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Return on Investment drives markets

Bhemizigy Biomass Renewable Obligation Certificate in the UK at $99
MWh-1
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Figure: Projected imports of wood pellets to europe at $180 ton™!



Biomass availability
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Forest biomass resources in California
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Procuremen
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Figure: Feedstock procurement from forests.



RPS bioenergy pricing undervalues biomass
electricity
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Uncompensated (Ancillary) Benefits of
Biomass Energy Production
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Figure: Estimated value of biomass electricity



Competition between fuels and electricity
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Figure: Feedstock utilization under a range of fuel prices.



Sustained market effects on production costs.
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From Yeh, S. and E. Rubin. (2010) Uncertainties in Technology Experience Curves for Energy-Economics
Models.

m Sustained competitive markets result in innovation and
increases in production efficiency.



Feasibility summary
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Feasibility of bioenergy policy objectives limited by markets ($
J).

m Resource potential is a constraint but:

m difficult to quantify
m unlikely to be a limiting factor on balance with
procurement cost.

Summary

m A sustained market will exert downward pressure on production
costs.

m Initial costs will be high compared with legacy technologies.

m Monetizing ancillary benefits can offset early stage technology
costs but cannot be achieved w/o political will.



The difficulty with sustainability
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I dont like the word very much. The reason is that no one, as far as |
know, is in favor of un-sustainability, and so therefore sustainability
tends to mean almost anything you want it to mean, and | think we

should be rather more specific than that. The other problem is that
sustainability sometimes sounds a bit too passive and static, and |

think throughout history we have transformed our relationship to

Sustainability nature sometimes in good ways sometimes in bad ways. And | think

the question for us is how we are going to transform our

relationship to nature in the future.

- David Harvey on the term “Sustainability”



What we talk about when we talk about
sustainability of bioenergy
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Forest productivity

Forest resistance/resilience
Habitat

Sustainability ..
GHG emissions

Water quality/quantity
Ecosystem services (broadly)
Jobs

Environmental equity



Forest Product System

Draft system schematic
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Impacts of wood biomass

Bioenergy

Tittmann

- —— ot
~ emissions

= = Bloenergy,
excluding
forest

carbon

GHG emissions

utilization for ener

Cumulative GHG emissions from continuous biomass

harvest for bioenergy production: (a) pellets produced
from residues, displacing coal (20% cofiring), (b)
ethanol produced from residues, displacing gasoline
(E85 fuel), (c) pellets produced from standing trees,
displacing coal (20% cofiring), and (d) ethanol
produced from standing trees, displacing gasoline (E85
fuel). Positive values indicate an increase in GHG
emissions to the atmosphere.

Important time-scale difference between GHG
from biomass and GHG from fossil resources.




Forest bioenergy impact on forest practices
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m Unlikely that markets for biomass will incentivise
additional adverse impacts from forestry operations.

m Restricting restricting the use of residuals in energy
production:

m likely won't impact industrial timber operations (driven by
timber value)

m misses low-hanging fruit for low-carbon energy source

m misses an opportunity to enable restorative forest
management on public and private lands that generate no
or little timber value.

Forest practices
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