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PREFACE

The California Energy Commission Energy Research and Development Division supports
publicinterest energy research and development that will help improve the quality of lifein
California by bringing environmentally safe, affordable, and reliable energy services and
productsto the marketplace.

The Energy Research and Development Division conducts publicinterest research,
development, and demonstration (RD&D) projects to benefit California.

The Energy Research and Development Division strives to conduct the most promising public
interest energy research by partnering with RD&D entities, including individuals, businesses,
utilities, and public or private research institutions.

Energy Research and Development Division funding efforts are focused on the following
RD&D program areas.

e Buildings End-Use Energy Efficiency

e Energy Innovations Small Grants

o Energy-Related Environmental Research

e Energy Systems Integration

e Environmentally Preferred Advanced Generation

e Industrial/ Agricultural/ Water End-Use Energy Efficiency
¢ Renewable Energy Technologies

e Transportation

Evaluation of Numerical Wesather Prediction for Intra-Day Solar Forcasting number 500-08-017
conducted by the University of California, San Diego. The information from this project
contributesto Energy Research and Development Division’s Renew able Energy Technologies
Program.

For more information about the Energy Research and Development Division, please visit the
Energy Commission’s website at www .energy.ca.gov/ research/ or contact the Energy
Commission at 916-327-1551.
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ABSTRACT

Numerical weather prediction models are generally the most accurate tools for forecasting solar
irradiation several hoursin advance. This study validated the North American Model, Global
Forecast System, and European Centre for Medium-Range Weather Forecasts global horizontal
irradiance forecasts against ground measurement data and persistence forecasts. All numerical
weather prediction models were biased for measured clear conditions by less than 50 watts per
metre” and for cloudy conditions the models were biased towards forecasting clear conditions,
resulting in large, positive biases.

Mean bias errors were obtained for each numerical weather prediction model as afunction of
solar zenith angle and forecast clear sky index. The North American Model and Global Forecast
System were positively biased by up to 150 watts per metre*for forecast clear sky conditions,
while the European Centre for Medium-Range Weather Forecast mean bias errors were small.
Outside of the few clear forecasts that were actually cloudy, the reason for this bias was that the
Global Forecasting System and especially the North American Model forecasts can exceed clear
sky irradiances by up to 40 percent, indicating an inaccurate clear sky model. For forecast
cloudy conditionsthe North American Model and Global Forecast System models had a
moderate negative bias, while European Centre for Medium-Range Weather Forecast forecasts
were most biased.

Model output statistics-corrected numerical weather prediction forecasts provided important
baseline accuracy for evaluating other forecasting techniques. Model output statistics
minimized mean bias errors for all numerical weather prediction models. Root mean square
errorswere also reduced, especially for intermediate clear sky indices. The model output
statistics-corrected Global Forecast System provided the best solar forecasts for the continental
United States. The European Centre for Medium-Range Weather Forecast provided the most
accurate forecast in cloudy conditions, while the Global Forecast System had the best clear sky
accuracy.

Please use the following citation for thisreport:

Mathiesen, Patrick, Jan Kleissl. 2012. Evaluation of Numerical Weather Prediction for Solar
Forecasting. California Energy Commission. Publication number: CEC-500-2013-115.
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EXECUTIVE SUMMARY

Introduction

Accurate forecasting of solar irradiance is essential for the efficient operation of solar thermal
power plants, the management of energy markets, and the widespread implementation of solar
photovoltaic (PV) technology. Solar forecasts are often derived from physics-based numerical
weather prediction (NWP) models.

Project Purpose

The goal of this project was to evaluate the forecast skill of NWP models by comparing several
intra-day solar forecasts against ground measurements and persistence forecasts. The results
wereintended to provide aguideline on the maturity, applicability, and research needs related
to NWP forecasting.

Project Results

Three NWP modelswere analyzed: the hourly North American Model (NAM) forecast, the
three-hourly Global Forecast System (GFS) forecast; and the three-hourly European Center for
Medium-range Weather Forecasting (ECMWF) forecast. These “raw” forecasts were compared
to measurements from seven solar irradiance stations (SURFRAD) across the United States.
Forecast accuracy was evaluated through the root mean square error (RM SE) and mean bias
error (MBE). Subsequently, a bias correction called model output statistics (MOS) was applied
to reduce persistent errors. Correction functionswere fit to the observed M BE as a function of
solar zenith angle and clear sky index. The accuracy of bias-corrected NWP forecasts provided a
useful reference to establish the value of other more expensive or complex solar forecast
products from specialized forecast providers. Theresultsin thisreport will also facilitate the
selection of global or national NWP models for initialization of such local models.

Table ESL summarizes the forecast errors. For the uncorrected models, ECMWF performed best,
closely followed by GFS. Surprisingly, the NAM model performed worst despiteits higher
spatial resolution and specialized application to North American meteorology. Significant
problemswere found with the NAM clear sky model, which over-predicted global horizontal
solar irradiation (GHI) in clear conditions by up to 40 percent.

Table ES1: MBE and RMSE for NWP forecasts before and after MOS correction (subscript ‘c’)
averaged across all sites.

NAM GFS | ECMWF

MBE (W m®) 57.5 35.4 31.4
MBE. (W m? |70 5.2 0.5
RMSE (W m? | 134.2 1105 | 123.2




NAM GFS | ECMWF

RMSE (W m?) |114.1 84.6 106.2

The MOScorrections reduced RM SE and effectively eliminated MBE. RM SE reductionswere
largest for partly cloudy conditions at about 50 watts per metre” (W m?). MOS-corrected RM SE
were smallest at the sunnier sites. The GFSmodel was most accurate after MOS correction,
indicating that its errors were more systematic.

The NWP models were shown to be significantly biased towards predicting clear skies. All
models predicted more false clear days than false cloudy days. Of the forecasts that

erroneously predicted clear or cloudy conditions, 78 percent of NAM, 76 percent of GFSand 64
percent of ECMWF were clear forecasts resulting in cloudy days. Thiswas aprimary
contributor to the large positive MBE observed in forecast clear conditions. Although false
cloudy forecast were considerably less frequent (about 6 percent for all models), far fewer
cloudy dayswere predicted overall. Thesefew large negative bias events account for part of the
150 W m? MBE in overcast conditionsfor NAM and GFS.

Forecast errors can originate from avariety of sources. MOScorrectionsin the measured clear
sky regime did not reduce RM SE because the MOS could not distinguish between errorsin the
clear sky models and errorsrelated to cloud prediction. Consequently, many initially accurate
forecasts were unnecessarily corrected by the MOS. Differentiating between the sources of the
error was the next step in understanding which forecasts need to be corrected, which was
preferable to correcting all forecasts. The relationship of MBE to other prognostic variables
should beinvestigated, most notably those involved in cloud parameterization.

A final consideration of NWP forecasting was resolution. Even the 0.1° x 0.1° NAM spatial
resolution was insufficient to resolve most clouds and only an average cloud cover could be
forecasted. The resolution was even coarser for the GFSand ECMWF. Even if the spatial
resolution wasfiner, the temporal output intervalswould not permit the examination of time
dependent cloud cover variability, which was important for predicting ramp rates and bands of
variability for solar power plants. NWP model time-steps are on the order of minutes but
radiative transfer models are run less frequently and the output was only hourly for NAM or
every three hoursfor GFSand ECMWF. Consequently, any patternswith characteristic time
scalesless than an hour were unresolved.

Asexpected, 24-hour persistence forecasts were inaccurate except for measured clear
conditions. The accuracy of one-hour persistence forecasts was comparable to bias-corrected
NWP modelsfor clear conditions, but better for cloudy conditions, especially with a clear sky
index lessthan 0.5. A combination of GFSforecasts for clear conditions and ECMWF conditions
for cloudy conditionswould yield the most accurate NWP forecast product.

Project Benefits

This study helped advance the understanding of forecasting solar irradiance, which could help
improve the efficiency of solar power plants and increase the implementation of solar PV
technologies. More efficient and widespread use of solar power to generate electricity will help
Californiameet its Renewable Portfolio Standard goals and reduce greenhouse gas emissions
that contribute to climate change and other air emissions that cause air pollution.



CHAPTER 1
Introduction

Accurate forecasting of solar irradiance is essential for the efficient operation of solar thermal
power plants, the management of energy markets, and the widespread implementation of solar
photovoltaic (PV) technology*. Early forecasting attempts used model output statistics’ (MOS)
to establish regression models between solar irradiance measurements and available forecast
variables. Subsequent forecasts of these variableswere used as input to MOS, predicting solar
irradiation. Using this method, Jensenius and Cotton’ forecasted daily global horizontal solar
irradiation (GHI) on a 6 to 30-hour forecast horizon with aroot mean square error (RM SE) of
13.2 percent of extraterrestrial radiation received.

Smilarly, artificial neural networks*(ANNs) recognize patternsin data by mimicking the
logical processes of a biological neural network and have been successfully applied to solar
forecasting. Using training data, typically years of measured ground data’, ANNs have been
developed to reduce overall relative RM SE (rRM SE) of GHI by as much as 15 percent when
compared to 12 to 18-hour ahead NWP forecasts'.

For physically-based forecasting, cloud cover and cloud optical depth are the most important
parameters affecting solar irradiance. Through processing of satellite or ground imagery,
clouds can be detected, characterized, and advected to predict GHI accurately up to 6 hoursin
advance™. Hammer et al.* demonstrated 30 minute GH 1 forecasts accurate to within 17 percent
rRM SE and 30 percent rRM SE for 2-hour forecast horizons. For intra-day forecasts, areduction
in rRM SE by 7 percent-10 percent compared to persistence forecasts was found.

Forecasts beyond 6 hours, up to several days ahead, are generally most accurate if derived from
numerical weather prediction (NWP). NWP models predict GHI using columnar (1D) radiative
transfer models’ (RTM). In most existing NWP models solar irradiation isonly used to force the

'Lew, D., and Piwko, R. 2010. Western wind and solar integration study. NREL technical report,
NREL/ SR-550-47434. Golden, Colorado: N ational Renewable Energy Laboratory. 536 pgs.

? Jensenius, J. and Cotton, G. 1981. The development and testing of automated solar energy forecasts
based on the model output statistics (MOS) technique. Satdlites and Forecasting of Solar Radiation:
Proceedings of the First Workshop on Terrestrial Solar Resource Forecasting and on Use of Satdlitesfor Terrestrial
Solar Resource Assessment. 22-29

®Elizondo, D., Hoogenboom, G., and McClendon, R. 1994. Development of a neural network model to
predict daily solar radiation. Agricultureand Forest Meteorology. 71:1-2, 115-132.

* Guarnieri, R., Martins, F., Oereira, E., and Chuo, S. 2008. Solar radiation forecasting using artificial
neural networks. National Institute for Space Research, 1, 1-34.

*Hamill, T. and Nehrkorn, T. 1993. A short-term cloud forecast scheme using cross correlations. Westher
and Forecasting, 8:4, 401-411.

®*Hammer, A., Heinemann, D., Lorenz, E., and Liickehe, B. 1999. Short-term forecasting of solar radiation:
A statistical approach using satellite data. Solar Energy 67:1-3, 139-150.

"Heinemann, D., Lorenz, E., and Girodo, M. 2006. Forecasting of solar radiation. Solar Energy
Management for Electricity Generation, E.D. Dunlop, L. Wald, and M. Siri (Eds.). Nova Publishers, New
York. Chapter 7, p. 83-94.



average surface energy balance, making GHI variability lessrelevant. Consequently,
computationally expensive RTMs are only run once every 30to 60 minuteswhile model time-
steps are on the order of one minute. Heinemann et al.” showed that the MM5 mesoscale model
can predict GHI in clear skieswithout mean bias error (MBE). However, the biaswas highly
dependent on cloud conditions; in overcast conditions, the MM5 model MBE was 129 percent’.
Perez et al.’ examined the accuracy of the National Digital Forecast Database (NDFD), a
derivative of the operational NWP models published by the National Center for Environmental
Prediction (NCEP). After alocal correction function was applied, Perez et al.’ found that for 8 to
26-hour forecast horizons, the NDFD had a GHI rRM SE of 38 percent. Thiswas more accurate
than satellite derived forecasts for similar forecast horizons (rRM SE = 46 percent).

Dueto complex cloud microphysics and limitationsin spatial resolution, clouds and their
radiative properties are difficult to predict in numerical models. Consequently, NWP models
are expected to show inherent regional or global biases limiting forecast accuracy. Armstrong®
compared the Dudhia” radiative model forecast GHI to a single ground measurement site and
found arelationship between MBE and cloud cover. Smilarly, Remund et al." examined NWP
biases compared to a single site to find that European Centre for Medium-Range Weather
Forecasts (ECMWF) and Global Forecast System (GFS) next day GH I forecasts have an M BE of
19 percent. This MBE was shown to be approximately constant for intra-day (hour-ahead) to 3
day ahead forecast horizons". Breitkreuz et al.” included aerosol effects on irradiance into the
ECMWF model to show areductionin GHI rRM SE for 2 to 3 day ahead forecasts from 11.5
percent to 7.2 percent under clear sky conditions. Similarly rMBE wasimproved from -9.8
percent to 5.1 percent.

Consistent error patternsallow for MOSto be used to produce a bias reduction function for
future forecasts’. Bofinger and Heilscher” used MOSlocally with ECMWF GHI forecasts to
create daily solar electricity predictions accurate to 24.5 percent RMSE. Lorenz et al.* related
forecasted solar zenith angle (SZA) and clear sky index (kt*, Eq. 2) to ECMWF M BE for
Germany, revealing a consistent over prediction (up to 100 W m™) for moderately cloudy

® Perez, R., Moore, K., Wilcox, S, Rennég, D., Zelenka, A. 2007. Forecasting solar radiation —preliminary
evaluation of an approach based upon the national forecast database. Solar Energy. 81:6, 809-812.

® Armstrong, M. 2000. Comparison of MM5 forecast shortwave radiation with data obtained from the
atmospheric radiation measurement program. Master of Science Scholarly Paper, University of
Maryland, USA.

“ Dudhia, J, 1989. Numerical study of convection observed during the winter monsoon experiment
using a mesoscale two-dimensional model. J Atmospheric Sciences. 46:20, 3077-3107.

“'Remund, J, Perez, R., and Lorenz, E. 2008. Comparison of solar radiation forecasts for the USA. 2008
European PV Conference, Valencia, Spain.

* Breitkreuz, H., Schroedter-Homscheidt, M., Holzer-Popp, T., and Dech, S. 2009. Short-range direct and
diffuseirradiance forecasts for solar energy applications based on aerosol chemical transport and
numerical weather modeling. J Applied Meteorology and Climatology. 48:9, 1766-1779.

® Bofinger, S., and Heilscher, G. Solar Electricity Forecast — Approaches and first results. 21% PV
Conference. Dresden, Germany, 2006.

“Lorenz, E., Hurka, J, Heinemann, D., and Beyer, H. 2009. Irradiance forecasting for the power
prediction of grid-connected photovoltaic systems. IEEE Journa of Sdected Topicsin Applied Earth
Observations and Remote Sensing, 2:1, 2-10.



conditions. Using a MOScorrection function eliminated bias and reduced RM SE by 5 percent
for 24 h forecasts.

This paper focuses on the analysis and MOScorrection of GH|I forecasts from three operational
NWP modelswithin the continental United States (North American Model, NAM, GFS, and
ECMWEF,; Section 2). A fourth operational NWP model, the Rapid Update Cycle (RUC), was not
evaluated. The approach presented here expands upon previouswork. Remund et al.”
compared six months of ECMWF, NDFD, and GFS-WRF forecasts against three ground
measurement sites. Furthermore, biasreducing MOS corrections were not examined.
Additionally, Perez et al.” evaluated the NDFD at asingle site. There, however, the MOS
approach was based on cloud cover parameters and not irradiance. For this paper, all available
operational NWP models (Section 2) are validated against a nationwide network of
meteorological stationsfor up to 1year. The MOScorrection function is established directly
from the NWP model output for solar radiation. Consistent biases are shown as a function of
measured (Section 4.1) and forecast clear sky index (Section 4.2) motivating the application of a
MOS correction as afunction of solar zenith angle and clear sky index. Implementation of the
MOS correction mitigates bias errors of the NWP forecasts and significantly reduces RM SE
(Section 4.3). Finally, it isconcluded (Section 5) that MOS corrections lead to more accurate
prediction of solar irradiance, given alocation, time, and basis forecast model. Only intra-day
(or hour-ahead) forecasts are considered since NWP forecast accuracy has been shown to be
approximately constant over a 3 day horizon” and intra-day forecasts are relevant for energy
markets.

® Remund, J, Perez, R., and Lorenz, E. 2008. Comparison of solar radiation forecasts for the USA. 2008
European PV Conference, Valencia, Spain.

® Perez, R., Ineichen, P., Moore, K., Kmiecik, M., Chain, C., George, R., and Vignola, F. 2002. A new
operational model for satellite-derived irradiances: Description and validation. Solar Energy. 73:5, 307-
317.



CHAPTER 2;
Numerical Weather Prediction and Ground Validation
Data

2.1 North American Mesoscale Model (NAM)

The NAM forecast is published by the National Oceanic and Atmospheric Administration’s
(NOAA) NCEP on a0.113° E-W by 0.111° N-S(approximately 12 km x 12 km) grid spanning the
entire continental United States (CONUS, Fig.1, Table 1). Hourly output, available up to 36
hours ahead, is published four times daily at 00, 06, 12, and 18 UTC. Additionally, the NAM
forecast is available up to 84 hours ahead for a 3-hour temporal resolution. The NAM forecast
isaproduct of the Weather Research and Forecasting — North American Mesoscale (WRF-
NMM) model. Further details on the numerical model and parameterization methods are
available in Skamarock”.

Among over 125 output variables, total downward short wave radiation at the surface (Fig. 1) is
reported. Thisisequivalent to global horizontal irradiance (GH1) or the total amount of
radiation, direct and diffuse, incident on a horizontal surface at the earth’s surface. Downward
shortwave radiation is anon-native forecast parameter that is calculated from several radiative
transfer models: A derivative of the Eta Geophysical Fluid Dynamics Laboratory shortwave
model ® (GFDL-SW); the Dudhia® shortwave model as used by MM5; or the Goddard®
shortwave model”. The operational NAM model analyzed here use the GFDL-SW model.
Using the principle of multiple scattering and Mie theory, the GFDL-SW model assumes that
the primary source of radiative absorption, reflection, and scattering in the atmosphereisfrom
concentrations of large particles such aswater dropletsin clouds. Cloud optical depth and
albedo are parameterized using a separate cloud model and are based on prognostic numerical
variables such as water mixing ratios (liquid and ice), temperature, and pressure*”. Ozone and
carbon dioxide concentrations from climatological tables are used. Radiative transmission is
subsequently calculated in an assumed plane-parallel atmosphere with homogeneous layers.

" Skamarock, W., Klemp, J, Dudhia, J, Gill, D., Barker, D., Wang, W., and Powers, J 2007. A description
of the advanced research WRF version 2. NCAR Technical Note NCAR/ TN-468 +STR.

¥ Lacis, A., and Hansen, J 1974. A parameterization for the absorption of solar radiation in the earth’s
atmosphere. J Atmospheric Sciences, 31:1, 118-133.

® Dudhia, J, 1989. Numerical study of convection observed during the winter monsoon experiment
using a mesoscale two-dimensional model. J Atmospheric Sciences. 46:20, 3077-3107.

® Chou, M., and Suarez, M., 1994. An efficient thermal infrared radiation parameterization for usein
general circulation models. NASA Tech. Memo. NASA/ TM-1994-104606. 1-85.

“ Stephens, G., 1978 Radiation Profilesin extended water clouds. |I: parameterization schemes.. J
Atmaospheric Sciences. 35:11, 2123-2132.

Z Stephens, G. The parameterization of radiation for numerical weather prediction and climate models.
1984. Monthly Wesather Review. 112, 826-867.



The GFDL-SW model is strictly one-dimensional, i.e. GHI isonly affected by conditions present
in the column of atmosphere directly above the grid point®.
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Figure 1: NAM GHI Forecast [W m'z] for April 10th, 2010 at 2000 UTC for the NAM domain over
North America. Triangles show SURFRAD stations.

Table 1: NWP Forecast Summary

NAM GFS ECMWF
Spatial resolution 0.11° 0.5° 0.25°
Radiative Transfer Model GFDL-SW RRTM-SW McRad
GHl variable name dswrfsfc dswrfsfc surface solar radiation

downwards

Output temporal
resolution/forecast 1h/36h 3h/180h 3h/144h;6h/240h
horizon
Temporal averaging Instantaneous 3 h, 6 halt. 3 h,6h,9h,etc.
Time period analyzed 3/21/10-2/8/11 6/23/10-2/8/11 9/1/09-8/31/10

# skamarock, W., Klemp, J, Dudhia, J, Gill, D., Barker, D., Wang, W., and Powers, J 2007. A description
of the advanced research WRF version 2. NCAR Technical Note NCAR/ TN-468 +STR.




2.2 Global Forecast System (GFS)

Unlikethe NAM, the GFSis a global forecasting model. Also published by NOAA through

N CEP*, the GFSmodel has a spatial resolution of 0.5° E-W by 0.5° N-S(Table 1). Temporally,
the GFSforecast is published at 00, 06, 12, and 18 UTC, at an average time-step of 3 hoursup to
180 hours (7.5 days) ahead. GFSforecasts are reported as alternating 3 (1%, 3", etc. forecastsin a
series) and 6-hour (2", 4", etc.) averages. Consistent 3-hour resolution forecasts are cal culated
from theraw data.

The SW radiative model employed by the GFSistherapid radiative transfer model ** (RRTM-
SW). RRTM usesthe correlated-k method to transform the spectral dependence of radiative
absorption coefficients (k) into a continuous cumulative distribution function. Thetransformed
space is subsequently discretized and characteristic k values calculated for each sub-interval.
Using atwo-stream adding method, radiative transfer calculations are performed
independently for each sub-interval across all vertical layers. Thisissimilar to theindividual
spectral-point line-by-line radiative transfer model” (LBLRTM) calculations.

Absorption effects from water vapor, ozone, oxygen, and methane are considered.
Additionally, cloud optical depth, albedo, asymmetry factor, and effective particle radius
contributeto layer radiative properties. Smilar to the Sephens” parameterization, cloud
properties are largely dependent on liquid water path (LWP), ice water path (IWP),
temperature, pressure, and location®.

2.3 European Centre for Medium Range Weather Forecasts (ECMWF)

Likethe GFS, the ECMWF isa global forecast model. Spatially, ECMWF datais available on a
0.25° E-W by 0.25° N-Sgrid (Table 1). Temporally, ECMWF forecasts have atime-step size of 3
h and are published twicedaily (00 UTC and 12 UTC) up to 10 daysin advance. Datais
published as progressive averages (i.e. 3h, 6 h, 9 h, etc.) for each series. From this, 3-hour
resolution forecasts are calculated. For thisstudy, only intra-day forecasts were considered (24-
hour forecast horizon). Downward surface solar radiation datareleased at 12 UTC between
September 1%, 2009 and August 31, 2010 were purchased.

* NCEP, 2010. NOAA Operational Model Archive and Distribution System.
http:/ / nomads.ncep.noaa.gov/ . Accessed 8/ 2/ 2010.

® Mlawer, E. and Clough, S. 1997. Shortwave and longwave enhancementsin the Rapid Radiative
Transfer Model. Procesdings of the 7" Atmospheric Radiation M easurement (ARM) Science Team Megting. U.S.
Department of Energy, CON F-9603149.

® Mlawer, E., Taubman, S, Brown, P., lacono, M., and Clough, S. 1997. Radiative transfer for
inhomogeneous atmospheres. RRTM, avalidated correlated-k model for the longwave. J. Geophysical
Research. 102:14, 16663-16682.

“ Clough, S., lacono, M., Moncet, J, 1992. Line-by-line calculations of atmospheric fluxes and cooling
rates: Application to water vapor. J Geophysical Research. 97:14, 15761-15785.

* Stephens, G. The parameterization of radiation for numerical weather prediction and climate models.
1984. Monthly Weather Review. 112, 826-867.

®Hou, Y., Moorthi, S, and Campana, K. 2002. Parameterization of Solar radiation transfer in the NCEP
models. NCEP OfficeNote441, 1-34.
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The current operational ECMWF model containsthe McRad radiation model*. The shortwave
portion of McRad isbased on RRTM. Constituents accounted for in McRad are water vapor,
carbon dioxide, ozone, methane, nitrous oxide, aerosols, and various chlorofluorocarbons
(CFCs). Smilar to the GFDL-SW model, important forecast cloud properties are albedo and
optical depth and are parameterized primarily from LWP and effective droplet radius™ (Table 3
in Morcrette et al.*). From theradiative properties, atwo stream adding method is used to
solve the radiative model at each level, resulting in surface GHI.

2.4 SURFRAD Ground Measurement Network

Seven Surface Radiation Budget Network (SURFRAD) stations across the CONUSprovide an
accurate nationwide database to validate NWP forecasts (Fig. 1). SURFRAD stations are
equipped with Eppley Precision Spectral Pyranometers (PSP)* capable of measuring GHI to
within £2 percent®. The PSPs are calibrated through NOAA’s Solar Radiation Facility. One
minute GHI isreported as an average of sixty 1-sec instantaneous measurements. Due to
pyranometer thermal offset, night time GH| values are generally negative®. For thisreason, all
negative values of GHI were set to zero. Data flagged by the baseline quality control (QC)
assessment function dueto historically inconsistent, unphysical, and uncharacteristic data™
wereremoved from thisanalysis. SURFRAD GHI data were aggregated to one hour averages
for comparison with the (hourly or longer) output time-step of NWP forecasts.

* Morcrette, J, Bechtold, P., Beljaars, A., Benedetti, A., Bonet, A,. Doblas-Reyes, F., Hague, J, Hamrud,
M., Haseler, J, Kaiser, J. Leutbecher, M., Mozdzynski, G., Razinger, M., Salmond, D., Serrar S,, Suttie, M.,
Tompkins, A., Untch, A., and Weisheimer, A. 2007. Recent advancesin radiation transfer
parameterizations. ECMWF Tech. Memo. 539, 1-52.

*dingo, A. 1989. A GCM Parameterization for the shortwave radiative properties of water clouds.
American Meteorological Society. 46:10, 1419-1427.

¥ SURFRAD. 2009a. SURFRAD Network Overview.
http:/ / www.srrb.noaa.gov/ surfrad/ surfpage0.html. Accessed 8/ 24/ 2010.

* Campbell Scientific, 1992. Eppley PSP —precision spectral pyranometer instruction manual. Campbel
Scientific Instruction Manual.

¥ SURFRAD. 2009h. SURFRAD Data README. ftp:/ / ftp.srrb.noaa.gov/ pub/ data/ surfrad/ README.
Accessed 8/ 24/ 2010.
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CHAPTER 3:
Forecasting Methods

3.1 Forecasting Methods

Fig. 2 depicts a sample time series of the forecast methods that will be evaluated. The most
basic “forecast”, C, isthe Ineichen clear sky model®. C primarily depends on location, time, and
elevation. Additionally, Cisdependent on atmospheric turbidity variations due to aerosols,
ozone, and water vapor, which are input as monthly averages of the Linke turbidity from the
SoDA database on an 8 km grid *.
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Figure 2. GHI forecasts compared against Desert Rock, NV SURFRAD ground measurements on

July, 17" 2010. N: linear interpolated NAM; Ng: clear sky index interpolated NAM; G: GFS three

hour constant clear sky index; E: ECMWEF three hour constant clear sky index; P: persistence;
C: clear sky forecast.

The persistence forecasts, P, and P,,, assume static weather conditions. The measured clear sky
index (kt,) isdefined astheratio of measured GHI to C,

_ GHIMEas
kt,, = T (Eg. D)

P,, forecasts GHI by assigning the kt_ at solar noon of the previous day to the entire intra-day
forecast (kt.). P,,iscalculated by multiplying kt, with the clear sky model, C. The 1 hour

*Ineichen, P., and Perez, R. 2002. A new airmass independent formulation for the Linke turbidity
coefficient. Solar Energy. 73:3, 151-157
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persistence forecast, P, is calculated by multiplying kt, (the measured clear sky index averaged
over the previous hour) with C. In thisway, P, isa‘'best-case’ persistence forecast for hour-
ahead forecasting, while P,, isatypical persistence forecast for day-ahead forecasting.

Forecasts originating shortly before the CONUSsunrise are the timeliest for planning intra-day
power plant load-following. Thus, the only NWP forecasts (Sec. 2.1-2.3) considered for this
study originate at 12200 UTC. As NWP forecast errors have been shown to be constant over a
forecast horizon of 1 hour to 3days®, the results of this paper can also be considered applicable
to day-ahead (i.e. next day) forecasts.

Interpolation of NWP output is hecessary to temporally align NWP output and ground
measurement data. Since sun position and solar zenith angle are non-linear functions of time,
solar irradiance cannot be a linear process. Therefore, linear interpolation of GHI is
inappropriate (N, Fig. 2). Instead, clear sky index kt* interpolation should be used

_ GHIMEAS
== (Eq.2)
Where GHI  iscalculated from C. kt* isthen interpolated to timet,and the NAM forecast
becomes N, = kt*(t,) GHI_(t,).

Sincethe clear sky model, C, isnearly linear over the hourly time-step of the NAM output, N
and N, produce essentially identical forecasts (Fig. 2). N, isthe correct forecast and will
henceforth be considered the primary forecasting method for the NAM model.

For the GFSand ECMWF, GHI forecasts are averageirradiances applicable to the entire forecast
interval. 3-hour clear sky indices are calculated through Eq. 2 and multiplied by Cto produce
the hourly G and E forecasts. Table 2 compares each forecasting method for a single day
forecast horizon.

Table 2: Comparison of the forecast timesteps over a single day. Boxes represent averaging
periods of constant clear sky index kt* (kt,, for P, and P,4). Nk is interpolated from hourly
instantaneous values and assumed to apply over the entire hourly interval. The GFS provides a
combination of 3 and 6-hour interval forecast, from which 3-hour forecasts can be back calculated
(striped box).

UTChour |12 13 14 15 16 17 18 19 20 21 22 23 24 1 2 3 4 5
NAM
6Fs RO NANNNN NN
ECMWF
P1
P24

* perez, R, Kivalov, S, Schlemmer, J, Hemker, K., Renné, D., and Hoff, T. 2010. Validation of short and
medium term operational solar radiation forecastsin the US. Solar Energy. 84:12, 2161-2172.
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3.2 Spatial Averaging

N,, G, and E are spatially discrete functionsfor GHI. Girodo” showed that spatial averaging of
ECMWF output over 0.5° x 0.5° reduces the rRM SE of NWP forecasts. Here, forecast GHI for
each station is calculated by taking the mean output GHI of all NWP grid pointswithin various
distances (10 km, 50 km, 100 km, and 200 km). The mean absolute error (MAE) is not biased by
large error events and isthe best metric for determining the advantage of spatial averaging (Sec.
4.1).

3.3 Error Metrics

Equations 2-5 define error metrics used in NWP forecast evaluation: the mean absolute error
(MAE), mean bias error (MBE), relative mean bias error (rMBE), and relative root mean squared
error (rRM SE), respectively;

1

MAE = EE?_:1|GHL"FWRE — GHlygas,] (Ea.3)
1 r
MEE = ¥ E’;:j_{GH Inwp, — GHI MEA_':.,:'J (Eq. 4)
1oy GHINWP. i~ GHIMEAS.
rMBE = ~ 3L L RS, Eq.5
! a'*"zi_i CHIMEAS.FZAK (Ea-9)

|I — 2

1 r GHInwp.i—GHI i

EMSE | EJ:, 1( WNWP.Q MEAS.L) . (Eq 6)
N GH*'MEAE.::SZAM')

Relative errors are obtained by normalizing to the mean measured global horizontal irradiance
(GHIyE4s) asafunction of solar zenith angle (SZA) and clear sky index. Through the use of this
time and measurement dependent normalization, as opposed to constant asin many other
validation studies (e.g. Lorenz®), mid-day relative errors are reduced through normalization
and early morning/ late evening errors are amplified. Aserrorswill be considered as a function
of kt* and SZA, thisnormalization provides a metric relevant to the period over which the error

iscalculated.
3.4 MOS Correction

Following Lorenz® a stepwise multivariate fourth-order regression® is applied to derive the
MOScorrection function.

GHI_(SZA,kt*) = a cos*(SZA) + B(kt*)* + ---. (Eq.7)

* Girodo, M. 2006. Solarstrahlungsvorhersage auf der Basis numerischer Wettermodelle. Ph.D.
dissertation, Oldenburg Univ., Germany.

* Lorenz, E., Hurka, J, Heinemann, D., and Beyer, H. 2009. Irradiance forecasting for the power
prediction of grid-connected photovoltaic systems. IEEE Journa of Sdected Topicsin Applied Earth
Observations and Remote Sensing, 2:1, 2-10.

* Rogers, S. 2007. 2D weighted polynomial fitting and evaluation. Matlab Central File Exchange.
http:/ / www.mathworks.com/ matlabcentral/ fileexchange/ 13719-2d-weighted-polynomial-fitting-and-
evaluation. Accessed 8/ 25/ 2010.
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GHI_isthe model MBE for a given SZA and clear sky index. Weighted regression coefficient
calculation ensures accurate representation of unevenly distributed data (see Fig. 5). For all
combinations of SZA and kt*, GHI_ provides the best irradiance correction for any future
forecast. Asan example, the MOS-corrected NAM forecast, N, , iscomputed as

K,c?
NK_.I:'=NK_GHIC' (Eq8)

To simulate operational forecasting, local MOS correction functions are calculated dynamically
using only the most recent 56 days of MBE analysis (rather than the entire dataset) separately
for each SURFRAD station. Thisprovidesatraining dataset, independent of the evaluation
dataset, and aunique MOScorrection for each N, . Thismethod issimilarly applied for G and
E and designed to eliminate systematic bias error. Snce MOS corrections are not applicable for
SZAslarger than 75°, evening and early morning corrected forecasts are not calculated.
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CHAPTER 4;:
Results

4.1 Numerical Forecast Evaluation

4.1.1 Effect of Spatial Averaging — Mean Absolute Errors

Spatial averaging of the N, (Fig. 3) and G (not shown) forecasts resultsin areduction in MAE.
Asthe scale of spatial averaging increases the MAE across the majority of measured clear sky
indices decreases. Only for small measured clear sky indices (kt, < 0.25) does MAE increase
with increased spatial averaging, especially for the 200 km spatial averaging radius. Girodo®
and Lorenz et al. * also found reduced errors for averaging over a 100 km x 100 km square grid
for the ECMWEF forecast. Henceforth, only the 100 km radius spatial average will be considered
for the analyses.
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Figure 3: Nk MAE (W m™) as a function of measured clear sky index (kt.,) for different averaging
radii of the NAM model. 50, 100, and 200 km averaging radii correspond to approximately 80, 300,
and 1250 grid points, respectively.

“ Girodo, M. 2006. Solarstrahlungsvorhersage auf der Basis numerischer Wettermodelle. Ph.D.
dissertation, Oldenburg Univ., Germany.

* Lorenz, E., Hurka, J, Heinemann, D., and Beyer, H. 2009. Irradiance forecasting for the power
prediction of grid-connected photovoltaic systems. IEEE Journa of Sdected Topicsin Applied Earth
Observations and Remote Sensing, 2:1, 2-10.

14



4.1.2 Mean Bias Errors of Nk,G and E forecasts

Fig. 4 reveals similar MBE profiles for each NWP model. Given measured clear conditions and
SZAs near solar noon, all NWP forecasts are negatively biased by between 0 and 50 W m*(Fig.
4), indicating the presence of cloudy forecasts that resulted in clear periods. Theseresults may
be biased by location and season, since northern stations experience a cos(SZA)> 0.9 only for a
short part of theyear .
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Figure 4: NWP forecast MBE (W m'z) as a function of SZA and measured clear sky index for all
SURFRAD stations for a) Ng; b) G; ¢) E.

In clear skies, MBE increases with SZA reaching 50 W m™ for cos(SZA) = 0.35for N, and
approximately 0W m*for G and E. At cos(SZA) < 0.4, many N, forecasts predict up to 40
percent more GHI than clear sky models (kt* = 1to 1.4, see Fig. 5a). Thisover-prediction of GHI
in measured clear conditionsis surprising asit potentially indicates an inaccurate NWP clear
sky model.



For measured cloudy conditions (kt_ < 0.8) and relevant SZA (SZA < 75°),N,, G, and E are
positively biased by up to 225 W m®.  Positive MBEs in measured cloudy conditions (kt_ < 0.8)
suggest that either cloudy conditionswere not predicted or that the prescribed cloud optical
depths or cloud cover fractions were too small.

Some of these patterns can be explained by the binary nature (either cloudy or clear) of solar
forecasts. Examination of the data distribution of predicted and measured conditions (Table 3
with an overcast threshold of kt = 0.8) shows that 20.6 percent of all N, forecasts are measured
cloudy dayswhich were predicted to be clear. False clear forecasts occurred in 19.7 percent of G
forecasts and 12.4 percent of E forecasts. Forecast cloudy, but measured clear conditionswere
only observed for 5.7 percent (N, ), 5.5 percent (G), and 6.9 percent (E) of forecasts. These results
areindicative that the NWP models are generally biased towards predicting clear conditions
and at alarger clear sky index than measured. Overall, the ECMWF model had the smallest
likelihood of incorrect forecasts (19.3 percent) while both the NAM and GFSwere incorrect for
25 percent of forecasts

Table 3: Normalized frequency of clear and cloudy forecasts and observations for each NWP
model. The threshold to distinguish between cloudy and clear conditions is a clear sky index of

0.8.
SURFRAD Ny G E
Cloudy Clear Cloudy Clear Cloudy Clear
Cloudy 0.187 0.206 0.170 0.197 0.282 0.124
Clear 0.057 0.550 0.055 0.579 0.069 0.525

4.2 MOS Correction of Forecast Mean Bias Errors

4.2.1 Nk Forecast

Fig. 5aisthe histogram for the NAM forecast between March 21%, 2010 and February 8", 2011, as
afunction of SZA and kt*. Consistent with Table 3, more data exist for predicted clear skies
than for cloudy conditions. Fig. 5aindicatesthat the NAM model often forecasts GHI 20
percent to 40 percent in excess of clear sky irradiance, especially for large SZAs. While low
atmosphericturbidity during clear sky conditions can result in GHI measurements slightly
larger than C, the frequency and magnitude of forecasts with kt* > 1indicates a fundamental
problem with either the NAM radiative transfer model or the primary inputsto the model from
the NAM forecast. G forecasts only exhibit kt* > 1 for SZAs greater than 75°, which could be
caused by a different choice of clear sky model. ki* > 1.1 are not observed for E forecasts.

The MBE profilesin Fig. 4 demonstrate consistent MBE patterns. However, kt_isunknown
prior to measurement and is unsuitable as an input parameter for MOS correction. Instead
MBE profiles as afunction of the predicted clear sky index, kt* must be used. Fig. 6a showsthe
MBE of the N, forecast as a function of cos(SZA) and kt*. For forecast clear sky conditions (kt* >
0.8), N, over-predicts measured data by up to 150 W m*and on average by 73.9W m® In
cloudy conditions (kt* < 0.5), the N, model under-predicts measured GHI, on average by -32.3
W m? Overall, the magnitude of the negative MBE becomes larger for small SZA, while the
positive MBE for clear sky conditions becomes slightly smaller for small SZA.
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While N, isan overall inaccurate GHI forecast, Fig. 6a showsthat NAM biastrends are
continuous and therefore, correctable. Using MOS (Sec. 3.4), a correction polynomial was fit to
the data (e.g. Fig. 6b). Fig. 6b well represents the typical M BE characteristics of N,. Corrections
are subsequently applied according to Eq. 8, yielding N, . Notethat astemporally dynamic
local MOScorrections (Sec. 3.4) were applied to simulate operational conditions, Fig. 6b was not
directly used in forecast correction. The MBE of N,  (Fig. 6¢) decreases to less than 50 W m™*
and overall from 57.5W m?to 7.0 W m™. For aperfect MOScorrection, azero MBE would be
expected for N, . Here, the MBE is not zero isdue to the polynomial fit MOS correction which
cannot fully resolve the variability of Fig. 6a.
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Figure 5. Histogram as a function of solar zenith angle (SZA) and clear sky index (kt*) for a) Ng; b)
G; c) E. Datais presented in log,o format, i.e. a value of 2 indicates 100 observations. All datato
the left of the black line (SZA > 75°) were not used in the MOS analysis.
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Figs. 6, 7, 8: MBE (W m'z) of Nk (Fig. 6), G (Fig. 7), and E (Fig. 8), as a function of solar zenith angle
(SZA) and forecasted clear sky index (kt*) compared to SURFRAD measurements: a) raw data, b)
polynomial fit to the data (Eq. 7); c) MBE of the corrected forecasts: Nk, G¢, and E..

4.2.2 G Forecast

Fig. 7a showsthe average M BE profile for the GFSforecast, G. The bias error dependence on kt*
isqualitatively similar to the NAM model (Fig. 6a). For forecasted clear sky conditions (kt* >
0.8), G generally over-predicts GHI, on average by 41.0 W m®. Similarly, for overcast conditions
with moderate to small optical depths (kt* < 0.5), the GFSforecast is negatively biased by on
average-1.8 W m™. The MBE shows a much stronger dependence on SZA compared to the
NAM model, increasing during mid-day (MBE,, = -67.4 W m™for cos(SZA) > 0.7 and kt* < 0.5)
asaresult of thelarger GHI magnitudes observed then.

Fig. 7b showsthe MOScorrection function fit to Fig. 7afor the entire data set. From Eq. 7, the
MOSfunction applies a negative correction to G for predicted clear skies (kt* > 0.8).
Correspondingly, alarge positive correction is applied for forecast overcast conditions (kt* <
0.5). On average, the M BE of the MOS-corrected forecast, G (Fig. 7c) isreduced from 354 W
m?*to5.2W m?,

4.2.3 E Forecast

The MBE profile of E (Fig. 8a) is significantly different than N, or G. Predicted clear skies (kt* >
0.9) and overcast conditions with kt* < 0.2 are least biased (M BE < 50 W m?). For predicted
moderately cloudy conditions E is most significantly biased, by 42.6 W m”on average. While
there are several areas of negative bias, the MBE isin general positive, with some biases
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exceeding 150 W m™®. Lorenz et al.” found asimilar MBE profile for ECMWF data using ground
measurementsin Germany.

The MOScorrection function for E (Fig. 8b) targets the large positive bias for moderately cloudy
conditions. It should be noted that the negative bias correction for very small predicted clear
sky indices (kt* < 0.2) is an artifact of the correction polynomial, which isirrelevant as no such
dataoccurred. Thiswasalso observed in the MOSfunction for G (Fig. 7b). The MOScorrection
reduces overall MBE from 31.4 W m*to 0.5 W m* (Fig. 8c). Using this metric, the MOS
correction for Eisthe most effectivein reducing systematic errors.

-150 0.2 04 06 08 1

kt

m

Figure 9: RMSE (W m™) as a function of measured clear sky index (ktm): a) (N, G, E, P1, P4, and
C); b) (Nk¢, G, E¢, Py, P24, and C); ¢) Change in RMSE due to MOS correction.

* Lorenz, E., Hurka, J, Heinemann, D., and Beyer, H. 2009. Irradiance forecasting for the power
prediction of grid-connected photovoltaic systems. IEEE Journal of Sdected Topicsin Applied Earth
Observations and Remate Sensing, 2:1, 2-10.
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4.3 Root Mean Square Errors

For kt_ =1, Cisexpected to havean RMSE=0W m?. For kt > 0.86, Cindeed hasthe smallest
RMSE. However, several instances of kt_ > 1 were observed, contributing to the non-zero RM SE
for kt, = 1. For overcast conditions, the RM SE of C drastically increases.

P, isthemost accurate forecast for overcast conditions and only slightly less accurate than G
and E for clear conditions. Since hourly cloud cover conditions are relatively static the one-hour
persistence forecast, P,, is accurate. For longer persistence forecasting on the order of aday
(P,,), clear conditions are more static than cloudy. Correspondingly P,, RM SE increases with
decreasing kt,_, approaching a RM SE greater than 400 W m”for kt_ < 0.15. Transitional periods
between synoptic weather patterns and diurnally driven phenomena cause large errorsin 24-
hour persistence forecasts. For moderate cloudy conditions, the measured clear sky index can
vary significantly, making the persistence forecasts inaccurate (e.g. Fig. 2 from 1800-2400 UTC).

The high spatial variability of irradiance during cloudy conditionsis difficult to forecast by
NWP. Consequently, NWP RMSE (Fig. 9a) increases as kit decreases. Under measured clear
sky conditions, all NWP forecasts have low RMSE (RM SE < 125 W m™). In clear conditions (kt
=1), G isthemost accurate. Excluding clear conditions, E has alower RM SE than other NWP
forecasts with typical improvements of 30 W m”? compared to N, and G.

After MOScorrection (Fig. 9b) the same general trends for NWP RM SE are present, albeit at a
smaller RMSE level. Theimpact of MOSon RM SE isshown in Fig. 9c. Positive changes
represent increasesin RMSE. The RM SE of the NAM forecast N, isreduced by up to 50 W m*
for 0.15< kt < 0.95. Smilarly, G_isimproved over all clear sky indiceslessthan 0.9 by as much
as 110 W m® The RM SE of Eis also significantly lowered for all clear sky indices less than 0.7.
For the largest clear sky indices (kt, > 0.94), MOScorrectionsincreased the RM SEs for each
NWP forecast. Uncorrected forecasts for measured clear conditions (Fig. 4) wererelatively
unbiased making it difficult to reduce RMSE. For all other clear sky indices, the MOS correction
function significantly reduced RM SE.
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CHAPTER 5:
Summary and Conclusions

In this study, five primary intra-day forecasts were analyzed: The Ineichen clear sky model, C;
the persistence forecasts, P, and P,,; the clear sky index (kt*) interpolated NAM forecast, N, ; the
3-hour constant kt* GFSforecast, G; and the 3-hour constant kt* ECMWF forecast, E. It is of
interest to compare bias-corrected NWP model forecasts to other more advanced products such
asNDFD, satellites, sky imagers, or forecasts by specialized renewable energy forecast
providers. While other derived forecast products may be more accurate, the accuracy of bias-
corrected NWP forecasts provides a useful reference to establish the value of other (more
expensive) products.

Forecast accuracy was evaluated through RM SE and MBE. 24-hour persistence and clear sky
forecasts (P,,, and C) were inaccurate except for measured clear conditions (Fig. 9) and should
be used only as baseline forecasts. The accuracy of 1-hour persistence forecasts is comparable to
NWP modelsfor clear conditions, but better for kt_ < 0.5.

The method presented by Lorenz et al.” and known as model output statistics (MOS) was
employed to reduce MBE in forecasted GHI. To determine forecast accuracy, it was necessary to
differentiate between MBE as a function of measured clear sky index (kt, ) and forecasted clear
sky index (kt*). NWP modelswere validated using kt_, while MOS necessitated the use of the
forecast variable, kt*. Using fourth order multivariate regression, correction functions were fit
to the observed MBE as a function of solar zenith angle (SZA) and clear sky index (kt*). Table 4
summarizes the results of the MOS correction when averaged across all SURFRAD stations.
Errors separated by station are provided in Table 5 of Appendix B and are consistent with the
overall errorslisted in Table 4. Thelocal MOSfunctions, used in conjunction with forecast SZA
and kt*, reduced RM SE by 20.1 W m*(N,), 17 W m” (E), and 25.6 W m” (G) and effectively
eliminated MBE. RM SE reductionswere largest for intermediate kt* at about 50 W m®. MBES
were similar across different sites with the smallest errors at Desert Rock, NV (site with the
largest kt_) and the largest errors at Pennsylvania State University, PA (site with the lowest kt ).
MOS-corrected RM SE were smallest at the most clear site, Desert Rock, and largest at Fort Peck,
Montana. For all stations, seasonal changesin bias errorslimit MOS-correction accuracy. For
several SURFRAD stations, MBE were observed to change significantly from month to month.
Asthe MOS-correction uses 56 days of training data, sudden changesin MBE dependence on
SZA and kt* are not immediately represented increasing the M BE of the MOS-corrected
forecasts.

For the original models, ECMWF performed best, closely followed by GFS. Surprisingly, the
NAM model performed the worse despite its higher spatial resolution and specialized
application to North American Meteorology. Significant problemswere found with the clear
sky model applied in N, which over-predicted GHI in clear conditions by up to 40 percent.
After MOScorrection, the GFSmodel was most accurate, indicating that the errorsin GFS

® Lorenz, E., Hurka, J, Heinemann, D., and Beyer, H. 2009. Irradiance forecasting for the power
prediction of grid-connected photovoltaic systems. IEEE Journa of Sdected Topicsin Applied Earth
Observations and Remote Sensing, 2:1, 2-10.
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forecasts are more systematic. A combination of GFSforecasts for clear conditions and ECMWF
conditions for cloudy conditions may yield the lowest overall RM SE (Fig. 9b).

Table 4: MBE and RMSE for NWP forecasts before and after MOS correction averaged across all

sites

N, G E
MBE (W m?) 57.5 35.4 31.4
MBE. (W m? |70 5.2 0.5
RMSE (W m? | 134.2 1105 | 123.2
RMSE (W m?) |114.1 84.6 106.2

The NWP modelswere shown to be significantly biased towards predicting clear skies. Thus,
when plotted against kt_ (Fig. 4), negative biases arerare. Overall,N,, G, and E predicted more
false clear daysthan false cloudy days (Table 3). Of the forecasts that erroneously predicted
clear or cloudy conditions (Table 3), 78.3 percent of N, (75.6 percent for G and 64.2 percent of E)
were clear forecastsresulting in cloudy days. Thiswas a primary contributor to the large
positive MBE observed in forecast clear conditions (Figs. 6a, 7a, and 8a). However, the many
accurate clear sky forecasts (55.0 percent of all N,, 57.9 percent of G, and 52.5 percent of E)
reduced the magnitude of the MBE in clear conditions. Although false cloudy forecast were
considerably less frequent (5.7 percent of all N, 5.5 percent of G and 6.9 percent of E), far fewer
cloudy dayswere predicted overall (Fig. 5a). These few large negative bias events account for
part of the 150 W m* MBE for kt* < 0.6 for N, and G (Fig. 6a/ 7a).

Evaluating ECMWF forecast accuracy in Germany, Lorenz et al.* showed that NWP MBE was
largest for cloudy conditions with moderate clear sky indices (0.3 < kt* < 0.6), while forecasted
clear conditionswererelatively unbiased. This study revealed a similar ECMWF M BE profile
for SURFRAD stations (Fig. 8a). Positively biased for moderately overcast conditions, the
overall MBE of Ewas 31.4 W m™. Consistent with the results of this study, Remund et al.”,
found E MBEs ranging from 15to 43 W m” at 3 different sites.

MOSapplication to the NWP irradiance output was successful in minimizing bias and reducing
RM SE, but did not provide information as to the source of the MBE. Errors originating from the
radiative transfer model (RTM), cloud model, and prognostic variable errors can all contribute

to the MBE. MOScorrectionsin the measured clear sky regime (kt_ > 0.9) did not reduce RM SE

“ Lorenz, E., Hurka, J, Heinemann, D., and Beyer, H. 2009. Irradiance forecasting for the power
prediction of grid-connected photovoltaic systems. IEEE Journa of Sdected Topicsin Applied Earth
Observations and Remote Sensing, 2:1, 2-10.

* Remund, J, Perez, R., and Lorenz, E. 2008. Comparison of solar radiation forecasts for the USA. 2008
European PV Conference, Valencia, Spain.
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(Fig. 9c). Thisisbecausethe MOScould not distinguish between RTM errors (over-prediction
of GHI even for clear skies, especially for NAM) and cloud model errors (incorrect
parameterization of RTM inputs). Consequently, many initially accurate forecasts were
unnecessarily corrected. Rather than correcting all forecasts, differentiating betw een the
sources of the error isthefirst step into understanding which forecasts need to be corrected.
Further research will investigate the relationship of MBE to other prognostic variables, most
notably those involved in cloud parameterization.

A final consideration of NWP forecasting isresolution. Even the 0.1° x 0.1° NAM spatial
resolution isinsufficient to resolve most clouds and only an average cloud cover can be
forecasted for agiven point. For the GFSand ECMWF the resolution is even coarser. However,
even if the spatial resolution was finer, the temporal output intervalswould not permit the
examination of time dependent cloud cover variability, important in predicting ramp rates and
bands of variability for solar power plants. While NWP model time-steps are on the order of
minutes, the radiative transfer models are run less frequently, and the output isonly hourly
(NAM) or every 3hours (GFSand ECMWF). Consequently, any patternswith characteristic
time scales less than an hour are unresolved. Linking observed temporal variability in GHI to
native NWP forecasts will require further research.
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Appendix A:

MBE and RMSE by SURFRAD Station

MBE and RM SE before and after MOScorrection. Average measured GHI and kt_ are also

shown.

STN

Bondville, IL
GHI,e = 356.8 W m™
Ktmavg = 0.73

Desert Rock, NV
GHl,,, = 474.7 W m™
Kt g, avg = 0.87

Fort Peck, MT
GHl,, =319.9 W m™
Kt avg = 0.73

Goodwin Creek, MS
GHl,ye = 391.3 W m?
Kt n,avg = 0.76

Penn State University, PA

GHl,ye = 314.1W m>
Kt m,ave = 0.64

Sioux Falls, SD
GHl,, = 314.8 W m™
Kt avg = 0.75

Boulder, CO
GHl,, =378.9 W m™
Kt avg = 0.75

NWP
Model

MBE (W m™)
59.1

394
23.5

41.0
18.2
22.3

53.1
324
26.8

52.9
36.4
10.8

77.5
49.2
42

63.2
36.0
30.3

55.1
35.8
62.6

A-1

MBE, (W m™)
4.6

3.3
0.7

10.6
3.2
14

11.8
10.7
4.1

1.2
7.1
-0.9

6.5
0.4
-1.1

7.8
6.3
0.1

6.5
5.9
0

RMSE (W m?)
137.7

108.6
113

93.5
83.2
96.4

124.1
98.8
121.4

144.0
122.7
127.9

145.8
116.2
117.4

137.1
107.7
120.4

149.0
129.4
157.6

RMSE, (W m™)

117.0
82.8
100.9

81.6
76.9
87.8

104.5
74.7
107.9

125.4
91.3
109.8

118.5
83.7
97.7

166.3
80.1
106.6

128.6
99.3
128.2
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