on the same 143-acre PG&E property as both the PG&E power generating complex to be replaced, and HBRP that is proposed to replace it. The proposed tie-in lines would be located entirely within this PG&E property in an industrial zone with no residences. Such absence of residences means that there would not be the types of long-term human EMF exposures that have been mostly responsible for the health concern of recent years. The only project-related EMF exposures of potential significance are the short-term exposures of plant workers, regulatory inspectors, maintenance personnel, visitors, or...
individuals in the immediate vicinity of the line. These types of exposures are short term and are not of health concern.

PROJECT DESCRIPTION

The proposed HBRP will be connected to PG&E’s grid with the following three transmission lines:

- An overhead 115-kV line extending approximately 500 feet from the project’s 115-kV/60-kV switchyard to PG&E’s existing Humboldt Bay-Humboldt 115-kV line to the northeast;

- Two 60-kV overhead lines of 82 feet and 117 feet (for the first and second sets of generators respectively) connecting the HBRP Switchyard to the existing Humboldt Bay Power Plant; and

- The project’s on-site 60-kV/115-kV switchyard from which the conductors would extend to their respective system connection points.

The proposed lines’ conductors would be standard low-corona aluminum conductors or equivalent and would be located on steel poles (of 70 feet to 90 feet for the 60-kV line and 50 feet for the 115-kV line), which would allow for ground clearance typical of such PG&E lines. The applied design and construction would be in keeping with PG&E guidelines necessary to ensure line safety and efficiency together with efficiency, maintainability, and reliability.

There would be no public access to the proposed lines or related switchyard since they would all lie within the property boundaries of the PG&E power generation complex within which HBRP would be located.

ASSESSMENT OF IMPACTS AND DISCUSSION OF MITIGATION

METHODS AND THRESHOLDS FOR DETERMINING SIGNIFICANCE

The potential magnitude of the line impacts of concern in this staff analysis depends on compliance with the listed LORS whose related mitigation measures have been established as adequate to maintain such impacts below levels of potential significance. Thus, if staff determines that the project would comply with applicable LORS, we would conclude that any transmission line-related safety and nuisance impacts would be less than significant. The nature of these individual impacts is discussed below together with the potential for compliance with the LORS that apply.

DIRECT IMPACTS AND MITIGATION

Aviation Safety

Any potential hazard to area aircraft would relate to the potential for collision in the navigable airspace and the need to file a “Notice of Proposed Construction or Alteration” (Form 7640) with the FAA as noted in the LORS section. The need for such a notice depends on factors related to the height of the structure, the slope of an imaginary surface from the end of nearby runways to the top of the structure, and the length of the runway involved.
As noted by the applicant (PG&E 2006a, p.5-16) the maximum height of the proposed lines’ support structures would, at 90 feet, be much less than the 200 feet regarded by the FAA as triggering the concern about aviation safety. Furthermore, the lines would be located in an area with several other PG&E lines some of which are of similar voltage and structural dimensions. The nearest public airport is the Eureka Municipal Airport with a runway shorter than the 3,200-foot safety trigger but located outside the restricted space applicable to such runway dimensions. Given these conditions, staff considers the proposed lines’ structures as not posing an obstruction-related aviation hazard to area aircraft as defined using current FAA criteria. Therefore, no FAA “Notice of Construction or Alteration” would be required for the lines.

Interference with Radio-Frequency Communication

Transmission line-related radio-frequency interference is one of the indirect effects of line operation and is produced by the physical interactions of line electric fields. Such interference is due to the radio noise produced by the action of the electric fields on the surface of the energized conductor. The process involved is known as corona discharge, but is referred to as spark gap electric discharge when it occurs within gaps between the conductor and insulators or metal fittings. When generated, such noise manifests itself as perceivable interference with radio or television signal reception or interference with other forms of radio communication. Since the level of interference depends on factors such as line voltage, distance from the line to the receiving device, orientation of the antenna, signal level, line configuration and weather conditions, maximum interference levels are not specified as design criteria for modern transmission lines. The level of any such interference usually depends on the magnitude of the electric fields involved and the distance from the line. The potential for such impacts is, therefore, minimized by reducing the line electric fields and locating the line away from inhabited areas.

The proposed HBRP lines would be built and maintained in keeping with standard PG&E practices that minimize surface irregularities and discontinuities. Moreover, the potential for such corona-related interference is usually of concern for lines of 345-kV and above, and not the proposed 60-kV and 115-kV lines. The proposed low-corona designs are used for all PG&E lines of similar voltage rating to reduce surface-field strengths and the related potential for corona effects. Since these existing lines do not currently cause the corona-related complaints along their existing routes, staff does not expect any corona-related radio-frequency interference or related complaints in the general project area. However, staff recommends Condition of Certification TLSN-2 to ensure mitigation as required by the FCC in the unlikely event of complaints.

Audible Noise

The noise-reducing designs related to electric field intensity are not specifically mandated by federal or state regulations in terms of specific noise limits. As with radio noise, such noise is limited instead through design, construction or maintenance practices established from industry research and experience as effective without significant impacts on line safety, efficiency, maintainability, and reliability. Audible noise usually results from the action of the electric field at the surface of the line conductor and could be perceived as a characteristic crackling, frying, or hissing sound or hum, especially in wet weather. Since the noise level depends on the strength of the line...
electric field, the potential for perception can be assessed from estimates of the field strengths expected during operation. Such noise is usually generated during rainfall, but mainly from overhead lines of 345-kV or higher. It is, therefore, not generally expected at significant levels from lines of less than 345-kV as proposed for HBRP. Research by the Electric Power Research Institute (EPRI 1982) has validated this by showing the fair-weather audible noise from modern transmission lines to be generally indistinguishable from background noise at the edge of a right-of-way of 100 feet or more. Since the low-corona designs are also aimed at minimizing field strengths, staff does not expect the proposed line operation to add significantly to current background noise levels in the project area. For an assessment of the noise from the proposed line and related facilities, please refer to staff’s analysis in the Noise and Vibration section.

Fire Hazards

The fire hazards addressed through the related LORS in TLSN Table 1 are those that could be caused by sparks from conductors of overhead lines, or that could result from direct contact between the line and nearby trees and other combustible objects.

Standard fire prevention and suppression measures for similar PG&E lines would be implemented for the proposed project lines (PG&E 2006a, p. 3-16). The applicant’s intention to ensure compliance with the clearance-related aspects of GO-95 would be an important part of this mitigation approach. TLSN-4 is recommended to ensure compliance with important aspects of the fire prevention measures.

Hazardous Shocks

Hazardous shocks are those that could result from direct or indirect contact between an individual and the energized line, whether overhead or underground. Such shocks are capable of serious physiological harm or death and remain a driving force in the design and operation of transmission and other high-voltage lines.

No design-specific federal regulations have been established to prevent hazardous shocks from overhead power lines. Safety is assured within the industry from compliance with the requirements specifying the minimum national safe operating clearances applicable in areas where the line might be accessible to the public.

The applicant’s stated intention to implement the GO-95-related measures against direct contact with the energized line (PEC 2006a, p. 5-12) would serve to minimize the risk of hazardous shocks. Staff’s recommended Condition of Certification TLSN-1 would be adequate to ensure implementation of the necessary mitigation measures.

Nuisance Shocks

Nuisance shocks are caused by current flow at levels generally incapable of causing significant physiological harm. They result mostly from direct contact with metal objects electrically charged by fields from the energized line. Such electric charges are induced in different ways by the line’s electric and magnetic fields.

There are no design-specific federal or state regulations to limit nuisance shocks in the transmission line environment. For modern overhead high-voltage lines, such shocks are effectively minimized through grounding procedures specified in the National
Electrical Safety Code (NESC) and the joint guidelines of the American National Standards Institute (ANSI) and the Institute of Electrical and Electronics Engineers (IEEE). For the proposed project line, the applicant will be responsible in all cases for ensuring compliance with these grounding-related practices within the right-of-way.

The potential for nuisance shocks around the proposed line would be minimized through standard industry grounding practices (PG&E 2006a, pp. 3-15 and 3-16). Staff recommends Condition of Certification **TLSN-5** to ensure such grounding.

Electric and Magnetic Field Exposure

The possibility of deleterious health effects from EMF exposure has increased public concern in recent years about living near high-voltage lines. Both electric and magnetic fields occur together whenever electricity flows, hence the general practice of describing exposure to them together as EMF exposure. The available evidence as evaluated by the CPUC, other regulatory agencies, and staff, has not established that such fields pose a significant health hazard to exposed humans. There are no health-based federal regulations or industry codes specifying environmental limits on the strengths of fields from power lines. Most regulatory agencies believe, as staff does, that health-based limits are inappropriate at this time. They also believe that the present knowledge of the issue does not justify any retrofit of existing lines.

Staff considers it important, as does the CPUC, to note that while such a hazard has not been established from the available evidence, the same evidence does not serve as proof of a definite lack of a hazard. Staff, therefore, considers it appropriate in light of present uncertainty, to recommend reduction of such fields as feasible without affecting safety, efficiency, reliability and maintainability.

While there is considerable uncertainty about EMF health effects, the following facts have been established from the available information and have been used to establish existing policies:

- Any exposure-related health risk to the exposed individual will likely be small.
- The most biologically significant types of exposures have not been established.
- Most health concerns are about the magnetic field.
- The measures employed for such field reduction can affect line safety, reliability, efficiency, and maintainability, depending on the type and extent of such measures.

State

In California, the CPUC (which regulates the installation and operation of high-voltage lines) has determined that only no-cost or low-cost measures are presently justified in any effort to reduce power line fields beyond levels existing before the present health concern arose. The CPUC has further determined that such reduction should be made only in connection with new or modified lines. It requires each utility within its jurisdiction to establish EMF-reducing measures and incorporate such measures into the designs for all new or upgraded power lines and related facilities within their respective service areas. The CPUC further established specific limits on the resources to be used in each case for field reduction. Such limitations were intended by the CPUC to apply to the cost
of any redesign to reduce field strength or relocation to reduce exposure. Publicly owned utilities, which are not within the jurisdiction of the CPUC, voluntarily comply with these CPUC requirements. This CPUC policy resulted from assessments made to implement CPUC Decision 93-11-013.

In keeping with this CPUC policy, staff requires a showing that each proposed overhead line would be designed according to the EMF-reducing design guidelines applicable to the utility service area involved. These field-reducing measures can impact line operation if applied without appropriate regard for environmental and other local factors bearing on safety, reliability, efficiency, and maintainability. Therefore, it is up to each applicant to ensure that such measures are applied in ways that prevent significant impacts on line operation and safety. The extent of such applications would be reflected by ground-level field strengths as measured during operation. When estimated or measured for lines of similar voltage and current-carrying capacity, such field strength values can be used by staff and other regulatory agencies to assess the effectiveness of the applied reduction measures. These field strengths can be estimated for any given design using established procedures. Estimates are specified for a height of one meter above the ground, in units of kilovolts per meter (kV/m), for the electric field, and milligauss (mG) for the companion magnetic field. Their magnitude depends on line voltage (in the case of electric fields), the geometry of the support structures, degree of cancellation from nearby conductors, distance between conductors and, in the case of magnetic fields, amount of current in the line.

Since each new or modified line in California is currently required by the CPUC to be designed according to the EMF-reducing guidelines of the electric utility in the service area involved, its fields are required under this CPUC policy to be similar to fields from similar lines in that service area. Designing the proposed project line according to existing PG&E safety and field strength-reducing guidelines would constitute compliance with the CPUC requirements for line field management.

The CPUC finished revisiting the EMF management issue in 2006 to assess the need for policy changes to reflect the available information on possible health impacts. The findings (in Decision 06-08-019 of August 24, 2006) did not point to a need for significant changes to existing field management policies.

Industrial Standards

The present focus is on the magnetic field because only it can penetrate the soil, buildings and other materials to potentially produce the types of health impacts at the root of the health concern of recent years. As one focuses on the strong magnetic fields from the more visible overhead transmission and other high-voltage power lines, staff considers it important, for perspective, to note that an individual in a home could be exposed to much stronger fields while using some common household appliances (National Institute of Environmental Health Services and the U.S. Department of Energy, 1995). The difference between these types of field exposures is that the higher-level, appliance-related exposures are short-term, while the exposure from power lines are lower level, but long-term. Scientists have not established which of these types of exposures would be more biologically meaningful in the individual. Staff notes such exposure differences only to show that high-level magnetic field exposures regularly occur in areas other than around high-voltage power lines.
As with similar PG&E lines, specific field strength-reducing measures would be incorporated into the design of the proposed line to ensure the field strength minimization currently required by the CPUC in light of the concern over EMF exposure and health.

The field reduction measures to be applied include the following:

1. Increasing the distance between the conductors and the ground;
2. Reducing the spacing between the conductors;
3. Minimizing the current in the line; and
4. Arranging current flow to maximize the cancellation effects from interacting of conductor fields.

Since optimum field-reducing measures would be incorporated into the proposed line design, staff considers further mitigation to be unnecessary, but would seek to validate the applicant’s assumed reduction efficiency from the field strength measurements recommended in Condition of Certification, TLSN-3.

CUMULATIVE IMPACTS AND MITIGATION

Since the proposed project transmission lines and switchyard would be designed according to applicable field-reducing PG&E guidelines (as currently required by the CPUC for effective field management), staff expects the resulting fields to be of the same intensity as fields from PG&E lines of the same voltage and current-carrying capacity. Any contribution to cumulative area exposures should be at similar levels. It is this similarity in intensity that constitutes compliance with current CPUC requirements on EMF management. The actual field strengths and contribution levels for the proposed line design would be assessed from the results of the field strength measurements specified in Condition of Certification TLSN-3.

COMPLIANCE WITH LORS

As previously noted, current CPUC policy on safe EMF management requires that any high-voltage line within a given area be designed to incorporate the field strength-reducing guidelines of the main area utility lines to be interconnected. The utility in this case is PG&E. Since the proposed project lines and related switchyard would be designed according to the respective requirements of GO-95, GO-52, GO-131-D, and Title 8, Section 2700 et seq. of the California Code of Regulations, and operated and maintained according to current PG&E guidelines on line safety and field strength management, staff considers the presented design and operational plan to be in compliance with the health and safety LORS of concern in this analysis. The actual contribution to the area’s field exposure levels would be assessed from results of the field strength measurements required in Condition of Certification TLSN-3.

RESPONSE TO AGENCY AND PUBLIC COMMENTS

Staff received no public or agency comments.
CONCLUSIONS

Since the proposed lines and related facilities are not close enough to the nearest airport to pose an aviation hazard according to current FAA criteria, staff does not consider it necessary to recommend location or design changes on the basis of a potential hazard to area aviation.

The potential for nuisance shocks would be minimized through grounding and other field-reducing measures to be implemented in keeping with current PG&E guidelines (reflecting standard industry practices). These field-reducing measures would maintain the generated fields within levels not associated with radio-frequency interference or audible noise. The potential for hazardous shocks would be minimized through compliance with the height and clearance requirements of PUC’s General Order 95. Compliance with Title 14, California Code of Regulations, Section 1250, would minimize fire hazards while the use of low-corona line design, together with appropriate corona-minimizing construction practices, would minimize the potential for corona noise and its related interference with radio-frequency communication.

Since electric or magnetic field health effects have neither been established nor ruled out for the proposed HBRP and similar transmission lines, the public health significance of any related field exposures cannot be characterized with certainty. The only conclusion to be reached with certainty is that the proposed lines’ design and operational plan would be adequate to ensure that the generated electric and magnetic fields are managed to an extent the CPUC considers appropriate in light of the available health effects information. The long-term, mostly residential magnetic exposure of health concern in recent years would be insignificant for the proposed lines given the absence of residences in the area around them. On-site worker or public exposure would be short term and at levels expected for PG&E lines of similar design and current-carrying capacity. Such exposure is well understood and has not been established as posing a significant human health hazard.

Since the proposed project lines would be operated to minimize the health, safety, and nuisance impacts of concern to staff, while located along a route without nearby residences, staff considers the proposed design, maintenance, and construction plan as complying with the applicable LORS. With the conditions of certification proposed below, any such impacts would be less than significant.

PROPOSED CONDITIONS OF CERTIFICATION

TLSN-1 The project owner shall construct the proposed transmission lines according to the requirements of California Public Utility Commission’s GO-95, GO-52, GO-131-D, Title 8, and Group 2. High Voltage Electrical Safety Orders, Sections 2700 through 2974 of the California Code of Regulations, and Southern California Edison’s EMF-reduction guidelines.

Verification: At least thirty days before starting construction of the transmission line or related structures and facilities, the project owner shall submit to the Compliance Project Manager (CPM) a letter signed by a California registered electrical engineer
affirming that the lines will be constructed according to the requirements stated in the condition.

TLSN-2 The project owner shall ensure that every reasonable effort will be made to identify and correct, on a case-specific basis, any complaints of interference with radio or television signals from operation of the project-related lines and associated switchyards. The project owner shall maintain written records for a period of five years, of all complaints of radio or television interference attributable to plant operation together with the corrective action taken in response to each complaint. All complaints shall be recorded to include notations on the corrective action taken. Complaints not leading to a specific action or for which there was no resolution should be noted and explained. The record shall be signed by the project owner and also the complainant, if possible, to indicate concurrence with the corrective action or agreement with the justification for a lack of action.

Verification: All reports of line-related complaints shall be summarized for the project-related lines and included during the first five years of plant operation in the Annual Compliance Report.

TLSN-3 The project owner shall hire a qualified consultant to measure the strengths of the electric and magnetic fields from the line before and after it is energized. The measurements shall be made according to the American National Standard Institute/Institute of Electrical and Electronic Engineers (ANSI/IEEE) standard procedures at the locations of maximum field strengths along the proposed route. These measurements shall be completed not later than six months after the start of operations.

Verification: The project owner shall file copies of the pre-and post-energization measurements with the CPM within 60 days after completion of the measurements.

TLSN-4 The project owner shall ensure that the rights-of-way of the proposed transmission line are kept free of combustible material, as required under the provisions of Section 4292 of the Public Resources Code and Section 1250 of Title 14 of the California Code of Regulations.

Verification: During the first five years of plant operation, the project owner shall provide a summary of inspection results and any fire prevention activities carried out along the right-of-way and provide such summaries in the Annual Compliance Report.

TLSN-5 The project owner shall ensure that all permanent metallic objects within the right-of-way of the project-related lines are grounded according to industry standards regardless of ownership. In the event of a refusal by any property owner to permit such grounding, the project owner shall so notify the CPM. Such notification shall include, when possible, the owner's written objection. Upon receipt of such notice, the CPM may waive the requirement for grounding the object involved.

Verification: At least 30 days before the lines are energized, the project owner shall transmit to the CPM a letter confirming compliance with this Condition.
REFERENCES

