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Abstract 
A web-based screening tool has been developed to assist urban planners and air quality management 

officials in assessing the potential of urban heat island mitigation strategies to affect the urban climate, 

ozone air quality, and energy consumption within their cities. The user of the screening tool can select 

from any of over 200 US cities for which to conduct the analysis. The mitigation strategies investigated 

include highly reflective (high albedo) construction and paving materials and urban vegetation. The user 

can test a range of  albedo scenarios, vegetation scenarios, or combined scenarios. In addition users can 

simply specify a nominal urban air temperature reduction associated with some undetermined set of 

mitigation actions. The mitigation impact screening tool (MIST) then extrapolates results from a set of 

detailed meteorological model simulations for 20 cities across the US. These meteorological impacts are 

combined with energy and ozone impact models to estimate the impact that the specified mitigation 

action may have on the selected city. The results presented by MIST include a high degree of uncertainty 

and are intended only as a first-order estimate that urban planners can use to assess the viability of heat 

island mitigation strategies for their city. 
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1.  BACKGROUND 
The urban climate is driven by the input of short-
wave solar energy at the surface of the earth. 
Since urban areas tend to have relatively low 
reflectivity to solar radiation (low albedo) much 
of the solar energy is absorbed by the urban 
substrate. Of the energy absorbed at the surface 
some is convected away as sensible heat flux. 
The sensible heat flux depends on the 
temperature difference between the surface and 
the air and in a complex manner on the wind 
profile, vertical mixing characteristics above the 
urban surface, and wind channeling effects of 
the city. Surfaces also lose heat through 
evaporation and transpiration processes that 
convert water from liquid to vapor phase. The 
resulting latent heat flux depends on the 
moisture availability of the substrate as well as 
the underlying humidity in the air near the 
surface. In contrast to the natural landscape 
cities tend to have little vegetation and due to a 
large fractional cover of impervious surfaces 
there also tends to be less surface moisture in 
urban areas (Oke 1982; Owen et al. 1998). 
Another unique component of the urban energy 
balance is the presence of waste heat that is 
emitted from a range of human activities - 
automobiles, air conditioning equipment, 
industrial facilities, and a variety of other 
sources, including human metabolism.  
The result of the complex urban surface energy 
balance is that cities tend to be warmer than 
their rural surroundings. This “urban heat island” 
(UHI) is typically largest in winter and during the 
evening hours (Oke 1981; Travis et al. 1987; 
Yoshikado et al. 1996; Morris and Simmonds 
2001). Nevertheless, the summertime UHI is of 
particular importance due to the consequences 
for urban air quality, air conditioning energy 
consumption, and heat related illness and 
mortality (Tarleton and Katz 1995; Santamouris 
et al. 1999; Bornstein and Lin 2000; Nielsen-
Gammon 2000; Lemonsu and Masson 2002). 
Mitigation strategies have been proposed to 
alleviate the negative effects of the summertime 
UHI (Rosenfeld et al. 1995; Estes 2000; Akbari 
et al. 2001; Sailor et al. 2002). In particular these 
strategies take advantage of insights gained 
from study of the urban energy balance. 
Specifically, they seek to reduce the solar 
radiation absorbed by the surface or increase 
the latent heat flux away from the surface. The 
physical implementation of these strategies 
involves use of highly reflective (high albedo) 
roofing and paving materials and extensive 

planting of urban vegetation. For example, high 
albedo alternatives such as white elastomeric 
coatings can increase the albedo of typical 
commercial roofs from approximately 10% to 
nearly 70% (Rosenfeld et al. 1995). In detailed 
analyses of surfaces that comprise the urban 
fabric Bretz et al. (1998) noted that there is 
significant potential in the US to increase 
pavement and rooftop albedos. For example, it 
is estimated that the surface of Sacramento, 
California is composed of 20% dark rooftops and 
10% dark pavement. The authors suggest that 
the albedo of Sacramento could be increased by 
0.18 using readily available materials.  Similar 
analyses have been conducted to explore the 
potential urban climate impacts of increasing 
urban vegetation and planting shade trees (e.g., 
Sailor 1998; Akbari 2002). The impacts that 
shade trees or high albedo rooftops have on 
individual buildings can be estimated using 
building energy simulation software or estimated 
through the direct monitoring of building energy 
consumption before and after modification of the 
building envelope (e.g., before and after re-
roofing with a high albedo alternative). Mitigation 
strategies, however, may also have a city-wide 
impact associated with the combined effect of 
many modified surfaces. For example, a 
vegetated rooftop (ecoroof) installed on one 
building can reduce the surface temperature of 
that building, and in turn, cool the adjacent air 
that influences the thermal environment of the 
entire city through advection. In order to project 
the potential magnitude of this indirect 
atmospheric effect of mitigation strategies it is 
necessary to use regional (or mesoscale) 
atmospheric models. The atmospheric effect of 
mitigation strategies can, in turn, affect ambient 
air quality, human health, and city-scale energy 
consumption patterns. These effects can be 
estimated using atmospheric model output to 
drive corresponding end point impact models 
(Sailor et al. 2002). Quantification of these 
effects can provide crucial input to urban 
planning and public policy decisions, but is 
typically a costly and time consuming process. 
Traditionally this sort of analysis is carried out 
independently for any city of interest and must 
be repeated for a variety of representative 
atmospheric conditions in order to develop a 
good understanding of the potential costs and 
benefits of such strategies over time (e.g., 
cooling the urban climate generally saves 
energy in summer, but can increase energy 
consumption for heating in winter). 
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2.  MOTIVATION 
As discussed above, research conducted to date 
suggests that albedo and vegetation strategies 
can reduce peak summertime urban air 
temperatures with concomitant impacts on air 
quality and energy use.  The magnitude of 
potential impacts, however, depends on a 
number of factors such as the size of the city 
and its underlying climate. Hence, there is a 
need to develop a useful screening tool to 
provide urban planners with qualitatively 
accurate assessments of various mitigation 
options. The challenge is to develop a tool that 
can easily be applied to any major U.S. city. 
Given the level of resources and computational 
effort required to model the effects of a specific 
mitigation strategy in detail for any one city, a 
streamlined modeling approach is needed.  As a 
result  the U.S. Environmental Protection 
Agency (EPA) commissioned a series of 
streamlined modeling studies (Taha and Sailor 
1997; Akbari and Konopacki 2003; Sailor 2003) 
that laid the foundation for the development of 
this tool.  

3.  OVERVIEW OF METHODS 
The Mitigation Impact Screening Tool (MIST) 
was developed to balance the need for a cost-

effective and quick means of estimating 
performance of mitigation strategies in a wide 
range of cities and the requirement that the 
results from the tool be based on sound 
scientific methods. The general approach behind 
MIST involved first developing a full suite of 
detailed meteorological model simulations for a 
set of test cities. These 20 cities are listed in 
Table 1 along with descriptive data. The suite of 
simulations consisted of control runs for existing 
historical episodes as well as mitigation scenario 
runs for several different levels of albedo and/or 
vegetation mitigation. The atmospheric effects of 
mitigation strategies were then extrapolated to 
other cities through regression analysis. This 
process involved identifying the key 
characteristics that determine the magnitude of 
impact on the urban climate (e.g., population, 
urban area extent, latitude). The estimated local 
climatic effects of mitigation were then used as 
input to other models relating atmospheric 
conditions to the end points of interest – in this 
case, tropospheric ozone air quality and building 
energy consumption. The MIST tool automates 
the process of selecting a city and mitigation 
strategy for the investigation, extrapolates the 
impacts from the existing database of results 
from modeled cities, and summarizes the results 
for interpretation.  

 

 

(a) (b)

(c) (d)

 
Figure 1. Example MM5 modeling domains with fine-grid nests centered over various cites: (a) Detroit 
and Grand Rapids MI; (b) Atlanta GA and Charlotte NC; (c) Washington DC and Baltimore MD; and (d) 
New Orleans and Baton Rouge LA (both within same inner nest). 
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Table 1. List of cities for which detailed meteorological modeling and subsequent statistical air quality 

modeling was performed. Results from these 20 cites form the basis of MIST. 

 

City State Latitude Longitude 
Population 

(2000) 
Area of MSA 

(km2) 

Atlanta GA 33.65 84.42 4112198 16072 

Bakersfield CA 35.43 119.05 661645 21129 

Baltimore MD 39.18 76.67 2552994 8037 

Baton  Rouge LA 30.53 91.15 602894 4349 

Charlotte NC 35.22 80.93 1499293 8908 

Dallas TX 32.90 97.03 5221801 24515 

Detroit MI 42.42 83.02 4441551 11209 

Fresno CA 36.77 119.72 922516 21153 

Grand Rapids MI 42.88 85.52 1088514 15007 

Houston TX 29.97 95.35 4177646 16329 

Los Angeles CA 33.93 118.40 16373645 91431 

Louisville KY 38.23 85.67 1025598 5435 

New Orleans LA 29.98 90.25 1337726 19041 

Philadelphia PA 39.88 75.25 5100931 10250 

Phoenix AZ 33.43 112.02 3251876 37793 

Sacramento CA 38.52 121.50 1628197 11097 

San Diego CA 32.73 117.17 2813833 11716 

San Francisco CA 37.62 122.38 1731183 4663 

Tucson AZ 32.12 110.93 843746 23789 

Washington DC 38.85 77.04 4923153 17914 
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Table 2. Default MM5 model parameters used in all atmospheric model simulations 

 
 

Model Parameter Value(units) Description and Notes 

Surface albedo 17, 15, 13 (%) Residential, commercial/industrial, urban core 

Surface roughness 35, 50, 125 (cm) Residential, commercial/industrial, urban core 

Surface moisture 10, 8, 5 (%) Residential, commercial/industrial, urban core 

Thermal inertia 2.5, 3.3, 2.4 (cal 

cm-2 K-1 s -0.5) 

Residential, commercial/industrial, urban core 

Vertical levels 30 Variable vertical spacing with lowest level at 

approximately 20m, highest level extending to 

10 km 

Horizontal domains 3 nests 18km 6km, and 2km resolution, Mercator 

projection. 

Boundary Layer Scheme Blackadar Determines exchange processes at surface 

Cumulous scheme Grell Determines cloud formation and related 

processes 

Radiation frequency 30 (min) Frequency with which model evaluates radiation 

Time step 45 (sec) Time step for coarse domain. Scales with 

resolution for finer domains 

FDDA False Four dimensional data assimilation turned off 

IMPHYS Simple ice model Explicit moisture scheme 

ICUPA Grell Grell cumulus scheme 

Soil model (ISOIL) 1 5-layer soil model 
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4.  ATMOSPHERIC MODELING 

4.1.  THE METEOROLOGICAL MODEL 
The mesoscale atmospheric model used to 
assess city-scale atmospheric effects of 
mitigation strategies is version 3.4 of the MM5 
model from the National Center for Atmospheric 
Research (Guo and Chen 1994; Civerolo et al. 
2000; Grell et al. 2000). The MM5 is a 
prognostic model useful for multi-day 
simulations of domains with horizontal extent 
ranging from tens to thousands of kilometers. It 
allows for nesting of higher resolution domains, 
and uses a uniform horizontal grid structure with 
a terrain-following vertical coordinate. As 
implemented in this work the MM5 model 
consists of 4 preprocessor steps, a model 
integration (forecast) step, and post-processing 
analyses. The MM5 model and its preprocessors 
each have control files that specify a large 
number of simulation options, ranging from 
parameterization of exchange processes at the 
surface to parameterization of cloud processes. 
While it is common practice to optimize the 
selection and combination of physics options for 
the particular geographic location and weather 
pattern under investigation, the underlying goal 
of this work dictated the standardization of 
model options across all cities and episodes 
modeled. 

4.2.  DOMAIN DEFINITIONS 
In all simulations we defined three levels of 
nests with resolutions of 18km, 6km, and 2km. 
The finest scale nests were centered over urban 
areas and in some cases a single simulation 
would include multiple 2km nests covering 
multiple cities within general proximity to one 
another. Figure 1 illustrates the typical nested 
domain structure. The land use data used to 
specify surface characteristics in all domains 
were from the MM5’s default USGS land use 
data base. The spatial resolution of these data is 
30 second (~0.9 km). Recent aerial photos were 
used to make modest refinements to the default 
land cover data to account for changes in 
physical extent of the urban areas. Furthermore, 
the original “urban” land use category from the 
USGS categorization scheme was refined to 
allow for three urban subcategories – residential, 
commercial/industrial, and urban core. Surface 
characteristics for these land uses were 
modified from the default USGS values to better 

reflect surface characteristic variation within 
urban areas. 
As noted above, in running the MM5 there are a 
large number of simulation parameters that need 
to be defined. These include the time step, 
definition of vertical model levels, parameters 
defining how observations are used in defining 
boundary/initial conditions, frequency of 
radiation update, choice of boundary-layer 
scheme, cloud physics, and other parameters. 
To ensure uniform application of the MM5 for all 
domains we adopted a fixed set of default 
options. The most significant of these 
parameters are summarized in Table 2 along 
with the associated default values for the control 
simulations. 

4.3.  CONTROL SIMULATIONS 
Baseline and mitigation scenarios were based 
on the fundamental set of model parameters 
discussed above. For the baseline simulation all 
runs were initialized at midnight GMT (00Z) of 
the first day. The simulations were integrated 
forward in time for at least 30 simulation hours, 
and results were analyzed after a 6 hour spin-up 
period. Initial simulations with longer spin-up 
periods did not significantly alter the analysis 
results. Most modeled episodes were two to four 
days in length. For these simulation domains (in 
the continental US), the initialization of 00Z 
(midnight GMT) corresponds to early evening of 
the previous day. A streamlined validation was 
performed where hourly temperature data from 
the nearest major airport weather station were 
compared with the near-surface air temperature 
predicted by the MM5 control simulations. Figure 
2 illustrates typical model performance for multi-
day simulations. As can be seen in this figure, 
the MM5 is capable of capturing general diurnal 
characteristics as well as multi-day warming or 
cooling periods. In general, predictions of 
maximum temperatures are more accurate than 
those of minimum temperatures. In an effort to 
capture key weather patterns contributing to 
poor air quality, multiple episodes (typically 2-4) 
were modeled for each of the 20 test cities. 
Figure 3 is a scatter plot of measured versus 
predicted air temperatures for all simulation 
hours for the Philadelphia domain. This figure 
represents 547 simulation hours over 9 separate 
simulation episodes averaging 60 hours each. 
The correlation exhibited in this figure is 0.89 
and the root mean square error is 1.9 oC. These 
results are typical of all simulations conducted 
for all 20 test cities. 
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Figure 2. Typical meteorological model performance for multi-day simulations for Philadelphia. 
Simulations are initiated at 00 GMT on (a) July 3, 1999 and (b) July 26, 1999. Solid line is observed air 
temperature at Philadelphia International Airport (PHL) and symbols are the MM5 model predictions 
averaged over the urban grid cells corresponding to the city of Philadelphia. 
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Figure 3. Scatter plot illustrating correlation between meteorological model output and corresponding 
airport weather station. Philadelphia as an example. 
 
 
 

 
 

4.4.  MITIGATION SIMULATIONS 
After running the baseline simulations we modeled 
surface changes to represent various mitigation 
scenarios. To implement these strategies in the 
MM5 we altered the land use definition file to 
modify all urban cells. Mitigation scenarios were 
based on simple and uniform perturbations of 
surface characteristics for all urban (residential, 
commercial/industrial, urban core) grid cells. 
Mitigation scenarios included cases of 0.1 and 0.2 
increase in vegetative cover and albedo 
(separately and simultaneously). This level of 
modification is consistent with estimates of 
achievable potential for modification from several 
urban fabric studies (Bretz et al. 1998; Akbari et al. 
2001). 
The albedo modification was implemented by 
directly modifying the albedo of each urban grid 
cell. This is possible because albedo is a 
fundamental parameter in the model. Vegetation, 
on the other hand, is not a fundamental parameter 
in the MM5 model. So it must be modeled through 
changes to other surrogate parameters. The 
approach we took was to assume that adding 
vegetative cover to an urban grid cell is equivalent 
to replacing part of the urban land in that grid cell 
by a vegetative land cover class considered to be 

representative of urban vegetation. The surface 
characteristics of the urban land use were then 
modified to reflect an appropriate weighting 
between those corresponding to an urban cell and 
those corresponding to a completely vegetated 
cell. The USGS land use category used as a 
surrogate for urban vegetation is the Deciduous 
Broadleaf category. This land use differs from the 
urban land use categories primarily in terms of 
albedo, moisture availability, roughness, and 
thermal inertia, with values of 0.16, 0.30, 0.5m, 
and 4.0 cal*cm-2K-1s-0.5, respectively. 
For any surface characteristic, P, the effect of a 
fractional increase in vegetative cover (fveg) was 
modeled according to: 
   

( ) vegvegvegurbannew PffPP ⋅+−⋅= 1 . (1) 
 
Accordingly, for fveg=0 the grid cell is assigned 
purely urban characteristics (Purban), and as fveg 
approaches 1.0 the surface characteristics 
become those of completely vegetated land (Pveg). 
As an example, consider an urban grid cell for 
which we wish to represent a 0.20 increase in 
vegetative cover. The initial urban moisture 
availability for this cell would be 0.10. The 
moisture availability of a completely vegetated cell 
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would be 0.30. The moisture availability for the cell 
after an increase of 0.2 in vegetative cover would 
correspond to: 
 

( ) 14.030.020.020.0110.0 =⋅+−⋅=newM (2) 
 
Upon completion of all meteorological model 
simulations the near-surface hourly air 
temperature averaged over each city was 
extracted from each control and mitigation run. 
The corresponding air temperature perturbation 
was then calculated for use in estimating air 
quality and energy impacts of the mitigation 
strategies. 

4.5.  LINKING METEOROLOGY TO OZONE 

AIR QUALITY IMPACTS 
The traditional approach to modeling the impact of 
mitigation measures on ozone is to select one or 
several historical episodes for which ambient air 
quality standards were violated and model these 
episodes using the historical land use/cover and 
then using a set of modified surface characteristics 
(e.g., (Taha and Sailor 1997; Taha et al. 1998). 
The modeling includes both a mesoscale 
meteorological component and a photochemical 
component. The use of physically-based models in 
such a situation is generally desirable and under 
ideal circumstances should result in good 
predictive power. Furthermore, this approach has 
the support of the regulatory community. At the 
same time, there is concern that these models  
(with their numerous input parameters) can easily 
be overfit for a particular simulation domain and 
episode, or even for several episodes. This 
approach is also prohibitively resource intensive to 
implement for such a large number of test cities 
and episodes. For the purposes of this study a 
sophisticated but easily implemented statistical 
approach was needed. This streamlined air quality 
modeling approach is intended to identify the 
order-of-magnitude air quality impacts associated 
with a particular mitigation strategy. 
The Tree Structured Regression (TSR) 
classification method represents a suitable 
compromise between accuracy and simplicity. 
TSR builds a binary-tree-like model with nodes 
(Breiman, 1984). Originally all the data points in 
the learning sample reside in a single root node. 
So if there are 500 historical days for use in model 
training the root node would contain the 
corresponding set of 500 data vectors. Each data 
vector consists of the dependent variable (e.g., 
ozone concentration), and a number of weather-

related independent predictor variables. By 
continuously posing and answering classification 
questions, every data point flows from the root 
node down to the next level of nodes. The 
classification questions are binary and are 
constructed to maximize the difference of 
predicted ozone in the two descendant nodes (e.g. 
one node contains data vectors for days with 
relatively high ozone and the other has days with 
relatively low ozone). It is important to note, 
however, that this partitioning of the data vectors 
is based on values of the weather-related 
parameters, not the actual values of ozone. Finally 
each data vector (day of data) attaches to a 
terminal node. All the nodes are formed 
automatically during the process. The key 
elements of TSR involve developing the questions 
(splitting rule), determining when the tree is large 
enough (stopping rule), and deciding how to 
characterize data points that reside in any terminal 
node (assigning rule). 
Within each terminal node a multiple linear 
regression (MLR) was used to predict peak ozone 
concentrations for the corresponding weather 
pattern. The EPA has two metrics of ozone air 
quality. First they consider maximum ozone 
concentrations in any single hour (1-hr ozone). 
They also consider the maximum average ozone 
concentrations over any consecutive 8-hour period 
(8-hr ozone). Ozone air quality is considered to be 
unhealthy when the 1-hr and 8-hr values exceed 
120 ppb and 80 ppb, respectively. Hence, our 
analysis developed TSR Ozone models for both 
the 1-hr and 8-hr standards. 
The predictor variables we chose are largely 
based on the recommendations from existing EPA 
guidelines. Our models generally started with 10 
predictors– day type, precipitation, pressure, 
previous day ozone, average relative humidity, 
average temperature, maximum temperature, 
average wind speed, temperature at 850 hpa level 
(T850), and geopotential height at 500 hpa level 
(HT500). All average variables were hourly 
observations averaged over the day time period 
from 8:00 am to 7:00 pm (local time) to correspond 
to the time frame during which ozone precursors 
are emitted and converted to ozone via the 
complex photochemical reaction chain. Cloud 
cover data for many of the cities are incomplete 
and so were not included in our final analysis. Our 
“day type” variable replaced the day of week 
variable suggested in EPA guidelines for ozone 
modeling. The day type variable has 2 possible 
values, work day or non-workday. The main point 
of this parameter is to separate out days that may 
have more substantial emissions (weekdays). As it 
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turns out the TSR methodology consistently 
resulted in models for which temperature and 
humidity variables dominated the tree structure. 
Temperature is important as it is highly correlated 
to emissions rates from biogenic and 
anthropogenic sources. Temperature is also an 
important parameter due to its role in determining 
rate constants for many important atmospheric 
chemistry reactions that are part of the complex 
ozone formation/destruction cycle. Humidity is 
important in affecting ozone in part due to its role 
in pollutant removal by vegetation and also the 
way in which water vapor affects several important 
reactions in the photochemical cycle. 
Commercial software (Cubist – 
www.rulequest.com) and 5 years of historical data 
were used to generate ozone models for each of 
the study cities. As the ozone season in the U.S. is 
generally considered to occur within the months of 
April to October we restricted our model 
development to use training data from only this 
portion of the year.  The required ozone 
concentration data were obtained from the EPA 
AIRS database (www.epa.gov/air/data). The 
weather data were obtained from the National 
Climatic Data Center’s Surface Airways database 
(www.ncdc.noaa.gov). A sample tree is illustrated 
in Figure 4. In this figure there are 1127 training 
points (days of data) in the root node. The first 
binary question that resulted from the optimization 
process is “Is RH_avg < 68.7%?” As indicated in 
the figure 848 days satisfied this criterion. Of these 

only 123 days also had average temperatures 
above 26.7 oC and RH less than 51.6%. In this 
TSR model for Atlanta the two weather patterns 
that are most important for ozone are the bottom 
two nodes in this figure. The corresponding 
average 1hour peak ozone values in these 
weather patterns (shown in bold under the 
corresponding node) are 92.1 ppb and 76.9 ppb 
respectively. Within each of these terminal nodes 
an additional multiple linear regression was 
performed to generate a model of how ozone 
responds to changes in weather parameters. With 
TSR models of ozone concentrations established 
for any city it is relatively straightforward to replace 
the original training data with perturbed weather 
corresponding to any mitigation strategy. The 
result is a rough estimate of the changes in ozone 
concentrations that could be expected for various 
levels of urban heat island mitigation. As 
temperature perturbations are the dominant factor 
affecting the response of ozone concentrations to 
mitigation strategies we defined two sensitivity 
parameters relating changes in ozone 
concentration to changes in mean air temperature. 
One factor (B_1hr) was calculated for the 1-hour 
ozone models and a second factor (B_8hr) for the 
8-hour ozone models. Each factor has units of ppb 
per degree C. Since ozone concentrations 
generally increase with temperature these factors 
are positive and are generally in the range of 1 to 
4 ppb per degree C. 

 

61.3 

RH_Avg ≤ 68.7 ?

T_Avg ≤26.7 ? 

848 

1127 
Yes No 

123

279

436 

92.1 

46.9

412

289

76.9

RH Avg ≤51.6 ?

 
 
Figure 4. Sample tree for 1hour ozone in Atlanta (avg. over 12 stations). Ovals and boxes represent 
intermediate and terminal nodes, respectively. Numbers within ovals/boxes indicate number of data 
points satisfying a particular set of conditions. Numbers below terminal nodes indicate the corresponding 
mean ozone concentrations.
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4.6.  LINKING METEOROLOGY TO 

ENERGY IMPACTS 
While all ozone impact modeling is temperature-
based, energy models are typically developed in 
terms of the relationship between consumption 
and the derived parameters of Cooling Degree 
Days (CDD) and Heating Degree Days (HDD). 
These parameters reflect the demand for air 
conditioning and heating, respectively. In a plot 
of temperature vs. time CDD is the area that is 
both below the observed air temperature and 
above a threshold constant (usually 65 F). HDD 
is the corresponding area below the threshold 
constant. Using actual hourly meteteorological 
data from the 20 focus cities we calculated the 
nominal impact of a 1 0C temperature reduction 
(assumed uniform throughout the day) on both 
CDD and HDD. The results were regressed 
against CDD and HDD to determine functional 
relationshis of the form: 
 
∆CDD= -0.4699 + 1.06E-04 *CDD + 3.39E-05 
*HDD (R=0.91)    (3) 
 
∆HDD=  0.3041 - 3.74E-05 *CDD - 3.31E-05 
*HDD (R=0.92)    (4) 
 
The values of ∆CDD and ∆HDD then represent 
the fractional change in degree days associated 
with a 1.0 oC reduction in air temperature. For 
example, a value of ∆CDD= - 0.15 implies that a 
1.0 0C reduction in air temperature will reduce 
cooling degree days by 15%. For the purposes 
of MIST it was assumed that for temperature 
perturbations near 1.0 oC the impact on degree 
days is approximately linear. That is, ∆CDD and 
∆HDD obtained from the above regressions can 
simply be multiplied by ∆T. Scatter plots for 
these regressions are given in Figure 5. 
The energy models themselves were obtained 
from an analysis conducted by Lawrence 
Berkeley National Laboratory (Akbari and 
Konopacki 2003). For each city of their analysis 
specific building archetypes were modeled using 
the DoE-2 building energy analysis software. As 
building codes and insulation levels have 
evolved over time, LBNL presents results for 
both "pre-1980" and "post-1980" buildings". By 
modifying both the building envelope definition 
and the "typical meteorological year" weather 
data LBNL was able to simulate both the direct 
and the indirect effects of increasing building 
albedo and vegetative cover. By combining 
results from meteorological simulations and 

building energy simulations they developed 
estimates of how a particular mitigation strategy 
would impact energy consumption and peak 
power for residential, office, and retail space on 
a per 1000 sq. ft roof area basis. The LBNL 
meteorological simulations were developed 
using the same MM5 model and similar 
modeling techniques to those presented here. 
The LBNL modeling focused on buildings in a 
small set of cities. To apply these results across 
a wider range of cities they conducted two 
classification analyses to relate energy impacts 
to either CDD or HDD. They defined 11 CDD 
groups and 15 HDD groups to represent the 
impacts across different climates. Thus, the 
energy impacts can be estimated using either 
the CDD similarity or the HDD similarity 
approach. In all cases the energy modeling of 
mitigation strategies took into account both the 
energy savings in summer and the increased 
energy usage in winter. 

5.  SOFTWARE IMPLEMENTATION 

5.1.  MIST STRUCTURE 
The Mitigation Impact Screening Tool (MIST) is 
intended to provide qualitatively accurate 
assessments of the likely impacts of heat island 
mitigation strategies averaged at the city-scale. 
All results presented in this tool were obtained 
using the state-of-the-science modeling 
approaches discussed above. Nevertheless, the 
required assumptions and approximations 
dictate that the results presented by MIST are 
qualitative in nature.  
The mitigation strategies investigated include 
increasing urban albedo and/or increasing urban 
vegetative cover. MIST also allows investigation 
of a user-defined average temperature reduction 
and produces estimates of the resulting impacts 
on ozone and energy consumption.  
There are three basic steps involved in running 
MIST: (1) Select the city to model; (2) define the 
mitigation strategy to test; and (3) estimate 
impacts on  meteorology, air quality, and energy. 
The software interface is organized around 
these steps with corresponding user-selectable 
tabs. 

5.2.  CITY SELECTION 
Data necessary to run the MIST code are 
available for approximately 240 major cities 
throughout the US. For a subset of 20 cities the 
input data are complete. For the remaining cities 
the MIST code must make some form of 
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interpolation/curve-fit as discussed in the 
corresponding sections on modeling of impacts. 
Figure 6 shows a screenshot of the city selection 
portion of MIST. The user simply scrolls down 
the list of states and corresponding cities and 
clicks on the city of interest. The advanced user 

has the option of editing any or all of the city-
specific model input parameters. When the city 
selection and any parameter edits are complete 
the user clicks on the “Next” button to move onto 
the mitigation strategy component of MIST. 
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Figure 5. Scatter plots for sensitivity of annual CDD and HDD to a 1 degree C reduction in air 
temperature. Regression results plotted against sensitivity calculated directly from hourly temperature 
data. 
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Figure 6. Screenshot of the city-selection portion of MIST. 
 
 

5.3.  MITIGATION STRATEGY 
The user may select a vegetation, albedo, or 
combined mitigation strategy to model (Fig. 7). 
In all cases the mitigation level represents a 
fractional increase over the entire city, and the 
distribution of the change is assumed to be 
uniform over all urban areas. For example, 
suppose the city surface is 40% rooftop, 25% 
paved surface, and 35% vegetated surface. If 
the user specifies an increase of 0.1 in 
vegetative fraction, this corresponds to the 
assumption that the total vegetative cover of the 
city increases uniformly from 35% to 45%. 
Likewise a specified increase of 0.10 in city 
albedo is assumed to be applied uniformly over 
the entire city. In practice, of course, this could 

be accomplished in many ways. For example, 
consider the case where the urban albedo is 
increased by 0.10 by modifying only rooftops. 
Since rooftops account for only 40% of the 
surface area in this example one would need to 
increase rooftop albedo by 0.25 to affect a city-
wide average increase of albedo of 0.10 (ie., 
0.25*0.40= 0.10). The MIST code is not capable 
of discerning spatial differences in application of 
either mitigation strategy, however, so all 
mitigation is assumed uniform over the city.  
The MIST code limits the range to -0.5 < ∆ < 0.5 
for changes in either albedo or vegetation. This 
is primarily to limit the chance of entry errors 
(e.g., 10 rather than 0.10). In either case the 
level of mitigation specified by the user is 
converted directly to projected changes in near-
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surface air temperatures using results from 
mesoscale atmospheric modeling studies, as 
discussed in section 5.4.1. Alternatively the user 
may simply input a uniform temperature 
perturbation. This option directly implements a 
change in near-surface air temperature, which is 
assumed uniform in space and time. 

In this component of MIST the advanced user is 
again able to modify model parameters. After 
selecting a mitigation strategy the user clicks on 
the “Next” button to move onto the impacts 
component of MIST. 

 
Figure 7. Mitigation strategy options in MIST 

5.4.  IMPACTS ESTIMATION 
Urban heat island mitigation strategies can 
impact the urban environment in two distinct 
ways: directly and indirectly. The direct impacts 
of mitigation strategies are those that result from 
direct modification of the surface energy balance 
of buildings. For example, when a rooftop 
reflectivity (albedo) is increased the roof remains 
cooler under the hot summer sun and as a result 

the building’s cooling load (and air conditioning 
energy consumption) is reduced. In addition, the 
implementation of heat island mitigation 
strategies can have an indirect impact on the 
entire city. For example, when rooftops are 
cooled through the implementation of a high 
albedo strategy they convect less heat to the air 
that flows over them. The result is a city-scale 
cooling of near-surface air temperatures. If the 
mitigation strategy has sufficient spatial extent 
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this indirect cooling can impact city-scale 
temperatures, air quality, and energy 
consumption. This effect has been 
demonstrated in regional scale simulations of 
various mitigation strategies (Sailor 2003; Taha 
2003). In MIST the indirect impacts on ozone 
and the total (direct plus indirect) impacts on 
energy consumption are estimated using the 

methods presented above. These estimates are 
summarized in the impacts estimation section of 
MIST (shown in Fig. 8). More detailed output is 
written to a results file that the user can 
download or print by clicking a single button. A 
sample of this detailed output file for a 0.2 
increase in albedo is given in fig. 9 for the city of 
Akron, Ohio. 

 
Figure 8. Impact summary section of MIST. 

 

5.4.1. METEOROLOGICAL IMPACTS 
Results from meteorological simulations in which 
the albedo and/or vegetation of cities was 
modified were used to explicitly provide 
estimates of the temperature impacts of surface 

characteristic perturbations (S_alb and S_veg) 
for the study cities. Each sensitivity parameter 
represents the change in temperature in 
degrees C for a 0.1 increase in albedo or 
vegetative cover. Results for other cities are 
extrapolated from this set. Six city-specific 
variables – population, physical area, population 
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density (population/area), latitude, and 
underlying climate as measured by cooling and 
heating degree days – were considered for this 
extrapolation process. The population of the 
Metropolitan Statistical Area (MSA) was found to 
be the single most statistically significant 
determinant of S_alb and S_veg for the modeled 
cities. Figure 10 shows the resulting regressions 
which are of the form: 
 
S_alb = - 2.8E-8 * Population - 0.389  
    (R=0.67) (5) 
 
S_veg = - 1.6E-8 * Population - 0.279  
    (R=0.69) (6) 
 
The uncertainty in the S_alb and S_veg 
coefficients is estimated (using +/- 2σ) to be 0.24 
and 0.13, respectively. 
As weather patterns corresponding to 
representative bad air quality days were the 
focus of all meteorological modeling, the impacts 
on meteorology are inherently biased toward 
summertime impacts. The impacts for the small 
suite of simulations conducted for any individual 
city are then assumed to be uniform spatially 
and throughout the year. For the ozone impacts 
analysis this assumption is reasonable as peak 
ozone occurs during summer months. For the 
energy impacts analysis, however, the 
wintertime heating costs of mitigation strategies 
are likely to be overestimated by the present 
analysis. This is because albedo or vegetation 
modifications have the greatest impact in 
summer months when the solar forcing is the 
highest. So, assuming that the mitigation 
strategy will have a constant year-round impact 
on air temperature will lead to a conservative 
estimate of energy savings.  In either case, 
however, it must be stressed that all simulations 
were conducted using a streamlined modeling 
approach, where the goal was to obtain rough 
estimates of the implications of heat island 
mitigation for urban air temperatures.  

5.4.2. OZONE IMPACTS 
The ozone sensitivity factors introduced above, 
B_1hr and B_8hr are different for different cities. 
While it is reasonable to suspect that their 
values will be influenced by city size and 
underlying climate a multiple linear regression 
analysis for the 20 test cities revealed the best 
two parameter models are those involving 
latitude and MSA population: 
 

B_1hr = -6.02 + 0.237 * Latitude + 1.30E-7 * 
Population   (R=0.76) (7) 
 
B_8hr = -5.21 + 0.199 * Latitude + 1.04E-7 * 
Population   (R=0.74) (8) 
 
Scatter plots comparing this regression to the 
actual TSR model results for the 20 cities are 
given in Fig. 11. The estimated uncertainties in 
B_1hr and B_8hr (based on 2σ) are 0.4 and 0.3 
ppb per degree C, respectively. 
MIST estimates ozone impacts of mitigation 
strategies by combining the estimated air 
temperature impacts with the ozone sensitivity 
factors. As an example, Akron, Ohio (latitude 
40.92 degrees, MSA population 694,960) is not 
among the cities directly modeled for this study. 
So, the temperature impact of a 0.2 increase in 
albedo for Akron would be estimated as  -0.82 
oC using eqn. 5. The corresponding 1-hr ozone 
sensitivity would be 3.8 ppb per degree C (using 
eqn. 7). Hence MIST would project that a 0.2 
increase in the albedo of Akron would reduce 1-
hr ozone peaks by an average of 3.2 ppb. 

5.4.3. ENERGY IMPACTS 
As noted above a detailed description of the 
energy models implemented in MIST can be 
found in (Akbari and Konopacki 2003). The 
energy portion of the MIST output file 
summarizes current and estimated changes in 
energy consumption (and peak consumption) for 
prototypical residential (res), office (off), and 
retail (ret) buildings for both pre 1980 and post 
1980 construction. Natural gas (Therms) and 
Electricity (kWh) data are presented in terms of 
consumption per 1000 sq. ft of roof area. The 
energy results presented in the summary portion 
of the impacts section of MIST summarize just 
the residential (post 1980 construction) results 
before and after the implementation of a 
mitigation strategy as a general indicator of the 
magnitude of energy impacts. 
All meteorological simulations were conducted 
with a focus on summertime impacts of 
mitigation strategies. As a result, the analysis of 
winter-time impacts of mitigation strategies on 
energy (heating demand) are likely to be less 
accurate. Specifically, we anticipate that MIST 
overestimates the wintertime air temperature 
reductions associated with mitigation strategies. 
The result of this is an overestimate of the 
wintertime heating penalty associated with 
mitigation strategies. Hence, this assumption 
leads to a conservative estimate of the 
annualized energy savings. 
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MIST (v1.1) for Akron, OH.  Latitude: 40.92,  Population: 694960 

Heat Island mitigation analysis performed: 9/26/2005, 2:29:53 PM 

------------------------------------------------------------------------------- 

MODEL PARAMETERS (see detailed help file for description) 

B_1hr =  3.77      B_8hr =  3.01 

S_alb = -0.41      S_veg = -0.29 

------------------------------------------------------------------------------- 

MITIGATION OPTIONS 

Albedo Increased by 0.2 

------------------------------------------------------------------------------- 

SUMMARY WEATHER DATA:          Before Mitigation    After Mitigation 

Typical Annual CDD (65F base)      614                489 +/- 24. 

Typical Annual HDD (65F base)      6201               6694 +/- 335. 

  Annual Mean Temperature (F)      55.2               53.3 +/- 0.9 

------------------------------------------------------------------------------- 

ENERGY RESULTS 

Estimated impacts are in terms of energy (kWh) per 1000 sq. ft. of roof area. 

BASELINE and SAVINGS data are presented for both OLDER and NEWER buildings.  

  

ESTIMATED BASELINE ENERGY CONSUMPTION FOR OLDER (pre 1980) BUILDINGS 

SECTOR   |        GAS HEATED BLDGS.      | ELECTRIC-HEAT BLDGS.|   PEAK POWER 

         |   Elect(kWh)      Gas(Therms) |        (kWh)        |     (Watts) 

Res.     |    1990 to 2045   978 to 1025 |    17665 to 18006   |  3444 to 3454 

Office   |    7796 to 8069   418 to 434  |    13832 to 13963   |  6878 to 6966 

Retail   |    7918 to 8192   247 to 255  |    11493 to 11716   |  4836 to 4861 

------------------------------------------------------------------------------- 

ESTIMATED BASELINE ENERGY CONSUMPTION FOR NEWER (post 1980) BUILDINGS 

SECTOR   |        GAS HEATED BLDGS.      | ELECTRIC-HEAT BLDGS.|   PEAK POWER 

         |   Elect(kWh)      Gas(Therms) |        (kWh)        |     (Watts) 

Res.     |    945 to 978     436 to 456  |    7819 to 7952     |  1829 to 1844 

Office   |    3963 to 4075   174 to 181  |    6455 to 6532     |  3800 to 3839 

Retail   |    3492 to 3601   58 to 59    |    4353 to 4500     |  2395 to 2401 

 

 

Figure 9. Sample detailed output file for a 0.2 increase in albedo for the city of Akron, Ohio. 
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ESTIMATED TYPICAL ENERGY SAVINGS FOR OLDER (pre 1980) BUILDINGS 

    (negative values represent increase in consumption) 

SECTOR   |        GAS HEATED BLDGS.      | ELECTRIC-HEAT BLDGS.|   PEAK POWER 

         |   Elect(kWh)      Gas(Therms) |        (kWh)        |     (Watts) 

Res.     |    313 to 329     -27 to -27  |    -49 to 10        |  380 to 401 

Office   |    698 to 698     -8 to -8    |    591 to 593       |  443 to 445 

Retail   |    677 to 687     -5 to -5    |    626 to 637       |  296 to 298 

         |                               |                     | 

Res.     |        ~ 16 %          ~ -3 % |    ~ 0 %            |  ~ 11 % 

Office   |        ~ 9 %           ~ -2 % |    ~ 4 %            |  ~ 6 % 

Retail   |        ~ 8 %           ~ -2 % |    ~ 5 %            |  ~ 6 % 

------------------------------------------------------------------------------- 

ESTIMATED TYPICAL ENERGY SAVINGS FOR NEWER (post 1980) BUILDINGS 

    (negative values represent increase in consumption) 

SECTOR   |        GAS HEATED BLDGS.      | ELECTRIC-HEAT BLDGS.|   PEAK POWER 

         |   Elect(kWh)      Gas(Therms) |        (kWh)        |     (Watts) 

Res.     |    135 to 145     -13 to -12  |    26 to 39         |  186 to 197 

Office   |    251 to 254     -6 to -5    |    175 to 184       |  195 to 201 

Retail   |    222 to 228     -3 to -3    |    176 to 182       |  109 to 112 

         |                               |                     | 

Res.     |        ~ 15 %          ~ -3 % |    ~ 0 %            |  ~ 10 % 

Office   |        ~ 6 %           ~ -3 % |    ~ 3 %            |  ~ 5 % 

Retail   |        ~ 6 %           ~ -5 % |    ~ 4 %            |  ~ 5 % 

------------------------------------------------------------------------------- 

OZONE RESULTS 

Typical maximum (1-hour) ozone concentrations:            119. (ppb) 

Projected change in maximum 1-hour ozone concentrations:  -5.8 to -2.1 (ppb) 

Projected change in maximum 8-hour ozone concentrations:  -4.6 to -1.7 (ppb) 

------------------------------------------------------------------------------- 

 

 

 

Figure 9 continued. 
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Figure 10. Scatter plots of mitigation strategy sensitivity parameters (a) S_alb and (b) S_veg plotted 
against metropolitan population. Solid lines represent regressions through the data (eqns. 5 and 6). Units 
of S_alb and S_veg are degrees C per 0.1 change in albedo and vegetation, respectively. 
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Figure 11. Scatter plots comparing TSR-predicted ozone sensitivity factors to results from multiple linear 
regression curve fits (see eqns. 7 and 8). Units are ppb per degree C. 
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6.  CONCLUSIONS 
In response to the need of urban planners for an 
easy-to-use screening tool to estimate the 
potential impacts of urban heat island mitigation 
strategies on their cities we have developed the 
Mitigation Impact Screening Tool (MIST). This 
software tool is based on streamlined mesoscale 
atmospheric modeling for the test cities 
combined with statistical models relating 
weather parameters to ozone and physically-
based computer models of building energy 
consumption. MIST allows for a reasonably 
accurate extrapolation of these results to a wide 
range of cities. The end result is a screening tool 
that can be used as an initial quantification of 
the possible benefits of heat island mitigation. 
Given the significant number of assumptions, 
approximations, and extrapolations used in the 
software development and implementation 
process, MIST should not be used as the basis 
for regulatory decision-making. We also 
recommend that any initial screening be 
followed by a more detailed analysis using 
traditional methods (e.g., detailed meteorological 
and photochemical modeling). 
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