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PREFACE 

The California Energy Commission Energy Research and Development Division supports 
public interest energy research and development that will help improve the quality of life in 
California by bringing environmentally safe, affordable, and reliable energy services and 
products to the marketplace. 

The Energy Research and Development Division conducts public interest research, 
development, and demonstration (RD&D) projects to benefit California. 

The Energy Research and Development Division strives to conduct the most promising public 
interest energy research by partnering with RD&D entities, including individuals, businesses, 
utilities, and public or private research institutions. 

Energy Research and Development Division funding efforts are focused on the following 
RD&D program areas: 

• Buildings End-Use Energy Efficiency 

• Energy Innovations Small Grants 

• Energy-Related Environmental Research 

• Energy Systems Integration 

• Environmentally Preferred Advanced Generation 

• Industrial/Agricultural/Water End-Use Energy Efficiency 

• Renewable Energy Technologies 

• Transportation 

Large-Scale Energy Reductions Through Sensors, Feedback and Information Technology is the final 
report for the PIR-10-054 project conducted by Stanford University’s Center for Integrated 
Facility Engineering, Design for Change, H-Star Institute, Precourt Energy Efficiency Center 
and the Prevention Research Center. The information from this project contributes to Energy 
Research and Development Division’s Buildings End-Use Energy Efficiency Program. 

For more information about the Energy Research and Development Division, please visit the 
Energy Commission’s website at www.energy.ca.gov/research/ or contact the Energy 
Commission at 916-327-1551. 
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ABSTRACT 

Smart meters and related sensing technologies are promoted on the promise that energy 
information will play a key role in reducing energy use, thereby helping California meet its 
aggressive greenhouse gas emissions targets aimed at stemming global warming.  However, 
poorly designed interactions with energy information jeopardize these goals and reduce the 
efficacy of billion-dollar utility infrastructure investments. The current problems are numerous: 
sensor information is complex and dull, incentives are inappropriate, interactions with energy 
information are poorly designed to modify behavior, and social context is ignored. These 
problems all involve the intersection of human behavior and technology.  

This research developed a comprehensive human-centered solution that leverages the 
anticipated widespread diffusion of energy sensors to significantly reduce and shift energy use. 
The authors’ major innovation was the creation of a transformative system that combines 
behavioral techniques with human-centered design, computation, and technology to affect 
energy use behavior. The work involved a collaboration of Stanford University researchers and 
energy industry leaders formed in 2008 to establish a new concentration in energy and human 
behavior. The group conducted research, built systems, and tested solutions in the field.  

This research had three parts: (1) technology, including an extensible energy communications 
network to enable future innovation in home area networks; a software platform to enable 
behavioral programs to be implemented at scale through a “living laboratory”; and algorithms 
to advance the areas of energy disaggregation, segmentation, and automation, (2) behavioral 
interventions to reduce and shift energy use, and (3) data evaluation and modeling approaches 
that applied economic and social network analysis techniques to data collected in interventions. 
The behavioral interventions included media (interaction design, social networking, games and 
feedback interfaces), incentive (behavioral economic programs) and community (schools, utility 
and social organizations). The behavioral intervention projects demonstrated potential to 
reduce energy use in California by using various methods of displaying information to 
consumers, depending upon demographics, the framing of the messages, and personal 
motiviations of individuals and communities. 

 

Keywords:  smart grid, smart meters, sensors, energy behavior, behavior, ARPA-E 
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EXECUTIVE SUMMARY 

Introduction 

In January 2010, the United States Advanced Research Projects Agency for Energy (ARPA-E) 
awarded funding to Stanford University’s Precourt Energy Efficiency Center (PEEC) and 
Human Sciences and Technology Advanced Research Institute to forge effective ways of 
integrating behavioral science into smart grid technology to achieve meaningful energy savings. 
The California Energy Commission’s (Energy Commission) Public Interest Energy Research 
(PIER) Program also provided supplemental match funds supporting the research.  This 
initiative was created to address two timely energy problems. First, significant low-cost energy 
reductions could be made in the residential and commercial sectors by individual and collective 
operational changes and energy efficiency investment decisions, but these savings have been 
only partially achieved. Second, billions of dollars are being spent to install smart meters, yet 
without careful consideration of the human element, the energy saving and financial benefits of 
this infrastructure will not reach its full potential. By strategically approaching these problems 
and leveraging now pervasive internet technology and behavioral science learning, the authors 
believed that they could address these problems. Thus, the Stanford Energy Behavior Initiative 
and its associated constellation of projects were born, comprising a living laboratory.  

The Stanford Energy Behavior Initiative leveraged smart meter and other sensor technologies 
with behavioral approaches to achieve energy savings at a large scale.  

Deliverables were produced and results found in each of the corresponding cluster research or 
program intervention styles areas as noted in the following list.  Complementary workshops 
and other support efforts were also conducted. 

Technical Platform Technical Platform 

There are several aspects of the technical platform: hardware and a communications network, 
an energy services platform to streamline the creation of behavioral programs, and several 
types of algorithms to perform segmentation, automation, and disaggregation. The authors also 
compiled energy-saving actions for use in recommendation engines, both those typically 
recommended by energy and utility organizations, but also innovative ones, for example 
derived from other cultures and periods.  The following are the projects resulting from this 
research: 

1. Created an open standard for Transmission Control/Internet Protocol (TCP/IP) in home 
area networks, as well as an open-source reference implementation of the standard for 
others to copy, extend, reuse, and improve. This open technology leverages the Internet 
and will provide greater freedom in data collection, representation, storage, and 
communication between devices from different manufacturers, all leading to 
innovations and improvements in human interfaces to sensor-actuator networks. As a 
second deliverable, Levis et al. created an extensible and open-source sensing hardware 
platform for devices that monitor the power of individual electronics, such as computers 
and monitors. 
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2. Guided the effort to create the Stanford Energy Services Platform (ESP) to support the 
data collection, computational, and Web presence needs of several of the behavioral 
interventions, as well as to benefit the future work of outside groups. 

Segmentation Algorithms 

3. Developed algorithms to segment customers based on their energy consumption 
patterns over time using large residential and commercial smart meter data sets. They 
used this information to strategically and cost-effectively match customers with energy-
saving programs.  

Automation Algorithms 

4. Developed adaptive machine learning algorithms that used sensor data to improve 
lighting automation on the dimensions of both user preferences and energy savings.  

Disaggregation Algorithms 

5. Conducted three projects on disaggregation, or the separation of a whole home 
electricity use into appliance-specific data to guide people on where they should take 
action, covered the scope of foundational work necessary to jump-start significant 
interest and research in this space. A comprehensive technical and policy-oriented 
survey paper was written that has received tens of thousands downloads to date from 
the PEEC website.  

6. Created a data set for disaggregation developers to train and test their algorithms; this 
data set has been extensively used. 

7. Developed disaggregation algorithms using sparse coding methods to advance the state 
of the art. 

Target Actions 

8. Identified about 250 energy-saving actions, or behaviors, and created taxonomy to 
support recommendation engines and behavioral programs within and outside the 
Stanford Initiative.  

9. Collected energy-saving actions from other cultures and throughout history as 
inspiration for modern-day energy-saving innovations, and the energy savings of these 
actions were quantified to provide an opportunity map for future design efforts. Many 
of these may require further development before incorporation into recommendation 
engines. 

Behavioral Programs 

Social-ecological models of behavior change, a dominant class of theories in public health, hold 
that the use of multiple types of programs or interventions are more effective than one because 
they complement and reinforce one another. Several of the Initiative projects developed and 
tested media, incentive, and community-based program interventions to assess the effectiveness 
of these programs and the behavior change techniques embedded within them. Some projects 
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employed an approach typical in the field of public health or in utility pilots in which the 
effectiveness of multifaceted programs was evaluated.   For example, a randomized controlled 
trial assessed the effectiveness of a program that incorporated multiple behavior change 
techniques versus a no-treatment or status-quo control.  Other projects followed an 
experimental psychology approach in which there were multiple experimental conditions that 
were identical except for individual variables that were modified in each to investigate the 
specific impact. These projects: 

Media 

10.  Created the Power House online game that incorporates real-world energy data into    
game play, leverages social competition, and retrains habits through reinforcement. 
Results of a laboratory and a field trial suggest the effectiveness of the game in saving 
energy and energy-related behaviors. 

11. Created a basic resource consumption feedback interface that includes energy- or water-
saving recommendations for two respective Northern California communities. The 
researcher found that framing an individual’s efforts as part of the community effort 
could sometimes increase but other times decrease conservation efforts.  

12. Created an immersive virtual shower world and measured the impact on energy-related 
water consumption behavior, with results suggesting that vivid visualizations of energy 
consumption (for example, amount of coal instead of kilowatt hours [kWh]) are more 
important than the personalization afforded by avatars. 

13. Created three Facebook applications to match the range of motivations exhibited by 
individuals. Power Tower is social in that it allows one to collaborate with others in a 
Tetras-like puzzle where pieces are granted based on multiple participants’ energy 
savings. Kidogo is effective in that it allows one to compute his or her real-world energy 
savings and then microfinance individuals in developing countries based on this 
savings.; Powerbar is cognitive in that it primary displays energy feedback data. 

Incentive 

14. Created the Appliance Calculator application, which has been used by more than 60,000 
people through Google ad words. By testing changes in the interface the authors have 
found, contrary to expectations, that projecting cost savings over time does not appear to 
prompt selecting more energy-efficient refrigerators when shopping on-line, whereas 
simply changing the default sort order to put the most efficient appliances on top does. 
This suggests that simply implementing the most effective behavior change techniques 
may be a more effective strategy than the traditional route of analyzing the underlying 
cause of a problem and then trying to address it. 

15. Created the Insinc lottery-like transportation incentive program, significantly shifting 
participants to off-peak travel or public transit, with an enrollment of more than 15,000 
Singaporeans to date.  
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Community 

16. Created the Girls Learning Energy and Environment (GLEE) Girl Scout community-
based program. Such programs can scale quickly by tapping into established networks 
and providing close support from peers. Preliminary results indicate significant changes 
in reported energy-saving behaviors by children in both the home and transport 
curricula.Project Benefits 

Evaluation and Modeling 

Three projects developed methods for evaluating the effectiveness of energy programs, and 
modeling the effectiveness of interventions to guide future work.  Specifically, these projects: 

17. Applied an analysis derived from economic methods to quantify the effectiveness of 
Google Powermeter in saving energy. The approach could help inform approaches for 
legitimizing energy savings from behavioral programs within utilities and government 
agencies. 

18. Developed the Twitter Explorer, which tracks all tweets containing any of roughly 150 
energy-related words to track and map conversation changes pertinent to this topic 
across the online social network of the Internet. 

19. Developed a simulation tool that allows one to model the energy savings of behavioral 
interventions according to parameters such as time, behavioral technique used, and 
social network distance and type. This tool could serve as a foundation for developing 
similar but more sophisticated tools enhanced with additional parameters and empirical 
data that could eventually reduce the time and cost of developing future interventions 
through predictive modeling. 

Future Steps 

20. Additional funding has been provided by ARPA-E toward an effort to scale the work of 
Projects 3, 10, 13, and 16. Furthermore, one new project (20)  aims to develop an 
application that integrates many of the effective pieces from a number of the projects 
described above and augment these to develop a program that will disseminate broadly 
and achieve significant energy savings.  

In summary, the Stanford Energy Behavior Initiative, which ran from early 2010 through the 
summer of 2013, developed the components that would support a system aimed at using smart 
meter and other sensor data, communication technologies, and behavioral approaches to 
achieve significant energy savings. The initiative can be divided into software and analytics, 
behavioral programs, and evaluation tools projects. The ESP software from project 2 provided 
the technical backbone for the behavioral programs.  The analytics were developed to perform 
personalization, targeting, and other functions to improve uptake and effectiveness of the 
behavioral programs, and evaluation tools were developed to help assess the effect of the 
programs. Many deliverables were created from these projects that could be used to scale 
programs for widespread impact, and that could be used by other groups, and numerous 
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publications were produced describing the methods, findings, and deliverables. Phase II of this 
initiative aims to integrate and scale these projects and disseminate findings. 

Project Benefits 

The majority of the Stanford Initiative’s work to date has been developing software, algorithms, 
programs, evaluation tools, and other supporting deliverables, and testing these precursors to 
scaling to large populations to achieve the widespread impacts. There have been tangible 
energy-saving effects.  For example, the lottery project included more than 20,000 participants 
with an average of 7.5 percent of trips shifted off peak, and the appliance calculator projects 
totaled more than 60,000 participants, and those exposed to behavioral “nudges” pursued 
appliances that used 10-20 percent fewer kWh than counterparts in the control condition. 

However, the emphasis on scale will begin with Phase II work, if conducted, where the authors 
will refine and integrate the projects, make them commercial grade, develop scaling 
approaches, and scale them. The timeline of the development work emphasized in Phase I is 
mostly consistent with that described in the original grant proposal, with a some delay due to 
difficulty in getting sensor data, and other technical, logistical, and partnership issues. Once this 
work is achieved, the authors would expect savings could exceed the roughly 2 percent savings 
achieved by Opower’s mailer report. The authors can start with an estimate of lower bound 
savings up to 12 percent and upper bound savings of 35 percent, with a middle ground estimate 
of 23 percent. These figures should then be tempered with the finding that large-scale programs 
tend to achieve lower average energy savings per household than smaller programs, and most 
of the programs to date have been smaller, thus these figures may be biased upward. A 
discussion of how these figures are derived can be found in the full report. Such reduced 
demand-side use has a wide array of benefits: reduced greenhouse gas (GHG) emissions, 
reduced environmental impact, reduced system capacity requirements, and increased energy 
security. Such behavioral programs also increase the consumer appeal of energy efficiency 
actions, and potentially increase economic activity and improve smart grid efficiency and 
benefits. 
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CHAPTER 1:  
Introduction 
1.1 The Stanford Initiative – Innovative and Unique 
The most unique contribution of this initiative redefined energy technology to highlight the 
critical role of human behavior in reducing energy use.  The interdisciplinary group of Stanford 
researchers, the projects and innovations, and the resulting benefits, all has a common emphasis 
on the critical but frequently overlooked role of human behavior in reducing energy use.  
Without a complete consideration of human behavior, technical innovations will be at best 
incomplete and at worst misused or unused.   

Here is a caricature of the current energy story that motivates the initiative: 

“I use energy in my home but it’s invisible.  I don’t consume it directly but only via things I 
want like light, heat and refrigeration.  I rarely think about the energy I’m using, and most 
of my use is habitual and unconscious.  The amount of energy I use is registered on a meter 
that’s out of sight, unintelligible, and read by someone else.  I only get feedback about my 
energy use in the form of monthly bills that present complex data that are a month old, and 
are boring and impersonal.  When information is provided to me about how and why I 
should change my behavior, it is also boring and impersonal and often not even applicable 
to my situation.  Even when I understand it, I rarely act.” 

This story is common throughout the United States.  It describes what may be the worst 
possible system for promoting reduced energy use:  complex, dated, boring and impersonal 
information presented via inaccessible and unintelligible devices that fail to engage or be 
personally relevant, and that describe behaviors mysteriously linked to a global problem that is 
personally distant and difficult to define. 

Behavior change can fail at any point in the story, and it does.  Consequently, the research team 
believes that systematically applying theory and methods from the behavioral sciences will 
produce greater benefits for energy related programs.  A system of behavioral strategies to 
collectively target each step in the process of behavior change is needed to seize a significant 
opportunity to influence energy and climate issues in America.  The system that was developed 
, was made possible by feedback from new energy sensors, included motivational interventions 
informed by the best new research about human behavior and were designed to make energy 
use and energy savings visible, immediate, compelling and even fun. 

The research team redefined the energy efficiency problem by emphazing its relationship to 
human behavior, noting different dimensions of the problem and also similarities to behavior 
problems in other social science arenas.  Next, additional background was provided on the link 
between energy technology and human behavior, describe the four major parts of the Stanford 
Initiative, and then describe in detail each of the projects under those four parts. 
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1.2 Defining Energy Technology to Include Human Behavior 
Energy technology is most often defined as devices that supply or improve energy efficiency.  
These devices most often succeed or fail independent of human action required to make them 
work (e.g., more efficient solar cells).  Many devices, however, are critically dependent on 
human behavior to make them effective.  This is true for the significant national investment in 
smart sensors that monitor residential energy use.  Smart sensors (e.g., smart meters, plug load 
monitors and programmable controllable thermostats) provide information to people who are 
expected to monitor and understand the information provided, and to change behaviors 
accordingly.  Consequently, human behavior, along with all of the cognitive, social and 
emotional constraints, must be considered a critical component of designing and deploying 
smart sensing systems. 

Much more energy information will soon be available, accentuating the importance of human 
behavior in determining technology success.  In addition for the first installations of smart 
meters and plug load monitors, wireless sensing technologies will be available for gas and hot 
water, and for transportation as sensors that quantify miles per gallon, mode of transportation 
and number of trips.  Clearly, the impact of energy information on behavior will play a critical 
role in energy efficiency in the next decade.  This project initially focused on smart meter and 
home area network (HAN) sensing technologies because of their impending rollouts. The work, 
however, can be transferred to transportation, gas, and water sensors. 

1.2.1 ‘Attention to’ Versus ‘Processing of’ Energy Information 

The increased availability of sensing information creates two different information problems, 
both addressed in the initiative. Information processing theories differentiate selective attention 
to information (e.g., choosing to pay attention to smart meter data versus something else) from 
information processing (e.g., interpreting, remembering and changing attitudes and behavior 
based on the information selected).  

The research team considered both problems.  The increasing availability of energy information 
in already crowded information environments will make attention to energy information 
difficult.  Consequently, the initiative considered how to increase attention by using techniques 
that increase engagement and interest in information (e.g., multiplayer games, incentive 
programs and social networks).  

The increasing quantification of energy use provides a complimentary opportunity to influence 
information processing and retention.  Substantial evidence in psychology shows that 
quantification of behavior promotes behavior change because it makes visible what is otherwise 
easy to forget or ignore, and because it informs people about whether their actions have effected 
change.  

Furthermore, interventions can usefully depend on the quantification of behavior; for example, 
in incentive programs, energy markets, competitions, visualizations, games and social 
networking, automated appliance controls and behavior change guidance. The initiative 
explicitly considered how the quantification of energy information can influence behavior. 
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1.2.2 Borrowing Lessons from Other Behavior Change Domains 

Although many of the team’s approaches are new to the field of energy efficiency, the 
consideration of human behavior for other social problems is well established. Large-scale 
behavior change programs, similar in scope to the projects in the initiative, have been shown to 
alter behavior in other areas with equally difficult information challenges, including health 
practices related to cardiovascular disease, smoking and drug use, community political 
participation, and sexual practices (Rice & Atkin, 2001; Singhal, Cody, Rogers, & Sabido, 2004). 
Indeed, the term “energy behavior change” comes from “health behavior change.” 
Psychologists attribute the success of these interventions to the application of proven behavioral 
principles such as engagement, modeling, and self-efficacy (Bandura, 1986, 1997). A 
distinguishing feature of this work was the collection of researchers with extensive expertise in 
other behavior change areas, and a commitment to borrow expertise from the larger behavior 
change literature that has already been completed with significant federal research investment. 

1.3 Overview of the Stanford Initiative 
This is a unique point in history with enormous opportunity. On the one hand, wireless sensors 
- smart meters, home area networks, gas, transportation, and water sensors - that enable the 
quantification of energy usage are becoming pervasive. On the other hand, web enabled devices 
are also pervasive, meaning that web enabled computers and phones can deliver programs to 
help individuals reduce energy use.  

The interfacing of these systems with an appropriate engine provides an opportunity for a 
Living Laboratory at a scale that has societal impact. Such an engine was funded by ARPA-E, 
Energy Commission, and Stanford University. This Stanford Engine is comprised of 
approximately 20 projects overseen by 15 faculty and spanning five schools, five centers, and 
ten departments ranging from computer science and electrical engineering, civil and 
environmental engineering, and economics, to psychology, communications, education, and 
behavioral epidemiology.  

In summary, the initiative’s goal was this: To create comprehensive human-centered solutions 
that leveraged the widespread diffusion of energy sensors in order to significantly reduce and 
shift energy use.  To address this goal, the research team:  (1) developed supporting technology, 
including an extensible energy communications network to enable future innovation in home 
area networks; a software platform, for use by Stanford and outside behavioral interventions; 
and algorithms to advance the areas of energy disaggregation, segmentation, and automation; 
(2) developed interventions in three categories that promote energy behavior change (media, 
incentive, and community based), and (3) developed data evaluation and modeling approaches 
that applied economic and social network analysis techniques to intervention data. 

In the following pages further descriptions of the initiative’s clusters are provided.  Table 1 lists 
of all the projects by cluster, followed by more detailed descriptions of all the projects in the rest 
of this report. The initiative mostly focused on residential buildings, but the aim is to extend 
into other related areas such as transportation, commercial buildings, and water. 
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Figure 1: The Stanford Engine 

 

1.3.1 Technology 

The technology category of this project includes an open communications network, a software 
platform to support behavioral interventions, and analytics. Regarding the first, researchers 
expanded opportunities for flexibility and innovation in home area networks with an open and 
extensible communications protocol that can capitalize on unforeseen behavior change 
opportunities – such as the ability to provide energy feedback to users more quickly.  An open 
technology will provide greater freedom in data collection, representation, and storage, leading 
to innovations and improvements in human interfaces to sensor-actuator networks. 

Regarding the software platform, large interdisciplinary groups often result in a collection of 
thematically related projects that unfortunately do not use the technical work performed by one 
another. This group, however, was motivated by the prospect that a common infrastructure will 
allow projects to be more influential, extensible and larger than they could be if conducted 
independently.  The common infrastructure developed included shared software, databases, 
and computing services that created technical economies in the conduct of large-scale field 
research. Through this platform, the effectiveness of interventions can be evaluated quickly, 
easily, inexpensively and at scale.  This is possible for two reasons: (1) experimental 
manipulations can be generated and tracked automatically because they can be implemented 
and delivered via electronic media that all projects will share, and (2) objective measures of 
behavior change can be collected automatically by sensors, and aggregated in databases that are 
shared across projects.   

Regarding the analytics, several types of algorithms, or computational problem solving 
procedures implemented by us in computer software, were developed to perform 
segmentation, disaggregation, and automation.  Segmentation (of whole house electricity 
consumption data) algorithms were developed to group customers based on their energy 
consumption patterns using large residential and commercial smart meter data sets. This 
information can be used to strategically and cost-effectively match customers with energy 
saving and demand response programs. Three projects related to disaggregation, or the 
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separation of a whole home energy signal into appliance specific data to guide people on where 
they should take action; these included algorithm development, as well as a technology and 
policy review paper, and the collection of a dataset to speed work in this space. Adaptive 
machine learning algorithms were also developed that utilized sensor data to improve lighting 
automation on the dimensions of both user preferences and energy savings (Project 7).  

There were additionally two projects that identified target actions for use in the interventions – 
through software or other recommendation systems. One identified and created a taxonomy of 
traditional energy saving actions or behaviors, based on characteristics such as cost, energy 
impact, who performs the action, and so forth. A second collected energy saving actions from 
other cultures and throughout history as inspiration for modern day energy saving innovations, 
and their energy savings were quantified to provide an opportunity map for design efforts and 
recommendation systems in the future. 

1.3.2 Behavioral Interventions (“Programs”) 

We developed and tested the effectiveness of several types of behavior change interventions.  
Figure 2 names these types and example topics in each. (Specific projects in each of the 
categories are reviewed in Table 1.) Given technology’s central role in this Initiative, it is 
depicted at the heart of the diagram below, and for the rest of this report Technology is broken 
out separately from the other types of interventions. However, note that the energy data 
produced by the sensors and technology projects is also used by the other three types of 
behavioral interventions. The arrows between the types of interventions below indicate that 
projects are mutually reinforcing and can both stand alone (e.g., a single test of one media 
strategy) and be combined in a coordinated system (e.g., different media strategies that 
incorporate policies). The general framework of multiple intervention types and their 
synergistic effects was adapted from the socio-ecological theory mentioned above which is 
widely used in public health. 
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Figure 2: Three Behavioral Intervention Categories for Energy Efficiency Projects 

 

 

1.3.3 Evalution and Modeling 

Three projects focused further on developing methods for evaluating the effectiveness of energy 
programs, and modeling the effectiveness of interventions to guide future work. One project 
used economic methods to quantify the effectiveness of Google Powermeter in saving energy; 
the approach could help inform approaches for legitimizing energy savings from behavioral 
programs in utilities and government agencies. A second project developed Twitter Explorer 
which collects and analyzes tweets, to track and map conversation changes pertinent to 
specified topics such as energy across the internet’s online social network. A third project 
developed a simulation tool that allows one to model the energy savings of behavioral 
interventions according to parameters such as time, behavioral technique used, and social 
network distance and type, and served as a foundation for other tools that could eventually 
lessen time and cost of developing future interventions through predictive modeling. 
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1.3.4 The Projects 

There are 19 projects summarized in Table 1, as well as the new integrative Project 20 that is 
underway with additional funding from ARPA-E.  The table shows the project number, its 
category (technology, intervention, evaluation and modeling), its name, deliverables, 
investigators and their Stanford University departments as well as partners.  The rest of the 
report provide more details on each of the projects, and concludes with impacts and 
recommendations. 
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Table 1: List of Major Projects of the Stanford Initiave, Project Goals, and Lead Investigators 

Project # - 
Report 
Section 

Project Name Goals Investigators Stanford Departments & 
Partners 

Technology 
1 Open Extensible 

Communication 
Network 

Development of an extensible  HAN 
protocol to enable innovation 

Levis, Kazandjieva CS 
 

2  Stanford ESP Database + analytics for experimentation 
at Stanford and beyond 

Armel, Reeves PEEC, Communication 
Jay Bartels and Andrew 
Davidson at Bonsai 
Development Corp. 

Algorithms 

3 Energy Consumption 
Forecasts  

Segmentation of commercial and 
residential energy use data, models that 
forecast building energy consumption to 
guide utility interventions 
 

Fischer, Rajagopal, Albert, 
Kavousian 

Civil & Environmental 
Engineering 
Google, Pacific Gas and 
Electric (PG&E) 

4 Advanced Learning 
Automation 

Software to customize HAN automation, 
specifically automation based on action 
recognition and individual preferences 

Aghajan, Khalili, Chen EE 

5 Disaggregation 
Technical and Policy 
Survey Paper  

Assessment of the benefits of 
disaggregation, state of the art 
algorithms and performance, and smart 
meter suitability for this data  

Armel, Gupta, Shrimali, Albert PEEC, FS/ISB, EE 
Bidgely, Venrock 

6 Residential Energy 
Disaggregation Dataset 
(REDD) 

Data set collected for developers to build 
and test disaggregation algorithms 

Kolter, Chadwick, Armel, 
Flora 

CS, PEEC 

7 Disaggregation 
Algorithms 

Development of algorithms to identify 
appliance level energy information from 
whole home data stream 

Ng, Kolter CS 
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Target Behaviors 

8 Energy Behavior 
Taxonomy 

Catalog of energy behaviors, and their 
impact and barriers 

Flora, Boudet, Roumpani, 
Armel 

H-STAR 

9 Identification of 
Innovative Energy 
Behaviors 

Identification of innovative energy 
reducing behaviors and their potential 
imact 

Armel, Cornelius, Ardoin, 
Plano, Bridgeland, Morton, 
Chang, Allen 

PEEC, E-IPER, Education 
IDEO 

Interventions 
Media Interventions 

10 Multiplayer Online 
Game  

Online game utilizing team competition   Reeves, Cummings, 
Scarborough 

Communication 
Kuma Games 

11 Collective Action 
Feedback Interface 

Web application that helps consumers 
monitor goals and compare energy use 

Walton, Sparkman, Clark, 
Paunesku, Armel, Luo, Flora 

Psychology 
Steve and Lisa Schmidt & 
City of Mountain View 

12 Visual Metaphors in a 
Virtual Immersive 
Environment 

Development and evaluation of 
metaphors to make energy vivid and 
personal 

Bailenson, Bailey, Flora, 
Armel, Voelker, Reeves 
 

Communications, PEEC 
DraftFCB 

13 Motivationally Framed 
Facebook Applications 

Web interfaces to motivate energy 
reductions 

Banerjee, Flora, Sahoo, 
Bhansali, Greenspan, 
Khakwana, Liptsey-Rahe, 
Madres, Manley, Omer, 
Rajendra,  Scalamnini, Wong, 
Stehly, Voelker 

Mechanical Engineering, H-
STAR 

Incentive Interventions 

14 Appliance Calculator Information and framing tools for guiding 
the purchase of energy efficient 
appliances and electronics  

McClure, Houde, Armel Psychology, MS&E, PEEC 
Sears 

15 Transportation Lottery  Utility program that stretches the 
motivational value of monetary 
incentives  

Prabhakar, Merugu, Pluntke, 
Gomes, D. Mandayam, Yue, 
Atikoglu, Albert, Fukumoto, 
Liu, Wischik, Rama 

EE 
National University of 
Singapore, Land Transport 
Authority of Singapore 
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Community Intervention 

16 Girl Scout “GLEE” 
Program 

Curricula that increase engagement with 
sensor data and diffuse sensor use and 
energy saving actions to families 

Robinson, Ardoin, Boudet, 
Flora, Armel 

Pediatrics, Education, H-
STAR, PEEC 
Girl Scouts, People Power 

Evaluation & Modeling 

17 Google Powermeter 
Evaluation 

Field trial of Google PowerMeter impact 
using analysis tools from economics 

Houde, Sudarshan, Todd, 
Flora, Armel 

MS&E, PEEC 
Google 

18 Social Media Analytics 
with Twitter Explorer 

Analysis of the “conversation” about 
energy efficiency and behavior on the 
web & analytical tool for platform 

Russell, Rubens, Flora H-STAR 
University of Electro-
Communications, Tokyo 

19 Diffusion Modeling of 
Behavioral Interventions 

A simulation model to predict diffusion in 
behavioral interventions 

Shrager Symbolic Systems 

Integrative Project 

20 Integrative Project An integration of some of the most 
effective pieces of the initial projects, as 
well as new components such as 
narrative and added diffusion strategies 

Armel Habitable, Free Range 
Studios, possible others 

CS = Computer Science 
E-IPER = Emmett Interdisciplinary Program in Environment and Resources 
EE = Electrical Engineering  
FS = Freeman Spogli Institute for International Studies at Stanford 
H-STAR = Human Sciences and Technologies Advanced Research Institute 
ISB = Indian School of Business 
MS&E = Management Sciences and Engineering 
PEEC = Precourt Energy Efficiency Center 
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CHAPTER 2: 
Technology 
There are several aspects of the technical platform: hardware and a communications network; 
an Energy Services Platform (ESP) to streamline creating behavioral programs; and several 
types of algorithms to perform segmentation, automation, and disaggregation. Energy saving 
target actions were also collected for recommend systems. 

2.1 Open Extensible Communication Network 
2.1.1 Background 

A Home Area Network (HAN) is a type of local area network that facilitates communication 
and interoperability among digital devices present inside or within the close vicinity of a home 
(through wired connections or wirelessly), such as "smart" appliances”, home security systems, 
lights, and audio-visual consoles. Computers and smart phones receive data from and can 
sometimes control these devices through communication with the network. From an energy 
perspective, a HAN can enable control from a distance or can be programmable; it can be used 
to turn things on and off, reduce energy voltage, or put electronic devices in “sleep” mode to 
reduce energy waste when spaces are unoccupied, or devices are not needed to continually be 
in “active” mode. HANs can also “learn” use and occupancy patterns such that devices use 
energy only when necessary. 

It is important to expand opportunities for flexibility and innovation in Home Area Networks 
(HANs) with an open and extensible communications protocol that will allow for unforeseen 
behavior change opportunities that can lead to energy use reduction or increased energy 
efficiency.  For example, if research indicates that high frequency, real-time traces of energy use 
are effective at changing user behavior, having an open and extensible underlying technology 
will make it easier to provide such data.  An open technology will also provide greater freedom 
in data collection, representation, storage, and communication between devices of different 
manufacturers, all leading to innovations and improvements in human interfaces to sensor-
actuator networks. 

2.1.2 Objectives 

In order for this opportunity to be available for the next stage of research and real world 
applications, Professor Levis aimed to design and implement an open-source network 
architecture for home area networks. The first major deliverable was open-source code that 
could be used on a wide range of sensor hardware. The second major deliverable was an 
extensible and open-source sensing hardware platform for smart meters.  Together, these two 
provide a complete hardware and software solution that users and companies can build on. 
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2.1.3 Methods - Deliverable 1, Open-Source Code 

HANs have been plagued and limited by numerous, overlapping, closed commercial standards. 
As open-source implementations of closed protocols are of only limited use, Professor Levis 
participated in an effort to define an open Internet standard, called an IETF request for 
comments, or RFC. This RFC would provide an open and free definition of how HAN devices 
should interoperate in order to communicate data with the larger Internet. The protocol 
described in the RFC is called RPL (“ripple”), or Routing Protocol for Low Power and Lossy 
Networks. Professor Levis would follow this protocol standardization with supporting and 
managing an open-source implementation of RPL in the TinyOS operating system, an operating 
system written by Professor Levis and used by tens of thousands of people worldwide. 
Together, this means there is now an open standard for TCP/IP in HANs as well as an open-
source reference implementation of the standard for others to copy, extend, re-use, and 
improve. 

2.1.4 Outcomes - Deliverable 1, Open-Source Code 

The major deliverables were completed. The RPL RFC was ratified in March of 2012. There are 
now numerous implementations and interoperability tests at IETF meetings. The TinyOS 
implementation of RPL supports almost all of its major features. Using TinyRPL, a developer 
can quickly build a large-scale, multi-hop wireless mesh that self-organizes to support TCP/IP 
to every device and self-heals in response to wireless signal changes, adding new devices, and 
devices failing. This open-source implementation has been used in several research papers as a 
basis for exploring ways to improve RPL and has also been used by several companies for 
prototyping new products. 

2.1.5 Methods - Deliverable 2, Sensing Hardware 

Professor Levis had proposed building an open hardware platform for smart meters that would 
allow scientists to access data at a scale or fidelity that is difficult to achieve with existing 
commercial products. The necessary lead-time for hardware development given the safety 
certifications needed for such a device turned out to be too long for the results to be useful to 
other scientists in the project who might have benefitted from the data. The reasonable time 
estimates for the project indicated that Professor Levis’ team would have working sensors as 
data collection began to wind down. The team therefore decided to build a simple and easier 
power plug meter that would measure devices rather than whole buildings. This plug meter 
would use the TinyOS operating system and RPL protocol to establish and test its design. 

2.1.6 Outcomes -Deliverable 2, Sensing Hardware 

The team developed a wireless power plug meter that automatically joins a self-assembling, ad-
hoc wireless mesh network to deliver data to collection points. They open-sourced the design, 
which has been used by several follow-on efforts by other groups as a basis for their own power 
plug designs. The team deployed a network of 200 such meters in the Gates Computer Science 
building at Stanford for over two years to obtain long-term, fine grained power draw 
measurements of the building’s computing systems. This extensive data collection allowed the 
team to publish detailed data at a scale order of magnitude than other, similar efforts, as well as 
establish the basic methodologies one should follow to measure computing energy. The lead 
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student on this project has now graduated and has been working with several green computing 
companies in the Bay Area to write future energy standards for computing systems. 

2.1.7 Future work 

This work should have significant real world impact moving forward. These efforts helped 
establish the first Internet standard for HANs, which is being adopted by industrial consortia 
such as WirelessHART and ZigBee. The open source implementation of the protocol in TinyOS 
provides a starting point for its demonstration and improvement, both through research and 
engineering.  The embedded wireless plug meters demonstrated low-cost ways to densely 
measure computing energy and have established techniques on how to collect and analyze such 
data. In summary, the open-source thrust of this work should facilitate real-world impact, as a 
ready-made hardware and software solution that can be easily extended will reduce the cost of 
entry for new companies and lower the bar for innovation. 

2.2 Stanford Energy Services Platform (ESP) 
Investigators: K. Carrie Armel, Byron Reeves, Jay Bartels, Andrew Davidson 

2.2.1 Background 

Many researchers are designing and testing feedback interfaces, as evidenced by proceedings 
from conferences such as the Behavior, Energy and Climate Change Conference (BECC) and the 
Computer Human Interaction Conference (CHI), and the dozens of publications on the topic 
over the past few decades (for reviews see Darby, 2006; Neenan & Robinson, 2009; Ehrhardt-
Martinez & Donnelly, 2010). However, the research team found through interviews that 
researchers typically build the various software services needed from scratch and in a piecemeal 
manner.  As a result, valuable time and resources are wasted, and often, researchers are 
confined to running very small scale experiments (i.e., 10-30 people per studies, only a couple 
studies per year). A platform could be of great benefit to researchers, utilities, and third party 
developers in this space. This kind of software is not available off the shelf, and the system has 
not been built in full robustness because while the benefit is high, the amount of effort for any 
one group to build the system is very large. 

2.2.2 Objectives 

The Stanford ARPA-E Energy Services Platform (ESP) is an attempt to address this need for 
feedback interface software that is available for multiple parties to use. The platform provides 
software services including data collection, data cleaning and storage (e.g., sensor, click, and 
survey data), analytics (e.g., baselining, comparison to other users, disaggregation), graphing, 
recommendation systems, participant registration and assignment, and front-end display and 
email notifications suitable for performing experimental manipulations. 
2.2.3 Method 

The ESP was coded by Bonsai Development Corporation, informed by the needs of Stanford 
ARPA-E Initiative projects. Five Stanford behavioral programs have or are using the ESP: 
PowerDown, Power House, Kidogo, Appliance Calculator, and Girls Learning Energy and Environment 
(GLEE). 
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2.2.4 Outcomes 

The ESP platform has been created, including a back-end with data and service layers, and a 
front-end presentation layer (see Table 1). The software engineering design emphasizes 
modularity, extensibility, security, and scalability. 

The data layer includes data collection, storage, and retrieval. There are currently five logical 
data stores, containing different types of data: (1) energy data (the system currently collects, via 
a web collector, hourly electric and gas smart meter data being stored by utilities), (2) project-
specific data (e.g., experiment details, investigator names for data access), (3) participant data 
(e.g., survey input, utility username/password), (4) website/application activity, (5) external 
data (e.g., weather, regional specific information like fuel type penetration or socio-
demographic characteristics), and (5) recommendations, including energy-saving actions and 
also energy efficient appliance recommendations.  

The services layer is anything that requires computation, logic, or analytics, such as baselining, 
graphing, or disaggregation; a determination of recommendations; or participant registration 
and assignment. Several services were developed to group data in ways that could motivate 
behavior change. For example, the team compared a user’s energy usage to their baseline, or to 
a groups’ energy usage, through numbers and graphs. The Appliance Recommendation System  
uses user inputs on characteristics of their current appliance, what state they live in, and 
preferences for new appliance attributes, in concert with the databases described above, in 
order to provide recommendations on whether one should upgrade to a new appliance, and, if 
so, which one. 

The front-end of the system is the presentation layer, and refers to the device (e.g., computer, 
ipad, handheld), application type or medium (e.g., text messaging, widgets, flash animation, 
social media), and graphical user interface (GUI) characteristics (e.g., style and layout, type of 
content (i.e., which widgets?), as well as the actual content (the specific text, images, sounds)). 
For research and evaluation purposes, it is important that users across a broad range of 
technical capabilities have flexibility and control in the presentation layer. This is important 
because researchers need to be able to make front-end changes to the applications easily and see 
the results, so they can continuously iterate, and to create variations on a “parent” web-page so 
they can easily create different conditions for their experiments. With the ESP developers can 
control the presentation using various technologies, depending on their skill level and desire for 
customization. These technologies include: 

• Software Developers Kit (SDK): The platform has an API that can be made available 
for users with programming knowledge that allows them near complete flexibility in 
designing and developing applications (e.g., mobile, website, Facebook), while 
accessing databases or services on the platform.  

• Mash-Ups: These are easier to use than an API, but allows the same access as the 
API, it is so suitable for those with limited programming knowledge.  
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• Widgets: the platform also allows for users with no programming knowledge to 
create applications, for example, by selecting and then dragging and dropping pre-
made modules or “widgets” in systems such as iGoogle, Google sites, and iWeb.  

• Off the shelf packages: Various presentation oriented packages, also known as 
management systems (CMS) such as Drupal or Joomla, can be interfaced with this 
platform. 

2.2.5 Next Steps 

The code for the system is being streamlined for use by outside groups (such as research groups 
or start-up companies), documentation is underway, and an online licensing agreement is being 
set up. 

2.3 Algorithms 
2.3.1 Residential Energy Analytics Segmentation, Targeting, Thermal Response, & 
Building Energy Efficiency  

Investigators: Ram Rajagopal, Martin Fisher, June A. Flora, Jung Suk Kwac, Adrian Albert, 
Amir Kavousian, Jeff Wong 

Partners: PG&E, Google 

2.3.1.1 Background 
Utility demand-side programs are designed towards achieving set target kWh reductions in 
consumption for a given time horizon. Demand response programs aim at short time scale 
reductions, such as 10 min to one hour, while energy efficiency programs aim at longer time 
scale baseload reductions such as over the period of weeks to years.  Success of a program is 
measured by the yield in the program: the ratio between projected reductions and achieved 
reductions. Typical yields in current utility programs are in the low range of 10-30 percent. The 
primary reason is due to customer enrollment challenges. The population of consumers can be 
segmented according to how the program benefits them as shown in Figure 1(a). There are four 
groups of customers. The customers with large positive benefits usually enroll in the program, 
but are a small fraction of the customer population.  Similarly, the customers with large but 
negative benefits (group C) usually do not enroll as expected.  More importantly, customers 
with small positive benefits (group A) fail to enroll. Moreover, customers with small negative 
benefits (group B) who could also achieve positive benefits by performing small and 
inexpensive changes in consumption patterns also do not enroll. Groups A and B form the 
majority of the population and need to participate if a program aims at high yields. The team’s 
goals within the ARPAe projects were to develop and test scalable methods and metrics for 
customer segmentation; develop algorithms for customer targeting for demand response 
programs, and predicting energy consumption thermal response. 

2.3.1.2 Partners and Data 
We utilized an anonymized large utility provided data-set with more than 250,000 PG&E 
customers with at least one year worth of hourly smart meter data recordings. The research 
team also used TED collected data on over 1,000 Google employees.  
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2.3.1.3 Methods 
The sum of the methods was titled Behavior Analytics. The research team began by building a 
basic methodology for characterizing an electricity customer. The methodology decomposes a 
customer’s consumption into daily load shapes. Load shapes are then analyzed in aggregate to 
obtain a small number of typical loads shapes that characterize the whole population. These 
typical load shapes can be used to build behavioral models for customers which examined 
features such as variability, amount of kWh consumed, and thermal response.  Finally, 
innovative methods to quantify the energy efficiency of buildings were developed. 

The four projects examined methods and outcomes of customer’s consumption segmentation, 
targeting, thermal response, and quantification of energy efficiency in buildings (See sections A-
D below).  

Load Shape Clustering and Customer Segmentation 

The wide-spread deployment of smart meters has made available concrete information about 
customer consumption patterns or load shapes, including the magnitude and timing of their 
electricity consumption. To populate a dictionary of representative load shapes for a large data 
set, a hierarchical clustering algorithm has been developed to separate shapes that are "close" to 
each other into different groups. This massive data analytics is scalable and reveals various key 
information about the data, including the most frequent load shapes that characterize a 
customer's lifestyle, the number of peaks, peak times and peak durations. The load shape 
dictionary is used to segment customers according to extracted features such as entropy of 
shape code which measures the amount of variability or stability in consumption. Segmentation 
strategies can be developed to target customers for specific applications such as demand 
response (DR). For example, to target households for an automated DR program, the focus 
should be on heavy use and stable customers, in the appropriate time-based segment. So 
segmentation can be an effective filter to reduce the number of eligible customers. This is 
particularly useful when the customer size is very large in a full-scale deployment. Also it will 
be easier to forecast consumption at an individual level for stable customers, and harder for 
unstable customers since variability is larger in their usage patterns 

Customer Targeting Strategies fo Improving Program Efficiency  

The idea of demand side load management has been employed to help reduce energy 
consumption at peak hours and provide demand curtailment during periods of shortfall in 
renewable generation. To achieve these objectives, utilities are rolling out different energy 
programs, such as demand response (DR), to small and medium sized customers. Recruiting a 
customer into an energy program can have significant costs, including market enrollment, event 
notification, and very often, the setup for enabling hardware at the customer premise. 
Moreover, the power curtailment potential across customers varies significantly. So for utilities 
to achieve high yields (for example, high energy savings) in these energy programs, effective 
strategies need to be designed to identify and target the right customers. For instance, one 
should not first target customers who will unlikely be consuming large amount of energy at 
peak hours for a peak load reduction program. The availability of smart meter data allows a 
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close examination of the customers' potential for an energy program, so that they are chosen 
adequately to balance the magnitude of response potential (reward) and the uncertainty in the 
prediction (risk). In this project, the research team proposed a methodology to use a large data 
set with 200K smart meters to select the right customers for a given level of enrollment 
expenditure. The focus is on the Smart AC program that curtails power consumption by 
increasing the temperature set-points. The method combines a customer response forecast 
model estimated from data with a stochastic discrete optimization program that selects 
customers in order to minimize risk given a desired level of curtailment response. The 
algorithm gives a minimum number of customers needed to achieve a certain energy reduction 
target and a list of customers who can achieve this goal with a certain confidence level 
(probability). This is a scalable selection algorithm and has been validated on a large data set. 

A key measure of success for an energy program is its ability to consistently achieve its energy 
saving goal. So a demand response (DR) program (with incentives), combined with a targeting 
mechanism and appropriate promotion messages for specific customer segments, built upon a 
number of DR experiments, needs to eventually induce "steady-state demand response 
behavior". Such steady-state behavior is necessary in helping utilities measure and quantify the 
amount of "reliable load reduction" from demand response. This also allows a better 
understanding of DR availability to identify key customer characteristics (such as 
demographics, or environmental orientation) that drive energy sustainability in each program. 

Load Flexibility and Management of Thermal Sensitive Load 

Thermal-sensitive energy consumption, such as that from a heat, ventilation and air 
conditioning (HVAC) unit, accounts for 25% of the residential electricity usage in the U.S. and is 
the single largest block of the electricity budget for most customers. There has been tremendous 
interest and effort in developing methodologies to decompose individual consumption into a 
thermal -sensitive component and a non-thermal-sensitive base load. Models and algorithms for 
stacking individual energy consumption in such a structure provide a useful mechanism for 
understanding the flexibility in managing customer load, and subsequently making effective 
demand response and energy efficiency intervention decisions. The team developed a model of 
temperature response that is based on "thermal regimes" for separating the thermal-sensitive 
load from the thermal-insensitive base load. These "thermal regimes" are consumers' 
unobserved decisions to use their heating or cooling appliances. With this description of 
consumption, a system operator could manage the thermal usage component over the course of 
a planning horizon (24 hours) for a large population of consumers by communicating actions 
(thermostat temperature settings) to them such that the aggregate load follows a desired profile. 
This knowledge allows scarce operational and marketing budgets to be allocated to the right 
consumers when DR programs are executed. Moreover, the features computed from the 
temperature response model could be used to predict actual characteristics; for example, the 
presence of large appliances is best predicted by consumption magnitude features, and lifestyle 
is predicted by the rate at which consumers switch between different consumption regimes. 
Energy efficiency programs can also be designed to offer the right incentives, such as rebates for 
efficient appliances, to the consumers whose appliance stock and lifestyle patterns are likely to 
sustain most long-term energy savings. 
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Ranking Energy Efficiency of Buildings 

Quantifying building energy efficiency is essential to developing and monitoring energy 
efficiency programs. Existing methods for energy efficiency ranking are time-consuming 
(thermodynamic models), based on industry averages as opposed to observed operational data 
(simulation models), non-adjustable to specific situation of a building (Energy Star), or too 
simplistic (energy intensity comparison). Frontier methods, on the other hand, quantify the 
energy efficiency of buildings by forming an efficient frontier (i.e., best-practice technology) and 
comparing all buildings against that frontier. The efficient frontier specifies the lowest energy 
consumption observed at any Level of Service, which is defined as the utility that the users 
receive from using energy. This is an indicator of the utility (service, output) that a building 
provides to its occupants. Stochastic Energy Efficiency Frontier (SEEF) is a performance-based 
method based on frontier methods for ranking building energy efficiency. It specifies the best 
practice combination of energy consumption and the level of service. It offers several 
improvements over existing frontier methods, such as recognizing the random nature of energy 
consumption and treating energy efficiency as a random variable. It creates a ranking process 
that identifies a probability distribution of building efficiency ranks, instead of declaring a 
building is more efficient than another deterministically. The method also uses actual data to 
estimate uncertainty of efficiency scores. 

2.3.2 Advanced Learning Automation 

Investigators: Hamid Aghajan, Amir Hossein Khalili, Chen Wu, Louis Chen 

2.3.2.1 Background 
While encouraging user’s proactive involvement in reducing their energy use is an important 
goal, a complementary strategy looks at how automation can improve efficiency or reduce 
energy waste with minimal user input; for example, automatically shutting off lights or 
appliances that are not in use or adjusting the temperature control in response to outside 
weather conditions.  This approach has the potential to reduce energy use with little direct user 
effort, circumventing persistence issues in user behavior.  In order for these techniques to be 
effective, however, they need to consider behavior.  The vast majority of current home 
automation systems operate without such consideration, using one of two insufficient 
paradigms: 1) either the systems operate using fixed rules that fail to account for individual 
differences or 2) they require that users specify the operation rules themselves which is time 
consuming, unintuitive and may be easily ignored. 

2.3.2.2 Objectives 
The first aim was to create a solution that is an integrated approach based on ubiquitous 
sensing of the environment, and algorithms that will predict user behavior and automatically 
adapt. The second goal was to evaluate the system through in vivo testing – that is, testing in a 
space that is being used for real work or living functions. Deliverables for this project included 
building and implementating a model using real world data that predicts user behavior. 
Predictions from the modeling system are integrated into existing user interfaces, to display 
predicted future behaviors in a visually accessible manner. 
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2.3.2.3 Product Description and Study Methods 
The automation was accomplished by using machine learning algorithms that address both user 
models and decision-making.  Modeling algorithms use sensor data collected from a variety of 
sources.  Such a model could learn from observations such that, for example, when a user is 
sitting in the living room in the evening, the TV and lights in that room are likely to be on.  And 
it could also learn the probability that the user will transition to a different situation (such as 
going to sleep). The team can then apply decision-making algorithms to prescribe system 
changes that limit energy use; for example, the system could predict that computer use is 
typically low while the user is watching TV, and it could power down the computer in another 
room.  The key element is that both the modeling and decision making processes are adaptive 
and will adjust to a user's behavior without requiring manual entry of preferences. 

2.3.2.4 Outcomes 
To achieve adaptivity in providing services to the user, the system was found to need to 
support two functions:  1) sense the activity and state of the user, and 2) customize service to the 
user's profile. To achieve this, three functional modules were developed and described in 
published papers. In the first module, behavior analysis of the user in a home environment was 
achieved based on multi-camera vision processing. In the second module, a user profile was 
defined and hierarchical reinforcement learning was employed as a technique to learn the user 
profile dynamically. The third module is a decision maker which employs the user profile to 
control services to maximize user comfort and utility. An automated light and TV control 
implementation using a network of wireless switches was developed based on detecting the 
location of a user and his pose with a number of cameras. A web-based user interface was 
developed to capture the user’s input about the automation setting and build a context-aware 
user profile, which was used to adapt the setting according to the user’s preferences. For 
additional details, see publications at: 
http://peec.stanford.edu/energybehavior/projects/HAN_automation.php. 

2.3.2.5 Next Steps 
On further development effort, algorithms can be created to detect complex but unobvious 
schedule regularities and automatically control devices in a home area network (HAN), and the 
behavior of which can change over time to adapt to the underlying changes in the user’s 
behavior or preferences or with seasonal changes. Other algorithms can be developed to track 
actual and expected energy use of appliances and suggest when appliances or electronics 
should be repaired or replaced.  On commercialization efforts, the research team can share their 
findings with commercial entities involved in home automation services and collaborate with 
them on developing test cases for actual user deployment settings.  
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2.3.3 Disaggregation 
2.3.3.1 Disaggregation Technical and Policy Survey Paper 
Investigators: K. Carrie Armel, Abhay Gupta, Gireesh Shrimali, Adrian Albert  

Background 

Appliance-specific feedback may be the most effective type of energy feedback data for the 
purposes of reducing energy consumption. Appliance specific feedback can achieve this in 
numerous ways, as seen in Table 1. 

Table 2: Energy Feedback from Appliances 

Benefits  Domain Explanation 

C
on

su
m

er
 

Residential Energy Use Greater energy reductions from this type of feedback 

(a) Automated personalized recommendations (through auto-
commissioning, fault detection, elucidating behavioral patterns, 
analysis of when and what type of new appliance to purchase 
based on current use, etc.), (b)  personalized recommendations 
allow for personalized information to reduce barriers to energy 
efficient actions (e.g., mapped recommendations on where to 
purchase recommended items); enabling of additional/enhanced 
behavioral techniques (feedback, competition, visualizations, 
markets, incentives, etc.) 

Commercial Energy Use  Similar application to residential; large untapped savings here 

R
es

ea
rc

h 
an

d 
D

ev
el

op
m

en
t 

Appliance Innovation Better data to (a) redesign appliances for energy efficiency, (b) 
improved standards, and (c) back up appliance energy efficiency 
marketing 

Building Research and 
Design 

Improved building simulation models to increase design and 
operational efficiency (commissioning and auto-commissioning) 

U
til

ity
 a

nd
 P

ol
ic

y 

Segmentation for 
Energy Efficiency 
Marketing 

Strategic, specific, energy efficiency marketing 

Program Evaluation (a) Improved objectivity, sensitivity, and causal inference in 
program evaluation; secondary benefits of (b) improved program 
design from improved evaluation learnings, and (c) diversification 
of program types, because these can be quantified, and utilities in 
many states are incentivized when program savings can be 
quantified 

Building and Contractor 
Ratings and Incentives 

Affords performance based metrics, ratings, and incentives of 
buildings which could impact real estate value, and evaluation of 
contractor performance 

Economic Modeling and 
Policy 
Recommendations 

(a) Improved load forecasting; (b) Improved economic models to 
better inform policies and funding allocations 
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Many approaches for supplying appliance-specific feedback are costly or effortful because they 
depend on hardware installations. Another approach is disaggregation - the use of algorithms 
to break down an aggregate or whole-home energy signal into its component 
appliance/electronic contributions. 

Objectives 

In this comprehensive survey paper, the research team explain how appliance level data affords 
numerous benefits, and why using the algorithms in conjunction with smart meters is the most 
cost-effective and scalable solution for getting this data. They reviewed disaggregation 
algorithms and their requirements, and evaluate the extent to which smart meters can meet 
those requirements. Research, technology, and policy recommendations are also outlined. 

Methods 

In addition to reviewing relevant academic literature, white papers, and manufacturer’s 
manuals, the team interviewed dozens of professionals across relevant sectors, and included 
electrical engineers with relevant expertise as co-authors. These approaches were particularly 
helpful in determining disaggregation algorithms data requirements as well as the type of data 
that is currently available through deployed smart meters. 

Outcomes 

The work reviewed suggests that there are compelling reasons to pursue disaggregation, and 
that it may be possible to leverage existing or future smart meters so that appliance specific 
information can provide benefits at scale. The following are several specific recommendations 
for moving forward, which are elaborated on in the paper.  

The following research and development activities are suggested, as well as fiscal support for 
these:  

1. Improve disaggregation algorithms, in order to improve robustness, accuracy, and 
number of appliances identified by the algorithms, while reducing frequency, 
processing, and training requirements, and develop high-yield data compression 
algorithms. These improvements will move algorithms closer towards in commercial 
grade (i.e., consumer acceptable) products, and will result in algorithms improvements 
that will enhance their ability to facilitate energy reductions under more diverse 
hardware conditions and while consuming less energy to operate. 

2. Develop a common data set that captures variability over appliances as well as 
operating conditions. One such data set has been created at Stanford (see REDD project). 
Most of the algorithms that have been developed to date have utilized data from only a 
couple of buildings and so training and testing on this new data set should significantly 
improve the accuracy of the algorithms across a more representative and diverse 
housing stock. It would also be beneficial to: (a) Establish performance metrics, such as 
common definitions of accuracy to enable the comparison of algorithms, so that the 
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effectiveness of different algorithms can be compared. (b) Organize a competition, as has 
been done previously with algorithm development in other domains.  

3. Facilitate testing of compression and disaggregation algorithms on actual smart meters, 
to evaluate performance.  

4. Perform key behavioral research: Identify popular use cases and their information 
requirements, as this has relevance to data handling and consumer display 
requirements.  

The following steps should be taken to improve data on existing meters. Regarding firmware 
upgrades, these are similar to software updates, and can be performed remotely and can be 
appended to routine updates so as to minimize cost. 

1. Upgrade firmware to make reactive power available in addition to real power. This 
allows algorithms to disaggregate more devices. 

2. Upgrade firmware to support data compression. Transmitting events/transitions instead 
of raw load profiles could significantly improve the frequency of data available to HAN 
devices, as band-with is currently the bottleneck. 

Regarding future smart meter hardware and firmware, it is recommended to: 

1. Be capable of 10-15 kHz frequency, which would only cost $5-10 more, but would likely 
enable a jump in accuracy and the number of appliances recognized. Also, improve 
wattage granularity. These modifications could garner additional energy saving 
opportunities from additional identification of devices (electronics are the fastest 
growing energy consumer in the residential sector) and recommendations. 

2. Be capable of supporting disaggregation inside smart meters through firmware  
toupgrades; this would avoid AMI or HAN network constraints on the amount of data 
that can be transmitted and thus disaggregated (resulting in identification of fewer 
devices).  

3. Add or replace 802.15.4 based radio (used by ZigBee) with 802.11 (WiFi or low power 
WiFi) so that meters can communicate directly with the broadband routers, rather than 
require additional hardware.  

Additional policy recommendations include:  

1. Disaggregation developers should contribute use case specifications and requirements 
to the standards process so that other forthcoming communications technologies are 
better suited for disaggregation.   

2. Institute policies to ensure that utilities enable the HAN communication interface 
(example ZigBee radios in the meters deployed in CA) soon, at a minimum beginning 
with pilots.  
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3. Institute policies, such as rebates, to make HAN gateways (that enable consumers to get 
real time data from their smart meter) effectively free to consumers.  

4. Institute policies to ensure that utilities select HAN devices during pilots that allow 
consumers to access or share their data with any third party.  

5. Federal agencies and PUCs should demand improved transparency about meter 
specifications, and enable universities to test real meters to establish actual constraints.  

6. Utilities and regulatory agencies should expediently approve guidelines for addressing 
privacy issues, if they have not already.  

Future Work 

Smart meters, given their widespread roll-outs, and ability to circumvent cost and effort 
barriers, offer an opportunity for quick, sweeping market penetration of sensing hardware 
required for disaggregation in a relatively short time frame. Given the benefits, it is anticipated 
researchers, policy makers, and manufacturers will work together to realize the application of 
disaggregation with smart meters. To date, significant interest is evidenced by tens of 
thousands of downloads of this survey paper. Further, this work could clear the way for similar 
energy disaggregation work on gas, water, and transport, and the work could have significant 
implications for demand response program development and outcomes in the commercial as 
well as residential sector. 

2.3.3.2 Residential Energy Disaggregation Dataset (REDD) 
Investigators: J. Zico Kolter, Sarah Jo Chadwick, Larsen Plano, K. Carrie Armel, June Flora 

Background 

The previous project outlined the importance of disaggregation, as well as other energy data 
analytics, and identified the need for further algorithm development. Despite its potential, there 
are a number of obstacles that have hampered academic work on energy data analytics. Data for 
energy domains is typically collected by companies or utilities themselves, often at substantial 
cost, and there are several factors that make sharing this data difficult: 1) energy data at the 
level of individual homes or buildings has intrinsic privacy concerns: connecting even moderate 
frequency power measurements to a specific home or individual has the potential to reveal 
substantial information about that person; 2) the value of sharing data freely with the entire 
body of academic researchers can be unclear, especially when the data itself has substantial 
business value; and 3) the volume of raw data for many systems can often be quite large, and it 
is not clear how to widely share the data in a manageable fashion. Due to these factors, 
academic studies on energy data have often followed a less-than-ideal pattern: a study or 
analysis is conducted using data gathered from by a third party, but the data is not released and 
cannot be obtained by researchers looking to build on the data. The specific line of work that 
originally spawned the research team’s work, energy disaggregation and non-intrusive load 
monitoring, has followed this rough trajectory: despite work in this area for over 20 years, no 
independent studies prior to the initial release of REDD that used a common data set is known. 
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Objectives 

The Reference Energy Disaggregation Data Set (REDD) project collects such a data set and 
standardizes the data collection process. REDD is a free and publicly available energy data set, 
with common evaluation metrics, to be used by researchers and algorithm developers to 
develop algorithms designed to separate an aggregate or whole-home energy signal into its 
component appliance/electronic contributions, as well as in the development of other energy 
related analytics.  

Methods 

Four weeks of data were acquired from approximately 40 homes in the Boston and San 
Francisco metropolitan. In the West Coast data collection, monitoring devices were installed in 
up to seven homes for three to four weeks at a time; 30 homes were monitored over eighteen 
months. All of the below data was collected for 48 different circuit breakers, in 30 total homes, 
with the collection period for each home typically ranging from 2-4 weeks.  

We developed and refined a multistep protocol for data collection that details recruitment, 
consultation, hardware specifications, equipment installation and removal, data evaluation, and 
a one-hour energy debrief with participants. The REDD protocol was streamlined to work 
around complex issues that arose.  

The REDD monitoring devices were designed to record aggregate home power consumption 
signals at high frequency and granularity, as well as collect individual circuit-level and plug-
level power consumption signals. More specifically, in each home the research team monitored:  

1. Whole-home voltage and current monitored at high frequencies (16kHz), to record the 
actual AC waveforms of the aggregate electricity signals in the homes. Because the raw 
16kHz data is quite large, and consists mainly of repetitions of identical waveforms, the 
data was temporally compressed, and only report those times where the waveforms 
change (according to the criterion of a multiple changepoint detection algorithm). 

2. Per-circuit electrical power monitored at medium frequency (approximately one 
measurement every three seconds). Whenever possible, the circuit with a human-
readable description was labeled, and also identified some of the major loads present on 
the circuits. 

3. Per-plug electrical power consumption, monitored at medium frequency (often once a 
second, though some homes have only once-a-minute monitoring) for about 20 select 
plug loads in the home. In all cases the appliance being monitored is labeled in the data 
set. 

Taken together, such data gives a powerful snapshot as to what has happened regarding the 
energy in the house over this period: the whole-home signals provide high frequency data 
where devices can be identified the waveforms themselves, while the per-circuit and per-plug 
signals provide the “ground truth” labeling as to what was actually occurring the home. 
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Figure 3: REDD monitoring device collecting data from a circuit breaker panel. 

 
Source: Stanford University  

Outcomes 

The Reference Energy Disaggregation Data Set is available at: http://redd.csail.mit.edu. Here 
you can download an initial version of the data set, containing several weeks of power data for 
30 different homes, and high-frequency current/voltage data for the main power supply of two 
of these homes. The data itself and the hardware used to collect it are described more 
thoroughly in the Readme on the main page and in the papers: Kolter, J. Z., Chadwick, S.J., 
Armel, K.C.; REDD 2.0: The Expanded Reference Energy Disaggregation Data Set. (2013). In 
press; and J. Zico Kolter and Matthew J. Johnson. REDD: A public data set for energy 
disaggregation research and in proceedings of the SustKDD workshop on Data Mining 
Applications in Sustainability, 2011. [pdf]. Those wishing to use the dataset in academic work 
should cite this paper as the reference. Although the data set is freely available, for the time 
being the authors still ask those interested in downloading the data to email us 
(zkolter@cs.cmu.edu) to receive the username/password to download the data. See the available 
readme.txt file for a full description of the different downloads and their formats.  

In addition to this work providing data for algorithm developers and testers, it is anticipated 
that this database and protocol will allow professionals in other geographic regions and climate 
zones to collect and store data to facilitate the continued advancement of disaggregation 
algorithms. Of relevance to continued work is the lesson to date that even in homogenous 
suburban areas, home energy systems, appliance stock and consumption patterns are extremely 
diverse. 

Future Work 

This work is aimed at spawning the development of algorithms, more standardized testing of 
algorithms, and the collection of new datasets. Further, such a database could provide a 
foundation for open competitions to seed innovation. Finally, in the future, the research team 
would like to tightly integrate these types of data collection procedures into commercial devices 
developed by companies. 
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2.3.3.3 Disaggregation Algorithms 
Investigators: Andrew Y. Ng, Siddartha Batra, Tommi Jaakkola (MIT), Matthew J. Johnson 
(MIT) 

Background and Objective 

The potential of energy disaggregation algorithms - computer language instructions that do 
specific calculations,   to accurately determine electricicy consumption  for individual devices- 
holds promise for eliminating the need for costly equipment and installation processes typically 
required to monitor individual devices for power use.  Algorithms that can accurately 
determine this level of discrete information  have signifigance for potential application to utility 
demand response programs. Demand response programs seek to reduce demand on the electric 
grid to avoid the need to build new electricity capacity, and to avoid power blackouts , damage 
to transformers or disruption to power frequency. These types of events can be very costly and 
degrade the reliability and safety of the power system. However, algorithmic approaches to 
energy use disaggregation (a topic also referred to as non-intrusive load monitoring (Hart, 
1992), have traditionally been very simple, and focused solely on just detecting “device state 
changes” in a power signal; unfortunately, such detection alone does not actually give a 
breakdown of power in homes, and is fundamentally limited to monitoring frequencies where 
such “events” are obvious: the methods would be unusable, for example, using just hourly data 
from smart meters.  Thus, the algorithmic goal of this project has been to develop new 
algorithmic techniques that can breakdown energy more accurately than previous approaches, 
using data at a variety of different resolutions and times scales. 

Methods 

Formally, the algorithmic work pursued through this project approaches energy disaggregation 
as a source separation problem.  That is, given an observed aggregate time signal: 

𝑦1, 𝑦2, 𝑦3, … , 𝑦𝑇 

the goal of energy disaggregation is to find a breakdown of this signal into multiple 
components  

𝑦1
(1) 𝑦2

(1) ⋯ 𝑦𝑇
(1)

𝑦1
(2) 𝑦2

(2) ⋯ 𝑦𝑇
(2)

⋮ ⋮ ⋱ ⋮
𝑦1

(𝑁) 𝑦2
(𝑁) ⋯ 𝑦𝑇

(𝑁)

 

where each y_t^((i) ) term denotes the energy consumed by appliance i (for example, a 
refrigerator, dryer, computer, etc) at time t, with the additional constraint that at each time the 
power consumption of all the appliances must add to the observed total aggregate power.  
Although mathematically straightforward this problem is rendered very difficult by the fact 
that, without significant restrictions, there are any number of appliance powers that could add 
to a given total.  Thus, the algorithmic fundamentally focuses on two elements: specifying 
models of what appliances “typically” look like, as well as developing algorithms that can take 
such models and the aggregate signal, and predict the best breakdown of consumption. 
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Outcome 1: Energy Disaggregation via Sparse Coding  

The first study used a collection of about 10,000 individually monitored devices, with average 
power recorded each hour, and applied a method known as sparse coding to learn models for 
appliances and separate the signals.  The basic principle is to look at a fixed period of time (in 
this study, a single week was used), and express each appliances entire energy trace over that 
week in terms of some linear combination of “basis functions”. That is: 

�
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Where  𝑏1:𝑛
(𝑖)  are a set of basis functions that capture “typical” usage patterns for the ith device, 

and 𝑎1:𝑛
(𝑖)  are “activations” that specify which of these basis functions makes up any given signal.  

Given a collection of example usage patterns for an individual device, researchers can learn 
both the bases and activations using a method known as sparse coding (Lee et al., 2006); for this 
particular project additional algorithmic extensions were developed that tailor sparse coding to 
this source separation setting (Kolter et al, 2010). 

This study with this approach used data provided by Plugwise, a European manufacturer of 
plug monitors.  The team built models using appliance-level data from 413 homes, and then 
evaluated the learned models to separate appliances in the remaining 117 homes. Typical 
results of this method are shown in Figure 1, and on average the method is able to correctly 
assign 55 percent of the energy correctly into one of 10 device categories (evenly divided, so that 
random guessing would give about 15 percent accuracy).   Furthermore, the method requires 
only hourly data, which can be readily obtained from smart meters, and thus provides a 
method for approximate disaggregation that can use the existing monitoring infrastructure 

Outcome 2: High-frequency disaggregation via hidden Markov models 

Although the previous approach is promising in its ability to use the existing monitoring 
infrastructure, new sensing modalities offer the promise of much higher frequency data.  Thus, 
the team’s second project used the previously discussed REDD data set (Kolter and Johnson, 
2011) which was collected in conjunction with the algorithmic development presented here), to 
disaggregate energy in a home using ~1Hz data.  In particular, the research team used a model 
known as a factorial hidden Markov model (Ghahramani and Jordan, 1997), a graphical 
representation of which is shown in Figure 2, that captures a time varying process with several 
devices that can take on some discrete number of power states (e.g. on, off, standby).  While not 
all devices have discrete power levels, several common appliances do, and the method is able to 
accurately model most of the devices in a common home.  The particular algorithmic 
contribution for this work was to develop an “inference” procedure (an algorithm that 
determines the state of appliances given an aggregate signal) that was many times more 
accurate and faster than existing approaches (Kolter and Jaakkola, 2012). 

The main goal of this particular study was to evaluate the potential of higher-frequency data (in 
this case, 1Hz whole-home power) and compare to more traditional event based detection 
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methods.  Data from an initial release of the REDD data (including 6 homes) was used to build 
models for appliances and then separate out the different end-uses.  Figure 3 shows a typical 
example of the algorithm’s output, along with the output of an event-based approach.  In total, 
the algorithm correctly assigns about 87 percent of the energy in a home (again, assigning to one 
of 10 categories of end-use), whereas the event-based approach assigns about 49 percent 
correctly.  This highlights both the potential benefit to higher-frequency sampling, as well as 
demonstrates the advantage of using more advanced algorithms over the previous simple 
approaches. 

Future Work 

Next steps and future/ongoing work for these approaches include: developing methods that can 
build models using only unsupervised information (i.e., aggregate data alone), rather than both 
aggregate and individual device level; combining small numbers homes monitored at high 
frequency with large data sets of smart meter data; integrating the approaches into deployed 
systems in building energy management solutions. 

2.4 Target Behaviors 
2.4.1 Energy Behaviors Taxonomy 

Investigators: June Flora, Hilary Boudet, Carrie Armel, Maria Roumpani 

2.4.1.1 Background 
Energy actions or behaviors, such as purchasing a refrigerator, turning off lights, and cleaning a 
heating filter, are driven by various factors, and can be described along different dimensions. In 
trying to explain environmentally responsible behavior, Stern (2000) lists four major types of 
causal factors: (1) attitudinal, (2) contextual, (3) personal capabilities and (4) habit or routine. 
Numerous researchers — including Kaiser, Wölfing, and Fuher (1999); Barr, Gilg, and Ford 
(2005); Corraliza and Berenguer (2000); Oskamp (2000) and Shove (2010) — contend that 
psychosocial characteristics such as attitudes, beliefs, perceived norms, and perceived risk are 
not primary drivers of energy behaviors. Rather, they maintain it would be more useful to 
study the structural or personal capability causes of environmental behavior such as household 
location, frequency (or repetitiveness), skill required to conduct, and cost (Wilson & 
Dowlatabadi, 2007, p. 182)  

In this vein, different researchers have collected lists of energy behaviors and proposed 
different taxonomies or ways of classifying them according to subsets of contextual or personal 
capabilities dimensions. For example, a review of energy-reduction feedback interventions 
categorized energy behaviors by cost and frequency of performance (Ehrhardt-Martinez, 
Donnelly, & Laitner, 2010). Similarly, in reviewing how energy reduction behaviors were 
characterized in 28 studies, Karlin, Davis, Sanguinetti, Gamble, Kirkby, and Stokols (2012) 
distinguished curtailment behaviors from efficiency behaviors. Curtailment behaviors (Black, 
Stern, & Elworth, 1985) are generally habitual (Stern, 1992), low-cost, require little cognitive 
effort, can be undone, have lower savings impact, and can be performed by a wider range of 
actors (e.g., children). They amount to “usage-related adjustments” (Van Raaij & Verhallen, 
1983b; Dillman, Rosa, & Dillman, 1983) that require minimal or no structural changes.  Whereas 
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curtailment behaviors are simple and routine, efficiency behaviors require structural changes, 
are infrequent and expensive, require conscious decisions, are more permanent, and require 
more time (Karlin et al., 2012). Such behaviors go by several names, including technology 
choices (Stern, 1992), conserving behaviors (Dillman et al., 1983), purchase-related behavior 
(Van Raaij & Verhallen, 1983b), and energy efficiency choices (Black et al., 1985).  

This work has similar goals to that body of literature; however,  the research team collected a 
more comprehensive set of behaviors, identified ten different attributes or dimensions for 
classifying the behaviors, developed a rigorous and graded rating classification scheme and 
methodology, and explored how the behaviors clustered together based on the ratings on these 
attributes.  

2.4.1.2 Objectives 
The first goal of the energy-reduction behaviors project developed a data set of searchable 
actions that directly reduce stationary residential energy consumption and their behavior 
change attributes, the latter derived, in part, from behavioral science theory (Flora et. al. in 
preparation). 

The second goal of the project used the data set created in the first phase of the project to 
develop a framework for the systematic study of behavior attributes and how they cluster 
(Boudet et. al. under review).   

2.4.1.3 Methods for Behavior Set Selection 
The sample of energy efficient behaviors is an integration of lists of behaviors from public 
sources such as U.S. Department of Energy (DOE, 2012), Flexyourpower@CA.gov, and a 
comprehensive list produced by the city of Townsville, Australia 
(www.townsville.qld.gov.au/Pages/default.sapx) (full documentation of the source of every 
behavior is contained in the database).  The original behavior set was a collection of energy 
saving behavior lists compiled from the above publicly accessible materials. More than 500 
behaviors were in the original set. However, once redundancies were eliminated, inclusion and 
exclusion rules applied, large general actions were subdivided into smaller independent 
actions, the specificity of each behavior was standardized, and energy savings were identified 
or calculated, the behavior set was composed of 261 energy efficient behaviors (a 48 percent 
reduction). 

2.4.1.4 Outcomes 
In two papers, one in preparation another under review, the behavior attributes, their 
distributions in the behavior set, and the results of a cluster analysis or a grouping of behaviors 
into homogeneous groups were examined. 

Frequency of occurrence. Many behaviors (38 percent) in the set are performed only once every 
three or more years. These include such behaviors as major appliance purchases and home 
weatherization. Another 15 percent of behaviors occur every one to three years, such as small 
appliance purchases and appliance maintenance. The second largest set of behaviors (20 
percent) occurs with very high frequency (multiple times a day), such as turning off lights and 
unplugging/turning off computers and entertainment devices.  
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Required skill level. Some 52 percent of behaviors in the set require very little or no skill, such 
as closing shades or drapes to keep heat in or out, turning off lights, or installing a CFL. 
Medium skills — e.g., reading instructions and/or having tools — are required for 21 percent of 
behaviors. Another 28 percent of behaviors demand significant skill such that an expert may be 
needed to perform the behavior, e.g., to install insulation or high efficiency windows.  

Household function. Actions that increase thermal comfort comprise 38 percent of the behavior 
set. These behaviors involve space heating and cooling, from installing “Energy Star” air 
conditioners to changing thermostat settings. Another 19 percent of behaviors have a 
housekeeping function (e.g., cleaning and maintenance). The smallest categories were behaviors 
associated with hygiene (i.e., showering) (8 percent) and outdoor recreation (i.e., pool 
maintenance) (2 percent).  

Locus of decision. A third of behaviors (33 percent) were coded as having men or women as the 
locus of decision, meaning that two adults typically decide whether to adopt the behavior, such 
as large purchases or household organization and maintenance. Slightly fewer behaviors (31 
percent) were actions for which primarily men make adoption decisions (e.g., insulating hot 
water heaters). For 14 percent of the behavior set, primarily women make adoption decisions 
(e.g., emptying/replacing vacuum cleaner filter bags regularly). Teens can perform 13 percent 
(e.g., unplugging the charger once a phone is charged), and young children can perform 9 
percent of the behaviors (e.g., turning off lights). 

Observability. Over a third of the behaviors (34 percent) are highly observable, both by 
household members and by outsiders and household members. Just under a third of the 
behaviors (31 percent) are observable by household members only. Interestingly, 35 percent of 
behaviors are invisible even to household members and observable only by the person who 
performs the behavior. Such invisible behaviors include, for example, adjusting the hot water 
heater temperature.  

Home topography. The most common location for behaviors is in the shell of the house: 35 
percent of the behaviors involve its walls, floors, ceiling, or roof. The second most common 
locations for behaviors are kitchen/dining areas (16 percent), multiple areas (e.g., lighting 
fixtures) (15 percent), and storage spaces (e.g., hot water heater closet) (14 percent). 

Appliance topography. Most behaviors involve large electric appliances (33 percent) or no 
electrical devices (36 percent). The remainder of the behaviors involves small electrical 
appliances (10 percent), electronics (10 percent), lighting (9 percent), and craft and recreation 
(2%).  

Energy savings. Almost half of the behaviors (46 percent) are projected to save more than 750 
kWh/yr. About 20 percent of the behaviors have marginal energy savings of 1 to 25 kilowatt 
hours per year (kWh/yr). The remainder of the behaviors fall into the categories in between — 
15 percent of the behaviors save 25-100 kWh/yr, 12 percent save 101-250 kWh/yr, and 10 percent 
save 250-750 kWh/yr. 
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Cost 

More than half of behaviors cost no more than $20 — 43 percent cost under $5, and 11 percent 
cost $5 to $20. About 20 percent of the behaviors cost between $100 and $1,000, and 11 percent 
cost more than $1,000. 

Behavior Clusters. Five clusters resulted from a K-means analysis. Each cluster was named as 
follows, based on the attribute means for the clusters and the behaviors represented in each 
cluster: Call an Expert (73 behaviors, 28 percent of the sample); Family Style (66 behaviors, 
25%); Household Management (49 behaviors, 19 percent); Go Shopping (47 behaviors, 18 
percent); and Behind the Scenes Work (25 behaviors, 10 percent).  

2.4.1.5 Future Work 
The research team planned to extend the Behavior Change Attribute Framework and analytic 
techniques to transportation and food. In addition, the research team is currently examining 
population ratings of behavior use, intentions to use, confidence in long term use, and barriers 
to use.  

2.4.2 Identifying Opportunities for Dramatic Energy Reductions in Residences 

Investigators: Carrie Armel, Marilyn Cornelius, Nicole Ardoin, Larson Plano, Brett Bridgeland, 
Luke Morton, Martin Chang, Amy Allen 

2.4.1.6 Background 
The magnitude of energy savings achieved by any of the Initiative’s projects is limited by the 
technical potential of the practices and technologies that are currently feasible for widespread 
adoption in our society. A very high technical potential for savings is needed to meet proposed 
targets of recommendations by  the Intergovernmental Panel on Climate Change (IPCC) (60 
percent to 80 percent cuts in greenhouse gas (GHG) emissions below 1990 levels  by 2050) . 
Eighty percent reduction of GHG emissions below 1990 levels1 by 2050 is also the goal for 
California established by AB 32 of 2006 (the Global Warming Solutions Act). California also has 
established goals for new residential and commercial buildings to be zero-net energy by 2020 
and 2030 respectively. 

Energy use reduction in buildings is a critical component of meeting these goals and targets. 
Unfortunately, current estimates of cost-effective energy savings across existing residential and 
commercial buildings range between 15 percent and 35 percent in the United States (McKinsey 
& Company 2009; APS 2008; Hand et al. 2012). Low cost savings from operational changes 
include a range of options such as regular appliance maintenance and replacement, turning 
down the thermostat settings, turning off lights when spaces are unoccupied, and eliminating 
energy waste (e.g. unplugging electronic devices (Nair et al. 2010; Laitner, Ehrhardt-Martinez, 

1 In 1990 CO2 levels were about 350ppm, which is considered the safe upper boundary; the 2012 figure is 
394 ppm. 
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and McKinney 2009; Gardner and Stern 2008; Parker et al. 2006; Black et al. 1985; Kempton et al. 
1984).2  

However, there have been cases of people achieving energy savings as high as 90 percent 
(Ninety Percent Reductions Group Website) primarily in less developed nations. Many non-
western cultures in other parts of the world use or have used dramatically less energy to 
achieve daily living needs. Insights into the nature of these practices and low-technology 
approaches have potential application in western cultures for significant energy savings. 

2.4.1.7 Objectives 
This project compiled a list of practices and technological insights, from other cultures, time 
periods, that have the potential for producing substantial residential building energy savings in 
California’s culture (if adapted to be culturally appropriate). The research team also quantified 
estimates of energy savings potential of these practices and technologies. 

2.4.1.8 Methods 
Combining approaches from the fields of anthropology and design, data was collected from 
secondary sources such as books and articles, and conducted in-depth interviews with twenty 
“extreme users” including energy experts, historians familiar with how people in the past have 
met their daily household needs, do-it-yourselfers aiming for steep energy reductions; and 
people from a variety of cultures, in particularly those from harsh climates. Interview data was 
augmented with secondary research, drawing from cultural anthropology, history, and biology 
to collect examples of social and biological change and adaptation.  

2.4.1.9 Outcomes 
These results include approximately 100 energy-saving options covering actions, products, and 
home adjustments organized by end uses: space heating and cooling, water heating, cooking, 
and refrigeration.  The results were also organized according to the physical mechanism or 
property by which they operated: (1) eliminating energy waste; (2) insulation and sealing; (3) air 
flow and evaporative cooling; (4) reflection and shading; (5) absorption, storage and thermal 
mass; (6) alternative and latent energy; and (7) acclimatization and adaptation. For example, it 
was found that cultures in hot dry climates achieved significant evaporative cooling effects by 
using porous drinking vessels (which sweat and evaporately cool), hanging moist cloth in well 
ventilated areas such as doorways or in wind towers, and using light colored loose clothing to 
facilitate air flow through the cloth which is moist with captured perspiration; they also used  
underground rooms to cool their bodies in the hot afternoons and preserve their food (root 
cellars are one example of this). Energy savings potential within each end use and principle are 
quantified. The team also reported barriers that interviewees identified at the individual and 
institutional level. This work offers an approach to identifying and prioritizing energy-saving 
options that are currently uncommonly applied in mainstream culture, with the intent of 

2 Note that behavioral changes do matter and one residential electricity reduction study showed 
behavioral changes accounting for 59 percent of the energy savings, compared to 41 percent savings from 
structural changes (Wu 2012). 
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guiding further development such as redesign, overcoming barriers, and promoting 
widespread adoption.  

2.4.2.0 Future Work 
The research team is currently collecting additional energy saving options. When complete, this 
work will be shared with designers and policy makers in an attempt to disseminate the 
practices or principles identified that could be adapted for our culture to facilitate deeper 
energy savings. This approach may also be extendable beyond residential buildings in areas 
such as, for example, the food, transportation, and small and medium commercial building 
sectors. 
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CHAPTER 3: 
Behavioral Interventions 
A dominant theory in public health holds that the use of multiple types of interventions (also 
referred to as programs or treatment approaches) is more effective than one, because they 
complement and reinforce one another. Several of the Initiative’s projects involved developing 
and evaluating media, incentive, and community-based program interventions. While some 
projects evaluated the effectiveness of multi-faceted programs which is a typical approach 
employed in the field of public health or in utility pilots, other projects followed an 
experimental psychology approach (i.e. using control and treatment groups) and systematically 
changed variables between conditions to investigate the impact of specific variables on energy 
behavior.  

3.1 Media Interventions 
3.1.1 Multiplayer Online Game 

Investigators: J Byron Reeves, James K. Scarborough, James J. Cummings, Leo Yeykelis 

Partners: Kuma Games, Inc.; Bonsai Corp. 

3.1.1.1 Background 
Energy information for consumers can be complex and uninteresting.  Games offer a compelling 
new context for home energy information that may engage consumers and change behaviors. 
Multiplayer games, for example, are sprawling online communities where players interact with 
and compete against one another in real time within visually rich, three-dimensional virtual 
worlds that persist and evolve even while a player is away.  These games may be the most 
engaging, sophisticated, and collaborative media ever to be applied to campaigns to change 
behavior in serious contexts (Reeves & Read, 2009).  The audience is big, with as many as 400 
million people worldwide that operate avatars in virtual environments (Gartner, 2007).  And the 
audience is surprisingly diverse; for example, gamers average 33 years old and there are more 
of them in their 40’s or 50’s than in their teens, the majority of them have full time jobs and kids, 
and the gender ratio ranges from equal to 3:1 depending on the genre. Furthermore, people are 
coming to expect engagement in workplace settings as well – IBM and other corporations are 
beginning to incorporate game-like elements and virtual meetings into work tasks.  

3.1.1.2 Objective 
The objective was to leverage the popularity of online games to promote energy efficiency. The 
deliverable for this project was a website, which included a multiplayer game and supporting 
social media (such as facebook connect), that is suitable for use in experiments and deployment 
in utility smart meter trials.  Empirical experiments on selected features of the media will guide 
future generation media.  

3.1.1.3 Game Description and General Methods 
Based on research showing the effectiveness of game elements used in serious contexts (Reeves 
& Read, 2009), the team built a professional quality social game about energy use in a virtual 
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home.  An experienced entertainment software development company, Kuma Games, Inc., was 
contracted to ensure a professional and meaningful media experience to players. In the game, 
playable at https://www.freeenergygame.com/portal/ , energy sensors in homes are linked to 
multiplayer interactions that promote changes in energy use as compelling play and 
community participation. More specifically, the game uses real world energy use data from 
smart meters and converts energy savings to rewards and advantages in the game. For example, 
one can challenge their friends to a “lights out night” and then see who won based on the actual 
energy consumption data. Embedded within the overall game is a smaller game. In one mini-
game (depicted in the screen shot above), the user races around a virtual house over the course 
of several “days”,  trying to achieve all the goals of the household members while turning 
appliances on and off so as to use the least amount of energy. In this manner, the game helps 
condition energy efficient behaviors in the player’s actual home by modeling and reinforcing 
those behaviors in the virtual setting. By speeding up time and providing feedback promptly in 
the form of points, the game helps players to more easily develop particular energy habits. 
Additional features considered in the overarching game include: (a) multi-player game play 
(permitting individuals as well as virtual and intact groups); (b) multi-period game play 
(accumulating across multiple play sessions over weeks or months); (c) launched via social 
networking sites (e.g., friend groups on Facebook that can encourage viral distribution); (d) 
episodic content (new challenges can be introduced regularly that match regional or seasonal 
energy goals and can be implemented through video vignettes); (e) competitive (use of point-
based leader boards and energy data tracking that allow competition between existing real 
world groups e.g., companies, classrooms, geographic neighborhoods, community 
organizations); and (f) portable (game play, scoring and notifications can be tracked through 
social networks on mobile devices). The primary thesis is that an alignment of personal 
motivations (e.g., increased involvement encouraged by timely reinforcement, achievement 
recognition, and a sense of belonging), and community environmental goals (e.g., reduced 
electricity usage and time-shifted energy use) will result in sustainable behavior change that is 
personally rewarding as well as socially responsible.  
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Figure 4: Multiplayer online game landing page (foreground inset) and action game (background) 

 
Source: Stanford University and Kuma Games 

 
3.1.1.4 Methods, Laboratory Study 
In the laboratory experiment, 40 people were randomly assigned to play Power House or a 
similar but thematically different entertainment game (Diner Dash) for 30 minutes in a 10’ x 10’ 
office.  Subjects were told that researchers were testing the popularity of a new game and would 
be asked to answer questions about how much they liked the game at the end of play.  Fifteen 
minutes after play started, an experimenter entered the room and told subjects that she needed 
to leave the building before they would finish.  The experimenter requested that subjects “close 
the office” when they were finished with the game and questionnaire. Before subjects entered 
the room to start playing, there were five appliances turned on in the office.  There were two 
overhead lights controlled by a wall switch, a floor lamp, a desk lamp, and a computer and 
monitor. After subjects had finished playing the game and closed the office, the team returned 
to the room to count how many appliances had been turned off after play ended and before 
subjects left the room. 

3.1.1.5 Outcomes, Laboratory Study 
Playing the game for 30 minutes resulted in significant increases in energy efficient behaviors 
after play ended, compared to playing the comparable non-energy focused game. In the energy 
game condition an average of 2.55 (out of 5) appliances were turned off when subjects left the 
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room; in comparison, an average of .55 where turned off after playing the non-energy game.  
These show that the energy game was capable of inducing energy efficient behavior after only 
brief exposure to the game content.  More, subjects reported no conscious connection between 
game play and the measured energy behaviors, suggesting that this behavior was primed 
through mere exposure to the game content.  

3.1.1.6 Methods, Field Study  
In the field study participants played the game in their homes over the course of one week to 
one month while their smart meter provided home energy consumption data for analysis.  
Participants in this study would typically play the game within a real social context.  For 
example, while playing the game via Facebook, players were able to post in-game achievements 
and energy savings for their Facebook friends to see.  Additionally, some participants would see 
a detailed energy consumption chart for the previous day while others see only their monthly 
energy bill.  This allows researchers to determine if a higher frequency of feedback can motivate 
players to save more energy and develop stronger energy conservation habits.  Participants also 
completed a home energy intention survey before and after playing the game to measure any 
impact on energy conservation intentions that playing the game might affect. 

3.1.1.7 Outcomes, Field Study 
Results from the field study suggest that participants use significantly less energy while they 
play the game.  Energy use reduction was stronger for those participants who started with a 
lower energy baseline than those with a higher energy baseline.  This difference might be 
explained by the presence of a high energy consuming device such as a pool or hot tub or by a 
higher number of occupants in the home.  These results indicate that well designed 
entertainment software can make a significant difference in home energy sustainability. 

3.1.1.8 Next Steps 
In the near future it is planned to seed a commercially viable version of the game by acquiring 
users on Facebook – that is, release it with a small population with the aim that that will trigger 
it going viral. Specifically, some elements of game will be revised; acquire a large population of 
users by leveraging online social networking and viral recruitment, including hiring a 
community manager to initiate game play and recommend the game to new players; and 
develop and implement commercial business model around this version of the game.  Possible 
considerations include directed advertising for recruitment, corporate sponsorship and utility 
licensing.   Future research efforts may isolate and investigate the relative contribution of 
particular game play elements (e.g., leaderboards, team-based play, energy challenges, virtual 
currencies) to the effects currently observed. 

3.1.2 Collective Action Feedback Interface 

Investigators: Greg Walton, Gregg Sparkman, Julia Clark, Dave Paunesku, Steve Schmidt, Lisa 
Schmidt, Carrie Armel, Tammy Luo, June Flora. 

3.1.2.1 Background 
Increased home energy conservation may be accomplished by framing efforts to save energy as 
part of a community effort to provide residents with a motivating sense of togetherness when 
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they perform energy saving behaviors.  Past research found that the opportunity to participate 
in a collective endeavor can be a powerful source of motivation. For example, academic 
motivations and achievement increase when students feel socially connected to peers and 
teachers or when they can work together with others on a task (e.g., Furrer & Skinner, 2003; 
Goodenow, 1992; Roeser, Midgley, & Urdan, 1996; Wentzel, 1997; Walton & Cohen, 2007).  The 
importance of collective goals has not been specifically tested in the context of environmental 
behaviors, but a related phenomenon — the effects of descriptive norms — has been.  
Descriptive norms are perceptions people hold regarding which behaviors are commonplace. 
For example, people will more likely reuse hotel towels, reduce energy consumption, and keep 
petrified national park artifacts intact if they’re informed that others are also performing the 
behaviors than if they are given pro-environmental or monetary incentives.  This is true even 
though people believe that the latter two appeals will be more effective (Goldstein, Cialdini & 
Griskevicius, 2008; Schultz and colleagues 2007). One reason norms may be effective is because 
they convey group intentions to individuals, and being a part of these collective actions 
provides a desirable and motivating sense of togetherness.  

3.1.2.2 Objectives 
Many studies present descriptive norms and clear group intentions together to movitative 
actions or changed behavior, making it difficult to tell if norms alone are helpful, and whether 
invoking a sense of community is more powerful motivator than basic descriptive norms. The 
following two studies separated descriptive norms and clear group intentions to determine if 
they have unique effects.  

3.1.2.3 Methods, Study 1 Energy Upgrade Mountain View Experiment 
This fist study involved providing energy related information   and collecting data from over 
800 residences (mostly single family homes, but also some duplexes, townhouses, 
apartments/condos) in Mountain View, California. Energy use data was collected for each 
residence that participated  for a continuous six month period, sometime between March 2012 
and July 2013 depending on when the  resident signed up for the program. Participants were 
recruited, through a variety of methods, including displays and signup lists at community 
events, door-to-door canvassing, and sending flyers with energy bills as part of the Mountain 
View Energy Upgrade California program http://www.energyupgrademv.org/. The most 
successful method of recruitment was to include low budget flyers with the utility bills of all the 
residents of Mountain View. These flyers advertised the program, offered workshops for 
learning about home energy reduction and also provided a free smart power strip as an 
incentive to sign up.  

Participants viewed feedback about their energy consumption as well as energy saving 
recommendations and messaging in emails sent every other week, and they could also access 
this information through awebsite. Experimental conditions allowed for the comparison of the 
effects of providing energy use feedback and energy saving tips to households (through the 
differential framing of feedback data through comparison with others, pictures, and text-based 
messaging between versions of the emails/online interface) when saving energy was framed 1) 
as an intentional community effort done together (social togetherness condition; e.g., “We’re 
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doing it together!…Mountain View  residents have reduced their energy use by 3% in the last 
few years.”), 2) simply as a descriptive norm (norm condition, e.g., “Here’s a fact!…Mountain 
View  residents have reduced their energy use by 3% in the last few years.”), or 3) without any 
normative information as a control (control condition). Additionally, this study compared the 
effects of presenting energy savings information in different ways by randomizing half of the 
participants in each of the three conditions above to either receive energy saving tips with or 
without a generalizable theme that readers may extend to other energy savings behaviors. For 
example, participants in the tips condition might see tips regarding plug loads, heating, and 
refrigerators all in one email (e.g. “Unplug devices you never use, like an old VCR or fridge.”), 
while participants in the theme condition would also see three tips in one email but these would 
all relate to heating and an introductory comment on their common energy consuming 
mechanism would be included (e.g. “Off isn’t off”…off is still on. When you just press the off 
button on an electronic device, it may still be dripping electricity like a leaky faucet.”). 

3.1.2.4 Outcomes, Study 1 
We found that home energy reports in general reduced energy use, and thematic information 
about energy savings framed as a community effort in the social togetherness condition 
produced a statistically estimated energy use reduction of 7.7 percent (1 kWh/day) in home 
energy use when compared to the basic descriptive norm and control conditions after 6 months. 
This reduction was significantly better than those in thematic information with a descriptive 
norm only and thematic information under control conditions. Paradoxically, it was also found 
that the control group given only tips (without themes) also reduced their energy use by 6.2 
percent - significantly more than the social togetherness tips only condition, or descriptive norm 
and tip only condition. One possible explanation is that the togetherness condition provided 
sufficient motivation to read through the lengthier thematic information and implement the 
ideas presented to them, while those in the control tips only condition may be more motivated 
to read the contents of the email given its brevity (as this condition has the least text, allowing 
tips to be seen at a first glance). 

3.1.2.5 Methods, Study 2 City of Hillsborough Water Use Experiment 
The goal of Study 2 was similar to that in Study 1 – to measure how different types of framed 
messages would affect future consumption. In this study, water was targeted because reducing 
water consumption also reduces energy use through the embodied energy consumed to extract, 
treat, distribute, and as applicable to heat water. The study took place in the town of 
Hillsborough between May 2011 and May 2012 and included data from all city residents;   over 
10,000 people living in over 4000 households (there are no apartments or condominiums in 
Hillsborough). Residents were sent paper inserts with their monthly water bills through the 
postal system, and everyone also received a waterproof vinyl tag with irrigation information to 
hang on their outdoor faucet or elsewhere to serve as a reminder prompt. The experimental 
conditions and means of achieving these through data, pictorial, and text manipulations on the 
paper inserts and vinyl tag were similar to those used in Study 1, although the tips/themes 
question was not investigated. Instead, each of the three social togetherness, descriptive norm, 
or control groups – no message were divided further into three subgroups based on percentile 
ranking (highest third, middle third, lowest third) relative to the community (resulting in a 3 by 
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3 design: social togetherness /descriptive norm/control x highest/middle/lowest energy 
consumption). The community or norm based motivational text differed within each percentile 
rank. Water email alerts were also provided to the 286 households that signed up for this after 
the initial mailing. Participants were also assigned to fill out one of twelve different online 
surveys (3 by 2 by 2: social togetherness/descriptive norm/control x survey with writing/survey 
no writing x adult/child) which were in keeping with the experimental condition they were 
assigned to, and also had the added experimental manipulation testing whether the process of 
writing about one’s behavior increases behavioral change (through a paragraph response box 
on the survey), as it has in previous psychological research.  

3.1.2.6 Outcome of Study 2 
Researchers found that the interventions worked differently than expected. Households in the 
social togetherness condition used more water than those in the norm or control conditions. 
Interestingly, customers in the control condition used the least water, compared to both the 
norm and social condition customers. There are a few possible explanations for the unexpected 
results. It is plausible that political orientation moderated the effect given that conservation and 
sustainable behaviors have been greatly politicized, though this was tested and there is no 
empirical support of such an effect in this study. Instead, Hillsborough may not be enough of a 
close-knit community for the message of togetherness to be effective. Perhaps if the messages 
had been localized to neighborhoods rather than the whole town, it would have been effective. 
It is also possible that Hillsborough is a close-knit community, but residents already feel that 
they belong in the town, and therefore do not particularly feel the need to join in with the 
community. Additionally, in a recent paper, Hamedani, Markus, and Fu (2013) found that 
emphasizing interdependences undermined European American's motivation to learn about 
environmental sustainability, and led to decreased funding allocated to the cause (though this 
was not the case for Asian American participants). Therefore, it is possible that the message of 
community togetherness in fact backfired, and decreased residents' motivation to save water. 

3.1.2.7 Future Work 
Going forward, research on the effects of norms will focus on understanding when norms, 
particularly social norms invoking togetherness, are successful in motivating behavioral change, 
and when they are likely to cause negative reactions for intervention participants. There is 
potential for applying what was learned from this and similar studies to the design and nature 
of messages created for the purpose of recruiting participation in larger scale conservation 
programs.  

3.1.3 The Impact of Vivid Messages on Saving Behavior related to Hot Water Use   

Investigators: Jeremy N. Bailenson, Jakki Bailey, June Flora, K. Carrie Armel, Dave Voelker, 
Byron Reeves 

3.1.3.1 Background 
Virtual environments may offer a unique opportunity to facilitate cognition through embodied 
experiences that are personal and vivid.  Immersive virtual environment technology (IVET) 
engages people in a three-dimensional (3D) virtual environment with a first person point of 
view, and it provides real-time multisensory feedback via visual, haptic, auditory, and olfactory 
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cues.  IVET also allows users to participate in actions that could not be accomplished in the real 
world; for example, passing time quickly, experiencing impossible physical spaces (e.g., 
geographically remote or fictitious), or experiencing behaviors that are novel, impossible or 
undesirable (e.g., harmful to the self, others, or the environment).  Allowing people to 
experience undesirable behaviors is especially pertinent to environmental behavior changes 
because it allows people to observe directly far-reaching negative outcomes associated with 
their actions (e.g., burning of coal, smog emitted, trees felled).  

Independent of IVET, vividness and personalization have been particularly effective in 
promoting behavior change. Personalizing or customizing information increases attention and 
has improved the effectiveness of numerous public health interventions. Vivid messages are 
emotionally interesting and imagery-provoking in a sensory or spatial way; for example, 
auditors have been more successful in signing up homeowners for retrofits that reduce energy 
use when they vividly described the cumulative air leaks in a house as being the “size of a 
football” or a lack of insulation like having a “naked attic” (Gonzales, Aronson, & Costanzo, 
1988). The impactful effects of personalization and vividness can be explained by the theory of 
embodied cognition (EC) which suggests that cognition is a grounded experience that occurs in 
relation to states of one’s body and perceptual simulation. If cognition is closely related to 
perceptual experiences, vivid messages that utilize strong imagery appeals, and personalized 
messages, may simulate sensory information in the brain that leads to changes in behaviors.  

Although many researchers agree that pro-environmental interventions may be more effective if 
they contain vivid and personal elements, few interventions have successfully combined the 
two.  Further, IVET has the capability to create vivid and personal interventions to a degree 
rarely seen in previous work. To date there has been only one study to use IVET to raise 
awareness on global warming, and it did not study changes in energy behavior (Zaalber & 
Midden, 2010).  

3.1.3.2 Objectives 
This study used IVET to investigate the impact of vivid and personal messages on energy use 
behavior specifically related to hot water use.   

3.1.3.3 Methods 
In order to select a vivid visualization or metaphor for energy consumption (e.g. CO2 balloons, 
energy vampires) in this study, dozens of metaphors were collected from public service 
announcements and online materials (e.g., a penguin bicycling to show how much energy was 
required to light a lightbulb), and also partnered with the marketing firm DraftFCB on an 
international competition among their offices to collect another approximately 100 ideas for 
visualizations. After reviewing them, the metaphor of one actually eating the fuel they use in an 
activity to represent energy consumption was selected, because it is a salient metaphor and 
IVET lends itself well to representing one’s self performing impossible or implausible actions.  

During the experimental study, seventy participants were placed in a virtual shower for 
approximately six minutes – that is, they received 3D visual and audio cues, and were asked to 
move their hands over their limbs and head as though they were showering – to simulate a 
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shower experience. In addition, they received feedback about how much energy was used to 
heat and transport the water in their virtual shower.  Participants in different experimental 
conditions received different feedback on the dimensions of message vividness (vivid or not 
vivid) and personalization (personal or not personal), as described below.  Specifically, the four 
conditions included the following (see Figure 5). In the avatar-coal condition (top left) the 
treatment was both vivid and personal, and participants saw a 3D digital representation of him 
or herself called an avatar, standing outside of the shower window eating once piece coal for 
every fifteen seconds of virtual shower time. In the coal-only condition (top right) the treatment 
was vivid but not personal, and where the visual feedback was individual pieces of coal piling 
up on the table every fifteen seconds. The two non-vivid conditions provided feedback through 
the use of a counting ticker on a billboard sign shown outside the window (increased every 15 
seconds).  In the personal-sign condition (lower left) the treatment was not vivid but was 
personal treatment; the billboard sign used personal language when counting the number of 
pieces of coal consumed: “you have consumed 1 piece of coal.”  Finally, the impersonal-sign 
condition (lower right cell) was the not personal and not vivid - participants saw a billboard 
sign that used impersonal language that used the passive voice to count the number of pieces of 
coal consumed: “1 piece of coal has been consumed.” 

Figure 5: Visual metaphors implemented in a virtual reality environment 
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Figure 5.  Each cell shows the participant’s view of the virtual shower.  Participants were 
randomly assigned to one of four experimental conditions:  (1) avatar-coal condition, (2) coal-
only condition. (3) personal-sign condition, and (4) impersonal-sign condition 

3.1.3.4 Outcomes 
Results showed a main effect of vividness.  Before and after the IVET treatment, the amount of 
hot water people used was measured while washing their hands in a real sink placed near the 
laboratory.  Participants exposed to vivid messages in the virtual shower experience 
generalized their learnings to hot water consumption in general and changed their behavior - 
they used less hot water when washing their hands compared to people exposed to non-vivid 
messages.  There were no significant effects for the different levels of personalization and no 
interaction effects.  The results suggest that new media-technology like IVET can leverage vivid 
sensory experiences to change environmental behavior.  

3.1.3.5 Future Work 
The value add of IVET should be explored; for example, how much does energy savings 
behavior decline (if at all) using less sophisticated but higher market penetration virtual 
technology like Microsoft’s Kinnect, or without using any IVET technology at all. Specific 
energy saving metaphors/visualizations in addition to those used here could also be tested to 
determine which are most effective in motivating energy saving behaviors. Additional benefits 
of IVET could also be explored for their effectiveness: speeding up climate impacts over time, 
experiencing impossible physical spaces (e.g., geographically remote or fictitious), or 
experiencing behaviors that are novel, impossible or undesirable (e.g., harmful to the self, 
others, or the environment).   

3.1.4 Motivationally Framed Facebook Energy Applications  

Investigators: Banny Banerjee, June Flora (Research Director), Team: Nishand Bhansali, Nicole 
Greenspan, Ollie Khakwana, Alexandra Liptsey-Rahe, Brett Madres, Ann Manley, Issra Omer, 
Nikhil Rajendra, Ansu Sahoo, Annie Scalamnini, Brian Wong, Shaun Stehly, Dave Voelker 

3.1.4.1 Background 
The researchers at the Stanford ChangeLabs created new methodologies to apply to large real 
world audiences that combine principles of Design Thinking with those of Behavioral Sciences 
and Diffusion Theory [3, 4, 5, 7]. The researchers performed ethnographic research (research to 
explore the cultural processes and context within which energy is consumed), developed 
several Facebook energy applications, and performed associated research in part through using 
the ChangeLabs methodologies. Initial ethnographic research founded on the grounded theory 
approach [7], which uses collected data to develop hypotheses rather than vice versa, explored 
peoples’ motivations for engaging with their energy use.  Building on the ethnographic findings 
and guided by the Comprehensive Behavior Determination Method [1], which holds that 
interventions that use multiple frames appropriately paired with peoples’ motivations are more 
effective at changing behavior than a single frame, three key motivations for energy 
engagement were identified: affective, cognitive, and social. Standardized measures of those 
concepts were used – need for positive affect [8, 9], need for cognition [10], and need for 
affiliation [11] – in these experiments on tests of images to be included in the applications, 
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recommendations, and manipulations of application prototypes. This guided the final form of 
the Facebook applications. 

3.1.4.2 Objectives 
Our objective was to build, test, and diffuse Facebook energy reduction applications as well as 
stimulate a body of work that uses design and behavioral principles to advance innovations 
regarding energy reduction.  

3.1.4.3 Methods 
Early ethnographic work revealed that when asked about energy, consumers responded:  

• “Comfort, convenience and peer comparison are important to us and our family.” 

• “Our family deserves the best.” 

• “Our family believes in volunteerism and public service.” 

• “We try to model our values for our children.” 

• “We are not sure how our small energy reduction efforts help the environment.” 

• “I am not engaged with my energy use.” 

• “Energy use and conservation is just no fun.” 

• “Energy is inexpensive so why should I bother.” 

• “We do not know what to do.” 

• “We will buy new appliances when the time is right.” 

Using the results from this ethnographic research, three motivationally framed energy 
reduction applications were developed, Cognitive, Social, and Affective (altruistic). 

Power Bar, the cognitive app, is designed for people who are motivated by data about their 
home’s energy expenditure.   The driving motivation underlying this is the “cognitive” frame, 
whereby, the behavior change mechanism is data about the home’s energy usage coupled with 
goal setting for energy savings and feedback regarding whether the target is likely to be met. 

Kidogo is an application built around the motivation frame of "affect".  It works with the 
presumption that it is possible to map energy savings to some issue other than energy that the 
consumer might be more emotional about, such as global poverty.  This enable creating a bridge 
between their high motivational level in one issue to a behavior in another, in this case energy.  
This application allows energy savings to be converted into the emotional satisfaction of having 
contributed towards micro-finance loads in developing countries, rather than the relatively 
insignificant amounts saved in the monetary terms. 

PowerTower, the social app, is a tetris-like game in which individuals get blocks based on how 
much energy they’ve saved. If you do not have electricity input into the system then you get 
blocks from behavior commitments and reported changes. You can also create a team and 
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compete with other teams – building your blocks into a tower to see who can get the highest.  
The premise behind this game is that rather than trying to get households to change their 
energy behaviors in radical and improbable ways, this game leverages the large number of 
people in a social network all of whom commit to achievable amounts, but the large number of 
people who might get involved due to network effects contribute to a large cumulative savings 
in energy. 

In addition, formative empirical studies were used to test design components to validate 
aspects of each of the applications. the research team conducted four online pilot tests (with 
over 600 young adult community college students) examining Affective application images of 
social entrepreneurs, Cognitive graphic feedback types, and two studies examining the role of 
individual motivation orientation and behavior change potential after viewing video prototypes 
of the energy reduction applications. 

Figure 6: Motivationally framed facebook applications, including the Kidogo “affective” and Power 
Tower “social” applications  

 
Source: Standford University. Kidogo and Power Tower 

3.1.4.4 Outcome 
Findings from the formative empirical studies include: (more detail is available here 
http://peec.stanford.edu/energybehavior/projects/facebook.php ) 

(1) Affective image test:  Sad (rather than happy) images of humans (rather than animals) 
were most effective for the Affective application (within subject design with N=67);   

(2) Cognitive graph test: Bar graphs (rather than line or radial graphs) displaying either a 
single day of information or a comparison of two days were most liked and understood 
(mixed design with N=207);  

(3) Affective orientation and affective and cognitive app prototype experiment: Individual 
positive affect motivation was associated with higher behavior intentions and self-
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efficacy (a main effect) and that affect orientation interacted positively with the affective 
application (one way between subjects design with N= 158) 

(4) Affective, Cognitive, and Affiliative orientation and three protype apps experiment:We 
replicated the main effect of affective orientation on behavioral self-efficacy but found 
no effects of cognitive or affiliation orientation, while there were no behavior change 
intention change differences among the three applications; the affective app showed 
marginally significant greater behavior changes on easy behaviors and both the affective 
and social app were rated higher than the utility control (one way controlled between 
subjects design with N=224) 

Using these results, the research team developed applications for use in the Facebook 
environment to ensure an “ambient” presence. These applications are now functional and data 
is in process of being collected and analyzed with respect to assessing the impact on electricity 
consumption. 

Also, given these weak outcomes of association of individual orientation to application type, 
researchers are currently examining the role of choice in application selection using a 
randomized controlled experiment. The randomized experimental design had two levels; first 
participants were randomly assigned to an assigned or a choice condition.  In the assigned 
condition, participants were randomly assigned to one of the three applications. In the choice 
condition, participants choose which app they want to use (based on a short description of the 
application) to view their energy information. 

3.1.4.5 Future Work 
The design work has implications for the practical scalability of energy applications.  When 
confronted with three applications, utilities, energy service providers or non-profits or other 
potential adopting organizations typically would choose one application.  Yet, these 
applications were conceptualized as a motivational frame map, where users can be matched or 
choose how they want to engage with and change their behavior.  Thus, a test of these applied 
options will provide valuable information for adopting organizations and researchers aiming to 
use the applications as motivational frame prototypes.  This test will have significant 
implications for best practices in the creation and deployment of energy reduction applications. 

3.2 Incentive Interventions 
3.2.1 Nudges for Energy Efficiency through an online Appliance Calculator 

Investigators: Sam McClure, Sebastien Houde, Carrie Armel, Samuel McClure 

Partners: Bonsai Corp. 

3.2.1.1 Background  
To encourage purchase of energy efficient appliances there are three primary types of policies in 
the US: minimum energy-efficiency standards, voluntary standards, and labeling. In the US, 
most appliances are required to have the EnergyGuide label, which was first introduced in 1979. 
The EnergyGuide label provides detailed information about energy costs. In 1992, the US 
Department of Energy introduced the ENERGY STAR program, a voluntary certification 
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program that complements the EnergyGuide. The goal of the ENERGY STAR program is to 
facilitate the identification of the most energy efficient models and overcome the complexity 
inherent to energy information. The ENERGY STAR program is quite straightforward. For a 
given type of product, a threshold above the minimum energy efficiency is defined, if a product 
meets or exceeds this threshold, the product can earn the ENERGY STAR certification. The 
ENERGY STAR program has proven to be effective to influence consumers and firms (Houde, 
2012, 2013). Some consumers, however, appear to trade-off energy efficiency with other 
attributes using the EnergyGuide label, while others do not pay attention to ENERGY STAR 
and EnergyGuide (Houde, 2012). These results suggest that there are opportunities to provide 
better energy information to consumers.  

Furthermore, energy labels were designed with a focus on a shopping experience in brick-and-
mortar stores. In the last decade, shopping habits have drastically changed. When it comes to 
appliances, online shopping is an important part of the shopping experience. In 2011, although 
only 8% of appliances were sold online, more than 38% of consumers that bought in-store said 
that online shopping influenced their decision (Traqline 2011). How energy information should 
be presented online, however, is unclear.  

3.2.1.2 Objectives 
The goal of this project is to investigate how and which type of energy information can nudge 
consumers to purchase energy efficient appliances when searching online for energy intensive 
durables, such as refrigerators. The nudges and frames used are guided by principles of 
behavioral economics, such Prospect Theory (Kahneman and Tversky, 1979) and intertemporal 
choice (Lowenstein and Prelec, 1992), as well as simple principles that have proven very 
effective to date, such as defaults (Levav et al., 2010).  

3.2.1.3 Methodology 
To study online purchasing behaviors, an online appliance recommendation website (Figure 1) 
was developed. The website has three components. The first component allows users to learn 
about the electricity consumption and cost of the appliance (refrigerator) they currently own. 
This information is used to determine whether it is desirable for users to switch to a more 
energy efficient models. The second component allows users to search for a new appliance. The 
third component presents search results. Researchers created different versions of the website to 
test how to present the search results to induce more energy efficient purchases. These different 
versions are discussed below. 

For each user that comes to the website, key information about consumers’ preferences and the 
impact of framing are tracked: 

• Information about the refrigerator currently owned 

• Search criteria 

• Refrigerator models that were displayed to users 

• Refrigerator models that were selected and saved to a “list” to compare 
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The experimental outcomes consist of the average electricity consumption that each user 
browsed and saved to the list. Those are the best proxies researchers are able to observe in lieu 
of purchases. To be more precise, for each user the appliance models that were clicked on and 
saved to the list are known. For each of those appliance models, researchers also know their 
electricity consumption. The average of the electricity consumption for all models a user was 
interested in can then be computed. This average for different versions of the website is 
reported. Versions with the lower averages are considered the most effective to induce energy 
efficient purchases. 

Figure 7: Screen shot of the Appliance Calculator  

(Accessed through Google sponsored links) 

 
Source: Stanford University  
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3.2.1.4 Results 
Experiment 1 

The first experiment compared two versions of the appliance recommendation website: a 
version with a strong emphasis on energy efficiency, and a version with minimal emphasis.  

In the version with a strong emphasis on energy efficiency (treatment), products in the search 
results were displayed with a picture, a short description, price, and three pieces of energy 
information: kWh/year, lifetime electricity operating costs, and ENERGY STAR compliance. In 
addition, products were sorted in ascending order of electricity consumption, i.e., the most 
energy efficient product was always shown first. Finally, the search filters were ordered in a 
way that the electricity consumption range and ENERGY STAR compliance were shown first. 

In the version with minimal emphasis on energy (control), search results only included the 
picture, a short description, and price information. Moreover, products were sorted in 
ascending order of price (cheaper product first), and the electricity consumption range and 
ENERGY STAR compliance search filters were placed at the bottom of the list in the Step 2. 

Data from approximately 14,000 users were analyzed for this experiment. Users allocated to the 
control browsed refrigerator models that consumed 594 kWh/year on average, while consumers 
in the treatment browsed models that consumed 523 kWh/year. From a regression analysis that 
controls for month fixed effects, the research team found that the version with the energy focus 
led to a statistically significant decrease of 69 kWh/year. Using the second outcome variable, the 
average kWh/year saved to the list was 454 kWh/year for the control and 412 kWh/year for the 
treatment). The regression analysis suggests a decrease of 85 kWh/year for this outcome 
variable. In sum, the version of the website with a strong energy focus was successful in 
nudging consumers toward more energy efficient models. 

Experiment 2 

The goal of the second experiment was to disentangle the effects of some of the features of the 
website with a strong energy focus. The two main features to test were the addition of several 
metrics to measure energy efficiency, and the default sorting that presented the most energy 
efficient product first. 

In this experiment, the research team created a second version of the website (referred as 
treatment 2) with a focus on energy with a subtle change; the rank of the most energy efficient 
product was altered, and pushed it further down the list of products at rank six. The two 
versions of the website with the energy focus were then identical except for this small change in 
the default rank of the six first products presented. Note that by moving the product ranked 
first to the sixth position, the rank of the products in rank 2 to 6 was also impacted.  This 
manipulation thus allowed us to isolate the effect of the first sixth ranks. More precisely, the 
experiment allowed us to determine whether showing a product at rank 2 vs. rank 1, 3 vs. 2, 4 
vs.  3, 5 vs. 4, 6 vs. 5, and 1 vs. 6 would impact browsing behaviors.  

Data from approximately 20,000 users were analyzed for this experiment. Comparing the two 
treatments to the version of the website without an energy focus (control), the team found 
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evidence that altering the rank had an important effect on browsing behaviors. Pushing the 
rank of the most energy efficient refrigerator model down the list increased the average 
kWh/year browsed and saved to the list relative to the first treatment. The number of users in 
each treatment scenario does not confirm whether this effect is statistically significant at a 5 
percent level. For the first treatment (same treatment as experiment 1), the effect is significant at 
the 10 percent level.  

These results suggest that rank has an important effect on whether consumers consider a 
product, and may have a bigger effect than energy information. The third experiment suggests 
that various pieces of energy information may have in fact a very small or even no effect. 

Experiment 3 

For this experiment, four versions of the website were created, each with a different piece of 
energy information, in an attempt to determine whether computing out future energy savings 
from an energy efficient appliance would address the first cost bias, or tendency to select an 
appliance based on its up-front cost rather than future energy savings. In one version, 
researchers presented search results with a picture, a short description, price and kWh/year. In a 
second version, the lifetime electricity costs were added. In a third version, an annual energy 
savings instead of lifetime of electricity costs was presented. In the fourth version, researchers 
presented both lifetime electricity costs and annual energy savings, in addition of the other 
attributes (picture, short description, price, and kWh/year).  

Data from approximately 30,000 users were analyzed for this experiment. The results for this 
experiment suggest that the four treatments led to similar outcomes. That is, they are not 
statistically significant from one another. This suggests that none of these pieces of information 
was more powerful than others in nudging consumers.  

3.2.1.5 Next Steps 
Considering the three experiments together, these results have a somewhat profound 
implication for behavioral interventions. That is, in Experiment 3, an attempt to produce more 
energy efficient purchasing behaviors by using an intervention derived from an analysis of 
what the underlying problem was – the first cost bias – failed to produce an effect. That is, the 
research team attempted to address the tendency of people to make an appliance purchase 
decision based on the up-front cost of an appliance rather than the longer term energy savings 
with implications from Prospect Theory and the intertemporal choice literature. In contrast, in 
Experiment 1, where the intervention was driven simply by using some of the previously 
demonstrated most effective behavior change techniques, researchers saw a change in average 
kWh of between 10-20 percent depending on the measure used. Thus, for quick and effective 
results, it may make sense to first try the most effective proven behavior change techniques to 
date. 

Future research should test additional manipulations to clarify how to best design online 
appliance recommendation websites to encourage efficient purchases, and which types of 
behavioral techniques are most effective.  
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3.2.2 Transportation Lottery  

Investigators: Balaji Prabhakar, Pluntke, C, Gomes, N.; D. Merugu, G. O, G. O. M. Mandayam, 
T. Yue, B. Atikoglu, Adrian Albert, N. Fukumoto, H. Liu, D. Wischik, N.S. Rama 

3.2.2.1 Background 
In many situations incentives motivate behavior change. However, in many public goods 
programs the amount of money available for such programs is constrained, and results in 
relatively small incentives per participant when divided across all participants. Evidence shows 
that small piece-rate monetary incentives can actually decrease desirable behaviors because the 
reward “crowds out” intrinsic motivations; for example, offering $7 per blood donation reduces 
the amount of blood donated (Mellstrom and Johannesson 2008). However, devising alternative 
incentive structures (also called mechanisms) using the same total pot of available funds can 
stretch the perceived value of the incentive. In particular, using a lottery-based system to pay 
out chunky prizes instead of lower, deterministic payouts can attract more participation in the 
incentive mechanism.  This is especially true when the deterministic payouts are small; e.g., a 
recyclable refunds only $0.05, saving a kWh of energy only saves about $0.10, and an off-peak 
trips saves 5-10% fuel relative to traveling in the peak hour.  In these cases the effort of taking 
the right action seems hardly worth the payoff.  Lottery-like payment mechanisms are much 
more effective, exploiting the fact that in games with low stakes players are much more risk-
seeking. 

If such an incentive mechanism were developed, it could be applied in a variety of contexts: 
time shifting of electricity use in the home, recycling, step programs for increasing exercise, and 
beyond. In the project reported here, road traffic congestion was targeted, in part because 
collaborations were much more readily established with transportation related agencies than 
with electric utility companies. Traffic congestion is a serious issue in many cities around the 
world. It has worsened considerably in the past few years, causing an enormous wastage of 
time and fuel. For example, a study (Schrank and T. Lomax, 2005) of several urban areas in the 
U.S. reports that in 2005 an estimated 4.2 billion hours of time and 2.9 billion gallons of fuel 
were wasted due to congestion. This amounts to a total loss of about $78.2 billion, up from $73.1 
billion in 2004. See the cited U.S. Dept of Energy (2006) and U.S. Dept. of Transport reports for 
other reports of the effects of congestion in the U.S. In urban areas, increased vehicular traffic 
has also led to severe pollution and parking problems. 

3.2.2.2 Objectives 
Prabhakar aimed to develop a sweepstakes or raffle-like incentive program that would stretch 
the value of monetary rewards so that the energy behavior change would be maximized for a 
given amount of money. He also aimed to develop a computational system to support the 
program, and demonstrate the program’s effectiveness.   

3.2.2.3 Methods 
The Insinc project (analogous to the Capri, Steptacular and Instant programs; 
http://scsn.stanford.edu/projects.php) was developed to incentivize commuters to travel at 
uncongested times by giving them different numbers of credits (corresponding to cash) for 
shifting to off-peak travel, mode shifting (from private to public transit), or recommending a 
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friend - as monitored through transportation sensors. Then individuals could choose to 
participate in a simple game of chance – that looked similar to chutes & ladders - to win a shot 
at a larger amount of money. Formative work on the project showed that adding a simple game 
of chance and social networking greatly improved engagement with the system. 

Insinc was launched on January 10, 2012, as a six month research pilot by Stanford University 
and the National University of Singapore with the principal aim of shifting Singaporean rush 
hour commuters to off-peak times using Insinc. Commuters were invited to register for the 
program online. Partnerships with National University of Singapore and the Land Transport 
Authority of Singapore facilitated marketing and participant recruitment efforts, and they 
supplied incentive payments for the participants, though Prabhakar developed and supported 
the online system for the program. 

Figure 8: Website Landing Page 

(Program’s game of chance (inset), for the “Insinc” transportation lottery) 

 
Source: Stanford University, Land Transport Authority of Sinapore 

 
3.2.2.4 Outcomes 
INSINC enjoyed high word-of-mouth recruitment. In six months recruitment reached 21,000 
users. The researchers defined “peak-shift” to be the change in percentage of peak trips made 
by a group of users after they signed up for Insinc. Overall, 7.5 percent of all Insinc trips were 
shifted off peak. Users who made regular peak-hour trips before joining Insinc shifted their 
peak trips by more than 11 percent. A p < 0.05 level of significance was observed for using 

58 



public transit and shifting time of use in the optimal direction for those users. Thus, it was 
shown that entering individuals into a lottery and compensating only a small number of lottery 
winners achieved significantly shorter commute times and reduced fuel consumption and 
congestion. Publications related to this work can be found at:  

http://peec.stanford.edu/energybehavior/projects/transportationlottery.php  

3.2.2.5 Future Work 
INSINC was extended for a further 18 months (July 2012 to December 2013) after the initial 6 
months. A wealth of data gathered from this period is expected to yield additional insights. The 
software developed in part through this project, and general approach, are now being applied 
in other settings and to address additional societal issues. 

3.3 Community Based Interventions 
3.3.1 Girl Scout “Girls Learning Energy and Environment” (GLEE) Program  

Investigators: Thomas N. Robinson, Nicole Ardoin, Hilary Schaffer Boudet, June Flora, Carrie 
Armel, Manish Desai 

Partner: Girl Scouts of Northern California 

3.3.1.1 Background 
Community-based programs have been widely used with success in public health, and they 
have also been used in the environmental domain. For example, in the Hood River weatherizing 
project, initially less than 10% of customers signed up for a voluntary program in response to 
traditional marketing communications, but this number increased to 85% of households in 2 
years when the project switched to relying heavily on local residents, such as Citizen Advisory 
Councils, schools and churches (Cavanaugh, 1995). Key advantages of using community 
programs include the ripple effect from word of mouth, enhanced learning and mastery 
through direct experience or observation of others, and the ability to provide personalized 
messaging. Further, these approaches can be cost-effective by tapping into pre-existing 
diffusion channels and making the intervention highly structured and easy to replicate.  

3.3.1.2 Objectives 
Our goal was to apply behavioral theories and methods used in public health promotion to 
increase children’s energy-saving behaviors and reduce family/household energy use. Youth 
were targeted for several reasons. First, attitudes and values start developing at an early age 
(Bryant & Hungerford, 1977) and are difficult to change once established (Asunta, 2003). 
Moreover, the earlier children embrace sustainable lifestyles, the longer they have to influence 
families, schools, and communities to embrace sustainable activities and policies (Leeming et 
al., 1997). Finally, empirical research shows that it is effective to target children when trying to 
influence family and household behaviors (Cornelius et al., 2013; Damarell et al., 2013; Robinson 
& Borzekowski, 2006).  
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3.3.1.3 Methods 
Two curricula were evaluated – one focused on behaviors Girl Scouts and their families could 
do to save energy in their residences and another focused on behaviors Girl Scouts and their 
families could do to save energy in their food and transportation choices – in a clustered 
randomized controlled trial from December 2010 to February 2012. The research team worked 
with the Girl Scouts of Northern California to recruit 30 fourth- and fifth-grade troops and their 
families in Santa Clara, San Mateo and Alameda counties in the San Francisco Bay Area to 
participate in this study. (This represents 4 percent of the total of 748 fourth- and fifth-grade 
troops in the area.) Multiple recruitment strategies were used, including placing advertisements 
in regular electronic mailings from the Girl Scouts regional office to troop leaders as well as in-
person solicitation at monthly troop leader meetings.  

Troops were the unit of randomization. Fifteen troops were randomly assigned to the 
residential energy condition and fifteen troops were randomized to the food/transportation 
condition after completing baseline assessments. By contrasting the two curricula – one focused 
on reducing home energy use and the other on reducing food and transportation energy use – 
each curriculum served as an active control for the other. This created a true randomized 
controlled experimental trial, the strongest design for testing causality. The evaluation consisted 
of a baseline survey for all participants prior to the first troop meeting, followed by five sessions 
of the relevant curriculum, a posttest survey after the fifth session and a follow-up survey 
conducted between 2.5 and 10.7 months after the fifth session. All Girl Scouts received one of 
the experimental curricula, taught by a trained member of the research team with troop leaders 
present.  

Troops ranged in size from 4 to 21 girls, with an average of 11 girls per troop. By troop, survey 
return rates at baseline averaged 98.7 percent for Girl Scouts and 88.5 percent for parents. At 
post-test, survey return rates averaged 94.9 percent for Girl Scouts and 91.4 percent for parents. 
At follow-up, survey return rates averaged 83.3 for Girl Scouts and 82.5 percent for parents. 
Multiple imputation techniques were used to handle missing data, for a total of 313 Girl Scout 
participants (149 residential; 164 food/transportation) and 318 parent participants (151 
residential; 167 food/transportation). In addition to self-reported behavior change through the 
surveys, researchers also collected data on monthly electricity and gas usage from one-third of 
the parent participants; analysis of this data is currently underway. 

3.3.1.4 Outcomes 
Preliminary analysis of the fully collected data indicates pre-post differences in child-reported 
behaviors between the two treatment groups for both sets of behaviors. Substantial changes 
occurred for behaviors that require adult assistance, such as adjusting refrigerator and hot 
water heater temperatures, replacing incandescent bulbs with compact fluorescent light bulbs, 
and adjusting tire pressure. Preliminary findings also suggest increases in pre-post child-
reported knowledge of energy issues from both curricula. These preliminary results are very 
promising and suggest the efficacy of these two curricula in changing energy efficiency-related 
behaviors in girl scouts and their families. 
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3.3.1.5 Future Work 
Subsequent analysis will test the efficacy of the curricula in changing child-reported behavior at 
follow-up, parent-reported behavior, as well as electricity and gas usage in the subset available. 
Demographic, socio-cultural and psychological moderators and mediators of intervention 
effects will also be assessed to examine the mechanisms of change, evaluate intervention 
delivery variables and their relationships to outcomes, and identify the appropriate target 
audiences for subsequent dissemination.  
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CHAPTER 4: 
Evaluation and Modeling 
Three projects focused on developing methods for evaluating the effectiveness of energy 
programs, and modeling the effectiveness of interventions to guide future work  

4.1 Google Power Meter Evaluation 
The goal of energy disaggregation is to find a breakdown of this signal into multiple 
components 

4.1.1. Background 

Readily available, easily accessible, real-time information delivered via technology is reported 
to produce important declines in residential energy consumption (Faruqui et al. 2010; Ehrhardt-
Martinez et al. 2010). Designing interventions that use feedback technologies and rely primarily 
on information as a means of changing energy behaviors  have been promoted as cost-effective 
policies (Fischer 2008; EPRI 2009) and possible alternatives to traditional price incentives 
(Allcott and Mullainathan 2010). 

Estimates of the energy savings from feedback technologies vary widely, from none to as much 
as 20 percent (Faruqui et al. 2010; Ehrhardt-Martinez et al. 2010). There are three main factors at 
the source of this heterogeneity in outcomes. First, studies have employed different research 
designs. Second, the features of the feedback technology, such as timeliness, data display, 
interactivity, sociability, and controllability play a significant role in inducing energy reductions 
and have varied substantially across studies. Third, there is significant heterogeneity in the 
characteristics of the population of consumers participating in feedback interventions. Although 
several studies have looked at the impact of feedback technology, providing insights as to how 
study design, features of the technologies and characteristics of the people using them impact 
the energy savings estimates, several questions remain. To determine if feedback technologies 
are cost-effective measures to manage energy demand it is necessary to assess whether they 
provide persistent energy savings and how they change consumption profiles. Previous studies 
have remained silent on these questions due to limitation in study design and data available 
(EPRI 2009). 

4.1.2 Objectives 

The goal of this research was to provide an estimate of the potential for electricity savings for 
households that have access to real-time feedback technology, and to document how this 
technology changes consumption profiles and impacts the persistence of energy savings. The 
feedback technology, Google Powermeter, resembles the technologies being deployed by 
several utilities in the US and elsewhere. 
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4.1.3 Design and Methods 

We used a randomized controlled trial to overcome issues of selection bias and to estimate 
treatment effects. Households participating in this study were recruited in collaboration with 
Google, both in their California offices and with several offices across continental US. 
Employees (N=1743) from the company voluntarily enrolled their households for the study. As 
part of enrollment all participants were required to install The Energy Detective (TED) device 
(purchased by the company), complete an online survey and be randomly assigned to no-
feedback (untreated control) or feedback (treatment) conditions.  Only households in the 
feedback treatment condition were given access to the feedback technology initially. 
Households in the control condition were given access to the feedback technology after three 
months. The study took place between February, 2010 and October, 2010. 

4.1.4 Results 

Summary 

Over the period of the field trial, March through October 2010, a statistically significant 
reduction in electricity use of 5.7 percent was found. However, an examination of persistence of 
effects over time shows that there is only a brief period of significant reductions in electricity 
consumption; by week four all statistically significant reductions have ended. In examining time 
of day reductions, the largest reductions were observed initially at all times of the day but as 
time passes, morning and evening intervals show larger reductions. Evening reductions faded 
but morning reductions were sustained for eight weeks. However, the return to baseline in 
other day and evening periods cancelled out statistical significance in overall reductions. Thus, 
overall statistically significant reduction effects lasted for four weeks. 

Overall effects 

Ideally, the researchers’ analytic models would be identified using electricity billing data for the 
months preceding the experiment; however, researchers did not have access to this data. These 
models rely on that after May 28, 2010, both the control group and the treatment group had 
access to the feedback technology. Under the assumption that the treatment effect is constant 
over time, when households in both groups have access to the technology, any differences in 
average consumption levels can be attributed to household specific fixed effects.  

Results from the estimation of the fixed effects model show that the average treatment effect 
consists of a decrease in electricity use of 5.7 percent per hour (this works out to about 0.05kwh 
in absolute terms), significant at the 5 percent level.  

Time of Day effects 

An aspect of this primary research goal is to use the unique real time data to inform the team’s 
understanding of time specific electricity use and reductions. Periods between high and low 
household membership activity were distinguished, which allowed the researchers to  infer 
whether savings are attributable to habitual behavioral change (such as turning off lights) or to 
one time behaviors that are more structural in nature (such as installing energy efficient 
appliances or house insulation). Change in habitual behaviors should lead to reductions that are 
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observable at periods of high occupancy while the latter class of actions should lead to 
reductions in the baseload levels of consumption. 

The largest reductions in electricity consumption due to feedback occur during the morning and 
evening peak periods: between 5 am and 10 am, electricity consumption decreases by 12.2 
percent in average and between 8 pm and 11 pm electricity consumption decreases by 8.2 
percent on average. While energy savings during the middle of the day and night are 
insignificant, savings during the morning and evening peaks are large and significant. Savings 
occur at periods when household members occupy the house and engage in household 
functions, such as eating, entertainment, cleaning and household maintenance.  Based on this 
finding,it is argued that electricity use reduction during household activity is consistent with 
changes in energy behaviors that pertain to habits. 

Persistence at different times of day. Researchers find that in the first two weeks after having 
access to real time electricity feedback, electricity consumption decreases in all time periods. 
Beginning at the third week, reductions during the day (10 a.m. - 4 p.m.) and the night (11 p.m. - 
4 a.m.) fade away. In the long-run, only reductions during the morning and evening peak 
periods persisted. 

4.1.5 Future work 

This paper points out the challenges of conducting rigorous experimental work in the field; 
sufficient experimenter control, adequate funding, and expert staffing are all necessary for 
robust trials of feedback and energy consumption. Researchers also discuss some of the inherent 
challenges of this type of work; the heterogeneity of electricity consumption, the relatively low 
predictability of levels of that consumption, size of samples needed for detection of effects in the 
face of large heterogeneity, and necessity of data collected over periods of one year or more to 
adequately assess seasonal and weather effects – and, importantly, achieving persistence 
through interventions of this type. In addition to attempting to address these issues, future 
work can expand on analysis techniques to improve learnings from trials such as these, as well 
as to offer utilities and government entities trusted approaches to quantifying the impacts of 
behaviorally oriented programs. 

4.2 Social Media Analytics through Twitter Explorer 
Investigators: Martha Russell, Markus Strohmaier and Jan Pöschko, Technology University of 
Graz, Austria; Rafael Perez and Neil Rubens, University of Electro-Communications, Tokyo; 
June Flora, Jiafeng Yu and Marc A. Smith, mediaX at Stanford University 

4.2.1 Background 

The term social media describes the online tools and platforms that people use to share 
opinions, insights, experiences, and perspectives with each other. Social media can take many 
different forms, including text, images, audio, and video. Understanding conversations in 
online social media has the potential of providing program planners and communication 
campaign mangers unique insights into individuals’ thoughts and verbal productions about 
energy efficiency and climate change. With the increasing adoption of social media (73 percent 
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of teens and 72 percent of young adults (Lenhart et al., 2010)), new opportunities are available 
for studying the role of online conversation in persuasion. 

In 140 characters or less, the concerns, interests and public narratives about energy efficiency 
and climate change can be identified through tweets. Twitter conversations also reflect the 
social aspects of information diffusion through conventions such as retweets and other 
conversational responses, through the membership and social distance of these conversations, 
and in overtime changes in frequency and form of the networks. With Twitter, a particularly 
popular type of social media that has proven relevant in a number of societal challenges and 
conversations recently, the social response to societal or national events, as well as to media 
coverage of these events, and persuasive communication campaigns can be observed. Twitter is 
both a medium and the message (Savage, 2011). 

4.2.2 Objectives 

Our goals were to track and analyze social media conversations related to energy efficiency and 
climate change in order to gain insights about consumer attitudes and behavior.  By 
understanding the larger context of public sentiment about changing energy behavior, the 
research team looked to create insights on the context – cultural, economic, social – where the 
Stanford Energy Behavior Initiative intervention projects were being conceived and 
implemented. Their broad research question asked, “How can social media reflect consumer 
sentiment about energy and campaigns to reduce residential use of energy.”  

4.2.3 Methods 

Using an eco-linguistic taxonomy to describe energy use opinions, energy efficiency behaviors, 
frames, metaphors, technologies, and also to determine standard sources of energy information 
such as the Department of Energy (DOE) and Environmental Protection Agency (EPA), the 
research captured Tweets containing those terms, parsed identified elements of the 
communications, curated the data, and archived the data for access. The analysis of this eco-
linguistic-filtered social media was aimed at understanding the frequency, context and potential 
persuasive influence of social media conversations about changing energy behaviors (Russell et 
al., 2011). 

Data was collected from the messages, users and content of the hashtags that occurred between 
September 3, 2010 and March 31, 2013. Conversations were processed to be overtime mentions 
of predetermined ecolinguistic terms and co-occurrence of related hashtags in Twitter. Three 
techniques were used to cull discernable patterns from the large quantities of data and portray 
the data visually: content analysis of the full Tweets, network analysis of co-occurring hashtags, 
and semantic analysis of the co-occurring hashtags and their authors. 

Data were acquired on a daily basis by utilizing the NodeXL Twitter Importer module (Smith et 
al., 2009), which captured the latest messages containing energy related keywords. The dataset 
was then parsed and analyzed by utilizing Hadoop Map Reduce distributed processing on the 
Amazon’s EC2 computing cloud. Data for these Tweets was then passed to other applications—
Excel, NodeXL, Gephi and TwitterExplorer—for further analysis and visualization. 
TwitterExplorer (Russell et al. 2011), developed separately, was used to analyze and visualize 
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the latent semantic structures embedded in energy-related conversations on Twitter. 
TwitterExplorer visualizes semantic relations between terms used in Twitter messages based on 
different aggregation and similarity measures; semantic similarity between terms is calculated 
based on co-occurrence of terms within messages (Tweets). 

We analyzed samples of the 3+billion filtered Tweets that used the ecolinguistic terms included 
in this study. Several analytical lenses were tested in this study: frequency, periodicity, valence, 
co-occurence, and context. Through several methods, the research team were able to describe 
snapshots and detect changes over time in the conversation as well as identify conversation 
stimulating events, such as national policy, new technology launches, and media events. 

Figure 9: Twitter Explorer Interface  

(for data collection and analysis of tweets that include specified keywords) 
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4.2.4 Outcomes 

The data, tools and initial analysis of this study represent first steps towards more refined 
analytical approaches that help understand the large scale conversations taking place on Twitter 
and elsewhere. This study demonstrated the feasibility of using data mining techniques to 
gather and analyze vast amounts of data from ongoing social media conversations and of 
analyzing the data for meaningful metrics that describe conversations about energy 
consumption behavior.  

Our exploration confirmed that conversations about energy-related issues are, indeed, taking 
place in social media, specifically Twitter, and that these communications can be studied to 
better understand how to use technologically-enhanced word-of-mouth to stimulate user-
generated persuasion. Using content analysis of full Tweets, network analysis of co-occurring 
hashtags, and semantic analysis of the co-occurring hashtags and their authors, this preliminary 
investigation identified descriptors, concerns, actions, and issues. It was confirmed that 
studying Twitter communications can provide actionable means for assessing engagement, 
identifying influencers, and identifying word-of-mouth communities that can accelerate change 
in energy efficiency behaviors. 

Using network analysis of hashtags researchers analyzed and visualized contextual 
relationships of among the salient terms used in social conversations and identified several 
clusters of related issues, revealed by the co-occurence of hashtags. The research team used 
social and linguistic structures of communication (repeat communications and varied types of 
Twitter communication conventions such as pictures, hashtags, retweets, and URLs) to analyze 
the self-organizing communities of consumers. These communities share many of the 
characteristics of issue publics, and further research on similarities and differences to other 
issue publics is needed in order to understand how to create, grow and sustain word-of-mouth 
persuasion for energy behavior change. Tools that permit visualization of vast quantities of 
user-generated content about energy and sustainability were demonstrated. 

4.2.5 Future Work 

Based on these initial results, it was recommended to continue data collection and developing 
analytical methods and tools that can: track public opinion related to energy consumption; 
analyze domain-specific, user generated content on social media platforms; identify and track 
indicators such as semantics and social roles; identify and explore patterns and disruptions; 
identify and benchmark grassroots resources such as author networks; characterize 
opportunities for resource transformation; and build semantic models to understand the 
aggregations of conversation streams. 

To accelerate exploration of these important issues, the Twitter Energy data is available for 
other researchers. Against the urgency of climate change and the need to mobilize widespread 
changes in energy consumption, other researchers were encouraged to join the team in a 
research agenda that includes: analyzing and characterizing energy consumption behavior; 
tracking public opinion related to energy consumption; analyzing domain-specific, user 
generated content on social media platforms; identifying and tracking leading indicators of 
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attitude and behavior change; and identifying patterns and disruptions that can accelerate 
change and provide alerts for emergency response. 

4.3 Diffusion Modeling of Behavioral Interventions 
Investigator: Jeff Shrager 

4.3.1 Background 

A central goal of the Stanford ARPA-e project is to achieve energy reductions by using feedback 
from sensors to inform decisions regarding which behavioral manipulations to deploy. Given 
this goal, it is important to be able to predict as accurately as possible, how different possible 
manipulations will move the needle toward this goal. Even if the exact amount of energy that 
might be saved under various manipulations cannot be predicted, the research team might be 
able to at least rank-order the possible manipulations. Such a ranking, crossed with cost, would 
be used in choosing which manipulations to employ.  

The most accurate way to conduct such analyses is, of course, through real, clinical-trial-like 
experiments, and this is the approach taken by some other Stanford ARPAe subprojects (e.g., 
the Girl Scout project). Unfortunately, real world experiments are extremely time consuming 
and costly, and can only be conducted on a small number of manipulations. Moreover, because 
one would assume that the efficacy any such manipulation will depend upon many features of 
the setting in which they are applied, one would have to run a huge number of experiments to 
tease out all of these interacting effects.  

Although a simulation can never stand in fully for a clinical trial, in many fields they have 
proven extremely useful in getting a rapid (and very inexpensive) handle on the general 
response topology. For example, every modern biomedical clinical trial is computationally 
simulated before being actually run on real patients. These simulations provide very accurate 
estimates of the number of patients that one needs to run in order to get meaningful results in 
the real trial. 

4.3.2 Objective 

The goal of this project is to use computational simulation to estimate the differential efficacy of 
behavioral manipulations on energy usage applied in various environments. It aimed to 
specifically develop a general methodology to enable analysts to propose a novel manipulation, 
and then rapidly and inexpensively explore its potential efficacy under a variety of conditions, 
and, if desired, to rank these predictions against other proposed manipulations (or, used in 
another way, to choose in which real-world settings to deploy different manipulations because 
different manipulations may be predicted to have differential success in these).  

4.3.3 Methods 

Multi-agent simulation was used in this modeling effort. Muti-Agent simulation has a long 
history, beginning with Simula67, and leading to SmallTalk, and thence to all modern object-
oriented programming languages. It has been extensively applied in many domains including 
military simulation (where gaming is very big), hardware (e.g., Verilog), socio-economics, and 
even in politics. Multi-agent simulation can model very complex systems with very complex 
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dynamics in great detail, heterogeneous populations (without averaging), complex internal 
decision making algorithms, complex communications structures, and are generally relatively 
easy to develop. It is most powerful and useful when inter-individual interactions are high and 
the decision choice algorithms are influenced by changing local social parameters. Although 
multi-agent simulations are most interesting in these domains, they can be powerful in 
individual (non-social) domains as well, especially in this case where there is a tacit 
communication via the community's influence on the shared environment and on the shared 
electrical grid. Also, the utility of an agent based model would in part be in communicating 
analysis results and exploring consequences from the model – that is, agent based models are 
probably much better than the way that currently communicated statistical outputs. (A 
disadvantage of multi-agent simulations is that they are more difficult to utilize for abstraction 
and optimization; math modeling / algebraic analysis is preferred in this case.) 

In the multi-agent simulation, the following steps were carried out: 1. Create /code the model; 
define the environment (e.g., weather, oil supply); define each agent's possible actions and 
decision algorithm; define the communications (i.e., "social") graph. 2. Parameterize the decision 
algorithm, social graph, and environment: Set search ranges for target parameters (independent 
variables, e.g., interpersonal communication graph structures; intervention manipulation 
parameters, such as thresholds for interventions and intervention strengths; and so on); set as 
many "non-target" parameters as are available (e.g., default pricing of categories of energy; 
population size and subcategories, and default energy usage averages for each population 
subcategory); Guess at non-target parameters for which data is not available; randomize over all 
others. 3. Run across search ranges of target parameters and gather data (dependent variables, 
usually final energy utilization). 4. Interpret results using qualitative dynamics, graphical 
visualizations, or fitting of the output data to algebraic models (possibly for algebraic analysis, 
e.g., optimization). 

4.3.4 Outcomes 

Two models were developed. The “A” model (developed with S. White) was based upon 
existing modeling technologies and was used to pilot the basic modeling theory and test the 
hypothesis that very simple manipulations would produce observable differentials in energy 
utilization. Based upon results from the “A” model experiment, a “B” model, called ESim, was 
developed, which was more general and built on a cloud-based modeling infrastructure that 
would, in principle, enable other modelers to experiment with ours and other similar models. 
Statistical results from these models suggest that approximately 10 percent energy savings 
could be expected on average, but that this depends critically upon the communicaition model 
(i.e., social network structure and interaction density).    

4.3.5 Next Steps 

A model to guide program design and selection has not been possible in the past, but is now 
feasible due to the dramatically improved ability to quantify the effects of behavioral programs 
with sensor data, to an accumulated large body of empirical behavior change literature from 
which effect sizes can be drawn, and to sufficiently mature modeling approaches. The project 
reported here was ambitious in attempting this, and much work remains to be done to achieve 
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the goals described here. The tool developed could be used to make predictions, which could 
then be tested in field trials. Parameters such as effect sizes for a wide variety of behavioral 
approaches, derived from existing research and evaluation studies, could be incorporated to 
improve the model. As more studies are behavioral program pilots are run, the true empirical 
responses to the corresponding programs can be incorporated into the model. A description of 
the work and a user’s guide is online, and the code (both for the model, and for the graphical 
user interface so that non-programmers can utilize the model to make predictions) is available 
for others to use; please contact the lead investigator for access jshrager@stanford.edu (it was 
recently taken down from the web due to server issues, but could be returned to operation). 
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CHAPTER 5: 
Summary and Conclusion 
5.1 Summary, Impacts, and Next Steps 
5.1.1 Summary 

This initiative has met its objectives to develop an array of components needed in a system that 
utilizes smart meter and other sensor data, communication technologies, and behavioral 
approaches, to achieve significant energy savings. Major work on 19 projects tied to this goal 
was accomplished, as well as preliminary work on a new integrative Project 20 that is underway 
with additional funding. A summary of these achievements is included in the table below, and 
elaborated upon following the table. 

CS = Computer Science 

E-IPER = Emmett Interdisciplinary Program in Environment and Resources 

EE = Electrical Engineering  

FS = Freeman Spogli Institute for International Studies at Stanford 

H-STAR = Human Sciences and Technologies Advanced Research Institute 

ISB = Indian School of Business 

MS&E = Management Sciences and Engineering 

PEEC = Precourt Energy Efficiency Center 
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Table 3: Stanford Initiative Projects Potential Applications 

Proj. 
# Project Name Investigators 

& Partners 
Potential Applications and Completed Deliverables 

(Publications for all projects can be found at http://peec.stanford.edu/energybehavior) 
Technology  
1 Communication 

Network 
− Levis, Kazandjieva (CS) Established home area network (HAN) Internet standard for use at scale; use the  high granularity data from 

from plug monitoring mesh network that was developed to inform future computing  energy standards  
First, helped establish the first Internet standard for home area networks (HANs), which is being 
adopted by industrial consortia such as WirelessHART and ZigBee, and is designed to support 
innovation. Second, developed a wireless power plug meter that automatically joins a self-
assembling, ad-hoc wireless mesh network; the deployed network of 200 meters allowed the team 
to publish detailed data at a scale orders of magnitude greater than other similar efforts, and is 
informing future energy standards for computing systems 

2  Stanford Energy 
Services Platform 
(ESP) 

− Armel, Reeves (PEEC) 
− Bonsai Development Corp. 

Improve the ease of implementation and evaluation of energy saving interventions that use sensor data via 
software platform 
Software platform that includes data collection services, a database, analytics, and graphical user 
interface templates for behavioral program deployment and experimentation at Stanford and 
beyond 

Algorithms 
3 Segmentation 

Algorithms  
  

− Fischer, Rajagopal, Albert, 
Kavousian (CEE) 

− Google, PG&E 

Energy use and demand forecasting; demand response programs 
Software to segment commercial and residential customers based on their smart meter data 
energy consumption patterns. This information can be strategically and cost-effectively used to 
target customers for energy savings; utility trial in planning phase 

4 Learning and 
Automation 

− Aghajan, Khalili, Chen (EE) HAN energy efficiency (EE) and demand response (DR) automation 
Software based on adaptive machine learning algorithms utilizing appliance and sensor data to 
improve TV and lighting automation on the dimensions of user activity, user preferences, and 
energy savings 

5 Disaggregation 
Technical and Policy 
Survey Paper  

− Armel (PEEC), Gupta, 
Shrimali, Albert 

− Bidgely, Venrock 

Support the development of algorithms for improved demand side management (DSM) 
Comprehensive survey paper assessing the benefits of disaggregation (i.e., the statistical 
separation of  the whole building energy signal into appliance level energy use data), overview of 
state of the art algorithms and their performance, and smart meter data suitability for these 
algorithms; dissemination of findings through public forums and thousands of downloads 
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6 Residential Energy 
Disaggregation 
Dataset (REDD) 

− Kolter, Chadwick, Armel, 
Flora (CS, PEEC) 

− Enmetric 
 

Support the development of algorithms for improved DSM 
Data set collected and made available for developers to improve, train, and test disaggregation 
algorithms; extensively used.   

7 Disaggregation 
Algorithms 

− Ng, Kolter (CS) Support the development of algorithms for improved DSM 
Disaggregation algorithms were developed using sparse coding methods to advance the state of 
the art  

Target Behaviors 

8 Energy Behavior 
Taxonomy 

− Flora, Boudet, Roumpani, 
Armel (PEEC) 

Energy saving action recommendations for use in software or programs 
Database of 250 energy saving actions, their attributes and impact, and barriers. Implementation 
in Bidgely Inc.’s online recommendation system 

9 Identification of 
Innovative Energy 
Behaviors 

− Armel, Cornelius, Ardoin, 
Plano, Bridgeland, Morton, 
Chang, Allen (PEEC) 

Energy saving action recommendations for use in software or programs; development of new energy saving 
technologies 
Opportunity map identifying energy reducing practices and technical insights from other cultures 
and time periods, quantifying their potential energy saving impacts across U.S. climate zones, if 
adapted for developed nations 

Behavioral Interventions 

Media Interventions 
11 Online Game  

  
− Reeves, Cummings, 

Scarborough (Comm) 
− Kuma Games 

Energy savings through media programs 
Online game utilizing real world energy data, social competition, and retraining of habits through 
reinforcement; laboratory and field studies suggested changes in energy saving behaviors and 
consumption.  

10 Social Norms 
 

− Walton, Sparkman, Clark, 
Paunesku, Armel, Luo, Flora 
(Psy) 

− Home Energy Analytics, City 
of Mountain View 

Energy savings through media programs 
Web application that helps consumers track energy use and receive tips; 800+ users, embedded 
experiments showed the effectiveness of thematically organized tips and collective action framing  

12 Immersive Reality 
 

− Bailenson, Bailey, Flora, 
Armel, Voelker, Reeves 
(Comm) 

− DraftFCB 

Energy savings through media programs 
Experimental evaluation of the utility of an immersive virtual environment in promoting energy saving 
behaviors, with results suggesting that vivid visualizations of energy consumption (e.g., amount of coal 
instead of KWh) may be more important than the personalization afforded by avatars. 
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13 Facebook 
Applications  
 

− Banerjee, Flora, Sahoo, 
Bhansali, Greenspan, 
Khakwana, Liptsey-Rahe, 
Madres, Manley, Omer, 
Rajendra,  Scalamnini, 
Wong, Stehly, Voelker 
(ME/Design) 

 

Energy savings through media programs 
Three Facebook applications to motivate energy reductions and online experimental evaluations of 
these 

Incentive Interventions 
14 Appliance Calculator − McClure, Houde, Armel 

(Psy) 
Energy savings through nudges 
Online appliance calculator application; 60,000 users via Google Ads, embedded experiments 
evaluated the effectiveness of information and framing tools for guiding the purchase of energy 
efficient appliances and electronics, e.g., selection of 10-20% more energy efficient refrigerators 
from default sort order (manipulations informed in part by a study with Sears) 

15 Raffle Incentive 
  

− Prabhakar, Merugu, 
Pluntke, Gomes, D. 
Mandayam, Yue, Atikoglu, 
Albert, Fukumoto, Liu, 
Wischik, Rama (EE) 

− National University of 
Singapore, Land Transport 
Authority of Singapore 

Energy savings through incentives 
Online software developed for a raffle-like incentive program to motivate energy savings; 21,000 
users, ~10% of trips were shifted off peak to reduce congestion and associated fuel waste 

Community Intervention 
16 Community 

Program 
 

− Robinson, Ardoin, Boudet, 
Flora, Armel (School of Med 
& Education) 

− Girl Scouts, People Power 

Energy savings through community based programs 
Girl Scout “GLEE” curricula; 30 troop study, showed significant changes in self-reported home 
energy saving actions for both girls and their parents 
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5.1.1.1 Avenues of Impact 
The following elaborates on the deliverables produced and results found for each of the 
projects. Complementary workshops and other support efforts were also conducted.  

Technology 

1. Communication network. Levis, in collaboration with a many others, helped establish 
the first Internet standard for home area networks (HANs), which is being adopted by 
industrial consortia such as WirelessHART and ZigBee. Specifically, they created an 
open standard for TCP/IP in home area networks (HANs) as well as an open-source 
reference implementation of the standard for others to copy, extend, re-use, and 
improve. This technology will provide greater freedom in data collection, 
representation, storage, and communication between devices of different manufacturers, 
as well as lower the barriers to entry, all leading to innovations and improvements in 
human interfaces to sensor-actuator networks.  

As a second deliverable, this team developed a wireless power plug meter that automatically 
joins a self-assembling, ad-hoc wireless mesh network to deliver data to collection points (see 
Figure 1). The open-source design has been used by several follow-on efforts by other groups. 
Further, the deployed network of 200 such meters in the Stanford CS building for two years to 
obtain long-term, fine grained power draw measurements allowed the team to publish detailed 
data at a scale orders of magnitude greater than other, similar efforts, as well as establish the 
basic methodologies one should follow to measure computing energy. These results are being 
used by several green computing companies to write future energy standards for computing 
systems. 

2. Stanford Energy Services Platform. This provides the computational backbone for the 
behavioral interventions and includes three layers: data collection and storage (user, 
energy, website activity, weather, property, and project data), services (analytics like 
baselining and peer comparison, registration, surveys, experimental condition 
assignment, alerts), and presentation (API, widgets, drupal modules). The software is 
being prepared and documented for use by others.  

Algorithms 

3. Segmentation and targeting algorithms.  See other Summit posters for more info. 
Researchers used anonymized data from 250,000+ California utility customers with at 
least one year worth of hourly smart meter data, as well as 10 minute data collected on 
over 1,000 Google employees. The algorithms developed decompose a customer’s 
consumption into daily load shapes; load shapes are then analyzed in aggregate to 
obtain a small number of typical loads shapes that characterize the whole population. 
These shapes can be then utilized to build behavioral models for customers; examine 
features such as variability, amount of kWh consumed, and thermal response; and more 
effectively target customers for energy programs.  Finally, innovative methods to 
quantify the energy efficiency of buildings were developed. Tests of the algorithms in 
utility programs are in the planning phase. 
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4. Learning algorithms to enhance automation. This project automated the activity of TVs 
and lights based on human activity, preferences, and energy savings criteria. Data was 
collected from the electronics and also low resolution cameras that monitored human 
activity, and machine learning algorithms were developed that incorporated user 
models and decision-making to predict user behavior, as well as user feedback for 
refinement. The models were tested with real world data.  

Disaggregation 

This is the statistical separation of the whole building energy signal into appliance level energy 
use data. There were three discrete projects: 

5. A comprehensive review paper evaluating the benefits of disaggregation, algorithm 
requirements, and the ability of smart meters to meet these requirements - and which 
has had tens of thousands of downloads to date. 

6. Development of a high frequency data set, to aid algorithm development, testing, and 
benchmarking. Data was collected for three weeks from each of ~40 homes in Boston, 
MA and the Bay Area, CA, including 16 kHz whole home data, 3 sec circuit level data, 
and 1 min plug level data. Data available upon request, and will be publicly posted 
soon. 

7. Algorithm development. Disaggregation algorithms using sparse coding methods were 
developed to advance the state of the art.  

Target Behaviors 

A list of target behaviors is useful for populating consumer facing recommendation systems 
with energy saving actions, and in guiding future work on the development of new energy 
saving actions. The two discrete projects included: 

8. A database of 250 actions that directly reduce stationary residential energy use, and each 
action’s ratings on nine different attributes (e.g., energy savings, fiscal cost, frequency of 
the action, skill demand). Actions were implementation in Bidgely Inc.’s online 
recommendation system. This project also analyzed how the actions clustered based on 
the attributes so they could be more effectively “bundled”in behavior change programs.  

9. A collection of energy saving actions from other cultures and throughout history as 
inspiration for modern day energy saving innovations; their potential energy savings 
across U.S. climate zones were quantified to provide an opportunity map for future 
design efforts. (work in progress) 

Behavioral Interventions 

Media Interventions 

 10. Online game. This multiplayer game and supporting social media is suitable for use in 
xperiments and deployment in utility smart meter trials. Power House incorporated real 
world energy data into some of the game play, leveraged social competition, and 
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retrained habits through reinforcement. In a laboratory experiment and field study, 
participants respectively increased their short term energy efficient behaviors (turning 
off devices) and used significantly less energy during the weeks they used the game. 
This project received Phase II funding to deploy the game through Facebook. 

 11. Social norms. 800 self-selected residences received feedback about their energy 
consumption, energy saving tips, and normative framing in emails sent every other 
week. It was found that when energy-saving tips were organized thematically (e.g., all 
heat saving tips, rather than a random mix of tips), the collective-action frame (“We’re 
doing it together!”) led to significantly greater reductions than descriptive norms 
(“Residents here have reduced their energy use by x% this year.”) or the thematic 
recommendations alone. 

12. Immersive reality. This work created an immersive virtual shower world and measured 
its impact on energy related hot water consumption behavior, with results suggesting 
that vivid visualizations of energy consumption (e.g., amount of coal instead of KWh) 
are more important than the personalization afforded by avatars. 

13. Facebook applications. This project developed three Facebook applications to match the 
range of motivations exhibited by individuals: Power Tower is social in that it allows 
one to collaborate with others in a Tetras-like puzzle where pieces are granted based on 
multiple participants’ energy savings; Kidogo is affective in that it allows one to 
compute their real world energy savings and then microfinance individuals in 
developing countries based on these savings; and Powerbar is cognitive in that it 
primary displays energy feedback data. Partner workshops planned for Phase II funding 
period to disseminate findings. 

Policy Interventions 

14. Appliance calculator. This application has been used by over 60,000 people via Google 
Ads. By testing changes in the interface it was found, contrary to expectations, that 
projecting out cost savings over time does not appear to prompt more energy efficient 
refrigerator browsing, whereas simply changing the default sort order to put the most 
efficient appliances on top reduced the average kWh consumption of items selected by 
10-20 percent – this suggests that simply implementing the most effective behavior 
change techniques may be a more effective strategy than a traditional route of analyzing 
the underlying cause of a problem then trying to address it. 

15. Raffle incentive. The Insinc sweepstakes or raffle-like incentive program recruited 21,000 
users in six months, with 7.5 percent of all Insinc trips shifting off peak to reduce 
congestion and associated fuel waste, 11 percent shifting by those previously making 
regular peak-hour trips, and significant shifting to the use of public transit. A 
computational platform was also developed (separate from project #2) to support this 
and similar programs.  
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Community Intervention 

16. Community program. Community-based programs can be much more effective than 
traditional marketing communications when strategically tapping into existing social 
networks and providing close support from peers (e.g., 10 vs. 85 percent in the Hood 
River Project). A five lesson Girl Scout program was developed that resulted in 
significant changes in self-reported home energy saving actions for both girls and their 
parents. Phase II funding will link the Girl Scout and Integrative (#20) projects and scale 
the project to other regions of the U.S.  

Data Evaluation and Modeling 

17. Google Powermeter evaluation. Over 1000 individuals participated in a randomized 
controlled trial and showed an average of 6 percent energy savings in the first month or 
two of using the interface, which resembled many interfaces used on utility or other 
energy feedback websites. The study thus provided a benchmark for the comparison of 
other interventions, as well as a rigorous example of experimental and analysis methods 
for such work. (A note regarding persistence - it may be substantially improved with 
periodic reminders, as reported by Hunt Alcott (NYU) regarding the Opower program.) 

18. Twitter explorer. This project developed Twitter Explorer to mine and analyze data from 
ongoing Twitter and other social media conversations about energy. For one year, 
Tweets were collected if they contained ~150 energy related linguistic terms. Using 
content, network, and semantic analyses of Tweets and hashtags, researchers assessed 
engagement, identified influencers, and identified word-of-mouth communities. Further 
work can enable an understanding of how to create, grow, and sustain word-of-mouth 
acceleration of energy behavior change. 

19. Diffusion modeling. This project developed a simulation methodology and tool that 
allows one to model the energy savings of behavioral interventions according to 
parameters such as time, behavioral technique used, and social network distance and 
type. This tool could serve as a foundation for developing similar but more sophisticated 
tools enhanced with additional parameters and empirical data that could eventually 
lessen time and cost of developing interventions through predictive modeling, or, used 
in another way, to choose in which real-world settings to deploy different 
manipulations. 

Thus, the Initiative can be divided into technology, interventions, and evaluation and modeling 
tools. The Energy Services Platform software provided the technical backbone for the 
behavioral programs; the analytics were developed to perform personalization, targeting, and 
other functions to improve uptake and effectiveness of the behavioral interventions; and 
evaluation tools were developed to help assess the impact of the interventions. 
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5.1.2 Future Steps 

ARPA-E is funding Phase II of this Initiative. Five projects have been selected for that work; 
four existing projects will perform technology-to-market related activities such as scaling to 
larger consumer populations, and an integrative “Project 20” will aim to pull together aspects of 
these and other Phase I projects to develop and scale a more comprehensive energy behavior 
change program. The five projects specifically include: 

• Reeves et al. aims to acquire a substantial base of PowerHouse game users on Facebook. 

• Fischer and Rajagopal will develop segmentation and baselining analytics using smart 
meter data, which will support the behavioral program(s), and they will develop data 
visualization methods. 

• Robinson et al. will disseminate highly replicable community-based curriculum 
materials to facilitate widespread implementation; this will also serve as a scaling 
channel for another behavioral program(s). 

• Banerjee et al. will finish evaluating three research grade Facebook applications and 
hold workshops to share findings and software design with potential scaling partners.  

• Armel et al. will oversee the new integrative “Project 20” aimed towards developing, 
testing, and performing the initial scaling of a behavioral energy saving program that 
integrates and augments several of the Phase I and II project elements – in order to 
create a more comprehensive program. The architecture of the system will include 
several innovations and a narrative will create a cohesive user experience. Preliminary 
work on this system was performed with Precourt Energy Efficiency Funds. 

In addition, the research team will work towards creating an energy behavior platform that 
supports sensor data and analytics, for use by Stanford programs and others; attempt to 
develop a viable business model for Stanford programs which may include incentive, 
evaluation, and/or scaling components; and disseminate Stanford learnings and tools.  

5.1.3 Impacts 

Perhaps the most effective way to save energy is to simply not use it; this is in part because 
every unit of electricity not used (coined “negawatt”) avoids the consumption of three to four 
units of fuel at the power plant (Lovins 2010; Lovins and Browning 2000). Such reduced 
demand side use has a wide array of benefits: reduced GHG emissions; reduced environmental 
impact (from GHGs, pollution, etc.); reduced system capacity requirements (reducing the 
generation, transmission, and distribution investments required of utilities and IPPs to meet 
electricity demand); improved grid reliability (reduction in outages, etc.); increased energy 
security (reduction in vulnerability to long-term disruptions of energy supply through  volatile 
fuel prices, energy imports, climate change impact on energy markets, and finite resource 
exhaustion). Behavioral programs such as ours also provide the benefits of increased consumer 
appeal of energy efficiency actions (making achieving energy savings easier, promoting their 
adoption and furthering the benefits they provide), and increased economic activity (for 
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example, through an increase in retrofits, energy efficient appliance purchases), and potentially 
improved smart grid efficiency and benefits. 

The majority of the Stanford Initiative’s work to date has been in developing software, 
algorithms, programs, evaluation tools, and other supporting deliverables, and testing these – 
precursors to scaling to large populations to achieve the widespread impacts described above. 
There have been energy saving impacts – for example, the lottery project included over 20,000 
participants with an average of 7.5 percent of trips shifted off peak, and the appliance calculator 
projects totaled over 60,000 participants and those exposed to behavioral “nudges” pursued 
appliances that used 10-20 percent fewer kWh than their counterparts in the control condition. 
However, the emphasis on scale will begin with Phase II work, where the research team will 
refine and integrate the projects, make them commercial grade, and develop and implement 
scaling approaches. Development work being emphasized in Phase I  is consistent with the 
timeline described in the original grant proposal, with a some delay due to difficulty in getting 
sensor data, and other technical and logistical issues.  

To provide an estimate of the potential energy savings if this work is scaled, the following 
discussion is included. For an effective program that targets residential electricity use and space 
heating use, the research team can start with an estimate of lower bound savings up to 12 
percent, and upper bound savings of 35 percent, with a middle ground estimate of 23 percent. 
These figures should then be tempered with the finding that large scale programs tend to 
achieve lower average energy savings per household than smaller programs, and most of the 
programs to date have been smaller, thus these figures may be biased upwards. The lower 
bound of achievable energy reductions is derived from over 50 studies showing that feedback 
about electricity use causes a reduction in use ranging from approximately zero to 20 percent, 
with the majority of studies showing savings between 7-16 percent (Darby 2006; Fischer 2008; 
EPRI 2009).  These findings are derived from studies that used feedback as the sole or primary 
behavior change technique and greater savings may be possible by applying additional 
techniques (e.g., goal setting, game playing, framing effects, incentive structures, social 
marketing, and/or competition). It is also worth noting that in these studies, more frequent or 
appliance-specific feedback results in deeper savings, and savings tend to persist over two years 
according to a literature review by the Electric Power Research Institute (EPRI 2009) though 
questions about persistence continue and persistence may occur in some situations such as with 
periodically repeated programs but not in others (Alcott and Rogers, 2013). The upper bound 
estimate of 35 percent is derived from case studies (Parker et al. 2006) and a business analysis 
(McKinsey&Company 2009); there are also communities of households that have achieved 
much deeper savings, such as the Ninety Percent Reductions Group. The middle ground 
estimate of around 23 percent is the energy savings potential from behavioral programs, 
estimated by two independent research groups, that took into account technical potential from 
common energy saving actions as well as likely population penetration of these actions 
(Gardner and Stern 2008; Laitner, Ehrhardt-Martinez, and McKinney 2009). 

It may be useful to compare these figures to the current widely used status quo energy behavior 
change savings program in the United States - Opower’s home energy report - which achieved 
approximately 2 percent residential electricity bill savings according to analysis of their first 17 
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experiments which included 600,000 households across the United States (Alcott, 2011). Another 
useful comparison is that with the residential, and also total, energy consumption of the United 
States and of California. In the U.S., about 23 percent of energy is consumed by residential 
buildings, 19 percent by commercial buildings, and 16 percent by passenger cars and light 
trucks (Energy Information Administration 2008). In addition, the U.S. Department of 
Agriculture (USDA) estimates that food-related energy use accounted for about 16 percent of 
the U.S. energy budget in 2007 (Canning et al. 2010). Greenhouse gas (GHG) emissions follow a 
similar pattern (EPA 2006; Vandenbergh et al. 2008). In California, residential buildings use 33 
percent and 37 percent of the electricity and natural gas respectively, and in commercial 
buildings these these figures are 37 percent and 16 percent.  Furthermore, a 15 percent reduction 
of total U.S. energy consumption is more than the total yearly energy consumption in Brazil or 
the UK, or the quantity of fossil fuels that would be saved and GHG emissions reduced in the 
U.S. by a 25-fold increase in wind plus solar power, or a doubling of nuclear power, based on 
2007 figures (Energy Information Administration 2008; Sweeney 2007). 

5.2 Conclusions 
The Stanford Energy Behavior Initiative, which ran from early 2010 through the summer of 
2013, achieved an impressive array of work spanning 20 projects overseen by thirteen 
investigators across ten departments and five schools, in collaboration numerous students and 
outside partner organizations. The central objective of the Initiative was to develop the 
components that would support a system aimed at utilizing smart meter and other sensor data, 
communication technologies, and behavioral approaches, to achieve significant energy savings. 
The effort focused on the stationary residential sector, though work is applicable to and has 
explored transportation, water, and commercial applications. The Initiative can be divided into 
software and analytics, behavioral programs, and evaluation tools projects. The Energy Services 
Platform software provided the technical backbone for the behavioral programs; the analytics 
were developed to perform personalization, targeting, and other functions to improve uptake 
and effectiveness of the behavioral programs; and evaluation tools were developed to help 
assess the impact of the programs. Sensor data was used in a myriad of ways: for baselining, 
segmenting, and targeting; to improve automation; to disaggregate energy use and provide 
personalized recommendations; to provide users with feedback, comparison with others, and 
points towards competition, donations, and incentives; to evaluate the effectiveness of energy 
saving programs; and in other ways. Many deliverables were created from these projects, that 
could be used to scale programs for widespread impact, and that could be utilized by other 
groups, and numerous publications were produced describing the methods, findings, and 
deliverables. Phase II of this Initiative aims to integrate and scale these projects. 
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GLOSSARY 

Term Definition 

CS Computer Science 
DR Demand Response 
DSM Demand Side Management 
EE Energy Efficiency 
EE Electrical Engineering (Dept. Affiliation in Tables) 
E-IPER Emmett Interdisciplinary Program in Environment and Resources 
ESP Energy Services Platform  
FS Freeman Spogli Institute for International Studies at Stanford 
HAN Home area network  
HMD Head mounted display 
H-STAR Human Sciences and Technologies Advanced Research Institute 
IETF Internet Engineering Task Force 
ISB Indian School of Business 
IVET Immersive virtual environment technology 
MS&E Management Sciences and Engineering 
PEEC Precourt Energy Efficiency Center 
REDD Residential Disaggregation Dataset 
RFC Request for Comments 

RPL (“ripple”) Routing Protocol for Low-power and lossy 

Smart Grid Smart Grid is the thoughtful integration of intelligent technologies and 
innovative services that produce a more efficient, sustainable, economic, 
and secure electrical supply for California communities. 

TCP/IP Transmission Control Protocol/Internet Protocol 
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