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PREFACE 

The California Energy Commission Public Interest Energy Research (PIER) Program supports 
public interest energy research and development that will help improve the quality of life in 
California by bringing environmentally safe, affordable, and reliable energy services and 
products to the marketplace. 

The PIER Program conducts public interest research, development, and demonstration (RD&D) 
projects to benefit California. 

The PIER Program strives to conduct the most promising public interest energy research by 
partnering with RD&D entities, including individuals, businesses, utilities, and public or 
private research institutions. 

PIER funding efforts are focused on the following RD&D program areas: 

• Buildings End-Use Energy Efficiency 

• Energy Innovations Small Grants 

• Energy-Related Environmental Research 

• Energy Systems Integration 

• Environmentally Preferred Advanced Generation 

• Industrial/Agricultural/Water End-Use Energy Efficiency 

• Renewable Energy Technologies 

• Transportation 

California Renewable Energy Forecasting, Resource Data and Mapping is the final report for the 
California Renewable Energy Forecasting, Resource Data and Mapping project (Contract 
Number 500-99-013, Work Authorization Number BOA-99-248-R) conducted by University of 
California, Davis and San Diego. The information from this project contributes to PIER’s 
Energy-Related Environmental Research Program. 

 

When the source of a table, figure or photo is not otherwise credited, it is the work of the author 
of the report. 

 

For more information about the PIER Program, please visit the Energy Commission’s website at 
www.energy.ca.gov/research/ or contact the Energy Commission at 916-327-1551. 
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ABSTRACT 
As wind and solar thermal and photovoltaic generation begin to have a larger role in electrical 
generation in California, the California Independent System Operator needs to accommodate 
their intermittent nature in its forecasting and dispatching activities. This project reviewed and 
evaluated the current state of knowledge and models for forecasting solar resources and 
considers options for improving forecasts through RD&D and additional measurements.  

Satellite and numerical weather predictions have been shown to be the best tools for hour-
ahead and day-ahead forecasts. However, solar forecast performance has yet to be evaluated for 
California, where the coastal microclimate may present a significant challenge. To validate and 
calibrate such forecasts, a combined real-time production database for all metered photovoltaic 
systems is deemed to be the most spatially dense and economical set of “measurements.” A 
research roadmap for improving the forecasts of direct normal irradiance (the amount of solar 
radiation from the direction of the sun) is provided. 

Wind energy in the United States has increased dramatically over the last decade. The rapid 
growth in installed wind power capacity has led to an increased interest in wind energy 
forecasting. This report discusses the importance of forecasting for the wind power industry 
and reviews state-of-the-art methods for forecasting wind energy and output ramp rates. 
Available data sources for validation and calibration are presented, and recommendations are 
offered regarding the best practices for wind forecasting and future research needs. 

Renewable energy resources in Southern California are extensive but unevenly distributed. Two 
regions that hold promise for integrating renewable energy resources are the Los Angeles Basin 
and the Salton Trough/Imperial Valley.  This study benefits California ratepayers by providing 
information on key sources of clean renewable energy with the potential for significant human 
health benefits, environmental benefits, and cost savings. 
 

 

Keywords: California Energy Commission, Geothermal, Solar, Wind, Forecasting, Dispatching, 
California ISO, Los Angeles Basin, Salton Trough, solar thermal, photovoltaic systems, energy, 
renewable, forecast, modeling, wind, energy, renewable, forecast, numerical wind prediction, 
NWP, modeling, ramp rate, data sources  
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California). 2011. California Renewable Energy Forecasting, Resource Data and 
Mapping. California Energy Commission. Publication number: CEC-500-2014-026. 

iii 

 



TABLE OF CONTENTS 

ABSTRACT ............................................................................................................................................iii 

List of Figures ...................................................................................................................................... vii 

List of Tables .......................................................................................................................................... ix 

EXECUTIVE SUMMARY ...................................................................................................................... 1 

CHAPTER 1: Solar Forecasting State of the Art .................................................................................. 7 

1.1  Overview .......................................................................................................................................... 7 

1.2  Solar Forecasting ............................................................................................................................. 7 

1.3  Solar Forecasting Needs, Market Connection, and Stakeholders ............................................ 7 

1.3.1  Solar Forecasting Methodologies ......................................................................................... 10 

1.3.2.  Evaluation of Numerical Weather Prediction Solar Forecasts in California ................ 13 

1.3.3.  Literature Survey of Forecasting Applications ................................................................. 16 

1.3.4.  Solar Forecast Providers ....................................................................................................... 17 

1.4  Summary of Recommendations for Improving Solar Forecasting ........................................ 21 

1.5  Data Sources for Validation and Calibration ............................................................................ 22 

1.6  Discussion ...................................................................................................................................... 24 

1.6.1  Evaluation of Forecast Accuracy .......................................................................................... 24 

1.6.2  Single Site Versus Regional Forecasts ................................................................................. 25 

1.7. Solar Forecasting Recommendations ......................................................................................... 25 

CHAPTER 2: Wind Forecasting State of the Art ............................................................................... 29 

2.1  Introduction ................................................................................................................................... 29 

2.2  Overview ........................................................................................................................................ 29 

2.3  Wind Energy:  Current State ....................................................................................................... 31 

2.3.1  20 Percent Wind Energy by 2030 ......................................................................................... 31 

2.3.2  Wind Forecasting Applications ............................................................................................ 31 

2.4  Wind Forecasting Methodologies ............................................................................................... 33 

2.4.1  Forecast System Introduction ............................................................................................... 34 

2.4.2  Physical Approach and Statistical Approach ..................................................................... 34 

iv 

 



2.5  Forecast Stages ............................................................................................................................... 36 

2.6  Forecast Ensembles ....................................................................................................................... 37 

2.7  Forecast System Operations ........................................................................................................ 37 

2.8  Operational and Commercial Wind Forecast Systems ............................................................ 38 

2.9 Evaluation of Forecasting Systems .............................................................................................. 44 

2.9.1 Measures of Accuracy ............................................................................................................ 44 

2.9.2  Alberta Pilot Project ............................................................................................................... 47 

2.9.3  Ramp Rate Forecasting .......................................................................................................... 50 

2.10  Data Sources for Validation and Calibration .......................................................................... 52 

2.11  Available Wind Data Sources .................................................................................................... 53 

2.12  Recommendations ....................................................................................................................... 57 

2.13  Data ............................................................................................................................................... 61 

2.14  Future Research ........................................................................................................................... 62 

CHAPTER 3: Resource Mapping of Co-Located Geothermal Resources in the Los Angeles 
Basin .......................................................................................................................................................... 65 

3.1  Overview ........................................................................................................................................ 65 

3.2  Introduction ................................................................................................................................... 66 

3.3  Methodology .................................................................................................................................. 68 

3.4  Los Angeles Basin Assessment ................................................................................................... 73 

3.4.1  Solar Resource Assessment Methodology .......................................................................... 73 

3.4.2  Geothermal Resource Assessment Methodology .............................................................. 74 

3.4.3  Co-Location of Resources ...................................................................................................... 80 

CHAPTER 4: Salton Trough:  Resource Mapping of Co-Located Geothermal Resources ........ 86 

4.1  Introduction ................................................................................................................................... 86 

4.2  Co-Location of Resources............................................................................................................. 86 

4.3  Conclusions .................................................................................................................................... 88 

4.4  Recommendations ......................................................................................................................... 89 

APPENDIX A: Solar Energy Forecasting Tables Related to Chapter 1 ....................................... A-1 

v 

 



APPENDIX B: Numerical Weather Prediction Models Related to Chapters 3 and 4 ............... B-1 

APPENDIX C: Los Angeles County Oil Pools Related to Chapters 3 and 4 .............................. C-1 

 

vi 

 



List of Figures 
 

Figures 1 a-c:  Solar Forecasting Imagery Maps ................................................................................ 12 

Figures 2a-d:  Solar Forecast Correction Techniques for Varying Sky Conditions........................ 14 

Figure 3. There Exist Two Approaches to Wind Power Forecasting (WPF): Physical Approach 
and Statistical Approach. ........................................................................................................................ 35 

Figure 4. Schematic of the Data Flow and Computational Process for the AWST Ewind Forecast 
System Used for the Alberta Pilot Project ............................................................................................ 40 

Figure 5. Total Day Ahead Forecast RMSE by Hour of Day ............................................................. 46 

Figure 6.  Rolling Weekly Day Ahead Forecast RMSE ...................................................................... 47 

Figure 7. Total Day Ahead Forecast RMSE for Three Forecasters as a Function of Forecast 
Horizons ..................................................................................................................................................... 49 

Figures 8 a, b: Two Sub-Figures Show the Individual Forecasts Based on Different NWP 
Models for Two Different Weather Situations ...................................................................................... 50 

Figure 9. Frequency of Power Changes with Varying Size and Duration ....................................... 51 

Figure 10. Forecasting Models Trained to have Low Average Errors Missed Ramps on the 
Afternoon of September 6, 2007 ............................................................................................................ 57 

Figure 11.  Estimation of Monthly Energy Output for Five Wind Farms in Spain Using Three 
Different Power Conversion Models: Theoretical Power Curve (TPC, Dashed Line), Average 
Power Conversion (APC, Solid Line), and Polynomial Fit Curve (PFC, Points) ............................ 60 

Figure 12.  Impact of Data Quality on Forecasts ................................................................................. 62 

Figure 13. California Index Map Showing the Locations of the California Division of Oil, Gas and 
Geothermal Resources Districts and the District Office Contact Information ................................. 69 

Figure 14. Regional Elevation and Geological Fault Locations for the Los Angeles Basin Area 
(a) and Salton Trough/Imperial Valley Area (b) ................................................................................... 70 

Figure 15. Correlation Coefficients Between Solar and Wind Resources. ...................................... 72 

Figure 16. Correlation of Concentrating Solar Power (CSP) with Local Demand .......................... 72 

Figure 17. Correlation of Wind Resources with Local Demand ........................................................ 73 

Figure 18. Pressure Versus Depth for Oil Pools in the Los Angeles Basin .................................... 76 

Figure 19. Temperature Versus. Depth for all Oil Pools in the Los Angeles Basin ....................... 76 

Figure 20. Pressure Versus Depth for All Oil Pools in the Los Angeles Basin ............................... 77 

Figure 21.  Location of Oil Pools in the Los Angeles Basin ............................................................... 79 

vii 

 



Figure 22. Computed Geothermal Gradients Versus Depth for all Data Points in Appendix C ... 80 

Figure 23.  Geothermal and Wind Resources Throughout the Western (A.) and Eastern (B.) 
Greater Los Angeles Basin Area ........................................................................................................... 81 

Figure 24. Location Of Geothermal Pools in the Los Angeles Basin (Red Areas Outlined in 
Black) and the June Solar Power Density ............................................................................................ 83 

Figure 25: Overlay of Geothermal Resources (Yellow Border) and Solar Rooftop Potential 
(White) as Identified for ReDEC ............................................................................................................. 84 

Figure 26. Geothermal Power Generation Facilities (Red Boxes) with Names Indicated, Solar 
Power Generating Site (Yellow Star) and Mean Winter Wind Velocity at 50 Meters (Contoured 
Colors) in the Salton Trough/Imperial Valley Area .............................................................................. 87 

Figure 27.  Generalized Locations of Geothermal (Transparent Red Ovals, Based On 
Generation Facilities Identified In Figure 25) and Solar (Transparent Yellow Oval), 
Superimposed on the Solar July Power Density Map for the Region .............................................. 88 

 

viii 

 



List of Tables 
Table 1. Task 1 Elements ......................................................................................................................... 7 

Table 2: Quantities Relevant to Solar Forecasting, Global Irradiance. ............................................ 10 

Table 3.  Characteristics of Solar Forecasting Techniques. .............................................................. 11 

Table 4  Available Irradiance Measurements in California. ............................................................... 24 

Table 5:  Ramp Capture Rate and Forecast Accuracies for Forecasts for a Single Wind Farm . 52 

Table 6  Minimum (Min.) and Maximum (Max.) Temperatures (Oc) for Oil Pools In Los Angeles 
County that have Geothermal Potential. ............................................................................................... 78 

ix 

 



EXECUTIVE SUMMARY 
Introduction 

This research is intended to address the current state of forecasting for both solar and wind 
resources, and provide a preliminary assessment of geothermal resources in the Los Angeles 
Basin and Salton Trough that are co-located with solar energy.  

The first component of this project provides a summary of the state of solar and wind 
forecasting. The information gathered under this project includes the types of forecasting and 
models that are used to predict solar and wind resources, how they are used, and the data and 
research that is needed to further improve forecasting. Solar and wind forecasting models will 
help integration of these renewable resources into California’s power grid. 

The second component of this project was intended to provide an initial assessment of 
renewable resources in the Los Angeles Basin and Salton Trough/Imperial Valley, an area that 
holds promise for integrating geothermal resources with both solar and wind. Although there 
are significant renewable resources in this area, they are unevenly distributed. This study 
examined published reports, maps, and databases to determine the extent of these resources, 
and to establish how well these resources aligned with each other and with transmission lines.  

Background and Recommendations 

Solar and Wind Forecasting ―Background 

As wind, solar thermal, and photovoltaic (PV) generation begins to have a larger role in 
electrical generation in California, the California Independent System Operators (ISO) needs to 
accommodate their variable nature in its forecasting and dispatching activities.  In the future, 
the California ISO may also shift some of the economic costs of forecast errors to wind and solar 
power plant operators and net metered utility customers using solar PV, who will then have 
needs for forecasting information.  

A wind or solar power forecast is an estimate of the expected power production of one or more 
wind turbines, wind plants, or solar plants in the near future (from a few minutes to several 
days ahead). This estimate is usually generated using one or a combination of wind and solar 
power forecast models. A power forecast model is a computer program that uses various inputs to 
produce wind or solar power output for future times. The complexity of the wind or solar 
power forecast models can range from very simple to very complex. For example, one of the 
simplest models is the persistence model. In this model, the forecast for all times ahead is set to 
the value it has now. Because the persistence model performs surprisingly well for very short 
forecast horizons (up to a few hours), it is the benchmark that all other forecast models are 
compared against. Compared to the persistence model, modern wind and solar power forecast 
models are notably more complex. These modern forecast models are often called power forecast 
systems by their developers since they contain a combination of physics-based models (such as 
Weather Research and Forecasting (WRF)), statistical models (such as Screening Multiple Linear 
Regression (SMLR) and Artificial Neural Network (ANN)), and plant output models. 
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Load forecasts have been an integral part of managing electric energy markets and 
infrastructure for many decades. Consequently, experiences, regulations, and planning by 
utilities and ISOs are the dominant consideration for this report. Furthermore, the rules 
established by the California ISO will impact the economic value of forecasting to other 
stakeholders such as owner-operators. The California ISO currently uses day ahead and hour 
ahead forecasts. The day ahead forecast is submitted at 05:30 prior to the operating day, which 
begins at midnight on the day of submission and covers (on an hourly basis) each of the 24 
hours of that operating day. Therefore, the day ahead forecast is provided 18.5 to 42.5 hours 
prior to the forecasted operating day. The vast majority of conventional generation is scheduled 
in the day ahead market. The hour ahead forecast is submitted 105 minutes prior to each 
operating hour. It also provides an advisory forecast for the 7 hours after the operating hour. 
The California ISO is also studying intra-hour forecasts on 5 minute intervals.  

Currently, under the California ISO Participating Intermittent Resources Program (PIRP), a 
participating intermittent resource receives special settlement treatment that nets output 
deviations over a month’s period if the resource’s scheduling coordinator submits hour ahead 
forecasts developed by a forecast service provider for that operating hour (de Mello and 
Blatchford, personal communication, 2010). Wind units may participate in day ahead market; 
however, no special settlement treatments apply. Forecasts are integrated into California ISO 
planning, but there is no financial incentive to the forecast providers for accurate forecasts.  

Future modifications in rules and tariffs may cause some of the economic benefit and interest in 
forecasting to shift to the owner-operators of renewable power plants which would 
dramatically change the marketplace for renewables forecasting. An example of such a system 
is the Spanish ‘premium tariff’ which allows operators of renewable power plants to participate 
directly in the electricity market instead of reverting to flat-rate prices. The premium tariff 
option motivates operators of renewable energy plants to increasingly act like managers of 
conventional power plants, selling electricity at the liberalized market rates. Thus, there is the 
need for operators of renewable energy plants to be able to provide energy that can be predicted 
and dispatched in the profitable premium tariff market. 

Solar Forecasting State of the Art―Conclusions and Recommendations 

Current Forecast Skills 

Satellite and numerical weather prediction (NWP) are currently the best tools for hour ahead 
and day ahead forecasts, respectively. Efforts are underway by solar forecasters and the 
National Oceanic and Atmospheric Administration (NOAA) to improve mesoscale numerical 
weather prediction for the hourly ahead market.  

Further research should be conducted on the forecast skills of operational numerical weather 
prediction models for California. The applicability of mesoscale numerical weather prediction 
to locally enhance forecast skills should also be quantified. This research would enable wind 
forecast providers to adapt their existing products for the solar forecasting market and quantify 
the potential success of such an approach. 
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Support should be provided to the California ISO to conduct a 12 months forecast ‘competition’ 
to evaluate forecast skills of forecast providers and maturity of different approaches. Careful 
design of such a study is critical and stakeholders should be consulted in the planning stage. 

Expanding Ground Measurements 

Ground measurements of global horizontal irradiance and direct normal incident irradiance for 
concentrating plants should be (and currently are) required by the California ISO for utility 
scale solar farms. To improve hourly ahead and intra-hour forecasts statewide, more ground 
data are necessary. The most economical approach would be to require or incentivize third 
party data providers/aggregators to share PV output and radiometer data in real time with the 
ISO, utilities, and forecast providers. Models should be developed to derive solar irradiance 
values from such ground PV data. Also, research on sky imager deployments in areas with high 
PV penetration should be pursued. 

Direct Normal Incident (DNI) Forecasts 

Research on radiative transfer in the atmosphere related to direct normal incident (DNI) 
forecasts is necessary. These forecasts should evaluate the effects of cirrus clouds, forest fire 
smoke, dust storms, and urban aerosol air pollution transport on concentrating solar power 
plants in California. 

“Chapter 1: Solar Forecasting State of the Art” presents a full review of solar power forecasting 
and more detailed recommendations. 

Wind Forecasting State of the Art―Findings and Recommendations 

• The rapid growth in installed wind power capacity has led to an increased interest in wind 
power forecasting. More and more utilities and ISOs are adopting, or planning to adopt, 
central wind forecasting systems as a means of more effectively integrating greater amounts 
of wind energy.  

• Currently, major stakeholders in California (Pacific Gas and Electric [PG&E], Sacramento 
Municipal Utility District [SMUD], California ISO, Southern California Edison Company 
[SCE]) use both hour ahead and day ahead forecasts in their daily business (for power 
generation scheduling, power trading, system operating, etc). There is an emerging interest 
in intra-hour forecasting from a few parties.  

• There are two approaches to short-term wind power forecasting: the physical approach and 
the statistical approach. In some cases, a combination of both is used. Most forecast models 
employ numerical weather prediction models to improve forecast accuracy.  

• The accuracy of forecasts from a wind forecasting model depends on a number of factors, 
such as wind plant terrain topology, surface roughness, weather conditions, wind pattern, 
forecast horizon, etc. For a specific wind forecasting project, a comparison of different 
models needs to be carried out to find the “best” forecasting model or combination of 
models.  

• The quality and availability of data are critical to successful wind forecasts. It is 
recommended to fund and support work focusing on better understanding the data 
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impacts, improving data acquisition and transmission, promoting data sharing, and 
developing new technologies in meteorological measurements.  

• Wind data are recorded and stored by a variety of entities in California, including the 
California ISO, independent operator utilities (IOU), municipal operator utilities (MOU), 
wind plant owners, wind developers, NOAA, National Weather Service (NWS), and a few 
other organizations and government agencies. Most data have restricted 
availability/accessibility, inconsistent data quality, and insufficient sampling frequency.  

• Additional recommended future research includes: new technologies in meteorological 
measurements, turbine icing forecasting, and studies on atmospheric boundary layer 
profiles.  

• There are limited studies on power ramp forecasting. More efforts need to be taken to 
improve ramp rate forecasting. When forecasting ramp rates, it is important to define the 
aspects of ramping that have the highest priority such as ramp time start, ramp rate, or 
magnitude. The California ISO and other system operators should work with forecasters to 
define power ramp events and to evaluate ramp rate forecasting.  

• Currently the penetration level of wind energy in communities and buildings is low. 
Current industry does not see any need for distribution level wind forecasting.  

“Chapter 2: Wind Forecasting State of the Art” presents a full review of wind power forecasting 
and more detailed recommendations. 

Resource Mapping: Los Angeles Basin and Salton Sea Trough―Background 

The Los Angeles Basin and the Salton Trough contain substantial geothermal resources as well 
as wind and solar thermal resources. This project reviewed maps and databases locating these 
resources, and the maps and databases of transmission lines and loads. These maps and 
databases were evaluated and recommendations were made for their enhancement. This review 
can be used to identify promising locations for integration of renewable projects that include 
geothermal resources. 

Previous work had identified and quantified the power generating capacity of solar and wind 
technologies in the study areas. Although the geothermal resource in the Salton Sea/Imperial 
Valley region has been assessed, the geothermal resource in the Los Angeles Basin had not been 
previously estimated. Therefore, separate methods had to be developed for establishing the 
extent of co-located resources in the two regions.   

The Los Angeles Basin geothermal resource was established by obtaining data from the 
California Division of Oil, Gas, and Geothermal Resources database on oil pools in the Los 
Angeles Basin. The authors considered a pool to be a potential geothermal resource if the pool 
had temperatures exceeding 91°C. Such pools were also characterized as "geopressured" if the 
pressure in the pool exceeded 10 percent of the nominal hydrostatic pressure. The identified 
pools were then mapped with respect to already characterized solar and wind resources. The 
results indicate that twelve pools in the Los Angeles Basin are likely geothermal resources. Of 
these twelve, five are located in close proximity to substantial wind resources. Although the 
solar potential is somewhat limited, there does exist substantial opportunity to locate rooftop 
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solar PV technology in regions where geothermal pools exist, thus providing an opportunity for 
development of "micro-grid integrated systems." The most substantial wind and solar co-
located resources are in the eastern part of the study region, where there are no geothermal 
resources. The existing transmission infrastructure in all but the eastern region is well 
developed and likely capable of supporting development of integrated systems without 
substantial infrastructure build-out. In the eastern part of the area, transmission corridors are 
well established, but they are localized.  

Development of integrated systems in the Salton Sea/Imperial Valley region has good potential 
to succeed. There are fifteen geothermal power-generating facilities in the area, along with one 
solar power-generating facility. Comparison of geothermal and solar resource assessments 
indicates that substantial additional development could take place. The existence of a local 
transmission infrastructure that already accommodates these renewable energy resources 
suggests further development could occur on an as-needed basis. The wind resource in the area 
is also substantial, particularly in the eastern third of the region, and is co-located with the 
highest solar power density. Between the Salton Sea and the eastern highlands there exist 
numerous indications of geothermal resources, suggesting that this area may be appropriate for 
more detailed consideration for development of integrated systems.  

Resource Mapping:  Los Angeles Basin―Findings and Recommendations 

Within the Los Angeles Basin, twelve oil pools were identified that theoretically possess 
sufficient thermal energy to support power generation. Of these, four are located in proximity 
to significant wind resources such that co-located power generation facilities could be feasible. 
The existing transmission infrastructure appears to be suitable to allow relatively easy 
development of these resources, although no detailed analysis of this challenge was 
undertaken. Co-located wind and solar resources occur in south-western San Bernardino 
County and have the potential to be significant energy resources. Transmission infrastructure is 
sufficient to service a corridor through this area, but extensive infrastructure development 
might be required to access some of the most significant resource areas. Co-located geothermal 
resources and warehouse roof-top solar resources are significant near three geothermal pools in 
Los Angeles County and warrant consideration for generation purposes at a local urban feeder 
scale.  
 
The authors recommend a follow up effort to develop detailed resource assessments of the 
individual oil pools identified in the Los Angeles Basin area to establish the magnitude of each 
resource and its variability both with depth and with areal extent. The resource assessment 
should include the total resource reserve (that is, the amount of energy that is economically 
feasible to produce given existing technology) and the resource base (that is, the total amount of 
energy that is present, but which may not be technically or economically accessible given 
existing technology). Such an analysis should also identify the local loads that could be supplied 
by these resources, if developed from a "distributed generation" perspective, and determine the 
capacity of these resources to supply electrical power to the broader power grid. “Chapter 3: 
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“Resource Mapping of Co-Located Geothermal Resources in the Los Angeles Basin” presents 
documentation and discussion of supporting analysis. 

Resource Mapping:  Salton Sea Trough―Findings and Recommendations 

The Salton Trough/Imperial Valley area has extensive geothermal, solar, and wind resources. 
The nature of the solar and geothermal resources could allow co-location of generating capacity 
throughout most of the area. The wind resource is mainly restricted to the eastern, mountainous 
portion of the study area. This resource is extensive and overlaps with the solar resource. 
Transmission infrastructure appears to be capable of accommodating build-out of generating 
capacity without the need for extensive construction of new transmission corridors within the 
Imperial Valley, particularly if co-located generating sites are carefully selected to maximize 
both access to transmission and coordination of resource development. However, further 
analysis of this topic is required to establish rigorous caveats to this conclusion. “Chapter 4: 
Resource Mapping of Co-Located Geothermal Resources in the Salton Trough” presents 
documentation and discussion of supporting analysis. 
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CHAPTER 1: 
Solar Forecasting State of the Art 
1.1  Overview  
This project was comprised of two components. The first task is related to forecasting and 
dispatching intermittent renewable resources. The second task concerns identifying additional 
geothermal resources in the Los Angeles Basin and Salton Trough, particularly those resources 
that can be co-located with other wind and/or solar resources. Table 1 lists the tasks that are 
addressed in this portion of the project. 

Table 1. Task 1 Elements 

Part 1 Task Elements 

1. Review the current state of the art in wind and solar 
forecasting in support of California grid operations including a 
review of opaque and transparent commercial models. 

2. Summarize and assess sources of real time wind and solar 
data used to calibrate day-ahead and hour-ahead forecasts. 

3. Review data on actual and forecast wind and solar thermal 
plant output ramp rates.  

4.-6: Recommendations for expanded sensor deployment and 
data collection. Recommendations for forecasting at high 
renewable penetration levels. 

 

 

1.2  Solar Forecasting  
As solar thermal and photovoltaic (PV) penetration increases, the California Independent 
System Operators (CAISO) needs to accommodate their variable nature in its forecasting and 
dispatching.  This portion of the project reviews and evaluates current knowledge and models 
for forecasting solar resources and considers options for improving forecasts through research 
and measurements. 

1.3  Solar Forecasting Needs, Market Connection, and Stakeholders  
This section reviews and evaluates current knowledge and models for forecasting solar 
resources, and recommends ways in which forecasting can be improved. . 

Load forecasts have been an integral part of managing electric energy markets and 
infrastructure for many decades. Consequently, experiences, regulations, and planning by 
utilities and independent system operators (ISO) are the dominant consideration for this report. 
Furthermore the rules established by ISOs will impact the economic value of forecasting to 
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other stakeholders such as owner-operators. Consequently, in the near-term the primary 
stakeholder to be considered for forecasting needs and plans is the California Independent 
System Operators (CAISO). Secondary stakeholders are utilities who will see greater distributed 
PV penetration on their urban distribution feeders. Currently only a few utilities have 
mechanisms in place to use solar forecasts for local automated response to voltage fluctuations 
caused by solar production.  

The market need for better solar power integration and planning tools have been widely 
recognized. CAISO uses the following forecasts: The day ahead (DA) forecast is submitted at 
0530 prior to the operating day, which begins at midnight on the day of submission and covers 
(on an hourly basis) each of the 24 hours of that operating day. Therefore, the day ahead 
forecast is provided 18.5 to 42.5 hours prior to the forecasted operating day. The vast majority of 
conventional generation is scheduled in the DA market. The hour ahead (HA) forecast is 
submitted 105 minutes prior to each operating hour. It also provides an advisory forecast for the 
7 hours after the operating hour. CAISO also is studying in intra-hour forecasts on 5 minute 
intervals. FERC has issued a Notice of Proposed Rulemaking requiring public utility 
transmission providers to offer all customers the opportunity to schedule transmission service 
every 15 minutes, and requiring providers with variable renewables on their systems to use 
power production forecasting. 

Currently, under the CAISO Participating Intermittent Resources Program (PIRP), a 
participating intermittent resource receives special settlement treatment that nets output 
deviations over a month’s period if the resource’s scheduling coordinator submits hour ahead 
forecasts developed by a forecast service provider for that operating hour (de Mello and 
Blatchford, personal communication, 2010). Although the PIRP program does not require them, 
in practice DA forecasts are provided under the same contract. Wind units may participate in 
DA market however no special settlement treatments apply. Forecasts are integrated in CAISO 
planning, but there is no financial incentive to the forecast providers for accurate forecasts.  

At some point PIRP may be modified and renewable generators will be required to participate 
in parts of the regular DA and HA markets. In that case some of the economic benefit and 
interest in forecasting would shift to the owner-operators of renewable power plants which 
would dramatically change the marketplace for renewable forecasting. An example of such a 
system is the Spanish ‘premium tariff’ for the regulation of renewable energy which allows 
operators of power plants to participate directly on the electricity market instead of reverting to 
flat-rate prices. The premium tariff option motivates operators of renewable energy plants to 
increasingly act like managers of conventional plants, selling electricity at the liberalized 
market. Just like a normal market participant, the operator places bids in advance on the DA 
market and is obliged to fulfill them. Thus there is the need for operators of renewable energy 
plants to be able to provide predictable and dispatchable energy in the profitable premium 
tariff. 

Wind forecasting has been important for severe weather events for decades and even wind 
forecasting for renewable energy is a fairly mature field with several major market players. 
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While solar radiation forecasting is standard in numerical weather prediction (NWP, the sun’s 
energy is the primary driver of all meteorological processes), the accuracy requirements on solar 
radiation forecasts per se were low and the priority was on forecasting rain and air temperature. 
Consequently there is significant potential for improvements of solar forecasts from NWP. 

For solar forecasting different types of solar power systems need to be distinguished (Table 2). 
For solar concentrating systems (concentrating solar thermal or concentrating PV, CPV) the 
direct normal incident irradiance (DNI) must be forecast. Due to non-linear dependence of 
concentrating solar thermal efficiency on DNI and the controllability of power generation 
through thermal energy storage (if available), DNI forecasts are especially important for the 
management and operation of concentrating solar thermal power plants. Without detailed 
knowledge of solar thermal processes and controls, it is difficult for 3rd parties (solar forecast 
providers and CAISO) to independently forecast power plant output. 

On the other hand, CPV production is highly correlated to DNI. DNI is impacted by 
phenomena that are very difficult to forecast such as cirrus clouds, wild fires, dust storms, and 
episodic air pollution events which can reduce DNI by up to 30percent on otherwise cloud-free 
days. Water vapor, which is also an important determinant of DNI, is typically forecast to a 
high degree of accuracy through existing NWP. Major improvement in aerosol and satellite 
remote sensing are required to improve DNI forecasts. 

For non-concentrating systems (such as most PV systems), primarily the global irradiance (GI = 
diffuse + DNI) on a tilted surface is required which is less sensitive to errors in DNI since a 
reduction in clear sky DNI usually results in an increase in the diffuse irradiance. Power output 
of PV systems is primarily a function of GHI. For higher accuracy, forecast of PV panel 
temperature are needed to account for the (weak) dependence of solar conversion efficiency on 
PV panel temperature (Table 2). 
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Table 2: Quantities Relevant to Solar Forecasting, Global Irradiance. 

Forecast 
Quantity 

Application Primary 
Determinants 

Importance 
to market 

Current 
Forecast Skill 

Global Irradiance  PV Clouds, solar 
geometry 

high medium 

Cell temperature PV GI, air 
temperature, wind 

low high 

Direct Normal 
Incident (DNI) 

Concentrating 
Solar Power 

Clouds, aerosols, 
water vapor 

medium Low 

 
 
1.3.1  Solar Forecasting Methodologies  

 
1.3.1.1.  Forecasting Methods  
The purpose of this section is to assess methodologies to forecast solar generation in California, 
to review best practices, and identify available data for validation and calibration of the 
forecasts. 

For solar forecasting very different methodologies are preferred depending on the forecast 
horizon (Table 1, Figures 1 and 2d): 

• Persistence forecast is based on current or recent PV power plant or radiometer output 
and extrapolated to account for changing sun angles. Persistence forecasts accuracy 
decrease strongly with forecast duration as cloudiness changes from the current state. 

• Total sky imagery can be used to forecast from real time (now cast) up to 15-30 minutes. 
by applying image processing and cloud tracking techniques to sky photographs (Fig. 
1c). The method assumes persistence in the opacity, direction, and velocity of movement 
of the clouds. Irradiance is predicted for the current cloud shadow and then the cloud 
shadow is moved forward in time based on cloud velocity and direction. 

• For satellite imagery (Fig. 1b) the same methods as in total sky imagery are applied. 
Clouds reflect more light from earth into the satellite leading to detection and the ability 
to calculate the amount of light transmitted through the cloud (transmissivity = 1 – 
reflectivity – absorptivity). The lower spatial and temporal resolution causes satellite 
forecasts to be less accurate than sky imagery on intra-hour time scales. Satellite imagery 
is the best forecasting technique in the 1 to 5 hour forecast range. Classical satellite 
methods only use the visible channels (such as they only work in day time), which 
makes morning forecasts less accurate due to a lack of time history. To obtain accurate 
morning forecasts, it is important to integrate infra-red channels (which work day and 
night) into the satellite cloud motion forecasts (Perez, et al. 2010). 

• NWP is the best forecasting technique for long time horizons of more than 5 hours. 
NWP models solar radiation as it propagates through the atmosphere including the 
cloud layers represented in the model. Operational National Weather Service models do 
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not have the spatial or temporal resolution for accurate HA forecast. Consequently, 
NWP models are probabilistic because they infer local cloud formation (and indirectly 
transmitted radiation) through numerical dynamic modeling of the atmosphere. NWP 
models currently cannot predict the exact position of cloud fields affecting a given solar 
installation (Perez et al. 2009). High-resolution rapid-refresh NWP that are currently 
developed by NOAA and wind forecasters may be able to approach the resolution of 
satellite forecasts (1 km) within a few years and allow the application of high-frequency 
variability techniques (Mark Ahlstrom, Windlogics). 

 

Table 3.  Characteristics of Solar Forecasting Techniques. 

Technique Sampling 
rate 

Spatial 
resolution 

Spatial 
extent 

Suitable 
Forecast horizon 

Application 

Persistence High One point One Point Minutes Baseline 

Total Sky Imagery 
(Fig. 1c) 

30 sec 10s to 100 
meters 

2-5 mile 
radius 

10s of minutes Short-term 
ramps, 

regulation 

GOES satellite 
imagery (Fig. 1b) 

15 min 1 km US 5 hours Load following 

NAM weather 
model (Fig. 1a) 

1 hour 12 km US 10 days Unit 
commitment 

 

11 

 



Figures 1 a-c:  Solar Forecasting Imagery Maps 

 
 

Figure 1a: Map of the forecast GHI [W m-2, color bar] in 
March 2010 at midday from the North American Mesoscale 
model (NAM). 

Figure 1b: Map of the forecast GHI [W m-2, color bar] for 
San Diego on January 24, 2009 at 1245 PST using the 
GOES-SUNY satellite model. 

  
Figure 1c: Cloud motion vectors (right) and sky image (left) at the UC San Diego campus on August 19, 2009 at 1431 
PDT. 

 

Statistical methods can be applied to correct for known deficiencies of different forecasting 
methods through corrections for known model biases or automated learning techniques. 
Examples are modeled output statistics (MOS), auto regression techniques, and artificial neural 
network (ANN). For example, MOS uses statistical correlations between observed weather 
elements and climatological data, satellite retrievals, or modeled parameters to obtain localized 
statistical correction functions. This allows, for example, for the enhancement of low-resolution 
data by considering local effects (such as topographic shading) or for correcting systematic 
deviations of a numerical model, satellite retrievals, or ground sensors. A disadvantage of 

c)
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statistical methods is the large amount (typically at least one year) and accuracy of 
measurement data needed to develop statistical correlations separately for each location. This 
means that MOS-based forecasts are not immediately available for larger areas or for locations 
without prior measurements, such as most non-urban solar power plants in the California. 

1.3.2.  Evaluation of Numerical Weather Prediction Solar Forecasts in California 
The authors conducted an analysis of the intra-day solar forecast skill of the current operational 
NWP model – the North American Mesoscale (NAM) model for February to June 2010 using 
California Irrigation Management Information System (CIMIS) GHI measurements. NAM 
provides hourly forecast up to 72 hours ahead on a 12 km grid within the Continental US.  

A 24 hour persistence forecast was a more accurate forecast in clear sky conditions than in 
overcast conditions (Figure 2b). This indicates that clear conditions are persistent, but during 
times of transitional weather patterns P is inaccurate. Generally, P is an inaccurate method for 
more than 1 hour ahead forecasting and should be used only as a baseline forecast for 
comparison to more advanced techniques. 

The original NAM forecast for GHI consistently over-predicts solar irradiation during clear sky 
situations, but under-predicts GHI for cloudy conditions (Fig. 2c). On average, these bias errors 
can exceed 25percent.  The consistent errors in NAM motivate application of a bias correction, 
termed model output statistics (MOS), as a function of solar zenith angle and clear sky index. 
Through the use of MOS, the bias error was eliminated and the root mean square error (RMSE) 
was significantly improved (Figure 2b). The RMSE for the corrected forecasts ranges from 
25percent under very cloudy conditions to 8percent under clear conditions. 
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Figures 2a-d:  Solar Forecast Correction Techniques for Varying Sky Conditions 

 
 

Fig. 2a: Camarillo, CA original NAM forecast N and 
MOS corrected NC forecasts compared to CIMIS 
ground data on Feb 13, 2010. Blue: Original NAM 
forecast, dashed blue: bias corrected NAM forecast, 
black: CIMIS measurement. The MOS reduces 
forecast error by nearly 200 W m-2 at mid day. 

Fig. 2b: Relative root mean square error (y-axis, normalized by 
1000 W m-2) of different forecasts as a function of total cloud 
cover (x-axis) for February-June 2010 in California. Blue solid: 
original NAM model; blue dashed: bias corrected NAM model; 
red dashed: persistence forecast; black: clear sky forecast. 
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Figure 2c: Relative mean bias error [percent/100, color scale] of NAM forecast N as a function of solar zenith angle (θ) 
and forecasted clear sky index (kt*) from February to June 2010 compared to CIMIS measurements.   
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Fig. 2d: Root mean square error (RMSE) of different solar forecasting techniques obtained over a year at seven SURFRAD 
ground measurement sites (from Perez et al. 2010). The red line shows the satellite now cast for reference, i.e. the satellite 
‘forecast’ for the time when the satellite image was taken. Cloud motion forecasts derived from satellite (yellow and white 
lines) perform better than numerical weather prediction (NDFD) up to 5 hours ahead. Numerical weather prediction has 
similar accuracy for 1 hour to 3 days ahead. 

 

1.3.3.  Literature Survey of Forecasting Applications 
1.3.3.1..  Peer-Reviewed Research 
Addendum 1 provides an overview of studies validating solar forecasting methods. The most 
extensive body of research is from Germany by the groups of Prof. Heinemann at the University 
of Oldenburg and Dr. Schroedter-Homscheidt at the German Aerospace Agency. No studies 
exist that examine forecasts for California, partly because there is no high-quality SURFRAD 
measurement site in California for forecast validation. A comprehensive study of forecasts at 
seven SURFRAD sites in the US (Perez et al. 2010, Fig. 2d) is probably generally applicable to 
most inland areas of California. The coastal California meteorology poses unique challenges 
and forecast models will have to be independently validated there. Generally, published results 
of forecast error have to be examined with care. The forecast error strongly depends on the 
amount and variability of cloudiness, making comparison between studies performed in 
different seasons and climates difficult. Nevertheless, a few general conclusions can be drawn 
from the literature survey: 

• Surprisingly, significant bias errors (such as persistent high or low deviations) exist in 
NWP models. However, these errors could be corrected through MOS. NWP model 
errors should be carefully examined in California. 

• Only for clear sky conditions can accurate forecasts be obtained with as low as 6 percent 
RMSE. 

• For all conditions (cloudy and clear) all forecasts that are compared to ground data have 
RMSEs of at least 20  but as large as 40-80 percent for cloudy conditions. The main 
reason for these large errors is the difference in spatial scale between a satellite pixel or 
NWP model grid cell and the measurement station. Unless local techniques with a finer 
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resolution are employed such as sky imagery, the forecast error will always be large, 
especially for sub-hourly intervals and cloudy conditions. 

• DNI forecasts are associated with about twice the RMSE than global horizontal 
irradiance (GHI) forecasts. 

 

The recommendations for the best solar forecasting approach are well summarized by 
Schroedter-Homscheidt et al. (2009), who propose to use 

• deterministic NWP schemes in the day-ahead market with ensemble prediction 
technologies for GHI. Post-processing of NWP should be used to derive hourly DNI 
from NWP. 

• aerosol optical depth modelling from air quality applications in the day-ahead 
prediction (for DNI). 

• now casting of cloud fields and irradiance from satellites. Cloud motion vector 
forecasting including both visible and infrared channels should be used for the 1 to 5 
hour forecast horizon (satellite-based aerosol added for DNI). 

• ground measurements for intra-hour forecasts. 

1.3.4.  Solar Forecast Providers 
For this section solar forecast providers were invited to describe their forecasting model, 
quantify forecast accuracy, and comment on research needs. Generally there are two camps of 
solar forecast providers. Especially established wind forecast providers apply techniques 
developed for wind forecasting to solar, which implies running dedicated mesoscale NWP 
together with machine learning (MOS, ANN) techniques to nudge the forecast to a particular 
site. Providers specializing in solar forecasts tend to use (government supplied) NWP data for 
DA forecasts, but use satellite cloud fields for intra-day or HA forecasts. The authors believe 
that for HA forecasts in the coming 3 years the satellite-based method has the greatest maturity, 
highest spatial resolution, and accuracy. However, as NWP approaches smaller grid sizes and 
NWP and mesoscale models are improved to assimilate satellite data, NWP may become 
superior to satellite-based methods. For DA forecast NWP is and will always be the most 
promising forecasting method. A review of models from different providers follows (in 
alphabetical order): 

3Tier does not provide details on solar forecasting capability on its website, but since it uses 
satellite-based technologies for its solar resource assessment it is likely to possess cloud 
forecasting capability. 3Tier was invited to comment, but has not responded. 

AWS Truepower (AWST): “The production of forecasts in the AWST solar forecasting system is 
based on the dynamic weighting of an ensemble of forecasts generated by a combination of 
physics-based (also known as Numerical Weather Prediction (NWP)) models, advanced 
statistical procedures and cloud pattern tracking and extrapolation techniques.   The individual 
members of the ensemble are weighted for each look-ahead time period (such as 1–hour, 2-
hours etc.) according to their relative performance in a relevant sample (such as a rolling period 
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prior to the forecast time or a set of cases that are similar to the current weather regime).  The 
independent weighting for each look-ahead period allows the system to shift from heavy 
reliance on one method for a particular look-ahead interval to a heavy weighting of another 
method for a subsequent look-ahead interval according to the statistical performance 
characteristics of each method for each look-ahead interval.  Currently, the AWST cloud pattern 
tracking procedure is under development and not yet used as part of the operational ensemble.  
AWST expects this approach to be added to its operational ensemble once development and 
testing is completed shortly. 

The current operational version of the AWST’s solar forecasting system consists of four major 
components. The first is the generation of a set of mesoscale NWP simulations using the MASS, 
WRF and ARPS models. These models are run from several sets of initialization and boundary 
conditions to generate an ensemble of mesoscale NWP forecasts.  Most of the simulations 
employ the standard government-center 6-hour NWP update frequency.  However, a small 
subset are operated in a rapid update cycle mode, which initializes a new simulation every 1 or 
2 hours using the latest available data including synthetic moisture data inferred from cloud 
patterns in satellite images.  This is intended to improve the short-term NWP prediction of 
cloud patterns and characteristics and is still being refined. 

The second phase of the forecast production process employs statistical models such as multiple 
linear regression, Artificial Neural Networks (ANN) and support vector regression to create an 
ensemble of forecasts of irradiance and other relevant parameters (such as panel temperature).  
The input into these models includes the output from the NWP simulations, recent time series 
data from the forecast site and off-site locations and in the future the output from the cloud 
pattern tracking schemes.  The statistical models serve to correct system errors in the NWP 
simulations as well as to adjust the NWP forecasts to account for recent trends revealed by the 
on-site or off-site measurement data.  The output is an ensemble of forecasts for the site. 

The third major component is the generation of a either a (1) deterministic forecast by 
statistically weighting members of the ensemble according to their performance in a relevant 
training sample or (2) a probabilistic forecast based on quantile regression using information 
about the dispersion of the forecasts in the ensemble and also trained on a relevant training 
sample.  

The fourth component is the transformation of forecasted irradiance and other meteorological 
parameters to power output power output values by using a statistical or physics-based solar 
plant model.  This can be done prior to or after the construction of the ensemble composite 
(such as applied to the individual members of the forecast ensemble or the ensemble composite 
predictions of the meteorological parameters).” 

Provided by John Zack, AWS Truewind, john@meso.com  

Clean Power Research offers the SolarAnywhere® solar resource assessment and solar 
forecasting service. Hourly GOES satellite images are processed using the most current 
algorithms developed and maintained by Dr. Richard Perez at the University at Albany 
(SUNY). The algorithm extracts cloud indices from the satellite's visible channel using a self-
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calibrating feedback process that is capable of adjusting for arbitrary ground surfaces. The 
cloud indices are used to modulate physically-based radiative transfer models describing 
localized clear sky climatology. Near term irradiance datasets are produced hourly and are 
accessible via the SolarAnywhere website or programmatically via web services. 

SolarAnywhere provides hourly forecasts up to 7 days in advance using a cloud motion 
algorithm for short term forecasts and a NWP algorithm for longer term forecasts. The 
transition point between the short term and long term forecasts is automated  to produce a 
unified dataset every hour containing 1 to 168 hours of forecast irradiance for each location. The 
accuracy of the forecast technique is reviewed in several papers Perez et al. (2009, 2010) 

Clean Power Research and SUNY are in the process of increasing the spatial resolution from 
10km to 1km and temporal resolution from one hour to one minute as part of the California 
Solar Initiative Advanced Modeling and Verification for High Penetration PV study. Other 
improvements in the near term include the imminent release of the v3.0 SUNY algorithm which 
will incorporate the four infra-red channels from the GOES satellites. Access to the new IR 
channels will enable early morning cloud motion forecasts during a time period that currently 
has an inadequate visual image history. Incorporation of the infra-red channels will achieve 
significant improvements in high albedo locations by enabling better differentiation between 
naturally highly reflective locations and intermittent snow cover. 

Garrad Hassan is an established wind forecast provider. The entry into the solar market will 
likely be based off of existing NWP and mesoscale modeling capabilities. Garrad Hassan was 
invited to comment, but has not responded. 

Green Power Labs (http://www.greenpowerlabs.com/services_forecasting.html) 

“provides solar radiation and power production monitoring and forecasting for utilities, 
independent system operators and solar power producers. The technology developed by Green 
Power Labs for broadband modeling of solar radiation at the Earth’s surface is based on the 
analysis of GOES satellite visible spectrum images. The model software is implemented as plug-
in for ESRI’s ArcGIS9.3 suite. 

Solar radiation monitoring is based on a physical model that relates the satellite-derived Earth-
atmospheric reflectivity from the visible spectrum channel of the satellites to the transmissivity 
of the atmosphere. The model calculates the sun’s position, air mass and extraterrestrial 
radiation and, in conjunction with digital databases of surface elevation, Linke turbidity data, 
produces estimates of clear-sky global radiation at the Earth’s surface. The amount of solar 
radiation reflected by clouds is determined from the satellite-derived data. The resulting data of 
overcast global radiation at the Earth’s surface are produced at a resolution of 1x1 km at the 
satellite’s nadir, at 30 minute intervals. The SolarSatData results are adjusted to the site-specific 
conditions using World Meteorological Organization - grade weather monitoring stations 
initially set up at solar power generation sites. 

Solar radiation forecasting works on a basis of physical relationship between cloud cover and 
solar radiation. The forecast system is based upon the cloud cover forecasts from two Numerical 
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Weather Prediction systems. These are the high resolution Nonhydrostatic Mesoscale Model 
(NAM) provided by the National Oceanic and Atmospheric Administration (NOAA) National 
Centers for Environmental Prediction, covering North America and adjacent waters at 10 km 
resolution, and the Global Environmental Multiscale model provided by Environment Canada 
at 15 km resolution in its regional configuration. The solar radiation and solar energy 
generation system performance forecasts for the next 48 hours at hourly intervals are produced 
daily from the 00Z and 12Z runs and are made available online. GPLI solar radiation forecasts 
are well correlated with ground observations. 

Solar power generation forecasting utilizes recognized models of solar power generation 
technologies. The service currently offers PV power generation forecasting for utility-scale and 
distributed systems as well as spatial aggregation of solar power generation in utility areas of 
service. ” (Tony Daye, Senior Manager, Green Power Labs Inc., 
tony.daye@greenpowerlabs.com) 

Solarcasters (http://www.solarcasters.com/dayahead.htm, 
http://www.solarcasters.com/hourahead.htm, http://www.solarcasters.com/minuteahead.htm):  

“offers a line of technical and engineering support services for utility-scale solar power 
generation.  The line includes forecast services for the day-ahead (DA) and hour-ahead (HA) 
time frames. A service for forecasts in the 0-60 minute time frame is also under development. 

SolarCasters DA forecasts predict irradiance and resulting power production in 3-hour average 
time blocks.  Forecasts are made twice each day for the following 24-hour period (...).  
SolarCasters provides both irradiance forecasts and plant-specific power generation forecasts 
using its TRNSYS-based plant simulation software.  Integration of these forecasts with electrical 
dispatch master controls systems from Siemens and GE is underway. 

DA forecasts are based primarily on numerical weather prediction (NWP) with proprietary 
algorithms used to forecast cloud cover based on NWP results.  The forecasts also use 
proprietary radiative transfer models to predict the irradiance reaching the ground.  A proof-of-
concept study at a desert location generated mean average errors (MAE) of around 1 percent 
and an RMS error of 11 percent.  Forecasting in a humid semi-tropical environment proved 
more difficult with a MAE of -7 percent (the model under predicts the observed) and an RMS 
error of 38 percent. 

HA forecasts predict 1-hour average power production for the 2-5 HA time frame and are 
generated using a series of proprietary algorithms based on analysis of satellite images, together 
with the SolarCasters radiative transfer modeling.  The MAE at the desert site in this time 
period was typically 2 percent with 12 percent RMS error.  Again the semi-tropical site proved 
more problematic with MAE of -8 percent and RMS errors near 25 percent. 

The proof-of-concept studies were conducted on short time series and the results presented here 
may not be representative.  All forecast results are expected to improve when site-specific 
corrections (MOS) derived from long-term observations are applied. 
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The forecast technology for the 0-60 minute time frame involves on-site imaging equipment and 
the use of geometric transforms to track and predict cloud-related transients affecting all or only 
a portion of a generating site.  An X-band radar system for predicting cloud cover in this time 
frame has also been tested and may prove useful for the largest generating sites.  Neither of 
these technologies has yet been subject to a proof-of-concept.” 

Provided by: Steve Ihnen, CTO, SolarCasters, Inc., Redmond, WA  98052, o. (425) 736-4631, 
steve@solarcasters.com  

Solardatawarehouse.com is an aggregator and data provider of solar irradiance data from 3600 
stations throughout the US. Solardatawarehouse also offers a forecast product based on the 
dense ground measurements, airport METAR observations, and National Digital Forecast 
Database data. “The forecasting model has two separate components: One predicts solar 
radiation based on meteorological observations, while the second learns to recognize seasonal 
climate patterns at the site. Outputs from the two models are combined to forecast solar 
radiation one hour and three hours into the future. The models are adaptive and capable of self-
learning based on the training data presented them.” (James Hall – JHtech, (719) 748-5231, 
JamesHall@jhtech.com). 

Windlogics has been developing expertise in solar resources and forecasting (such as Ahlstrom 
and Kankiewicz, Utility-scale PV variability workshop, 2009; Kankiewicz et al. American Solar 
Energy Society conference, 2010) and may be entering the market with new solar forecasting 
products soon. 

  

 

1.4  Summary of Recommendations for Improving Solar Forecasting 
• Current Forecast Skills: Satellite and numerical weather prediction (NWP) are currently 

the best tools for hour ahead (HA) and day ahead (DA) forecasts, respectively. Efforts 
are underway by solar forecasters and NOAA to improve mesoscale NWP for the HA 
market.  

o Further research should be conducted on the forecast skills of the low hanging 
fruit - operational NWP models - for California. The applicability of mesoscale 
NWP to locally enhance forecast skill should also be quantified. This research 
would enable wind forecast providers to adapt their existing products for the 
solar forecasting market and quantify the potential success of such an approach. 

o Support should be provided to CAISO to conduct a 12 months forecast 
‘competition’ to evaluate forecast skills of forecast providers and maturity of 
different approaches. Careful design of such a study is critical and stakeholders 
should be consulted in the planning stage. 

• Expanding Ground Measurements: Ground measurements of global horizontal 
irradiance (GHI) (and direct normal incident irradiance (DNI) for concentrating plants) 
should be (and currently are) required by CAISO for utility scale solar farms. To 
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improve HA and intra-hour forecasts statewide, more ground data are necessary. The 
most economical approach would be to require or incentivize 3rd party data providers / 
aggregators to share PV output and radiometer data in real time with the independent 
system operators (ISO), utilities, and forecast providers. Models should be developed to 
derive solar irradiance values from such ground PV data. The advent of smart meters 
that can monitor residential PV outputs provides an additional avenue to implement 
this strategy. Also, research on sky imager deployments in areas with high PV 
penetration should be pursued. 

• DNI Forecasts: Research on radiative transfer in the atmosphere related to direct normal 
incident (DNI) forecasts is necessary. These forecasts should evaluate the effects of cirrus 
clouds, forest fire smoke, dust storms, and urban aerosol air pollution transport on 
concentrating solar power plants in California. 

 

 

1.5  Data Sources for Validation and Calibration 
Solar forecasts from NWP or satellite models are of limited accuracy. Clouds are not resolved or 
modeled poorly in NWP. Satellites can observe large clouds directly, but they measure only the 
light reflected by clouds, atmosphere, and ground. Solar irradiance reaching the ground has to be 
modeled using various assumptions. Consequently, accurate data from ground stations is 
required to validate and calibrate NWP and satellite model forecasts.  

In Table 4 sources of real time solar data are listed. Unlike for wind, there is an extreme 
shortage of publicly available ground based solar irradiance measurements. The following 
observations apply: 

• There are only three stations in California (NOAA-ISIS at Hanford and NREL-MIDC in 
LA and Rancho Cordova) that provide publicly available, measured, real-time data. 
However, due to lack of funding and/or supervision even for these stations data quality 
is a concern (Manajit Sengupta, NREL, and personal communication). 

• The California Irrigation Management Information System (CIMIS) measurement 
network covers the entire state at decent resolution, but data are only available in 
hourly intervals and are only downloaded 1x / day in the evening making these data 
largely useless for solar forecasting applications. 

• CAISO also presently has very little solar generation data, since many solar power 
plants have gas-fired backup generators which are not separately metered. 

• GOES satellite data is currently the most promising resource due to real-time 
availability, large coverage, and decent accuracy. 

• A powerful, but so far untapped resource is the more than 2000 metered PV systems 
around the state. Since PV power output is near linearly related to solar irradiance, 
these systems effectively act as distributed solar irradiance sensors. If the measurements 
could be linked to a national database in real-time, they would be a very valuable and 
economical resource for solar forecasting. 
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Also note, that recently NOAA and NREL (Michalsky et al. 2010) have proposed the upgrade of 
Climate Reference Network (CRN) to measure GHI, DNI, and DIF. However, with only 7 CRN 
stations in California these measurements would not be sufficient in their spatial density for 
California’s solar forecasting needs. NOAA estimates that the cost of expanding the CRN 
network would be $1.5 M for the 7 sites in California. NREL also runs the SOLRMAP initiative 
to provide quality control for third party installed irradiance sensors, but the data remain 
proprietary to the operator. 
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Table 4  Available Irradiance Measurements in California.  

Name Type Resolution / # 
of stations 

Time 
step 

Real Time? Accuracy for 
GHI 

GOES Satellite 1 km 15 min Yes Low 

NOAA ISIS Ground GHI, 
DNI, DIF 

1 (Hanford) 3 min Yes Medium – High 

NREL MIDC Ground GHI, 
DIF 

2 (LA, Rancho 
Cordova) 

1 min Yes (30 min) Medium – High 

CIMIS Ground GHI 134 1 h No (1x / day 
download) 

Medium 

NOAA 
ASOS 

Cloud height 
and density 

82 (airports) 10 min Yes Low 

CSI PBI PV output, 
some GHI 

>2070 15 min No, NDA 
required1 

Low 

UCSD Sky 
Imager 

Sky Image 50 m 30 sec Yes Low 

ISIS: Integrated Surface Irradiance Study; CIMIS: California Irrigation Management Information System; ASOS: Automated 
Surface Observation System; PBI: Performance Based Incentive; MIDC: Measurement and Instrumentation Data Center. 

 
 

1.6  Discussion 
1.6.1  Evaluation of Forecast Accuracy 
1.6.1.1   Error Metrics 

Due to the binary nature of solar radiation (cloudy or clear) the choice of error metric is very 
important for the evaluation of solar forecast models. The root mean square error (RMSE) 
metric is problematic as it is dominated by large errors. Thus if a forecast model is usually 
correct but occasionally off by a large amount it may score worse than a model that is always 
slightly off but never way off. We recommend adding the mean absolute error (MAE) or mean 
absolute percentage error (MAPE) as a standard evaluation metric since it is less sensitive to 
large errors. 

1.6.1.2   Economics versus Irradiance 

All forecast evaluations (see Addendum 1) calculate the forecast error in W m-2 or  percent of 
solar irradiance. This has the advantage of comparability, but is not the most economically 
relevant metric. For example, a forecast error during peak load is likely both economically and 
operationally more significant than an error during off-peak times. To quantify the economic 

1 May be available real-time in the future through smart meters. 
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value of radiation forecasts and forecast errors we recommend that researchers use the CAISO 
OASIS site which continually updates prices in the HA and DA market.  

1.6.2  Single Site Versus Regional Forecasts 
Solar forecast quality dramatically improves when several sites are aggregated over a region 
(such as Lorenz et al. 2009), because average cloudiness in a region can be forecast more 
accurately than cloudiness at a particular site. Since shorter time-scale fluctuations in power 
output are uncorrelated across sites only a few miles apart (such as the clouds responsible for 
these fluctuations are usually smaller than the distance between sites) aggregation of power 
output from several sites mitigates the issue of large ramps over short time-scales. The larger 
the forecast region and the larger the number of sites within that region, the less important 
small scale variability becomes. For example, Mills and Wiser (2010) showed that 1 minute 
fluctuations are uncorrelated over distances as small as 20 km meaning that the relative 
variability standard deviation decreases with the square root of the number of sites – 4 sites 
means half the relative variability. They concluded that the increase in spinning reserve costs 
for solar are smaller than those for wind. 

In the current market, prices are set at each node in the electric grid. Consequently, the 
economic value of forecasting is primarily in localized forecasting for a particular solar plant or 
an urban distribution feeder. However, for other applications such as congestion management 
and grid operation on larger scales, often aggregate or ensemble forecast are sufficient or 
desirable.  Likewise for solar forecasting in urban areas, the PV sites are distributed across 
different rooftops and aggregate forecasts are of greater relevance than forecasts for individual 
PV systems. 

 

1.7. Solar Forecasting Recommendations 
a) Type of Solar Forecast: GOES satellite and NWP data are the most accurate solar forecast 

sources for hour-ahead (HA) and day-ahead (DA) forecasts, respectively. An overwhelming 
body of research (Section 2.2) shows that solar forecast based on satellite models outperform 
NWP forecasts up to around 5 hours ahead. In turn, persistence forecasts give similar results 
as satellite forecast up to 1 hour ahead. 
 
Mesoscale Numerical Weather Prediction (NWP) 

Why: In the long term as computing power and models improve, NWP will be the most 
promising tool to forecast solar irradiance. This research would enable wind forecast 
providers to adapt their existing products to solar forecasting and quantify the potential 
improvement in accuracy. 

What to do: Research should be conducted on the forecast skills of operational numerical 
weather prediction models for California and the applicability of mesoscale meteorological 
models to locally enhance forecast skill. 
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Who can do it: Researchers (for example, NREL, NOAA, and Scripps Institution of 
Oceanography, and scientists with experience in mesoscale meteorological modeling in 
California). 

Conduct a forecast competition: CAISO has successfully conducted a wind forecast 
competition in 2008/2009 and would like to repeat a similar project for solar forecasting. Any 
forecast providers could bid and provide forecasts for a few representative sites to the ISO 
for one year. The following parameters should be forecast: Global Horizontal Irradiance, 
Diffuse Horizontal Irradiance, Direct Normal Irradiance, Global (diffuse + direct) plane 
of array irradiance for fixed tilt PV, PV panel temperature for fixed tilt PV mounted onto 
a flat area, Global (diffuse + direct) irradiance for a two-dimensional tracking CSP plant.2 

Why: No peer-reviewed studies exist that evaluate solar forecast performance for California. 
With its unique microclimates California presents a significant challenge to forecast models. 

What to do: Contact CAISO’s James Blatchford as to the timeline and support required to 
conduct such a study.  

Who can do it: Researchers with experience and knowledge in solar modeling in 
collaboration with the CAISO. 

b) Ground Measurement Networks: More ground measurements of solar irradiance would 
improve HA and intra-hour forecasts. Ground measurements of GHI (and DNI for 
concentrating plants) should be (and currently are) required by CAISO for large solar farms 
(similar to wind measurements in the PIRP program). However, the authors believe that 
establishing and maintaining a separate dedicated network of solar irradiance sites in 
California would not be the most economical approach to improving forecast skill. High-
quality irradiance sites are labor intensive to install and operate as most DNI sensors require 
daily cleaning. For example,  NOAA estimates that the cost of upgrading the Climate 
Reference Network to conform to solar resource and forecasting needs would be $1.5M for 
just 7 sites in California. Yet the high accuracy does not necessarily translate to reduced 
forecast error since clouds are spatially localized and their detection and prediction would 
require extremely dense networks. No peer-reviewed research study exists that shows 
advantages of non-local measurements networks for solar forecasting. However, if other 
energy meteorology networks were established (e.g. for wind forecasting for which the 

2 John Zack from AWS Truepower comments that “A rigorous competitive evaluation of forecast providers is 
fundamentally a good idea to establish level of performance expectations and an estimate the variation in forecast 
performance among providers.  However, it is important to realize that the information obtained from such a study 
will be limited by the design of the study.   A particular method may perform very well for one objective but not as 
well for another. (e.g forecasting of routine events vs anomalous events) and some methods may perform much 
better if certain types of data are available but may not have any advantage if those data are not available.  The 
danger is that conclusions derived from a specific set of forecast evaluation conditions will be extrapolated to general 
conclusions, which may to lead to erroneous decisions on how to best address other forecasting objectives.  We have 
encountered this issue in many of our wind forecasting applications.” 
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advantages of such networks are more obvious), it would be useful and economical to 
‘piggyback’ off of these sites and install low-maintenance GHI silicon pyranometers. 
 
The most economical approach to enhance ground measurements would be to require 
and/or incentive third party data providers to share their data in real time with the ISO 
and/or solar forecast providers which – under NDAs – could operate a data warehouse for 
utilities, and forecast providers. The cost to sharing such data is minimal as the infrastructure 
is in place such as more than 2000 sensors, meters, telemetry, and databases (Table 4). The 
only change to the current mode of operation is that database access would be provided in 
real-time instead of sending monthly summaries to CSI as is done currently. This approach 
would be expected to cost a fraction of a new station network and could be operated by 
CAISO and the energy industry in an open market.  

Why: There is a lack of solar irradiance measurements in California. 

What to do: Research should be funded by the California Solar Initiative or PIER or both in 
collaboration to develop models to derive solar irradiance values from ground PV data and 
demonstrate the potential and feasibility of such an approach to improve the accuracy of 
solar forecasting. 

Also research on total sky imager (Figure 1c) deployments in areas with high PV penetration 
should be pursued. Sky imagers can survey a large area from a single site. The reduced 
accuracy in the irradiance measures determined by a sky imager (compared to a 
pyranometer) will be more than overcome by the spatial density and cloud tracking 
capability of the observations. 

Who can do it: Researchers with a background in data assimilation would be useful. 

c) Forecast Aerosol Optical Depth for DNI: Depending on the expected market share of 
concentrating solar power (CSP) plants in California, research should be conducted on DNI 
forecasts examining the integration of aerosol models into weather forecast models. These 
forecasts should especially be able to consider cirrus clouds, forest fire smoke predictions, 
dust storms, and urban aerosol air pollution transport that may affect CSP in California.  
 
Why: Aerosols can significantly decrease DNI which could impact CSP plants. 

What to do: Evaluate satellite remote sensing products of aerosol optical depth and their 
assimilation into solar forecasting. 

Who can do it: Since aerosols may not be detectable on the ground, satellite remote sensing 
techniques hold the most promise, especially if coupled with NWP. Researchers, for 
example, NASA-NOAA-EPA has performed some work in this area 
(http://www.star.nesdis.noaa.gov/smcd/spb/aq/). With the exception of work in Germany 
(Breitkreuz et al. 2009), prior AOD work is focused on air quality applications. Additional 
research is required to determine solar irradiance. 
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CHAPTER 2: 
Wind Forecasting State of the Art  

 
 
 2.1  Introduction  
In this Energy Commission funded effort, work has been conducted with focuses on: 1) 
surveying industry to explore major stakeholders’ forecasting needs for wind energy, 2) 
reviewing state-of-the-art methodologies for forecasting wind energy and output ramp 
rates, 3) reviewing data sources for validation and calibration, and 4) making 
recommendations on best practices of wind forecasting and future research. 

2.2  Overview 
The key findings and recommendations regarding wind energy forecasting are: 

• The rapid growth in installed wind power capacity has led to an increased interest in 
wind energy forecasting. More and more utilities and ISOs are adopting, or planning 
to adopt, central wind forecasting systems as a means of more effectively integrating 
greater amounts of wind power. 

• Currently major stakeholders in California (PG&E, SMUD, CAISO, SCE) use both 
hour ahead (HA) forecasts and day ahead (DA) in their daily business (for power 
generation scheduling, power trading, system operating, etc). There is an emerging 
interest in intra-hour forecasting from a few parties. 

• There exist two approaches to the short-term wind power forecasting: physical 
approach and statistical approach. In some cases, a combination of both is used. Most 
forecast models employ numerical weather prediction (NWP) models to improve 
forecast accuracy. 

• The accuracy of the forecasts from a wind forecasting model depends on a number of 
factors, such as wind farm terrain topology, surface roughness, weather regime, wind 
pattern, forecast horizon, etc. For a specific wind forecasting project, comparison of 
different models needs to be carried out  to find the “best” forecasting model or 
combination of models. 

• The quality and availability of data are critical to successful wind forecasts. It is 
recommended to fund and support work focusing on better understanding the data 
impacts, improving data acquisition and transmission, promoting data sharing, and 
developing new technologies in meteorological measurements. 

• There are limited studies on ramp forecasting. More efforts need to be taken to 
improve ramp rate forecasting. When forecasting ramp rates, it is important to define 
the aspects of ramping that have the highest priority such as ramp time start, ramp 
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rate or magnitude. The CAISO and other system operators should work with 
forecasters to determine how to ask for and evaluate ramp rate forecasting. 

• Wind data are recorded and stored by a variety of entities in California, including 
CAISO, IOUs and munis, Wind Plant Owners, Wind Developers, NOAA and NWS, 
and a few other organizations and government agencies.  Most data have restricted 
availability/accessibility, inconsistent data quality, and insufficient sampling 
frequency. 

• Additional recommended future research include: new technologies in meteorological 
measurements, turbine icing forecasting, and studies on atmospheric boundary layer 
profiles. 

• Currently the penetration level of wind energy in communities and buildings is 
extremely low. Current industry does not see any need for distribution level wind 
forecasting.  
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2.3  Wind Energy:  Current State 
The United States is reforming its energy mix and developing diverse sources of clean, 
renewable energy to overcome emerging challenges such as increasing energy prices, 
supply uncertainties, and environmental concerns. Wind energy is one of the renewable 
energy sources that has seen rapid growth over the last decade. According to AWEA’s 
2010 report, nearly 10,000 MW of wind came online in the United States in 2009, 
bringing the total US installed wind capacity to over 35,000 MW. This represents nearly 
a twelve-fold increase in wind capacity in 2000. 

2.3.1  20 Percent Wind Energy by 2030 
In 2006, President Bush emphasized the nation’s need for greater energy efficiency and a 
more diversified energy portfolio, which led to a collaborative effort to explore a 
modeled energy scenario in which wind provides 20 percent of US electricity by 2030 
(DOE Report, 2008). In its Annual Energy Outlook 2007, the US Energy Information 
Administration (EIA) estimates that US electricity demand will grow by 39 percent from 
2005 to 2030, reaching 5.8 billion megawatt-hours (MWh) by 2030. To meet 20 percent of 
that demand, US wind power capacity would have to reach more than 300 gigawatts 
(GW) or 300,000 megawatts (MW). This growth represents an increase of more than 290 
GW within 23 years. The 20 percent Wind Scenario also estimates that the installation 
rate of wind power would need to increase from installing 3 GW per year in 2006 to 
more than 16 GW per year by 2018 and to continue at roughly that rate through 2030. 

2.3.2  Wind Forecasting Applications 
The rapid growth in installed wind power capacity has led to an increased interest in 
wind power forecasting. Historically, given its variable nature, wind generation has 
been taken on an as-available basis, where wind simply “shows up” and grid operators 
take whatever measures necessary to accommodate it, mainly reducing the output of 
other committed generation. At low wind penetrations, such actions are reasonable. 
However, at higher levels of wind penetration, uncertainty surrounding the amount of 
wind energy that can be expected becomes more problematic. In addition, there are costs 
associated with having excess units online, as well as from reduced unit efficiency and 
increased operations and maintenance. Improved wind power forecasting can reduce 
these costs (NERC Report, 2009). 

Various parties, such as system operators, utilities, project developers, and wind farm 
owners, can benefit from wind forecasting. For system operators, wind forecasts allow 
them to predict and manage the variability in wind power to balance supply and 
demand on regional or national grid system. Moreover, knowing in advance when 
expected surges in cheap and clean wind energy production will occur could allow for 
grid operators to reduce costs through the power-down of more expensive natural gas-
fired plants. Having recognized the importance of wind forecasting, the following 
system operators have implemented central wind forecasting as of May, 2010: the 
California Independent System Operator (CAISO), the Midwest Independent System 
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Operator (MISO), the New York Independent System Operator (NYISO), the Electric 
Reliability Council of Texas (ERCOT), and the Pennsylvania-Jersey-Maryland 
Interconnection (PJM). The Alberta Electric System Operator (AESO) and the Ontario 
Independent Electric System Operator (IESO) also have plans to implement central wind 
power forecasting in 2010. 

CAISO was the first ISO to implement centralized wind power forecasting in North 
America in June 2004. Its program is known as the Participating Intermittent Resource 
Program (PIRP). Intermittent generators that participate in PIRP pay CAISO a $0.10 per 
megawatt-hour (MWh) fee, agree to stay in PIRP for one year, install CAISO’s telemetry 
equipment, schedule consistently with the CAISO’s forecast of wind generation, and do 
not make advance energy bids into the California market. The positive and negative 
imbalance associated with wind power generators are netted out monthly, with any 
remaining imbalances paid or charged at a monthly weighted Locational Marginal Price 
(LMP). CAISO uses both day ahead (DA) forecasts and hour ahead (HA) forecasts in its 
daily operations. The DA forecasts are submitted at 5:30am prior to the operating day, 
which cover each of the 24 hours of the operating day on an hourly basis. The HA 
forecasts are submitted 105 minutes prior to each operating hour. It also provides an 
advisory forecast for the 7 hours after the operating hour. Recently, CAISO has shown 
an interest in intra-hour forecasts as well as three-day ahead forecasts (Blatchford, 2010). 

Energy providers and utilities can benefit from wind power forecasts. Imbalance charges 
imposed on energy providers that result from deviations in scheduled output will 
increase energy providers’ operating costs. Wind power forecasts can help to minimize 
these penalties. Wind power forecasts can also reduce the significant opportunity costs 
of being too conservative in bidding output into a forward market, due to uncertainty of 
availability. In California, two major utilities - Southern California Edison (SCE) and 
Pacific Energy and Electricity (PG&E) - have both integrated wind power forecasts into 
their daily business. 

SCE serves a 50,000-square-mile area of California and reached a record peak demand of 
23,303 MW on August 31, 2007. SCE considers its available generating capacity data to 
be confidential, but has reported its 1,073 MW of installed wind capacity. Although SCE 
is a participating transmission owner in CAISO, it has its own wind forecasting system 
and does not participate in PIRP. SCE started creating power generation profiles for 
wind in 1998. At that time, daily wind power profiles were simply derived from two 
years of historical power data using the Least Square Fit (LSF) method. The forecasting 
results were not satisfactory. In November of 2000, SCE hired AWS Truepower 
(formerly Truewind) as their wind power forecast vendor. Since then, SEC uses AWS 
Truepower’s wind forecasts for scheduling wind generation, and pays for the wind 
power forecasting service internally. Currently, AWS Truepower sends HA forecasts to 
SCE twice a day, once at 5:00am and once at 5:00pm. The forecasts predict the energy 
output for the next seven days. SCE also uses 90-day ahead forecasts for power trading. 
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SCE also thinks intra-hour forecasting is beneficial for real-time power trading (Gilman, 
2010). 

PG&E currently uses next-day and two-day forecasts in its power generation 
scheduling. PG&E suggests providing, in addition to HA and DA forecasts, 15 min ~ 2 
hour forecasts to facilitate ancillary services (Klingler, 2010). 

Wind project developers can take advantages of wind forecasting. The suitability of a 
wind energy project depends on a large number of factors. For wind energy 
development, the meteorological conditions at the site are of the utmost importance, 
since wind acts as the fuel in wind energy projects. Even though this fuel is free, no 
amount of money can buy additional fuel once a project is built. Project site placement is 
therefore the single most important, controllable factor in determining whether a wind 
project will be economically viable or not. 

Since direct observations of wind speed are only made at a limited number of sites, a 
comprehensive dataset based on observations alone is impossible. Instead, computer 
models that simulate the dynamics of the atmosphere (Numerical Weather Prediction 
models, or NWPs) can provide important spatial and temporal information on the wind 
resources at a site. Proper assessment techniques using NWP modeling can provide 
valuable information on the expected diurnal and seasonal load for a project as well as a 
long-term evaluation of the site’s potential. 

Wind power forecasting can be applied to save costs when wind farm owners/operators 
need to schedule wind project maintenance and construction. Wind projects often 
require that turbines be taken down during the commissioning of new turbines. This can 
take hours to weeks depending in part on the weather. Precipitation, high winds and 
extreme temperatures need to be avoided for obvious reasons. Without accurate 
forecasting information, the chances of idling a mobilized work crew and necessary 
equipment (such as large cranes) increases. The associated costs can exceed $100,000 per 
day (Lerner and Garvert, 2009). By not taking advantage of the right weather conditions 
for construction, operations, and maintenance, overall project costs increase as deadlines 
are not met, plant generation is diminished, and resultant production revenues from 
Green Tags or Production Tax Credits are lost. 

2.4  Wind Forecasting Methodologies 
A wind power forecast is an estimate of the expected power production of one or more 
wind turbines (or wind farms) in the near future (from a few minutes to several days). 
This estimate is usually generated using one or a combination of wind forecast models. A 
wind forecast model is a computer program that uses various inputs to produce wind 
power output for future times. The complexity of the wind forecast models can range 
from very simple to very complex. For example, one of the simplest models is the 
persistence model. In this model, the forecast for all times ahead is set to the value it has 
now. The persistence model performs surprisingly well for very short forecast horizons 
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(up to six hours) and it has become the benchmark that all other forecast models have to 
beat. Compared to the persistence model, modern wind forecast models are notably 
more complex. These modern forecast models are often called wind forecast systems by 
their developers, probably due to their complexity. For example, AWS Truepower’s 
eWind system involves using a combination of physics-based models (such as Mesoscale 
Atmospheric Simulation System (MASS), Weather Research and Forecasting (WRF), and 
Mesoscale Model Version 5 (MM5), statistical models (such as Screening Multiple Linear 
Regression (SMLR) and Artificial Neural Network (ANN), and plant output models. 

This section focuses on operational and commercial wind forecast systems that are 
generally of medium to high complexity. For more information on wind forecast 
models, please refer to review papers by Giebel (Giebel, 2003) and by Monteiro 
(Monteiro et al, 2009)(see bibliography). 

2.4.1  Forecast System Introduction 
A wind forecast model or wind forecast system can be considered as a “black-box.” This 
“black-box” takes various data as inputs and generates wind power production forecasts 
as outputs. Depending on the complexity of the forecast model or forecast system, the 
number of inputs can be either small or large. For example, the persistence model 
mentioned above only needs one input: current power generation. AWS Trueopowers’s 
eWind forecast system, on the other hand, operates upon a wide range of input data 
such as online meteorological data (wind speed, wind direction, temperature, pressure, 
etc.) measured by on-site and off-site met towers, online power production data 
provided by wind farm owners, historical power production data of a wind farm, and 
turbine availability data for a wind farm. 

2.4.2  Physical Approach and Statistical Approach 
Wind forecast models or wind forecast systems (“black-boxes”) can be categorized 
according to their approaches to producing the wind power prediction. There exist two 
approaches to wind power forecasts: physical approach and statistical approach. In some 
forecast systems, a combination of both is used. Figure 3 illustrates different approaches 
used for wind power forecasting (WPF). 
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Figure 3. There Exist Two Approaches to Wind Power Forecasting 
(WPF): Physical Approach and Statistical Approach. 

 
Source:  Monteiro et al, 2009 

 

 

In the physical approach, a wind forecast system tries to use physical considerations as 
long as possible to reach the best possible estimate of the local wind speed before using 
model output statistics (MOS) to reduce the remaining error. Wind forecast systems 
using physical approach usually take the output from external numerical weather 
prediction (NWP) models, which are run at the government forecast centers, and the 
raw regional atmospheric data as the inputs to run its own set of NWP models. These 
models employ higher horizontal and vertical resolution than the government center 
models and in some cases also include physics-based formulations that are more 
customized for low-level wind forecasting than those in the government center models. 

The NWP models are formulated from the fundamental principles of physics (such as 
conservation of mass, momentum, and energy, and the equation of state for the 
constituents of air), which yields a set of differential equations that are typically solved 
on a three-dimensional grid. The size of the grid elements and the extent of the 
computational domain in these models determine the scales of atmospheric processes 
that can be simulated by a specific configuration of a model. Some commonly used NWP 

35 

 



models include: North American Mesoscale (NAM), Global Forecast System (GFS), 
Rapid Update Cycle (RUC), Mesoscale Model Version 5 (MM5), Navy Operational 
Global Atmospheric Prediction System (NOGAPS), Coupled Ocean/Atmosphere 
Mesoscale Prediction System (COAMPS), etc. Please refer to Addendum 1 for more 
details on NWP models. 

In the statistical approach, a wind forecast system uses statistical models to find 
relationships between a wealth of explanatory variables (including results from NWP 
models that are run at government forecast centers) and online measured power data. 
Usually, the statistical models are developed by employing one or more of several 
different statistical algorithms. The algorithms include techniques such as Screening 
Multiple Linear Regression (SMLR), Artificial Neural Networks (ANN), Support Vector 
Regression (SVR) as well as other methods such as fuzzy logic clustering that can be 
employed to pre-condition training samples to enable the training methods to find 
stronger empirical relationships. The statistical models can be used at any stage of the 
modeling, and often they combine various steps into one. 

2.5  Forecast Stages 
If the forecast system is formulated rather explicitly, as is typical for the physical 
approach, then the stages are: downscaling, conversion to power, and upscaling: 

• Downscaling: At this stage, the wind speed and direction from the relevant 
NWP level is scaled to the hub height of the turbine. This usually involves a few 
steps. The first step is to find the best-performing NWP model(s). The next step is 
the so-called downscaling procedure. The physical approach uses a meso- or 
microscale model for the downscaling. 

• Conversion to Power: The downscaling stage generates a wind speed and 
direction for the turbine hub height. This wind is then converted to power with a 
power curve. One can use either the manufacturer’s power curve or the power 
curve derived from measured power output and wind speed and direction. The 
use of the manufacture’s power curve is the easiest approach since it does not 
require any historical data. However, newer research has shown that it is more 
accurate to use the power curve derived from measured data (Garcia-Bustamante 
et al, 2009). 

• Upscaling: Utilities usually want a prediction for the total area they service 
instead of a prediction for a single wind farm. Therefore, in this stage, the single 
result is upscaled to the area total. If all wind farms in an area would be 
predicted, this would involve a simple summation. However, since it is not 
practical to predict hundreds of wind farms, some representative farms were 
chosen to be the input data for an upscaling algorithm. Several publications 
studied the effects of the number and location of representative wind farms on 
the expected power output of a whole region. It is well documented in the 
literature that, by aggregating several wind farms over a wide area, weakly 
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correlated forecast errors cancel out as a result of statistical effects (Monteiro et 
al, 2009). 

2.6  Forecast Ensembles 
In practice, an ensemble of forecasts is usually used rather than an individual forecast. It 
has been demonstrated that forecast ensembles can produce higher quality forecasts and 
forecast uncertainty estimates than any individual forecast in some applications (Sivillo, 
1997). 

The basic concept is that a set of forecasts is generated by perturbing the input data and 
the model configuration parameters within their respective ranges of uncertainty, 
producing a new forecast with the perturbed input data or model parameters. In theory, 
this provides a set of forecasts that bracket the ultimate realized value of the predicted 
variables. A composite of the set of forecasts typically provides an explicit prediction 
than any individual forecast and the dispersion of the ensemble provides information 
about the forecast uncertainty. 

Since there is an enormous number of input data variables and model parameters, it is 
not practical to generate forecasts with all of the possible perturbations. Thus, in 
practice, one must select a subset of input data or model parameters to perturb to 
generate a forecast ensemble. The objective is to select the input data or model 
parameters that are responsible for most of the uncertainty in the forecast system. This 
can be quite difficult since the data or parameters responsible for the uncertainty 
typically will vary from one forecast cycle to another due to differences in weather 
regimes and other factors. 

2.7  Forecast System Operations 
The relative importance of the various inputs and models depends upon the look-ahead 
period of the forecast as well as other factors such as the characteristic weather regimes, 
surface properties in the vicinity of the wind farm and the amount and type of available 
data from the plant and other sources. The skill of short-term forecasts is typically more 
dependent upon the time series data from the wind plant as well as recent data from 
nearby off-site locations or nearby remote sensing systems (such as Doppler radars or 
wind profilers) and the performance of the statistical models. However, even 1 to 2 hour 
ahead forecasts can benefit from the intelligent use of output data from a customized 
high resolution NWP model. 

The performance of day-ahead forecasts does not have much dependence on the current 
data from the wind plant or nearby locations. These forecasts are based predominantly 
on the output from the NWP models that has been adjusted by a MOS procedure to 
remove systematic errors that are common in the output of NWP models. Although 
current data from the wind plant is not crucial to day-ahead forecast performance, 
historical meteorological and plant production data is crucial to the successful utilization 
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of the MOS procedure and the construction of high quality statistical plant output 
models. 

 

2.8  Operational and Commercial Wind Forecast Systems 
This section reviews major commercial wind forecasting systems currently in use. As 
stated in the previous section, modern advanced wind forecasting models fall into one 
of these three categories: physical approach, statistical approach, or hybrid approach 
(using both physical and statistical approaches). Almost all the forecasting systems use 
one or more NWP models to improve forecast accuracy. 

AWS Truewind – eWind Forecasting System 

AWS Truewind has been providing wind forecasting services through its eWind 
forecasting system to clients such as CAISO, FPL Energy, enXco, SCE, Shell energy, 
and International Energie. The eWind forecasting system employs physics-based 
numerical models and adaptive statistical techniques.   Figure 4 shows a schematic 
overview of the eWind system used in the Alberta Pilot Project (AWS Truewind 
Report, 2008). In the Alberta Project, AWS Truewind utilized its eWind forecast 
system to produce 1 to 48 hour ahead forecasts of the wind power production for a 
total of 12 wind farms. The top row of circles in Error! Reference source not found. 
represents the output data from external NWP models that are run at government 
forecast centers. This data, along with the raw regional atmospheric data (light 
gray circle on the left side of Error! Reference source not found.), are used to run 
eWind’s own set of NWP models. These models employ higher horizontal and 
vertical resolution than the government center models and in some cases also 
include physics-based formulations that are more customized for low-level wind 
forecasting than those in the government center models. These models produce 3D 
forecasts of meteorological variables on a relatively high-resolution grid. The 
output from the physics-based simulations, as it becomes available from each 
physics-based model cycle, goes into a “potential predictor” database along with 
the raw regional atmospheric data and the Supervisory Control and Data 
Acquisition (SCADA) data from the wind farms. 

The continuously updated composite NWP and observational database is used to 
train the statistical models to produce forecasts of atmospheric variables at the 
meteorological tower sites. An ensemble of these forecasts are produced by using 
two different statistical prediction procedures–Screening Multiple Linear 
Regression (SMLR) and Artificial Neural Network (ANN)–and a number of 
different training sample sizes, contents and stratification bins. The result of this 
process is an ensemble of forecasts for the atmospheric variables at the 
meteorological tower sites. This ensemble is converted into a single deterministic 
or probabilistic forecast for each variable and forecast hour by the ensemble 
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composite model. This ANN-based model is trained on historical forecast 
performance data and essentially weights each forecast according to its recent 
performance or its performance in previous occurrences of the anticipated weather 
regime. 

The hourly forecasts of atmospheric variables at the meteorological tower sites are 
converted to a power production forecast by “the plant output models.” These 
models are typically trained with measured atmospheric variable and power 
production data although simulated atmospheric variable data may be used for 
those variables that cannot be computed with the available measured data. The 
output from the plant output models is a deterministic and probabilistic power 
production forecast for each forecast hour. 

Garrad Hassan – GH Forecaster 

Garrad Hassan (GH) has been predicting the long-term energy production of wind 
farms on a commercial basis for more than 18 years. As a natural extension to its 
long-term forecasting services, GH developed a method for the forecasting of the 
future energy production of wind farms over a time frame of a few hours to a few 
days and launched its “GH Forecaster” service around 2003. 

The GH forecasting modeling method incorporates input data from a Numerical 
Weather Prediction (NWP) source of appropriate resolution, and from on-site data. 
The physical aspect of the modeling methodology is primarily provided by the 
NWP input. As of 2004, the results have been generated using NWP input from 
mesoscale models with a grid resolution of order of 12km. This input is enhanced 
through the application of multi-parameter statistical regression routines (Parkes 
and Tindal, 2009). 

The generation of power output forecast within GH Forecaster is a two-stage 
process. The first stage is accurate modeling of the meteorological conditions. The 
meteorological model uses statistical regression to transform NWP model forecasts 
to site-specific ones. The second stage is transforming meteorological forecasts to 
forecasts of power output. This transformation is typically achieved via a wind 
farm power matrix, using multiple direction and wind speed bins to represent the 
power output of the wind farm. The process of generating the power matrix can be 
theoretical or based on measured data. 
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Figure 4. Schematic of the Data Flow and Computational 
Process for the AWST eWind Forecast System Used for the 
Alberta Pilot Project   

 

 

Source:  from AWS Truewind, 2008 

 

3Tier – PowerSight Wind Forecasting System 

3Tier is one of the major forecast providers in North America. The technical details 
of 3Tier’s wind forecast system are not readily available. Therefore, the following 
introduction was taken from 3Tier’s website. 

3Tier’s PowerSight wind forecasting system uses a combination of advanced 
statistical algorithms, mesoscale numerical weather prediction (NWP) models, self-
learning artificial intelligence models, and publicly available weather forecasts, 
including data from the US National Weather Service (NWS) as well as other 
global weather forecast centers. PowerSight also incorporates the climatology and 
terrain for the project location using diurnal variability averages on a monthly 
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time-scale. When historical met tower or power production data is available, 
PowerSight will apply model output statistics (MOS) to its atmospheric model 
simulations. 

National Center for Atmospheric Research – Now casting and DICast Systems 

National Center for Atmospheric Research (NCAR) has spent more than 15 years 
developing and operationally deploying a short-term Now casting system, which 
is based on a technology called Variational Doppler RADAR/LIDAR Data 
Assimilation System (VDRAS). This system uses available observational datasets 
(RADAR, surface station, satellite, LIDAR, and met tower) in real-time, analyzes 
the atmosphere using physical models, combines observational data with weather 
model output, and generates now casts out to 2 hours every 6-10 minutes. This 
capability is especially suited for wind energy ramp detection. 

In 2009, in collaboration with Xcel Energy, NCAR implemented an operational 
Real-Time Four Dimensional Data Assimilation (RFDDA) system over the western 
and central states for supporting wind-power forecasting. This system contains 
three modeling domains with grid sizes of 30, 10, and 3.3 km. The 3.3 km domain 
covers the Rocky Mountains from New Mexico to Montana, the High Plains states, 
and more areas of the central plains. The system runs with a 3-hour cycle. In each 
cycle it produces 27-hour forecasts for the innermost domain and 72-hour forecasts 
for the two coarser domains. The real-time weather forecast maps and power-
production forecasts for about 30 wind farms in Colorado, Minnesota, New Mexico 
and Texas are provided to Xcel operational centers. Currently NCAR is providing 
following forecasts to Xcel Energy: 1) 0~1/0~2 hour ramp rate forecasts, and 2) 0~72 
hour wind energy output forecasts (this will be extended to 0~120 hour forecasting 
at the end of this year) (Mahoney, 2010). 

NCAR has also been a leader in the development of intelligent weather prediction 
systems that blend data from numerical weather prediction (NWP) models, 
statistic datasets, real-time observations, and human intelligence to optimize 
forecasts at user-defined locations. The Dynamic Integrated Forecast System 
(DICast) is an example of this technology and it is used by several of the nation’s 
largest private sector weather service companies. The DICast system can be used 
for predicting wind energy as it generates fine-tuned forecasts for specific user-
defined locations. 

 

41 

 



Gamesa – Mega System 

Spanish wind turbine manufacturer Gamesa launched an online weather 
forecasting service for wind farms through its Mega System in April, 2010 (Gamesa 
Press Release, 2010). The Mega System was created based on Gamesa’s years of 
experience in wind pattern forecasting and wind farm output modeling systems. 
The Mega System provides seven-day forecasts for hourly wind conditions and 
wind farm output. 

According to Gamesa’s April 20, 2010 press release, there are Basic and Premium 
versions of the Mega service. The Basic version provides forecasts to the wind 
farms five times a day. The forecasts include wind and electricity output patterns, 
and comparative analysis against hard data. The Premium version builds on the 
Basic version with hourly updates via a real-time connection to wind farm data. 

Other Forecast Service Providers and Their Models 

• Energy and Meteo Systems – Previento 
Previento is a wind power forecasting system developed by the German 
company Energy and Meteo Systems (Focken and Lange, 2008). It is capable of 
providing prediction of wind farm output power up to 4 days in advance and 
with a temporal resolution of up to 15 minutes. Energy and Meteo Systems has 
been delivering wind power forecasts to American grid operator Midwest ISO 
since August, 2008. 

• WEPROG – MSEPS System 
The Multi-Scheme Ensemble Prediction System (MSEPS) is a wind power 
forecasting system developed by the Danish company Weather and Wind 
Energy PROGnosis (WEPROG) (Jorgensen and Mohrlen, 2008). The Alberta 
Electric System Operator (AESO) awarded a two-year contract to WEPROG to 
provide a centralized wind power forecast for Alberta in January, 2010. 

• ARMINES – ARMINES Wind Power Prediction System (AWPPS) 
ARMINES and RAL have developed work on short-term wind power 
forecasting since 1993. In Project MORE-CARE, ARMINES developed models 
for the power output of a wind park for the next 48/72 hours based on both 
online SCADA and Numerical Weather Predictions. The developed forecasting 
system integrates: 

• Short-term models based on the statistical time-series approach able 
to predict efficiently wind power for horizons up to 10 hours ahead. 

• Longer-term models based on fuzzy neural networks able to predict 
the output of a wind farm up to 72 hours ahead. These models receive 
as input online SCADA data and numerical weather predictions. 
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• Combined forecasts: such forecasts are produced from intelligent 
weighting of short-term and long-term forecasts for an optimal 
performance over the whole forecast horizon. 

The forecasting system developed by ARMINES is integrated in the MORE-
CARE EMS software and is installed for online operation in the power systems 
of Crete and Madera. 

• ISET – Wind Power Management System (WPMS) 
German research institute, Kassel Institute für Solare 
Energieversorgungstechnik (ISET), has worked with short-term forecasting 
since 2000, using the German Weather Service’s DWD model and neural 
networks. Ernst and Rohrig reported in Norrkoping on the latest developments 
of ISET’s WPMS (Durstewitz et al, 2001). They now predict for 95 percent of all 
wind power in Germany. In January 2009, ISET was transferred to the 
Fraunhofer-Gesellschaft and incorporated into the new Fraunhofer Institute for 
Wind Energy and Energy System Technology (IWES). 

• Precision Wind – Precise Stream 
Precision Wind’s forecast model is based on mesoscale/microscale atmospheric 
models (computational fluid dynamics techniques). The main feature is the 
ability to capture a full 17 km of vertical model depth as well as hundreds of 
km in the horizontal direction. The model uses three grids with different levels 
of horizontal resolution to define a large area around the site. The training 
method is a post-processing step that requires only three months’ worth of 
data. Uncertainty estimation is also provided in the form of maximum and 
minimum wind generation values that vary according to current and 
forecasted weather conditions. 

• WindLogics – WindLogics Wind Energy Forecast System 
WindLogics is a US company that provides services for utility-scale wind 
project development and grid integration. Its wind power forecast model uses 
Support Vector Machine (SVM) to convert wind speed to generation, and it is 
retrained every month  to include new generation and weather data. It uses an 
ensemble of the National Centers for Environmental Prediction (NCEP), Rapid 
Update Cycle (RUC), North American Model (NAM), and the Global Forecast 
System (GFS) (WindLogics, 2008). 

• AMI Environmental Inc. – Wind Energy Forecasting System 
AME Environmental (AMI) is a private technical research and engineering 
company with experience in interdisciplinary environmental programs. The 
AMI Wind Energy Forecasting System consists of four modules: 1) a mesoscale 
model called the Fifth Generation Mesoscale Model (MM5), 2) a diagnostic 
wind model, 3) an adaptive statistical model, and 4) the forecast access by users 
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(Tran, 2004). AMI applied its wind forecasting system to a 12-month testing at a 
75 MW wind plant in southwest Texas. Testing results indicate that the AMI 
forecasting system shows large improvement over both persistence and 
climatological skills. 

• WSI – WindCast 
WSI’s WindCast model delivers 7-day hourly predictions of wind power and 
speed for single wind farms. The forecasts can be updated seven times a day. 

 

2.9 Evaluation of Forecasting Systems 
2.9.1 Measures of Accuracy 
Two common measures of accuracy are mean absolute error (MAE) and root-mean 
square error (RMSE). MAE is expressed as a percentage of the plant’s rated capacity. 
RSME is expressed as the standard deviation of the forecast errors: MAE=ce. 

CAISO performed a detailed statistical analysis of the forecasts generated by three 
forecast service providers during the request for bids (RFB) period from July, 2008 
through June, 2009 (Blatchford and de Mello, 2009). The request for bids required that 
each forecast service provider submit forecasts from four selected wind farms, 
representing three of the major wind areas in California. These forecasts covered both 
day ahead and hour ahead time frames. 

Here are the key findings of their analysis: 

• Aggregate day ahead forecast error is less than 15 percent, calculated as the root 
mean square error (RMSE). 

• Nearly 40 percent of the day ahead forecasts have an absolute error of less than 5 
percent; over 60 percent of all day ahead forecasts have an absolute error of less 
than 10 percent; and over 75 percent of all day ahead forecasts have an absolute 
error of less than 15 percent. 

• Aggregate hour ahead forecast error is less than 10 percent RMSE. 

• Approximately 50 percent of the hour ahead forecasts have an absolute error of 
less than 5 percent; nearly 75 percent of the hour ahead forecasts have an 
absolute error of less than 10 percent; and nearly 90 percent of all hour ahead 
forecasts have an absolute error of less than 15 percent. 

• Geographic diversity and aggregation of forecasts for individual wind facilities 
improve overall forecasting accuracy in both the day ahead and hour ahead time 
frames. 

• Forecast performance is best at production levels greater than 80 percent of total 
capacity and less than 20 percent of capacity. 
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• Data quality constitutes a critical factor in forecast accuracy. 
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Figure 5 shows the total day ahead RMSE throughout the day and the average 
generation for each hour. It can be seen that for Forecaster 1 and Forecaster 2, the DA 
forecast RMSE ranges from 12 percent to 17 percent. For Forecaster 3, the DA forecast 
RMSE ranges from 15 percent to 28 percent. The forecast errors throughout the middle 
of the day seem to be generally smaller than the beginning and end of the day. This is 
likely due to the typical lower generation output during this time following the diurnal 
generation pattern. 

Figure 5. Total Day Ahead Forecast RMSE by Hour of Day 

 
Source: from Blatchford and de Mello, 2009 

 

Figure 6 is taken from CAISO’s report and shows the weekly day ahead forecast RSME 
on a rolling basis. It can be seen that the overall pattern of root mean square error tends 
to track quite well between forecast providers with the exception of a few times of the 
year. This similar RSME trend among the forecast providers suggest that multiple 
forecasts may not provide much additional value. This may also indicate that most 
forecast errors are rooted from the National Weather Service NWP output since all three 
forecasters use them as the input for their forecast models. 
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Figure 6.  Rolling Weekly Day Ahead Forecast RMSE 

 
Source:   Blatchford and de Mello, 2009 

 

2.9.2  Alberta Pilot Project 
The Alberta Electric System Operator (AESO), in conjunction with the Alberta Energy 
Research Institute and the Alberta Department of Energy, initiated a wind power 
forecasting pilot project in the summer of 2006 (Industry Work Group, 2008). In the 
project, three very different forecasting methodologies were trialed. The forecasters 
selected were AWS Truewind from US, WEPROG from Denmark, and Energy & Meteo 
Systems from Germany. 

The forecasters provided forecasts for 12 different wind power facilities (7 existing 
facilities and 5 future facilities) spread out across southern Alberta in four regions. From 
May 1, 2007 to May 1, 2008, forecasts were delivered each hour, predicting the next 48 
hours. The forecasts included the hourly average, minimum and maximum of wind 
speed, wind power, and wind power ramp rates at each facility. 

The project demonstrated that forecasting in Alberta appears more difficult than in other 
locations. This is primarily due to the extreme or variable weather patterns experienced 
in Alberta, such as Chinooks and complex terrain, being close to the Rocky Mountains. 

In the very short term (up to 6 hours out), the forecasting models were comparable to 
persistence forecasts, where persistence assumes that conditions at the time of the 
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forecast will not change. Beyond 6 hours, the forecast models outperformed persistence 
forecasts. As the time horizon increased, the accuracy of the forecasts decreased. 

 

Figures 8a and 8b show forecasts based on different NWP models.  In the top sub-figure, 
a ramp event was very well captured by Model 1. However, in certain weather 
situations such as small low pressure systems with fronts, Model 2 captures the 
sequence of events better than Model 1, as shown in the bottom sub-figure. 

 shows the total day ahead forecast RMSE for three forecasters that participated in the 
Alberta Pilot Project. The forecast RMSE increases as the forecast horizon increases, 
particularly for the first six forecast horizons. The forecast RMSE is in the range of 6 
percent to 20 percent for the first six forecast horizons and 20 percent to 30 percent 
between the 7th and 48th forecast horizon. 

The Albert Pilot Project aimed at identifying the best methodology to forecast wind 
power in Alberta. However, the most effective forecast of the three forecast methods and 
vendors trialed varied with the time horizon and weather pattern combination. While on 
forecaster performed well in one condition, they would perform less well in another, 
making it difficult to determine the better methodology. 

In this project, all three forecast service providers used multiple Numerical Weather 
Prediction models to generate forecasts. Generally making use of various NWP models 
having different update cycles and update times should provide a more robust 
approach. This can also be beneficial as on NWP model might be better with certain 
weather regimes or in different time frames than another NWP model. 
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Figure 7. Total Day Ahead Forecast RMSE for Three Forecasters as a Function of Forecast 

Horizons  

Source:  McKay, 2008 
 

Figures 8a and 8b show forecasts based on different NWP models.  In the top sub-figure, 
a ramp event was very well captured by Model 1. However, in certain weather 
situations such as small low pressure systems with fronts, Model 2 captures the 
sequence of events better than Model 1, as shown in the bottom sub-figure. 
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Figures 8 a, b: Two Sub-Figures Show the Individual Forecasts Based on 
Different NWP Models for Two Different Weather Situations 

Sources:  Figures 8a provided by Energy & Meteo Systems.  Figure 8b Focken and Lange, 2008 

2.9.3  Ramp Rate Forecasting 
As the penetration of wind energy continues to increase around the world, the impact of 
wind energy on the management of electrical grids is becoming increasingly evident. 
The challenge for the grid operator of integrating wind energy, or for the energy trader 
to maximize the market value of the energy, is especially tough during periods of rapid 
change in wind farm production, or ramp events. This section will give an overview of 
efforts and studies on ramp rate forecasting. 

2.9.3.1  Frequency of Ramp Events and Definition of a Ramp Event 
A change in power production can be defined by two parameters: the size of the ramp 
(the amount of change in power production that occurs, usually a percentage of the 
wind farm capacity), and the duration of time over which the change occurs. Ramp 
events of the greatest concern are characterized as having large sizes and short 
durations. 

 

Figure 9 is taken from a study by Greaves (Greaves et al, 2009) and shows the frequency 
of events with varying size and duration constraints using the measured data from a 
number of wind farms in the UK. It can be seen that the frequency of events decreases 
rapidly with increasing size and also decreases with decreasing duration. 

Currently there is no strict definition of a ramp event, which poses some difficulty on 
assessing ramp events. In McKay’s report (McKay, 2008), a ramp event was defined as a 
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1-hour change in power production of more than 20 percent of capacity. In Greaves’ 
paper (Greaves et al, 2009), a ramp event was defined as having a change in power of 50 
percent of capacity or more over a period of 4 hours or less. This definition of a ramp 
rate was also used in Zack (Zack, 2007). Using this definition, it can be seen from Figure 
9 that ramp events occur less than 6 percent of the time. 

Figure 9. Frequency of Power Changes with Varying Size and Duration 

 
Source:  Greaves et al, 2009 

 

2.9.3.2  Ramp Forecasting Research 
There are limited studies and research on ramp rate forecasting. Kusiak (Kusiak et al, 
2009) developed forecasting models for short- and long-term prediction of wind farm 
power built on weather forecasting data generated at different time scales and horizons. 
The wind farm power prediction models were built with five different data mining 
algorithms. It was found that the model generated by a neural network outperforms all 
other models for both short- and long-term forecasting. They also used their models to 
predict ramp rates. 

Cutler (Cutler et al, 2009) discussed the advantages and disadvantages of time-series 
NWP forecasts. They developed a methodology to transform the wind speeds predicted 
at each grid point in a region around the wind farm location to an equivalent value that 
represents the surface roughness and terrain at the chosen single grid point for the wind 
farm site. The chosen-grid-equivalent wind speeds for the wind farm can then be 
transformed to available wind farm power. The result is a visually-based decision 
support tool which can help the forecast user to assess the possibilities of large, rapid 
changes in available wind power from wind farms. 
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In the Albert Pilot Project, the three participating forecast providers delivered wind 
energy output forecasts as well as ramp event forecasts to the system operator (Industry 
Work Group, 2008). The ramp event forecasts were assessed using an approach called 
Critical Success Index (CSI) (McKay, 2008). Using the CSI methodology it was found that 
none of the forecasters did well in predicting the ramp rates. Perhaps part of the reason 
was that forecast providers were not required to deliver ramp rate forecasts at the 
outset. Therefore, the forecasters trained their models to provide low long term error. If 
the forecasters were to focus on ramp rates, they could improve on ramping forecast 
accuracy. 

Greaves (Greaves et al, 2009) conducted a study using Garrad Hassan’s GH Forecaster 
system to forecast ramp events. Historical data from GH Forecaster services for forecast 
power and measured production were used to identify forecast and measured ramp 
events. A total of 18 wind farm sites were analyzed, among which 12 in the UK and 6 in 
the US. It was found that forecasts for portfolios of wind farms are generally more 
accurate than forecasts for individual wind farms, especially for large changes in power 
production. For individual UK sites, the ramp forecasts with a horizon of 3 hours have a 
ramp capture rate of 44.9 percent.  The ramp forecasts with a forecast horizon of 24 
hours have a ramp capture rate of 59.1 percent. For portfolios of wind farms, the ramp 
capture rates are 50.0 percent and 42.9 percent, respectively. 

Greaves (Greaves et al, 2009) also studied the effects of using a combination of different 
NWP models. Table 5 shows the ramp capture rate and forecast accuracies for forecasts 
for a single wind farm. By using current intelligent methods for the NWP combination 
the forecast accuracy is slightly better than that for either NWP forecast used on its own. 
However, the better NWP forecast has a ramp rate capture nearly 10 percent higher than 
the combination and the other NWP forecast. 

Table 5:  Ramp Capture Rate and Forecast Accuracies for Forecasts for a Single Wind 
Farm  

NWP source used NWP1 NWP2 Combined 
Number of true forecasts 78 97 80 
Number of false forecasts 67 79 65 
Number of missed ramps 127 108 125 
Forecast accuracy (%) 53.8% 55.1% 55.2% 
Ramp capture (%) 38.0% 47.3% 39.0% 

Source:  Greaves Et Al, 2009 

2.10  Data Sources for Validation and Calibration 
Wind data – either wind speed or power generation – are recorded and stored by a 
variety of entities.  There are, however, a number of obstacles to employing these data 
for forecasting, particularly for grid integration applications.  As discussed further 
below, the issues include: 

52 

 



• Restricted data availability/accessibility – Data accessibility can be restricted by 
confidentiality or because of difficulties with retrieving data from complex 
database systems. 

• Data quality/errors–There are a wide variety of data quality issues.  They are 
most likely to occur in data that are recorded without immediate application; in 
such cases, the data are often stored without any vetting. 

• Insufficient sampling frequency–Wind data are often stored at 10-minute or 
hourly intervals.  This is too slow for some forecasting analyses, particularly 
when dealing with ramps.  Sampling frequency may be constrained by data 
telemetry or storage systems; even without such constraints, data are often 
stored at relatively low frequencies because there is no perceived need to save at 
a faster rate. 

2.11  Available Wind Data Sources 
Generation Data in CAISO PI System 

CAISO maintains the single largest warehouse of California wind power data in 
their PI data system.  The PI System is a real-time data system from OSIsoft.  
CAISO also uses PI to store a vast amount of data on the California power grid, 
including power generation data for most of the power plants in California.  Much 
of the power data are available at four-second sampling intervals.  Presumably, 
some data are available at even faster rates, perhaps intra-second. 

There are two significant issues with the PI data.  First, much of the data are 
recorded, but never actually used.  The data are therefore not vetted and may have 
data quality issues.  Second, the data are bound by confidentiality; in general, 
CAISO cannot disclose data for any individual power plant.  However, 
confidentiality can be satisfied by masking data through, for example, aggregation 
or normalization. 

Shiu (Shiu et al, 2006) used various renewable generation data from the CAISO PI 
System.  The data were one-minute averages.  A lengthy discussion of the data and 
the problems they encountered obtaining and using the data are included in their 
report.  Note that since the release of Shiu et al’s study, CAISO has been called 
upon several more times for renewable generation data from PI.  With the 
increased usage of the data, some of the issues identified by Shiu et al have been 
alleviated. 

CAISO PIRP 

CAISO administers the Participating Intermittent Resource Program (PIRP), a 
voluntary program in which intermittent power plants (such as, solar and wind) 
are penalized for energy production deviations netted over a month.  The 
deviations are based on forecasts provided by CAISO which, in turn, are partially 

53 

 



based on meteorological data from the plant sites.  CAISO records and stores the 
PIRP meteorological data. 

Unlike the PI generation data,3 the PIRP data have immediate application with 
financial consequences.  The data therefore have undergone some inspection and 
CAISO has actively taken steps to ensure their accuracy (Blatchford and Sahib, 
2007).  Like the PI generation data, the PIRP data are bound from release by 
confidentiality. 

Other CAISO Data Systems 

CAISO displays the current amount of wind power generation feeding their 
control area at http://www.caiso.com/outlook/SystemStatus.html.  It is updated 
every few minutes.  Data for the preceding part of the day are shown graphically, 
but not quantitatively.  Peak power generation and the total energy production of 
wind (and other renewables) of the previous day are reported at 
http://www.caiso.com/green/renewrpt/DailyRenewablesWatch.pdf. 

CAISO also maintains the Open Access Same-time Information System (OASIS) at 
http://oasis.caiso.com/.  OASIS is a publicly accessible system that reports real-time 
data on load, transmission, and various power and energy markets.  OASIS does 
not contain any generation data, but its datasets may be useful to many grid 
integration analyses. 

Utilities (IOUs and munis) 

As the primary purchasers and resellers of bulk electricity, utilities – both the 
investor-owned utilities (IOUs) and municipal utilities (munis) – track power 
generation served within their territories.  Wind power data is typically stored at 
relatively coarse sampling intervals – 10-minutes or greater.  As these data are 
used directly for financial accounting, they are maintained at high quality and 
have been referred to – somewhat facetiously – as “correct by definition.”  
Confidentiality is a significant barrier to accessing the data.  Again, confidentiality 
can be satisfied through data masking. 

Shiu et al obtained hourly data from PG&E and SCE, as detailed in their report.  
Separately, Shiu obtained ten-minute data from SMUD for a study of wind-grid 
integration (including ramps) and plant performance.  Note that SMUD was also 
the owner of the wind plant studied and the contractee (client/recipient) of the 
study. 

3 Note that while we distinguish between CAISO’s PI generation data and PIRP data, the PIRP data may very 
well also be stored in the PI System. 
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Wind Plant Owner/Operators 

Owners/operators record and store data on their wind plants through SCADA 
(supervisory control and data acquisition) systems.  Typically, SCADA data 
include turbine production, met data (including wind speed and direction) from 
individual nacelle met instruments, and met data from standalone met towers.  
The data are often little used except for rudimentary energy production 
calculations and cursory review of fault histories.  They are commonly stored at 10-
minute or slower intervals. 

While some older SCADA systems were subject to a variety of data quality issues, 
modern systems are generally quite good.  The data can be obtained and used only 
through arrangements with individual wind plant owners/operators. 

Wind Plant Developers 

Wind plant developers evaluate prospective sites with met towers of, typically, 50 
m to 80 m height.  The met data include wind speed, wind direction, standard 
deviation of wind speed (to quantify turbulence), temperature, and pressure (for 
air density).  These parameters are measured at a range of heights and recorded at 
10 minute intervals.  The met towers are often remotely located and data must be 
either stored locally on flash cards or telemetered through limited bandwidth links 
(for example, satellite).  Faster data rates may therefore not be possible. 

Developers generally guard their data very carefully, as they are the potential 
bases for very large investments.  Once development for a site commences, the 
ownership of the data may shift to the plant owner/operator. 

California Tall Tower Data 

The California Energy Commission is conducting a tall met tower data campaign 
with a number of sites across the state.  The data are intended for regional wind 
assessment, verification of numerically modeled wind maps, and generally for 
research to promote wind development in the state.  The data recorded are similar 
to that of wind developers, discussed above.  The data will be released to the 
public shortly. 

NOAA and NWS 

The National Weather Service (NWS) designed the National Digital Forecast 
Database (NDFD) to provide access to weather forecasts in digital form from a 
central location. As the foundation of the NWS Digital Services Program, NDFD 
consists of gridded forecasts of sensible weather elements (e. g., cloud cover, 
maximum temperature). NDFD contains a seamless mosaic of digital forecasts 
from NWS field offices working in collaboration with the National Centers for 
Environmental Prediction (NCEP). Currently, the NDFD contains data 
representing the following weather: 12-hour probability of precipitation, apparent 
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temperature, dew point, hazards, maximum and minimum temperatures, 
quantitative precipitation amount, significant wave height, sky cover, snow 
amount, temperature, weather, wind direction, and wind speed. More elements 
will be added as development of the NDFD progresses. 

NDFD data are available for projections at the following Coordinated Universal 
Times (UTC): 0000, 0300, 0600, 0900, 1200, 1500, 1800, and 2100. The elements in 
NDFD are available for the Contiguous United States (CONUS). A subset of NDFD 
elements is available for Puerto Rico/the Virgin Islands, Hawaii, Guam, and 
Alaska. Grids for the CONUS are currently available from NDFD at 5 km spatial 
resolution. 

The spatial resolution for the grids for Hawaii and Guam is 2.5 km; for Puerto 
Rico/the Virgin Islands is 1.25 km; for Alaska, 6 km. For the North Pacific Ocean 
Domain the spatial resolution is 10 km. NWS plans to increase both spatial and 
temporal resolution in the future. 

California Data Exchange Center (CDEC) 

The California Data Exchange Center (CDEC) is not a single wind data source, but 
a centralized access point to a large number of public hydrological and 
meteorological datasets for California.  CDEC is maintained by the Department of 
Water Resources and can be accessed at http://cdec.water.ca.gov/.  It contains data 
from over a thousand remote stations and exchanges data with numerous federal 
and state agencies including the National Weather Service.  However, note that 
much of the CDEC data is hydrological, not meteorological. 

The wind data in CDEC are intended for applications such as fire management and 
general weather monitoring, not wind power analysis.  In general, the 
anemometers feeding CDEC are at low heights and may be obstructed.  Data 
should not be used without first surveying the source sensor installation.  Seitzler 
[Seitzler, 2009] discuss the use of CDEC data for wind power applications and 
survey a number of sensors across California. 

California Irrigation Management Information System (CIMIS) 

The California Irrigation Management Information System (CIMIS) is a network of 
over 120 meteorological stations across the state.  It is managed by the Department 
of Water Resources and its data are openly available at 
http://wwwcimis.water.ca.gov/.  Wind and insolation data are recorded. 

CIMIS anemometers are at a height of only two meters.  While appropriate for 
irrigation management, the short height limits its utility for wind power analysis. 
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2.12  Recommendations 
Best Practices in Forecasting 

Well Defined Objectives 

It is important for the forecast clients to consider factors such as how a wind power 
forecast will be used and what aspects of wind power a forecast should focus on. For 
example, the models trained to provide a low long term average error may not be 
suitable for short term system operations if the forecast methodology hedges against 
ramps or extremes, as shown in Figure 10. It has been demonstrated that without this 
focus, the nature of forecast error may be too broad for one single forecast to be optimal 
for multiple purposes such as real time operations, transmission scheduling and 
ancillary service forecasting (Industry Work Group, 2008). 

Figure 10. Forecasting Models Trained to have Low Average Errors Missed 
Ramps on the Afternoon of September 6, 2007  

 
Source:  Industry Work Group, 2008 

Improve Data Quality 

Forecasts rely on high quality data made available in a timely manner to the forecast 
providers for use within their models. Most stakeholders that we have talked with and 
literatures that we have reviewed emphasize the importance of high quality data to 
successful wind energy forecasting.  
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Power Conversion 

Research has shown that it is more accurate to use the power curve derived from 
measured data than to use the power curve provided by the turbine manufacturer. 
Garcia-Bustamante (Garcia-Bustamante et al, 2009) examined the effects of different 
power conversion models on estimated monthly energy output.  
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Figure 11 shows the estimation of monthly energy output for five wind farms in Spain 
using three different power conversion models: Theoretical Power Curve (TPC), 
Average Power Curve (APC), and Polynomial Fit Curve (PFC). The TPC is the same as 
the manufacturer’s power curve. The APC and PFC were power curves derived from 
measured wind and power data using two different methods. It can be seen that the TPC 
generally underestimates the power generated at the lower wind speeds whereas it 
tends to overestimate it for the higher wind speeds. A global overestimation of the final 
energy output should be expected from the TPC model. The APC and PFC are very 
similar and their estimations are very close to the measured energy output. 
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Figure 11.  Estimation of Monthly Energy Output for Five Wind Farms in Spain Using Three 
Different Power Conversion Models: Theoretical Power Curve (TPC, Dashed Line), Average 
Power Conversion (APC, Solid Line), and Polynomial Fit Curve (PFC, Points) 

 
Source:  Garcia-Bustamante et al, 2009 

 

Learning by Doing 

Forecast experience matters. As many research and project indicated, knowledge of the 
wind regimes and the regime-specific forecast model error patterns can often result in 
better forecast performance. Thus there is no substitute for learning by doing. 

 

Collaboration with NWS, NOAA, and NCAR to Improve NWP Models 

The National Weather Service (NWS) and National Oceanographic and Atmospheric 
Administration (NOAA) provide the numerical weather prediction (NWP) models 
tuned to providing temperature and rain forecasts for the entire US. These models are 
the baseline inputs to the forecasters’ wind and solar predictions. Balancing authorities 
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that are integrating intermittent renewable resources should coordinate efforts to tailor 
models for wind and solar forecasting. 

There have been continuous efforts to improve NWP models used in wind and solar 
forecasting. For example, significant numerical model development is conducted at the 
National Center for Atmospheric Research (NCAR) with contributions from the research 
community. NCAR tests new model capabilities for NWS/NOAA before they become 
operational enhancements. It is recommended to collaborate with NWS, NOAA, and 
NCAR on improving current NWP models and developing higher-resolution NWP 
models to improve wind power forecast accuracy. 

2.13  Data 
Data Impacts on Forecasts 

Most stakeholders that we have talked with and literatures that we have reviewed 
emphasize the importance of high quality data to successful wind energy forecasting. 
For example, to meet their increasing needs for real-time meteorological data, SCE and 
AWS Truewind worked together to put up 12 new meteorological stations in SCE’s 
service areas (6 in Palm Springs and 6 in Tehachapi) since 2002. The real-time 
meteorological data (wind speed, wind direction, temperature, pressure, etc.) measured 
from these 12 met towers have been used as input to AWS Truewind’s eWind 
forecasting system since then. 

Blatchford and de Mello pointed out in the CAISO’s report that the data quality from the 
wind sites including the meteorological, megawatt production, and megawatt 
availability impacts the forecast quality. Figure 12 shows how the hour ahead forecast 
root mean square error (RMSE) is impacted when the real-time megawatt production 
telemetry is improperly reporting. For all forecast providers the forecast error during 
periods of errant data is significantly higher than under normal circumstances. 

Data Validation and Filtering 

To obtain high quality data, it is recommended that dataset providers and forecast 
service providers work closely to create well-defined data formats, establish reliable, 
secure, and fast data transmission methods, and apply QA/QC measures to the data. The 
recommended QA/QC measures include: 

• Reviewing instruments orientation and calibration reports and correcting the 
data accordingly when necessary. 

• Flagging data with abnormal wind speeds or power and/or standard deviations 
and filtering them out if they fall outside of a certain range. 

• Screening the data for icing events or any other anomalies that may have not 
been caught in the screening-out criteria and filtering them out. 

• Comparing wind speed data from different anemometer levels and from 
adjacent sites looking for discrepancies that are then filtered when necessary. 
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• Other site specific QA/QC procedures. 
 

Figure 12.  Impact of Data Quality on Forecasts 

 

Source:  Blatchford and de Mello, 2009 
 

2.14  Future Research 
Data Acquisition and Transmission 

Although it is well recognized that more sensors are needed to obtain more real-time 
data, many questions remain. These questions to be addressed in future research: 

• What are current and emerging technologies for meteorological measurements? 
What are their advantages/disadvantages? 

• How many met towers/sensors are needed for a single wind farm? 

62 

 



• Where should new met towers/sensors in a wind farm be placed? What are the 
impacts of terrain topology on the forecast accuracy? 

• How high should the new met towers be? 
• How does the sampling frequency affect forecast results? 
• How to securely, reliably and promptly transmit measured data? What protocols 

and formats should be used for data transmission? 

Sources of Error 

While the magnitude of the errors associated with forecasting is now well understood, 
the source of these errors is mostly unknown. Possible sources include NWP model 
output, meteorological tower location, anemometer sensors, wind power conversion 
models, turbine availability data, etc. If the sources of the errors can be determined, this 
information can focus efforts to improve accuracy. 

Ramp Rate Forecasting 

Most wind energy prediction systems have focused on next day optimization. Research 
is needed to fully assess the best techniques or combination of techniques (for example, 
blending of rapid cycle NWP with statistical techniques) needed to fully address ramp 
events. 

It is also important to define the aspects of ramping that have the highest priority such 
as ramp time start, ramp rate or magnitude. The CAISO and other system operators 
should work with forecasters to determine how to ask for and evaluate ramp rate 
forecasting. 

Improving Icing Forecasts 

Turbine icing is likely not a problem in California. However, in northern states where 
temperatures can drop below freezing point in winter, icing on wind turbines can 
dramatically affect their efficiency. Improved understanding of turbine icing is critical 
for the accurate prediction of wind energy. 

A great deal of icing research and development has been performed over decades for 
aircraft icing and other structural icing. These capabilities should be analyzed to 
determine their applicability for turbine icing. 

New Technologies 

The authors recommend future research on new technologies in meteorological 
measurements, such as vertical RADAR and LIDAR. 

Light Detection and Ranging (LIDAR) is an active remote sensing technology that 
measures properties of scattered light to find range and/or other information of a distant 
target. The major advantages of LIDAR over the traditional cup anemometers include: 1) 
LIDAR is a remote sensing technology, meaning LIDAR devices can be setup, operated 
and maintained at the ground level, and 2) LIDAR is capable of in-plane scanning, 
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meaning it can measure wind speed and direction in a plane while cup anemometers 
can only measure wind speed at a point. The major disadvantage of LIDAR is its cost. 
LIDAR holds promise for detection and forecasting ramp events but more research is 
needed to prove this concept. 

Several companies develop wind sensing devices based on LIDAR technology. British 
company QinetiQ has developed ZephIR LIDAR wind profiler, which is capable of 
measuring wind speed, wind direction, and turbulence for heights ranging from 10 m ~ 
200 m. US company Catch the Wind Inc. also developed Vindicator Wind Sensor System 
based on LIDAR technology. 

Atmospheric Boundary Layer Profiles 

The authors recommend future research related to atmospheric boundary layer profiles. 
A boundary layer profile is the vertical distribution of wind velocity at a given location. 
It is affected by the surface roughness, temperature, turbulence, and many other factors. 

The boundary layer profiles influence both the power production and the mechanical 
loads on the wind turbines. Knowledge of the wind characteristics across the blade span 
has a big impact on turbine efficiency (hence power production). The lack of a precise 
knowledge of atmospheric boundary layer profiles has negative impacts on the NWP 
models, especially in the downscaling step, resulting in less accurate forecasts. 
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CHAPTER 3: 
Resource Mapping of Co-Located Geothermal 
Resources in the Los Angeles Basin 
3.1  Overview   
Renewable energy resources in Southern California are extensive but unevenly 
distributed. Two regions that hold promise for integrating renewable energy resources 
are the Los Angeles Basin and the Salton Trough/Imperial Valley. The intent of this 
review is to identify promising locations for integrated renewable energy projects by 
identifying areas where geothermal, solar or wind resources occur in any combination in 
close proximity to each other and existing transmission infrastructure. We also 
considered resource variability, baseload capacity and correlation with load. Previous 
work had identified and quantified the power generating capacity of solar and wind 
technologies in the study areas. Although the geothermal resource in the Salton 
Sea/Imperial Valley region has been assessed, the geothermal resource in the Los 
Angeles Basin had not been previously estimated. As a result, we developed separate 
methodologies for establishing the extent of co-located resources in the two regions. 

The results demonstrate that twelve pools in the Los Angeles Basin are likely geothermal 
resources. Of these twelve, five are located in close proximity to substantial wind 
resources. Although the solar potential is somewhat limited, there does exist substantial 
opportunity to locate rooftop solar PV technology in regions where geothermal pools 
exist, thus providing an opportunity for development of "micro-grid integrated 
systems". The most substantial wind and solar co-located resource are in the eastern part 
of the study region, where there are no geothermal resources. The existing transmission 
infrastructure in all but the eastern region is well developed and likely capable of 
supporting development of integrated systems without substantial infrastructure build-
out. In the eastern part of the area, transmission corridors are well established, but they 
are localized. In the Salton Sea/Imperial Valley Region there are fifteen geothermal 
power-generating facilities in the area, along with 1 solar power-generating facility. 
Comparison of geothermal and solar resource assessments indicates that substantial 
additional development could take place. The existence of a transmission infrastructure 
that already accommodates these renewable energy resources suggests further 
development could occur on an as-needed basis. The wind resource in the area is also 
substantial, particularly in the eastern third of the region, and is co-located with the 
highest solar power density. Between the Salton Sea and the eastern highlands there 
exist numerous indications of geothermal resources, suggesting that this area may be 
appropriate for more detailed consideration for development of integrated systems. 
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3.2  Introduction 
Renewable energy resources in Southern California are extensive but unevenly 
distributed. Two regions that hold promise for integrating renewable energy resources 
are the Los Angeles Basin and the Salton Trough/Imperial Valley, both of which have 
substantial geothermal resources as well as wind and solar resources.  The purpose of 
this project is to review maps and databases that allow determination of the magnitude 
of these resources, and establish the extent to which these renewable energy resources 
correlate with each other and with transmission lines and loads. The intent of this 
review is to identify promising locations for integrated renewable energy projects that 
include geothermal energy. 

Power production from geothermal energy within the Salton Trough/Imperial Valley 
region has the potential to be the largest geothermal resource in the state. Current 
geothermal power production in that area exceeds 500 MWe, with a minimum projected 
production in excess of 2,500 MWe (GeothermEx, 2004). Other estimates suggest that the 
geothermal resource could exceed 40,000 MWe (Gawell, 2006) although these numbers 
remain highly uncertain. Although there are no other areas in Southern California where 
geothermal power production is occurring, recent technological improvements in so-
called binary generating capability have made it possible to use fluids with temperatures 
as low as 91oC (195oF). Fluids extracted from oil and gas fields can reach such 
temperatures, thus potentially opening those regions to geothermal power generation. 
Since extensive oil and gas production has occurred in areas such as the Los Angeles 
Basin and Ventura County, it is conceivable that such areas may be candidates for 
geothermal power generation, at least at a modest scale. 

California has the best combination of population density, solar resource, and 
transmission infrastructure to encourage expansion of solar power in the country. The 
global horizontal solar resource varies from annual averages of 4.1 kilowatt-hours per 
day per square meter (kWh/m2/day) at the coastal border to Oregon to 4.9 kWh/m2/day 
for most of coastal southern California to 5.8 kWh/m2/day in the Imperial Valley and 
Mojave Desert. The latter area has one of the best resources of direct normal incident 
irradiance worldwide, allowing economical operation of concentrated solar power (CSP) 
plants. While the installed capacity has increased dramatically over the past years, the 
generation of solar power is still very small compared to the available resource or load. 
Through the California Solar Initiative, 653 MWp of solar PV have been installed since 
2005 or is pending. Utility scale solar power is expanding rapidly, with both Pacific Gas 
and Electric (PG&E) and Southern California Edison (SCE) announcing plans for 100s of 
MW of new generation. Ignoring economic constraints, the technical PV potential on 
existing residential and commercial rooftops exceeds 74,000 MW of capacity. If CSP 
facilities are deployed only in those areas where the annual average direct-normal 
insolation exceeds 6 kWh/m2/day, the CSP technical potential exceeds one million MW 
of capacity (Simons and McCabe, 2005). 
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There is tremendous supply of wind resources in California that can be harnessed to 
provide electricity for the state. California was the first U.S. state in which large wind 
farms were developed, beginning in the early 1980s. Through the end of 2009, the total 
installed wind power capacity in California has reached 2,794 MW, ranking No. 3 in the 
nation just behind Texas (9,410 MW) and Iowa (3,670 MW) (AWEA 2009 Year End 
Report). Currently utility-scale wind power generation facilities can be found in five 
major wind resource areas in California: Solano, Altamont, San Gorgonio, Tehachapi, 
and Pacheco. Three of these primary regions (Altamont, Tehachapi and San Gorgonio) 
account for nearly 95 percent of all commercial wind power generation in California 
(Yen-Nakafuji, 2005). Other areas that have abundant wind resources include Salton 
Sea/Imperial Valley, Shasta, and Lassen. In January, 2010, the Department of Energy’s 
Wind Program and the National Renewable Energy Lab (NREL) published a new wind 
resource map for the state of California. The new wind resource map shows the 
predicted mean annual wind speeds at 80m height. This new wind map was created by 
AWS Truewind and verified by NREL. Using AWS Truewind’s gross capacity factor 
data, NREL estimated the windy land area and wind energy potential in various 
capacity factor ranges. The total wind energy potential from development of the 
“available” windy land area in California was calculated to be 34,110 MW using a 30 
percent capacity factor. With just over 2,790 MW currently captured and over 34,100 
MW of “harnessable” energy at 80m, significant renewable wind energy remains 
untapped. With improved system designs, more detailed and accurate wind resource 
maps and reduced cost of wind turbines, California is trying to achieve a significant 
portion of the state’s RPS goal of 20 percent renewable generation by 2017 just with 
wind power. 

Co-locating renewable energy resources has the advantage of minimizing transmission 
requirements, coordinating power production to minimize variability, and reducing 
costs associated with permitting, land use and environmental impact. These elements in 
project development are particularly important for areas with high population density, 
such as the Los Angeles Basin.  The purpose of this reconnaissance study was to 
determine whether there exist co-located geothermal, solar and wind resources in the 
Los Angeles Basin and the Salton Trough/Imperial Valley areas and, if so, whether the 
transmission infrastructure was sufficient to support their development with minimal 
additional construction. Such an evaluation can establish whether further consideration 
should be given to such resources.  

The transmission infrastructure needs relevant for integrated systems are specific to the 
type, or category, of integrated system considered. In (i) a "central station hybrid plant". 
renewable resources share some on-site and interconnection resources or combine, in a 
single site, thermal (solar thermal or geothermal) resources that can be exploited by a 
single thermal power plant. Alternatively, a central station hybrid plant may combine 
resources in such a way that electric energy storage capacity can be shared. Another 
category of integrated systems is (ii) "non-integrated utility scale distributed 
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generation". In this case, generating capacity in the 1-20 MW range, supplied by a suite 
of technologies in proximity to each other, would allow local distribution of generated 
power. Such a system need not rely on a single substation for feed into the local grid, but 
rather a few substations could be utilized, as required by the generating technologies. 
(iii) In the community-scale system distribution is organized around a mix of in-
community grid-tied resources and remote grid-tied resources. A modification of this 
concept is the "virtual power plant" (VPP) in which smart grid architecture is used to 
harmonize supply from diverse but geographically proximate sources, all feeding into 
the utility grid.  Sources can be on buildings and feeding in at residential and 
commercial voltages, or feeding in at distribution feeder or sub-transmission voltages. 
Finally, in the "micro-grid integrated system" power generation and distribution is 
organized to serve a specific aggregated or distributed load based on supply that is 
dedicated to the load. 

Each of these categories has different transmission architecture and requirements for co-
location of resources. This report provides preliminary information useful for 
identifying where potential exists for these various integrated systems. Chapter 3 of this 
report describes the results obtained for the Los Angeles Basin area, while Chapter 4 
describes the results for the Salton Trough/Imperial Valley area. 

3.3  Methodology 
The areas selected for study are shown in Figures 13 and 14. The areas were selected 
because they have the greatest concentration of diverse renewable energy resources 
within a restricted region. The boundaries for the Los Angeles Basin area were drawn 
such that the primary oil and gas fields would be included in the analysis.  The 
boundaries for the Salton Trough/Imperial Valley area were drawn such that the areas 
that currently have operating geothermal power production were included.  
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Figure 13. California Index Map Showing the Locations of the California Division of Oil, 
Gas and Geothermal Resources Districts and the District Office Contact Information  

 
Note:  The Los Angeles Basin and Salton Trough/Imperial Valley study areas are located within the District 1 
region. The boxed areas labeled Figure 2a. And Figure 2b. Show the areas detailed in Figure 14. 

 

To identify co-located resources and the respective transmission infrastructure, we 
obtained from the California Energy Commission's Cartography Unit of the Siting, 
Transmission and Environment Protection Division base maps showing the 
transmission infrastructure for the respective regions. That infrastructure includes 
substations, as well as transmission lines with the voltages indicated. Also included on 
the base maps were the mean seasonal (winter) wind speeds, at 50 meters, as recorded in 
the California Energy Commission database. We overlaid on these base maps the solar 
power density and the geothermal resource.  
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Figure 14. Regional Elevation and Geological Fault Locations for the Los 
Angeles Basin Area (a) and Salton Trough/Imperial Valley Area (b)  

 
Note:  The specific study areas considered in this report are delineated by the white boxes. 
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Since no published evaluation of the geothermal potential for individual oil and gas 
fields exists in the Los Angeles Basin, we analyzed available well temperature and 
pressure data to estimate which oil and gas fields would be potentially suitable for 
geothermal power generation. For the Salton Trough/Imperial Valley region, geothermal 
resources have already been identified and exploited. In this instance, we focused on 
establishing the geographical relationship between the renewable resources. 

When evaluating co-location of resources, account must be taken of the extent to which 
there may be variability in power production. Geothermal resources are a baseload 
energy resource, with capacity factors exceeding 90 percent. Wind and solar resources 
are variable, with capacity factors of 22 percent to 35 percent (IEPR, 2007). Variability of 
different, co-located renewable resources can be mitigated if their power production is 
anticorrelated. For example, since wind resources are large in the winter they are 
anticorrelated with reduced solar resources (due to low sun angles, shorter days, and 
winter storms), counterbalancing the seasonal solar variability of either resource. 
Mowers et al. (2010) have analyzed the correlation between concentrated solar power 
(CSP) and wind resources in the US (Figure 15). Figure 15 shows that wind and CSP 
resources are weakly anticorrelated in our area of interest. Consequently, a slight 
reduction in seasonal variability of an integrated wind and solar power plant could be 
expected. 

A second criterion for the value of renewable generation is the correlation with load. A 
renewable resource that is correlated to the load can be integrated into the grid at a high 
penetration level, since its generation can replace more expensive generation from 
peaker plants and can complement less expensive baseload renewable power plants. 
Figure 16 shows CSP generation is highly correlated with the load while Figure 17 
shows that wind power generation is anticorrelated with load. Consequently, at high 
penetration, wind generation frequently would have to be ‘dumped’ while solar 
generation has the potential to replace peaker plants.  
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Figure 15. Correlation Coefficients Between Solar and Wind Resources. 

 
Note:  Label A:  correlation coefficients for the western half of US. Label B:correlation coefficient values for the regions of 
interest. Both LA and Imperial Valley wind resources are anticorrelated with solar resources, with a correlation coefficient 
of about -0.1.   Source:  Mowers et al, 2010. 

 

Figure 16. Correlation of Concentrating Solar Power (CSP) with Local Demand 

 
Note:  Both the Los Angeles Basin and the Imperial Valley are correlated well with local demand with a 
correlation coefficient of about 0.4. 
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Figure 17. Correlation of Wind Resources with Local Demand 

 
Note:  Both the Los Angeles Basin and the Imperial Valley wind resources are anticorrelated with 
local demand with a correlation coefficient of about -0.2. 

 

3.4  Los Angeles Basin Assessment 
3.4.1  Solar Resource Assessment Methodology 
The data used for the solar maps is the NSRDB-SUNY dataset, which is based on a 
model developed at the State University of New York - Albany (Perez et. al., 2002). The 
model uses visible images from Geostationary Operational Environmental Satellites 
(GOES) to develop estimates of the cloud index (CI) for each pixel.  The CI is then used 
in a transmittance function that appropriately reduces the modeled clear sky irradiance 
for each pixel.  The SUNY model also accounts for effects of atmospheric turbidity, 
ground snow cover, ground specular reflectance characteristics and individual pixel 
sun-satellite angle effects.  Atmospheric turbidity is quantified in terms of the Linke 
Turbidity coefficient which is a function of monthly average atmospheric aerosol 
content, water vapor and ozone (Ineichen et. al., 2002).  The model was run between 
1998 and 2005 to generate hourly global horizontal irradiance (GHI), diffuse irradiance 
and direct irradiance values for the entire United States on a 0.1" node registered grid, 
corresponding to a grid spacing of about 10 km in California.  This analysis used 
integrated hourly GHI values with an hour ending timestamp from the "Sglo" column in 
the NSRDB-SUNY database. These data are modeled from on the hour (for example 
1200) irradiance "snap shots" derived from GOES visible images (Wilcox, 2007). 
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3.4.2  Geothermal Resource Assessment Methodology 
Higgins (1981) qualitatively evaluated the potential of using waters from individual oil 
pools as sources of geothermal energy in the Ventura and Los Angeles Basins. His 
results indicated that 15 oil pools in the Los Angeles Basin had sufficient heat to be 
considered good to excellent resources. In 1991, the California Division of Oil, Gas and 
Geothermal Resources (DOGGR) published its California Oil and Gas Fields, Vol. II. 
report (1991) that expanded the available data for evaluating geothermal potential. In 
addition, significant changes in the technology employed for binary generation, as well 
as improved scientific understanding of geopressured resources in oil and gas fields 
have occurred. These historical developments, as well as interest in establishing a firm 
foundation for assessing the potential for co-locating renewable energy resources has 
motivated us to re-evaluate the geothermal resource potential in the Los Angeles Basin. 

We obtained from the California Division of Oil, Gas and Geothermal Resources 
(DOGGR) the database of all wells within the District 1 area (Figure 1). That database, 
which contained the identification records for more than 31,400 wells, was downsized 
by extracting from it only those wells that fell within the boundaries of the Los Angeles 
Basin Study area. That resulted in a total of 29,156 wells. Within the time constraints of 
this study, it was evident that a thorough examination of that database to obtain 
temperature, depth and pressure information for the wells and their respective oilfields 
would not be possible. It was also evident that the well records in the DOGGR database 
did not include temperature measurements. 

A modified search was then undertaken that relied on the California Oil and Gas Fields, 
Vol. II. report (1991). This approach emphasizes data on individual oil pools, as defined 
by the DOGGR. We consider for this study only those pools that are within Los Angeles 
County. The report contains, where available, temperature and pressure values at 
known depths in reservoirs for individual pools. Individual wells are not identified. We 
supplemented this information with that published by Higgins' (1981) reconnaissance 
report on the geothermal potential of Los Angeles County. The database compiled from 
these reports is presented in Addendum 1. 

There are two geothermal resource types that may be useful for power generation in the 
Los Angeles Basin. Hydrothermal resources suitable for power generation are those 
resources that have fluid temperatures in excess of 91oC (195oF). This is the minimum 
temperature required for small-scale (approximately 250 kW) binary power systems (see 
specifications for the Pratt and Whitney "PureCycle Power System 280" and similar 
designs by Fuji Electric, Ormat, and Turbine Air Systems (TAS)). Note that the actual 
minimum temperature required for a given site and installation will depend on the 
cooling cycle temperature and other factors, and may be higher than the minimum 91 oC 
we used as our cut-off temperature for identifying potential resources. 

Geopressured reservoirs are another type of geothermal resource with the potential to 
generate electricity. In addition to elevated temperatures similar to those mentioned 
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above, geopressured resources have fluid pressures that significantly exceed the 
pressure that would be imposed at the reservoir depth by a column of water extending 
from the ground surface to the reservoir depth. This so-called "hydrostatic" pressure is 
less than that which would be imposed by an equivalent column of rock (the so-called 
"lithostatic" pressure). Fluids located in geopressured resources have pressures that fall 
between hydrostatic and lithostatic values. As a result, tapping such reservoirs by 
drilling provides access to the gravitational potential of the fluid as the fluid 
spontaneously flows up the well under controlled conditions, thus adding a kinetic 
energy component to the geothermal resource. In addition, geopressured resources often 
have a natural gas-component, which, when combined with the thermal and kinetic 
energy such systems possess, makes them theoretically attractive energy resources. 

We extracted from California Oil and Gas Fields, Vol. II (1991) all temperature, pressure 
and depth information for oil pools in Los Angeles County. Plotted in Figures 18 and 19, 
respectively, are all of the available pressure versus depth and temperature vs depth 
data. The reported temperatures are assumed to be equilibrated, at-depth temperatures. 

As there is no rigorous definition of what the minimum over-pressure is for a resource 
to be classified as a geopressured system, we have taken an approach similar to that 
used by Sanyal et al (1993). They argued that a linear "best fit" to the measured pressure 
gradients observed in a region would likely define the local hydrostatic gradient. 
Geopressured systems would then be those systems that exceeded by a few percent the 
hydrostatic trend. Sanyal et al. (1993) determined a hydrostatic pressure gradient of 
0.0996 bar/m (0.44 psi/ft) for the oil pools in the southern Sacramento Valley, which is 
close to the theoretical value of 0.10 bar/m, assuming a water density of 1.0 gm/cc. We 
have taken the approach of defining a geopressured pool as one for which the pressure 
exceeds by 10 percent the theoretical hydrostatic value and for which the temperature 
exceeds 91oC. Applying this approach to the data for pools in the Los Angeles Basin, we 
obtain the results shown in Figure 20. 

Table 6 summarizes the characteristics of the individual pools identified in Figure 20. 
Also indicated in Table 1 is the distance from the nearest substation to the mapped edge 
of the pool. For those cases where a zero distance is indicated, at least one substation is 
located within the footprint of the pool. We did not make an effort to determine whether 
there was suitable transmission infrastructure to accommodate the potential generating 
capacity of the geothermal resource or its co-located resources, due to the absence of 
sufficient time. 
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Figure 18. Pressure Versus Depth for Oil Pools in the Los Angeles Basin 

 
Note:  The lines labeled "Hydrostatic" and "Lithostatic" define the theoretical 
trends for pure water and rock with a density of 2.7 gm/cc, respectively.  
Source:  data from California Oil and Gas Fields Vol. II, 1991. 

 

Figure 19. Temperature Versus. Depth for all Oil Pools in the Los Angeles Basin 

 
Note:  Above the line labeled "91 (C) cut-off temp" there is sufficient thermal 
energy to theoretically generate power using existing binary power plants, while 
below the line there is insufficient thermal energy.  Source:  As reported in the 
California Oil and Gas Fields Vol. II (1991) report. 
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Figure 20. Pressure Versus Depth for All Oil Pools in the Los Angeles Basin 

 
NOTE:  Pools for which the temperature exceeds 91oC are shown in red. Pools for which 
the temperature exceeds 91oC and the pressure exceeds 10% of hydrostatic (such as, 
geopressured pools) are shown as circled red points. The names of the high temperature 
(>91oC) and geopressured pools are shown, linked to their respective data points. 

The geographic locations of pools labeled in Figure 20 (such as, those that have 
geothermal power generation potential) are identified in Figure 21, along with the other 
developed oil and gas fields in the Los Angeles Basin. Of the approximately sixty 
identified oil pools in the Los Angeles Basin area, twelve meet the minimum 
requirements for geothermal power generation potential. In the remainder of this report, 
these pools are collectively characterized as the "geothermal pools". 

It should be noted that the magnitude of the resource available in these "geothermal 
pools" is strongly affected by the subsurface temperature distribution and the processes 
by which it is controlled. As a preliminary, qualitative evaluation of the resource 
magnitude, we have computed the apparent geothermal gradient and plotted it versus 
depth (Fig. 22). Such a graph provides a means of identifying those areas where heat 
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flow may be elevated, thus suggesting a subsurface thermal energy resource. As is clear 
in the figure, the "geothermal pools" consistently are those that fall at the high end of the 
observed range, at any given depth. Since all but one of the "geothermal pools" fall along 
a broad NW-SE trend, it would appear that deep-seated geological processes are 
controlling the geographical distribution of subsurface heat, which would suggest there 
may be an important thermal resource along this regional trend.   

Table 6  Minimum (Min.) and Maximum (Max.) Temperatures (Oc) for Oil Pools In 
Los Angeles County that have Geothermal Potential.  

Name Min. T (oC) Max. T (oC) Geopressured? Substation (km) 

Castaic Junction* 97 120 Y  

Newhall Potrero* 76 160 Y/N  

Sawtelle  133 N 1.0 

Alondra  134 N 0.5 

Inglewood 37 101 N 0 

Seal Beach (S. Blk.) 64 125 Y 0 

Seal Beach (Marine) 73 98 N 0 

Santa Fe Springs 54 103 N 0 

Oak Canyon* 55 100 N  

Beverley Hills East 86 103 N 0.5 

Long Beach (Old Area) 44 92 Y/N 0 

Playa del Rey  98 N 1.0 

Wilmington (On Shore) 51 113 N 0 

Rosecrans 84 98 N 0 

Seal Beach (N. Blk.) 51 92 N 0 

Note 1:  * Resources that are within Los Angeles County but outside (north) of the study area. 
Note 2:  Pools that have pressures 10% above the theoretical hydrostatic pressure are also indicated (Y). Instances in 
which only a maximum temperature is shown indicate that only one temperature has been reported for the pool. Instances 
where the geopressured columns includes ‘Y/N’ indicates that only some wells within the pool show geopressure 
potential.  

Sources:  Data are from Higgins (1981) and California Oil and Gas, Vol. II (1991). Distance to the nearest substation 
(based on maps provided by the Cartography Unit of the Siting, Transmission and Environment Protection Division of the 
California Energy Commission) are also indicated. 
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Figure 21.  Location of Oil Pools in the Los Angeles Basin  

 

Note:  Red pools have temperatures that are potentially high enough for binary geothermal power 
generation. Purple pools have temperature greater than 91oc and have pressures in some portions of the 
pool sufficiently above hydrostatic that they may be designated as geopressured. 
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Figure 22. Computed Geothermal Gradients Versus Depth for all 
Data Points in Appendix C 

 
Note:  The gradient was computed as the observed temperature divided by the depth and 
plotted at that depth. Note that this method implicitly assumes the surface datum to be zero C.  
This approach results in a slightly elevated computed gradient, compared with the actual 
geothermal gradient. This approach was chosen to facilitate comparisons between sites over a 
broad region where the actual surface temperature varies considerably due to contrasts in the 
local weather pattern (marine versus desert). 

3.4.3  Co-Location of Resources 
Shown in Figure 23 are the ten geothermal pools, superimposed on a map that displays 
the mean winter wind speed at 50 meters, as recorded in the CEC database. The winter 
season was selected for comparison since the other seasons have significantly lower 
wind speeds in all locations. Also shown in the figure are all transmission lines and 
substations.  

The June global horizontal incident (GHI) solar power density, along with the locations 
of the geothermal pools, is shown in Figure 24. The June data were selected for depiction 
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because they closely mimic the annual pattern for solar power density, while also 
providing an indication of the highest mean values. 

Comparison of Figures 22and 23 documents that the geothermal and wind resources are 
restricted to specific geographical sites or areas whereas the solar resource is more 
evenly distributed throughout the Los Angeles Basin, varying less than 30  percent 
between the coast and the inland areas. Hence, from the perspective of evaluating co-
location of resources, the primary constraint is the restricted geographical distribution of 
geothermal and wind resources.  

Figure 23.  Geothermal and Wind Resources Throughout the Western (A.) and Eastern 
(B.) Greater Los Angeles Basin Area 
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Note:  The geothermal pools (red areas outlined in black) only occur in the western section, as shown. The 
legends in A. also apply to B. The mean winter wind speed at 50 meters is color-contoured (wind scale in 
shown in A.). Also shown in both figures is the transmission infrastructure. The locations of substations are 
accurate to within 0.5 km, while the transmission line locations are shown schematically.  

B.
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The closest, co-located geothermal and wind resources are in the northwestern coastal 
area, where the Sawtelle and Beverley Hills pools reside just south and southeast of a 
region with mean winter wind speeds exceeding 16 mph (Figure 23A). There is also a 
close spatial relationship between the most southern geothermal pools (Wilmington and 
Seal Beach) and the large area of modest (14.5 to 15.7 mph) wind speeds offshore to the 
south.  

Connection of potential generating facilities with the transmission infrastructure would 
likely require more development in the northern area due to the limited number of 
substations in that region compared to the southern area, where substations are 
common. 

Wind and solar co-located resources have their most significant potential in the eastern 
part of the study area, where both resources have their greatest power densities. The 
nearest geothermal resource to this area is the Santa Fe Springs pool, which is more than 
10 miles from the edge of the nearest concentrated wind resource. Much of the high 
wind area lacks adequate substation inter-connection infrastructure to support 
immediate generation development, but parts of the area are traversed by major 
transmission corridors that could readily support co-located generating facilities. 

Figure 24. Location Of Geothermal Pools in the Los Angeles Basin (Red Areas Outlined in 
Black) and the June Solar Power Density  
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Figure 25: Overlay of Geothermal Resources (Yellow Border) and Solar Rooftop Potential 
(White) as Identified for ReDEC  

 
Source:  Black & Veatch, 2009 

As noted in the introduction, power generation for local loads using co-located 
renewable resources can be an attractive use of renewable energy applications. In the 
Los Angeles Basin area, urban and industrial development is extensive, limiting the 
installation of solar power plants to rooftop systems. Warehouse rooftop spaces provide 
the best opportunities for installation of solar power plants due to large size leading to 
economies of scale, flat installation allowing optimal tilting of the panels, and industrial 
zoning simplifying permitting.  to evaluate the possibility of utilizing co-located 
geothermal and solar resources for such applications, we considered the distribution of 
urban warehouse solar rooftop potential compiled by Black and Veatch (2009) and 
overlayed it on the geothermal resources (Fig. 25). With the exception of Alondra, 
Beverly Hills, and Sawtelle, the footprint of all geothermal pools closely coincides with 
significant solar warehouse roof space. The largest amount of warehouse roof space 
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suitable for solar PV exists at the Rosecrans, Santa Fe springs, and Wilmington pools. 
These locations, therefore, have potential for "micro-grid integrated system" 
applications. Among these sites, the Santa Fe springs pool is the most promising site due 
to high density of warehouse roof space and larger solar resources than the Rosecrans 
and Wilmington pools. However, if other considerations rule out the Santa Fe springs 
resource, any of the other sites also provides significant warehouse rooftop space and 
solar resource potential. 
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CHAPTER 4: 
Salton Trough:  Resource Mapping of Co-Located 
Geothermal Resources 
4.1  Introduction 
The approach taken to identify co-located renewable resources in the Salton 
Trough/Imperial Valley region is somewhat different from that used for the Los Angeles 
Basin described in Chapter 3. The different approach is due to the fact that geothermal 
and solar power generating facilities already are in place in the region, which 
immediately establishes that a transmission infrastructure has already been put in place 
that is potentially compatible with co-located renewable resources (Figure 25). In 
addition, the potential for solar generation is relatively uniform throughout the region - 
note, for example, that the July mean solar power density only varies between 7.4 and 
7.8 kWh/m2/day throughout the region (Figure 14). Moreover, although the existing 
geothermal power generating developments that are installed are localized (Figure 25), 
numerous studies (such as, Hulen, 2005; Williams et al., 2008) have concluded that the 
geothermal resource is likely to be broadly distributed throughout the area, in a manner 
not unlike that for the solar resource. Although estimates of the potential geothermal 
resource vary significantly, there is general agreement that the resource exceeds by at 
least a factor of three the existing, in-place generating capacity. 

The wind resource, as in the Los Angeles Basin region, is most significant at higher 
elevations surrounding the Salton Trough/Imperial Valley (Figure 25). The wind 
resource is extensive, with many square miles of terrain over which mean wind speeds 
at 50 meters in the winter season are in the range of 18 to 20 mph or higher.   

4.2  Co-Location of Resources 
These observations suggest that co-located geothermal and solar resources are common 
and extensive in the Salton Trough/Imperial Valley area. A transmission infrastructure is 
already in place that services both geothermal and solar facilities. Build-out of this 
infrastructure to accommodate co-located generating facilities would be required if there 
were to be significant expansion of the solar and geothermal generating capacity. 

Although wind resources are not located in close proximity to existing geothermal 
generating facilities, build-out of geothermal generating facilities near significant wind 
resource regions is not unreasonable, since there is a very broad distribution of 
geothermal resources in the area. This is particularly true along the eastern margin of the 
Salton Sea where numerous wells have been drilled and hot springs and mud pots exist. 
Direct overlap between significant solar and wind resources in the eastern part of the 
area makes co-location of generating capacity that utilizes all three resources a realistic 
possibility. If coordinated with further development of geothermal resources, these three 
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renewable energy sources could be extensively developed in this area, particularly along 
the eastern margins of the Salton Trough/Imperial Valley area. 

Figure 26. Geothermal Power Generation Facilities (Red Boxes) with Names Indicated, 
Solar Power Generating Site (Yellow Star) and Mean Winter Wind Velocity at 50 Meters 
(Contoured Colors) in the Salton Trough/Imperial Valley Area (Transmission infrastructure 
is also shown) 
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Figure 27.  Generalized Locations of Geothermal (Transparent Red Ovals, Based On 
Generation Facilities Identified In Figure 25) and Solar (Transparent Yellow Oval), 
Superimposed on the Solar July Power Density Map for the Region  

 

 
4.3  Conclusions 
Co-located geothermal, solar and wind renewable energy resources that are sufficient 
for power generation occur within both the Los Angeles Basin and Salton 
Trough/Imperial Valley regions. Within the Los Angeles Basin twelve oil pools were 
identified that theoretically possess sufficient thermal energy to support power 
generation. Of these, four are located in proximity to significant wind resources such 
that co-located power generation facilities could be feasible. The existing transmission 
infrastructure appears to be suitable to allow relatively easy development of these 
resources, although no detailed analysis of this challenge was undertaken. Co-located 
wind and solar resources occur in south-western San Bernardino County and have the 
potential to be significant energy resources. Transmission infrastructure is sufficient to 
service a corridor through this area, but extensive infrastructure development might be 
required to access some of the most significant resource areas. Co-located geothermal 
resources and warehouse roof-top solar resources are significant in three geothermal 
pools in LA County and warrant consideration for generation purposes at a local urban 
feeder scale.  

The Salton Trough/Imperial Valley area has very extensive geothermal, solar and wind 
resources. The nature of the solar and geothermal resources could allow co-location of 
generating capacity throughout most of the area. The wind resource is mainly restricted 
to the eastern, mountainous portion of the study area. This resource is extensive and 
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overlaps with the solar resource. Transmission infrastructure appears to be capable of 
accommodating build-out of generating capacity without the need for extensive 
construction of new transmission corridors within the Imperial Valley, particularly if co-
located generating sites are carefully selected to maximize both access to transmission 
and coordination of resource development. However, further analysis of this topic is 
required to establish rigorous caveats to this conclusion. 

4.4  Recommendations 
Further work is required in the following areas to allow rigorous evaluation of the 
potential for locating the various categories of integrated systems within the study areas: 

• Conduct detailed resource assessments of the individual oil pools identified in 
the Los Angeles Basin area to establish the magnitude of each resource and its 
variability both with depth and with areal extent. The resource assessment 
should include the total resource reserve (that is, the amount of energy that is 
economically feasible to produce given existing technology) and the resource 
base (that is, the total amount of energy that is present, but which may not be 
technically or economically accessible given existing technology). Such an 
analysis should also identify the local loads that could be supplied by these 
resources, if developed from a "distributed generation" perspective, and 
determine the capacity of these resources to supply electrical power to the 
broader power grid. 

• Conduct detailed resource assessments of the roof-top solar PV potential in the 
Los Angeles Basin area. This resource assessment should consider the extent to 
which such resources are co-located with respect to the geothermal resource, 
and how these two resource types could be developed in a coordinated fashion 
to supply power for distributed, local loads. Such an analysis could be 
developed as a template for other urban settings in which co-located resources 
exist. Research into the optimal co-operation of solar and geothermal power 
plants given solar day-night and cloud-clear variability should be conducted to 
determine the extent to which geothermal power plants could be operated as 
backup to solar PV generation to facilitate high renewable penetration. 

• For both regions considered in this study, the need exists for higher resolution 
(~10m) maps that would better delineate local variability of the resources. 
Knowledge regarding the variations in micro-climate and in the distribution of 
the geothermal energy in individual oil pools or in the subsurface around the 
Salton Sea could support much better description of where resource 
development could be economically undertaken. This information is also 
needed to prioritize development of transmission infrastructure and renewable 
energy generation capacity. 
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• Within the Salton Trough/Imperial Valley region, there is only one identified 
solar generating facility, but the resource is so extensive that further 
development of it is likely. Detailed analysis should be undertaken that would 
identify the best locations for further solar PV or solar thermal development, 
taking into account the existing and planned geothermal power generating 
capacity and the abundant wind resource in the eastern part of the study area. 

• Transmission infrastructure in the Salton Trough/Imperial Valley region has 
been developed, in part, in response to geothermal power generating facilities. 
Further consideration should be given to future development of the 
infrastructure, from the perspective of co-locating renewable resources. This is 
particularly true along the eastern side of the Salton Sea, where the potential 
exists for extensive coordinated development of geothermal-solar-wind 
resources. Currently this area is not considered for future transmission 
infrastructure within the Renewable Energy Transmission Initiative (RETI, 
2009). However, analysis of the co-located resources in this area may justify 
further consideration by RETI of this area. 
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 GLOSSARY  

Glossary List of Terms Related to Chapter 1 
The NREL ‘Glossary of Solar Radiation Resource Terms’ defines the following: 

AOD: Aerosol Optical Depth: AOD is the "extinction per unit path length due to 
aerosols alone". Extinction of solar radiation occurs due to water vapor, ozone, mixed 
gases, and 'equivalent extinction' represented by Rayleigh scattering of atmospheric 
molecules, and what is 'left over' is the aerosol extinction. 

DIFF: Diffuse Sky Radiation (or Diffuse Horizontal Irradiance): The radiation 
component that strikes a point from the sky, excluding circumsolar radiation. In the 
absence of atmosphere, there should be almost no diffuse sky radiation. High values are 
produced by an unclear atmosphere or reflections from clouds. 

DNI: Direct Normal Irradiance: Synonym for beam radiation, the amount of solar 
radiation from the direction of the sun. 

GHI: Global Horizontal Irradiance: Total solar radiation; the sum of direct, diffuse, and 
ground-reflected radiation; however, because ground reflected radiation is usually 
insignificant compared to direct and diffuse, for all practical purposes global radiation is 
said to be the sum of direct and diffuse radiation only. 

Irradiance: The rate at which radiant energy arrives at a specific area of surface during a 
specific time interval. This is known as radiant flux density. A typical unit is W/m2. 

MBE: Mean Bias Error: Metric to compare the b. MBE can be negative (forecast is too 
small, on average), zero (forecast has no bias), and positive (forecast is too large, on 
average). 

Mesoscale: Scale of numerical weather prediction models with domain sizes on the 
order of 1000 km and grid cells on the order of 1 to 5 km. Mesoscale models provide 
more fine-grained information than macroscale models (which predict weather for the 
entire US or even the globe), but are limited in the area over which they forecast. 

MOS: Model Output Statistics: Statistical method to correct model errors in post 
processing based on predetermined bias errors. 

NWP: Numerical Weather Prediction: Weather forecasting using computer models. 

PV: Photovoltaic: Technology for converting sunlight directly into electricity, usually 
with photovoltaic cells. 

Pyranometer: An instrument with a hemispherical field of view, used for measuring 
total or global solar radiation, specifically global horizontal radiation; a pyranometer 
with a shadow band or shading disk blocking the direct beam measures the diffuse sky 
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radiation, as is illustrated in the picture below. A picture of the Eppley PSP pyranometer 
is included in the PSP definition above. 

RMSE: Root Mean Squared Error: Metric to compare forecasts to actual data. 

Rotating Shadow Band Radiometer: An instrument that determines total solar radiation 
and diffuse sky radiation by periodically shading the total sky sensor from the sun with 
a rotating shadow band. Below is a picture of a rotating shadow band radiometer at the 
Solar Radiation Research Laboratory. The curved black shadow band at the right of the 
instrument is at rest; once every minute, it rotates 180° to obscure the sun for a few 
seconds, then returns to its resting position. 

Scattered Radiation: Radiation that has been reflected from particles, disrupting the 
original direction of the beam 

Silicon Sensor: A photovoltaic cell that is being used to measure solar irradiance. 
Because its spectral response is not as exact as that of thermopile instruments, it has a 
higher uncertainty. 

Solar Concentrator: A solar collector that enhances solar energy by focusing it onto a 
smaller area through mirrored surfaces or lenses 

Solar Thermal Electric: Technology for using the sun's energy to produce steam to run 
turbines that generate electricity. 

Transmittance: The fraction or percent of a particular frequency or wavelength of 
electromagnetic radiation that passes through a substance without being absorbed or 
reflected. 

Turbidity: A measure of the opacity of the atmosphere. A perfectly clear sky has a 
turbidity of 0, and a perfectly opaque sky has a turbidity of 1. Turbidity is affected by air 
molecules and aerosols. 

Zenith Angle: The angle between the direction of interest (of the sun, for example) and 
the zenith (directly overhead). 
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GLOSSARY LIST OF ABBREVIATIONS 

 

AESO Alberta Electric System Operator 

ANN Artificial Neural Network 

AWPPS ARMINES Wind Power Prediction System 

CAISO California Independent System Operator 

CDEC California Data Exchange Center 

CFD Computational Fluid Dynamics 

CIMIS California Irrigation Management Information System 

COAMPS Coupled Ocean/Atmosphere Mesoscale Prediction System 

CONUS Contiguous United States 

CSI  Critical Success Index 

CWEC California Wind Energy Collaborative 

DA  Day Ahead (Forecast) 

DICast Dynamic Integrated Forecast System 

DNI Direct Normal Incident 

EIA Energy Information Administration 

ERCOT Electric Reliability Council of Texas 

GDAS Global Data Assimilation System 

GEM Global Environmental Multiscale 

GFS Global Forecast System 

GHI Global Horizontal Irradiance 

GI  Global Irradiance 

GSI  Gridpoint Statistical Interpolation 

HA  Hour Ahead (Forecast) 

IESO Ontario Independent Electric System Operator 

IOU Investor-Owned Utility 

ISET Kassel Institute für Solare Energieversorgungstechnik 

ISO Independent System Operators 

IWES Fraunhofer Institute for Wind Energy and Energy System Technology 
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LIDAR Light Detection and Ranging 

LMP Locational Marginal Price 

LSF Least Square Fit 

MAE Mean Absolute Error 

MASS Mesoscale Atmospheric Simulation System 

Mesoscale A term used in meteorology to describe weather systems with a scale 
between the storm scale and the synoptic scale. Horizontal dimensions 
generally range from around 5 km to 1,000 km. 

Microscale A term used in meteorology to describe weather systems with a scale 
smaller than mesoscale. Horizontal dimensions are about 1 km or less. 

MISO Midwest Independent System Operator 

MM5 Mesoscale Model Version 5 

MSEPS Multi-Scheme Ensemble Prediction System 

MOS Model Output Statistics 

MSEPS Multi-Scheme Ensemble Prediction System 

NAM North American Model 

NCAR National Center for Atmospheric Research 

NCEP National Centers for Environmental Prediction 

NDFD National Digital Forecast Database 

NMC National Meteorological Center 

NOAA National Oceanographic and Atmospheric Administration 

NOGAPS Navy Operational Global Prediction System 

NWP Numerical Weather Prediction 

NWS National Weather Service 

NYISO New York Independent System Operator 

OASIS Open Access Same-time Information System 

PG&E Pacific Gas and Electric Company 

PIRP Participating Intermittent Resource Program 

PJM Pennsylvania-Jersey-Maryland Interconnection 

PV  Photo Voltaic 

RADAR Radio Detection and Ranging 
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RLS Recursive Least Square 

RMSE Root-Mean Square Error 

RTFDDA Real-Time Four-Dimensional Data Assimilation 

RUC Rapid Update Cycle 

SCADA Supervisory Control and Data Acquisition 

SCE Southern California Edison 

SMLR Screening Multiple Linear Regression 

SMUD Sacramento Municipal Utility District 

SVM Support Vector Machine 

UCAR University Corporation for Atmospheric Research 

VDRAS Variational Doppler RADAR/LIDAR Data Assimilation System 

WEPROG Weather and Wind Energy PROGnosis (Danish Company) 

WPF Wind Power Forecasting 

WPMS Wind Power Management System 

WRF Weather Research and Forecasting 
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APPENDIX A: 
Solar Energy Forecasting Tables Related to 
Chapter 1  
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Table A1: Review of studies for solar energy forecasting. Modica et al. (2010) showed first results for forecasts with sky imagery. 
NDFD: National Digital Forecast Database (National Weather Service, NOAA, Washington, DC); ECMWF: European Center for 
Medium-range Weather Forecasting; Meteosat: Geostationary European satellite. 

 

Study Location Quan 

tity 

Forecast 
Source 

Avera-
ging 

Interval 

Time 
Horizon 

Error 
Metric 

Error Value Comment 

Schroedter 
et al(2009), 
Breitkreuz et 
al (2009) 

121 sites 
in Europe 

GHI NWP (ECMWF) 1 h 1 - 72 h RMSE 
MBE 

10% (clear) – 40% (all) 
-10% 

For clear-sky situations aerosol 
modeling significantly improves 
GHI and especially DNI irradiance 
forecasts relative to ECMWF. On 
the other hand, for cloudy 
conditions the AFSOL forecasts 
leads to significantly larger forecast 
errors. 

  GHI Aerosol + 
Mesoscale 
Model (AFSOL) 

1 h 1 - 72 h RMSE 

MBE 

8% (clear) - 60% (all) 

5% up to -25% (all) 

  GHI Meteosat 1 h 1 - 72 h RMSE 

MBE 

6% (clear) – 22% (all) 

0 

I believe Meteosat was calibrated 
to data 

  DNI NWP 1 h 1 - 72 h RMSE 

MBE 

30% (clear) – 82% (all) 

-25% (clear) up to -35% (all) 

Overall: 31.2% or 159 W m-2 

-26.3% or -134 W m-2 

  DNI AFSOL 1 h 1 - 72 h RMSE 

MBE 

20% (clear) - 85% (all) 

10% (clear) up to -15% (all) 

18.8% or 96 W m-2 

11.2% or 57 W m-2 

  DNI Meteosat 1 h 1 - 72 h RMSE 

MBE 

15% (clear) – 38% (all) 

<3% 

15.6% or 80 W m-2 

-1.7% or -9 W m-2 

 Forecast length has a significant impact on forecast accuracy, as long as cloudy situations are included in the analysis: for the 
AFSOL system, this can be quantified by RMSEs of 49.7% for the first day, 62.4% for the second day, and 67.7% for the third 
day. When considering only cloud-free cases, forecast length has no effect on bias or RMSE for any of the model systems 
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Study Location Quan 

tity 

Forecast 
Source 

Avera-
ging 

Interval 

Time 
Horizon 

Error 
Metric 

Error Value Comment 

analyzed. Thus, it can be deduced that this error tendency is caused exclusively by difficulties in cloud forecasts that increase 
with growing forecast duration. 

Wittman 
(2008) 

1 site in 
Spain, 
July 2003 

GHI NWP (ECMWF) 1 h 1 - 72 h RMSE 

MBE 

18.5% or 109 W m-2 

-11.1% or -65.6 W m-2 

Similar order but better results for 
clear skies only. AFSOL GHI on 
5% RMSE. 

  GHI AFSOL 1 h 1 – 72 
h 

RMSE 

MBE 

25.1% or 148 W m-2 

-2.2% or -12.7 W m-2 

 

  DNI ECWMF 1 h 1 – 72 
h 

RMSE 

MBE 

41.7% or 184.9 W m-2 

-23.3% or -103.2 W m-2 

 

  DNI AFSOL 1 h 1 – 72 
h 

RMSE 

MBE 

47.0% or 208.6 W m-2 

15.6% or 69.4 W m-2 

 

Lorenz et al. 
(2009) 

Europe GHI ECMWF 1 h 3 h -  RMSE 

MBE 

12% (clear) to 85% (cloudy) 

0% (clear) to 25% (cloudy) 

For both ECMWF and ECMWF + 
MOS: Day 1: RMSE = 35%, Day 2: 
RMSE = 40%, Day 3: RMSE = 
55%.     ECMWF + MOS 1 h  RMSE 

MBE 
12% (clear) to 80% (cloudy) 
<5% 

 Study also shows confidence intervals for prediction. For ensembles distributed over a region of a size of 3o x 3o, the RMSE of 
the forecast is about half the RMSE of a single site. The RMSE is reduced to one third of the site-specific RMSE for regions of a 
size of about 8o x 8o. 

Perez et al. 
(2007) 

Albany, 
NY 

GHI NDFD 3 h 3-72 h RMSE 

MBE 

32% (<4 ) to 40% (>26h) 

-10% (<4 h) to -4% (>26 h) 

National Digital Forecast Database 
only output cloud cover 

A-3 

 



Study Location Quan 

tity 

Forecast 
Source 

Avera-
ging 

Interval 

Time 
Horizon 

Error 
Metric 

Error Value Comment 

Hammer et 
al. (1999) 

Central 
Europe, 
April - 
June 

GHI Meteosat - 
Heliosat 

instanta
neous 

0.5 – 2 
h 

RMSE 18% for 30 minutes (vs 26% 
persistence), 22% for 1 h, 
28% for 2 h, 38% for 3 h. 

RMSE is satellite forecast versus 
satellite actual, i.e. no ground 
station data were used. Numbers 
were estimated from graphs. 
Filtering improves the forecast 
quality. 

Bacher et al. 
(2009) 

Denmark Pout Autoregressive 
models based 
on Pout (t-1) and 
NWP 

1 h 1 h – 
30 h 

RMSE 40 - 100% (normalized by 
mean power) for same day, 
5% - 13% (normalized by 
peak power) for next day 

For horizons below 2-h solar 

power is the most important input, 
but for next day horizons no 
considerable improvement is 
achieved from using available 
values of solar power, so it is 
adequate just to use NWPs as 
input. 

Hamill & 
Nehrkorn 
(1993) 

Eastern 
2/3 of US 

Brig
htne
ss 

GOES cross-
correlation 

instanta
neous 

0.5 h – 
2.5 h 

RMSE 9% (0.5 h) to 18% (2.5 h) 
for fall, winter, spring. 11% 
to 25% for summer 

RMSE is satellite forecast versus 
satellite actual in gray-shade 
values. Persistence was 12% to 
21%. Using 500 mbar wind field 
nearly as good as cross correlation 
method. 11 km pixel resolution. 

Heinemann 
(2006) 

Germany 
Saarbruec
ken 8 
Stations 

GHI Meteosat – 
Heliosat from 
Hammer et al. 
(1999) 

 0.5 h – 
6 h 

RMSE 25% (0h) to 42% (6 h) with 
motion & smoothing. 25% 
(0h) to 55% (6 h) with 
persistence 

With increasing forecast the 
influence of smoothing becomes 
more important than the application 
of motion vector fields.. Variability 
in the cloud field has a strong effect 
on forecast RMSE. 
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Study Location Quan 

tity 

Forecast 
Source 

Avera-
ging 

Interval 

Time 
Horizon 

Error 
Metric 

Error Value Comment 

 Same as 
above 

GHI MM5 1 h 1 h to 
48 h 

RMSE with MOS: 33% for day 1 
and 36% for day 2 

with MM5: 52% for day 1, 
55% for day 2 

40 days in summer 2003 

Jensenius 
(1981) 

  MOS on NWP   RMSE 

MBE 

25% for 1 day 

2% for 1 day 

 

Bofinger and 
Heilscher 
(2004) 

32 sites in 
Germany 

 MOS on 
ECMWF 

  RMSE 

MBE 

32% for hourly and 19% for 
daily. Persistence was 55% 
for hourly and 48% for daily. 

2.9% for hourly and 2.8% 
for daily 

1 year 

 same  Meteosat - 
Heliosat  

1 h  RMSE 

MBE 

26% for hourly and 12% for 
daily 

3% for hourly and daily 

 

Perez et al. 
(2009) 

6 sites in 
US 

GHI Satellite 1 h 1 h to 6 
h 

RMSE 

MBE 

53 to 64 Wm-2 (1h) to 100 
to 133 Wm-2 (6h) 
(persistence: 53 to 65 Wm-2 
(1h) to 108 to 125 Wm-2 
(6h) 

-3 to 12 Wm-2 (1h) to -3 to -
13Wm-2 (6 h) (persistence: 
2 to 11 Wm-2 for 1h, 6 to -
23 Wm-2 for 6h) 

8/23/2008-1/31/2009. Persistence 
forecast included extrapolating 
measured irradiances using a 
constant GHI/GHIclear ratio. 
Forecast errors for Boulder, CO, 
are much higher due to local 
topography and are excluded. 
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Study Location Quan 

tity 

Forecast 
Source 

Avera-
ging 

Interval 

Time 
Horizon 

Error 
Metric 

Error Value Comment 

 same GHI NDFD 1 h 1 
(same 
day) to 
7 days 

RMSE 

MBE 

75 to 114 Wm-2 (same day) 
to 97 to 146 Wm-2 (7 days) 
(persistence: 150 to 211 
Wm-2 (7 days)) 

-25 to 32 Wm-2 (same day) 
to -18 to 41 Wm-2 (7 days) 
(persistence: -8 to 10 Wm-
2) 

All NDFD forecasts originate at 
11:00 GMT. 

 Cloud-motion forecasts are more accurate than NWP up to 4-5 hours ahead with a performance gain approaching nearly 40% 
for the 2-hour forecast. The forecasts also perform better than on-site measurement extrapolation with performance gain 
peaking at hour 4. NDFD over predicts irradiance, even after it was adjusted empirically to prevent over prediction. Comparing 
range of mean monthly values within a 2o by 2o gridbox to absolute RMSE errors at the site shows that the RMSE errors are 
much smaller. 

Remund et 
al. (2008) 

3 sites in 
CO, NV, 
MS 

GHI NDFD 1 h 1 day RMSE 

MBE 

18% (NV), 41% (CO), 36% 
(MS) 

2% (NV), 3% (CO), -4% 
(MS) 

April – September 2007. The 
breakeven of persistence is 
reached after 2-4 hours. The 
breakeven is dependent on the 
uncertainty. For ECMWF and 
NDFD this value is reached at 2 
hours for GFS/WRF at 3 hours. 
The errors for same day and 2 day 
forecast are only marginally 
different from 1 day (shown on left). 

   EMCWF V2   RMSE 

MBE 

18% (NV), 40% (CO), 32% 
(MS) 

3% (NV), 11% (CO), 6% 
(MS) 

   GFS/WRF   RMSE 

MBE 

18% (NV), 50% (CO), 41% 
(MS) 

2% (NV), 19% (CO), 18% 

Also conducted Kolmogorov-
Smirnov test. 
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Error 
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Error Value Comment 

(MS) 
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APPENDIX B: 
Numerical Weather Prediction Models Related to 
Chapters 3 and 4 
Numerical Weather Prediction (NWP) models are complex computer programs that use current 
weather conditions as input into mathematical models of the atmosphere to produce 
meteorological information for future times at given positions and altitudes. The horizontal 
domain of a model is either global, covering the entire Earth, or regional, covering only part of 
the Earth. Regional models are also known as limited-area models. 

The mathematical equations that NWP models use are nonlinear and are impossible to solve 
exactly. Therefore, numerical methods obtain approximate solutions. Different models use 
different solution methods. Some global models use spectral methods for the horizontal 
dimensions and finite difference methods for the vertical dimension, while other global models 
and regional models usually use finite difference methods in all three dimensions. 

This appendix gives an introduction to major NWP models as well as a matrix that compares 
these models side by side. For more in-depth information, please refer to the NWP models page 
on UCAR’s website. 

Introduction to Major NWP Models 

 
• Eta/NAM 

The Eta model is a grid point type regional model. Its horizontal resolution is 12 km and its 
vertical resolution is 60 layers. The Eta model was developed by Yugoslavian Zavisa Janjic 
and Fedor Mesinger in the 1970s for numerical weather prediction and a version became 
operational in Yugoslavia in 1978. In the mid-1980s, both modelers arrived at the National 
meteorological Center (now NCEP), where Janjic developed the core physics 
parameterizations. Further development has been a team effort involving numerous 
scientists, primarily at NCEP. 

The ETA model took on its new name as the North American Mesoscale (NAM) model in 
January 2005 with no model change at that time. 

• GFS 

GFS stands for the Global Forecast System. The predecessor to the GFS was developed 
experimentally during the late 1970s and implemented as the global forecast model at the 
National Meteorological Center (NMC, now NCEP) in 1981.  Since then, the GFS model has 
undergone a few major upgrades. 

Currently, the GFS is run four times a day (00 UTC, 06 UTC, 12 UTC, and 18 UTC) out to 
384 hours. The initial forecast resolution was changed on May 31, 2005 to T574 (equivalent 
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to about 27-km grid point resolution) with 64 levels out to 8 days. At later forecast times, the 
GFS has a resolution of T190 (equivalent to about 80-km resolution) and 64 levels beyond 
today 16. All GFS runs get their initial conditions from the Gridpoint Statistical Interpolation 
(GSI) global data assimilation system (GDAS) as of May 1, 2007, which is updated 
continuously throughout the day. 

• RUC 

The Rapid Update Cycle (RUC) is an operational atmospheric prediction system that 
consists primarily of a numerical forecast model and an analysis system to initialize the 
model. The RUC was designed to provide accurate short-range (0- to 12-hour) numerical 
forecast guidance for weather-sensitive users. The RUC runs at the highest frequency of any 
forecast model at the National Centers for Environmental Prediction (NCEP), assimilating 
recent observations to provide very high frequency updates of current conditions and short-
range forecasts. 

The RUC is primarily used for 1) making short-range forecasts; 2) monitoring current 
conditions with hourly analyses; and 3) evaluating trends of longer-range models. 

• MM5 

The MM5 (Mesoscale Model, Version 5) is the fifth-generation mesoscale model developed 
by the National Center for Atmospheric Research (NCAR) and the Pennsylvania State 
University. The original version was built in the 1970s and has undergone improvements to 
evolve into the MM5 used today. 

The MM5 is similar to other grid point models, such as Eta. However, there are two major 
differences: 1) since the MM5 is a mesoscale model, it runs at a finer resolution than most 
other models. Therefore, its output better depicts mesoscale features than regional models 
and global models; 2) The MM5 is a non-hydrostatic model, which means that it includes a 
prognostic equation for vertical motion. This enables it to directly include buoyancy 
processes and dynamic pressure perturbations. 

The MM5 is the Air Force’s fine-scale meteorological model of choice. 

• NOGAPS 

The NOGAPS (Navy Operational Global Prediction System) forecast model is a global 
model that is spectral in the horizontal and energy-conserving finite difference (sigma 
coordinate) in the vertical. The model top pressure is set at 1 hPa; however, the first velocity 
and temperature level is approximately 4 hPa. The variables used in dynamic formulations 
are vorticity and divergence, virtual potential temperature, specific humidity, surface 
pressure, skin temperature, and ground wetness. 

In September 2002, NOGAPS 4.0 was increased in resolution from T159L24 to T259L30, an 
increase in equivalent grid point resolution from 0.75 to 0.5 degrees. 
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• COAMPS 

The COAMPS (Coupled Ocean/Atmosphere Mesoscale Prediction System) forecast model is 
a non-hydrostatic regional model uses grid points in the horizontal and a terrain-following 
coordinate (sigma-Z) in the vertical. The model top height is set at 31.50 km (approximately 
10 hPa). 

In August, 2001, COAMPS was upgraded to version 3.0. The primary change was an 
increase in the number of vertical levels from 18 to 24. When COAMPS was further 
upgraded to version 3.1, the number of model levels was increase to 30. 

The operational COAMPS 3.1 is run in nine different regions, usually with an 81-km outer 
nest and a 27-km inner nest (sometimes a third 9-km inner nest), except for SW Asia region, 
where triple nesting from 54-km to 18-km to 6-km is performed. The boundary conditions to 
the outer nest are provided by the global NOGAPS model, interpolated to COAMPS vertical 
resolution. 

• GEM Regional/GEM Global 

GEM is an acronym that stands for Global Environmental Multiscale. GEM Regional is a 
short-range forecast model. It produces 48-hour forecasts twice daily (from 00 UTC and 12 
UTC data). The model uses a 3D finite difference on an Arakawa-C staggered grid in the 
horizontal, and on an Arakawa-A grid in the vertical. The GEM regional model contains a 
high-resolution core covering North America and adjacent oceanic areas. The model 
executes on a 575x641 variable-resolution latitude-longitude global grid, of which 432x565 
grid points are found in the uniform-resolution core. 

GEM global is a grid point model having uniform resolution in latitude (0.30 degree) and in 
longitude (0.45 degree). This mesh can be modified so that the resolution becomes variable 
in both directions. GEM global is a medium-range forecast model. It produces 240-hour 
forecasts at 00 UTC and 144-hour forecasts at 12 UTC. 
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The characteristics of the major operational NWP models can be found in Table B-1. 

 

Table B-1. Major NWP Models - Model Structure and Dynamics 

Module Model Type Vertical 
Coordinate 

System 

Horizontal 
Resolution 

Vertical 
Resolution 

Domain 

new NAM 
(WRF-
NMM) 

Grid Point, 
Non-
Hydrostatic 

Sigma-pressure 
hybrid 

12 km 60 Layers Regional 

NAM (Eta) Grid point Eta 12 km 60 Layers Regional 

GFS Spectral Sigma-pressure 
hybrid 

T574 64 Layers Global 

RUC Grid Point Hybrid 
Isentropic-
Sigma 

13 km 50 Layers Regional 

AFWA 
MM5 

Grid Point Non-
hydrostatic 
Sigma 

45 km, 15 
km, and 5 
km 

42 Layers Mesoscale 

NOGAPS Spectral Hybrid 
Sigma/Pressure 

T239, 
Physics, 55 
km 

30 Layers Global 

COAMPS Grid Point, 
Non-
Hydrostatic 

Terrain-
following 
Sigma 

81 km 
(outer nest), 
27 km 
(inner nest) 

30 Levels Regional 

GEM 
Regional 

Variable 
Resolution 
Grid Point 

Generalized 
Sigma 

15 km 
Regional 
Grid 

58 Levels Regional 

GEM 
Global 

Global Grid 
Point 

Generalized 
Sigma 

 58 Levels Global 

ECMWF Spectral, 
Semi-
Lagrangian 

Hybrid sigma-
pressure 

T1279 91 Layers Global 
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APPENDIX C: 
Los Angeles County Oil Pools Related to Chapters 3 
and 4 
Table C-1.  Los Angeles County oil pools. All data are from California Oil and Gas Fields, Vol. II 
(1991) unless marked by an asterisk (*), in which case the data are from Higgins (1981). 

        
Pool 
mean  

 Temp Depth 
Pressur

e Temp Depth 
Pressur

e 
Geother

m. Geo.  

Oil Pool Name (F) (feet) (psi) (C) (m) (bars) Gradient 
Gradien

t Std. Dev. 

       (oC/m) (oC/m)  

Aliso Canyon 130 4150 1260 54 1265 87 0.043 0.037 0.0061 

Aliso Canyon 144 5050 1795 62 1539 124 0.040   

Aliso Canyon 145 5673 1780 62 1729 123 0.036   

Aliso Canyon 175 9000 3595 79 2743 248 0.029   

Alondra 275 9000 3902 134 2743 269 0.049 0.049  

Anaheim (ABD) 105 4350  40 1326  0.030 0.030  

Bandini 140 4200  59 1280  0.046 0.0418 0.0038 

Bandini 140 4500  59 1372  0.043   

Bandini 145 5000  62 1524  0.041   

Bandini 160 5300  70 1615  0.044   

Bandini 175 6200  79 1890  0.042   

Bandini 188 6500  86 1981  0.043   

Bandini 190 8400  87 2560  0.034   

Beverly Hills 110 2500 930 43 762 64 0.056 0.056  

Beverly Hills 
East Area 

189 4800 2327 86 1463 160 0.059 0.039 0.0138 

Beverly Hills 
East Area 

220 9000 3450 103 2743 238 0.038   

Beverly Hills 209 9900 2523 97 3018 174 0.032   
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East Area 

Beverly Hills 
East Area 

200 10800 2920 92 3292 201 0.028   

Beverly Hills 
West Area 

110 2500 990 43 762 68 0.056 0.056  

Beverly Hills 
West Area 

195 4500        

Brea-Olinda 105 1800 900 40 549 62 0.073 0.053 0.0195 

Brea-Olinda 108 4000 2200 42 1219 152 0.034   

Brea-Olinda 175 5000 2200 79 1524 152 0.052   

Cascade 94 2733  34 833  0.041 0.041  

Castaic Hills 100 730  37 223  0.168 0.168  

Castaic Junction 208 8400 4952 97 2560 341 0.038 0.034 0.0022 

Castaic Junction 212 10000 4952 99 3048 341 0.032   

Castaic Junction 228 9850 5338 108 3002 368 0.036   

Castaic Junction 238 10800 6200 113 3292 427 0.034   

Castaic Junction 238 10800 6000 113 3292 414 0.034   

Castaic Junction 250 12000 6280 120 3658 433 0.033   

Cheviot Hills 180 4800  81 1463  0.056 0.053 0.0016 

Cheviot Hills 260 8200  125 2499  0.050   

Coyote East 115 2500  46 762  0.060 0.053 0.0055 

Coyote East 128 3100  53 945  0.056   

Coyote East 135 3400  57 1036  0.055   

Coyote East 150 4000  65 1219  0.053   

Coyote East 160 4600  70 1402  0.050   

Coyote East 165 5500  73 1676  0.044   

Cristianitos 
Creek 

184 5860  84 1786  0.047 0.047  

Del Valle Main 
Area 

165 6500 2600 73 1981 179 0.037 0.036 0.0006 

Del Valle Main 185 7650 3645 84 2332 251 0.036   
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Area 

Dominguez 
(from Higgins, 
1981) 

157 4350  69 1326  0.052 0.04825 0.0044 

Dominguez 
(from Higgins, 
1981) 

165 4775  73 1455  0.050   

Dominguez 
(from Higgins, 
1981) 

170 5100  76 1554  0.049   

Dominguez 
(from Higgins, 
1981) 

175 6200  79 1890  0.042   

Howard 
Townsite (from 
Higgins, 1981) 

210 8200  98 2499  0.039 0.039  

Honor Rancho 190 5300 1900 87 1615 131 0.054 0.054  

Huntington 
Beach Onshore 
Area 

126 1800 975 52 549 67 0.094 0.0628 0.0182 

Huntington 
Beach Onshore 
Area 

122 2200 975 50 671 67 0.074   

Huntington 
Beach Onshore 
Area 

125 2300 975 51 701 67 0.073   

Huntington 
Beach Onshore 
Area 

130 3900 1550 54 1189 107 0.045   

Huntington 
Beach Onshore 
Area 

150 4300 1190 65 1311 82 0.050   

Huntington 
Beach Onshore 
Area 

150 4600 1190 65 1402 82 0.046   

Huntington 
Beach Onshore 
Area 

170 4300  76 1311  0.058   
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Inglewood 100 950 450 37 290 31 0.129 0.0773 0.0313 

Inglewood 118 1500 750 47 457 52 0.103   

Inglewood 140 2400 1160 59 732 80 0.081   

Inglewood 175 3400 1795 79 1036 124 0.076   

Inglewood 188 4200 2140 86 1280 148 0.067   

Inglewood 255 9000 4275 123 2743 295 0.045   

Inglewood 215 8200 3700 101 2499 255 0.040   

Kraemer 118 2400  47 732  0.065 0.065  

Las Cienegas 
Fourth Ave. 
Area 

190 3500 3160 87 1067 218 0.081 0.081  

Las Cienegas 
Good Shepherd 

150 3900 1760 65 1189 121 0.055 0.055  

Las Cienegas 
Jefferson (from 
Higgins, 1981) 

150 4000  65 1219  0.053 0.053  

Las Cienegas 
Murphy Area 

128 2500 1170 53 762 81 0.069 0.06375 0.0057 

Las Cienegas 
Murphy Area 

136 2750 1320 57 838 91 0.068   

Las Cienegas 
Murphy Area 

150 3500 1630 65 1067 112 0.061   

Las Cienegas 
Murphy Area 

155 3900 1720 68 1189 119 0.057   

Lawndale (from 
Higgins, 1981) 

250 8000  120 2438  0.049 0.049  

Long Beach Old 
Area 

112 2000 1160 44 610 80 0.072 0.0593 0.0088 

Long Beach Old 
Area 

112 2400 1160 44 732 80 0.060   

Long Beach Old 
Area 

130 2800 1300 54 853 90 0.063   

Long Beach Old 
Area 

150 3600 2000 65 1097 138 0.059   
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Long Beach Old 
Area 

200 5300 2800 92 1615 193 0.057   

Long Beach Old 
Area 

200 6700 2800 92 2042 193 0.045   

Long Beach 
Recreation Park 
Area 

120 6000  48 1829  0.026 0.0245 0.0012 

Long Beach 
Recreation Park 
Area 

120 6900  48 2103  0.023   

Los Angeles 
Downtown 

139 2900 1590 59 884 110 0.067 0.05975 0.0069 

Los Angeles 
Downtown 

141 3100  60 945  0.063   

Los Angeles 
Downtown 

145 3500  62 1067  0.058   

Los Angeles 
Downtown 

168 4800 2078 75 1463 143 0.051   

Los Angeles 
East Area 

165 8400  73 2560  0.029 0.0285 0.0003 

Los Angeles 
East Area 

165 8500  73 2591  0.028   

Mahala Main 
Area 

135 3800  57 1158  0.049 0.048 0.0010 

Mahala Main 
Area 

140 4100  59 1250  0.048   

Mahala Main 
Area 

145 4350  62 1326  0.047   

Mahala West 145 4000 1800 62 1219 124 0.051 0.051  

Montebello 110 2200 1100 43 671 76 0.064 0.0575 0.0092 

Montebello 130 3500 1550 54 1067 107 0.051   

Newgate (from 
Higgins, 1981) 

244 8300  117 2530  0.046 0.046  

Newhall Tunnel 
Area 

103 1581  39 482  0.081 0.081  

Newhall - 170 6500 3100 76 1981 214 0.038 0.036167 0.0044 
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Potrero 

Newhall - 
Potrero 

170 6900 3100 76 2103 214 0.036   

Newhall - 
Potrero 

170 7400 3100 76 2256 214 0.034   

Newhall - 
Potrero 

200 9300 3925 92 2835 271 0.033   

Newhall - 
Potrero 

205 9700 4959 95 2957 342 0.032   

Newhall - 
Potrero 

323 11806 5650 160 3598 390 0.044   

Newport West 105 2500 450 40 762 31 0.053 0.04675 0.0056 

Newport West 110 2850 585 43 869 40 0.049   

Newport West 110 3500 876 43 1067 60 0.040   

Newport West 165 5300 2300 73 1615 159 0.045   

Oak Canyon 132 2750 1043 55 838 72 0.066 0.0394 0.0088 

Oak Canyon 148 5160 1830 64 1573 126 0.041   

Oak Canyon 148 5225 1830 64 1593 126 0.040   

Oak Canyon 148 5395 1830 64 1644 126 0.039   

Oak Canyon 168 6310 2565 75 1923 177 0.039   

Oak Canyon 168 6600 2565 75 2012 177 0.037   

Oak Canyon 178 7000 1825 80 2134 126 0.038   

Oak Canyon 189 7900 3600 86 2408 248 0.036   

Oak Canyon 191 8050 3600 87 2454 248 0.036   

Oak Canyon 198 8560 3600 91 2609 248 0.035   

Oak Canyon 211 9675 3600 98 2949 248 0.033   

Oak Canyon 213 9800 3600 100 2987 248 0.033   

Oat Mountain 135 7000 2800 57 2134 193 0.027 0.027  

Olive  122 4900 2010 50 1494 139 0.033 0.033  

Pacoima 165 6000 3200 73 1829 221 0.040 0.0395 0.0003 

Pacoima 186 7200 4000 85 2195 276 0.039   
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Playa del Rey 
Del Rey hills 
Area 

210 6200 2750 98 1890 190 0.052 0.052  

Potrero East 
(from Higgins, 
1981) 

180   81      

Richfield 115 2000        

Richfield 117 2900 1371 47 884 95 0.053 0.05 0.0025 

Richfield 125 3500 1559 51 1067 107 0.048   

Richfield 138 3800 1863 58 1158 128 0.050   

Richfield 186 7950        

Rosecrans 185 5700 2920 84 1737 201 0.048 0.044 0.0032 

Rosecrans 200 7200 2700 92 2195 186 0.042   

Rosecrans South 
(from Higgins, 
1981) 

210 7500  98 2286  0.043   

Salt Lake 120 2650 880 48 808 61 0.060 0.06  

Salt Lake 123 2850        

Salt Lake 125         

Salt Lake 128 3300        

Salt Lake South 127 1000        

Salt Lake South 135 2500        

San Clemente 138 5350 1850 58 1631 128 0.036 0.036  

San Vicente 113 3200        

Sansinena Curtis 
Area 

143 5100        

Sansinena East 
Area 

144 3300 1450 62 1006 100 0.061 0.061  

Sansinena New 
England (from 
Higgins, 1981) 

125 3000  51 914  0.056 0.056  

Santa Fe Springs 130 3580 1480 54 1091 102 0.049 0.04475 0.0033 

Santa Fe Springs 140 3900 1700 59 1189 117 0.050   
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Santa Fe Springs 150 4600 1900 65 1402 131 0.046   

Santa Fe Springs 160 5400 2200 70 1646 152 0.043   

Santa Fe Springs 177 6000 2520 80 1829 174 0.044   

Santa Fe Springs 188 6700 2870 86 2042 198 0.042   

Santa Fe Springs 210 7400 3200 98 2256 221 0.043   

Santa Fe Springs 220 8200 3600 103 2499 248 0.041   

San Vicente 
(from Higgins, 
1981) 

161 3500  71 1067  0.067 0.06 0.0099 

San Vicente 
(from Higgins, 
1981) 

179 5000  81 1524  0.053   

Sawtelle 274 9500 4400 133 2896 303 0.046 0.046  

Seal Beach 125 2610 1850 51 796 128 0.064   

Seal Beach 
Alamitos Area 

110 4100  43 1250  0.034 0.032667 0.0032 

Seal Beach 
Alamitos Area 

120 4600  48 1402  0.035   

Seal Beach 
Alamitos Area 

120 5500  48 1676  0.029   

Seal Beach 
Marine Area 

165 5490 2291 73 1673 158 0.044 0.041667 0.0021 

Seal Beach 
Marine Area 

195 7240 3026 90 2207 209 0.041   

Seal Beach 
Marine Area 

211 8040 3362 98 2451 232 0.040   

Seal Beach 
North Block 
Area 

125 2610 1850 51 796 128 0.064 0.05043 0.0150 

Seal Beach 
North Block 
Area 

135 4350 1960 57 1326 135 0.043   

Seal Beach 
North Block 
Area 

152 3470 1600 66 1058 110 0.062   

C-8 

 



Seal Beach 
North Block 
Area 

180 3820 2200 81 1164 152 0.070   

Seal Beach 
North Block 
Area 

200 6500 2000 92 1981 138 0.047   

Seal Beach 
North Block 
East Ext 

152 6641 2150 66 2024 148 0.033   

Seal Beach 
North Block 
East Ext 

186 8100 3215 85 2469 222 0.034   

Seal Beach 
South Block 
Area 

149 4100 1500 64 1250 103 0.051 0.0465 0.0055 

Seal Beach 
South Block 
Area 

135 4100 2100 57 1250 145 0.045   

Seal Beach 
South Block 
Area 

150 4600 2200 65 1402 152 0.046   

Seal Beach 
South Block 
Area 

170 5500 2800 76 1676 193 0.045   

Seal Beach 
South Block 
Area 

190 7600 3400 87 2316 234 0.038   

Seal Beach 
South Block 
Area 

260 7600 3760 125 2316 259 0.054   

Torrance 152 2800 1385 66 853 95 0.077 0.0723 0.0045 

Torrance 163 3300 1565 72 1006 108 0.072   

Torrance 190 4200 2087 87 1280 144 0.068   

Union Station 145 3520 1950 62 1073 134 0.058 0.04733 0.0095 

Union Station 157 5080 2300 69 1548 159 0.044   

Union Station 186 7020 3200 85 2140 221 0.040   

Venice Beach 240 6000  114 1829  0.063 0.06433 0.0023 
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(from Higgins, 
1981) 

Venice Beach 
(from Higgins, 
1981) 

180 4000  81 1219  0.067   

Venice Beach 
(from Higgins, 
1981) 

240 6000  114 1829  0.063   

Wayside 
Canyon 

95 1495 525 35 456 36 0.076 0.076  

Whittier Central 115 1300 950 46 396 66 0.115 0.1045 0.0149 

Whittier Central 115 1600 950 46 488 66 0.094   

Whittier La 
Habra Area 

110 900 800 43 274 55 0.156 0.156  

Whittier 
Rideouts Area 

120 2300  48 701  0.069 0.069  

Wilmington 145 2500 1210 62 762 83 0.082   

Wilmington 
Onshore 

124 2200 1040 51 671 72 0.075 0.067321 0.0095 

Wilmington 
Onshore 

141 2200 1270 60 671 88 0.089   

Wilmington 
Onshore 

150 3000 1420 65 914 98 0.071   

Wilmington 
Onshore 

166 3600 1633 74 1097 113 0.067   

Wilmington 
Onshore 

180 4000 1880 81 1219 130 0.067   

Wilmington 
Onshore 

208 4550 2205 97 1387 152 0.070   

Wilmington 
Onshore 

228 5550 2572 108 1692 177 0.064   

Wilmington 
Onshore 

238 5850 2715 113 1783 187 0.064   

Wilmington 
(from Higgins, 
1981) 

120 3600  48 1097  0.044   
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Wilmington 
(from Higgins, 
1981) 

130 2000  54 610  0.088   

Wilmington 
(from Higgins, 
1981) 

140 3050  59 930  0.064   

Wilmington 
(from Higgins, 
1981) 

135 3400  57 1036  0.055   

Wilmington 
(from Higgins, 
1981) 

180 4200  81 1280  0.064   

Wilmington 
(from Higgins, 
1981) 

170 5000  76 1524  0.050   

Wilmington 
(from Higgins, 
1981) 

124 2200  51 671  0.075   

Wilmington 
(from Higgins, 
1981) 

136 2500  57 762  0.075   

Wilmington 
(from Higgins, 
1981) 

154 3000  67 914  0.073   

Wilmington 
(from Higgins, 
1981) 

172 3500  77 1067  0.072   

Wilmington 
(from Higgins, 
1981) 

188 4000  86 1219  0.070   

Wilmington 
(from Higgins, 
1981) 

212 4550  99 1387  0.071   

Wilmington 
(from Higgins, 
1981) 

235 5550  112 1692  0.066   

Wilmington 
(from Higgins, 
1981) 

150   65      
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Wilmington 
(from Higgins, 
1981) 

140 2650  59 808  0.074   

Wilmington 
(from Higgins, 
1981) 

144 2900  62 884  0.070   

Wilmington 
(from Higgins, 
1981) 

162 3600  72 1097  0.065   

Wilmington 
(from Higgins, 
1981) 

186 4500  85 1372  0.062   

Wilmington 
(from Higgins, 
1981) 

216 5600  101 1707  0.059   

Wilmington 
(from Higgins, 
1981) 

150 3500  65 1067  0.061   

Wilmington 
(from Higgins, 
1981) 

148 3500  64 1067  0.060   

Yorba Linda 70 200 15 21 61 1 0.343 0.12733 0.1107 

Yorba Linda 85 650 200 29 198 14 0.147   

Yorba Linda 85 1800 500 29 549 34 0.053   

Yorba Linda 105 2100 500 40 640 34 0.063   

Yorba Linda 110 1700 600 43 518 41 0.083   

Yorba Linda 115 2000 800 46 610 55 0.075   
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