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Outline
15

e State of California biofuels

e Understanding cost and potential

e How is the industry developing?

e Looking for an Incremental path to reduce risk

e Policy incentives: what is being communicated to the market
through prices?
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California a major player in biofuel knowledge base
But not a major player in production

Snapshot of California’s biofuel industry
California’s biomass resource base

Production # Plants without energy crops is roughly 0.5 EJ
Product Firms Capacity (MGY) (demo/comm.) (~1.5-2.0 BGGE).
Corn ethanol 7 164 4
Biodiesel 24 165 10 LFGE
Oilsk
Sugar beet ethanol 1 0 0
Cellulosic ethanol 6 25%* 3
. AD[
Drop-in 11 0 0 feedstock® WoodyE
Renewable Jet 3 30%** 2
Biomethane 7 In progress 0
Other* 16 0 0
Total 75 384" 19 Herb.R

Source: CA Biomass Collaborative, Biomass Resource

*Other includes biochemicals, biobutanol, or multiple products Assessment. 2014

**Planned production (Canergy in 2016)
***Planned production (AltAir in 2014; Alipha Jet, no date specified)
****US Biofuel production ~15 BGY/year (mostly ethanol)
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# of studies CA Potential

] (MGGEY)
AnaerobiciigestiondRNG)& ] n:4 350-1,250 (400)

Renewablei?letlioilfbased)_ B 3 75-95
RenewableEDieseIljoilfbased)_ ] n: 4 75-95

Fastl?yrolysislfsﬁdrop-ins)_ ] n:5 650 - 1,400

F_Tﬂmese._ B ;12 | 1,100 - 1,400

CellulosicEEthanoI_ ] n: 15 1,200 - 1,500

RNG@ia@asiﬁcaﬁon_ ] n: 2 1,800 — 2,000
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Cellulosic technologies face large capital costs and risk
1

Take home messages

e Existing projects are smaller scale and higher
capital intensity than what is evaluated in
academic literature.

 Reported plant costs are in line with scaled
literature values.

Research Design

e Literature review and meta-model to
standardize inputs and financial
assumptions

e Compare with reported values from
industry

Capital Expenditure for Pyrolysis-based

Capital Expenditure for Cellulosic Ethanol o
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Is there a path with lower risk at each step that leads to the large
resources?

More Leapfrog

Transitional
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LCFS v. RFS Price Volatility Means Shifting Incentives

LCFS Credit Price Trends

LCFS $/gal v. US RFS2 $/gal
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Sources: OPIS price data, CARB carbon intensity data




Summary of points
1

 Waste oil supplies are limited but important for near
term reductions

 Need to get to cellulosic or algae resource base
e Path there with a good business case is unclear
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