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PREFACE 

The California Energy Commission Energy Research and Development Division supports 
public interest energy research and development that w ill help improve the quality of life in 
California by bringing environmentally safe, affordable, and reliable energy services and 
products to the marketplace. 

The Energy Research and Development Division conducts public interest research, 
development, and demonstration (RD&D) projects to benefit California. 

The Energy Research and Development Division strives to conduct the most promising public 
interest energy research by partnering with RD&D entities, including individuals, businesses, 
utilities, and public or private research institutions. 

Energy Research and Development Division funding efforts are focused on the following 
RD&D program areas: 

• Buildings End-Use Energy Efficiency 

• Energy Innovations Small Grants 

• Energy-Related Environmental Research 

• Energy Systems Integration 

• Environmentally Preferred Advanced Generation 

• Industrial/ Agricultural/ Water End-Use Energy Efficiency 

• Renewable Energy Technologies 

• Transportation 

 

Evaluation of Numerical  Weather Prediction for Intra-Day Solar  Forcasting number 500-08-017 
conducted by the University of California, San Diego. The information from this project 
contributes to Energy Research and Development Division’s Renewable Energy Technologies 
Program.  

 

For more information about the Energy Research and Development Division, please visit the 
Energy Commission’s website at www.energy.ca.gov/ research/  or contact the Energy 
Commission at 916-327-1551. 
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ABSTRACT 

Numerical weather prediction models are generally the most accurate tools for forecasting solar 
irradiation several hours in advance. This study validated the North American Model, Global 
Forecast System, and European Centre for Medium-Range Weather Forecasts global horizontal 
irradiance forecasts against ground measurement data and persistence forecasts. A ll numerical 
weather prediction models were biased for measured clear conditions by less than 50 watts per 
metre-2 and for cloudy conditions the models were biased towards forecasting clear conditions, 
resulting in large, positive biases. 

Mean bias errors were obtained for each numerical weather prediction model as a function of 
solar zenith angle and forecast clear sky index. The North American Model and Global Forecast 
System were positively biased by up to 150 watts per metre-2 for forecast clear sky conditions, 
while the European Centre for Medium-Range Weather Forecast mean bias errors were small. 
Outside of the few clear forecasts that were actually cloudy, the reason for this bias was that the 
Global Forecasting System and especially the North American Model forecasts can exceed clear 
sky irradiances by up to 40 percent, indicating an inaccurate clear sky model. For forecast 
cloudy conditions the North American Model and Global Forecast System models had a 
moderate negative bias, while European Centre for Medium-Range Weather Forecast forecasts 
were most biased.   

Model output statistics-corrected numerical weather prediction forecasts provided important 
baseline accuracy for evaluating other forecasting techniques. Model output statistics 
minimized mean bias errors for all numerical weather prediction models. Root mean square 
errors were also reduced, especially for intermediate clear sky indices. The model output 
statistics-corrected Global Forecast System provided the best solar forecasts for the continental 
United States. The European Centre for Medium-Range Weather Forecast provided the most 
accurate forecast in cloudy conditions, while the Global Forecast System had the best clear sky 
accuracy. 

 

 

 

 

 

Please use the following citation for this report: 

Mathiesen, Patrick, Jan Kleissl. 2012. Evaluation of Numerical Weather Prediction for Solar 
Forecasting. California Energy Commission. Publication number: CEC-500-2013-115. 
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EXECUTIVE SUMMARY 

Introduction 

Accurate forecasting of solar irradiance is essential for the efficient operation of solar thermal 
power plants, the management of energy markets, and the widespread implementation of solar 
photovoltaic (PV) technology. Solar forecasts are often derived from physics-based numerical 
weather prediction (NWP) models.  

Project Purpose 

The goal of this project was to evaluate the forecast skill of NWP models by comparing several 
intra-day solar forecasts against ground measurements and persistence forecasts. The results 
were intended to provide a guideline on the maturity, applicability, and research needs related 
to NWP forecasting. 

Project Results 

Three NWP models were analyzed: the hourly North American Model (NAM) forecast, the 
three-hourly Global Forecast System (GFS) forecast; and the three-hourly European Center for 
Medium-range Weather Forecasting (ECMWF) forecast. These “ raw”  forecasts were compared 
to measurements from seven solar irradiance stations (SURFRAD) across the United States. 
Forecast accuracy was evaluated through the root mean square error (RMSE) and mean bias 
error (MBE). Subsequently, a bias correction called model output statistics (MOS) was applied 
to reduce persistent errors. Correction functions were fit to the observed MBE as a function of 
solar zenith angle and clear sky index. The accuracy of bias-corrected NWP forecasts provided a 
useful reference to establish the value of other more expensive or complex solar forecast 
products from specialized forecast providers. The results in this report w ill also facilitate the 
selection of global or national NWP models for initialization of such local models. 

Table ES1 summarizes the forecast errors. For the uncorrected models, ECMWF performed best, 
closely followed by GFS. Surprisingly, the NAM model performed worst despite its higher 
spatial resolution and specialized application to North American meteorology.  Significant 
problems were found with the NAM clear sky model, which over-predicted global horizontal 
solar irradiation (GHI) in clear conditions by up to 40 percent.   

Table ES1:  MBE and RMSE for NWP forecasts before and after MOS correction (subscript ‘c’) 
averaged across all sites. 

 NAM  GFS ECMWF 

MBE (W m-2) 57.5 35.4 31.4 

MBEC (W m-2) 7.0 5.2 0.5 

RMSE (W m-2) 134.2 110.5 123.2 
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 NAM  GFS ECMWF 

RMSEC (W m-2) 114.1 84.6 106.2 

The MOS corrections reduced RMSE and effectively eliminated MBE.  RMSE reductions were 
largest for partly cloudy conditions at about 50 watts per metre-2 (W m-2).  MOS-corrected RMSE 
were smallest at the sunnier sites. The GFS model was most accurate after MOS correction, 
indicating that its errors were more systematic.   

The NWP models were shown to be significantly biased towards predicting clear skies.  All 
models predicted more false clear days than false cloudy days.  Of the forecasts that 
erroneously predicted clear or cloudy conditions, 78 percent of NAM, 76 percent of GFS and 64 
percent of ECMWF were clear forecasts resulting in cloudy days. This was a primary 
contributor to the large positive MBE observed in forecast clear conditions.  A lthough false 
cloudy forecast were considerably less frequent (about 6 percent for all models), far fewer 
cloudy days were predicted overall.  These few large negative bias events account for part of the 
150 W m-2 MBE in overcast conditions for NAM and GFS. 

Forecast errors can originate from a variety of sources. MOS corrections in the measured clear 
sky regime did not reduce RMSE because the MOS could not distinguish between errors in the 
clear sky models and errors related to cloud prediction. Consequently, many initially accurate 
forecasts were unnecessarily corrected by the MOS. Differentiating between the sources of the 
error was the next step in understanding which forecasts need to be corrected, which was 
preferable to correcting all forecasts. The relationship of MBE to other prognostic variables 
should be investigated, most notably those involved in cloud parameterization. 

A final consideration of NWP forecasting was resolution. Even the 0.1° x 0.1° NAM spatial 
resolution was insufficient to resolve most clouds and only an average cloud cover could be 
forecasted. The resolution was even coarser for the GFS and ECMWF. Even if the spatial 
resolution was finer, the temporal output intervals would not permit the examination of time 
dependent cloud cover variability, which was important for predicting ramp rates and bands of 
variability for solar power plants. NWP model time-steps are on the order of minutes but 
radiative transfer models are run less frequently and the output was only hourly for NAM or 
every three hours for GFS and ECMWF.  Consequently, any patterns with characteristic time 
scales less than an hour were unresolved. 

As expected, 24-hour persistence forecasts were inaccurate except for measured clear 
conditions. The accuracy of one-hour persistence forecasts was comparable to bias-corrected 
NWP models for clear conditions, but better for cloudy conditions, especially with a clear sky 
index less than 0.5. A combination of GFS forecasts for clear conditions and ECMWF conditions 
for cloudy conditions would yield the most accurate NWP forecast product. 

Project Benefits 
This study helped advance the understanding of forecasting solar irradiance, which could help 
improve the efficiency of solar power plants and increase the implementation of solar PV 
technologies. More efficient and widespread use of solar power to generate electricity w ill help 
California meet its Renewable Portfolio Standard goals and reduce greenhouse gas emissions 
that contribute to climate change and other air emissions that cause air pollution. 
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CHAPTER 1 
Introduction  
Accurate forecasting of solar irradiance is essential for the efficient operation of solar thermal 
power plants, the management of energy markets, and the widespread implementation of solar 
photovoltaic (PV) technology1.  Early forecasting attempts used model output statistics2 (MOS) 
to establish regression models between solar irradiance measurements and available forecast 
variables.  Subsequent forecasts of these variables were used as input to MOS, predicting solar 
irradiation.  Using this method, Jensenius and Cotton2 forecasted daily global horizontal solar 
irradiation (GHI) on a 6 to 30-hour forecast horizon with a root mean square error (RMSE) of 
13.2 percent of extraterrestrial radiation received. 

Similarly, artificial neural networks34(ANNs) recognize patterns in data by mimicking the 
logical processes of a biological neural network and have been successfully applied to solar 
forecasting.  Using training data, typically years of measured ground data3, ANNs have been 
developed to reduce overall relative RMSE (rRMSE) of GHI by as much as 15 percent when 
compared to 12 to 18-hour ahead NWP forecasts4. 

For physically-based forecasting, cloud cover and cloud optical depth are the most important 
parameters affecting solar irradiance.  Through processing of satellite or ground imagery, 
clouds can be detected, characterized, and advected to predict GHI accurately up to 6 hours in 
advance56.  Hammer et al.6 demonstrated 30 minute GHI forecasts accurate to w ithin 17 percent 
rRMSE and 30 percent rRMSE for 2-hour forecast horizons.  For intra-day forecasts, a reduction 
in rRMSE by 7 percent-10 percent compared to persistence forecasts was found. 

Forecasts beyond 6 hours, up to several days ahead, are generally most accurate if derived from 
numerical weather prediction (NWP).  NWP models predict GHI using columnar (1D) radiative 
transfer models7 (RTM).  In most existing NWP models solar irradiation is only used to force the 

1 Lew, D., and Piwko, R.  2010. Western w ind and solar integration study.  NREL technical report, 
NREL/ SR-550-47434. Golden, Colorado: National Renewable Energy Laboratory.  536 pgs. 
2 Jensenius, J. and Cotton, G.  1981.  The development and testing of automated solar energy forecasts 
based on the model output statistics (MOS) technique.  Satellites and Forecasting of Solar Radiation:  
Proceedings of the First Workshop on Terrestrial Solar Resource Forecasting and on Use of Satellites for Terrestrial 
Solar Resource Assessment.  22-29 
3 Elizondo, D., Hoogenboom, G., and McClendon, R.  1994.  Development of a neural network model to 
predict daily solar radiation.  Agriculture and Forest Meteorology.  71:1-2, 115-132. 
4 Guarnieri, R.,  Martins, F., Oereira, E., and Chuo, S.  2008. Solar radiation forecasting using artificial 
neural networks.  National Institute for Space Research, 1, 1-34. 
5 Hamill, T. and Nehrkorn, T.  1993.  A  short-term cloud forecast scheme using cross correlations.  Weather 
and Forecasting, 8:4, 401-411. 
6 Hammer, A., Heinemann, D., Lorenz, E., and Lückehe, B. 1999.  Short-term forecasting of solar radiation:  
A  statistical approach using satellite data.  Solar Energy 67:1-3, 139-150. 
7 Heinemann, D., Lorenz, E., and Girodo, M.  2006.  Forecasting of solar radiation.  Solar Energy 
Management for Electricity Generation, E.D. Dunlop, L. Wald, and M.  Súri (Eds.).  Nova Publishers, New 
York.  Chapter 7, p. 83-94. 
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average surface energy balance, making GHI variability less relevant.  Consequently, 
computationally expensive RTMs are only run once every 30 to 60 minutes while model time-
steps are on the order of one minute.  Heinemann et al.7 showed that the MM5 mesoscale model 
can predict GHI in clear skies without mean bias error (MBE).  However, the bias was highly 
dependent on cloud conditions; in overcast conditions, the MM5 model MBE was 129 percent7.  
Perez et al.8 examined the accuracy of the National Digital Forecast Database (NDFD), a 
derivative of the operational NWP models published by the National Center for Environmental 
Prediction (NCEP).  A fter a local correction function was applied, Perez et al.8 found that for 8 to 
26-hour forecast horizons, the NDFD had a GHI rRMSE of 38 percent.  This was more accurate 
than satellite derived forecasts for similar forecast horizons (rRMSE = 46 percent). 

Due to complex cloud microphysics and limitations in spatial resolution, clouds and their 
radiative properties are difficult to predict in numerical models.  Consequently, NWP models 
are expected to show inherent regional or global biases limiting forecast accuracy.  Armstrong9 
compared the Dudhia10 radiative model forecast GHI to a single ground measurement site and 
found a relationship between MBE and cloud cover.  Similarly, Remund et al.11 examined NWP 
biases compared to a single site to find that European Centre for Medium-Range Weather 
Forecasts (ECMWF) and Global Forecast System (GFS) next day GHI forecasts have an MBE of 
19 percent.  This MBE was shown to be approximately constant for intra-day (hour-ahead) to 3 
day ahead forecast horizons11. Breitkreuz et al.12  included aerosol effects on irradiance into the 
ECMWF model to show a reduction in GHI rRMSE for 2 to 3 day ahead forecasts from 11.5 
percent to 7.2 percent under clear sky conditions.  Similarly rMBE was improved from -9.8 
percent to 5.1 percent. 

Consistent error patterns allow for MOS to be used to produce a bias reduction function for 
future forecasts7.  Bofinger and Heilscher13 used MOS locally w ith ECMWF GHI forecasts to 
create daily solar electricity predictions accurate to 24.5 percent RMSE.  Lorenz et al.14 related 
forecasted solar zenith angle (SZA) and clear sky index (kt*, Eq. 2) to ECMWF MBE for 
Germany, revealing a consistent over prediction (up to 100 W m-2) for moderately cloudy 

8 Perez, R., Moore, K., Wilcox, S., Renné, D.,  Zelenka, A .  2007.  Forecasting solar radiation – preliminary 
evaluation of an approach based upon the national forecast database.  Solar Energy.  81:6, 809-812. 
9 Armstrong, M. 2000.  Comparison of MM5 forecast shortwave radiation with data obtained from the 
atmospheric radiation measurement program.  Master of Science Scholarly Paper, University of 
Maryland, USA. 
10 Dudhia, J., 1989.  Numerical study of convection observed during the winter monsoon experiment 
using a mesoscale two-dimensional model.  J. Atmospheric Sciences.  46:20, 3077-3107. 
11 Remund, J., Perez, R., and Lorenz, E.  2008.  Comparison of solar radiation forecasts for the USA.  2008 
European PV Conference, Valencia, Spain. 
12 Breitkreuz, H., Schroedter-Homscheidt, M., Holzer-Popp, T., and Dech, S.  2009.  Short-range direct and 
diffuse irradiance forecasts for solar energy applications based on aerosol chemical transport and 
numerical weather modeling.  J. Applied Meteorology and Climatology.  48:9, 1766-1779. 
13 Bofinger, S., and Heilscher, G.  Solar Electricity Forecast – Approaches and first results.  21st PV 
Conference.  Dresden, Germany, 2006. 
14 Lorenz, E., Hurka, J., Heinemann, D., and Beyer, H.  2009.  Irradiance forecasting for the power 
prediction of grid-connected photovoltaic systems.  IEEE Journal of Selected Topics in Applied Earth 
Observations and Remote Sensing, 2:1, 2-10. 
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conditions.  Using a MOS correction function eliminated bias and reduced RMSE by 5 percent 
for 24 h forecasts. 

This paper focuses on the analysis and MOS correction of GHI forecasts from three operational 
NWP models w ithin the continental United States (North American Model, NAM, GFS, and 
ECMWF; Section 2).  A  fourth operational NWP model, the Rapid Update Cycle (RUC), was not 
evaluated.  The approach presented here expands upon previous work.  Remund et al.15 
compared six months of ECMWF, NDFD, and GFS-WRF forecasts against three ground 
measurement sites.  Furthermore, bias reducing MOS corrections were not examined.  
Additionally, Perez et al.16 evaluated the NDFD at a single site.  There, however, the MOS 
approach was based on cloud cover parameters and not irradiance.  For this paper, all available 
operational NWP models (Section 2) are validated against a nationwide network of 
meteorological stations for up to 1 year.  The MOS correction function is established directly 
from the NWP model output for solar radiation.  Consistent biases are shown as a function of 
measured (Section 4.1) and forecast clear sky index (Section 4.2) motivating the application of a 
MOS correction as a function of solar zenith angle and clear sky index.  Implementation of the 
MOS correction mitigates bias errors of the NWP forecasts and significantly reduces RMSE 
(Section 4.3).  Finally, it is concluded (Section 5) that MOS corrections lead to more accurate 
prediction of solar irradiance, given a location, time, and basis forecast model.  Only intra-day 
(or hour-ahead) forecasts are considered since NWP forecast accuracy has been shown to be 
approximately constant over a 3 day horizon15 and intra-day forecasts are relevant for energy 
markets. 

 

15 Remund, J., Perez, R., and Lorenz, E.  2008.  Comparison of solar radiation forecasts for the USA.  2008 
European PV Conference, Valencia, Spain. 
16 Perez, R., Ineichen, P., Moore, K., Kmiecik, M., Chain, C., George, R., and Vignola, F.  2002.  A  new 
operational model for satell ite-derived irradiances:  Description and validation.  Solar Energy.  73:5, 307-
317. 
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CHAPTER 2: 
Numerical Weather Prediction and Ground Validation 
Data   
2.1 North American Mesoscale Model (NAM)  
The NAM forecast is published by the National Oceanic and Atmospheric Administration’s 
(NOAA) NCEP on a 0.113° E-W by 0.111° N-S (approximately 12 km x 12 km) grid spanning the 
entire continental United States (CONUS, Fig.1, Table 1).  Hourly output, available up to 36 
hours ahead, is published four times daily at 00, 06, 12, and 18 UTC.  Additionally, the NAM 
forecast is available up to 84 hours ahead for a 3-hour temporal resolution.  The NAM forecast 
is a product of the Weather Research and Forecasting – North American Mesoscale (WRF-
NMM) model.  Further details on the numerical model and parameterization methods are 
available in Skamarock17. 

Among over 125 output variables, total downward short wave radiation at the surface (Fig. 1) is 
reported.  This is equivalent to global horizontal irradiance (GHI) or the total amount of 
radiation, direct and diffuse, incident on a horizontal surface at the earth’s surface.  Downward 
shortwave radiation is a non-native forecast parameter that is calculated from several radiative 
transfer models:  A  derivative of the Eta Geophysical Fluid Dynamics Laboratory shortwave 
model 18 (GFDL-SW); the Dudhia19 shortwave model as used by MM5; or the Goddard20 
shortwave model17.  The operational NAM model analyzed here use the GFDL-SW model.  
Using the principle of multiple scattering and Mie theory, the GFDL-SW model assumes that 
the primary source of radiative absorption, reflection, and scattering in the atmosphere is from 
concentrations of large particles such as water droplets in clouds.  Cloud optical depth and 
albedo are parameterized using a separate cloud model and are based on prognostic numerical 
variables such as water mixing ratios (liquid and ice), temperature, and pressure2122.  Ozone and 
carbon dioxide concentrations from climatological tables are used.  Radiative transmission is 
subsequently calculated in an assumed plane-parallel atmosphere with homogeneous layers.  

17 Skamarock, W., Klemp, J., Dudhia, J., Gill, D., Barker, D., Wang, W., and Powers, J.  2007.  A  description 
of the advanced research WRF version 2.  NCAR Technical Note NCAR/ TN-468 +STR. 
18 Lacis, A ., and Hansen, J.  1974.  A  parameterization for the absorption of solar radiation in the earth’s 
atmosphere.  J. Atmospheric Sciences, 31:1, 118-133. 
19 Dudhia, J., 1989.  Numerical study of convection observed during the winter monsoon experiment 
using a mesoscale two-dimensional model.  J. Atmospheric Sciences.  46:20, 3077-3107. 
20 Chou, M., and Suarez, M.,  1994.  An efficient thermal infrared radiation parameterization for use in 
general circulation models.  NASA Tech. Memo. NASA/ TM-1994-104606.  1-85. 
21 Stephens, G., 1978  Radiation Profiles in extended water clouds.  II:  parameterization schemes..  J. 
Atmospheric Sciences.  35:11, 2123-2132. 
22 Stephens, G.  The parameterization of radiation for numerical weather prediction and climate models.  
1984.  Monthly Weather Review.  112, 826-867. 
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The GFDL-SW model is strictly one-dimensional, i.e. GHI is only affected by conditions present 
in the column of atmosphere directly above the grid point23.  

 
Figure 1:  NAM GHI Forecast [W m-2] for April 10th, 2010 at 2000 UTC for the NAM domain over 

North America. Triangles show SURFRAD stations. 

 

Table 1: NWP Forecast Summary 

23 Skamarock, W., Klemp, J., Dudhia, J., Gill, D., Barker, D., Wang, W., and Powers, J.  2007.  A  description 
of the advanced research WRF version 2.  NCAR Technical Note NCAR/ TN-468 +STR. 

 NAM GFS ECMWF 
Spatial resolution 0.11° 0.5° 0.25° 
Radiative Transfer Model GFDL-SW RRTM-SW McRad 

GHI variable name dswrfsfc dswrfsfc 
surface solar radiation 

downwards 
Output temporal 
resolution/forecast 
horizon 

1 h / 36 h 3 h / 180 h 3 h / 144 h; 6 h / 240 h 

Temporal averaging Instantaneous 3 h, 6 h alt. 3 h, 6 h, 9 h, etc. 
Time period analyzed 3/21/10 – 2/8/11 6/23/10 – 2/8/11 9/1/09-8/31/10 
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2.2 Global Forecast System (GFS)  
Unlike the NAM, the GFS is a global forecasting model.  Also published by NOAA through 
NCEP24, the GFS model has a spatial resolution of 0.5° E-W by 0.5° N-S (Table 1).  Temporally, 
the GFS forecast is published at 00, 06, 12, and 18 UTC, at an average time-step of 3 hours up to 
180 hours (7.5 days) ahead.  GFS forecasts are reported as alternating 3 (1st, 3rd, etc. forecasts in a 
series) and 6-hour (2nd, 4th, etc.) averages.  Consistent 3-hour resolution forecasts are calculated 
from the raw data. 

The SW radiative model employed by the GFS is the rapid radiative transfer model 2526 (RRTM-
SW).  RRTM uses the correlated-k method to transform the spectral dependence of radiative 
absorption coefficients (k) into a continuous cumulative distribution function.  The transformed 
space is subsequently discretized and characteristic k values calculated for each sub-interval.  
Using a two-stream adding method, radiative transfer calculations are performed 
independently for each sub-interval across all vertical layers.  This is similar to the individual 
spectral-point line-by-line radiative transfer model 27 (LBLRTM) calculations. 

Absorption effects from water vapor, ozone, oxygen, and methane are considered.  
Additionally, cloud optical depth, albedo, asymmetry factor, and effective particle radius 
contribute to layer radiative properties.  Similar to the Stephens28 parameterization, cloud 
properties are largely dependent on liquid water path (LWP), ice water path (IWP), 
temperature, pressure, and location29. 

2.3 European Centre for Medium Range Weather Forecasts (ECMWF)  
Like the GFS, the ECMWF is a global forecast model.  Spatially, ECMWF data is available on a 
0.25° E-W by 0.25° N-S grid (Table 1).  Temporally, ECMWF forecasts have a time-step size of 3 
h and are published tw ice daily (00 UTC and 12 UTC) up to 10 days in advance.  Data is 
published as progressive averages (i.e. 3 h, 6 h, 9 h, etc.) for each series.  From this, 3-hour 
resolution forecasts are calculated.  For this study, only intra-day forecasts were considered (24-
hour forecast horizon).  Downward surface solar radiation data released at 12 UTC between 
September 1st, 2009 and August 31, 2010 were purchased. 

24 NCEP, 2010.  NOAA Operational Model Archive and Distribution System.  
http:/ / nomads.ncep.noaa.gov/ .  Accessed 8/ 2/ 2010. 
25 M lawer, E. and Clough, S.  1997.  Shortwave and longwave enhancements in the Rapid Radiative 
Transfer Model.  Proceedings of the 7th Atmospheric Radiation Measurement (ARM) Science Team Meeting.  U.S. 
Department of Energy, CONF-9603149. 
26 M lawer, E., Taubman, S., Brown, P., Iacono, M., and Clough, S.  1997.  Radiative transfer for 
inhomogeneous atmospheres:  RRTM, a validated correlated-k model for the longwave.  J. Geophysical 
Research.  102:14, 16663-16682. 
27 Clough, S., Iacono, M., Moncet, J., 1992.  Line-by-line calculations of atmospheric fluxes and cooling 
rates:  Application to water vapor.  J. Geophysical Research.  97:14, 15761-15785. 
28 Stephens, G.  The parameterization of radiation for numerical weather prediction and climate models.  
1984.  Monthly Weather Review.  112, 826-867. 
29 Hou, Y., Moorthi, S., and Campana, K.  2002.  Parameterization of Solar radiation transfer in the NCEP 
models.  NCEP Office Note 441, 1-34. 
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The current operational ECMWF model contains the McRad radiation model 30.  The shortwave 
portion of McRad is based on RRTM.  Constituents accounted for in McRad are water vapor, 
carbon dioxide, ozone, methane, nitrous oxide, aerosols, and various chlorofluorocarbons 
(CFCs).  Similar to the GFDL-SW model, important forecast cloud properties are albedo and 
optical depth and are parameterized primarily from LWP and effective droplet radius31 (Table 3 
in Morcrette et al.30).  From the radiative properties, a two stream adding method is used to 
solve the radiative model at each level, resulting in surface GHI. 

2.4 SURFRAD Ground Measurement Network  
Seven Surface Radiation Budget Network (SURFRAD) stations across the CONUS provide an 
accurate nationwide database to validate NWP forecasts (Fig. 1).  SURFRAD stations are 
equipped with Eppley Precision Spectral Pyranometers (PSP)32 capable of measuring GHI to 
w ithin ±2 percent33.  The PSPs are calibrated through NOAA’s Solar Radiation Facility.  One 
minute GHI is reported as an average of sixty 1-sec instantaneous measurements.  Due to 
pyranometer thermal offset, night time GHI values are generally negative34.  For this reason, all 
negative values of GHI were set to zero.  Data flagged by the baseline quality control (QC) 
assessment function due to historically inconsistent, unphysical, and uncharacteristic data34 
were removed from this analysis.  SURFRAD GHI data were aggregated to one hour averages 
for comparison with the (hourly or longer) output time-step of NWP forecasts. 

 

30 Morcrette, J., Bechtold, P., Beljaars, A ., Benedetti, A ., Bonet, A ,. Doblas-Reyes, F., Hague, J., Hamrud, 
M., Haseler, J., Kaiser, J,. Leutbecher, M., Mozdzynski, G., Razinger, M., Salmond, D., Serrar S., Suttie, M., 
Tompkins, A., Untch, A., and Weisheimer, A .  2007.  Recent advances in radiation transfer 
parameterizations.  ECMWF Tech. Memo.  539, 1-52. 
31 Slingo, A.  1989.  A  GCM Parameterization for the shortwave radiative properties of water clouds.  
American Meteorological Society.  46:10, 1419-1427. 
32 SURFRAD. 2009a.  SURFRAD Network Overview.   
http:/ / www.srrb.noaa.gov/ surfrad/ surfpage0.html.  Accessed 8/ 24/ 2010. 
33 Campbell Scientific, 1992.  Eppley PSP – precision spectral pyranometer instruction manual.  Campbell 
Scientific Instruction Manual. 
34 SURFRAD. 2009b.  SURFRAD Data README.  ftp:/ / ftp.srrb.noaa.gov/ pub/ data/ surfrad/ README.  
Accessed 8/ 24/ 2010. 
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CHAPTER 3: 
Forecasting Methods 
3.1 Forecasting Methods  
Fig. 2 depicts a sample time series of the forecast methods that w ill be evaluated.  The most 
basic “ forecast” , C, is the Ineichen clear sky model 35.  C primarily depends on location, time, and 
elevation.  Additionally, C is dependent on atmospheric turbidity variations due to aerosols, 
ozone, and water vapor, which are input as monthly averages of the Linke turbidity from the 
SoDA database on an 8 km grid 35.  

 
Figure 2:  GHI forecasts compared against Desert Rock, NV SURFRAD ground measurements on 
July, 17th 2010. N:  linear interpolated NAM; NK:  clear sky index interpolated NAM; G:  GFS three 
hour constant clear sky index;  E:  ECMWF three hour constant clear sky index;  P:  persistence; 

C:  clear sky forecast. 

 

The persistence forecasts, P1 and P24, assume static weather conditions.  The measured clear sky 
index (ktm) is defined as the ratio of measured GHI to C, 

.                                                                      (Eq. 1) 

P24 forecasts GHI by assigning the ktm at solar noon of the previous day to the entire intra-day 
forecast (ktP).  P24 is calculated by multiplying ktP w ith the clear sky model, C.  The 1 hour 

35 Ineichen, P., and Perez, R.  2002.  A  new airmass independent formulation for the Linke turbidity 
coefficient.  Solar Energy.  73:3, 151-157 
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persistence forecast, P1 is calculated by multiplying ktP (the measured clear sky index averaged 
over the previous hour) w ith C. In this way, P1 is a ‘best-case’ persistence forecast for hour-
ahead forecasting, while P24 is a typical persistence forecast for day-ahead forecasting. 

Forecasts originating shortly before the CONUS sunrise are the timeliest for planning intra-day 
power plant load-following.  Thus, the only NWP forecasts (Sec. 2.1-2.3) considered for this 
study originate at 1200 UTC.  As NWP forecast errors have been shown to be constant over a 
forecast horizon of 1 hour to 3 days36, the results of this paper can also be considered applicable 
to day-ahead (i.e. next day) forecasts. 

Interpolation of NWP output is necessary to temporally align NWP output and ground 
measurement data.  Since sun position and solar zenith angle are non-linear functions of time, 
solar irradiance cannot be a linear process.  Therefore, linear interpolation of GHI is 
inappropriate (N, Fig. 2).  Instead, clear sky index kt* interpolation should be used 

                                                                               (Eq. 2) 

Where GHIcsk is calculated from C.  kt* is then interpolated to time t2 and the NAM forecast 
becomes NK = kt*(t2) GHIcsk(t2). 

Since the clear sky model, C, is nearly linear over the hourly time-step of the NAM output, N 
and NK produce essentially identical forecasts (Fig. 2).  NK is the correct forecast and will 
henceforth be considered the primary forecasting method for the NAM model. 

For the GFS and ECMWF, GHI forecasts are average irradiances applicable to the entire forecast 
interval.  3-hour clear sky indices are calculated through Eq. 2 and multiplied by C to produce 
the hourly G and E forecasts.  Table 2 compares each forecasting method for a single day 
forecast horizon. 

Table 2:  Comparison of the forecast timesteps over a single day.  Boxes represent averaging 
periods of constant clear sky index kt* (ktm for P1 and P24).  NK is interpolated from hourly 

instantaneous values and assumed to apply over the entire hourly interval.  The GFS provides a 
combination of 3 and 6-hour interval forecast, from which 3-hour forecasts can be back calculated 

(striped box). 

UTC hour 12 13 14 15 16 17 18 19 20 21 22 23 24 1 2 3 4 5 
NAM                                     
GFS                                     

ECMWF                                     
P1                                     

P24                                     
 

36 Perez, R., Kivalov, S., Schlemmer, J., Hemker, K., Renné, D., and Hoff, T.  2010.  Validation of short and 
medium term operational solar radiation forecasts in the US.  Solar Energy.  84:12, 2161-2172. 
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3.2 Spatial Averaging  
NK, G, and E are spatially discrete functions for GHI.  Girodo37 showed that spatial averaging of 
ECMWF output over 0.5° x 0.5° reduces the rRMSE of NWP forecasts.  Here, forecast GHI for 
each station is calculated by taking the mean output GHI of all NWP grid points w ithin various 
distances (10 km, 50 km, 100 km, and 200 km).  The mean absolute error (MAE) is not biased by 
large error events and is the best metric for determining the advantage of spatial averaging (Sec. 
4.1). 

3.3 Error Metrics 
Equations 2-5 define error metrics used in NWP forecast evaluation:  the mean absolute error 
(MAE), mean bias error (MBE), relative mean bias error (rMBE), and relative root mean squared 
error (rRMSE), respectively; 

 

                                                       (Eq. 3) 

                                                      (Eq. 4) 

                                                            (Eq. 5)  

.                                                   (Eq. 6) 

Relative errors are obtained by normalizing to the mean measured global horizontal irradiance 
( ) as a function of solar zenith angle (SZA) and clear sky index.  Through the use of this 
time and measurement dependent normalization, as opposed to constant as in many other 
validation studies (e.g. Lorenz38), mid-day relative errors are reduced through normalization 
and early morning/ late evening errors are amplified.  As errors w ill be considered as a function 
of kt* and SZA, this normalization provides a metric relevant to the period over which the error 
is calculated. 

3.4 MOS Correction  
Following Lorenz38 a stepwise multivariate fourth-order regression39 is applied to derive the 
MOS correction function. 

                                  .                                             (Eq. 7) 

37 Girodo, M.  2006.  Solarstrahlungsvorhersage auf der Basis numerischer Wettermodelle.  Ph.D. 
dissertation, Oldenburg Univ., Germany. 
38 Lorenz, E., Hurka, J., Heinemann, D., and Beyer, H.  2009.  Irradiance forecasting for the power 
prediction of grid-connected photovoltaic systems.  IEEE Journal of Selected Topics in Applied Earth 
Observations and Remote Sensing, 2:1, 2-10. 
39 Rogers, S. 2007.  2D weighted polynomial fitting and evaluation.  Matlab Central File Exchange.  
http:/ / www.mathworks.com/ matlabcentral/ fileexchange/ 13719-2d-weighted-polynomial-fitting-and-
evaluation.  Accessed 8/ 25/ 2010. 
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GHIc is the model MBE for a given SZA and clear sky index.  Weighted regression coefficient 
calculation ensures accurate representation of unevenly distributed data (see Fig. 5).  For all 
combinations of SZA and kt*, GHIC provides the best irradiance correction for any future 
forecast.  As an example, the MOS-corrected NAM forecast, NK,c, is computed as  

.                                                                      (Eq. 8) 

To simulate operational forecasting, local MOS correction functions are calculated dynamically 
using only the most recent 56 days of MBE analysis (rather than the entire dataset) separately 
for each SURFRAD station.  This provides a training dataset, independent of the evaluation 
dataset, and a unique MOS correction for each NK,c.  This method is similarly applied for G and 
E and designed to eliminate systematic bias error.  Since MOS corrections are not applicable for 
SZAs larger than 75°, evening and early morning corrected forecasts are not calculated. 
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CHAPTER 4:  
Results 
4.1 Numerical Forecast Evaluation  
4.1.1 Effect of Spatial Averaging – Mean Absolute Errors  
Spatial averaging of the NK (Fig. 3) and G (not shown) forecasts results in a reduction in MAE.  
As the scale of spatial averaging increases the MAE across the majority of measured clear sky 
indices decreases.  Only for small measured clear sky indices (ktm < 0.25) does MAE increase 
with increased spatial averaging, especially for the 200 km spatial averaging radius.  Girodo40 
and Lorenz et al. 41 also found reduced errors for averaging over a 100 km x 100 km square grid 
for the ECMWF forecast.  Henceforth, only the 100 km radius spatial average will be considered 
for the analyses. 

 
Figure 3: NK MAE (W m-2) as a function of measured clear sky index (ktm) for different averaging 

radii of the NAM model.   50, 100, and 200 km averaging radii correspond to approximately 80, 300, 
and 1250 grid points, respectively. 

40 Girodo, M.  2006.  Solarstrahlungsvorhersage auf der Basis numerischer Wettermodelle.  Ph.D. 
dissertation, Oldenburg Univ., Germany. 
41 Lorenz, E., Hurka, J., Heinemann, D., and Beyer, H.  2009.  Irradiance forecasting for the power 
prediction of grid-connected photovoltaic systems.  IEEE Journal of Selected Topics in Applied Earth 
Observations and Remote Sensing, 2:1, 2-10. 
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4.1.2 Mean Bias Errors of NK,G and E forecasts  
Fig. 4 reveals similar MBE profiles for each NWP model.  Given measured clear conditions and 
SZAs near solar noon, all NWP forecasts are negatively biased by between 0 and 50 W m-2 (Fig. 
4), indicating the presence of cloudy forecasts that resulted in clear periods.  These results may 
be biased by location and season, since northern stations experience a cos(SZA)> 0.9 only for a 
short part of the year . 

 
Figure 4:  NWP forecast MBE (W m-2) as a function of SZA and measured clear sky index for all 

SURFRAD stations  for a) NK; b) G;  c) E. 

 

In clear skies, MBE increases with SZA reaching 50 W m-2 for cos(SZA) = 0.35 for NK and 
approximately 0 W m-2 for G and E.  At cos(SZA) < 0.4, many NK forecasts predict up to 40 
percent more GHI than clear sky models (kt* = 1 to 1.4, see Fig. 5a).  This over-prediction of GHI 
in measured clear conditions is surprising as it potentially indicates an inaccurate NWP clear 
sky model.   
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For measured cloudy conditions (ktm < 0.8) and relevant SZA (SZA < 75°), NK, G, and E are 
positively biased by up to 225 W m-2.    Positive MBEs in measured cloudy conditions (ktm < 0.8) 
suggest that either cloudy conditions were not predicted or that the prescribed cloud optical 
depths or cloud cover fractions were too small. 

Some of these patterns can be explained by the binary nature (either cloudy or clear) of solar 
forecasts.  Examination of the data distribution of predicted and measured conditions (Table 3 
with an overcast threshold of kt = 0.8) shows that 20.6 percent of all NK forecasts are measured 
cloudy days which were predicted to be clear.  False clear forecasts occurred in 19.7 percent of G 
forecasts and 12.4 percent of E forecasts.  Forecast cloudy, but measured clear conditions were 
only observed for 5.7 percent (NK), 5.5 percent (G), and 6.9 percent (E) of forecasts.  These results 
are indicative that the NWP models are generally biased towards predicting clear conditions 
and at a larger clear sky index than measured.  Overall, the ECMWF model had the smallest 
likelihood of incorrect forecasts (19.3 percent) while both the NAM and GFS were incorrect for 
25 percent of forecasts 

 

Table 3:  Normalized frequency of clear and cloudy forecasts and observations for each NWP 
model.  The threshold to distinguish between cloudy and clear conditions is a clear sky index of 

0.8. 

SURFRAD NK   G   E   
  Cloudy Clear Cloudy Clear Cloudy Clear 

Cloudy 0.187 0.206 0.170 0.197 0.282 0.124 
Clear 0.057 0.550 0.055 0.579 0.069 0.525 

 

4.2 MOS Correction of Forecast Mean Bias Errors  
4.2.1 NK Forecast  
Fig. 5a is the histogram for the NAM forecast between March 21st, 2010 and February 8th, 2011, as 
a function of SZA and kt*.  Consistent w ith Table 3, more data exist for predicted clear skies 
than for cloudy conditions.  Fig. 5a indicates that the NAM model often forecasts GHI 20 
percent to 40 percent in excess of clear sky irradiance, especially for large SZAs.  While low 
atmospheric turbidity during clear sky conditions can result in GHI measurements slightly 
larger than C, the frequency and magnitude of forecasts with kt* > 1 indicates a fundamental 
problem with either the NAM radiative transfer model or the primary inputs to the model from 
the NAM forecast.  G forecasts only exhibit kt* > 1 for SZAs greater than 75°, which could be 
caused by a different choice of clear sky model.  kt* > 1.1 are not observed for E forecasts. 

The MBE profiles in Fig. 4 demonstrate consistent MBE patterns.  However, ktm is unknown 
prior to measurement and is unsuitable as an input parameter for MOS correction.  Instead 
MBE profiles as a function of the predicted clear sky index, kt* must be used.  Fig. 6a shows the 
MBE of the NK forecast as a function of cos(SZA) and kt*.  For forecast clear sky conditions (kt* > 
0.8), NK over-predicts measured data by up to 150 W m-2 and on average by 73.9 W m-2.  In 
cloudy conditions (kt* < 0.5), the NK model under-predicts measured GHI, on average by -32.3 
W m-2.  Overall, the magnitude of the negative MBE becomes larger for small SZA, while the 
positive MBE for clear sky conditions becomes slightly smaller for small SZA. 
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While NK is an overall inaccurate GHI forecast, Fig. 6a shows that NAM bias trends are 
continuous and therefore, correctable.  Using MOS (Sec. 3.4), a correction polynomial was fit to 
the data (e.g. Fig. 6b).  Fig. 6b well represents the typical MBE characteristics of NK.  Corrections 
are subsequently applied according to Eq. 8, yielding NK,c.  Note that as temporally dynamic 
local MOS corrections (Sec. 3.4) were applied to simulate operational conditions, Fig. 6b was not 
directly used in forecast correction.  The MBE of NK,c (Fig. 6c) decreases to less than ±50 W m-2 
and overall from 57.5 W m-2 to 7.0 W m-2.  For a perfect MOS correction, a zero MBE would be 
expected for NK,c.  Here, the MBE is not zero is due to the polynomial fit MOS correction which 
cannot fully resolve the variability of Fig. 6a. 

 
Figure 5:  Histogram as a function of solar zenith angle (SZA) and clear sky index (kt*) for a) NK; b) 
G; c) E.  Data is presented in log10 format, i.e. a value of 2 indicates 100 observations.  All data to 

the left of the black line (SZA > 75°) were not used in the MOS analysis.  
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Figs. 6, 7, 8: MBE (W m-2) of NK (Fig. 6), G (Fig. 7), and E (Fig. 8), as a function of solar zenith angle 
(SZA) and forecasted clear sky index (kt*) compared to SURFRAD measurements:  a) raw data, b) 

polynomial fit to the data (Eq. 7); c) MBE of the corrected forecasts: NK,c, Gc, and Ec. 

4.2.2 G Forecast  
Fig. 7a shows the average MBE profile for the GFS forecast, G.  The bias error dependence on kt* 
is qualitatively similar to the NAM model (Fig. 6a).  For forecasted clear sky conditions (kt* > 
0.8), G generally over-predicts GHI, on average by 41.0 W m-2.  Similarly, for overcast conditions 
with moderate to small optical depths (kt* < 0.5), the GFS forecast is negatively biased by on 
average -1.8 W m-2.  The MBE shows a much stronger dependence on SZA compared to the 
NAM model, increasing during mid-day (MBEAVG = -67.4 W m-2 for cos(SZA) > 0.7 and kt* < 0.5) 
as a result of the larger GHI magnitudes observed then. 

Fig. 7b shows the MOS correction function fit to Fig. 7a for the entire data set.  From Eq. 7, the 
MOS function applies a negative correction to G for predicted clear skies (kt* > 0.8).  
Correspondingly, a large positive correction is applied for forecast overcast conditions (kt* < 
0.5).  On average, the MBE of the MOS-corrected forecast, GC (Fig. 7c) is reduced from 35.4 W  
m-2 to 5.2 W m-2. 

4.2.3 E Forecast  
The MBE profile of E (Fig. 8a) is significantly different than NK or G.  Predicted clear skies (kt* > 
0.9) and overcast conditions with kt* < 0.2 are least biased (MBE < 50 W m-2).  For predicted 
moderately cloudy conditions E is most significantly biased, by  42.6 W m-2 on average.  While 
there are several areas of negative bias, the MBE is in general positive, with some biases 
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exceeding 150 W m-2.  Lorenz et al.42 found a similar MBE profile for ECMWF data using ground 
measurements in Germany. 

The MOS correction function for E (Fig. 8b) targets the large positive bias for moderately cloudy 
conditions.  It should be noted that the negative bias correction for very small predicted clear 
sky indices (kt* < 0.2) is an artifact of the correction polynomial, which is irrelevant as no such 
data occurred.  This was also observed in the MOS function for G (Fig. 7b).  The MOS correction 
reduces overall MBE from 31.4 W m-2 to 0.5 W m-2 (Fig. 8c).  Using this metric, the MOS 
correction for E is the most effective in reducing systematic errors.  

 
Figure 9: RMSE (W m-2) as a function of measured clear sky index (ktm):  a) (NK, G, E, P1, P24, and 

C); b) (NK,c, Gc, Ec, P1, P24, and C); c) Change in RMSE due to MOS correction. 

42 Lorenz, E., Hurka, J., Heinemann, D., and Beyer, H.  2009.  Irradiance forecasting for the power 
prediction of grid-connected photovoltaic systems.  IEEE Journal of Selected Topics in Applied Earth 
Observations and Remote Sensing, 2:1, 2-10. 
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4.3 Root Mean Square Errors  
For ktm = 1, C is expected to have an RMSE = 0 W m-2.  For ktm > 0.86, C indeed has the smallest 
RMSE.  However, several instances of ktm > 1 were observed, contributing to the non-zero RMSE 
for ktm = 1.  For overcast conditions, the RMSE of C drastically increases. 

P1 is the most accurate forecast for overcast conditions and only slightly less accurate than G 
and E for clear conditions.  Since hourly cloud cover conditions are relatively static the one-hour 
persistence forecast, P1, is accurate.  For longer persistence forecasting on the order of a day 
(P24), clear conditions are more static than cloudy.  Correspondingly P24 RMSE increases with 
decreasing ktm, approaching a RMSE greater than 400 W m-2 for ktm <  0.15.  Transitional periods 
between synoptic weather patterns and diurnally driven phenomena cause large errors in 24-
hour persistence forecasts.  For moderate cloudy conditions, the measured clear sky index can 
vary significantly, making the persistence forecasts inaccurate (e.g. Fig. 2 from 1800-2400 UTC). 

The high spatial variability of irradiance during cloudy conditions is difficult to forecast by 
NWP.  Consequently, NWP RMSE (Fig. 9a) increases as ktm decreases.  Under measured clear 
sky conditions, all NWP forecasts have low RMSE (RMSE < 125 W m-2).  In clear conditions (ktm 

= 1), G is the most accurate.  Excluding clear conditions, E has a lower RMSE than other NWP 
forecasts w ith typical improvements of 30 W m-2 compared to NK and G. 

A fter MOS correction (Fig. 9b) the same general trends for NWP RMSE are present, albeit at a 
smaller RMSE level.  The impact of MOS on RMSE is shown in Fig. 9c.  Positive changes 
represent increases in RMSE.  The RMSE of the NAM forecast NK,c is reduced by up to 50 W m-2 
for 0.15 < ktm < 0.95.  Similarly, GC is improved over all clear sky indices less than 0.9 by as much 
as 110 W m-2.  The RMSE of E is also significantly lowered for all clear sky indices less than 0.7.  
For the largest clear sky indices (ktm > 0.94), MOS corrections increased the RMSEs for each 
NWP forecast.  Uncorrected forecasts for measured clear conditions (Fig. 4) were relatively 
unbiased making it difficult to reduce RMSE.  For all other clear sky indices, the MOS correction 
function significantly reduced RMSE. 
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CHAPTER 5: 
Summary and Conclusions 
In this study, five primary intra-day forecasts were analyzed:  The Ineichen clear sky model, C; 
the persistence forecasts, P1 and P24; the clear sky index (kt*) interpolated NAM forecast, NK; the 
3-hour constant kt* GFS forecast, G; and the 3-hour constant kt* ECMWF forecast, E.  It is of 
interest to compare bias-corrected NWP model forecasts to other more advanced products such 
as NDFD, satellites, sky imagers, or forecasts by specialized renewable energy forecast 
providers.  While other derived forecast products may be more accurate, the accuracy of bias-
corrected NWP forecasts provides a useful reference to establish the value of other (more 
expensive) products. 

Forecast accuracy was evaluated through RMSE and MBE.  24-hour persistence and clear sky 
forecasts (P24, and C) were inaccurate except for measured clear conditions (Fig. 9) and should 
be used only as baseline forecasts.  The accuracy of 1-hour persistence forecasts is comparable to 
NWP models for clear conditions, but better for ktm < 0.5. 

The method presented by Lorenz et al.43 and known as model output statistics (MOS) was 
employed to reduce MBE in forecasted GHI. To determine forecast accuracy, it was necessary to 
differentiate between MBE as a function of measured clear sky index (ktm) and forecasted clear 
sky index (kt*).  NWP models were validated using ktm, while MOS necessitated the use of the 
forecast variable, kt*.  Using fourth order multivariate regression, correction functions were fit 
to the observed MBE as a function of solar zenith angle (SZA) and clear sky index (kt*).  Table 4 
summarizes the results of the MOS correction when averaged across all SURFRAD stations.  
Errors separated by station are provided in Table 5 of Appendix B and are consistent w ith the 
overall errors listed in Table 4.  The local MOS functions, used in conjunction with forecast SZA 
and kt*, reduced RMSE by 20.1 W m-2 (NK), 17 W m-2 (E), and 25.6 W m-2 (G) and effectively 
eliminated MBE.  RMSE reductions were largest for intermediate kt* at about 50 W m-2.  MBEs 
were similar across different sites with the smallest errors at Desert Rock, NV (site with the 
largest ktm) and the largest errors at Pennsylvania State University, PA (site w ith the lowest ktm).  
MOS-corrected RMSE were smallest at the most clear site, Desert Rock, and largest at Fort Peck, 
Montana.  For all stations, seasonal changes in bias errors limit MOS-correction accuracy.  For 
several SURFRAD stations, MBE were observed to change significantly from month to month.  
As the MOS-correction uses 56 days of training data, sudden changes in MBE dependence on 
SZA and kt* are not immediately represented increasing the MBE of the MOS-corrected 
forecasts. 

For the original models, ECMWF performed best, closely followed by GFS.  Surprisingly, the 
NAM model performed the worse despite its higher spatial resolution and specialized 
application to North American Meteorology.  Significant problems were found with the clear 
sky model applied in NK which over-predicted GHI in clear conditions by up to 40 percent.  
A fter MOS correction, the GFS model was most accurate, indicating that the errors in GFS 

43 Lorenz, E., Hurka, J., Heinemann, D., and Beyer, H.  2009.  Irradiance forecasting for the power 
prediction of grid-connected photovoltaic systems.  IEEE Journal of Selected Topics in Applied Earth 
Observations and Remote Sensing, 2:1, 2-10. 
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forecasts are more systematic.  A  combination of GFS forecasts for clear conditions and ECMWF 
conditions for cloudy conditions may yield the lowest overall RMSE (Fig. 9b). 

Table 4:  MBE and RMSE for NWP forecasts before and after MOS correction averaged across all 
sites 

 NK G E 

MBE (W m-2) 57.5 35.4 31.4 

MBEC (W m-2) 7.0 5.2 0.5 

RMSE (W m-2) 134.2 110.5 123.2 

RMSEC (W m-2) 114.1 84.6 106.2 

 

The NWP models were shown to be significantly biased towards predicting clear skies.  Thus, 
when plotted against ktm (Fig. 4), negative biases are rare.  Overall, NK, G, and E predicted more 
false clear days than false cloudy days (Table 3).  Of the forecasts that erroneously predicted 
clear or cloudy conditions (Table 3), 78.3 percent of NK (75.6 percent for G and 64.2 percent of E) 
were clear forecasts resulting in cloudy days.  This was a primary contributor to the large 
positive MBE observed in forecast clear conditions (Figs. 6a, 7a, and 8a).  However, the many 
accurate clear sky forecasts (55.0 percent of all NK, 57.9 percent of G, and 52.5 percent of E) 
reduced the magnitude of the MBE in clear conditions.  A lthough false cloudy forecast were 
considerably less frequent (5.7 percent of all NK, 5.5 percent of G and 6.9 percent of E), far fewer 
cloudy days were predicted overall (Fig. 5a).  These few large negative bias events account for 
part of the 150 W m-2 MBE for kt* < 0.6 for NK and G (Fig. 6a/ 7a). 

Evaluating ECMWF forecast accuracy in Germany, Lorenz et al.44 showed that NWP MBE was 
largest for cloudy conditions with moderate clear sky indices (0.3 < kt* < 0.6), while forecasted 
clear conditions were relatively unbiased.  This study revealed a similar ECMWF MBE profile 
for SURFRAD stations (Fig. 8a).  Positively biased for moderately overcast conditions, the 
overall MBE of E was 31.4 W m-2.  Consistent w ith the results of this study, Remund et al.45, 
found E MBEs ranging from 15 to 43 W m-2 at 3 different sites. 

MOS application to the NWP irradiance output was successful in minimizing bias and reducing 
RMSE, but did not provide information as to the source of the MBE.  Errors originating from the 
radiative transfer model (RTM), cloud model, and prognostic variable errors can all contribute 
to the MBE.  MOS corrections in the measured clear sky regime (ktm > 0.9) did not reduce RMSE 

44 Lorenz, E., Hurka, J., Heinemann, D., and Beyer, H.  2009.  Irradiance forecasting for the power 
prediction of grid-connected photovoltaic systems.  IEEE Journal of Selected Topics in Applied Earth 
Observations and Remote Sensing, 2:1, 2-10. 
45 Remund, J., Perez, R., and Lorenz, E.  2008.  Comparison of solar radiation forecasts for the USA.  2008 
European PV Conference, Valencia, Spain. 
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(Fig. 9c).  This is because the MOS could not distinguish between RTM errors (over-prediction 
of GHI even for clear skies, especially for NAM) and cloud model errors (incorrect 
parameterization of RTM inputs).  Consequently, many initially accurate forecasts were 
unnecessarily corrected.  Rather than correcting all forecasts, differentiating between the 
sources of the error is the first step into understanding which forecasts need to be corrected.  
Further research will investigate the relationship of MBE to other prognostic variables, most 
notably those involved in cloud parameterization. 

A final consideration of NWP forecasting is resolution.  Even the 0.1° x 0.1° NAM spatial 
resolution is insufficient to resolve most clouds and only an average cloud cover can be 
forecasted for a given point.  For the GFS and ECMWF the resolution is even coarser.  However, 
even if the spatial resolution was finer, the temporal output intervals would not permit the 
examination of time dependent cloud cover variability, important in predicting ramp rates and 
bands of variability for solar power plants.  While NWP model time-steps are on the order of 
minutes, the radiative transfer models are run less frequently, and the output is only hourly 
(NAM) or every 3 hours (GFS and ECMWF).  Consequently, any patterns with characteristic 
time scales less than an hour are unresolved.  Linking observed temporal variability in GHI to 
native NWP forecasts will require further research. 
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Appendix A: 
MBE and RMSE by SURFRAD Station 
MBE and RMSE before and after MOS correction.  Average measured GHI and ktm are also 
shown.  

STN 
NWP 

Model MBE (W m-2) MBEc (W m-2) RMSE (W m-2) RMSEc (W m-2) 

Bondville, IL NK 59.1 4.6 137.7 117.0 
GHIavg = 356.8 W m-2 G 39.4 3.3 108.6 82.8 
ktm,avg = 0.73 E 23.5 0.7 113 100.9 

Desert Rock, NV NK 41.0 10.6 93.5 81.6 
GHIavg = 474.7 W m-2 G 18.2 3.2 83.2 76.9 
ktm,avg = 0.87 E 22.3 1.4 96.4 87.8 

Fort Peck, MT NK 53.1 11.8 124.1 104.5 
GHIavg = 319.9 W m-2 G 32.4 10.7 98.8 74.7 
ktm,avg = 0.73 E 26.8 4.1 121.4 107.9 

Goodwin Creek, MS NK 52.9 1.2 144.0 125.4 
GHIavg = 391.3 W m-2 G 36.4 7.1 122.7 91.3 
ktm,avg = 0.76 E 10.8 -0.9 127.9 109.8 

Penn State University, PA NK 77.5 6.5 145.8 118.5 
GHIavg = 314.1 W m-2 G 49.2 0.4 116.2 83.7 
ktm,avg = 0.64 E 42 -1.1 117.4 97.7 

Sioux Falls, SD NK 63.2 7.8 137.1 166.3 
GHIavg = 314.8 W m-2 G 36.0 6.3 107.7 80.1 
ktm,avg = 0.75 E 30.3 0.1 120.4 106.6 

Boulder, CO NK 55.1 6.5 149.0 128.6 
GHIavg = 378.9 W m-2 G 35.8 5.9 129.4 99.3 
ktm,avg = 0.75 E 62.6 0 157.6 128.2 
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