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Preface

The California Energy Commission’s Public Interest Energy Research (PIER) Program supports
public interest energy research and development that will help improve the quality of life in
California by bringing environmentally safe, affordable, and reliable energy services and
products to the marketplace.

The PIER Program conducts public interest research, development, and demonstration (RD&D)
projects to benefit California’s electricity and natural gas ratepayers. The PIER Program strives
to conduct the most promising public interest energy research by partnering with RD&D
entities, including individuals, businesses, utilities, and public or private research institutions.

PIER funding efforts focus on the following RD&D program areas:

¢ Buildings End-Use Energy Efficiency

e Energy-Related Environmental Research

e Energy Systems Integration

e Environmentally Preferred Advanced Generation

¢ Industrial/Agricultural/Water End-Use Energy Efficiency
¢ Renewable Energy Technologies

e Transportation

In 2003, the California Energy Commission’s PIER Program established the California Climate
Change Center to document climate change research relevant to the states. This center is a
virtual organization with core research activities at Scripps Institution of Oceanography and the
University of California, Berkeley, complemented by efforts at other research institutions.
Priority research areas defined in PIER’s five-year Climate Change Research Plan are:
monitoring, analysis, and modeling of climate; analysis of options to reduce greenhouse gas
emissions; assessment of physical impacts and of adaptation strategies; and analysis of the
economic consequences of both climate change impacts and the efforts designed to reduce
emissions.

The California Climate Change Center Report Series details ongoing center-sponsored
research. As interim project results, the information contained in these reports may change;
authors should be contacted for the most recent project results. By providing ready access to
this timely research, the center seeks to inform the public and expand dissemination of climate
change information, thereby leveraging collaborative efforts and increasing the benefits of this
research to California’s citizens, environment, and economy.

For more information on the PIER Program, please visit the Energy Commission’s website
www.energy.ca.gov/pier/ or contract the Energy Commission at (916) 654-5164.
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Abstract

Perennial crops are among the most valuable of California’s diverse agricultural products. They
are also potentially the most influenced by information on future climate, since individual
plants are commonly grown for more than 30 years. This study evaluated the impacts of future
climate changes on the 20 most valuable perennial crops in California, using a combination of
statistical crop models and downscaled climate model projections. County records on crop
harvests and weather from 1980-2005 were used to evaluate the influence of weather on yields,
with a series of cross-validation and sensitivity tests used to evaluate the robustness of
perceived effects. In the end, only four models appear to have a clear weather response based
on historical data, with another four presenting significant but less robust relationships.
Projecting impacts of climate trends to 2050 using historical relationships reveals that cherries
are the only crop unambiguously threatened by warming, with no crops clearly benefiting from
warming. Another robust result is that almond yields will be harmed by winter warming,
although the effects of summer warming on this crop are less clear. Efforts to shift almond areas
or varieties in response to expected temperature changes appear to present limited options for
adaptation. Overall, the study has advanced understanding of climate impacts on California
agriculture and has highlighted the importance of measuring and tracking uncertainties due to
the difficulty of uncovering crop-climate relationships.

Keywords: Global warming, fruits, nuts, climate adaptation, Lasso, Regression Trees






1.0 Introduction

Agriculture is an important component of California’s economy, landscape, and culture, and is
among the human activities most vulnerable to impending climate changes. Two particularly
unique and relevant features of agriculture in California are (1) the diversity of crops grown,
with California the leading U.S. producer of over 80 crops, and (2) the substantial fraction of
agricultural value (roughly one-third according to the California Agricultural Statistics Service
[2006]) derived from long-lived perennial crops, such as grapes and almonds. As perennials
typically remain in the ground for over 20 years, climate changes over the next 20-30 years will
be relevant to crops that have already been planted, and especially to those that will be planted
over the next few years.

The goals of this paper are to assess the potential impacts of climate change on perennial
cropping systems in California over the next 20-50 years, and to identify possible adaptation
strategies to minimize the potential costs and maximize the potential benefits of climate change.
We focus here on effects of changes in average monthly minimum and maximum temperature
and precipitation, and therefore our results do not incorporate the potentially important
additional effects of changes at sub-monthly time scales, such as increased frequency of extreme
events. We consider these latter effects, which are difficult to estimate on a crop-by-crop basis
because of data constraints, in a companion report.

While perennial crops provide a unique opportunity to incorporate climate projections into
decisions made today, they also present some unique challenges compared to projecting
impacts and adaptation options in annual crops. First, the slow growth of perennials makes
experimental warming trials difficult. Second, far fewer models exist to describe perennial crop
growth compared to annual crops, in part reflecting the lack of experimental data. While annual
crop studies can rely on process-based models such as EPIC or CERES, modeling of perennial
crops is limited primarily to statistical models developed from historical variations in weather
and crop harvests. Third, perennials can be affected by weather at all times of the year, while
annual crops are mainly influenced by weather during the summer growing season. Identifying
the particular weather variables most relevant to perennial crop growth can therefore be more
difficult than with annuals.

2.0 Previous Work

In prior studies, we have attempted to summarize the effects of weather on perennial yields
using California statewide average time series of crop harvests since 1980, combined with daily
observations of weather that were spatially averaged according to the distribution of each crop
throughout the state (Lobell et al. 2007; Lobell et al. 2006a). The relatively small dataset (26 data
points corresponding to 1980-2005) dictated that only two to three weather variables be
considered for each crop, the selection of which relied inevitably on subjective decisions based
on exploratory data analysis and physiological principles. For some crops, the relationships
contained too much scatter to say anything very useful about impacts of future warming, but
for others the models indicated clear negative responses to warming.



Almonds, in particular, exhibited a strong negative response to nighttime temperatures (Tmin)
in February (Figure 1a), and for projections of warming we estimated a roughly 10% loss of
almond yields by 2030. We note that the importance of this variable is not likely associated with
chilling hour accumulation (CHA), which is often cited as a principal control on nut tree
development and growth, because most chilling hours accumulate in November-January, and
not in February. Indeed, our computations of CHA, following the method of Balacchi and Wong
(2008) for individual stations and then averaging stations based on almond areas, exhibit a
much weaker relationship with almond yields than February Tmin (Figure 1b).

% Yield Anomaly

2850 300 3680 A0 450 SO0
Feb Tmin Nov-Feb Chill Hours Below 45°F

Figure 1. The relationship between California average almond yields (% anomaly from trend) and
almond area-weighted state averages of (a) average February Tmin and (b) chill hour
accumulation between November-February. The best fit second-order polynomial is shown by
gray line, and dashed vertical line indicates average value for 1980-2005.

Instead, we believe the importance of February Tmin relates to the critical period of pollination
that occurs in most varieties in mid-late February. The effective period of pollination is longer
when temperatures are low during the bloom season, as the stigma is receptive to pollen for
longer periods of time (Polito et al. 1996). For example, 2005 had a particularly warm February
and the United States Department of Agriculture (USDA) almond production report stated a
primary reason for low yield expectations was that “bloom was rapid with an extremely poor
set and numerous orchards displayed early petal fall.” While poor pollination appears the most
likely mechanism, it is impossible to tie a statistical relationship to any single process, which of
course causes some concern when applying past empirical relationships to the future. Our
perspective is that the major processes linking weather to yields are likely to be similar over the
next 20-30 years, when climate is not too different than it is today, and therefore the empirical
relationships should be informative in the absence of any more mechanistic predictions.

3.0 Overview of the Current Study

We sought to improve on the past work in three major ways. First and foremost, we analyzed
county level crop and weather data to reevaluate the relationship between weather and yields
for a wide range of perennial crops. There is no obvious scale at which to model weather-yield



relationships. The use of county data has the main advantage that it provides additional data
points, as well as access to a wider range of temperatures than when looking at statewide
averages. However, there are several potential pitfalls when using county level data. First, data
at the county scale are considerably “noisier” than statewide averages, because the number of
tields used to estimate production is limited in each individual county. Second, factors other
than climate vary between counties, so that comparing yields in a cross-section can be
susceptible to omitted variable biases. (Below we evaluate this bias by repeatedly leaving some
counties out of the model training and testing predictions for these counties.)

The second objective was to project impacts through 2050 using down-scaled climate
projections from six climate models, two downscaling methods, and two emissions scenarios.
Third, we sought to assess adaptation options for almonds, which as mentioned above is a very
valuable crop in California and one previously identified as susceptible to warming,.
Specifically, we evaluated (1) whether some almond varieties will be better suited to a warmer
climate than others, and (2) whether some counties will be better suited than others. Both of
these issues are relevant to decisions made when planning new almond orchards, which are
expanding rapidly relative to other crops in California (Figure 2).
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4.0 Approach

4.1. Statistical Yield Models Using County Data

County level area and yield data for 1980-2005 were obtained from the Agricultural
Commissioners’ reports.! Measurements of daily minimum and maximum (Tmax)
temperatures and precipitation (Prec) were obtained for 382 of the National Weather Service’s
Cooperative Stations in California (data provided by Mary Tyree of UCSD). For each county, we
computed daily and monthly averages of each variable for all stations below 200 meters (656
feet) elevation, to avoid inclusion of high-elevation stations removed from agricultural areas
(e.g., in eastern Fresno county). We also computed daily values of chilling hour accumulation
following Baldocchi and Wong (2008), equal to the total estimated hours each day below a
threshold value of 45°F (7.22°C).

This study considers the 20 leading perennial crops, in terms of total state value in 2003-2005
(Table 1). For each crop we consider 72 potential predictor variables: monthly average Tmin,
Tmax, and Prec from the September prior to the harvest year through August of the harvest
year, along with their squares. We consider Tmin and Tmax separately because they are often
not correlated from year-to-year with each other, particularly in winter, and often one but not
the other is highly correlated with yields (Lobell et al. 2006a). Combining the two into average
temperature would therefore degrade model performance in these situations. We consider both
the variable and its square in order to capture nonlinear relationships, as crops often possess an
optimal temperature where yields are maximized relative to both cooler and warmer
temperatures.

To develop statistical models for perennial crops, we must struggle with the fundamental
problem of variable selection. Perennials are affected by weather throughout the year, with each
crop potential responsive to different aspects of climate. Moreover, much less research has
characterized the weather response of perennial crop growth than for annuals. A priori
selection of specific months or climate variables is therefore difficult. At the same time,
including all possible months and variables will result in an over-parameterized model that
tends to overfit the training sample and give poor predictive performance. For this study, we
adopt two statistical procedures commonly used in problems where variable selection is an
important criterion.

! National Agriculture Statistics Service, County Agricultural Commissioners’ Data.
www.nass.usda.gov/Statistics_by State/California/Publications/AgComm/indexcac.asp
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Table 1. Leading perennial crops in California, ranked by 2003—-2005 average total statewide gross

cash income, in millions of dollars

Rank  Crop 2003 2004 2005 AVERAGE
1 Almonds 1,600 2,189 2,337 2,042
2 Grapes, Wine 1,543 1,605 2,215 1,787
3 Berries, Strawberries* 1,173 1,206 1,110 1,163
4 Hay, All 544 609 703 618
5 Grapes, Raisin 348 616 567 510
6 Walnuts 378 452 540 457
7 Grapes, Table 407 535 384 442
8 Pistachios 145 465 577 396
9 Oranges, Navel 290 418 363 357
10 Avocados 365 375 280 340
11 Lemons 218 271 319 270
12 Berries, Bushberries 146 209 224 193
13 Oranges, Valencia 131 142 218 164
14 Peaches, Freestone 139 110 157 135
15 Peaches, Clingstone 108 141 122 124
16 Plums, Dried 132 121 81 111
17 Nectarines 119 86 120 109
18 Cherries 107 123 85 105
19 Grapefruit 69 68 130 89
20 Plums 87 74 92 85

*Although strawberries are perennials, they are re-planted each year in most of California
Source: USDA

The first is the least absolute selection and shrinkage operator (Lasso) model, which is a

variation on ordinary least square (OLS) regression that “shrinks” the regression coefficient
towards zero to avoid overfitting (Hastie et al. 2001). In statistical terms, the Lasso model adds a

little bias to the model in return for a larger reduction in variance. In the Lasso, coefficients for

many variables can be shrunk to zero, so that resulting model only uses a subset of the initial set
of variables. As described in Efron et al. (2004), the Lasso can be viewed in this respect as a form
of stagewise variable selection, as opposed to the more unstable method of stepwise variable
selection. While the statistical details of the Lasso model are beyond the scope of this report,
more information can be found in the previously cited references. Here we implement the Lasso
using the “lars” package in R. An important decision in the Lasso is when to stop the stagewise

process that shrinks the coefficients. Here we use the common approach of selecting the model



with the minimum value of the complexity parameter Cp, which provides an estimate of out-of-
sample prediction error.

The second statistical approach we use on the county data is regression tree modeling.
Regression trees work by searching for the variable and value of that variable that best splits a
dataset into two subsets, where “best” is defined as the split that achieves the maximum
difference between the averages of the two subsets. Each split, called a daughter node, is then
treated as its own dataset and the process is repeated recursively. For this reason, the method is
also described as recursive binary partitioning. The resulting tree model uses the mean of each
node as the prediction value, so that it effectively fits a piecewise constant function to the data.
Regression trees are an increasingly popular tool in data mining, as they possess many
attractive features such as automated variable selection, low sensitivity to outliers and missing
data, and an ability to capture interactions between variables. Here we implement regression
trees using the “rpart” package in R. The tree was grown until no split improved model R? by
more than 0.01, and then it was pruned by eliminating nodes until R? decreased by more than
0.05. The pruning procedure is a common technique to avoid overfitting the model to the
calibration dataset.

Both the Lasso and regression tree models are imperfect. For example, the Lasso is a linear
model that is incapable of capturing important interactions between weather in different
months. Regression trees fit piecewise constant functions and thus provide crude
approximations to linear relationships. By employing both techniques, we sought to identify for
each crop where the relationships between weather and yields were robust enough that model
choice had a relatively small effect on inferred impacts. In such cases, the assumptions that vary
for the two methods can be viewed as having a small effect on the results.

However, comparison of the two methods does not reveal the importance of assumptions that
both share. One particular concern is that differences among counties that appear due to
weather are, in fact, associated with omitted variables that are correlated with weather. Possible
omitted variables include soil quality, topography, and management techniques. To examine
sensitivity to omitted variables, we used three approaches.

First, we simply plotted the yield data versus each climate variable identified as important in
the Lasso model, with each county coded by a different color. This allowed us to visually
examine whether the correlation was driven largely by differences among counties.

Second, we performed a bootstrap analysis of model performance, where for each of 100
iterations we removed one-third of the counties from the calibration procedure. The model
calibrated on the other two-thirds of the data was then used to predict yields for the test subset,
and the R? was computed between predicted and actual yields. Cases where the test R? was
substantially lower than the training R? indicated the possible presence of omitted variable bias.

As a third check against omitted variables, we selected the five most important variables
identified from the Lasso analysis and performed an OLS regression with and without a
dummy variable for county (i.e., a county fixed-effect). Model predictions for the average



statewide impact of a 2°C (3.6°F) warming were compared for the two models, and when the
answers diverged it indicated the presence of strong county-fixed effects.

An overview of the modeling process for the county level models study is given in Figure 3.
Only for models that appeared robust, namely with relatively high R? and low sensitivity to
model structure and fixed-effects, did we then attempt to project impacts of future climate
change. Figure 3 indicates which of the 20 crops were considered robust and which were
eliminated for each reason. While all model evaluation was based on statistical tests, more
qualitative work could be done to verify the model coefficients in the future, for example by
surveying growers on their impressions of the most important weather variables.

Calibrate Lasso Model

V

2 .
%
Test R">0.15: (1) Grapes, Raisin; Pistachios ;
\l/ yes Oranges, Navel; Avocados; Lemons
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Insensitive to fixed- no (2) Peaches, Clingstone ; Plums, Dried;
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. no (3 4) Almonds ; Strawberries; G
Qualitative Agreement (4) Almon >/ SHTAWBErTIes, Brapes,
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regression tree model?

J ves (4)

Use Lasso model to project future impacts

* Evaluated by calibrating model on 2/3 of counties and testing on remaining 1/3 of counties,
repeating 100 times and computing average prediction R?

** Evaluated by comparing ordinary least square regression model with top 5 Lasso variables , with
and without county fixed-effects

Figure 3. Overview of steps taken to model yield responses using county-level data

4.2. Projections of Climate Change Impacts through 2050

The crop models developed here were then combined with climate change projections to assess
potential impacts through 2050. We limit our projections to 2050 because temperatures beyond
this date are frequently beyond the range of temperatures used to fit the statistical models. We



emphasize that these projections are conditional on the assumption of no adaptation, and
therefore are unlikely to represent the true future course of yield impacts. However,
understanding the potential impacts in the absence of adaptation is a critical step towards
planning and prioritizing adaptation options.

We used climate projections from six general circulation models and two emission scenarios
(Special Report on Emissions Scenarios [SRES] A2 and B1), which were downscaled using the
bias-corrected spatial downscaling (BCSD) method of (Maurer et al. 2002). Average monthly
values of Tmin, Tmax, and Prec for 1950-2099 were computed for each of the 12 model
simulations and averaged for each county over the portion of the county classified as
agriculture in a California map of management landscapes.? This latter step was important to
ensure that the climate model data were consistent with the extent of observational station data
used in the crop model calibration, which were limited to low elevation areas. Their agreement
was confirmed by comparing the climatology of simulated and observed temperature and
precipitation averages in each county over the observation period of 1980-2005 (not shown).

The county averages of monthly climate model simulations were then fed into the crop models
to project yields for each county for 1950-2099, assuming the technology of 2000 (the predictor
“year” was held constant at 2000). Statewide average yields were computed by assuming the
current distribution of crop area within California. The results are presented as percent changes
from the 1995-2005 average yields, and as 21-year moving averages to emphasize the trend
rather than year-to-year variability. We present projections only out to 2050 because

(1) projections beyond this time period require substantial extrapolation of the statistical
models, and are therefore less reliable, and (2) from our perspective most decisions in the
agricultural sector have a timeline of 50 years or less.

Finally, to estimate the uncertainty associated with the climate projections, the yield projections
were made for each of the 12 climate model simulations (six models x two emission scenarios).
To estimate uncertainty associated with the crop models, the projections were repeated using
crop models generated from bootstrap samples of the historical data. We present results both
for climate uncertainty only and for the combination of climate and crop uncertainty.

4.3. Almond Varieties

As almonds are California’s single most valuable perennial and are susceptible to winter
warming (see below), we investigated whether different common commercial varieties have
differential sensitivity to warming. If so, planting of more heat-tolerant varieties could be
pursued as an adaptation strategy. Data on statewide production of individual varieties since
1980 were obtained from the Almond Board of California (courtesy of Sue Olson - Associate
Director, Statistics & Compliance). Corresponding data on statewide areas of individual
varieties were obtained from the USDA’s National Agricultural Statistics Service, California
Field Office (courtesy of Jack Rutz, Deputy Director).

2 california Department of Forestry and Fire Protection, FRAP. http://frap.cdf.ca.gov.



http://frap.cdf.ca.gov/

The time series of each variety were then analyzed separately in an identical manner to the time
series of total almond production (Lobell et al. 2007). Briefly, statewide average time series of
Tmin, Tmax, and Prec were generated by averaging station data according to the fraction of
2003 statewide area for the specific almond variety that was found in the county. The almond
production and yield time series were then detrended using a linear trend, and an
autoregressive model was used to remove the autocorrelation that is often present in time series
of alternate bearing crops such as almonds. The production and yield anomalies were then
regressed against February Tmin. Here we present the results for the production data, since the
relationships were slightly stronger and since production statistics are more reliable than area
or yield statistics (Jack Rutz, personal communication), although results for the two variables
were similar.

5.0 Results

5.1. County Scale Yield Models
5.1.1. Lasso Models

Twelve of the 20 perennial crops considered did not exhibit any clear relationships between
weather and yields, with the models able to capture less than 15% of the variation in the yield
data not used to calibrate the model. For the remaining eight crops, the models were able to
explain more than 46% of the variance in training data, and, with the exception of table grapes,
more than 20% of the test data (Figure 4).

The coefficients for the eight successful models, which are useful for understanding which
temperature variables most closely relate to yields, are summarized in Figure 5. These
coefficients were derived from a single computation of the Lasso using the full dataset (as
opposed to the R? statistics which were derived by repeated calibrations to subsets of the data).
Rather than display in units of absolute yields, these values are expressed in terms of the
percent change in statewide average yields that would result from a uniform 2°C increase in
each variable (Tmin and Tmax for each month.) Of course, because each variable is represented
by a second-order polynomial, a positive response to 2°C warming does not necessarily imply a
positive response to greater magnitudes of warming. However, we consider 2°C to be a
reasonable approximation for the magnitude of warming expected by 2050 (see below).

For some crops, such as wine grapes, strawberries, and walnuts, the selected Lasso model
possessed non-zero coefficients for most temperature variables. For others, such as table grapes
and cherries, the majority of coefficients were shrunk to zero, indicating that weather in most
months has insignificant effects on yields of these crops.

Several patterns emerge from these models. For some crops, there appear to be parts of the year
where warming is beneficial and parts of the year where warming is harmful. For example,
warming in January and February significantly reduces yields of almonds, but yields appear to
be enhanced by warming in May and July. Wine grapes, strawberries, and walnuts show a
qualitatively similar pattern of yield losses for warming throughout the winter but yield gains
from warming in summer months. Freestone peaches exhibit an opposite pattern, with winter



warming — particularly at night—beneficial, but warming during the summer extremely
harmful.
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Figure 4. Model R? for training and test datasets for each crop with an average test R* greater than
0.15. The twelve other crops considered in this study did not meet this criterion. Black point
indicates training R for full dataset, red indicates test R* when omitting one-third of years from
calibration and using these to test the model, and blue indicates test R when omitting one-third
of counties. Lines indicate 95% confidence interval based on 100 repeated tests with a different
(random) one-third omitted.

Cherries and table grapes exhibit a different pattern, where warming rarely has a benefit at any
time of year. The case of cherries is especially stark, with yields harmed by warming
throughout November-February, the primary months in which trees accumulate chilling hours.
The greater importance of Tmin than Tmax in these months supports the notion that reduced
chilling (which occurs mainly at night) is the culprit for yield losses.
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Figure 5. Summary of temperature coefficients for Lasso model, expressed as % change in state average yields for a 2°C warming. Blue
and red bars indicate Tmin and Tmax, respectively, for each month. Coefficients without bars were shrunk to zero by the Lasso model.
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5.1.2. Fixed-Effects

Now we consider whether these county-level relationships between weather and yields may be
biased by omission of non-climatic variables that vary by county, such as soil quality. This bias
was evaluated by selecting the five weather variables with the largest effect in the Lasso model
(Figure 5) and running an OLS regression with just these variables and their squares. The OLS
regression was then re-run after adding a dummy variable for county. (Dummy variables
cannot be entered in a Lasso model, which is why we resort to OLS models in this section.)

The changes in statewide average yields for a 2°C warming were computed for both OLS
regressions, using bootstrap resampling to estimate a confidence interval. The results (Figure 6)
demonstrate that five of the eight crops appear very insensitive to inclusion of county fixed-
effects, indicating that the Lasso results are not biased by omitted variables. However, three
crops (hay, walnuts, and freestone peaches) were significantly different between the two OLS
models, with non-overlapping 5%-95% confidence intervals.

® Mo county dummy
Almonds all — ® With county dummy o
Grapes wine — '_.T_'.
. N ]

Berries strawberries —

Grapes table — s
Cherries — - . ! |
Hay — o
| b
Walnuts s 4
Peaches freestone — s
T T I T T T
-40 =30 =20 -10 0 10 20

% Change

Figure 6. The predicted change in state average yields for a 2°C warming using ordinary least
square regression models without (black) and with (red) county fixed-effects. Error bars indicate
5%-95% confidence interval based on 100 bootstrap replicates. Large differences between the
two indicate the potential importance of omitted variables, such as soil quality, that vary by
county. The models contained the five temperature variables deemed most important in the
Lasso model. Only three variables were used for table grapes since the Lasso model included
only three temperature variables.
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Figure 7 displays a scatter plot of yields versus an apparently important weather variable for
each of these three crops, with each county represented as a different color. The problem of
fixed-effects is best exemplified by freestone peaches, where the results from the OLS models
with and without fixed-effects diverged most dramatically. A plot of daytime temperature in
August and yields reveals that a single county, Riverside, has particularly high temperatures
and low yields. (Even when Riverside is removed from the analysis, however, the sensitivity to
county-fixed effects remains.)
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Figure 7. Scatter plots of yields vs. selected temperature variable for three crops with sensitivity
to county fixed-effects. Each data point represents an individual county-year, with each county
represented by a different color.

A sensitivity of results to fixed-effects indicates that much of the perceived effect of weather is
obtained by comparing yields across counties, rather than by comparing across years. It does
not necessarily indicate that weather is not the true reason causing yields to differ among
counties. However, one cannot rule out the possibility that other differences among counties
explain at least part of the yield differences. There is therefore no obvious choice between a
model with and without fixed-effects, and here we simply point to the crops that are sensitive to
this choice. For crops that are insensitive to this choice, such as almonds and grapes, the models
utilize differences between counties but are not entirely dependent on them, as evidenced by
the similar results when the model is limited to using only differences across years.

5.1.3. Comparison of Lasso and Regression Tree Models

We next consider the importance of model structural assumptions. In particular the OLS and
Lasso models assume that yield response to weather can be represented as a second-order
polynomial, with no interactions among variables. In contrast, the regression tree models use
piecewise constant fits and are capable of capturing interactions and higher order nonlinearities.
Figure 8 compares the inferred sensitivity of statewide average yields to a 2°C warming for the
Lasso and regression tree models for each crop. For many of the crops the two models provided
predictions that were qualitatively consistent, with overlapping confidence intervals. An
important exception was wine grapes, where the Lasso predicts on average a statewide loss of

13




roughly 15% for 2°C warming while the regression tree predicts a 5% increase. The regression
tree model can choose different variables for each bootstrap iteration, so it is difficult to describe
exactly why it shows an increase. However, when fit to the entire dataset for wine grapes, the
regression tree chose as predictor variables only August Tmin and Tmax, which tend to be
higher in the Central Valley counties with higher yields.
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% change

Figure 8. The predicted change in state average yields for a 2°C warming using the Lasso
(black) and regression tree models (red). Error bars indicate 5%-95% confidence interval
based on 100 bootstrap replicates. Large differences between the two indicate the potential
importance of structural assumptions in the models.

Of course, for wine grapes the major concern is not total production but the quality of the
grapes for winemaking. While coastal counties have varieties with lower yields, they produce
wine with much greater economic value. Therefore, a shift to Central Valley yields and varieties
would likely reduce, not increase, total agricultural value. While this study does not focus on
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climate change and wine quality, previous studies have concluded that wine quality could
suffer from more frequent summer heat extremes (Hayhoe et al. 2004; White et al. 2006).

To summarize, the regression tree models generally support the Lasso results, with the
exception of wine grapes. We therefore do not place great confidence in the Lasso predictions of
lower wine grape yields with warming. At the same time, the yields of wine grapes in a future
climate will be far less important than the quality of grapes that can be grown.

5.1.4. Comparison with Previous Studies

Of the eight crops with significant models using county-scale data, four were also considered in
previous work using statewide averages. Table 2 shows the variables and coefficients used for
these crops. Of these crops, the model for table grapes agreed well at the two scales, with both
the county and state models indicating modest declines in statewide average yields for
warming. For walnuts the model from county data was ambiguous because of the sensitivity to
fixed-effects. In the state model, walnuts showed a modest decline because of sensitivity to
November temperatures. The county OLS model with fixed-effects showed similar declines for
warming (Figure 6), while the OLS model without fixed-effects and the Lasso model exhibited a
positive response to warming.

As shown in Figure 8, the estimated response of wine grape yields to warming with county data
was negative when using the Lasso but positive for a regression tree model. The state model
exhibited a very small sensitivity to warming, falling between the predictions of the two county
level models. A reasonable estimate for wine grapes may therefore be little change in statewide
average yields for warming.

The most striking difference between the state and county models was for almonds, the single
most valuable perennial crop in California. The county models indicate a very low sensitivity to
a uniform warming of 2°C throughout the year, with the result apparently robust to omitted
variables and structural assumptions. The state model, which relied solely on February Tmin
for temperature response, shows instead a negative response to warming. Importantly, the
county model also shows a strong negative effect of February warming (Figure 5). In fact, the
inferred effect of February Tmin on yields is nearly identical when using the county or state
average data over the range of temperatures seen in the state model (Figure 9). The county
model possesses a larger range of temperatures, and thus is also able to capture the reduction of
yields at very cold temperatures.
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Figure 9. The inferred relationship between February Tmin and state average almond
yields using (a) state-wide average yields and (b) county-level data. The shaded area in
(b) indicates the range of temperatures for the state model in (a). The red lines show the
relationship when using all data, and black lines show the relationship for 50 bootstrap
samples. The units of yields are the percentage above the value of yield at the average
statewide temperature, which is indicated by vertical dashed line.
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As discussed above, the small net effect of temperature on almonds in the county model arises
from a beneficial effect of spring and summer warming that cancels the effect of winter
warming. To test whether the state model would also exhibit this response if summer
temperatures were included in the model, we performed a stepwise OLS regression where we
added variables to the original state model (Table 3). The variables added are the two that had
the biggest positive effect in the Lasso model: May and July Tmin.

Table 3 displays the model R?, as well as the predicted response to uniform 2°C warming for a
model using only statewide averages and a model using county-level data. The county and state
models give nearly identical results of ~13% yield loss when using the original two variables of
the state model: February Tmin and January Prec. When May Tmin is added, the county model
R? improves substantially, while the projected loss is reduced by half to 6%. In the state model,
the R? also improves but the mean projected impact changes very little. In addition, the
confidence interval becomes wider because with six variables (three weather variables plus
their squares) and 26 data points, the model exhibits a higher variance for bootstrap resampling
that is symptomatic of overfitting.

When July Tmin is added, both the county and state model impacts are reduced by roughly 3%.
Here the state model becomes very variable and the confidence interval widens further. The
main difference between the two models is thus the strong beneficial effect of May Tmin
warming in the county model that is simply not evident in the statewide average time series.
According to Kester et al. (1996), May is the critical month of embryo growth and hardening,
and “adverse conditions and stress in this period can seriously lower quality and reduce weight
of the mature nut” (p. 96). Thus, it is at least plausible that warming in May does substantially
benefit almond yields.

A possible explanation for the lack of this effect in statewide time series is that it is too short to
accurately measure this effect. To assess this, we obtained weather records and average almond
yield data back to 1960 and repeated the OLS analysis at the state scale, with results shown in
the right columns of Table 3. When using this longer record, the model agrees remarkably well
with the county model that showed a significant benefit of May warming. Thus, the balance of
evidence leads us to believe that spring warming will, in fact, benefit almond yields enough to
offset much of the losses incurred from winter warming.
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Table 2. Models developed from statewide average data for four perennial crops (ref). Y represents yield anomaly (ton acre™).
Subscripts indicate month of climate variable, with negative values denoting a month from the year prior to harvest. Tn = minimum
temperature (°C), Tx = maximum temperature (°C), P = precipitation (mm).

Crop Equation R’adi
Wine grapes Y =2.65Tns—0.17 Tna” + 4.78 P¢—4.93 P>~ 2.24 Po + 1.54 P.s> — 10.50 0.66
Almonds Y =-0.015 Tn, — 0.0046 Tn,” — 0.07 P, + 0.0043 P,>+ 0.28 0.88
Table grapes Y =6.93 Tn;—0.19 Tn;%>+ 2.61 Tns — 0.15 Tns> + 0.035 P; + 0.024 P;% + 1.71 P10 — 0.673 P.;o> — 73.89 0.77
Walnuts Y =0.68 Tx.1; —0.020 Tx.;;* + 0.038 P, — 0.0051 P,* - 5.83 0.59

Table 3. Ordinary Least Square models for almond yields using statewide average or county level data from 1980-2005 and using
statewide average data for 1960-2006. Model R”and the estimated impact of 2°C warming is shown for four models of increasing

complexity.
State, 1980-2005 County, 1980-2005 State, 1960-2006
Variables R? Estimated sensitivity | R® Estimated sensitivity | R Estimated sensitivity
to +2°C to +2°C to +2°C
mean 5th 95th mean  5th 95th mean 5th 95th
O%tile  %tile %tile  Ytile %tile %%tile
Feb Tmin 0.55 149 230 55 |025 -157 -196 -12.2 |035  -145 -21.6 -7.9
Feb Tmin, Jan Prec 0.74 135 202 -7.4 |032 -126 -148 -99 |043  -12.4 -197 -6.2
Feb Tmin, Jan Prec, May Tmin 0.81 145 282 54 |04l -63 -99 31 |047 57  -134 09
0.86 -11.8 -24.0 0.3 0.46 -3.1 -9.5 2.3 0.48 -1.4 -14.4 148

Feb Tmin, Jan Prec, May Tmin, Jul Tmin
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5.2. Projected Impacts of Climate Change

The climate model projections indicated similar patterns in each county, with temperatures for
Fresno displayed in Figure 10 as an example. The two emission scenarios give similar average
temperature changes until roughly 2040, indicating that the next 30+ years of climate change are
“locked-in” because of inertia in the climate and energy systems (Meehl et al. 2007).
Temperature changes are slightly more rapid in summer months than in winter months, a result
that likely reflects a simulated warming feedback from soil moisture decreases in summer
months. As discussed in Lobell et al. (2006b), the representation of soil moisture feedbacks in
general circulation models is questionable in agricultural areas, since none represent the
irrigated conditions that exist in the Central Valley. Nonetheless, we use these climate scenarios
in the current study without adjustment for this potential bias and discuss the potential
implications of the bias below.
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Figure 10. Projected change in average monthly temperature for (a) January and (b) February.
Each thin line shows an individual model projection, with red representing an A2 emission
scenario and blue representing B1. Thick lines show the model average for each emission
scenario. The results are presented as changes ("C) from the 1980-1999 climatology, and as 21-
year moving averages to emphasize the trend, rather than year-to-year variability.

The simulated impact of climate change on statewide average yields for the four crops with the
most reliable crop models are shown in Figure 11, assuming no shift in crop areas. For almonds,
the trend is slightly positive with a projected increase of less than 5% by 2050 relative to current
climate. As seen above (Figure 8), the impact of a uniform 2°C increase was a very small net
change in yield. The slight positive impact of the actual climate projections indicates the greater
warming of summer months relative to winter, with the former benefiting and the latter
harming almond yields in the model.
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Figure 11. Simulated change in crop yields for four crops with most reliable crop models.
The thick blue line shows the average of all projections, the dark shaded area shows 5%—
95% range of projections when using multiple climate models, and the light shaded area
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shows 5%—95% range when using multiple climate models and multiple crop models

(based on bootstrap resampling). The results are presented as percent changes from the
1995-2005 average yields, and as 21-year moving averages in order to emphasize the

trend rather than year-to-year variability.

Average projections for the other three crops indicate negative trends out to 2050, ranging from
less than 5% decreases for table grapes to nearly 20% average loss for cherries by 2050. The
shaded areas indicate substantial uncertainties associated with these projections, arising from

both the climate and crop models. For example, average statewide cherry yields may be
reduced by as much as 30% or as little as 0% by 2050 relative to the climate of 2000.

The average projected impacts for 2030-2050 relative to current climate in each county are

illustrated in Figure 12 for the four most reliable crop models. Overall, the simulated impacts
were fairly uniform throughout California, suggesting limited potential benefits from changing

the spatial distribution of crops within their current growing areas. Slightly more negative

impacts were simulated in the southern part of the state for strawberries and cherries. Again,
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these results have the caveat that the models used here do not consider effects of weather

variables other than monthly averages.

Almonds all % Area, 2005 Almonds all % Yield Change, 2030-2050

Figure 12. Current % of crop area in each county (left) and average projected
changes in county yields (right) for four perennial crops. Yield changes are
expressed as percentage difference between average yields in 2030-2050 and those

in 1995-2005.
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Figure 13 displays projections for the four less reliable crop models, with a slight yield increase
projected for hay, little change for walnuts, a slight decrease for wine grapes, and considerable
decrease for freestone peaches. As discussed above, these results should be treated with more
caution because of the sensitivity of the crop model to treatments of county fixed-effects or
structural assumptions (Lasso vs. regression tree).

Grapes wine Hay
40 40

20 20

W M
O-M O—W
MM

g/
-20 20
—40 40
19I60 19I80 20I00 20I20 20I4O 19I60 19I80 20IOO 20I20 20I40
Walnuts Peaches freestone
40 40

20 20 Vel
0 o TN 2 WM

-40 40
T T T T T T T T T T
1960 1980 2000 2020 2040 1960 1980 2000 2020 2040

Figure 13. Same as Figure 11, but for four crops with less reliable models, due to sensitivity to
fixed-effects or significant differences between lasso and regression tree models
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5.3. Almond Variety Switching as a Possible Adaptation?

For almonds, the most valuable perennial crop in California, the results from the county-scale
model presented above suggested that previous estimates based only on statewide data may
have overestimated warming-induced losses. However, the county model agrees with the state
model in predicting that winter warming, by itself, will be harmful in the absence of adaptation.
An ability to adapt to this warming could thus substantially improve future yields of almond
growers, even if the net effect of climate change without adaptation is small.

Different varieties of almonds have different chilling requirements and blooming periods. A
reasonable hypothesis is therefore that some varieties exhibit lower sensitivity to winter
temperatures than others. Alternatively, because almond varieties are self-sterile and require
other adjacent varieties for successful pollination, the response of any individual tree to weather
reflects the behavior of a collection of varieties, and therefore may not exhibit unique
sensitivities to warming. For example, average annual yields for common varieties (Figure 14a)
exhibit strong correlations over the 1980-2005 period.

1980 1285 20 1995 2000 2005 J I J T T
Yo 3 4 5 6 T
Feb.Tmin.

Figure 14. (a) Time series of statewide average almond yields for five major varieties. (b) The
relationship between production anomalies and February Tmin for five major varieties. Lines
indicate best fit second-order polynomial. No significant differences in the response of different
varieties to February Tmin are evident.

A comparison of production anomalies (in percentage of recent production) with February
Tmin offers little support for the hypothesis that varieties exhibit significantly different
responses to winter warming, as all of the five varieties with sufficiently long records exhibit a
similar negative relationship with February Tmin (Figure 14b). As a result, this study found
little evidence that switching among the current commercial varieties offers a promising
pathway towards climate adaptation.
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Given the self-sterile nature of almonds, it is more likely that a holistic approach to adaptation is
needed, with selection of a group of varieties that are less sensitive to warming. As discussed
above, the most likely explanation for sensitivity to February Tmin is a shortening of the critical
bloom period in warmer years, although this claim deserves further scrutiny. Thus, emphasis
on traits controlling successful pollination may be warranted in variety development and
selection.

6.0 Discussion and Conclusions

The potential impacts discussed above considered the direct effects of temperature and rainfall
on perennial crop yields. Importantly, several other factors related to climate change were not
addressed. First, it was assumed that historical management practices that affect the response of
yields to weather remained constant. Specifically, all of these crops are irrigated in the entirety
of their area, and while they would not be grown without irrigation, declining water resources
related to climate change may force reductions in the acreage grown or the amount of irrigation
applied. Thus, the omission of water resources likely creates an overly optimistic view of net
impacts on the agricultural economy, although decreased water availability will more heavily
impact lower value annual crops than the higher value perennials considered here (Tanaka et
al. 2006).

Second, we did not consider the direct fertilization effect of higher carbon dioxide (COz2) levels,
which according to the SRES scenarios will reach between roughly 450-600 parts per million
(ppm) by 2050. The magnitude of COs fertilization for perennials is not well known. Open-top
chamber experiments with sour orange trees showed substantial yield increases of up to 80%
for a 300 ppm CO: increase, even after 13 years (Idso and Kimball 2001) but studies on other
tree species show substantially lower rates. While the fertilization effect of CO: is relevant to
projections of net yield changes, we argue that this effect is likely to be similar across the range
of perennial species considered here, all of which possess the C3 photosynthetic pathway. The
relative priorities for adapting California crops to climate change therefore should not depend
greatly on the exact magnitude of CO: fertilization.

Third, we also omitted analysis of detrimental effects of high ozone levels, which may become
more frequent and extreme in the next 50 years. Studies with annual crops suggest that losses
from ozone may more than offset the gains from CO: fertilization (Long et al. 2006).

One of the main conclusions of this study is that, among the 20 most valuable perennials crops,
cherries are likely be the most negatively affected by warming over the next decades. This likely
relates to a loss of chilling, but again empirical models cannot unambiguously identify
mechanisms. While cherries rank only eighteenth by average value for 2003-2005 (Table 1), they
are rapidly increasing in popularity. For example, bearing acres of cherries hovered around
10,000 from 1920 to the early 1990s, before increasing to 20,000 in 2000 and 28,000 in 2008.> We
do not consider here whether the economic decisions to maintain existing or establish new

3 California Sweet Cherries, 1920-2006.
www.nass.usda.gov/Statistics by State/California/Historical Data/Cherries.pdf
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cherry orchards would be affected by consideration of lower yields in future climates, but this is
a topic deserving of future study.

Another robust result is that almond yields will be harmed by warming of February
temperatures, as this effect is revealed in both state- and county-level analyses (Figure 9). Less
certain is the beneficial effect of warmer springs and summers, which appear to cancel the
losses from winter warming in the county-level model but not in the state model (Table 3).
Regardless of the summer effect, adaptation of almonds to warmer winters represents a
substantial economic opportunity. Almonds are the single most valuable perennial crop and are
also experiencing a surge in popularity and planted acreage (Figure 2).
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