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PREFACE 

The California Energy Commission Energy Research and Development Division supports 
public interest energy research and development that will help improve the quality of life in 
California by bringing environmentally safe, affordable, and reliable energy services and 
products to the marketplace. 

The Energy Research and Development Division conducts public interest research, 
development, and demonstration (RD&D) projects to benefit California. 

The Energy Research and Development Division strives to conduct the most promising public 
interest energy research by partnering with RD&D entities, including individuals, businesses, 
utilities, and public or private research institutions. 

Energy Research and Development Division funding efforts are focused on the following 
RD&D program areas: 

• Buildings End-Use Energy Efficiency 

• Energy Innovations Small Grants 

• Energy-Related Environmental Research 

• Energy Systems Integration 

• Environmentally Preferred Advanced Generation 

• Industrial/Agricultural/Water End-Use Energy Efficiency 

• Renewable Energy Technologies 

• Transportation 

 

Validation of the National Solar Radiation Database in California is the final report for the California 
Solar Energy Collaborative project (contract number 500-08-017) conducted by University of 
California, San Diego. The information from this project contributes to Energy Research and 
Development Division’s Renewable Energy Technologies Program. 

 

For more information about the Energy Research and Development Division, please visit the 
Energy Commission’s website at www.energy.ca.gov/research/ or contact the Energy 
Commission at 916-327-1551. 
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ABSTRACT 

The National Solar Radiation Database is often applied to quantify the amount of energy 
available from the sun, but  its accuracy has not been validated in California. Satellite-derived 
global horizontal solar irradiance from the National Solar Radiation Database was compared to 
measurements from 27 weather stations in California during the years 1998-2005. The statistics 
of spatial and temporal differences between the two datasets were analyzed and related to 
meteorological phenomena. 

The average mean bias error of the global horizontal solar irradiance data related to the 
National Solar Radiation Database indicated an overprediction of five percent if ground 
measurements were considered accurate. Year-round systematic positive mean bias errors in 
the database increased to 18 percent in proximity to the ocean. These errors increased up to 54 
percent at coastal sites in the summer mornings. These differences were explained by a 
tendency for the database to overestimate global horizontal solar irradiance under cloudy 
conditions during the morning. A persistent positive evening mean bias error that was 
independent of site location and cloudiness occurred at all stations and was explained by an 
error in the time-shifting method applied in the database. A correction method was applied and 
a corrected database for California was published online. 
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EXECUTIVE SUMMARY 

Introduction 
Understanding the energy potential from solar resources is critical to determining the expected 
energy output and financial viability of solar energy projects. The National Solar Radiation 
Database is often applied to quantify the amount of energy available from the sun. The database 
contains a high-resolution, satellite-derived gridded image of the radiation reaching the earth’s 
surface in a number of different ways. Global horizontal irradiance is the total amount of 
shortwave radiation received from above by a surface horizontal to the ground. This value is 
critical to photovoltaic installations and includes both direct normal irradiance and diffuse 
horizontal irradiance. Direct normal irradiance is the solar radiation that comes in a direct line 
from the direction of the sun at its current position in the sky. Diffuse horizontal irradiance is 
solar radiation that does not arrive on a direct path from the sun, but has been scattered by 
molecules and particles in the atmosphere and comes equally from all directions. The data 
collected in the National Solar Radiation Database covers the entire United States from 1997 – 
2005. 

Project Purpose 
The accuracy of the National Solar Radiation Database has never been validated in California. 
The goal of this project was to compare satellite derived global horizontal irradiance from the 
National Solar Radiation Database to measurements from 27 weather stations in California 
during the years 1998-2005 and to analyze the statistics of spatial and temporal differences 
between the two datasets and relate them to meteorological phenomena. 

Project Results 
The National Solar Radiation Database satellite data was generally accurate and provided high 
quality irradiance data with an average uncertainty level of five percent based on global 
horizontal irradiance data collected in California. Global horizontal irradiance near coastal 
stations was overestimated, particularly in the mornings during the summer when errors 
reached up to 54 percent. On summer mornings a coastal marine inversion layer that creates 
overcast conditions was present nearly every day. The National Solar Radiation Database was 
accurate under clear sky conditions but in broken or overcast cloud cover global horizontal 
irradiance was often overestimated.   

Inaccuracies in the National Solar Radiation Database during the late afternoon were also found 
state-wide. Since this error was not observed in the morning it was not related to problems with 
computing the diffuse component of the irradiance at low sun altitude. The error was related to 
a programming problem that was corrected and applied to the database to mitigate the 
observed error patterns. The correction improved the database at the majority of the sites, but 
further validation of the correction model must be conducted before it can be applied 
universally. 

The National Solar Radiation Database satellite-derived irradiance model provided accurate 
estimations of surface radiation for most sites even though errors were found under certain 
conditions. The National Solar Radiation Database was also well-suited for assessing solar 

1 



resources because of its complete coverage and high spatial resolution. Nevertheless there is 
room for improvement and before this database is applied it should be verified against 
available ground measurements of irradiance, especially in areas where persistent cloudiness or 
unusual weather or ground conditions create errors. 

Project Benefits 
Understanding the nuances of the radiation available from the sun is important to Californians 
as more renewable energy technologies gain market support. Some technologies are better 
suited for particular areas than others and knowing in advance the energy resources available 
to a particular region is critical to renewable energy planning and siting.  
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CHAPTER 1:  
Introduction 
Rapid coastal urbanization coupled with increasing energy demands, and the desire for 
environmentally sustainable solutions to meet these challenges, necessitate the expansion of 
renewable energy production in load centers. In low latitude urban areas solar photovoltaic 
(PV) is generally the most attractive renewable energy option due to large resources and peak 
capacity factors. Obtaining accurate irradiance data at high spatial resolution is particularly 
important in California where a large solar resource is collocated with high population density, 
stringent air pollution standards and ever increasing energy demands and costs.  These factors 
make PV energy production both economically viable and vital to sustainable development.  
However, large PV penetration requires accurate, site specific estimates of power output for 
transmission and distribution planning and economic reasons. Preferably measured solar 
radiation and meteorological data over long time periods would be available on site to evaluate 
the solar resource. However, solar radiation is typically not measured at standard weather 
stations. Although a few specialized sensor networks that measure solar irradiance exist, they 
are often too sparse and interpolating data between sites may not be appropriate1 2. 

Satellite derived irradiance measurements overcome the poor spatial resolution of ground 
stations providing continuous coverage over large geographic areas at high resolution relative 
to in situ sensor networks1 2 3 4 5 6. In this report satellite derived irradiance data from the SUNY 
model2 in the National Solar Radiation Database (NSRDB) are compared to data collected from 
ground stations throughout the state of California.  This analysis is based on similar work 
conducted in other geographic regions2 7 8 9. The SUNY predictions were attributed a minimum 

1 Cano, D., Monget, J. M., Albuisson, M., Guillard, H., Regas, N. and Wald, L. 1986. A Method for the 
determination of the global solar radiation from meteorological satellite data. Solar Energy 37(1), 31-39. 

2 Perez, R., Ineichen, P., Moore, K., Kmiecik, M., Chain, C., George, R., and Vignola, F.  2002.  A new 
operational model for satellite-derived irradiances:  Description and validation.  Solar Energy.  73:5, 307-
317 

3 Schmetz, J. 1989. Towards a surface radiation climatology: retrieval of downward irradiances from 
satellites. Atmospheric Research 23, 287-321. 

4 Zelenka, A., Perez, R., Seals, R., Renné, D. 1999. Effective accuracy of satellite-derived hourly 
irradiances. Theoretical and Applied Climatology 62(3-4), 199-207 

5 Pereira, E.B., Martins, F.R., Abreu, S.L. and Rüther, R. 2006. Brazilian atlas for solar energy. Artes 
Gráficas Editoria 67, 60. 

6 Martins, F.R., Pereira, E.B., Abreu, S.L. 2007. Satellite-derived solar resource maps for Brazil under 
SWERA project. Solar Energy 81(4), 517-528 

7 Muneer, T. 1997. Perez slope irradiance and illuminance models: evaluation against Japanese data. 
Lighting Research and Technology 29(2), 83-87. 
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uncertainty of 12 percent for global horizontal irradiance (GHI) in the NSRDB manual10.  The 
results of previous validation surveys indicate that the SUNY model provides 5 percent11, ±10 
percent12 and -21 percent to 31 percent13 accurate estimations of surface GHI (based on the mean 
bias error), but it has a tendency to produce large errors in regions where unusual 
meteorological phenomena exist. Examples are persistent clouds as in the “Eugene, OR, 
Syndrome” found by Gueymard and Wilcox12; low clouds and snow cover found by Vignola et 
al.11; and a 31 percent MBE at a coastal Florida site found by Perez et al.13, which was related to 
the humid subtropical climate at the site and the fact that the satellite pixel covers both ocean 
and land surfaces with very different albedos.  In the United States, California has the largest 
installed PV capacity, but coastal meteorology creates large spatial gradients in cloudiness 
motivating this validation of the SUNY model. Our study takes a unique approach to evaluate 
systematic errors that exist in the SUNY model.  For the first time comprehensive climatologies 
of the SUNY error for different times of day are presented and corrections to systematic errors 
observed in the SUNY data are applied.14 

8 Vignola, F., Harlan, P., Perez, R., Kmiecik, M. 2007. Analysis of satellite derived beam and global solar 
radiation data.  Solar Energy 81(6), 768-772. 

9 Gueymard, C. and Wilcox, S. 2009. Spatial and temporal variability in the solar resource: assessing the 
value of short-term measurements at potential solar power plant sites. Solar 2009 Conf., Buffalo, NY, 
American Solar Energy Soc. (ASES) 

10 Wilcox, S. 2007. National solar radiation database 1991-2005 update: user’s manual. NREL/TP-581-
41364. <http://rredc.nrel.gov/solar/old_data/nsrdb/1991-2005/> Accessed July 30th, 2009. 

11 Vignola, F., Harlan, P., Perez, R., Kmiecik, M. 2007. Analysis of satellite derived beam and global solar 
radiation data.  Solar Energy 81(6), 768-772. 

12 Gueymard, C. and Wilcox, S. 2009. Spatial and temporal variability in the solar resource: assessing the 
value of short-term measurements at potential solar power plant sites. Solar 2009 Conf., Buffalo, NY, 
American Solar Energy Soc. (ASES) 

13 Perez, R., Ineichen, P., Moore, K., Kmiecik, M., Chain, C., George, R., Vignola, F. 2002. A new 
operational satellite-to-irradiance model. Solar Energy 73(5), 307-317. 

14 Nottrott A, Kleissl J, Validation of the SUNY NSRDB global horizontal irradiance in California, Solar 
Energy, 84:1816–1827, 2010 
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CHAPTER 2:  
Data and Data Quality Control 
2.1 Satellite Irradiance Data 
Two independent datasets were used in this analysis.  Satellite derived GHI values from the 
National Solar Radiation Database (NSRDB-SUNY) were compared with ground measurements 
from meteorological stations in the California Irrigation Management and Information System 
(CIMIS).  Both datasets were given with a precision of 1 W m-2.  The NSRDB-SUNY dataset is 
based on a model developed at the State University of New York – Albany15. The model uses 
visible images from Geostationary Operational Environmental Satellites (GOES) to develop 
estimates of the cloud index (CI) for each pixel.  The CI is then used in a transmittance function 
that is applied to the modeled clear sky irradiance for each pixel.  The SUNY model also 
accounts for effects of atmospheric turbidity, ground snow cover, ground specular reflectance 
characteristics and individual pixel sun-satellite angle effects.  Atmospheric turbidity is 
quantified in terms of the Linke Turbidity coefficient which is a function of monthly average 
atmospheric aerosol content, water vapor and ozone16.  The model was run between 1998 and 
2005 to generate hourly global horizontal, diffuse and direct irradiance values for the entire 
United States on a 0.1˚ node registered grid, corresponding to a grid spacing of about 10 km in 
California.  This analysis used hourly GHI values with an hour ending timestamp from the 
‘Sglo’ column in the NSRDB-SUNY database.  These data are modeled from on the hour (e.g. 
1200) irradiance “snap shots” derived from GOES visible images17. 

2.2 Surface Irradiance Data 
Data from 27 ground stations (see Fig. 1 and Table 1) across the state of California were used for 
validation. The California Department of Water Resources operates the CIMIS network of 
meteorological monitoring stations distributed throughout California. Only CIMIS data 
concurrent to the SUNY dataset (i.e. 1998-2005) were included. GHI is measured at 26 CIMIS 
stations using a Li-Cor LI200SZ silicon photodiode pyranometer and recorded as the hourly 
average (with an hour ending time stamp) of 60 GHI measurements made within the hour. The 
sensors are recalibrated annually by the manufacturer with an expected maximum absolute 

15 Perez, R., Ineichen, P., Moore, K., Kmiecik, M., Chain, C., George, R., Vignola, F. 2002. A new 
operational satellite-to-irradiance model. Solar Energy 73(5), 307-317. 

16 Ineichen P. and Perez R. 2002. A new airmass independent formulation for the Linke turbidity 
coefficient. Solar Energy 73(3), 151–157. 

17 Wilcox, S. 2007. National solar radiation database 1991-2005 update: user’s manual. NREL/TP-581-
41364. <http://rredc.nrel.gov/solar/old_data/nsrdb/1991-2005/> Accessed July 30th, 2009. 
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error of ±5 percent18.  In a recent study of pyranometer calibration accuracy Myers19 found that 
these instruments have a maximum absolute error closer to ±8 percent.   

Some additional limitations apply to photodiode type pyranometers.  The Li-Cor 200SZ 
pyranometer has a non-linear cosine response for incident angles greater than 80° which creates 
errors in the irradiance measurements when the SZA>80°20.  For this reason all ground 
measurements made in the early morning when SZA>80° at the top of the hour and in the late 
evening when SZA>80° at the end of the hour have been removed.  The Li-Cor pyranometer 
does not have a broadband spectral response and the factory calibration extrapolates irradiance 
measurements to cover the entire solar spectrum.  The error of the sensor will increase by a few 
percent under cloudy conditions because the spectrum of incident solar radiation is different 
from that under clear sky conditions.  However, the much larger errors observed in this study 
cannot be explained by the spectral response under cloudy conditions. 

Fifteen of these stations were located at coastal sites (<15 km from the ocean) and 12 were 
located at inland sites (>15 km from the ocean).  Data from the Hanford Muni station (see Table 
1) which is operated by the National Oceanic and Atmospheric Administration (NOAA) under 
the Integrated Surface Irradiance Study (ISIS) were also analyzed.  Data from the Hanford ISIS 
station were used during the production of the NSRDB dataset to validate SUNY derived 
irradiances for the western United States. 

Figure 1: Map of California Illustrating the Geographic Distribution of the CIMIS Stations (Red) and 
Airports (Green) Included in the Analysis of this Report 

 

18 CIMIS 2008a. Sensor Specs – Total Solar Radiation (pyranometer). 
<http://wwwcimis.water.ca.gov/cimis/infoStnSensorSpec.jsp> Accessed July 20th, 2009. 

19 Myers, D. R. 2010. Seasonal variation in the frequency distributions of differences between radiometric 
data for solar resource assessment applications. Solar 2010 Conf., Phoenix, AZ, American Solar Energy Soc. 
(ASES) 

20 LI-COR 2005. LI-COR Terrestrial Radiation Sensors Instruction Manual. © 2005, LI-COR Biosciences, 
Inc. 
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Quality control (QC) for all CIMIS stations is conducted based on the methods described by 
Meek and Hatfield21. QC output for each CIMIS station is monitored by local personnel to detect 
potential sensor malfunction22. CIMIS data were also tested by comparing the ratio of measured 
irradiance to the solar constant (RQC) and the solar zenith angle (SZA) for each hour.  Data is 
flagged if any one of the following criteria is met: SZA<80˚ and either RQC>1.0 or GHI=0, 
SZA>80˚ and either RQC>0.85 or GHI≥6 W m-2 23. A detailed description of CIMIS data QC 
procedures can be found in the CIMIS technical manual24. All flagged CIMIS data were 
excluded from this analysis. 

Since the CIMIS data QC alone is insufficient to ensure accuracy of the data for solar resource 
applications, careful additional QC was conducted by the authors.  CIMIS data were also 
removed if the “upper envelope” of the maximum hourly values of the CIMIS measurements 
differed from the upper envelope of the maximum value of the modeled clear sky irradiance by 
more than 8 percent for a period of two months or more.  The clear sky irradiance is derived 
using a geometric model after Synder and Eching25.  A careful examination of the diurnal cycles 
of GHI showed that station #66 was temporarily shaded until 1100 PST year-round. Station #107 
was shaded only during the winter mornings. This shading was likely caused by nearby large 
obstacles. In both cases data collected during these times of day were excluded from the 
analysis. The minimum length of a CIMIS QCed data timeseries was required to be one year. 
On average five years of QCed data were available at each station.  SUNY data were excluded 
when CIMIS data were missing or excluded, so that a comparison could be conducted on two 
data vectors of identical length and time stamp. Despite careful data QC, the data quality issues 
do not allow firm conclusions from comparisons of individual CIMIS sites with SUNY data.  
However, consistent trends at several sites and especially relative trends over a year or time of 
day are expected to indicate fundamental problems with the SUNY data. 

2.3 Cloud and Topographic Data 
The National Climatic Data Center (NCDC), Integrated Surface Dataset (DSI-3505) was used to 
analyze the temporal variability of sky cover fraction (SCF) at airports near the CIMIS stations.  
Hourly SCF is provided using four descriptors that correspond to the amount of sky that is 
covered by opaque clouds measured in octas. Clear (CLR, SCF=0) indicates no cloud cover, 

21 Meek, D.W. and Hatfield, J.L. 1994. Data quality checking for single station meteorological databases. 
Agricultural and Forest Meteorology 69(1-2), 85-109. 

22 CIMIS 2008b. QC overview. <http://wwwcimis.water.ca.gov/cimis/dataQc.jsp> Accessed July 20th, 2009. 

23 CIMIS 2008b. QC overview. <http://wwwcimis.water.ca.gov/cimis/dataQc.jsp> Accessed July 20th, 2009. 

24 Eching, S.O and Moellenberndt, D. 1998. Technical elements of CIMIS, the California Irrigation 
Management Information System: State of California, Resources Agency, Dept. of Water Resources, 
Division of Planning and Local Assistance, 66. 

25 Snyder, R.L. and Eching, S. 2002. Penman-Monteith (hourly) reference evapotranspiration equations 
for estimating ETos and ETrs with hourly weather data. 
<http://biomet.ucdavis.edu/Evapotranspiration/PMhrXLS/PMhrDoc.pdf> Accessed January 13th, 2010. 
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while scattered (SCT, 1/8 to 4/8, SCF=0.31), broken (BKN, 5/8 to 7/8, SCF=0.75) and overcast 
(OVC, 8/8, SCF=1.0) indicate fractional sky coverage. The average SCF was assigned to each 
indicator to obtain a numerical dataset.  The resulting data contain more than four discrete 
values because the data were interpolated in time to correspond to the time stamp of the CIMIS 
data. The data in the DSI-3505 dataset have undergone extensive automated quality control.  
Additional manual quality control is performed at all US Air Force, US Navy and US National 
Weather Service stations26. Only unflagged cloud cover data for the period 1998-2005 coinciding 
with CIMIS time stamps were used in this analysis. The SCF analysis was conducted for every 
CIMIS station using sky cover data from the nearest airport to the CIMIS site. 

26 NCDC 2008. Data documentation for data set 3505 (DSI-3505) integrated surface data. Ashville, NC. 
<http://idn.ceos.org/> Accessed November 17th, 2009. 
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CHAPTER 3:  
Methodology 
3.1 Statistical Error Metrics 
Statistical quantities describing spatial and temporal variability were used to compare SUNY 
GHI values with CIMIS measurements, in particular mean absolute error (MAE, Eq. 1), mean 
bias error (MBE, Eq. 2), root mean square error (RMSE, Eq. 3) and correlation coefficient  
(r, Eq. 4). 
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In Eqs. 1-4 GHI denotes an hourly GHI value from the specified dataset, N is the total number of 
data points, and <…> denotes temporal averaging.  Relative MAE, MBE, and RMSE were also 
computed by normalizing Eqs. 1-3 by <GHICIMIS>, where the average is computed over the same 
period for which the error is computed. For example, for the yearly error all CIMIS GHI values 
are averaged to normalize by <GHICIMIS>year (e.g. Table 1) and for the error for an hour of a month 
(e.g. Fig. 4) all CIMIS GHI for that hour are averaged to normalize by <GHICIMIS>hour.  In all cases 
individual measurements from the two datasets were compared at the same time rather than 
evaluating long term average GHI. This prevents potential year-over-year bias in comparing the 
databases. 
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Table 1: Comparison of Satellite Derived GHI Data and GHI Data Measured at Ground Station Sorted by Site Distance from the Ocean 

 

 

Statistical descriptors are defined in Eqs. 14. While the mean irradiance columns give the average over a 24 hour day, the other statics were only 
computed during hours when SZA<80°.  

Note that the large mean irradiance values for CIMSIS stations #66 and #107 are a result of filtering out data because of morning shading at these sites.
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3.2 Spatial and Geographic Analysis of Irradiance Data 

There is a spatial discrepancy between the two datasets because the SUNY data are 
representative for regularly spaced 0.1˚ by 0.1˚ grid cells while the CIMIS data are 
representative only of the measurement site. In order to compensate for this discrepancy an 
algorithm was developed based on the approach of Vincenty27 to determine the straight line 
distance between SUNY grid points and each CIMIS station.  A distance weighted interpolation 
was then used to interpolate GHI from the four nearest SUNY grid points to each CIMIS station 
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In Eq. 5 di is the distance between the CIMIS station and the SUNY grid point i, GHISUNY,i is the 
irradiance at the SUNY grid point and GHISUNY,I is the SUNY interpolated irradiance at the 
CIMIS station. 

 CIMIS station distance from the ocean is used as an independent variable to quantify the 
effect of the coastal marine layer on different sites. Although distance from the ocean is not the 
sole factor describing the prevalence of coastal climate at a location, it does provide a relevant 
and simple metric to organize our results. 

3.3 The Clear-Sky Index (kt) 
Large differences in cloudiness frequently occur over short distances.  Although the NCDC 
cloud data are expected to give accurate long term average estimations of SCF (i.e. average of 
SCF over eight years) it will not accurately quantify cloudiness at each ground station at hourly 
resolution.  For this reason cloudiness is also quantified in terms of the clear-sky index (kt), 
defined as the ratio of actual irradiance to modeled clear sky irradiance 

 
clearGHI

GHIkt =
 

(6). 

In Eq. 6 GHI is an hourly irradiance from either the SUNY or CIMIS dataset and GHIclear is the 
modeled clear sky irradiance for the same hourly period28, thus kt can be computed for both the 
SUNY and CIMIS data.  In principle the value of kt should vary between zero and one, where 
small kt values indicate cloudy conditions and kt = 1 indicates clear sky conditions. 

27 Vincenty, T. 1975. Direct and inverse solutions of geodesics on the ellipsoid with application of nested 
equations. Survey Review 22, 176-183  

28 Snyder, R.L. and Eching, S. 2002. Penman-Monteith (hourly) reference evapotranspiration equations 
for estimating ETos and ETrs with hourly weather data. 
<http://biomet.ucdavis.edu/Evapotranspiration/PMhrXLS/PMhrDoc.pdf> Accessed January 13th, 2010. 
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CHAPTER 4:  
Results 
4.1 Annual Trends of Statistical Error Metrics 
Table 1 provides yearly averages of the statistical parameters used to compare satellite derived 
GHI to the ground measurements for the entire dataset.  The mean GHI is generally increasing 
in both SUNY and CIMIS as a function of distance from the ocean.  Fig. 2 shows that annual 
mean irradiance increases and annual mean sky cover fraction decreases with increasing 
distance from the ocean.  While proximity to the ocean would also be expected to impact the 
aerosol and water vapor column in a way that is not accounted for in the SUNY model, such a 
difference could not be detected in the clear sky results, presumably due to the limited accuracy 
of the CIMIS data. Although a high correlation between the two datasets is expected due to the 
predictable diurnal cycle of insolation, SUNY-CIMIS correlation coefficients of 0.97 or greater 
indicate that the SUNY model generally follows the GHI trends measured on the ground.   

Figure 2: Dependence of GHI and SCF on Site Distance from the Ocean Based on Annual 
Averages at Individual Sites 

 

(a) Mean GHI at each CIMIS site and collocated SUNY pixel increases, while (b) mean annual SCF at 
airports decreases with increasing distance from the ocean. 
 

For all stations the MAE ranges from 34 to 53 W m-2 and 17 percent to 28 percent and the RMSE 
ranges from 60 to 82 W m-2 and 29 to 44 percent. There is a weak trend of the largest MAE and 
RMSE occurring near the ocean, but MAE and especially RMSE are driven by the spatial 
heterogeneity (or randomness) of the cloud field together with the different location of the 
satellite pixel and the ground station. A cloud may have obscured much of the satellite pixel but 
not the CIMIS station resulting in large MAE and RMSE not related to a shortcoming in the 
SUNY model. The MBE is not sensitive to these effects as they are expected to average out over 
time.  Since SUNY data are most often used to compute climatologies of the solar resource, the 
MBE is of critical importance.  The MBE is generally positive (except for one coastal station and 
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three inland stations) and less than 27 W m-2 throughout. The relative MBE is less than 14 
percent for all stations, and there is a trend of decreasing MBE with increasing station distance 
from the ocean among sites that are <15 km from the ocean (Fig. 3). Since the MBE decreases 
with distance from the coast a decaying exponential function was fit to the data (legend in Fig. 
3). 

Figure 3: Annual Average of Hourly MBE between the SUNY Model and CIMIS Data against Station 
Distance from the Ocean (Same as ‘MBE [%]’ Column in Table 1) 

 

The station number is listed to the right of the corresponding data point. 
 

4.2 Monthly/Hourly Climatologies of Mean Bias Error (MBE) and 
Cloudiness (SCF) 
To further quantify this trend a detailed temporal analysis of the MBE at each station was 
conducted.  At each site the residual between the satellite and ground data was computed for 
each hour of the day using all the days in the irradiance time series.  MBEs for each hour and 
month of the year were then computed from the 24 hours x 30 days x n residual time series, 
where n is the number of years of available data (Fig. 4).  There are two important patterns 
visible in Fig. 4.  The first is a trend of large MBE (frequently >25 percent and up to 54 percent) 
that occurred at all coastal sites during the hours of 0801-1100 PST of June through September 
(with the exception of site 66 because data during this time period was filtered out due to 
shading), and it did not occur at any of the inland sites. The second is the occurrence of large 
positive MBE in the early evening hours (1801-2000 PST) year-round at all sites, independent of 
distance from the ocean.  This year round evening MBE is not caused by the SUNY model, but 
is related to a programming error that occurred when processing the NSRDB dataset (Perez, 
personal communication, 2010; see Section 5 for further discussion). 
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Figure 4: MBE [%/100] between SUNY Model and CIMIS Data Averaged Hourly by Month for: (a) 
CIMIS Station #173, 0.5 km from the Ocean; (b) CIMIS Station #111, 7.6 km from the Ocean; (c) 
CIMIS Station #008, 93.0 km from the Ocean; (d) CIMIS Station #125, 111.7 km from the Ocean.   

 

White areas in these figures represent times that were excluded because of sensor cosine response 
issues when SZA > 80o. 
The results of the analysis presented in Fig. 4a-d suggest that positive MBE in the SUNY data on 
summer mornings only occurs at coastal sites, prompting a search for possible explanations.  
Fig. 5 shows NCDC DSI-3505 SCF for the airports near the CIMIS stations in Fig. 4 averaged 
hourly for each month of the year (the same method that is used in Fig. 4).  It is important to 
note that because there are only four discrete cloud cover descriptors (CLR, SCT, BKN, OVC) 
that describe a range of sky cover conditions there is a large error associated with individual 
sky cover observations, but this error is expected to average out over long time periods.  Dense 
cloud cover is noted in the morning hours during summer months at all coastal sites.  The cloud 
cover in Figs. 5a,b correlates strongly with the summer morning MBE of Figs. 4a,b, so the SUNY 
model overestimates GHI at the same times when there is persistent broken to overcast cloud 
cover.  Both summer morning MBE and annual MBE are greater at station #173 than at station 
#111.  Figs. 5a,b indicate that it is usually cloudier at #173 than at #111 which is further evidence 
that the summer morning MBEs are related to local patterns of cloudiness.  There is no apparent 
correlation between cloud cover and positive MBE that would explain the early evening errors 
that were observed at all sites in the analysis. 
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Figure 5: Mean SCF at (a) North Island NAS which Experiences Similar Weather Conditions to 
CIMIS Station #173; (b) Watsonville Muni Airport Near CIMIS Station #111; (c) Red Bluff Muni 

Airport Near CIMIS Station #008; (d) Meadows Field Near CIMIS Station #125 

 

 

4.3 Satellite-Ground Differences in Cloudy Conditions  
While the results of Figs. 4 and 5 suggest a relationship between cloud cover and MBE they do 
not prove causality, i.e. that individual values generated by the SUNY model are inaccurate 
under cloudy conditions.  In order to establish causality between MBE and cloud cover scatter 
plots were created of SUNY and CIMIS kt to investigate the correlation between the two 
datasets under clear sky and cloudy conditions (Fig. 6).  Fig. 6a shows only data for the months 
of June through September at the coastal station #173 and Fig. 6b shows data for the months of 
November through February at the inland station #125.  The data were filtered for different 
months of the year for coastal and inland sites in order to include data from the cloudiest times 
of the year when cloud cover induced MBE would be most likely to occur based on the SCF 
climatologies in Fig. 5.   
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Figure 6: Scatter Plot of Hourly CIMIS kt versus SUNY kt Predicted for the Same Location at: (a) 
CIMIS #173 Jun-Sep; (b) CIMIS #125 Nov-Feb 

 
The red line is a moving average of the data.  The blue line is the 1:1 line which would indicate perfect 
agreement between the datasets. 

Figs. 6a,b indicate that during clear sky conditions the SUNY and CIMIS data are in good 
agreement at both sites.  Note that kt can be larger than one due to inaccuracies in the clear sky 
model, sensor inaccuracies, cloud or obstacle reflection of irradiance onto the sensor or an 
increased diffuse irradiance component produced by shortwave upwelling radiation reflected 
from the surface and/or obstacles surrounding the ground station.  The SUNY model does not 
account for such effects causing the underprediction of measured GHI for kt > 1. Fig. 6b shows 
that for small clear-sky index (kt ≤ 0.6) the SUNY model overestimates GHI at both sites.   

4.4 Correcting the Satellite Derived Irradiance Data 
The NSRDB-SUNY dataset is a useful tool for solar resource assessment but errors in the 
modeled data make its application somewhat problematic.  The SUNY model overestimates 
irradiance resulting in inaccurate sizing of PV systems and cost/benefit analyses which may be 
too optimistic.  As the SUNY model is complex and computationally expensive and the NSRDB 
irradiance dataset is already freely available it would be useful to develop a post-processing 
correction for the NSRDB-SUNY dataset.  Here such a correction using modeled output 
statistics (MOS) following the procedure of Lorenz et al.29 was attempted.  The combined effect 
of cloudiness and solar altitude on the MBE of the SUNY model by plotting MBE as a function 
of cos(SZA)*sign(AZ-180°) and kt (Fig. 7) was examined.  AZ is the solar azimuth angle, defined 
to be 0° at North and increasing in the clockwise direction.  Using this definition allows 
differentiation of morning and afternoon data since sign(AZ-180°)<0 before solar noon, 

29 Lorenz, E., Hurka, J., Heinemann, D., Beyer, H.G. 2009. Irradiance forecasting for the power prediction 
of grid-connected photovoltaic systems. IEEE Journal of Selected Topics in Applied Earth Observations and 
Remote Sensing 2(1), 2-10.  
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sign(AZ-180°)>0 after solar noon and sign(AZ-180°)=0 at solar noon.  The use of 
cos(SZA)*sign(AZ-180°) is motivated by the fact that the two areas of significant positive MBE in 
Fig. 5 are not symmetric about solar noon.  Our results suggest that these errors were generated 
are not solely a function of SZA so the parameter sign(AZ-180°) was used to differentiate the 
correction for these errors.   MBE dependence on cos(SZA) was examined rather than SZA so 
that they both vary on a scale from zero to one.  Fig. 7 indicates that positive MBE related to 
morning clouds depends on both cos(SZA) and kt while positive evening MBE depends strongly 
on cos(SZA) but is relatively constant in kt.  This behavior is consistent with the results of Figs. 4 
and 5. Fig. 7 also shows that the MBE is only large for morning clouds, but not clouds during 
other times of the day. 

Figure 7: Instantaneous Hourly MBE [%/100] as a Function of  Cos(SZA)*Sign(AZ-180°) and 
ktSUNY Averaged for 25 Ground Stations  

 

(CIMIS #66 and #107 were excluded due to shading).  Sunrise and sunset occur at cos(SZA)*sign(AZ-
180°)=0.  Data at 1159 solar time appear on the far left and data from 1201 solar time appear on the far 
right of the plot. 

The data from Fig. 7 can be used to correct the NSRDB-SUNY directly without using any 
surface measurements of irradiance as inputs to the correction algorithm.  This is desirable 
because the high spatial resolution of the SUNY dataset means that for many locations no such 
ground data are available to quantify the correction.  The correction is accomplished in the 
following manner.  The MBE data from Fig. 7 were separated about cos(SZA)*sign(AZ-180°)=0 
(to differentiate morning and afternoon errors) and each part was fit using a 5th order 
polynomial in cos(SZA)*sign(AZ-180°) and kt (see Appendix).  Separate polynomials were 
generated from MOS for coastal (<15km from the coast) and inland (>15km from the coast) sites.  
This polynomial expresses the expected error, MBEp, for each modeled hourly irradiance using 
solar geometry (SZA and AZ) and the clear-sky index computed from the SUNY timeseries as 
inputs.  Then the corrected hourly irradiance was determined by rearranging Eq. 2 to read 
GHISUNY,c = GHISUNY/(MBEp+1), where GHISUNY is an uncorrected hourly irradiance value and 
GHISUNY,c is the corrected hourly irradiance.  Testing showed that the 5th order polynomial was 
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not accurate for small SZAs resulting in erroneous corrections. Therefore the correction was 
only applied to hourly irradiance values when MBEp>0.2.  

Figure 8: MBE [%/100] between SUNY Model and CIMIS Station #173 Averaged Hourly by Month (a) 
before Applying the Correction Algorithm; (b) after Applying the Correction Algorithm 

 

Fig. 8 illustrates the effects of the correction algorithm for coastal CIMIS #173.  Positive summer 
morning MBE is improved dramatically by the correction algorithm but still remains positive.  
Year-round positive MBE that occurs in the late evening is slightly over-corrected so that when 
the correction is applied this error is reduced from approximately 30 percent to -5 percent.  
These results were consistent for other stations.  Table 2 quantifies the effect of the correction 
algorithm in terms of the annual MBE at each ground station.  The annual MBE improved at 18 
stations and worsened at 9 stations (see “Percentage point Δ” columns in Table 2).  In Table 2 
Percentage point Δ is defined as |MBEbefore| – |MBEafter|.  A positive value in this column 
indicates that the correction improved the error at a particular site, while a negative value 
indicates that error increased.  The average MBE at all sites after the correction was reduced to 
1.6 percent and was distributed more evenly around zero.  During summer mornings (Jun-Sep, 
80°>SZA>10°) the average MBE at all sites was reduced to 5.1 percent.  Year-round in the 
evening (80°>SZA>65°) the average MBE at all sites was reduced to 2.1 percent.  
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Table 2: Effect of the Correction Algorithm on SUNY Model Annual MBE.  Negative Values in the “Percentage Point Δ” Columns Indicate 
That the Correction Made the Error Worse for a Particular Site. 
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CHAPTER 5:  
Discussion and Conclusions 
Based on GHI data collected in the state of California the SUNY model is generally accurate and 
provides high quality irradiance data with an average uncertainty level (MBE) of 5 percent (see 
Table 1). CIMIS data do not match rigorous surface radiation measurement network standards 
for sensor recalibration intervals and station maintenance. Consequently despite significant 
investment in data quality control by the authors to detect shading, misalignment, and 
miscalibration, especially absolute differences at individual stations may be explained by 
insufficient data quality. However, consistent trends observed from groups of stations are 
expected to point to systematic errors in the SUNY model.  With no Baseline Surface Radiation 
Network (BSRN) or Surface Radiation Network (SURFRAD) sites in California, local networks 
such as the CIMIS network are the only data source available to study the effect of local 
meteorological patterns on SUNY errors. This situation and approach is an example that could 
be followed in many other regions where irrigation-related surface weather networks have 
monitored solar irradiance for many years. 

As illustrated by Table 1 and Fig. 3 the errors in the SUNY GHI data are greater near coastal 
stations than they are at inland stations, particularly in the mornings during the summer (Fig. 
4).  On summer mornings in California a coastal marine inversion layer is present nearly every 
day that creates overcast conditions throughout the morning until about 1100 PST.  At this time 
of year sea breezes that drive the marine layer inland (up to 15 km from the coastline) are 
particularly prevalent because large density gradients exist between cool air over the ocean and 
warm air over land30.  Fig. 4 indicates that the SUNY model overestimates the average GHI up 
to 54 percent MBE on summer mornings.  This error is deemed significant because the range of 
clear sky irradiance during those times is about 500-850 W m-2 resulting in a significant 
overestimation of the total monthly GHI.  This large positive MBE occurs because the SUNY 
model incorrectly parameterizes the effects of cloud cover on surface irradiance.  Fig. 5 shows 
that persistent cloud cover exists at the same times as the large summer morning error.  The 
analysis of Fig. 6 further establishes a relationship between cloud cover and SUNY model error.  
While the SUNY model is accurate under clear sky conditions (kt≥0.8), in broken or overcast 
cloud cover (kt≤0.6) the SUNY model overestimates the value of surface irradiance.  

The inaccuracies in the NSRDB SUNY dataset during the late afternoon (65˚≤SZA<80˚) are 
significant because they occur when the sun is well above the horizon. Since this error is not 
observed in the morning when 65˚≤SZA<80˚, it is not related to problems with computing the 
diffuse component of the irradiance at low sun altitude.  This error is not caused by the SUNY 
model, but is related to a programming error that occurred when on the hour GOES visible 
images (‘Uglo’ data) were shifted to the half hour in the NSRDB ‘Sglo’ column and averaged 
over the hour (Perez, personal communication, 2010).  This shifting process, which uses an 
interpolation on the clearness index to reconstruct an irradiance value for the half hour 

30 Simpson, J. E. 1994. Sea Breeze and Local Winds. Cambridge University Press: New York, 234 pgs. 
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timestamp, is described in the NSRDB user’s manual31. The NSRSDB ‘Uglo’ data are expected to 
be accurate, but with hourly CIMIS data, this could not be confirmed in our analysis. However, 
the Uglo data are typically not used since it is not straightforward to integrate the irradiances to 
obtain total irradiation over a month or a year. 

Our attempt to correct the NSRDB-SUNY dataset using the approach proposed by Lorenz et al.32 
was only partially successful.  Because the data in Fig. 7 are based on the average MBE from 25 
stations the correction is not expected to be perfect for individual sites.  In addition the data in 
Fig. 7 are noisy which makes it difficult to fit a polynomial that accurately captures the wide 
variability in the data.  Although the correction did improve the satellite data at the majority of 
the sites examined in this analysis, extensive validation of such a correction model must be 
conducted before it can be applied universally to the SUNY data. 

Even though errors were found under certain conditions, the SUNY satellite-derived irradiance 
model provides accurate estimations of surface irradiance for most sites. This conclusion is 
consistent with previous validation surveys of the SUNY irradiance model33 34 35 36.  Indeed there 
are tremendous advantages to using the SUNY model for solar resource assessment because of 
its complete coverage and high spatial resolution.  Nevertheless room for improvement does 
exist and before the model is applied it should be verified against available ground 
measurements of irradiance, especially in areas where persistent cloudiness or unusual weather 
conditions have the potential to create errors in the modeled data.  This research has important 
implications for the future viability of solar energy production in California, and in other 
regions for which such technologies may otherwise hold great promise in providing sustainable 
alternative energy sources to growing human population centers. 

 

31 Wilcox, S. 2007. National solar radiation database 1991-2005 update: user’s manual. NREL/TP-581-
41364. <http://rredc.nrel.gov/solar/old_data/nsrdb/1991-2005/> Accessed July 30th, 2009. 

32 Lorenz, E., Hurka, J., Heinemann, D., Beyer, H.G. 2009. Irradiance forecasting for the power prediction 
of grid-connected photovoltaic systems. IEEE Journal of Selected Topics in Applied Earth Observations and 
Remote Sensing 2(1), 2-10.  

33 Muneer, T. 1997. Perez slope irradiance and illuminance models: evaluation against Japanese data. 
Lighting Research and Technology 29(2), 83-87. 

34 Perez, R., Ineichen, P., Moore, K., Kmiecik, M., Chain, C., George, R., Vignola, F. 2002. A new 
operational satellite-to-irradiance model. Solar Energy 73(5), 307-317. 

35 Vignola, F., Harlan, P., Perez, R., Kmiecik, M. 2007. Analysis of satellite derived beam and global solar 
radiation data.  Solar Energy 81(6), 768-772. 

36 Gueymard, C. and Wilcox, S. 2009. Spatial and temporal variability in the solar resource: assessing the 
value of short-term measurements at potential solar power plant sites. Solar 2009 Conf., Buffalo, NY, 
American Solar Energy Soc. (ASES) 
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Appendix A:  
Mean Bias Error Correction 
The data presented in Fig. 7 were modeled using a robust (bisquare weighting) linear least 
squares polynomial fit to 5th order.  The 5th order polynomial is given in the following form. 
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In Eq. A.1 the coefficient pi,j=0 if i+j>5.  The values of the coefficients used in the correction 
algorithm are listed in Table A.1. 

Table A1: Values of Coefficients used in the 5th Order Polynomial Fit used to Correct the 
Satellite Derived Irradiance Data 

.  

Separate corrections were derived for coastal (<15 km from the coast) and inland (>15 km from the coast) 
sites.  AM and PM denote the coefficients used before and after solar noon. 
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