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PREFACE 

The California Energy Commission Public Interest Energy Research (PIER) Program supports 
public interest energy research and development that will help improve the quality of life in 
California by bringing environmentally safe, affordable, and reliable energy services and 
products to the marketplace. 

The PIER Program conducts public interest research, development, and demonstration (RD&D) 
projects to benefit California. 

The PIER Program strives to conduct the most promising public interest energy research by 
partnering with RD&D entities, including individuals, businesses, utilities, and public or 
private research institutions. 

PIER funding efforts are focused on the following RD&D program areas: 

• Buildings End-Use Energy Efficiency 

• Energy Innovations Small Grants 

• Energy-Related Environmental Research 

• Energy Systems Integration 

• Environmentally Preferred Advanced Generation 

• Industrial/Agricultural/Water End-Use Energy Efficiency 

• Renewable Energy Technologies 

• Transportation 

 

Enabling Renewable Fuels Through Flexible Burners: Final Report is the final report for subaward 
POEFo2-V10 under CEC interagency agreement 500-10-048, conducted by University of 
California, Irvine Combustion Laboratory. The information from this project contributes to 
Public Interest Energy Research’s (PIER) Industrial/Agricultural/Water End-Use Energy 
Efficiency Program. 

 

For more information about the PIER Program, please visit the Energy Commission’s website at 
www.energy.ca.gov/research/ or contact the Energy Commission at 916-654-4878. 

 



iii 

ABSTRACT 

The use of natural gas as an energy source has increased in popularity due to its economic, as 
well as its environmental benefits. However, defining a standard composition mixture for 
natural gas can be problematic. Consequently, burners must be able to adapt to changing fuel 
composition when meeting emission regulation standards, preventing hardware degradation 
caused by flame instability, and maintaining high combustion efficiency. The research team at 
the University of California, Irvine used a scaled version of a Coen Quantum Low NORxR™ 
burner to study the applicability of fuel flexible technology using optimization search 
algorithms. To satisfy the four main categories required to make burner fuel flexible, a variety 
of sensors were incorporated into the system: 1. fuel identification and properties; 2. flame 
stability; 3. emissions; and 4. efficiency. Two optimization search algorithms were used to 
investigate sensor information which generated detailed performance maps: Powell’s Direction-
Set method and Downhill Simplex method. The Powell’s Direction-Set algorithm reliably found 
acceptable optimal operating conditions for a variety of simulated scenarios, but it also required 
a number of iterations to converge to a solution.  Conversely, the Downhill Simplex algorithm 
was quick to converge, but it had a higher failure rate. This project demonstrated the burner’s 
fuel-flexible capabilities using both the Powell’s Direction-Set and Downhill Simplex 
algorithms. The simulation approach proved to successfully predict trends with the addition of 
higher hydrocarbons—namely, an increase in the oxides of nitrogen emissions levels. The 
research team at the University of California, Irvine also used the results from this project to 
compare emission trend predictions using a computational fluid dynamic and chemical reactor 
network model, which had already been developed in previous work 
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method 
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EXECUTIVE SUMMARY 

Introduction 
Fuel-flexible operation of burners is desirable in order to increase access to a larger number of 
potential fuels; however, emissions requirements for the operation of these burners have 
become increasingly stringent. These requirements have led to burners with a tendency to 
operate near their stability limits. When a burner operates near its stability limit and variation in 
fuel composition is required, challenges may arise, which can lead to possible operational safety 
issues. For example, if the reaction blows out and is reignited, it can cause a large pressure 
oscillation within the boiler and furnace chamber which can rupture the boiler shell or damage 
furnace walls. Operating near the stability limit also makes turndown, the ratio of the maximum 
burner load to minimum burner load, difficult to control when low emissions are desired over a 
range of loads. 

Project Purpose 
Thus, the research done within this project seeks to monitor changes in fuel composition 
regarding the modification of burner operation. The scope of the variation measured within fuel 
composition is similar to the expected variation in the makeup of natural gas. Figure ES- 1 
compares the oxides of nitrogen (NORxR) emissions levels of a burner with different fuel flow 
splits and air flows. This comparison illustrates the contrasting differences of fuel composition 
without a specific control strategy. For example, the operating points on both graphs from a 
flow split of zero and 75 standard cubic feet per minute (scfm) of air illustrate that the NORxR 
levels increase by 15 to 20 percent. In this case, the burner’s NORxR emission would exceed the 
allowable limit unless its operation was modified. 

Figure ES- 1: Air SCFM vs NOx. Left 100-0, Right 95-5 NG-PG. No control 

 

 

In addition to minimizing NORxR and maximizing the stability of the burner, overall performance 
must also be considered. Operating at higher excess air values tends to lower NORxR emissions, 
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but it also requires extra work to move the additional air. This reduces the overall efficiency of 
the system. 

To accomplish stable operation and low emissions while accommodating varying fuel 
composition, an array of sensors and control algorithms were deployed using a 400 million 
British thermal unit per hour (MMBTU/hr) burner. This burner is based on a commercial 
advanced low emissions burner. Like many low emissions burners, it is fuel-staged with three 
separately controlled fuel circuits. These circuits allow the burner to attain reasonable turndown 
while still meeting emissions requirements. Certain combinations of fuel splits provided 
enhanced stability, but generally led to higher emissions levels. The fuel split is primarily used 
to help fulfill safe operation with low emissions; however, if the fuel composition changes, the 
burner’s fuel schedule must also change accordingly. A low cost sensor that can infer the 
heating value of the fuel was developed to accomplish this. A stability sensor based on reaction 
luminosity, was also employed. As a reaction approaches blowoff, luminosity becomes 
increasingly irregular. Monitoring luminosity and looking for an increase in intensity 
fluctuations provides a means of establishing whether or not a reaction is approaching blowoff. 
The result determined how burner operation could be adjusted accordingly. In addition, the 
luminosity sensor was found to correlate NORxR emissions very well, displaying higher mean 
intensity levels that equate linearly with higher NORxR emissions. Even though a standard 
exhaust emission sampling system was used to monitor NORxR levels, a much lower cost 
luminosity sensor could also be used. 

In order to simultaneously optimize the four parameters of interest (stability, NORxR emissions, 
and system efficiency), a “cost function” was developed, combining each of the parameters into 
a single value.  

The sensor information is used in conjunction with fuel circuit operation to demonstrate that the 
burner could automatically provide a low emission and a stable operating point as fuel 
composition changes. Two control algorithms were evaluated, both with their strengths and 
weaknesses. Generally, the Powell’s Direction Set optimization approach is favored, despite the 
fact that it takes longer to find the new optimal operation point compared to the Downhill 
Simplex Method. Nonetheless, it is more dependable than the Downhill Simplex method. 

Project Results 
Overall, the project demonstrated the benefits of adding sensors and controls as well as the 
burner’s capability to adjust itself to account for fuel compositional variation. The applied 
controls allowed the burner to remain at NORxR emissions levels below the regulatory limit, even 
when as much as 7.5percent propane (by volume) was added. In the absence of controls, the 
burner would have exceeded the NORxR limits. 

While the research within this project focused on the viability of actively controlling a burner at 
higher hydrocarbon rates, additional measures must be taken in order to gain maximum 
benefits.  First, the technology applied to renewable fuels consisting largely of methane and 
carbon dioxide (like those produced by waste water plants or landfills) must be reevaluated 
while complying with Assembly Bill 32 (AB 32, Global Warming Solutions Act, Nunez, Statutes 
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of 2006). Second, a low NORx Rburner with either no more than two fuel circuits or the ability to 
tune performance through air splits instead of fuel splits must be designed and implemented. 
Design and implementation of such a burner can begin immediately via arrangements with a 
burner manufacturer such as Maxon and Honeywell. Burners comprised of three separate fuel 
circuits, such as the one used in this project, are comparatively complex and costly to 
manufacture. Active monitoring of fuel flexible burners can directly benefit the public by 
reducing NORx Remissions and therefore formation of ozone. 

Project Benefits 
Generally, monitoring the flue gas of smaller scale combustion devices (like small package 
boilers and water heaters) is less cost effective than monitoring the flue gas of large scale 
combustion systems such as those found at power plants. However, as demonstrated by 
researchers at the University of California, Irvine, it is possible for a sustainable system to be 
implemented on a small scale burner without a substantial increase in cost. Ultimately, a burner 
with the ability to adapt to varying fuel composition (like that found in methane or with some 
carbon dioxide or natural gas and hydrogen mixtures) is better equipped to maintain overall 
safety and emissions requirements. 
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CHAPTER 1:  
Introduction 
Combustion systems account for a large portion of California’s energy usage and the various 
fuels being used are continuously shifting in order to meet regulation standards. Burners that 
operate on natural gas have increased in popularity due to several key factors. The first factor is 
the use of stringent environmental regulation standards, invoked at the local and state levels.  
Pollution, specifically NOx, have become a very important parameter when designing new 
burners or retrofitting preexisting burners with new technology. There are several geometric 
designs, burning methods, and sensor feedback control strategies that have been proposed and 
each one has their associated benefits and drawbacks. Another key factor is the lower 
environmental impact of burning natural gas compared to coal or diesel fuels.  Natural gas, 
which is mainly comprised of methane (CH4), contains fewer carbon chains than coal and 
therefore produces less carbon based emissions. However, as will be shown shortly, natural gas 
has no standard composition and can vary drastically from region to region. These dynamic 
fuel composition fluctuations create new challenges for burners already operating on the edge 
of stable combustion trying to meet emission standards. Fuel composition fluctuation problems 
are going to continue in the future due to the beneficial economic and environmental aspects of 
burning natural gas and its variants. This project aims to address the two major issues outlined 
thus far: NOx control and fuel composition effects.   

In order to solve and or counteract these two problems, a system of sensor feedback and 
optimization search algorithms will be used to find the most optimal operating condition given 
a desired load and sensed fuel composition. Optimization and control strategies have been 
selected for this task due to the ability to operate burners in conditions the burners were not 
originally designed for. Simply changing the operating conditions is a far easier and more 
robust system to add to a preexisting burner than altering the geometric design to accommodate 
all types of fuels. This project aims at modifying currently “dumb” burners by adding some 
intelligence to their operational capabilities in order to find an optimal and acceptable region to 
burn a variety of fuel blends. 
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CHAPTER 2: 
Background 
There are three main topics in this project that must be discussed before proceeding and they 
are: NORxR formation and control, fuel composition and its effect on burners, and optimization 
search algorithms. The most important parameter in this experiment is the control of NORxR 
emissions. Therefore, how this chemical is formed, why it is important to regulate, and common 
strategies to mitigate its production will be discussed. It is also critical to understand how the 
performance of a burner changes with different blends of natural gas. Finally after discussing 
how the previous two parameters present issues to burners the remaining sections of this 
chapter will discuss how optimization algorithms have been used in previous work and how 
this project addresses some unanswered problems. 

2.1 NOx Formation and Control 
2.1.1 Definition and Regulation of Oxides of Nitrogen 
Combustion processes emit various pollutants that are harmful to the environment and its 
inhabitants. Pollutants of primary concern are particulate matter, sulfur oxides, unburned 
hydrocarbons, NORxR, carbon monoxide (CO), and carbon dioxide (COR2R). Of critical importance to 
boilers, furnaces, and stationary gas turbines are the production of NORxRand CO. NORxR is a catch 
all category associated with the chemicals nitric oxide (NO), nitrogen dioxide (NOR2R), and 
nitrous oxide (NR2RO) (Hill and Douglas Smoot, 2000). Collectively NO and NOR2R are most 
commonly referred to as NORxR due to their co-presence in the combustion process. While both 
NORxR and CO are important factors in the environment’s health more emphasis will be put on 
NORxR particles due to its sizeable difference in difficulty to control and reduce concentration 
levels compared to CO.   

The presence of NORxR in the atmosphere can cause many environmental problems, such as the 
formation of photochemical smog, acid rain, destruction of stratospheric ozone and the creation 
of tropospheric ozone (Turns, 2000)(Lefebvre and Ballal, 2010). Destruction of ozone by 
chemical reactions with NO in the stratosphere (the region between 12km to 51km above the 
earth’s surface) can increase the amount of harmful solar radiation that can enter the earth’s 
atmosphere which can result in various skin diseases. NO can also undergo a series of chemical 
reactions to produce ozone while constrained in the troposphere—the region from the surface 
of the earth to about 12 kilometers (km). Increased exposure to ozone can cause respiratory 
illness, impaired vision, and allergies.   

For these reasons the regulation of NORxR emissions from combustion devices has been of critical 
importance to the federal and state levels of government. Due to the significant presence of 
smog encountered in the Los Angeles basin during the 1950s, California created laws regulating 
the emissions of automobiles in the 1960s. Then in 1963, the federal government passed the 
Clean Air Act which put restrictions on various pollutants (Turns, 2000). California has been a 
leader in setting strict emission regulation standards and is the primary force propelling 
research in the study of pollutant reduction and control. The South Coast and Bay Area Air 
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Quality Management Districts (SCAQMD and BAAQMD) have both enacted legislation 
lowering the previous allowable NORxR and CO concentrations for boilers of various load sizes to 
much more stringent levels. The SCAQMD promulgated Rule 1146.2 and BAAQMD Regulation 
9 Rule 7, of which the key points are summarized in Table 1 (South Coast Air Quality 
Management District, 2006)(Bay Area Air Quality Management District, 2011). For this 
particular project the burner being investigated operates at 0.4 MMBtu/hr and therefore 
regulated by the less than 2 MMBtu/hr category. The previous NORxR standard was set at 30 parts 
per million volumetric dry (ppmvd) but is now 20 ppmvd corrected to 3 percent oxygen (OR2R). 
As will be shown in later sections, the new NORxR standard is very difficult for the proposed 
burner to reach and causes it to operate within a very narrow band of allowable input 
parameters to maintain acceptable emissions. 

Table 1: SCAQMD and BAAQMD Limits on NORxR and CO 

Input (million Btu/hr) NORxR limit (ppmvd, 3% OR2R

) CO limit (ppmvd, 3% OR2R

) 

<2 20 400 
>2 to 5 30 400 

>5 to <10 15 400 
10 to <20 15 400 

 

2.1.2 NOx Formation Pathways 
In order to control the levels of NORxR in the combustion exhaust stream, the various NORxR 
formation pathways must be understood first. There are four main recognized mechanisms that 
contribute to the production of NORxR: thermal or Zeldovich mechanism, prompt or Fenimore 
mechanism, NR2RO-intermediate mechanism, and fuel bound nitrogen mechanism. Some 
mechanisms are more prevalent under one set of conditions versus another and are therefore 
dependent on the particular burner application and design. Furthermore, the primary form of 
NORxR is NO in most combustion processes with NOR2R being a small fraction of the overall NORxR 
concentration (Hill and Douglas Smoot, 2000). 

2.1.2.1 Thermal or Zeldovich Mechanism 
Thermal NORxR is formed from oxidation of atmospheric nitrogen at high temperatures (>1800 
degrees Kelvin [°K]) in fuel-lean environments (Hill and Douglas Smoot, 2000). The thermal 
NORxR formation pathway was first proposed by Zeldovich and can be represented by the 
following set of chemical reactions: 

1) 𝑂𝑂 +𝑁𝑁2 ⟺ 𝑁𝑁𝑂𝑂 + 𝑁𝑁 

2) 𝑁𝑁 + 𝑂𝑂2 ⟺ 𝑁𝑁𝑂𝑂 + 𝑂𝑂 

3) 𝑁𝑁 + 𝑂𝑂𝑂𝑂 ⟺ 𝑁𝑁𝑂𝑂 + 𝑂𝑂 

This set of reactions are most commonly referred to as the extended Zeldovich model. The 
activation energy in reaction 1 to produce a forward reaction is very large and therefore heavily 
dependent on temperature. It is generally seen that flame temperatures below 1800 °K have 
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very low thermal NORxR production (Turns, 2000). The second reaction happens very rapidly 
when compared to the first reaction, which then makes the first reaction the rate-determining 
step. The third reaction is primarily there for fuel-rich flames and can otherwise be neglected for 
most cases.  

2.1.2.2 Prompt or Fenimore Mechanism 
Prompt NORxR is formed by reaction of atmospheric nitrogen with hydrocarbon radicals in fuel-
rich flames (Hill and Douglas Smoot, 2000). In general this mechanism works by having 
nitrogen react with hydrocarbon radicals to form amines and cyano compounds. The amines 
and cyano compounds then undergo a series of intermediate reactions to form NO (Turns, 
2000).  The full set of reaction equations can easily be found in the literature and will not be 
reproduced here in order to be brief in this mechanism’s description. Prompt NORxR is of primary 
concern only for fuel-rich hydrocarbon flames and is only a small portion of the entire NORxR 
production. 

2.1.2.3 N2O-Intermediate Mechanism 
The NR2RO mechanism is prevalent in fuel-lean (Equivalence Ratio [Φ] < 0.8), low temperature 
conditions and follows this three step reaction (Turns, 2000): 

1) 𝑂𝑂 +𝑁𝑁2 + 𝑀𝑀 ⇔ 𝑁𝑁2𝑂𝑂 + 𝑀𝑀 

2) 𝑂𝑂 + 𝑁𝑁2𝑂𝑂 ⇔ 𝑁𝑁𝑂𝑂 + 𝑁𝑁𝑂𝑂 

3) 𝑂𝑂 +𝑁𝑁2𝑂𝑂 ⇔ 𝑁𝑁𝑂𝑂 + 𝑁𝑁𝑂𝑂 

In this case, M represents any third body species (e.g,. molecular oxygen or fuel). This reaction 
set has greater importance when considering lean premixed combustion systems. As will be 
further explained later, the burner used contains a small amount of premixing with fuel and air, 
which means this NORxR mechanism plays a less significant role than the previously mentioned 
pathways. 

2.1.2.4 Fuel Bound Nitrogen Mechanism 
Fuel NORxR is produced by nitrogen bounded in the fuel reacts to form hydrogen cyanide (HCN) 
and/or ammonia (NHR3R). These molecules are then oxidized to form NO by following the 
prompt NORxR reaction pathway. Natural gas and its deviants generally have very small, if any, 
amount of fuel bound nitrogen and has a greater significance for solid fuels such as coal. Hence 
this mechanism will not be explained further due to its lack of importance in this particular 
application. 

2.1.3 NOx Control Strategies 
Now that NORxR formation pathways are understood, the next important topic in this section is 
how to control and design a burner to perform at operating conditions with a minimal amount 
of NORxR being produced. Since thermal NORxR is assumed to be the most prevalent in this project it 
will be the primary focus of the remaining discussion. There are three ways to lower thermal 
NORxR and they are temperature, time, and oxygen availability (Turns, 2000). The most important 
parameter out of the three is temperature since it has the most effect on the chemical kinetics. 
For flames below 1800 °K thermal NORxR is not significant. Therefore, by lowering the flame 
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temperature one can easily reduce NORxR formation; however, this lower flame temperature can 
also result in lower system efficiency. The second parameter is time and this involves limiting 
the time the combustion gases spend at elevated temperatures. Reducing the time spent at peak 
temperatures limits the amount of chemical reactions that can take place.  The third parameter 
is increased oxygen availability, which can lower NORxR by decreasing the concentration of NR2R 
available for chemical reactions. 

Taking into consideration the three main parameters that effect NOx formation, it is time to 
discuss control strategies. At this point only physical modifications of hardware both to the 
burner and downstream systems will be discussed and feedback control will be discussed in a 
later section. Figure 1 depicts common modifications burners and the supporting systems can 
undergo in order to lower NOx emissions. As it can be seen there are many technologies 
available, but only the technologies that will be implemented in this project will be discussed 
and further information about the remaining technologies can be found in other literature. 

Figure 1: NOx Control Technologies.  Adapted From (Turns, 2000) 

 

 

2.1.3.1 Low NOx Burner 
Low NORxR burners, such as the one used in this project, incorporate fuel and/or air staging in the 
burner design. Typically fuel staging employs a lean-rich combustion design in which the 
central fuel and air mixture is a lean flame while the outer flame jets are fuel rich. This design 
feature is the primary technology behind achieving low NORxR levels for the burner being 
investigated. More details on the exact design of the burner will be given in a later chapter.  
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2.1.3.2 Low/High Excess Air 
The peak emission levels of NOx is reached at leaner than stoichiometric equivalence ratios 
(Φ~0.9). Operating with low excess air reduces NOx levels; however, this comes at a cost of 
increasing CO production. Therefore this method has limited use. Operating with high excess 
air can lower the flame temperature and thus the NOx level; however, this too can have 
negative side effects. The lower flame temperature will lower the system efficiency as well as 
potentially make the flame unstable at very lean conditions. The NOx reduction is then a 
balance between emission levels versus efficiency and stability.  

2.1.3.3 Temperature Reduction  
There are three common techniques on lowering combustion temperature: lowering preheat, 
water injection, and flue-gas recirculation (FGR). Lowering preheat will reduce combustion 
temperatures; however, it comes at the cost of system efficiency. For this project no preheat is 
added to the system in order to simplify experiments, but the results can be applied for any 
system operating at a constant preheat level. Water injection adds a heat sink into the system 
and thus reduces flame temperatures. FGR takes the hot combusted gases and cycles the stream 
back to the beginning of the burner. The burner in this project is not designed with the latter 
two technologies in mind. FGR could be a suggestion for future work.  

2.2 Natural Gas and Fuel Interchangeability 
2.2.1 Natural Gas  
Natural gas is a fossil fuel comprised primarily of methane and is considered to be a more 
environmentally friendly alternative to the burning of oil and coal. Due to decreasing price, 
improved efficiency, expanded distribution networks, and lower environmental impacts the use 
of natural gas as a major energy source in the United States has increased significantly in recent 
years and is projected to continue on this trend. A major concern with this increase in 
consumption is the role of fluctuating composition on currently installed burners. There is no 
standard for the composition of natural gas. Every region and extraction technique supplies 
variations on the chemical makeup of the fuel. The increase demand for fuel flexible burners is 
on the rise and will continue to be an area of interest due to the heavy demand for natural gas 
burner systems. 

The primary compound of natural gas is methane with small contributions from some higher 
hydrocarbons (ethane and propane) as well as inert gases (nitrogen and carbon dioxide).  
Typical percentages of methane are between 75-98 percent, ethane between 0-13 percent, and 
propane between 0-23 percent (with peak shaving in which propane is added to the pipeline to 
bolster available energy during high gas demand) (Hack and McDonell, 2008). As a comparison, 
an online gas chromatograph was used to measure the University of California Irvine 
Combustion Laboratory’s house natural gas and the composition analysis can be found in Table 
2. As it can be seen in the table the facility’s natural gas supply is approximately 98 percent 
methane. Due to this high concentration it is reasonable to assume the line is 100 percent 
methane for the purpose of easing analysis and calculations with minimal loss in accuracy. 
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Table 2: UCI Combustion Laboratory in House Natural Gas Composition 

n Constituent 
 

Mole Fraction y(i) % 
1 Methane CHR4 97.8783 
2 Ethane CR2RHR4 1.3875 
3 Propane CR3RHR8 0.3117 
4 Iso-butane CR4RHR10 0.0476 
5 n-butane CR4RHR10 0.0521 
6 Neo-pentane CR5RHR12 0.0000 
7 Iso-pentane CR5RHR12 0.0139 
8 n-pentane CR5RHR12 0.0000 
9 Hexane CR6RHR14 0.0021 
10 Heptane CR7RHR16 0.0019 
11 Octane CR8RHR18 0.0000 
12 Nonane CR9RHR20 0.0000 
13 Decane CR10RHR22 0.0000 
14 Carbon Dioxide COR2 0.0000 
15 Nitrogen NR2 0.3049 

  
Total (%) 100.0000 

 

In 2011 natural gas comprised 26 percent of the United States’ fuel energy usage and the Energy 
Information Administration projects that natural gas will obtain 28 percent of this usage by 2040 
(EIA, 2013). There are several reasons for this increase which rely on production, economic, and 
regulation efforts. On the production side a new extraction technique to collect previously 
difficult gas locked in shale formations has become now technologically and economically 
viable. Natural gas derived from shale gas extraction accounted for 34 percent of total natural 
gas production in the United States in 2011 and is projected to rise to 50 percent by 2040 (EIA, 
2013). A major challenge with shale gas is that the composition can vary drastically from region 
to region and requires a large amount of fuel conditioning/cleaning to reach normal and/or 
acceptable natural gas compositions for injection into the pipeline. This can impact the ultimate 
price of the gas. If the gas is used on-site (which is the case for local power generation to 
support the operations), the variability in composition can preclude low emissions combustion 
systems. 

With most states adopting Renewable Portfolio Standards (RPS), which generally favor the use 
of renewable fuels and natural gas, the demand for natural gas burning systems has increased 
drastically with special emphasis in the electrical generation sector (EIA, 2013). The combination 
of increased production and increased demand has made the natural gas market a very 
economically viable energy source. Therefore it is apparent that the number of burners 
operating on natural gas will increase dramatically and to compensate for discrepancies in fuel 
composition caused by varying extraction techniques the burners will have to be able to 
respond to fuel fluctuations. Burner geometric designs can attempt to accommodate all the 
various possibilities in fuel supplies, but having a system designed for a primary fuel with an 
intelligent fuel flexible control system implemented might prove a better route in optimizing 
system performance.  
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2.2.2 Fuel Interchangeability  
2.2.2.1 Parameters and Indices 
Fuel interchangeability is most often defined as the ability of one gaseous fuel being a substitute 
for another gaseous fuel without significantly altering the combustion characteristics and 
operation (Ferguson et al., 2007). Measuring and defining how well of a substitute one fuel is for 
another is a difficult task and is still an ongoing debate. There have been various indices 
proposed throughout the years that attempt to define interchangeability, but each one has their 
drawbacks. There are many important parameters associated with characterizing a combustion 
system such as flame speed, autoignition, flashback, blowout, and flame instabilities to list a 
few. So far there has been no single index that correlates to all of these combustion properties, 
but a few indices have been used repeatedly despite their shortcomings.    

The most widely used index to characterize fuel interchangeability is the Wobbe Index. The 
Wobbe Index is a measure of heating content in a fuel and is defined by the following equation: 

Equation 1:  𝑊𝑊𝑊𝑊𝑊𝑊𝑊𝑊𝑊𝑊 = 𝐻𝐻𝐻𝐻𝐻𝐻
√𝑆𝑆𝐺𝐺

 

where HHV is the higher heating value and SG is the specific gravity compared to air. The most 
common unit used in the United States is British thermal units per standard cubic foot (Btu/scf). 
The gas supply industry relies heavily on this index when determining if a fuel can be safely 
used in the distribution system. The Natural Gas Council formed the NGC+ Work Group on 
Interchangeability in 2005 and developed the acceptable range of Wobbe values for natural gas 
as between 1291 to 1400 Btu/scf with a maximum of 4 percent by volume of inert gases 
(Ferguson, Richard, and Straub, 2008). The Wobbe Index does well for burner systems that rely 
on thermal load as the main input, but for systems such as gas turbines the flame temperature is 
the most important input and Wobbe Index does a poor job at this estimation. Another problem 
is that the Wobbe Index does not capture the flame speed or combustion chemistry (Lieuwen et 
al., 2008).  

The Schuster Index tries to characterize a fuel by computing the Wobbe number and then 
divides by the fuel’s laminar flame speed. This index received limited use when it was first 
proposed due to limited amount of reliable flame speeds for various fuels. Recently flame speed 
calculations have become more available for pure fuels, but flame speeds of multi-component 
fuels have been difficult to obtain (Ferguson et al., 2008). Ferguson et al. showed that neither 
Schuster nor Wobbe could accurately predict the dynamic response to a change in fuel and 
recommends an index (or set of indices) that use the relative difference between a substitute gas 
and a baseline gas.  

2.2.2.2 Effects on Burners 
There has been a considerable amount of research done in the study of fuel interchangeability 
with many interesting results. The most relevant results deal with the presence of higher 
hydrocarbons in methane to that of emissions and flame stability. Hack et al. and Flores et al. 
both have shown that the addition of propane to natural gas increases the NORxR level at the same 
adiabatic flame temperature for two different lean premixed burners (Flores et al., 2008). 
Reasons for this increase could be due to local differences in flame temperatures and/or 
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facilitation of additional NORxR formation pathways that are present with higher hydrocarbons.  
The other important result is flame stability which has been shown to decrease with propane 
additions of 5 percent by volume or more (Ferguson et al., 2007). Reasons for this decrease in 
stability include changes in flame temperatures and flame speeds. Other combustion 
parameters such as flashback, autoignition, and blowout have also been investigated for natural 
gas fuel interchangeability but will not be discussed here due to lack of relevance with current 
project (Lieuwen et al., 2008).  

2.3 Control and Optimization 
In classical control and optimization problems a well-defined equation that accurately portrays 
the dynamics of the system is required to design various algorithms. However, for combustion 
systems mathematical descriptions of the plant are very difficult to obtain. For this reason a 
different approach must be taken for these types of scenarios. 

The inputs (or actuators) for this project are fuel split (FS) and excess air (EA). There are many 
measureable outputs, but the three main parameters of concern are: emissions (NORxR), flame 
stability (oscillations in flame luminosity), and efficiency (based on thermodynamics and/or air 
flow). A cost function will be defined that computes a single value based on the three main 
output parameters. An optimization algorithm will effectively search in this two dimensional 
FS-EA space to find the optimal operating condition that can balance all three output 
parameters by finding the minimum value of the cost function. This type of optimization 
situation is generally termed as a two dimensional constrained problem. The constrained term 
is derived from the fact that the algorithm must search within the allowable operating 
boundaries of the burner. 

There are many different methods to search in a multidimensional parameter space and 
selecting an effective optimization search algorithm generally depends on the system it is being 
used for. For this situation there are a few main features that an optimization algorithm must 
have in order to be selected. (1) The algorithm must rely solely on cost function data and not a 
mathematical model of the system. (2) The algorithm will use as minimal amount of data as 
possible.  Recording data for each operating condition can be very time consuming. Therefore, a 
search algorithm will attempt to find the optimal condition without requiring a full detailed 
map of the parameter space. (3) The minimum found by the algorithm must be the global 
minimum of the given topology. Certain algorithms can potentially converge to local 
minimums which would not be ideal since there is an even better result still located on the map. 
(4) The algorithm must be able to handle constraints. 

For this project many optimization search techniques were researched in the literature, but only 
a select few have been chosen to be simulated, based on ease of implementation, expected 
robustness, and speed. The following sections in this chapter give detailed descriptions and 
explanations of each algorithm along with examples of previous studies.   
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2.4 Direction-Set Algorithms 
2.4.1 Powell’s Method 
The direction-set method developed by M. J. D. Powell is a derivative-free based algorithm used 
to search for the minimum (or maximum) of an objective function that has dynamics unable to 
be expressed mathematically (Powell, 1964). There are two important features to the direction-
set method: derivative-free based search, and no mathematical model is required. For complex 
systems, as such for the case for combustion, an accurate dynamics model is very difficult to 
create. The classical simulation and modeling approach to controlling a system is not valid in 
such a scenario, but the direction-set method allows the system to reach its optimal value 
without prior knowledge. Due to the derivative-free approach the computational complexity is 
greatly reduced, which is beneficial for systems where obtaining the derivative of the objective 
function is expensive, unreliable, or impractical to obtain (Rios and Sahinidis, 2012). 

2.4.1.1 The Procedure 
The direction-set algorithm outlined by Powell can be summarized by the following steps.  The 
algorithm searches in n linearly independent directions ξ1, ξ2, …, ξn starting from an initial 
estimation of the minimum at a point Po. The initial directions are selected to be co-ordinate 
directions; or in other terms, the algorithm initially searches by changing one parameter at a 
time. Each iteration generates a new conjugate direction, ξ, and the new direction set created for 
the next iteration is ξ2, …, ξn, ξ. A conjugate direction set (q,v) are said to be conjugate if qAv=0 
for a positive definite matrix A. In other words, the vectors q and v are linearly independent. 
After n iterations all the directions are mutually conjugate, which Powell proves is enough to 
ensure the algorithm will find the global minimum of a quadratic function, f(x) (Powell, 1964). The exact 
procedure for each iteration is as follows: 

1. For r = 1, 2, …, n calculate λRrR so that f(PRr-1R + λRrRξRrR) is a minimum and define PRrR = PRr-1R + λRrRξRr 

2. For r = 1, 2, …, n-1 replace ξRrR by ξRr+1 

3. Replace ξRnR by ξ = (PRnR – PRoR) 

4. Choose λ so that f(PRnR + λξ) is a minimum and replace PRo R= PRnR + λξ 

Figure 2: First Iteration of Powell's Direction-Set Algorithm for Two Parameters (n=2) 
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Figure 2 is an illustration of the first iteration of Powell’s direction-set algorithm for a system 
with two adjustable variables (n=2). The second iteration would have the direction set list of ξR2R 
and ξ, starting at the point PRiR. Problems can arise when the λ term equals to zero since the 
remaining directions will not span the full parameter space. This issue can create nearly 
dependent directions and can be a serious problem for functions with five or more variables 
(Powell, 1964). Since this project is only concerned with two adjustable variables, an adaptation 
of Powell’s recommendation is as follows: 

• If λ = 0, reset the direction set to the initial directions 

• Else, continue updating directions as normal 

2.4.1.2 Search for an extremum along a line 
A hidden aspect of the algorithm that has been overlooked until now is how to evaluate the λ 
term that minimizes the objective function, f(x). Powell provides a recommended technique on 
how to compute the minimum along a direction search line, but he warns that no search is 
perfect and is subject to different issues depending on the particular problem. In Powell’s 
method five inputs must be provided: 

1) A point on the line, p 

2) The direction of the line, ξ 

3) An upper bound to the length of step along the line, m 

4) An order of magnitude of the length of step along the line, q, assumed to be less than m 

5) The accuracy to which the minimum is required, e 

Three points of the objective function are computed:  

1) f(p + aξ), where initially a = 0. Also known as fRa 

2) f(p + bξ), where initially b = q. Also known as fRb 

3) f(p + cξ), where initially c = -q or c = 2q depending on whether f(p + aξ) is less than or 
greater than  f(p + bξ). Also known as fRcR   

A turning value, d, is evaluated using the following formula in order to predict the possible 
minimum at point f(p + dξ): 

𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝑊𝑊𝐸𝐸 2 ∶ 𝑑𝑑 =
1
2
∗

(𝑊𝑊2 − 𝑐𝑐2)𝑓𝑓𝑎𝑎 + (𝑐𝑐2 − 𝐸𝐸2)𝑓𝑓𝑏𝑏 + (𝐸𝐸2 − 𝑊𝑊2)𝑓𝑓𝑐𝑐
(𝑊𝑊 − 𝑐𝑐)𝑓𝑓𝑎𝑎 + (𝑐𝑐 − 𝐸𝐸)𝑓𝑓𝑏𝑏 + (𝐸𝐸 − 𝑊𝑊)𝑓𝑓𝑐𝑐

 

 And it is a potential minimum if 

𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝑊𝑊𝐸𝐸 3 ∶
(𝑊𝑊 − 𝑐𝑐)𝑓𝑓𝑎𝑎 + (𝑐𝑐 − 𝐸𝐸)𝑓𝑓𝑏𝑏 + (𝐸𝐸 − 𝑊𝑊)𝑓𝑓𝑐𝑐

(𝐸𝐸 − 𝑊𝑊)(𝑊𝑊 − 𝑐𝑐)(𝑐𝑐 − 𝐸𝐸) < 0 

It is important here to discuss the possible scenarios that could occur when calculating the 
turning value, d. If d is a maximum (above equation is greater than 0) or if d is greater than m, 
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then the maximum allowed step is computed in the direction of decreasing f. The function fRaR, fRbR, 
or fRcR is discarded based on which one is furthest from fRdR. Otherwise, two more sub-cases can 
arise. The value of d is compared with a, b, and c by taking the absolute value of the difference 
between each function value (abs(fRiR-fRdR)). These differences are then compared to the allowable 
error established by the controller, e. If one of the error values is within the allowable error then 
that value of d is chosen to be the minimum. Else, fRdR is calculated to replace the function value 
(fRaR, fRbR, or fRcR) that is greatest and the cycle continues.   

It should be noted here that this method to search along a line was not used. Instead a simple 
hill-climbing algorithm was incorporated due to its easier code implementation and faster 
convergence to the minimum. The hill-climbing algorithm moves in the desired direction a 
specified step length. It computes the objective function at this point and compares this value to 
the previous point. For the case of minimization, if the current point is lower, then the next step 
length is computed. If the current point is greater, then the direction is flipped by 180 degrees 
and the search continues in this new direction. When the algorithm has experienced three flips 
in direction the hill-climbing algorithm is completed.  

2.4.1.3 Convergence 
Powell has provided a detailed proof explaining how the direction-set method using conjugate 
directions converge to the global minimum value of a quadratic function (Powell, 1964). In 
practice there are actually cases where convergence might be an issue. For a simple example, the 
system might not be truly quadratic or unimodal. Selecting an initially poor point in such a 
scenario could have the algorithm converging to a local extremum and not the global 
extremum. Or the algorithm could get struck along a direction and never be able to escape to a 
new area in the parameter space. One potential solution to this problem is to add an amount of 
randomness in the calculations within each iteration as implemented by St. John (St. John, 1994). 
However, it must be said that this random variable addition does not have any mathematical 
proof behind it allowing it to be definitive in proclaiming the extremum found is a local or 
global value. It can only provide potential solutions to some of the pitfalls encountered for 
special function cases when using Powell’s method.  

2.4.2 Combustion Applications 
There have been at least three major combustion projects completed in the literature that have 
used slight variations of Powell’s direction-set method to reach optimal operating conditions. 
Each researcher is associated with the University of California, Irvine Combustion Laboratory 
and has built on top of each other’s work over the years. The very first optimization research 
was done by St. John and he investigated the performance of the direction-set method verses a 
genetic algorithm method (St. John, 1994).   

St. John’s particular burner application was for an industrial, swirl-stabilized, natural gas-fired 
burner where the swirl intensity (S’) and excess air (EA) of the system were the two primary 
forms of control. The optimization algorithm was required to minimize the NORxR emissions 
while maintaining high combustion efficiency (ηRcR). A performance index, J, was established that 
would equally weight (w) the two parameters, [NORxR] and ηRcR, by the following formula: 
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𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝑊𝑊𝐸𝐸 4 ∶ 𝐽𝐽 = 𝑤𝑤1𝑓𝑓([𝑁𝑁𝑂𝑂𝑥𝑥]) + 𝑤𝑤2𝑓𝑓(𝜂𝜂𝑐𝑐) 

The function describing [NORxR] is comprised of two piecewise equations that are supposed to 
penalize [NORxR] readings that are above allowable limits and heavily reward [NORxR] readings that 
are below allowable limits. The performance index can vary between zero to one, with one 
being the highest optimal condition and zero being the worst. It is here that the first difference 
is seen since St. John decides to maximize his objective function rather than minimize. The 
reasoning behind using a performance index styled objective function was to give a reader, who 
has no detailed knowledge of how J is defined, a very intuitive sense on which conditions are 
better than others.   

The basic procedure that St. John uses for his direction-set algorithm is as follows: 

1. Initialize position, XRoR = [S’ EA], and direction, αRoR = R*360P

o
P where R is a random number 

between 0 and 1 

2. Find XR1R by maximizing J along the direction αRo 

3. Next direction is defined by αR1R = αRoR + 90P

o 

4. Find XR2R by maximizing J along the direction αR1 

5. Next direction is defined by αR2R = XR2R - XRo 

6. Find XR3R by maximizing J along the direction αR2 

7. Repeat steps (2)-(6) using XRoR = XR3R and αRoR = αRoR + R*45P

o
P  

A visual representation of St. John’s direction-set algorithm can be found in Figure 3. The major 
differences between Powell’s method and St. John’s are in the procedure of defining direction 
sets and finding extremum along a line. St. John initializes the first direction by a random 
selection and not the co-ordinate direction. The second direction is always 90 degrees from the 
first direction and does not change in this relationship. The third direction is the same for both 
methods in that the algorithm searches in the direction of greatest change. Finally the updated 
initial direction is again subjected to a random variable selection. The way St. John has defined 
the direction sets does not guarantee that the alphas are conjugate directions. This then means 
that St. John’s method has no guarantee of convergence in a finite amount of iterations.   

The second distinction to be made is in the extremum search along the search direction. St. John 
relies on a simple hill-climbing algorithm to find the maximum along a search line. Starting at a 
given position X the settings are incremented along the direction α until J no longer increases. If 
J decreases the direction is reversed and the search continues. An optimal point is defined when 
J has been found to decrease three times. Looking ahead to the topology of the cost function 
selected, the hill climbing algorithm was chosen due to the unimodal topology (one extremum) 
of J and the limited computational complexity of the algorithm. The unimodal topology ensures 
the algorithm will converge to a single global point and not a local extremum.   
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Figure 3: First Iteration of Powell's Direction-Set Algorithm for Two Parameters (n=2) 

 

 

Ultimately St. John proved that this direction-set algorithm could in fact find the optimal 
operating conditions for the selected burner with two inputs and two outputs in a reasonable 
convergence time. This success led further research to be done by Demayo and Miyasato 
(Demayo, 2001; Miyasato, 2005). Building on top of St. John’s recommendations, Demayo 
incorporated a stability sensor as well as more outputs to be controlled for the generic burner St. 
John used and for the boiler burner used in this current project. The performance index J was 
defined in a similar fashion, granted it attempted to incorporate [CO] and reaction stability into 
the formula as well. The basic procedure of the direction-set algorithm defined by Demayo is 
very similar to St. John with some minor variations. Both algorithms defined by the two 
researchers do not produce guaranteed conjugate direction sets while Powell’s method does. 
Therefore, only Powell’s direction-set algorithm will be used to compare with the other search 
algorithms to see if there are indeed any major differences in their performance. The remaining 
researcher, Miyasato, did not add any significant developments to the direction-set algorithms 
already outlined here by St. John and Demayo, but did show the algorithm worked well for a 
natural gas-fired gas turbine combustor in normal, part load, and hardware failure scenarios.    

2.5 Downhill Simplex Algorithm 
2.5.1 Nelder and Mead 
The downhill simplex method was first popularized by Nelder and Mead in 1965 and is a 
derivative-free based optimization algorithm (Nelder and Mead, 1965). The more important 
trait of this method is it does not require a mathematical model to describe the dynamics of the 
system. The downhill simplex method is computationally and mathematically very simple to 
implement and converges to an extremum in a finite number of iterations. The general concept 
relies on an “amoeba” or “simplex” that moves in the operating space while expanding or 
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contracting its size based on the topology of the map. According to Press et al. the downhill 
simplex is not very efficient in terms of the number of function evaluations, but it is a good 
method to implement when a code is required quickly for the less computationally intensive 
problems (Press et al., 2007). 

2.5.1.1 The Procedure 
 The following procedure is a summary of the information found in the journal paper by Nelder 
and Mead (Nelder and Mead, 1965). In a two-dimensional operating space a “simplex” or 
“amoeba” with 3 vertices (PR1R, PR2R, PR3R) is initialized either at random or by a good first guess. The 
function values at each point are evaluated and the points are ranked based on a high-to-low 
scale of their function values (H, M, L). The goal of this method is to minimize the function 
values of the vertices or in other words minimize the difference between the high (H) and low 
(L) of the vertices. The amoeba can now undergo four possible operations: reflection, expansion, 
single contraction, and/or double contraction.  

Before any of the operations can occur the centroid (𝑃𝑃�) of the simplex must first be calculated. 
The following equation is based on the x and y coordinates of the three vertices (H, M, L): 

𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝑊𝑊𝐸𝐸 5 ∶ 𝑃𝑃� =
𝑂𝑂 + 𝑀𝑀 + 𝐿𝐿

3
 

Reflection is the first operation to occur and it happens every iteration. The reflection point HR1R 
is calculated by the following equation:  

𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝑊𝑊𝐸𝐸 6 ∶ 𝑂𝑂1 = (1 + 𝛼𝛼) ∗ 𝑃𝑃� − 𝛼𝛼 ∗ 𝑂𝑂 

Where 𝛼𝛼 is a positive constant and is called the reflection coefficient. Note that H1 is on the line 
joining H and 𝑃𝑃�. The function value f(H1) is computed and is compared to f(L). If f(H1) is less 
than f(L) then the next operation is expansion. The expansion point H2 is computed based on 
the following equation: 

𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝑊𝑊𝐸𝐸 7 ∶  𝑂𝑂2 = 𝛾𝛾 ∗ 𝑂𝑂1 + (1 − 𝛾𝛾) ∗ 𝑃𝑃� 

Where 𝛾𝛾 is the expansion coefficient and is greater than unity. The function value f(HR2R) is 
computed and compared to f(HR1R). If f(HR2R) is less than f(HR1R) then replace H with HR2R; else replace 
H with HR1R.  Test for convergence by the following equation: 

E𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝑊𝑊𝐸𝐸 8 ∶ 𝐸𝐸𝑊𝑊𝑎𝑎�𝑓𝑓(𝑂𝑂) − 𝑓𝑓(𝐿𝐿)� ≤ 𝐸𝐸𝑊𝑊𝑡𝑡 

If the above inequality is true then exit the algorithm, else repeat steps with the new vertices. 
Let’s go back a few steps to the comparison between f(HR1R) and f(L). If f(HR1R) is greater than f(L), 
but less than f(M) then replace H with HR1R. If f(HR1R) is greater than f(M) then the next operation is 
a single contraction. The contraction point HR3R is computed by the following equation: 

𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝑊𝑊𝐸𝐸 9 ∶ 𝑂𝑂3 = 𝛽𝛽 ∗ 𝑂𝑂 + (1 − 𝛽𝛽) ∗ 𝑃𝑃� 

 Where 𝛽𝛽 is the contraction coefficient and lies between 0 and 1. The function value f(HR3R) is 
computed and compared to f(H). If f(HR3R) is less than f(H) then replace H with HR3R; else continue 
onto the final possible operation, double contraction. In double contraction the middle ranked 
point M is contracted to a new point MR2R and is calculated based on the equation: 
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𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝑊𝑊𝐸𝐸 10 ∶ 𝑀𝑀2 =
𝑀𝑀 + 𝐿𝐿

2
 

 The new function value f(MR2R) is computed. The convergence criteria are checked as per the 
normal routine. The reflection, expansion, single and double contraction operations can be 
found in visual format in Figure 4. The preceding steps can be summarized in a flow chart 
found in Figure 5. 

Figure 4: Starting Simplex With Pperations Overlapped 
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Figure 5: Downhill Simplex Flowchart Modified (Jackson and Agrawal, 1999) 

 
2.5.1.2 Number of Function Computations 
A small section should be spent on discussion of number of times a function calculation must be 
called per iteration of the downhill simplex. Initially all three points (H, M, L) must have their 
function value computed (either using collected data or polynomial approximation). For the 
remaining steps only the new H points or MR2R point need to be computed for their function 
value. When initializing for the next iteration the new H and M values have already been 
collected from the previous iteration. Therefore after the initial iteration every subsequent 
iteration can add 2 to 3 more function calls (depending on expansion or contraction route). This 
type of clever programming can significantly reduce the number of times data points must be 
collected, thus lowering the overall time required to reach optimal conditions.  

2.5.2 Combustion Applications 
There have been three major studies done in the literature that have involved using downhill 
simplex algorithms to optimize combustion system performance. The first project was done by 
Padmanabhan et al. and it developed actuation techniques to control volumetric heat release 
and pressure fluctuations for a laboratory-scaled combustor (Padmanabhan, Bowman, and 
Powell, 1995). According to Padmanabhan the control strategy choice whittled down to two 
main algorithms: direction-set and downhill simplex. The direction-set algorithm was 
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eliminated due to its lack of flexibility with functions with multiple extremum. The downhill 
simplex algorithm was chosen due to its simplicity and ability to handle multiple extremum. 
The actual algorithm used in the experiment followed Nelder and Mead’s algorithm closely and 
only varied in its overall convergence criteria. The amoeba would be initialized at a point and 
allowed to converge to an optimal point. Once the first starting point reached an optimal point, 
a new starting location was selected and the process restarted. After two more restarts, the final 
optimal values and their locations are compared to each other. If the four points varied 
significantly in their values and location then the whole process would begin again, else the 
program would conclude that it reached the optimal point. This resetting feature of the amoeba 
allowed the algorithm to adapt quickly and effectively to changing environments. In the paper 
there are three main parameters of the control strategy that require special attention and tuning: 
amoeba size, amoeba convergence tolerance, and initial starting points. The paper concludes 
with remarks on algorithm time and number of iterations. For long measurement times the 
function values proved to be highly repeatable and reliable; however, figuring out the best mix 
of measurement time and the number of iterations to evaluate is a necessary tradeoff problem 
that needs to be addressed in future works. 

The second project in this discussion is from Jackson and Agrawal in which they studied the 
effects from downhill simplex optimization on a residential furnace (Jackson and Agrawal, 
1999).  The objective was to vary the geometry and equivalence ratio to minimize the NORxR and 
maximize the heat transfer to the water. The algorithm followed Nelder and Mead’s method 
identically and did not have the overall convergence criteria as done in Padmanabhan. Several 
tests were conducted and the number of iterations of the algorithm required to reach the 
optimal solution varied based on several parameters: starting location, convergence tolerance, 
and amoeba size. In their concluding remarks, the authors reiterate the importance on finding a 
faster and more efficient way to extract the required data in order to decrease the time to 
converge to an optimal point. 

The third project was conducted by Davis et al. at the University of California, Irvine 
Combustion Laboratory (Davis and Samuelsen, 1996; Davis, 1995). Davis developed a hybrid 
control algorithm that incorporated properties of a hill-climbing technique with the geometric 
design of the downhill simplex method. The theory behind this hybrid model selection was to 
avoid the potential of the simplex contracting on a local minimum and not a global minimum. 
The control algorithm performed well, but less than perfect (Davis and Samuelsen, 1996). There 
was also the conclusion that the traditional downhill simplex algorithm was better at dealing 
with noise in the sensor data than the hybrid model. Essentially the conclusion made was the 
hybrid method was no better or worse than the traditional method and so this hybrid technique 
will not be pursued in this research.   

2.6 Current Project 
The current project is based on the work done by St. John and Demayo, but with a few key 
differences. No study has investigated what happens to the direction-set algorithm when the 
fuel is subject to change. Many studies have investigated what happens when there is a 
hardware malfunction, but fuel composition changes pose quite different dynamics that could 
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disrupt the algorithm. This current study also attempts to compare the efficiency, efficacy, and 
robust nature of Powell’s direction-set algorithm verse the downhill simplex method. The two 
algorithms have only been compared on a theoretical stand point in the literature and never 
with the same combustion system. The results gathered from simulations will ultimately 
determine if indeed one algorithm is superior to the other or if it makes no difference. 
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CHAPTER 3:  
Experimental Apparatus 
3.1 Burner Geometry 
3.1.1 Burner 
A commercially available Coen Quantum Low NORxR (QLN) burner scaled to 400,000 British 
thermal units (Btu/hr) was used in this study. A top down and side view of the burner 
geometry can be found in Figure 6. The burner is 6.5 inches in diameter and 14.5 inches in total 
length. The combustor is comprised of three main fuel injection circuits (Core, Radial, Outer) 
and one central location for air mixing. This burner and test facility were previously used by D. 
Brouwer and T. Demayo and are described in great detail in their respective theses (Brouwer, 
1996; Demayo, 2001).   

Figure 6:Scaled Quantum Low NORxR Burner (Adapted From (Demayo, 2001)) 

 

 

3.1.2 Distribution Plate and Throat Area 
The distribution plate has four slots directed radially outward from a center hole meant for the 
Core injector. The slots have a width of 0.5 inches and a length of 1.5 inches. The Radial injector 
tubes sit directly below these openings. These dimensions produce an approximate velocity of 
80 feet per second (ft/sec) for the reactants passing through the slots at an operating condition of 
25 percent excess air (Brouwer, 1996). The sudden expansion from the windbox to the primary 
reaction zone creates two features. The first feature is increased mixing between the air and 
Radial fuel. The second feature is it creates recirculation zones in the throat section that helps 
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stabilize the flame. Based on the geometric optimization work done by D. Brouwer, the throat 
depth was chosen to be held fixed at 1.125 inches. 

3.1.3 Windbox 
The windbox contains a 4.0 inch outside diameter pipe extrusion which acts as the air entry 
point. The air enters horizontally and then turns vertically into a honeycomb flow straightener 
to uniformly distribute the flow before exiting through the slots in the distribution plate. Air is 
only allowed to mix with the Radial fuel in the short distance between the Radial tubes and the 
flame side of the distribution plate. The air flow rate varies between 68 to 82 standard cubic feet 
per minute (scfm) depending on the fuel selected and the amount of excess air chosen for 
operation. The air is controlled by a sonic orifice coupled to a pressure regulator.       

3.1.4 Core Fuel Injector 
The Core injector consists of a 0.25 inch diameter tube capped at the top and has four 0.05 inch 
diameter holes equally spaced around the circumference. The injection holes are placed 0.125 
inches above the distribution plate and aligned with the four slots seen in the top view of Figure 
6. The flow is constrained to 25 percent of the total fuel flow and primarily acts as a pilot flame 
to the Radial injectors. This circuit is a non-premixed system. 

3.1.5 Radial Fuel Injectors 
The Radial injectors are located beneath the distribution plate and have the capability to move 
along the length of the burner. The injector tube has four spokes that branch from the center of 
the burner and are aligned with the four slots of the distribution plate. Each spoke consists of 
four equally spaced 0.12 inch diameter holes placed facing upward in the normal direction of 
the distribution plate. For this study the Radial tube has been placed flush with the distribution 
plate, which offers very minimal mixing with the incoming air. The remaining 75 percent of the 
total fuel flow of the system is split between the Radial and Outer injectors, which is a 
parameter being investigated known as fuel split (FS) and will be discussed in a later section. 

3.1.6 Outer Fuel Injectors 
The Outer injector is comprised of four 0.5 inch diameter tubes placed on the upper ring of the 
burner. Each tube has two holes slightly angled toward the center of the burner and are angled 
tangentially to the inner circle. The tubes sit 0.25 inches from the top plate. The Outer injector is 
a non-premixed system and due to recirculation the injectors have some flue gas combustion 
properties that help in lowering emissions.     

3.2 Test Facility 
3.2.1 Test Stand 
The entire boiler enclosure sits on top of a heavy-duty transverse system and is located between 
two optical tables that can be used for mounting various optical equipment systems. Figure 7 
shows a schematic of the test stand in relation to the furnace enclosure. In this study, a fiber 
optic probe had a mounting mechanism that was located on the left hand side (as viewed from 
the picture in Figure 7) of the burner on the optical bench. 
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Figure 7: (Top) Schematic of Test Stand (Adapted From (amuelsen and Miyasato, 2000)) and 
(Bottom) Furnace Enclosure 

 

 

 

3.2.2 Furnace Enclosure 
The furnace has 8 flat sides and is 2 feet in width and 3 feet in height (excluding exhaust stack 
length). A picture of the furnace can be seen in Figure 7. Inside the furnace the walls near the 
optical windows are insulated with high temperature insulation lining. The base around the 
burner is an extra-high temperature calcium silicate insulation that comes in ½ inch thick 12 
inch by 12inch sheets. This insulated layer limits the heat loss from the burner to the aluminum 
plate supporting the entire furnace. There are three main parts to the furnace: optical windows, 
water cooling panels, and exhaust stack.   

The optical windows have dimensions of 7.5 inch by 9.5 inch width/height and hold high 
temperature flat plates of a material known as VYCOR. The VYCOR plates are held in by 0.75 
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inch thick cold rolled steel frames that have dimensions of 9 inches  x 10.5 inches width/height. 
The frames hold the VYCOR windows in place with a thin layer of high temperature ceramic 
paper sealing the two pieces to the furnace. The windows are located on the bottom portion of 
the furnace.  The flat windows allow for easier optical access for laser systems or in this case a 
fiber optic probe. 

Above the optical windows are the cooling panels. Water enters from the bottom tubes and 
exits through the top ring of tubing. The placement of the cooling panels is away from the main 
flame which is not very conducive for optimal heat transfer. The primary heat for this section is 
from the hot products after the combustion. This design feature will be later referenced to when 
explaining the poor boiler efficiency results. 

The exhaust stack has a conical to cylindrical design that has two unique purposes. The first 
purpose is it helps propel the exhaust products into the overhanging hood. The second purpose 
is to facilitate mixing of the exhaust products to create uniform mixtures for the emission 
sampling measurements.      

3.2.3 Water Cooling System 
There are two main water cooling circuits: boiler water cooling circuit and laser cooling circuit. 
The boiler water cooling circuit directly cools the furnace while the laser cooling circuit cools 
the hot return water from the boiler. The system configuration that combines these two circuits 
can be seen in Figure 8. The water cooling system consists of three main components: water 
tank, pump, and heat exchanger. Water is stored in the water tank and then is pumped through 
the heat exchanger at a rate of approximate 1.2 pounds per second (lb/s). The heat exchanger 
transfers energy from the laboratory’s laser cooling water loop with the boiler water cooling 
loop. During tests the hot water in the boiler loop maintains a temperature of approximately 
100 degrees Fahrenheit. The purpose of the water cooling system is to minimize structural 
damage to the furnace and simulate the dynamics of a commercial boiler unit.    

Figure 8: Water Cooling Configuration 
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3.2.4 Flow Control System 
There are two main components to the flow control system: physical lines and data/electrical 
lines. The overall schematic of the system can be seen in Figure 9. The physical lines are 
presented in black solid lines while the data/electrical lines are presented in blue dashed lines. 
The blue boxes represent various hardware components such as sonic orifices, sensors, and 
computer. In the initial stages of this research mass flow controllers (MFCs) were originally 
used. These devices worked well when controlling just natural gas, but when propane was 
required to be added to the line the acquired MFCs and their series configuration were ill suited 
for the task. Two MFCs were configured in a fuel mixing stage, combined into a single line and 
then separated into the Core, Radial, and Outer circuits using three more MFCs. This series 
configuration of MFCs could not produce stable/repeatable pressure drops across the MFC 
units which ultimately led to uncontrollable flow splits. Thus a new flow control strategy was 
required to be designed.   

In order to stay within a reasonable budget the solution of buying six additional MFCs was 
abandoned due to the extravagant cost of each device. Eventually sonic orifices were chosen as 
the flow control system due to their ease of installation, control, and steady and repeatable flow 
characteristics. The major drawback to the use of sonic orifices is their lack of computer control 
capabilities. A pressure regulator is upstream of the orifice and is manipulated by a human 
operator. This can be seen as an added safety measure when testing unverified control 
algorithm codes. Furthermore, the sonic orifices can be regulated by digitally controlled 
pressure regulators coupled with pressure transducers or ultimately replaced for the more 
compact and computer friendly MFCs if a fully autonomous control demonstration is desired.  
From an optimization algorithm point of view, whether the system is computer controlled or 
requires some form of human interaction makes no difference to the optimization algorithm 
since all it is concerned with are the data gathered and not how it is gathered. Therefore, active 
control can still be reasonably demonstrated in either case. The convergence time to the optimal 
solution will be somewhat longer in the sonic orifice scenario than it would in a MFC computer 
controlled scenario; however, the number of iterations taken by the algorithm will still be the 
same.  
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Figure 9: Flow Control Schematic 

 

 

A picture of the sonic orifice control panel can be seen in Figure 10. The bottom three regulators 
and pressure gauges are for the natural gas line while the above three regulators and gauges are 
for the propane line. The natural gas supply line enters through the bottom Swagelok cross at 
120 pounds per square inch (psi). Propane is added to the system by a cylinder at 110 psi. The 
regulator circuits are situated to be the Core, Radial, and Outer (C,R,O) circuit from left to right 
(as seen in the picture). The sonic orifices are steel Male-Male National Pipe Thread (NPT) ¼ 
inch fittings and are threaded directly into the exit of their respective regulator. Using a 
constant firing rate (400,000 Btu/hr) and adjusting the fuel flow rate based on the higher heating 
value of the fuel blend, the various orifices were sized accordingly. The orifice sizes selected for 
the natural gas supply are 0.03 inch, 0.04 inch, and 0.04 inch (C,R,O) while the propane orifices 
are 0.0 inch, 0.016 inch, and 0.016 inch (C,R,O). The remaining physical line is the air line which 
is controlled by a sonic orifice (size 0.4 inch) and pressure regulator with a pipeline pressure of 
140 psi.  
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Figure 10: Sonic Orifice Control Panel 

 

 

The remaining components of the system diagram are the data/electrical lines. These 
components are essentially all the sensors and data acquisition hardware. The sensors will be 
discussed in more detail in the next section; however, one point that will be made is about the 
speed of sound (SOS) sensor. The SOS is placed on the Core fuel line after the gas mixing has 
occurred from the sonic orifice panel. The SOS was placed on this line in particular because the 
Core fuel flow rate (and the mixture blend as well) was held constant and consistent throughout 
each test. Therefore, the signals were very steady and repeatable for each test. The data 
acquisition hardware consisted of National Instruments FieldPoint modules and ran LabVIEW 
version 2009 on the supporting computer. The FieldPoint modules operated at a frequendy 
between 1-10 Hertz (Hz). A separate National Instruments PCI-6024E module that has a sample 
rate of 1,000 Hz was used to measure the fast dynamics of the flame luminosity associated with 
the fiber optic probe measurement.  

3.3 Sensors 
The main sensor information required to complete this project can be divided into four 
categories: fuel identification and properties, flame stability, emissions, and efficiency. Sensors 
were chosen based on accuracy, cost, and ease of implementation. There are many sophisticated 
devices that detect the composition of a gas; however, many of those devices are expensive and 
only practical in laboratory environments. Using an ultrasonic sensor originally designed to 
measure distances away from objects, the sensor was repurposed to detect the speed of sound 
in an unknown gas mixture. From this information the fuel composition and its physical 
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characteristics can be computed. Flame stability is determined by measuring the oscillations in 
luminosity of the flame via a fiber optic probe connected to a photomultiplier. If the flame 
blows out the probe will detect the sudden decrease in luminosity and alert the control program 
of the situation. The emission analyzer chosen was a Horiba PG250, which is a common and 
accurate analyzer, used by many institutes. It is capable of measuring the NOx, CO, CO2, and 
O2 content of the exhaust stream. The efficiency of the system has been defined in two separate 
ways: boiler efficiency and excess air usage. After several experiments the boiler efficiency 
proved too unreliable and inaccurate in describing the efficiency of the overall system which led 
to a new definition of efficiency based on excess air usage.   

3.3.1 Fuel Identification and Properties 
The most common way to measure fuel composition in a pipeline is to use a gas 
chromatograph, but these devices are generally expensive, have a large footprint, low sample 
frequency, and require considerable amount of regular maintenance and calibrations. A novel 
approach of estimating composition is to measure the speed of sound of the fuel source. 
Determining the composition of a binary gas is very simple, but natural gas is a multi-
constituent fluid that contains flammable substances as well as inert gases. As shown in 
(Lueptow and Phillips, 1994), the speed of sound of natural gas variants with a large amount of 
inert gases creates very unreliable results when trying to predict parameters such as Wobbe 
Index and mole air-fuel ratio. To counter the presence of inert gases in the fuel, two additional 
sensors have been proposed by (Loubar et al., 2007) with significant success. In Loubar et al. a 
thermal conductivity sensor and a COR2R sensor were added to the speed of sound sensor array. 
From this information a set of nonlinear equations could be solved to accurately estimate the 
Wobbe Index and mole air-fuel ratio for a wide variety of natural gas mixtures. For this project 
only two gases will be used: natural gas and propane. As shown in Chapter 2, the laboratory’s 
natural gas line is approximately 98 percent methane. To simplify the complexity of the system 
this project will make the assumption that the fuel supply consists of only a binary set of gases 
(methane and propane). The thermal conductivity and COR2R sensors will not be implemented in 
this project due to this binary gas assumption; however, if more fuel variations wanted to be 
studied then these sensor would be required.   

The RPS-409A-IS intrinsically safe ultrasonic sensor from Migatron (Figure 11) was chosen to 
act as a speed of sound measuring device that can then be used to correlate to fuel properties. 
This sensor is nominally designed to measure the distance from the sensor to a nearby object by 
emitting and receiving ultrasonic sound waves. For a fixed medium, such as air, the speed at 
which a sound wave can propagate is known and can easily be modeled. By recording the time 
delay between emitting a pulse and receiving the reflected signal the distance of an object can 
be calculated using basic kinematic formulas (distance = speed*time). Now when the object is 
fixed (in this case a wall at the end of a tube) and the medium is varied, the time between 
emitting and receiving a pulse will fluctuate. Rearranging the terms from the previous equation, 
the speed of the sound wave can be measured for an unknown medium. Since every substance 
has a corresponding speed of sound it is easy to correlate the results to a single or binary 
mixture of gases. Complications arise when the medium is composed of several substances 
since multiple solutions can be achieved. For example a blend of 85-15 methane-propane by 
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volume percent can have the same speed of sound as an 80-10-10 methane-ethane-propane 
blend. It must be noted here that knowing the exact fuel blend might be irrelevant in finding 
correlations between fuel interchangeability and burner performance. Alternative parameters 
such as the carbon to hydrogen (C/H) ratio or the Wobbe number could potentially be used as 
explained in (Ferguson et al., 2008). Once the speed of sound C of the gas can be estimated it can 
be correlated to the Wobbe number and C/H ratio by plotting against CP

2
P/T, where T is the 

absolute temperature in the chamber.  

Figure 11: Migatron RPS-409A-IS Intrinsically Safe Ultrasonic Sensor 

 

 

While the measured time varies for a fixed object with a fluctuating medium the output of the 
Migatron sensor is only the “appeared” distance if the medium was air. In other words, the 
sensor thinks the object is moving while really it is still stationary and it is the medium that is 
changing. Therefore, the following equation was derived to relate the various “appeared” 
distances to the speed of sound of an unknown gas:  

𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝑊𝑊𝐸𝐸 11 ∶  𝐶𝐶𝑔𝑔𝑎𝑎𝑔𝑔 =  
𝐷𝐷
𝐷𝐷𝑔𝑔𝑎𝑎𝑔𝑔

∗ 𝐶𝐶𝑎𝑎𝑎𝑎𝑎𝑎 

where CRgasR and CRairR are the speed of sounds in the gas and air, respectively. DRgasR is the appeared 
distance of the wall and D is the actual distance of the wall. For example, if methane was the 
medium the appeared distance D_CH4 would be less than the actual distance D due to 
methane’s lower density (higher speed of sound), as seen in Figure 12. In order for the sensor to 
work properly it needs a flat reflective surface. For this reason a 3 inch by 3 inch by 14 inch 
rectangular aluminum tube was constructed, which can be seen as a schematic and actually 
implemented in Figure 12. 
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Figure 12: Speed of Sound (SOS) Model and Physical Hardware 

 

 

In order to account for fluctuation in the temperature of the working fluid, while relating the 
speed of sound to the medium properties, the following proportionality was derived using 
basic ideal gas laws. 

𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝑊𝑊𝐸𝐸 12 ∶
𝐶𝐶𝑔𝑔𝑎𝑎𝑔𝑔2

𝑇𝑇
∝

𝛾𝛾
𝑀𝑀𝑊𝑊

 

 Where γ is the specific heat ratio, MW is the molecular weight, and T is the absolute 
temperature in Kelvin. The above equation states the speed of sound squared divided by the 
temperature is proportional to a gas’s physical properties. This solution can also be extended to 
relate the speed of sound to the C/H ratio (mole) and Wobbe number. Tests of the Migatron 
sensor were conducted and relations between the speed of sound and the C/H ratio as well as 
the Wobbe number are shown in Figure 13. 

Figure 13: C/H ratio (left) and Wobbe (right) vs. C2/T 
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For the mixtures planned to be investigated, the C/H ratio and the Wobbe number are both 
linearly related to the term CP

2
P/T. Therefore, these correlations will be used later during actual 

experiments to relate the fuel properties to the emission and stability data. The Migatron sensor 
has proven to be accurate to within 2 percent of the actual speed of sound and 0.5 percent 
accurate in determining the Wobbe number and C/H ratio for this range of mixtures. 

3.3.2 Flame Stability 
Monitoring flame stability is an important parameter when operating in very lean conditions in 
order to prevent lean blow-off. For this reason a fiber optic probe coupled to a photomultiplier 
tube was chosen to measure the luminosity of the emitted light from the flame.  Figure 14 shows 
how the fiber optic probe was attached to the test stand. The photomultiplier tube (C1053-51, 
No. 500091) was connected to a Bertan high voltage supply set to 0.80 and a 15 volt power 
supply. 

Figure 14: Side-wall Mounted Fiber Optic Probe 

 

 

There was no physical filter attached to the fiber optic probe, which resulted in measuring all 
emitted light frequencies. In order to negate the potential effects from ambient light the 
experiments were conducted in complete darkness. Filters that would isolate the OH* or CH* 
frequency bands, as used in (Scott, King, and Laurendeau, 2002), could have been implemented. 
A digital filter was used to isolate the signal from noise and was a lowpass inverse Chebyshev 
of order three with a cutoff frequency of 20 Hz.  

There are three main categories the data gathered from the fiber optic probe can be used: flame 
detection, emission estimator, and flame stability. The simplest method using the luminosity 
data would be to detect whether a flame is present or not. This is very important when 
operating in large enclosed vessels with lean flame conditions. If a flame is extinguished, but 
the fuel is not immediately shut off the combustion chamber will be filling with hot and easily 
combustible material. If there was a spark or if the fuel was able to autoignite then there could 
be a devastating explosion or puff in boiler industry terms. Thus having the ability to detect 
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when a flame is present becomes an important safety mechanism. These data types will later be 
referenced to as Light Average (AVG). 

An interesting aspect of luminosity data are its ability to correlate with NORxR emissions 
(Demayo, 2001). Demayo’s research found that there is a linear correlation between NORxR 
emissions and the light intensity of a natural gas flame. This result suggests a sensor that can 
measure luminosity can also estimate emissions, which can make an expensive emission 
analyzer not necessary.  

The last important measurement the luminosity data can provide is information on the 
oscillation characteristics of the flame. The minimum and maximum vertical peaks in the 
luminosity signal can vary significantly at very unstable conditions. By measuring the distance 
between two peaks one can measure how much the flame is oscillating, which can then be used 
to quantify stability regions. High oscillating regions would like to be avoided since these are 
areas of high instability and could damage components. This parameter will later be referenced 
to as Light PkPk. 

3.3.3 Emissions 
The emissions measurement system that is being used for this investigation is a Horiba PG250 
analyzer (Figure 15a) in line with a refrigerated water dropout system. The analyzer measures 
NORxR, CO, COR2R and OR2R using EPA approved methods. A vacuum pump is used to collect the 
sample gas from the burner exhaust stream via a stainless steel probe, which is inserted inside 
the exhaust stack. This probe has a 0.5 inch outer diameter, which is designed to take an 
integrated average measurement of the emissions over the diameter of the sampling plane via 
five area-weighted sampling holes (Figure 15b). Sampling systems and testing protocols based 
on California Air Resources Board (CARB) Method 100 are followed. In addition, the PG250 is 
zeroed and spanned before the start of each test using EPA certified gases. 

Figure 15: Horiba PG250 Analyzer (Left) and Emissions Probe (Right) 

  

 

3.3.4 Efficiency 
There are two efficiency measurements that are utilized in this work. The first uses the standard 
definition of boiler efficiency: heat in cooling water divided by the heat input from the fuel. The 
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heat generation in the cooling water is calculated based on the temperature of the supply and 
return values of the water circuit. The boiler efficiency equation can be seen below:  

𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝑊𝑊𝐸𝐸 13 ∶ 𝜂𝜂𝐵𝐵 =
�̇�𝑚𝑤𝑤𝐶𝐶𝑤𝑤�𝑇𝑇𝑎𝑎𝑟𝑟𝑟𝑟𝑟𝑟𝑎𝑎𝑟𝑟 − 𝑇𝑇𝑔𝑔𝑟𝑟𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠�

�̇�𝑚𝑓𝑓𝑂𝑂𝑂𝑂𝑉𝑉𝑓𝑓
 

The mass flow rate (m)of the water was calculated to be 1.12 lb/s and assumed to be constant 
throughout each test. The assumption of constant and repeatable water flow rate was later to be 
found incorrect and upon recalibration of the flow rate it was found the flow had changed to 1.3 
lb/s. Recall now that the furnace enclosure is designed to have the cooling panels located above 
where the flame is burning. Therefore the amount of heat transfer from the flame to the walls is 
not optimal. This results in very poor boiler efficiencies as well as minimal change in values for 
various flow conditions. For these reasons an alternative efficiency measurement based on the 
amount of excess air being used is proposed. The laboratory is equipped with a high pressure 
air line; however, in normal commercial applications there will be a compressor unit that does 
the same function. The compressor consumes more energy when more air is required. Thus, by 
basing the efficiency on the amount of compressed air required a more accurate efficiency 
model is produced. The following equation is adapted from Demayo and instead of using [OR2R] 
concentrations it simply uses EA:  

𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝑊𝑊𝐸𝐸 14 ∶ 𝜂𝜂𝐸𝐸𝐸𝐸 = 1 −
𝐸𝐸𝐸𝐸

𝐸𝐸𝐸𝐸𝑚𝑚𝑎𝑎𝑥𝑥
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CHAPTER 4:  
Burner Performance Mapping 
4.1 Test Plan 
Three fuel composition cases were selected for this study: 100-0 percent, 95-5 percent, and 92.5-
7.5 percent by volume natural gas-propane (NG-PG). The maximum standard load is 400,000 
Btu/hr, which if using the higher heating value of natural gas equates to 6.59 scfm of fuel flow. 
Two different tests were conducted for the 95-5 percent NG-PG case: the first test at the same 
volumetric flow rate as the 100-0% NG-PG case (6.59 scfm) and the second test at the corrected 
heating load case (6.12 scfm). The first test case simulates a scenario where the speed of sound 
sensor is not operating and the burner cannot adjust to the correct heating load. This case 
demonstrates what happens when the burner is unaware of a fuel composition change which is 
the current design of the burner. The second test case simulates a scenario where the speed of 
sound sensor is turned on and the burner is able to adjust to the correct heating load. Essentially 
these two cases show the differences between not using sensor feedback and using sensor 
feedback. To avoid damaging the boiler unit by overheating the 92.5-7.5 percent NG-PG was 
only tested at the adjusted heating load flow rate (5.91scfm).    

Recall that there are two actuator parameters available for this burner: fuel split and excess air. 
Fuel split (or FS) is defined as the percent of total fuel flow in the Outer injector minus the 
percent of total fuel flow in the Radial injector. This can best be summarized in the following 
equation: 

𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝑊𝑊𝐸𝐸 15 ∶ 𝑭𝑭𝑭𝑭 = %𝑶𝑶𝑶𝑶𝑶𝑶𝑶𝑶𝑶𝑶 − %𝑹𝑹𝑹𝑹𝑹𝑹𝑹𝑹𝑹𝑹𝑹𝑹 

When there is a positive FS it means more fuel is being burned by the Outer injectors while a 
negative FS means more fuel is being burned by the Radial injectors. The excess air (or EA) is 
used here to be consistent with boiler industry standards. It is defined using the overall 
equivalence ratio by the following equation: 

𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝑊𝑊𝐸𝐸 16 ∶ 𝐸𝐸𝐸𝐸 = �1
𝜙𝜙
− 1� ∗ 100  

Manufacturer specifications call for acceptable operating ranges of 5 to -5 FS and 10 to 30 EA. 
For each blend a matrix consisting of the operating conditions specified by the manufacturer 
was created. The matrix consists of FS on the vertical (between 5 and -5, increments of 1) and 
EA on the horizontal (between 10 and 30, increments of 2). An example can be found in Table 3. 
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Table 3: Test Plan Matrix 

 
 

4.2 Experimental Procedure 
In order to be consistent between tests, various procedures were put into effect to minimize the 
error and bias in the data. Each test, regardless of the fuel blend selected for that day, 
experienced 10 minutes of 100 percent natural gas combustion at an EA of 10 and a FS of 0. This 
step allowed adequate time for the burner and combustion chamber to heat up to a repeatable 
equilibrium temperature after a cold start. The next step would be to adjust the fuel 
composition by manually setting the pressure regulators for the sonic orifices that controlled the 
natural gas and propane lines. At this point the hydrogen pilot flame would be turned off. The 
lights in the test cell would also be turned off to mitigate the influence of ambient light on the 
fiber optic probe sensor readings. Data was collected by first setting the desired FS and then 
traversing across the range of EAs. At each point in the test matrix data was gathered for two 
intervals of 10 seconds with 10 seconds of no data collection in between the two sets. Each data 
set was then averaged to determine the various sensor outputs at each FS/EA condition. The 
sensor outputs that are of most concern to this project are: NORxR and OR2R emissions, light intensity 
and oscillations (also known as Light AVG and Light PkPk), and boiler efficiency. In the 
proceeding chapter, contour plots of the NORxR corrected to 3 percent  OR2R and Light PkPk from 
the various test cases will be presented which constitute the “performance maps” of the burner. 
The other additional sensor data will be used to draw correlations and help with the analysis of 
the system. 

4.3 Burner Performance Mapping Database 
4.3.1 Performance with No Sensor Feedback 
In order to establish why fuel composition sensor feedback is important two cases were 
conducted. Figure 16 shows contour plots of air flow rate verse fuel split on the horizontal and 
vertical axes, respectively, with NORxR emissions corrected to 3 percent  OR2R as the third color 
coded axis. The left side contour is the 100-0 NG-PG case at full load (6.59 scfm) and air flow 
rates between 68-82 scfm (equivalent to EAs of 10-30). The right side contour is the 95-5 NG-PG 
case at the same fuel flow rate (6.59 scfm) and air flow rates. These contours represent a scenario 
where the burner has no knowledge of the type of fuel being burned and is unable to adjust to 
the appropriate fuel flow rate to maintain the same heating load. As it can be seen the NORxR 
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emissions in the 95-5 NG-PG case are considerably worse than the 100-0 NG-PG baseline case. 
Recall the target NORxR emission acceptable level is 20 ppm. This goal is never reached in the 95-5 
NG-PG case when sensor feedback is turned off. Thus with no sensor feedback of fuel 
composition the burner is never able to reach acceptable operating conditions.    

Figure 16: Air SCFM vs NORxR. Left 100-0, Right 95-5 NG-PG. No SOS Control 

  

 

4.3.2 Trends and Correlations with Sensor Feedback 
This section is concerned with displaying and analyzing the basic trends found in the data 
gathered from the three different fuel blend cases that have been corrected to the same heating 
load. It should be noted that for all the following figures presented in this section the color code 
system is: blue diamonds are 100-0 NG-PG, red squares are 95-5 NG-PG, and green triangles are 
92.5-7.5 NG-PG blends.   

Figure 17 is a plot of EA verse NORxR emissions for the various fuel blends. NORxR has been 
corrected to the industry standard of 3 percent OR2R and is expressed in units of parts per million 
(ppm) on a dry volume basis (ppmvd). In Figure 17 the NORxR decreases with increasing EA, 
which coincides with the common knowledge that leaner flames produce less NORxR. As more 
propane is added the NORxR levels actually increase, but the EA trend remains the same. For the 
same EA a fuel with a higher propane content will produce more NORxR than one with less or 
none at all.  
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Figure 17: EA vs NORxR Corr 3%O2 (Blue: 100-0, Red: 95-5, Green: 92.5-7.5 NG-PG) 

 
 
Figure 18 demonstrates what happens when NORxR is plotted against FS. As it can be seen fuel 
splits of positive values (more fuel to the Outer injectors) produce less NORxR than negative fuel 
splits (more fuel to the Radial injectors). However, it should be noted there is an optimal FS that 
produces the least amount of NORxR for each fuel. This occurs in the region of a FS of +3. An 
explanation for this result can be thought of in the following manner. The EA is calculated 
based on a total flow rate basis and does not concern itself with a local EA estimation. The 
primary combustion zone occurs at the Core and Radial injectors which is approximately 60-65 
percent  of the total fuel flow at any given time. As more fuel is taken away from this primary 
zone (trend towards positive FS) the local EA increases in the primary zone. As seen from 
Figure 17 already the NORxR emissions decrease with increasing EA. The extra fuel is now 
displaced to the Outer injectors which are non-premixed flames. These types of flames produce 
a large amount of NORxR at low EA conditions. Therefore, as the primary flame becomes leaner 
and produces less NORxR, the Outer flames are becoming richer and producing more NORxR. The 
NORxR production rates for both areas are slightly different which results in this minimum point 
at an FS of +3. 
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Figure 18: FS vs NORxR Corr 3%O2 (Blue: 100-0, Red: 95-5, Green: 92.5-7.5 NG-PG) 

 

 

Flame chemiluminescence can be used as a simple way to detect whether a flame is on or not; 
however, based on previous work in the laboratory and the findings from this research a more 
useful application of the technology has been identified. Figure 19 shows the light intensity (or 
Light AVG) readings for various EA conditions. As it can be seen, the light intensity decreases 
with increasing EA which is very similar to the trend in Figure 17 with NORxR and EA. Due to this 
similarity Figure 20 was generated to show the correlation between Light AVG and NORxR 
emissions. A nice linear correlation exists (RP

2
P=0.94) between the two parameters and is fuel 

blend independent. This result suggests that the light intensity data can be used as a NORxR 
predictor and could replace or stand in for a continuous emissions monitoring system.   
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Figure 19: EA vs Light AVG (Blue: 100-0, Red: 95-5, Green: 92.5-7.5 NG-PG) 

 

 

Figure 20: Light AVG vs NOx Corr 3%O2 (All Blends) 

 

 

There are some hypotheses for the linearity between light intensity and NORxR. Thermal NORxR is 
assumed to be the primary contributor to the NORxR emissions due to the high adiabatic flame 
temperatures (AFT) for the given operating conditions. Figure 21 displays AFT verse NORxR for 
each fuel blend. It is apparent that the trend is not linear nor is it fuel blend independent. 
Therefore, there are other factors besides just flame temperature that are producing this 
linearity with light intensity of the flame. One such factor could be the change in species or 
radicals in the combustion zone when higher hydrocarbon fuels (such as propane) are added to 
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the blend. An increase in species that have pathways to produce NORxR could also be luminous 
reactions. Therefore, theoretically an increase in these species would increase both the NORxR and 
light intensity. 

Figure 21: AFT vs NOx Corr 3%O2 (Blue: 100-0, Red: 95-5, Green: 92.5-7.5 NG-PG) 

 

 

The second set of information the fiber optic probe can offer is the oscillations in the light 
intensity, also known as Light PkPk (Peak-to-Peak). By measuring the vertical distance between 
two readings in light intensity a quantifiable method of categorizing the stability of a flame 
becomes available. Figure 22 displays a plot of EA verse Light PkPk. As EA increases the Light 
PkPk readings also increase. At a Light PkPk value of approximately 0.3-0.35 the flame becomes 
noticeably oscillatory and highly unstable. Anything higher, and the flame starts to increase its 
likelihood of blowoff. Any flame below this oscillation threshold is a sign of a very stable flame 
and would be a desirable location to operate.   
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Figure 22: EA vs Light PkPk (Blue: 100-0, Red: 95-5, Green: 92.5-7.5 NG-PG) 

 

 

The last trend that will be covered is associated with the boiler efficiency of the system.  Figure 
23 shows EA verse boiler efficiency for the three fuel blends. Boiler efficiency decreases with 
increasing EA due to the lower flame temperatures associated with a leaner flame. This plot 
represents a few hurdles that must be overcome if this efficiency definition is to be used in the 
optimization algorithms. The first is the limited fluctuation between the highest efficiency and 
the lowest efficiency for a given fuel blend. There is approximately a 2 point difference in 
efficiency between these two extremes which indicates that the efficiency of the system, while 
affected by EA, does not significantly change for various FS-EA conditions. The second hurdle 
is the efficiency difference between each fuel blend for the same conditions. As more propane is 
added to the line the efficiency is decreased; however, this decrease might be due to several 
physical phenomenon and not due to fuel properties. For example, the flame length could 
fluctuate in size for different fuel flows at which point the distance between the cooling walls 
and the hottest portion of the flame would also fluctuate causing a disturbance in the heat 
transfer properties. In order to make these results general and not specific to this burner an 
efficiency based on the amount of air flowed through the system is a better alternative. In a 
commercial burner the energy required to pump air into the unit increases with increasing air 
flow and thus lowers the overall system efficiency. 
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Figure 23: EA vs Boiler Eff (Blue: 100-0, Red: 95-5, Green: 92.5-7.5 NG-PG) 

 

 

4.3.3 Performance Mapping 
Having shown what happens to the performance maps when the fuel composition sensor is 
turned off, the next set of contours show what happens when the fuel composition sensor is 
turned on. Figure 24, Figure 25, and Figure 26 show the associated performance maps for the 
three different fuel blends. Each graph has on the horizontal EA (10 to 30) and on the vertical FS 
(-5 to 5). The contours on the left hand side display NORxR corrected to 3 percent  OR2R while the 
contours on the right hand side display Light PkPk (aka stability). NORxR is cast between a range 
of 15-30 ppmvd while Light PkPk is cast by a range of 0.15-0.4. In both scenarios blue represents 
areas of good performance (low NORxR, high stability) and red represents areas of bad 
performance (high NORxR, low stability). White, as seen in the upper right hand corner of each 
graph, shows where the flames experienced blowoff.   

Looking at the figures with propane in the line it is apparent that the burner can now meet the 
NORxR emission requirements for a range of FS/EA conditions. The same trends mentioned in the 
previous section can still be seen in the following graphs; however, now it is easier to see how 
NORxR and stability interact at the same conditions for a given fuel blend. Take for example the 
plots in Figure 24 for the 100-0 NG-PG case. Increasing EA and positive FS result in a low NORxR 
scenario, but at a cost of low stability. It would seem then that the optimal operating position is 
higher EA and negative FS to get both the added benefit of low NORxR and high stability; 
however, take into account that efficiency decreases with increasing EA and this region loses its 
appeal. The problem only worsens as propane is added to the line as seen in the remaining two 
figures. The NORxR graphs essentially shift towards the upper right hand corner while the Light 
PkPk graphs become more sporadic over a wider range of FS-EA conditions.  
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Figure 24: 100-0 NG-PG Performance Maps 

 

 

Figure 25: 95-5 NG-PG Performance Maps 
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Figure 26: 92.5-7.5 NG-PG Performance Maps 

 

 

  



44 

CHAPTER 5:  
Closed Loop Control 
5.1 Simulations 
5.1.1 5th Order Approximations 
After collecting data for NORxR and Light PkPk at various FS/EA and fuel cases, 5P

th
P order 

approximations of the results were generated to serve as the foundation for simulation 
experiments. The MATLAB code can be found in the Appendix section labeled Approx.m. Some 
of the accuracy of the data collected can be lost for data with seemingly random bits of noise 
with large order approximations, but for the purposes of this project the 5P

th
P order 

approximations gave smooth topologies and proved to be very valuable in the simulation 
process. Interpolation between experimental data points could have been used alternatively, but 
the plots proved to be very jagged. The approximation plots give the search algorithms the most 
ideal scenario to operate in and attempt to see if there are any fundamental differences in the 
algorithms before adding too much variation in the cost function topology from subtle physical 
disturbances. The 5P

th
P order approximations were generated by the following set of equations: 

𝑚𝑚 = #𝑑𝑑𝐸𝐸𝐸𝐸𝐸𝐸 𝑝𝑝𝑊𝑊𝐸𝐸𝐸𝐸𝐸𝐸𝑎𝑎 

𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝑊𝑊𝐸𝐸 17 ∶ 𝐸𝐸 = [𝐸𝐸𝐸𝐸 𝐸𝐸𝐸𝐸2 𝐸𝐸𝐸𝐸3 𝐸𝐸𝐸𝐸4 𝐸𝐸𝐸𝐸5 𝐹𝐹𝐹𝐹 𝐹𝐹𝐹𝐹2 𝐹𝐹𝐹𝐹3 𝐹𝐹𝐹𝐹4 𝐹𝐹𝐹𝐹5]  (𝑚𝑚 𝑥𝑥 10) 

𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝑊𝑊𝐸𝐸 18 ∶ 𝑐𝑐 = 𝑁𝑁𝑂𝑂𝑥𝑥  𝑊𝑊𝑜𝑜 𝐿𝐿𝑃𝑃𝐿𝐿𝑃𝑃𝐿𝐿 𝑑𝑑𝐸𝐸𝐸𝐸𝐸𝐸 @ 𝐹𝐹𝐹𝐹 − 𝐸𝐸𝐸𝐸 𝑐𝑐𝑊𝑊𝐸𝐸𝑑𝑑𝐸𝐸𝐸𝐸𝐸𝐸𝑊𝑊𝐸𝐸𝑎𝑎 (𝑚𝑚 𝑥𝑥 1) 

𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝑊𝑊𝐸𝐸 19 ∶ 𝐸𝐸 = (𝐸𝐸𝑇𝑇𝐸𝐸)−1𝐸𝐸𝑇𝑇𝑐𝑐 (10 𝑥𝑥 1) 

The t variable generated the unique coefficient terms used to estimate the NORxR and LPkPk 
values for each fuel case: 

𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝑊𝑊𝐸𝐸 20 ∶ 𝐸𝐸𝑎𝑎 = �𝐸𝐸𝐸𝐸𝑎𝑎  𝐸𝐸𝐸𝐸𝑎𝑎2 𝐸𝐸𝐸𝐸𝑎𝑎3 𝐸𝐸𝐸𝐸𝑎𝑎4 𝐸𝐸𝐸𝐸𝑎𝑎5 𝐹𝐹𝐹𝐹𝑎𝑎 𝐹𝐹𝐹𝐹𝑎𝑎2 𝐹𝐹𝐹𝐹𝑎𝑎3 𝐹𝐹𝐹𝐹𝑎𝑎4 𝐹𝐹𝐹𝐹𝑎𝑎5� 

𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝑊𝑊𝐸𝐸 21 ∶ 𝑁𝑁𝑂𝑂𝑥𝑥@𝐹𝐹𝑆𝑆𝑖𝑖,𝐸𝐸𝐸𝐸𝑖𝑖 = 𝐸𝐸𝑎𝑎𝐸𝐸𝑁𝑁𝑂𝑂𝑥𝑥 

𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝑊𝑊𝐸𝐸 22 ∶ 𝐿𝐿𝑃𝑃𝐿𝐿𝑃𝑃𝐿𝐿@𝐹𝐹𝑆𝑆𝑖𝑖,𝐸𝐸𝐸𝐸𝑖𝑖 = 𝐸𝐸𝑎𝑎𝐸𝐸𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿 

5.1.2 Types of Simulations 
There are four main types of simulated cases that each optimization search algorithm was tested 
on and they are referred to as follows: no composition fluctuations (NF), with composition 
fluctuations (WF), simulated noise no composition fluctuations (SNNF), and simulated noise 
with composition fluctuations (SNWF). A well-defined cost function based on the NORxR, LPkPk, 
and efficiency data for each fuel case was the foundation for each simulation scenario. The NF 
case initiates the search algorithm at a predetermined or random FS/EA condition for a single 
fuel composition and is allowed to search for the optimal operating condition. The WF case 
initiates the search algorithm at a predetermined or random FS/EA condition in one fuel type 
and is allowed to optimize. The optimal operating condition found in the first fuel type serves 
as the initial point for the next fuel type. This scenario simulates what happens when the burner 
has been operating at optimal conditions for a single fuel, but then undergoes a fuel change and 
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is allowed to search for the new optimum. The remaining two main cases, SNNF and SNWF, 
are the same scenarios as their NF and WF counterparts but with random noise in the data. 
These tests will determine how well the search algorithms can perform with noisy data signals 
which are ultimately a measure of the robustness of the algorithms. The simulated noise was 
generated based on the average signal noise found in the performance mapping data. 

5.2 Cost Function 
A cost function (F) is used in optimization algorithms to quantifiably compare one point verse 
another.  Generally cost functions are designed in a way that the optimal condition is at the 
function’s minimum (minimize cost of system). The goal is to weigh the parameters deemed 
important by the function designer through a set of specified equations. In this particular case 
the three parameters that are of importance are: NORxR (emissions), Light PkPk (stability), and EA 
(efficiency). In equation format the cost function can be constructed as: 

𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝑊𝑊𝐸𝐸 23𝐹𝐹 = 𝑤𝑤 ∗ 𝑓𝑓(𝑁𝑁𝑂𝑂𝑥𝑥) + 𝑤𝑤 ∗ 𝑓𝑓(𝐿𝐿𝑃𝑃𝐿𝐿𝑃𝑃𝐿𝐿) + 𝑤𝑤 ∗ 𝑓𝑓(𝐸𝐸𝐸𝐸) 

𝑤𝑤 =
1
3

 (𝑤𝑤𝑊𝑊𝐸𝐸𝑤𝑤ℎ𝐸𝐸𝐸𝐸𝐸𝐸𝑤𝑤 𝑐𝑐𝑊𝑊𝑊𝑊𝑓𝑓𝑓𝑓𝐸𝐸𝑐𝑐𝐸𝐸𝑊𝑊𝐸𝐸𝐸𝐸) 

 The sub-functions for each parameter are as follows: 

𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝑊𝑊𝐸𝐸 24 ∶ 𝑓𝑓(𝑁𝑁𝑂𝑂𝑥𝑥) = �
𝑁𝑁𝑂𝑂𝑥𝑥
𝑁𝑁𝑂𝑂𝑥𝑥𝑠𝑠𝑎𝑎𝑚𝑚

�
2

+
exp � 𝑁𝑁𝑂𝑂𝑥𝑥

𝑁𝑁𝑂𝑂𝑥𝑥𝑠𝑠𝑎𝑎𝑚𝑚
�

exp(1) − 1 

𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝑊𝑊𝐸𝐸 25 ∶ 𝑓𝑓(𝐿𝐿𝑃𝑃𝐿𝐿𝑃𝑃𝐿𝐿) =
𝐿𝐿𝑃𝑃𝐿𝐿𝑃𝑃𝐿𝐿
𝐿𝐿𝑃𝑃𝐿𝐿𝑃𝑃𝐿𝐿𝑠𝑠𝑎𝑎𝑚𝑚

 

𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝑊𝑊𝐸𝐸 26 ∶ 𝑓𝑓(𝐸𝐸𝐸𝐸) = 𝑎𝑎𝐸𝐸𝑜𝑜𝐸𝐸 �
𝐸𝐸𝐸𝐸

𝐸𝐸𝐸𝐸𝑠𝑠𝑎𝑎𝑚𝑚
� 

𝑁𝑁𝑂𝑂𝑥𝑥𝑠𝑠𝑎𝑎𝑚𝑚 = 20 𝑝𝑝𝑝𝑝𝑚𝑚𝑝𝑝𝑑𝑑 𝑐𝑐𝑊𝑊𝑜𝑜𝑜𝑜. 3%𝑂𝑂2 (𝑜𝑜𝑊𝑊𝑤𝑤𝐸𝐸𝑡𝑡𝐸𝐸𝐸𝐸𝐸𝐸𝑊𝑊𝐸𝐸 𝑎𝑎𝐸𝐸𝐸𝐸𝐸𝐸𝑑𝑑𝐸𝐸𝑜𝑜𝑑𝑑) 

𝐿𝐿𝑃𝑃𝐿𝐿𝑃𝑃𝐿𝐿𝑠𝑠𝑎𝑎𝑚𝑚 = 0.3 (𝑡𝑡𝑊𝑊𝑤𝑤 𝐿𝐿𝑃𝑃𝐿𝐿𝑃𝑃𝐿𝐿 = 𝑎𝑎𝐸𝐸𝐸𝐸𝑊𝑊𝑡𝑡𝑊𝑊,ℎ𝐸𝐸𝑤𝑤ℎ 𝐿𝐿𝑃𝑃𝐿𝐿𝑃𝑃𝐿𝐿 = 𝐸𝐸𝐸𝐸𝑎𝑎𝐸𝐸𝐸𝐸𝑊𝑊𝑡𝑡𝑊𝑊) 
𝐸𝐸𝐸𝐸𝑠𝑠𝑎𝑎𝑚𝑚 = 30 (𝑚𝑚𝐸𝐸𝐸𝐸𝐸𝐸𝑓𝑓𝐸𝐸𝑐𝑐𝐸𝐸𝐸𝐸𝑜𝑜𝑊𝑊𝑜𝑜 𝑎𝑎𝑝𝑝𝑊𝑊𝑐𝑐𝐸𝐸𝑓𝑓𝐸𝐸𝑐𝑐𝐸𝐸𝐸𝐸𝐸𝐸𝑊𝑊𝐸𝐸𝑎𝑎) 

There are no predetermined equations that are required to be used when defining a cost 
function; however, there are general guidelines that can make computing optimization 
algorithms easier. The main feature of a cost function is it should be continuous in order to 
allow smooth topology of the cost function contour for multiple inputs. Functions can contain 
piecewise continuous equations for a given parameter, but that increases the amount of logic 
required for the algorithm to compute. 

The above sub-functions rely on a ratio of the current parameter reading divided by that 
parameter’s allowable maximum limit. This was used as a way to measure how close a 
parameter is to reaching its allowable limit. In other words, it answers the question “how close 
is the parameter to being not acceptable”? By design each sub-function when the parameter 
ratio equals to unity so does the value of the sub-function. A ratio below unity will have a cost 
of less than unity while a ratio above unity will have a cost above unity. In this way it is easy to 
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determine which of the parameters is being met and which are not. Figure 27 plots the sub-
functions with the parameter ratios plotted on the horizontal axis and the function values on the 
vertical axis. Note the curvatures and slopes for each line. 

Figure 27: Cost Function: Sub-Functions 

 

 

The NORxR sub-function has two main parts: the square term and the exponential term (includes 
the minus 1). The reasoning behind this choice is in the rewards and penalties wanting to enact. 
When the NORxR is below 20ppmvd the cost function will greatly reward the point; however, if 
the NORxR is above the limit then it will greatly penalize the point. The exponential function is one 
of the fastest smooth rising functions. For this reason when the NORxR ratio is above the unity 
threshold the cost sub-function increases drastically which quickly penalizes any slight 
deviations above unity. The square term was to further the intensity/magnitude of the 
exponential term. The sensitivity to the reward/penalty system can be adjusted by multiplying a 
constant in front of the exponential term. In this way it increases or decreases the severity of the 
reward/penalty system. The Light PkPk term is dictated only by the parameter ratio. The 
sensitivity for this parameter can be increased by increasing the exponent term (ex: to a square 
or cube exponent).Raising the Light PkPk term to the first power was determined to be 
adequate through repeated tests using the experimental data gathered. The EA term was 
selected to be a square-root in order to minimize the effect of this parameter. The efficiency of 
the system was determined to be less valuable to maintain compared to the emissions and 
stability of the flame. For this reason the efficiency cost sub-function was desired to have a small 
impact on the overall cost function for medium and large fluctuations in EA. The EA term is a 
measure of efficiency and a high efficiency means the parameter ratio is low which is desirable. 
To lower the sensitivity of the cost function to the efficiency term, the exponent was selected to 
be a fraction. In this way large changes in EA result in small changes in the cost function.   
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5.3 5thOrder Approximation 
Using the data collected in the previous section a 5P

th
P order approximation of the NORxR and Light 

PkPk graphs were generated. Figure 28, Figure 29, and Figure 30 show the approximations of 
both parameters (NORxR on left and Light PkPk on right) for the three fuel blends. The NORxR 
approximation contours resemble to that of the experimental data quite satisfactorily across the 
entire FS/EA map; however, the conditions where each fuel blend has experienced blowoff has 
not been accounted for in the approximation maps. The approximation maps are meant to be 
models of the system to best predict how the search algorithms might respond under real 
conditions, but these approximations do have errors. For example, the approximation Light 
PkPk contours are clearly smoother than the actual Light PkPk contours. Many of the sporadic 
peaks that are characteristic of the actual data are lost in the approximation. This creates errors 
when trying to model blowoff. Since blowoff is most commonly preceded by high oscillations in 
flame luminosity the ability of the search algorithm to accurately predict blowoff becomes 
unreliable in this simulated environment. The results generated by the search algorithms should 
only serve as guides as to predicting the performance under real conditions and what the 
optimal operating conditions might be.   

Figure 28: 100-0 NG-PG Approximation Maps 
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Figure 29: 95-5 NG-PG Approximation Maps 

 

 

Figure 30: 92.5-7.5 NG-PG Approximation Maps 

 

 

5.4 Cost Function Maps 
Now that the 5P

th
P order approximation maps have been generated for the three fuel blends it is 

now possible to define the corresponding cost function maps. Figure 31, Figure 32, and  Figure 
33 are the cost function maps for the three fuel blends. These contours were generated using the 
5P

th
P order approximation results developed in the previous section and the cost function 

equation defined in Chapter 5. Using the colorbar legend for the graphs, areas of dark blue are 
high performance locations (desirable, low cost) and areas of red are low performance locations 
(undesirable, high cost). Each contour has a single peak of high performance which is essential 
for the search algorithms to work reliably. However, it should be noted for the 92.5-7.5 NG-PG 
case (Figure 33) there is a distinct ridge along an EA of 12 that separates two regions of lower 
function values. This region could trap a search algorithm into never converging to the true 
global minimum.     
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Figure 31: 100-0 NG-PG Cost Function Map 
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Figure 32: 95-5 NG-PG Cost Function Map 

 

 

Figure 33: 92.5-7.5 NG-PG Cost Function Map 
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5.5 Simulation Results 
5.5.1 No Fluctuations (NF) 
5.5.1.1 PDS NF Results 
The following results are for Powell’s Direction-Set (PDS) method as outlined in Chapter 2 and 
using a hill-climbing subroutine to find the minimum along a direction-set line. The MATLAB 
code can be found in the Appendix section. The step sizes in the FS/EA directions are set at 0.5 
and 1 respectively. The tolerance for convergence has been set at 0.0005. 

The first sets of graphs (Figure 34, Figure 35, and Figure 36) depict the PDS algorithm for a set 
FS/EA condition at -2/14 for the three fuel blends. For each fuel blend there are three associated 
graphs: cost function (middle top), NORxR (bottom left) and Light PkPk (bottom right). The pink 
lines/stars represent the first full iteration of the PDS algorithm. The light blue line/stars are the 
remaining iterations and the final optimal value. It took 76 function computations for the PDS 
algorithm to converge on the global minimum for the 100-0 NG-PG case and 50 function 
computations for the remaining two fuel cases to converge. Recall that function computations 
represent when the algorithm would actively measure data if this were a real test. Therefore, the 
more function computations an algorithm must take the longer it will take for the algorithm to 
converge. For example, if it took a minute to move to the next set point and measure data then 
the first case would take 76 minutes to converge. If regulation emission measurements occur 
every 15 minutes then this long time scale could be problematic for the goal of lowering 
emissions.     
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Figure 34: PDS NF Results: 100-0 NG-PG, FS/EA of -2/14 
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Figure 35: PDS NF Results: 95-5 NG-PG, FS/EA of -2/14 
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Figure 36: PDS NF Results: 92.5-7.5 NG-PG, FS/EA of -2/14 
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Now that a single FS/EA condition for all three blends has been examined it is time to examine 
the entire FS/EA map. The PDS algorithm was fed 441 initial positions that ranged in FS from -5 
to 5 in increments of 0.5 and in EA from 10 to 30 in increments of 1. Table 4 summarizes the 
results for this approach. The parameter N is the number of function computations taken from 
the initial point to the final optimal value. FS Final and EA Final are the FS/EA final optimal 
operating conditions. F is the final function value at the optimal FS/EA condition. %F_global is a 
parameter that measures the percent error between the final converged F and the global F for 
the given fuel case. NORxR is the converged optimal NORxR value in ppmvd corrected to 3 percent 
OR2R. The %NORxR Fail parameter is the percentage of how many initial conditions (441 total) did 
not converge to an acceptable NORxR value (that is, values above 20 ppmvd). 

Table 4: PDS NF Results 

 
 
From these results it shows that on average the PDS algorithm takes 35 to 50 function 
computations to converge to the global minimum for these cost function maps. The PDS 
algorithm fails to converge to acceptable levels of NORxR for approximately 5 percent of the FS/EA 
map for the 100 and 95 NG cases; however, it has a more difficult time with the 92.5 NG case 
and fails on 31 percent of the initial conditions. This large failure rate for the 92.5 NG case is due 
to the divide in low value regions as discussed earlier. Most of the failures occur for initial 
conditions on the left side of the ridge (the side opposite of the global minimum). It can then be 
concluded that initial conditions should be selected carefully. Initial conditions that are far 
away from the global minimum could potentially experience larger number of function 
computations and less reliable convergence results.    

5.5.1.2 DHS NF Results 
This section is concerned with displaying the results found for the Downhill Simplex (DHS) 
algorithm as outlined in Chapter 2. The MATLAB code can be found in the Appendix section.  
The tolerance for convergence has been set at 0.0005. Five parameters must be established for 
the DHS algorithm: the size of the initial simplex (positions of two vertices), reflection 
coefficient (alpha), expansion coefficient (gamma), and contraction coefficient (beta). After 
selecting an initial point the two remaining vertices are selected by completing the corners of a 
90 degree triangle. Using the initial point as the base, point two is selected by going in the EA 
direction either to the right or left of the initial point depending on boundary restraints. The 
third point is selected by going in the FS direction either up or down of the initial point 
depending on boundary constraints. These two parameters are labeled as EAs and FSs, 
respectively. The remaining three coefficients have already been described in Chapter 2. All five 

NG N FS Final EA Final F %F_global NOx %NOx Fail
100 50.72 3.06 26.42 0.89 0.68 18.43 6.58 average

44.00 3.00 27.06 0.89 0.09 18.37 - median
95 39.09 5.00 29.05 0.92 1.02 17.63 4.76 average

39.00 5.00 30.00 0.91 0.00 17.23 - median
92.5 36.66 1.83 28.10 1.03 5.84 20.69 31.07 average

37.00 3.50 30.00 0.98 0.00 19.22 - median
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parameters start from an initial first guess of the correct values. From several iterations of 
tweaking these five parameters and comparing the results an optimal set of values can be 
determined. After several iterations the parameter selection was found to be: EAs = 4, FSs = 2.5, 
alpha = 1.5, beta = 0.4, and gamma = 1.65. 

Using these gains Figure 37, Figure 38, and Figure 39 were generated for a steady FS/EA of -
2/14. The initial simplex is shown by black X’s. The pink line/stars show the route take by the 
centroid of the simplex to the convergence point. As done previously for the PDS NF contours 
there are three graphs per figure: cost function (top middle), NORxR (left bottom), and Light PkPk 
(right bottom). 

Figure 37: DHS NF Results: 100-0 NG-PG, FS/EA of -2/14 
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Figure 38: DHS NF Results: 95-5 NG-PG, FS/EA of -2/14 
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Figure 39: DHS NF Results: 92.5-7.5 NG-PG, FS/EA of -2/14 
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Continuing from a single FS/EA point the rest of the FS/EA map was allowed to undergo the 
DHS algorithm and the results are summarized in Table 5. The headings/parameters in Table 5 
are the same as for Table 4 already presented for PDS NF results. The number of function 
computations is on average 18 to 40 computations which is reasonable for a 15 minute emission 
regulation time scale. However, this limited number of computations produces a higher 
percentage of final convergence cases failing to meet the NORxR requirement.  

Table 5: DHS NF Results 

 

 
5.5.1.3 PDS vs. DHS NF Results 
The following conclusions are based off of the results from Table 4 and Table 5. The DHS 
algorithm does extremely well in function computations for the 100 NG case, but both 
algorithms reach the same value of N for the remaining two fuel cases. Both algorithms reached 
relatively the same final FS/EA, F, and NORxR values on an average calculation. However, the PDS 
algorithm performed much better in finding operating conditions that meet the NORxR 
requirements (92.5 NG case excluded). The NF results suggest that PDS has a slight advantage 
over DHS, but differences are small.   

5.5.2 With Fluctuations (WF) 
5.5.2.1 PDS WF Results 
Recall the WF simulations are meant to simulate what happens when the search algorithms are 
allowed to converge to an optimal value for one fuel blend and then are switched to a new fuel 
blend. The final FS/EA conditions (median values) in Table 4 serve as the initial conditions for 
each scenario in this section. Table 6 summarizes the results for the three cases. The first block 
assumes that the 100 NG case was first allowed to converge to its optimal operating condition 
(FS/EA = 3/27) and then experiences either a 95 NG or 92.5 NG fluctuation. The second and third 
blocks in the table are the cases for the 95 and 92.5 NG cases respectively. As it can be seen the 
number of function computations (N) has decreased from the average NF scenario by 
approximately 20 to 30 percent. However, the number of function computations still puts the 
convergence time at a little over 30 minutes using a one minute sample time estimation. It 
should be noted that the PDS algorithm is able to still find the global minimum even for 
fluctuating fuel conditions.  

NG N FS Final EA Final F %F_global NOx %NOx Fail
100 18.93 3.20 25.83 0.89 0.72 18.85 10.88 average

18.00 3.19 26.91 0.89 0.10 18.45 median
95 38.40 4.55 27.95 0.95 4.38 18.61 19.73 average

39.00 4.98 29.67 0.92 1.08 17.53 median
92.5 34.58 2.54 28.32 1.02 4.21 20.33 22.22 average

34.00 3.37 29.97 0.98 0.10 19.23 median

tol 0.0005 alpha 1.5
EAs 4 beta 0.4
FSs 2.5 gamma 1.65
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Table 6: PDS WF Results 

 
 

5.5.2.2 DHS WF Results 
For the WF simulations the same tolerance, simplex size, and coefficients as established in the 
DHS NF section were used. The median values for the final FS/EA points for each fuel blend 
from Table 5 were used for the initial points for these simulations. Table 7 summarizes the 
results for the three subcases (100 NG steady, 95 NG steady, and 92.5 NG steady). Except for the 
100 NG steady block the number of function computations has decreased significantly 
compared to the average values from Table 5. The other important conclusion to make is the 
DHS algorithm is able to find the same previously found optimal FS/EA condition for each fuel 
regardless of which switching scenario is running.    

Table 7: DHS WF Results 

 
 

NG N FS Initial EA Initial FS Final EA Final F %F_global NOx
100 - - - - - - - -
95 27 3 27 5 30 0.91 0.00 17.23

92.5 28 3 27 4 30 0.98 0.00 19.22

100 35 5 30 3 27 0.89 0.09 18.41
95 - - - - - - - -

92.5 28 5 30 3.5 30 0.98 0.00 19.22

100 33 3.5 30 3 27 0.89 0.09 18.41
95 23 3.5 30 5 30 0.91 0.00 17.23

92.5 - - - - - - - -

NG N FS Initial EA Initial FS Final EA Final F %F_global NOx
100 - - - - - - - -
95 41 3.00 27.00 4.99 29.63 0.91 0.60 17.40

92.5 34 3.00 27.00 3.63 30.00 0.98 0.06 19.23

100 7 5.00 29.50 3.08 28.03 0.89 0.04 17.79
95 - - - - - - - -

92.5 22 5.00 29.50 3.11 29.87 0.98 0.34 19.27

100 10 3.00 30.00 3.71 27.05 0.89 0.04 18.39
95 35 3.00 30.00 4.99 29.84 0.91 0.31 17.31

92.5 - - - - - - - -

tol 0.0005 alpha 1.5
EAs 4 beta 0.4
FSs 2.5 gamma 1.65
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5.5.2.3 PDS vs. DHS WF Results 
The following conclusions are based on the results from Table 6 and Table 7.  Both the PDS and 
DHS algorithms performed well in WF simulation scenarios; however, the DHS algorithm 
found the optimal conditions with fewer function computations. The overall error from the 
global minimum is significantly lower than the wide map searches for both algorithms.  

5.5.3 Simulated Noise with No Fluctuations (SNNF) 
5.5.3.1 PDS SNNF Results 
This section is responsible for demonstrating what happens to the search algorithms when 
small fluctuations occur in the sensor readings. These random fluctuations occurred for the 
three parameters in the cost function equation: NORxR, Light PkPk, and EA. The 5P

th
P order 

approximation was used to generate the baseline NORxR and Light PkPk values. From there the 
NORxR was allowed to vary ±0.2, Light PkPk was allowed to vary ±0.02, and EA was allowed to 
vary ±0.2. These values were calculated to be the average sensor reading fluctuations as found 
in the experimental data. Two key parameters were also altered to adjust to sensor noise. The 
step sizes in the FS/EA directions were changed to 0.5/1.5. The tolerance was decreased to 0.005. 
Both of these parameters were adjusted in order to lower the amount of unnecessary function 
computations. 

For comparison with the NF simulations Figure 40, Figure 41, and Figure 42 were generated at 
the same FS/EA condition as before (-2/14) for the three fuel blends. Clearly more directions are 
followed in the simulated noise case than the no noise case and no run of the same initial 
condition is the same due to the random fluctuations in sensor readings. To show this 441 runs 
were conducted for each fuel blend at the same initial FS/EA condition (-2/14) and the results 
can be found in Table 8.  

Table 8: PDS SNNF for FS/EA of -2/14 

 

 

NG N FS Final EA Final F %F_global NOx %NOx Fail
100 133.00 3.50 24.60 0.90 2.10 19.46 34.69 average

105.00 3.51 25.70 0.90 1.60 19.23 - median
95 120.63 4.22 28.63 0.95 4.89 18.50 11.11 average

101.00 4.70 29.50 0.93 2.94 17.85 - median
92.5 136.14 3.14 29.02 1.01 3.36 19.94 14.97 average

118.00 3.40 29.89 0.99 1.54 19.45 - median
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Figure 40: PDS SNNF Results: 100-0 NG-PG, FS/EA of -2/14 
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Figure 42: PDS SNNF Results: 92.5-7.5 NG-PG, FS/EA of -2/14 

 

 

Referring to the data found in Table 8 there are some interesting results to be seen. The first is 
the number of function computations (N) has increased dramatically; approximately 2.5 to 3 
times more than the NF counterpart. This increase can be sourced to the increased number of 
times the hill-climbing subroutine is called. This subroutine is a costly way to search along a 
line. The other interesting result is the percentage of runs that did not meet acceptable NORxR 
levels. The NORxR fail rate percentage was 35 percent, 11 percent, and 15 percent for the 100, 95, 
and 92.5 NG cases respectively. The 11 and 15 percentages, while not ideal, are more acceptable 
than the 35 percent for the 100 NG case. This means that approximately one in three runs of the 
PDS algorithm will not converge to an acceptable optimal value. 

The next table of results was generated over the entire FS/EA map as done previously for the 
NF scenario. The only thing done differently was to run this entire map search process three 
times for each blend in order to account for the random nature of the simulated noise scenario. 
Table 9 shows the performance characteristics of the PDS with simulated noise. As seen with 
Table 8 the average number of function computations (N) has increased drastically 
(approximately 2 to 2.5 times greater). The NORxR Fail percentage has stayed about the same for 
each fuel blend. 
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Table 9: PDS SNNF Results 

 
 

5.5.3.2 DHS SNNF Results 
The same fluctuations in NORxR, Light PkPk, and EA as expressed in the previous SNNF section 
for the PDS algorithm occur in this section as well. The tolerance for convergence has been 
relaxed to 0.005 in order to reach faster convergence times. Initially the same simplex size and 
coefficients as established in the previous two sections for the DHS algorithm were used in this 
set of simulations; however, as it will be shown shortly adjustments had to be made in the 
simplex size to decrease the amount of error and NORxR Fail percentage in the results. 

Three example runs of the DHS SNNF simulations were recorded for the three different fuel 
blends and presented in the following three figures (Figure 43, Figure 44, and Figure 45). These 
simulations were conducted at the same FS/EA of -2/14 as done in the previous example 
contours. Visually the paths taken by the DHS algorithm in the SNNF cases resemble very 
closely to the paths taken in the NF cases. For this reason 441 runs for each fuel blend were 
computed at the FS/EA of -2/14 and the results are presented in Table 10. 

NG N FS Final EA Final F %F_global NOx %NOx Fail
100 122.62 3.32 25.39 0.90 2.47 19.21 27.74 average

94.00 3.45 26.41 0.90 1.63 18.90 - median
95 106.09 4.36 28.94 0.94 3.85 18.17 9.22 average

88.67 4.95 29.50 0.92 2.05 17.65 - median
92.5 123.54 3.01 28.89 1.01 3.55 20.00 15.19 average

100.67 3.43 29.50 0.99 1.68 19.53 - median
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Figure 43: DHS SNNF Results: 100-0 NG-PG, FS/EA of -2/14 
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Figure 45: DHS SNNF Results: 92.5-7.5 NG-PG, FS/EA of -2/14 

 

 

Table 10: DHS SNNF for FS/EA of -2/14 

 

 

As it can be seen in the above table the failure rate of finding an acceptable operating condition 
in terms of NOx has spiked significantly. At first the coefficients (alpha, beta, and gamma) were 
adjusted to see if these values would give different results, but these attempts did not 
significantly improve the situation. Therefore the initial simplex size was expanded in order to 
mitigate the effects of converging too quickly in an initially high cost region. As a comparison 

NG N FS Final EA Final F %F_global NOx %NOx Fail
100 17.07 2.76 17.89 0.93 5.12 21.97 94.10 average

14.00 2.91 17.94 0.92 3.90 21.87 - median
95 20.78 3.64 18.74 1.09 19.89 23.94 88.66 average

18.00 4.17 17.85 1.10 20.87 24.57 - median
92.5 22.64 3.17 23.93 1.09 11.24 22.60 58.96 average

20.00 3.27 26.12 1.07 9.33 21.84 - median

tol 0.005 alpha 1.5
EAs 4 beta 0.4
FSs 2.5 gamma 1.65
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Table 11 and Table 12 were generated for the entire FS/EA map with the simplex size being the 
only difference. By increasing the simplex size the NOx Fail percentage has decreased by almost 
half in value while the number of function computations has stayed approximately the same. 
This means that while the simplex is initially larger it is still able to converge to a final answer in 
the same amount of iterations. Another important result is in the final FS/EA location of the 
larger simplex case. Comparing these final locations in Table 12 with the final locations found in 
Table 5 it is seen that they are almost identical. This confirms the DHS algorithm can still 
perform in a noisy environment albeit with some error. 

Table 11: DHS SNNF Results Version 1 

 

 

Table 12: DHS SNNF Results Version 2 

 

 

5.5.3.3 PDS vs. DHS SNNF Results 
The conclusions made here are from the results found in Table 9 and Table 12. There are two 
key differences between the PDS and DHS algorithms: number of function computations and 
the NORxR Fail percentage. The PDS algorithm takes on the order of 90 to 120 function 
computations, but has on average less than 25 percent failure rate in terms of NORxR. The DHS 

NG N FS Final EA Final F %F_global NOx %NOx Fail
100 15.43 2.90 22.06 0.91 3.47 20.51 58.88 average

12.67 3.06 22.80 0.90 1.88 20.54 - median
95 20.91 3.07 24.61 1.02 12.70 21.17 51.55 average

19.00 4.27 28.39 1.01 11.09 20.28 - median
92.5 20.26 2.03 26.02 1.07 9.69 21.86 54.12 average

18.00 3.04 29.15 1.02 3.85 20.22 - median

tol 0.005 alpha 1.5
EAs 4 beta 0.4
FSs 2.5 gamma 1.65

NG N FS Final EA Final F %F_global NOx %NOx Fail
100 15.97 3.05 24.55 0.90 2.16 19.60 35.45 average

13.33 3.14 25.41 0.89 1.31 19.41 - median
95 23.78 3.30 27.77 0.98 7.72 19.47 26.30 average

22.67 4.25 29.15 0.96 5.39 18.72 - median
92.5 22.54 2.23 28.56 1.02 5.12 20.50 35.30 average

20.33 3.08 29.41 0.99 1.77 19.75 - median

tol 0.005 alpha 1.5
EAs 7 beta 0.4
FSs 3 gamma 1.65



68 

algorithm takes on the order of 20 function computations, but at a much higher NORxR failure rate 
(~25 to 35 percent). Note here that the DHS algorithm also experienced some difficulty in 
transferring from the NF to SNNF case. The simplex size had to be corrected in order to reduce 
failures. The PDS algorithm for the most part was ready to go with only a minor change in the 
step size in the EA direction. Therefore, the PDS algorithm seems to be more flexible in dealing 
with alterations in sensor noise measurements.   

5.5.4 Simulated Noise With Fluctuations (SNWF) 
5.5.4.1 PDS SNWF Results 
The final sets of simulations involve simulated noise while transitioning from an optimal 
position in one fuel blend to the next optimal position for another fuel blend. The same sensor 
noise fluctuations occur in this simulation as the previous section and the final median FS/EA 
positions from Table 9 are used for the initial conditions in this section. Table 13 is a summary 
of the results for the three different steady fuel transition cases. For each transition case, the fuel 
blends being transitioned to are able to converge to the previously obtained optimal EA/FS 
conditions as found in the SNNF scenario. Except for the 100NG case in the 92.5 steady block, 
the number of function computations has decreased by almost a factor of 2. This shows the 
closer an initial point is to the final optimal value the shorter time it will take the PDS algorithm 
to converge. 

Table 13: PDS SNWF Results 

 

 

5.5.4.2 DHS SNWF Results 
This section follows the same conditions as outlined in the previous SNWF section for the PDS 
algorithm. The simplex size and coefficients have remained the same. The median final FS/EA 
results from Table 12 are used here as the initial conditions for the different cases. Table 14 
summarizes the results for these sets of simulations. The number of function computations has 
decreased but not by a significant amount. The main result here is that the DHS algorithm is 
able to adapt to fluctuating fuel environments and find the optimal FS/EA conditions as 
previously found in the SNNF scenario.   

NG N FS Initial EA Initial FS Final EA Final F %F_global NOx
100 - - - - - - - -
95 50.33 3.50 26.00 4.95 29.33 0.93 2.61 17.78

92.5 42.00 3.50 26.00 3.56 29.33 0.99 2.46 19.58

100 83.33 5.00 29.50 3.81 28.29 0.90 1.06 17.81
95 - - - - - - - -

92.5 59.33 5.00 29.50 3.45 29.17 1.01 2.80 19.79

100 146.67 3.50 29.50 2.79 28.48 0.89 1.49 17.60
95 53.00 3.50 29.50 5.00 29.33 0.91 1.24 17.43

92.5 - - - - - - - -
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Table 14: DHS SNWF Results 

 
5.5.4.3 PDS vs. DHS SNWF Results 
The clear winner for this simulation scenario is the DHS algorithm. It was able to converge to an 
acceptable optimal condition in half the number of function computations than the PDS 
algorithm. The NORxR failure rate behavior essentially matched the cases without noise, with PDS 
failing about 25 percent of the time and DHS ~30 percent. What this result suggests is the DHS 
algorithm could be best used in scenarios where the burner is already operating at the optimal 
FS/EA condition but then is subject to some type of change (that is, fuel blend fluctuation). Both 
algorithms are able to find the optimal operating condition, but what is the deciding factor 
between the two is the time it takes to converge. 

  

NG N FS Initial EA Initial FS Final EA Final F %F_global NOx
100 - - - - - - - -
95 19.67 3.00 26.00 3.71 28.81 0.95 5.01 18.83

92.5 22.33 3.00 26.00 2.59 29.42 0.98 1.73 19.59

100 12.33 4.50 29.00 3.02 26.72 0.88 1.10 18.63
95 - - - - - - - -

92.5 15.67 4.50 29.00 3.48 29.02 1.00 2.11 19.96

100 17.00 3.00 29.50 3.28 26.16 0.88 1.17 18.88
95 24.00 3.00 29.50 4.06 29.85 0.94 3.24 17.96

92.5 - - - - - - - -

tol 0.005 alpha 1.5
EAs 7 beta 0.4
FSs 3 gamma 1.65
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CHAPTER 6:  
Validation of Fuel Interchange Parameters 
The current project developed extensive data associated with fuel compositional impacts on 
emissions. Under a separate Energy Commission project (Contract CEC 500-08-034), predictive 
tools for assessing the impact of fuel composition on burner performance were developed and 
validated under limited conditions. With data obtained for the present effort, it was of interest 
to see if the tools developed under Contract 500-08-034 could successfully predict the emissions 
performance of the present burner system as a function of fuel composition. 

6.1 Computational fluid dynamics (CFD) 
The Computational Fluid Dynamics (CFD)/Chemical Reactor Network (CRN) methodology for 
predicting how fuel composition impacts emissions requires information about the overall 
flowfield in order to divide the system into discrete reactors. To guide the division, 
photographs of the flame or detailed measurements can be used. But generally speaking, this 
type of information is usually not available. As a result, this information is derived from a CFD 
simulation. This would be the general approach as applied to any particular burner. All that is 
required is sufficient information about the geometry of the system that it can sufficiently 
represented by a mesh of discrete elements.   

In the present case, a three dimenstional CFD simulation was conducted using a commercial 
solver, ANSYS. Figure 46 (a) shows the geometry of simulation domain. To reduce 
computational cost, only a quarter of the burner is considered. The two planes of symmetry 
were set as periodic boundary. Tetrahedral mesh was applied for the model, as it is shown in 
Figure 46 (b).  

Figure 46 Geometry and Meshes of the CFD simulation. 

 

(a) 

 

(b) 



71 

Two cases with identical EA and FS were selected as a representative scenario for the CFD 
modeling. Table 15 summarizes the input conditions. The NG case represents the condition 
with pure methane, whereas the PG case includes 7.5 percent propane. The goal is to see if the 
CFD/CRN methodology correctly predicts how the additional of propane impacts the NORxR 
emissions levels. For both cases, the k-e model with standard wall function was used as 
turbulence model. As for turbulence-chemistry interaction, the eddy dissipation model and 
probability density function (PDF) method were compared.  

Table 15 Summary of the Simulated Conditions 

 CHR4 R[%] CR3RHR8 R[%] EA Fuel split 

NG case 100 0 21.92 5.01 

PG case 92.5 7.5 20.60 5.14 

 

Figure 47 Comparison of Simulated Results of NG Case Using 1) Eddy-Dissipation Model and 2) 
PDF Model 

 
Eddy-Dissipation 

 
(b) PDF 

 
(c) Temperature difference between Eddy-Dissipation and PDF results 
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Figure 47 presents the comparison of temperature distribution simulated using Eddy-
Dissipation and PDF models. The high temperature region is shorter with the PDF model, 
which is more consistent with the observed flame. Therefore, the PDF model is used for 
estimating the reaction spatial distribution.  

Figure 48 shows a comparison between temperature distributions of NG and PG cases using the 
PDF model. Figure 48c present results for the difference in temperature at each position for the 
two fuels. It can be seen that the temperature in the outer flame in PG case is greater than that 
for the NG case. The temperature difference is around 200 degrees Kelvin (°K), which is large 
enough to impact the NORxR formation rate. Even without the decomposition of the flowfield into 
a collection of smaller reactors, this result qualitatively explains the reason why NORxR emission 
of PG cases is larger than that of NG cases.  

Figure 48 Comparison of temperature distribution in PG and NG flames 

 
(a) PG 

 
(b) NG 

 
(c) Difference between PG and NG (PG-NG) 

 



73 

6.2 Chemical reactor network (CRN) 
The CFD model provides the flow patterns in the combustion chamber. However, to predict 
NORxR formation, the simplified reaction kinetics used in the CFD is insufficient. By decomposing 
the overall flowfield into smaller individual chemical reactors, highly detailed reaction kinetics 
can be used to investigate the nature of NORxR formation. More comprehensive kinetic models are 
thus introduced without losing the detailed thermal and fluid dynamic information. The input 
parameters of CRN were determined according to the flow characteristic obtained from CFD 
simulation. Although the prediction of NORx Rwas essentially decoupled from the CFD simulation 
of the combustion environment, no significant effect on the simulation performance occurs 
because minor species like NORxR only have a small effect on the main combustion process. As a 
result, the influence of the minor species ignored in the CFD kinetics on on the overall 
temperature and flow field is negligible. (Faravelli et al., 2001) 

6.2.1 Ideal reactor 
The advantage of CRN modeling is achieved by using ideal reactors to represent the regions 
with identical flow patterns and reaction properties. Detailed reaction kinetics can thus be 
applied with reduced spatial resolution and hence acceptable computational cost. In the current 
burner, two types of ideal reactors are used: perfect stirred reactor (PSR) and plug flow reactor 
(PFR). The PSR model assumes reactants are perfectly mixed. It is usually applied for highly 
turbulent region where a zero dimension simulation can be carried out. The PFR model, on the 
other hand, is considered for the case where a prevalent streamline is present in the cells of the 
reactor.  Figure 49 (a) shows a typical distribution modeled as a PSR reactor. The velocity 
vectors are widely spread in all the directions and magnitudes. However, Figure 49 (b) presents 
a narrow concentration of the velocities. It indicates the presence of a prevalent flow direction 
which can be described by a PFR reactor. Input parameters for these reactors mainly include 
residence time and flow rate, which can be determined by post-processing the CFD results.  
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Figure 49 criteria of ideal reactor selection: (a) polar and sagittal angles of the velocity vectors 
belonging to a psr reactor. (b) polar and sagittal angles of the velocity vectors belonging to a pfr 

reactor.(faravelli et al., 2001). 

 

(a) 

 

(b) 

 

 6.2.2 Construction of CRN model 
Figure 50 shows the pathlines passing through reaction region. It can be seen that the flow 
directions are nearly parallel both in outer and central flames. According to the selection criteria 
of reactor, these two reaction region can be approximated using PFR. However, the cross jet at 
the bottom of the flame creates a recirculation zone where flow directions are widely scattered. 
Therefore, this region can be simulated using a PSR.  
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Figure 19T5019T Overview of pathlines passing through reaction region, colored by residence time (s) 

 

 

Figure 51 presents an overview of the CRN model constructed using Chemkin 10112. The outer 
and central flames are both simulated using PFR models (C3 and C5). A PSR model (C1_R1) is 
applied for the cross jet zone, where the core fuel flow and part of the radial mixture are 
premixed. The remainder of radial mixture flows into the central flame. Meanwhile, the 
perpendicular momentum from core fuel injector forces part of the radial mixture diverge from 
the central stream and feed into the outer flame. The splitting ratio of radial mixture flow and 
exhaust gas from the cross jet zone are both determined according to CFD. Two gas mixers (C2 
and C3), were used for preparation of inflow for the PFRs. The third gas mixer (C6) simulates 
the post-flame region, gathering exhaust gas from the two reaction regions. 
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Figure 51 Overview of the CRN Model for Diffusive Flame 

 

 

6.3 Results 
Figure 52 shows the results of CRN model in terms of NORxR emission. The detailed chemical 
reaction mechanism used was GRI3.0. The results are shown corrected to 3 percent oxygen to 
allow comparison with the previously presented measured results. The simulation result shows 
a trend which is consistent with observations in the tests. The emission level reduces as EA 
increases. Given a constant heat input, the addition of propane into natural gas causes increase 
in NORxR emission.  

Figure 52 Results of CRN Model in Terms of NORxR Emission, Compared to Measured Data 
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However, the current model is not applicable for all cases with various values of EA. This is 
mainly due to the dynamic response of reactor inputs to the change of EA. For example, while 
EA decreases, the fuel flow rate is kept unchanged to ensure the constant heat input. Therefore, 
the core and outer fuel flow remain the same whereas the radial flow rate decreases. Such 
variation may yield greater penetration of the cross jet zone into the radial flow. As a result, 
greater portion of the radial flow is mixed with the core fuel. Meanwhile, the decrease of 
momentum of radial flow results in larger portion of the exhaust gas from C1_PSR reactor feed 
into the outer flame. Therefore, to correct the overestimated value in the small EA zone, the split 
ratio of radial mixture is increased from 50:50 percent to 55:45 percent, for example 55 percent of 
the radial flow is mixed with core fuel in cross jet zone. Likewise, the split ratio of C1_gas mixer 
is changed from 50:50 percent to 55:45 percent. Figure 53 presents the corrected data by 
changing split ratios. NORxR emission drops significantly in low EA side if split ratio is modified 
according to inlet condition change. It indicates that split ratio substantially affects the 
prediction performance and the dynamic response should be taken into account while changing 
EA in the CRN model. 

Figure 53 Data Correction by Changing Split Ratios 

 

 

In summary, a CRN model was constructed according to the CFD results. A detailed and 
comprehensive reaction kinetic was incorporated to predict NORxR emission. The trends were 
reproduced that addition of propane and lower EA both yield higher NORxR emission level. The 
fixed split ratio cannot work universally for all tested cases. A correction strategy was 
demonstrated to deal with this limitation. It points out a need for future work by establishing a 
CRN model with dynamic reactor parameters.  
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CHAPTER 7:  
Conclusions 
The following conclusions are drawn from the work: 

• 28TFor the same operating condition (FS/EA) and heating load, natural gas blended with 
large amounts of propane produce more NOx than blends with less propane or none at 
all.28T To counteract this problem, blends with high amounts of propane must operate at 
higher EA conditions than the natural gas baseline case. For this reason fuel flexible 
technology becomes necessary to meet regulation and performance standards. 

• A methodology based on a combination of CFD and CRN is able to generally predict the 
emissions trends as a function of fuel composition. As a result, further affirmation that 
this methodology can successfully infer how fuel composition impacts emissions has 
been established. 

• A speed of sound sensor can accurately predict the composition, Wobbe Index, and C/H 
ratio of a binary mixture of natural gas and propane. The ultrasonic sensor was 
demonstrated to work very well in predicting the composition of a binary mixture; 
however, if a multi-constituent gas mixture was used (i.e. addition of other hydrocarbon 
fuels or inert gases such as carbon dioxide) additional sensors such as COR2R and thermal 
conductivity sensors would be required.  

• Flame luminosity data are linearly correlated to NORxR emissions for natural gas-propane 
blends burned at the same heating load and is fuel independent. A strong correlation (RP

2
P 

= 0.94) was found between these two parameters for blends of 100-0, 95-5, and 92.5-7.5 
NG PG. The data presented were only for a specific heating load.  Fuel flows with 
different heating loads were not extensively studied and thus no remarks can be made 
on trends for these scenarios. 

• Oscillations in flame luminosity can quantify the instability of a flame. A high frequency 
(>1000 Hz) fiber optic reading must be used to accurately measure this parameter in 
order to capture the fast dynamics of the flame. 

• For this Coen scaled Quantum Low NORxR burner, the optimal operating condition for 
low NORxR is at positive FS and high EA.  At these same points the flame is the most 
unstable. For positive fuel splits the air to fuel ratio at the main combustion zone (Core + 
Radial) is leaner than negative fuel split operation. This produces an overall cooler flame 
which produces less NORxR. 

• For static data (NF simulations) PDS and DHS algorithms perform relatively the same. 
The DHS algorithm appeared to have a slight advantage in average number of function 
computations, but proved to fail slightly more at finding an acceptable NORxR operating 
condition than the PDS algorithm. 
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• For static data with fuel transitions (WF simulations) the DHS algorithm found the 
optimal operating conditions much faster than the PDS algorithm. The PDS algorithm 
requires many function computations to be taken when using the hill-climbing 
subroutine. Therefore, even though the initial point for the PDS algorithm is near the 
new gas blend’s optimal condition it must still do a thorough search of the area to 
converge.   

• For noisy data (SNNF simulations) the PDS algorithm took on an order of 4 to 5 times 
longer to reach an optimal condition than the DHS algorithm, but had a lower NORxR 
failure rate. If it is desirable to lower the error in the convergence value then more data 
must be taken in order to be confident in the answer. An inverse relation between speed 
and accuracy is thus created. 

• For noisy data with fuel transitions (SNWF simulations) the DHS algorithm was the 
most efficient and fastest algorithm in finding an optimal condition. This result follows 
the same result from the WF simulation.  The DHS algorithm has the ability to quickly 
converge depending on the coefficient values (alpha, beta, and gamma). Once the 
simplex begins to contract it is very difficult for the simplex to expand back to original 
size or larger. Thus the DHS algorithm has a faster convergence time, but this also 
means the convergence can result in a non-optimal condition. 

• The DHS algorithm requires significant adjustments in initial simplex size and cycle 
coefficients.  The DHS algorithm can do well for one scenario but does not guarantee it 
will do well using the same gains for a drastically different scenario (ex: NF to SNNF 
simulations). This algorithm requires significant interaction with the system and 
engineer to fine tune the gains of the system. This is an unappealing situation since it 
would be desirable to have an algorithm that is able to adapt to any situation and 
require no further interaction with the designer once written. 

• The PDS algorithm requires minimal prior information and requires very little 
adjustment for drastically different scenarios. This algorithm is simple to follow and 
simple to implement. The PDS algorithm can take significantly more time to converge 
than the DHS algorithm, but ultimately it can find an acceptable optimal point with 
fewer errors.  
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GLOSSARY 

Terms Definition 

AFT Adiabatic Flame Temperature 

AVG Average 

BAAQMD Bay Area Air Quality Management District 

Btu British Thermal Unit 

CARB California Air Resources Board 

CEC California Energy Commission 

CFD Computational Fluid Dynamics 

Corr Corrected 

Core (C) Inner fuel line for quantum burner 

CRN Chemical Reactor Network 

DHS Downhill Simplex 

EA Excess Air 

Eff Efficiency 

EIA Energy Information Administration 

EPA Environmental Protection Agency 

FGR Flue Gas Recirculation 

FS Fuel Split 

HHV Higher heating value 

Hr Hour 

Hz Hertz 

lb. Pound 

LNG Liquid Natural Gas 

MBTu One Thousand British Thermal Units 

MFC Mass Flow Controller 

MMBTU One Million British Thermal Units 
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MW Molecular Weight 

NF No Fluctuations 

NG Natural Gas 

NGC Natural Gas Council 

NPT National Pipe Thread 

Outer (O) Outside fuel line in Quantum burner 

PDF Probability Density Function 

PDS Powell’s Direction Set 

PFR Plug Flow Reactor 

PG Propane gas 

PIER Public Interest Energy Research 

PkPk Peak to Peak – change between largest magnitude values in signal 

PPMvd parts per million by volume, dry basis 

PSI  Pounds Per Square Inch 

PSR Perfectly Stirred Reactor 

Radial (R) Middle fuel line of Quantum Burner 

RD&D Research, Development, and Demonstration 

RPS Renewable Portfolio Standards 

SCAQMD South Coast Area Air Quality Management District 

SCF Standard Cubic Feet 

SCFM Standard Cubic Feet Per Minute 

SG Specific Gravity 

SNNF Simulated Noise with No Fluctuations 

SNWF Simulated Noise with Fluctuations 

SOS Speed of Sound 

VYCOR High temperature glass produced by Corning Inc. 

WF With Fluctuations 
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AGA American Gas Association 

ANOVA Analysis of variance 
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Symbols and 
Subscripts 

Definition 

A Array that holds fifth order approximations set by recorded data 

C Speed of Sound 

C/H Carbon to Hydrogen  

CHP

* Methylidyne radical  

CHR4 Methane  

CR3RHR8 Propane 

CO Carbon Monoxide 

COR2 Carbon Dioxide 

H High Rank Point used in Downhill Simplex Method 

HCN Hydrogen Cyanide 

J Performance Index 

K Kelvin, measure of temperature 

L Low Rank Point in downhill simplex method 

M Middle Rank Point in downhill simplex method 

N Number of function computations taken from the initial point to the final 
optimal value 

P Vertices of “simplex” in downhill simplex method 

P Point on a line used in direction set algorithm 

𝑃𝑃�  Centroid used in downhill simplex method 

R Random number between 1 and zero set for direction set algorithm and 
used to define the direction 𝛼𝛼𝑜𝑜 (see above in glossary) 

NH Amine 

NHR3 Amonia 

NO Nitric Oxide 

NOR2 Nitrogen Dioxide 

NORX Nitrogen Oxides 
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NR2 Nitrogen 

NR2RO Nitrous Oxide 

O Oxygen 

OR2 Oxygen 

OH Hydroxyl 

OH* Hydroxyl Radical 

S’ Swirl Intensity 

T Temperature 

a Initially set variable for first point of objective function in direction set 
algorithm 

b Initially set variable for second point of objective function in direction set 
algorithm. Initially set to q (see definition for q further below) 

c Initially set variable for third point of objective function in direction set 
algorithm. Initial variable setting depends on value of first and second 
objective function.  

In 5P

th
P order approximation m-file used for NORXR data taken at 

corresponding fuel split (FS) and excess air (EA) testing scenarios 

𝐶𝐶𝑤𝑤 Specific Heat of Water 

abs Absolute value 

d Turning value in direction set algorithm which is used to predict the 
possible minimum of an objective function. Function of a,b, and c and 
corresponding objective functions of those variables.  

𝐷𝐷𝑔𝑔𝑎𝑎𝑔𝑔 Distance in Specific Gas 

𝐷𝐷𝑎𝑎𝑎𝑎𝑎𝑎 Distance in Air 

e Accuracy to which minimum is required 

exp Exponential function 

f(x) Objective function used in direction set algorithm 

F Cost Function used in downhill simplex method 

%F_global Percent Error Between Final Converged F and global F for given fuel case  

HR1 Reflection Point used in downhill simplex method 
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Hz Unit of frequency (1/s) 

m Upper bound to length of step along a line used in direction set 
algorithm 

�̇�𝑚𝑓𝑓  Mass flow rate of fuel 

�̇�𝑚𝑤𝑤 Mass flow rate of water 

%NORxR Fail Percentage of how many initial conditions did not converge to an 
acceptable NORxR Value 

q Order of magnitude of length of step along a line, used in direction set 
algorithm. 

RP

2 Coefficient of determination, number that indicates how well data fits a 
statistical model  

tol Value used to test for convergence of values between function value f(H) 
and f(L) set in downhill simplex algorithm  

w Weight  

X Position used in direction set algorithm 

𝛼𝛼𝑜𝑜 Initial direction set in direction set algorithm  

𝛼𝛼 Constant 

β Contraction Coefficient 

𝜂𝜂𝐵𝐵 Boiler Efficiency 

𝜂𝜂𝑐𝑐 Combustion efficiency 

𝜂𝜂𝐸𝐸𝐸𝐸 Efficiency Based on Excess Air 

𝑤𝑤𝐸𝐸𝑚𝑚𝑚𝑚𝐸𝐸 (𝛾𝛾) Expansion Coefficient used in downhill simplex algorithm to solve for 
the expansion point H 

𝜸𝜸 Specific Heat Ratio – used in speed of sound calculation 

𝜆𝜆 Placeholder for variable input into objective function used in direction set 
algorithm. Term used to minimize objective function f(x) used in 
direction set algorithm 

Φ Equivalence Ratio 

ξ Direction of a line in direction set algorithm 
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Appendix A: 
5th Order Approximation Code (Approx.m) 
%% 5th Order Approximation of NOx and LPkPk data  
clear 
clc 
clf 
%% Read in data 
% Name of the file to be analyzed 
datafile = 'Masterdata_clean.xlsx'; 
% Which sheet to be analyzed 
% 1 = 100-0 NG-PG 
% 2 = 95-5 NG-PG 
% 3 = 92.5-7.5 NG-PG 
sheet = 1; 
  
% Read the selected file with the data wanting to be processed 
[data,text] = xlsread(datafile,sheet); 
  
[M,N] = size(data); 
  
%% Column descriptions 
% 1: time 
% 2: O2% 
% 3: CO2% 
% 4: NOx ppm (uncorrected) 
% 5: CO ppm 
% 6: Fuel SCFM 
% 7: Air SCFM 
% 8: EA 
% 9: FS 
% 10: %CH4 
% 11: %C3H8 
% 12: Boiler Eff % (HHV) 
% 13: Volt SOS 
% 14: Temp SOS [F] 
% 15: Light AVG 
% 16: Light PkPk 
% 17: NOx corr ppm 
% 18: AFT [K] 
  
EA = data(:,8); 
FS = data(:,9); 
NOx = data(:,17); 
LPKPK = data(:,16); 
  
%% 5th order approximation using EA and FS as inputs 
a1 = EA; 
a2 = EA.^2; 
a3 = EA.^3; 
a4 = EA.^4; 
a5 = EA.^5; 
a6 = EA.^6; 
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a7 = EA.^7; 
b1 = FS; 
b2 = FS.^2; 
b3 = FS.^3; 
b4 = FS.^4; 
b5 = FS.^5; 
b6 = FS.^6; 
b7 = FS.^7; 
A = [a1 a2 a3 a4 a5 b1 b2 b3 b4 b5]; 
  
%% Pick either NOx or LPkPk to be approximated 
% c = NOx; 
c = LPKPK; 
  
%% Compute coefficients  
t = inv(A'*A)*A'*c 
  
%% Generate contour to compare results 
[X,Y] = meshgrid(10:2:30,5:-1:-5); 
J = 
X*t(1)+X.^2*t(2)+X.^3*t(3)+X.^4*t(4)+X.^5*t(5)+Y*t(6)+Y.^2*t(7)+Y.^3*t(8)+Y.^
4*t(9)+Y.^5*t(10); 
figure(1) 
contourf(X,Y,J) 
  
%% Results for different blends 
% 100-0 NG-PG: 
%  tN = [7.93177779324310;-0.902274401458070;0.0478340422873351;-
0.00121880800974382;1.18789269200147e-05;-
1.08307858944469;0.00586717278470460;0.0387732936657552;0.000568334217205021;
-0.000533436838726728;] 
%  tLP = [0.0335030593848174;-0.00145774320008373;-1.45022193282395e-
05;1.86621134258038e-06;-1.94633555466442e-
08;0.00399549142843718;0.000247510011601515;7.47970104533188e-05;-
1.04607771039703e-05;-8.58620451711344e-06;] 
  
% 95-5 NG-PG: 
%  tN = [8.99638668167019;-1.07165304769635;0.0602374672786870;-
0.00163945591069701;1.71184168714840e-05;-0.581138363858844;-
0.0168671651894008;0.0278380315148987;-4.76649020158523e-05;-
0.000873716021811252;] 
%  tLP = [0.0474525155915965;-0.00352220176077741;7.48316286564009e-
05;1.70944098404558e-06;-5.50874787867381e-08;-2.73294256721041e-
05;0.000386920505896207;0.000184514739444561;-1.04934913926238e-05;-
4.56485301318641e-06;] 
  
% 92.5-7.5 NG-PG: 
%  tN = [8.56181241038290;-0.942313331237765;0.0496271997527366;-
0.00128958942050401;1.30453196839340e-05;-0.754752362235309;-
0.0829871838649132;0.0358121616712557;0.00357693537044549;-
0.000644835135734785;] 
%  tLP = [0.0411155367440790;-0.00218145722351296;-1.48915488811781e-
05;4.21216011396967e-06;-8.09595673016770e-08;0.00383534944745931;-
0.000263690942895408;-0.000312059763775139;6.28501778128069e-
06;7.91214943459426e-06;] 
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Contour Generation Code (Fmap.m) 
function [J] = Fmap(NG,wmap) 
%Generates contours of cost function, NOx, and LPkPk for the three gases 
%Uses the tN and tLP values from Approx.m 
  
if NG == 100 
% 100-0 NG-PG 
 tN = [7.93177779324310;-0.902274401458070;0.0478340422873351;-
0.00121880800974382;1.18789269200147e-05;-
1.08307858944469;0.00586717278470460;0.0387732936657552;0.000568334217205021;
-0.000533436838726728;]; 
 tLP = [0.0335030593848174;-0.00145774320008373;-1.45022193282395e-
05;1.86621134258038e-06;-1.94633555466442e-
08;0.00399549142843718;0.000247510011601515;7.47970104533188e-05;-
1.04607771039703e-05;-8.58620451711344e-06;]; 
elseif NG == 95 
% 95-5 NG-PG 
 tN =[8.99638668167019;-1.07165304769635;0.0602374672786870;-
0.00163945591069701;1.71184168714840e-05;-0.581138363858844;-
0.0168671651894008;0.0278380315148987;-4.76649020158523e-05;-
0.000873716021811252;]; 
 tLP =[0.0474525155915965;-0.00352220176077741;7.48316286564009e-
05;1.70944098404558e-06;-5.50874787867381e-08;-2.73294256721041e-
05;0.000386920505896207;0.000184514739444561;-1.04934913926238e-05;-
4.56485301318641e-06;]; 
else 
% 92.5-7.5 NG-PG 
 tN = [8.56181241038290;-0.942313331237765;0.0496271997527366;-
0.00128958942050401;1.30453196839340e-05;-0.754752362235309;-
0.0829871838649132;0.0358121616712557;0.00357693537044549;-
0.000644835135734785;]; 
 tLP = [0.0411155367440790;-0.00218145722351296;-1.48915488811781e-
05;4.21216011396967e-06;-8.09595673016770e-08;0.00383534944745931;-
0.000263690942895408;-0.000312059763775139;6.28501778128069e-
06;7.91214943459426e-06;]; 
end 
  
%% Compute cost function 
[Z,Y] = meshgrid(10:2:30,5:-.25:-5); 
  
NOx = 
Z*tN(1)+Z.^2*tN(2)+Z.^3*tN(3)+Z.^4*tN(4)+Z.^5*tN(5)+Y*tN(6)+Y.^2*tN(7)+Y.^3*t
N(8)+Y.^4*tN(9)+Y.^5*tN(10); 
LPk = 
Z*tLP(1)+Z.^2*tLP(2)+Z.^3*tLP(3)+Z.^4*tLP(4)+Z.^5*tLP(5)+Y*tLP(6)+Y.^2*tLP(7)
+Y.^3*tLP(8)+Y.^4*tLP(9)+Y.^5*tLP(10); 
NOxlim = 20; 
LPklim = .3; 
w = 1/3; 
J = w*((NOx/NOxlim).^2+exp(NOx/NOxlim)/exp(1)-1)+w*(LPk/LPklim)+w*sqrt(Z/30); 
  
%% Generate desired contour 
if wmap == 1 %Cost function contour 
 figure1 = figure(1); 
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 % Create axes 
 axes1 = axes('Parent',figure1,'Layer','top','CLim',[.88 1.45]); 
 box(axes1,'on'); 
 hold(axes1,'all'); 
 % Create contour 
 contourf(Z,Y,J,'LineColor',[0 0 0],'Fill','on','Parent',axes1); 
 % Create title 
 title('EA vs Fuel Split Contour Plot: Cost Function'); 
 % Create xlabel 
 xlabel('EA'); 
 % Create ylabel 
 ylabel('Fuel Split'); 
 % Create colorbar 
 colorbar('peer',axes1); 
 % Create textbox 
 annotation(figure1,'textbox',[0.01029 0.0619 0.08257 0.1038],... 
    'String',{'More','Radial'},... 
    'FitBoxToText','off'); 
 % Create textbox 
 annotation(figure1,'textbox',[0.01886 0.869 0.07757 0.1024],... 
    'String',{'More','Outer'},... 
    'FitBoxToText','off'); 
 % Create textbox 
 annotation(figure1,'textbox',[0.9125 0.481 0.09107 
0.1024],'String',{'F'},... 
    'FitBoxToText','off',... 
    'LineStyle','none'); 
 hold on 
elseif wmap == 2 %NOx contour 
 hold off 
 figure2 = figure(2); 
 % Create axes 
 axes2 = axes('Parent',figure2,'Layer','top','CLim',[15 30]); 
 box(axes2,'on'); 
 hold(axes2,'all'); 
 % Create contour 
 contourf(Z,Y,NOx,'LineColor',[0 0 0],'Fill','on','Parent',axes2); 
 % Create title 
 title('EA vs Fuel Split Contour Plot: NOx corr. 3%O2'); 
 % Create xlabel 
 xlabel('EA'); 
 % Create ylabel 
 ylabel('Fuel Split'); 
 % Create colorbar 
 colorbar('peer',axes2); 
 % Create textbox 
 annotation(figure2,'textbox',[0.01029 0.0619 0.08257 0.1038],... 
    'String',{'More','Radial'},... 
    'FitBoxToText','off'); 
 % Create textbox 
 annotation(figure2,'textbox',[0.01886 0.869 0.07757 0.1024],... 
    'String',{'More','Outer'},... 
    'FitBoxToText','off'); 
 % Create textbox 
 annotation(figure2,'textbox',[0.9125 0.481 0.09107 
0.1024],'String',{'NOx','ppmvd 3%O2'},... 
    'FitBoxToText','off',... 
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    'LineStyle','none'); 
 hold on     
else %LPkPk contour 
 hold off 
 figure3 = figure(3); 
 % Create axes 
 axes3 = axes('Parent',figure3,'Layer','top','CLim',[.15 .4]); 
 box(axes3,'on'); 
 hold(axes3,'all'); 
 % Create contour 
 contourf(Z,Y,LPk,'LineColor',[0 0 0],'Fill','on','Parent',axes3); 
 % Create title 
 title('EA vs Fuel Split Contour Plot: LPkPk'); 
 % Create xlabel 
 xlabel('EA'); 
 % Create ylabel 
 ylabel('Fuel Split'); 
 % Create colorbar 
 colorbar('peer',axes3); 
 % Create textbox 
 annotation(figure3,'textbox',[0.01029 0.0619 0.08257 0.1038],... 
    'String',{'More','Radial'},... 
    'FitBoxToText','off'); 
 % Create textbox 
 annotation(figure3,'textbox',[0.01886 0.869 0.07757 0.1024],... 
    'String',{'More','Outer'},... 
    'FitBoxToText','off'); 
 % Create textbox 
 annotation(figure3,'textbox',[0.9125 0.481 0.09107 
0.1024],'String',{'LPkPk'},... 
    'FitBoxToText','off',... 
    'LineStyle','none'); 
 hold on     
end 
end 
  
 

Cost Function Code (objfcn.m) 
function [F, X] = objfcn(NG, P, SN) 
%Objective function 
%Each time this function runs it simulates a data point being taken 
NOxlim = 20; %NOx limit [ppm] 
LPlim = .3; %LPkPk limit 
muEA = 30; %EA upper bound 
mlEA = 10; %EA lower bound 
muFS = 5; %FS upper bound 
mlFS = -5; %FS lower bound 
  
  
%% Select gas blend to be analyzed 
% t's are 5th order approximations of the data gathered from experiments 
% See m-files "NOxApprox.m" and "LPkPkApprox.m" for further details on 
calculations 
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% How to use t's to approx NOx (tN) and LPKPK (tLP): 
% NOx = 
EA*tN(1)+EA^2*tN(2)+EA^3*tN(3)+EA^4*tN(4)+EA^5*tN(5)+FS*tN(6)+FS^2*tN(7)+FS^3
*tN(8)+FS^4*tN(9)+FS^5*tN(10) 
%  or in matrix notation: 
%   NOx = [EA EA^2 EA^3 EA^4 EA^5 FS FS^2 FS^3 FS^4 FS^5]*tN 
% LPKPK = 
EA*tLP(1)+EA^2*tLP(2)+EA^3*tLP(3)+EA^4*tLP(4)+EA^5*tLP(5)+FS*tLP(6)+FS^2*tLP(
7)+FS^3*tLP(8)+FS^4*tLP(9)+FS^5*tLP(10) 
%  or in matrix notation: 
%   LPKPK = [EA EA^2 EA^3 EA^4 EA^5 FS FS^2 FS^3 FS^4 FS^5]*tLP 
  
if NG == 100 
% 100-0 NG-PG 
 tN = [7.93177779324310;-0.902274401458070;0.0478340422873351;-
0.00121880800974382;1.18789269200147e-05;-
1.08307858944469;0.00586717278470460;0.0387732936657552;0.000568334217205021;
-0.000533436838726728;]; 
 tLP = [0.0335030593848174;-0.00145774320008373;-1.45022193282395e-
05;1.86621134258038e-06;-1.94633555466442e-
08;0.00399549142843718;0.000247510011601515;7.47970104533188e-05;-
1.04607771039703e-05;-8.58620451711344e-06;]; 
elseif NG == 95 
% 95-5 NG-PG 
 tN =[8.99638668167019;-1.07165304769635;0.0602374672786870;-
0.00163945591069701;1.71184168714840e-05;-0.581138363858844;-
0.0168671651894008;0.0278380315148987;-4.76649020158523e-05;-
0.000873716021811252;]; 
 tLP =[0.0474525155915965;-0.00352220176077741;7.48316286564009e-
05;1.70944098404558e-06;-5.50874787867381e-08;-2.73294256721041e-
05;0.000386920505896207;0.000184514739444561;-1.04934913926238e-05;-
4.56485301318641e-06;]; 
else 
% 92.5-7.5 NG-PG 
 tN = [8.56181241038290;-0.942313331237765;0.0496271997527366;-
0.00128958942050401;1.30453196839340e-05;-0.754752362235309;-
0.0829871838649132;0.0358121616712557;0.00357693537044549;-
0.000644835135734785;]; 
 tLP = [0.0411155367440790;-0.00218145722351296;-1.48915488811781e-
05;4.21216011396967e-06;-8.09595673016770e-08;0.00383534944745931;-
0.000263690942895408;-0.000312059763775139;6.28501778128069e-
06;7.91214943459426e-06;]; 
end 
  
%% Compute the objective function F 
Ap = [P(1,1) P(1,1)^2 P(1,1)^3 P(1,1)^4 P(1,1)^5 P(1,2) P(1,2)^2 P(1,2)^3 
P(1,2)^4 P(1,2)^5]; 
X = [Ap*tN Ap*tLP]; %NOx and LPKPK 
  
if SN == 1 
 % Add noise to system 
 XNOx = -0.2 + (0.2 - (-0.2))*rand(1); 
 XLPk = -0.02 + (0.02 - (-0.02))*rand(1); 
 X = X + [XNOx XLPk]; 
 EAsn = P(1,1)-0.2 + (0.2 - (-0.2))*rand(1);  
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end 
  
w = 1/3; 
F = w*((X(1,1)/NOxlim)^2+exp(X(1,1)/NOxlim)/exp(1)-1) + w*X(1,2)/LPlim + 
w*sqrt(P(1,1)/muEA); 
  
% If point is out of bounds make very large F value 
if P(1,1) > muEA || P(1,1) < mlEA || P(1,2) > muFS || P(1,2) < mlFS     
  F = F + 100; 
end 
  
end 
  
 
 

Hill-Climbing Code (hillclimb.m) 
function [lam n] = hillclimb(Pl,Epl,NG,SN) 
%% Search for minimum along search direction using hill-climbing technique 
%Setup 
muEA = 30; %EA upper bound 
mlEA = 10; %EA lower bound 
muFS = 5; %FS upper bound 
mlFS = -5; %FS lower bound 
ex = 0; 
lp = 1; 
n = 0; 
lam = 0; 
s = 1; 
trn = 0; 
bv = 0; 
  
P2 = Pl + lam*Epl; 
[F2(lp,1) X2] = objfcn(NG,P2,SN); 
n = n + 1; 
  
while ex == 0 
 lp = lp+1; 
 lam = lam + sign(s)*1;    
 P2 = Pl + lam*Epl; 
 %Compute objective function at point 
 [F2(lp,1) X2] = objfcn(NG,P2,SN); 
 if F2(lp,1) >= 50 
     n = n; 
 else 
     n = n + 1; 
 end 
  
 %Compare current F to previous F 
 if F2(lp,1) > F2(lp-1,1) 
   trn = trn+1; 
   s = -1*sign(s); 
 end        
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 %Convergence check   
  if trn >= 3 
    ex = 1; 
    if bv == 0 
    lam = lam + sign(s)*1;   
    end   
  end 
     
end 
  
end 
  
 
 

Powell’s Direction Set Algorithm for Single Point 
(PDS_single.m) 
%% Powell's Direction-Set Algorithm 
% The following algorithm is outlined in Chapter 2 
clear 
clc 
clf 
  
% Initial Gas 
NG = 100; %Gas blends: 100-0, 95-5, 92.5-7.5 NG-PG...use NG value to declare 
  
% Cost Function topology for given NG 
J = Fmap(NG,1); 
  
% Simulated noise on SN = 1 or off SN = 0 
SN = 0; 
  
%% Initialization  
% Initial Position:  
% P(run,EA/FS,iteration) = P(1,:,1) = [EAi FSi] 
% X(run,NOx/LPKPK,iteration) = X(1,:,1) = [NOxi LPKPKi]  
% Random points: 
% EAi = 10 + (30-10).*rand(1); 
% FSi = -5 + (5-(-5)).*rand(1); 
% Specific points: 
EAi = 14; 
FSi = -2; 
  
P(1,:,1) = [EAi FSi]; %Initial position 
[F(1,1,1) X(1,:,1)] = objfcn(NG,P(1,:,1),SN); %Initial F value 
  
% Initial Search Directions: Ep(run,sEA/sFS,iteration) = Ep(1,:,1) = [sEA 0], 
Ep(2,:,1) = [0 sFS] 
sEA = 1; %Step length in EA 
sFS = .5; %Step length in FS 
Ep(1,:,1) = [sEA 0]; %Direction-set 1 
Ep(2,:,1) = [0 sFS]; %Direction-set 2 
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win = 0; %Logical arguement for algorithm being completed or not 
nit = 0; %Number of data points taken 
it = 0; %Number of iterations of algorithm 
tol = 0.0005; %Convergence tolerance  
while win == 0 
it = it + 1; 
     
%% Search for minimum along search direction 
%First Search Direction 
[lam1 n] = hillclimb(P(1,:,it),Ep(1,:,it),NG,SN); 
P(2,:,it) = P(1,:,it)+lam1*Ep(1,:,it); 
[F(2,1,it) X(2,:,it)] = objfcn(NG,P(2,:,it),SN); 
nit = nit + n; 
L(1,1,it) = lam1; 
%Second Search Direction 
[lam2 n] = hillclimb(P(2,:,it),Ep(2,:,it),NG,SN); 
P(3,:,it) = P(2,:,it)+lam2*Ep(2,:,it); 
[F(3,1,it) X(3,:,it)] = objfcn(NG,P(3,:,it),SN); 
nit = nit + n; 
L(2,1,it) = lam2; 
%Third Search Direction 
Ep(3,:,it) = P(3,:,it)-P(1,:,it); 
if (Ep(3,:,it)) == 0 %No expansion has occurred  
  F(4,1,it) = F(3,1,it); 
  P(4,:,it) = P(3,:,it); 
  X(4,:,it) = X(3,:,it); 
else 
 Ep(3,:,it) = Ep(3,:,it)/sqrt(Ep(3,1,it)^2+Ep(3,2,it)^2); 
 [lam3 n] = hillclimb(P(3,:,it),Ep(3,:,it),NG,SN); 
 P(4,:,it) = P(3,:,it)+lam3*Ep(3,:,it); 
 [F(4,1,it) X(4,:,it)] = objfcn(NG,P(4,:,it),SN); 
 nit = nit + n; 
 L(3,1,it) = lam3; 
end 
%% Check Convergence 
cnv = abs(F(1,1,it)-F(3,1,it)); 
if cnv <= tol && win == 0 
    win = 1; 
    J1 = F(4,1,it); 
end 
%% Create new search directions 
if lam1 == 0 || lam2 == 0  
  Ep(1,:,it+1) = Ep(1,:,1); 
  Ep(2,:,it+1) = Ep(2,:,1);       
else 
  Ep(1,:,it+1) = Ep(2,:,it); 
  Ep(2,:,it+1) = Ep(3,:,it);    
end 
%% Create new initial position for next iteration 
if win == 0 
P(1,:,it+1) = P(4,:,it); 
F(1,1,it+1) = F(4,1,it); 
X(1,:,it+1) = X(1,:,it); 
end 
end 
  
% Plotting statement 
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if it == 1 
 plot(P(:,1,1),P(:,2,1),'m-x',P(4,1,1),P(4,2,1),'c-x')  
else 
 plot(P(:,1,1),P(:,2,1),'m-x',P(:,1,2),P(:,2,2),'c-x')    
end 
  
% Percent error in cost function from global value 
J2 = abs(min(min(J))-J1)/min(min(J))*100; 
  
%% Results from run 
Results(1,1) = nit; % number of data points taken 
Results(1,2) = P(1,1,1); % initial EA 
Results(1,3) = P(1,2,1); % initial FS 
Results(1,4) = P(4,1,it); % final EA 
Results(1,5) = P(4,2,it); % final FS 
Results(1,6) = J1; % final cost function value 
Results(1,7) = J2; % percent error from global cost function value 
Results(1,8) = X(4,1,it); % NOx at final position 
  
Results 
  
%% Plots of NOx and LPkPk with PDS route overlaid  
  
Jn = Fmap(NG,2); 
plot(P(:,1,1),P(:,2,1),'m-x',P(:,1,2),P(:,2,2),'c-x')    
  
Jn = Fmap(NG,3); 
plot(P(:,1,1),P(:,2,1),'m-x',P(:,1,2),P(:,2,2),'c-x')    
  
  
%% Finished 
display('done') 
  
  
  
  
 
 

Powell’s Direction-Set Algorithm for Full FS/EA Map 
(PDS_Full.m) 
%% Powell's Direction-Set Algorithm 
% The following algorithm is outlined in Chapter 2 
clear 
clc 
clf 
  
% Initial Gas 
NG = 100; %Gas blends: 100-0, 95-5, 92.5-7.5 NG-PG...use NG value to declare 
  
% Cost Function Topology for given NG 
J = Fmap(NG,1); 
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% Simulated noise on SN = 1 or off SN = 0 
SN = 0; 
  
rit = 0; 
for EAi = 10:1:30 
  for FSi = -5:.5:5 
  rit = rit+1; 
         
%% Initialization  
% Initial Position:  
% P(run,EA/FS,iteration) = P(1,:,1) = [EAi FSi] 
% X(run,NOx/LPKPK,iteration) = X(1,:,1) = [NOxi LPKPKi]   
  
P(1,:,1) = [EAi FSi]; %Initial position 
[F(1,1,1) X(1,:,1)] = objfcn(NG,P(1,:,1),SN); 
  
% Initial Search Directions: Ep(run,sEA/sFS,iteration) = Ep(1,:,1) = [sEA 0], 
Ep(2,:,1) = [0 sFS] 
sEA = 1; %Step length in EA 
sFS = .5; %Step length in FS 
Ep(1,:,1) = [sEA 0]; 
Ep(2,:,1) = [0 sFS]; 
  
win = 0; %Logical arguement for algorithm being completed or not 
nit = 0; %Number of data points taken 
it = 0; %Number of iterations of algorithm 
tol = 0.0005; %Convergence tolerance  
while win == 0 
it = it + 1; 
     
%% Search for minimum along search direction 
%First Search Direction 
[lam1 n] = hillclimb(P(1,:,it),Ep(1,:,it),NG,SN); 
P(2,:,it) = P(1,:,it)+lam1*Ep(1,:,it); 
[F(2,1,it) X(2,:,it)] = objfcn(NG,P(2,:,it),SN); 
nit = nit + n; 
L(1,1,it) = lam1; 
%Second Search Direction 
[lam2 n] = hillclimb(P(2,:,it),Ep(2,:,it),NG,SN); 
P(3,:,it) = P(2,:,it)+lam2*Ep(2,:,it); 
[F(3,1,it) X(3,:,it)] = objfcn(NG,P(3,:,it),SN); 
nit = nit + n; 
L(2,1,it) = lam2; 
%Third Search Direction 
Ep(3,:,it) = P(3,:,it)-P(1,:,it); 
if (Ep(3,:,it)) == 0 %No expansion has occurred  
  F(4,1,it) = F(3,1,it); 
  P(4,:,it) = P(3,:,it); 
  X(4,:,it) = X(3,:,it); 
else 
 Ep(3,:,it) = Ep(3,:,it)/sqrt(Ep(3,1,it)^2+Ep(3,2,it)^2); 
 [lam3 n] = hillclimb(P(3,:,it),Ep(3,:,it),NG,SN); 
 P(4,:,it) = P(3,:,it)+lam3*Ep(3,:,it); 
 [F(4,1,it) X(4,:,it)] = objfcn(NG,P(4,:,it),SN); 
 nit = nit + n; 
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 L(3,1,it) = lam3; 
end 
%% Check Convergence 
cnv = abs(F(1,1,it)-F(3,1,it)); 
if cnv <= tol && win == 0 
    win = 1; 
    J1 = F(4,1,it); 
end 
%% Create new search directions 
if lam1 == 0 || lam2 == 0  
  Ep(1,:,it+1) = Ep(1,:,1); 
  Ep(2,:,it+1) = Ep(2,:,1);       
else 
  Ep(1,:,it+1) = Ep(2,:,it); 
  Ep(2,:,it+1) = Ep(3,:,it);    
end 
%% Create new initial position for next iteration 
if win == 0 
P(1,:,it+1) = P(4,:,it); 
F(1,1,it+1) = F(4,1,it); 
X(1,:,it+1) = X(1,:,it); 
end 
end 
  
% Percent error in cost function from global value 
J2 = abs(min(min(J))-J1)/min(min(J))*100; 
  
% Results from run 
Results(rit,1) = nit; % number of data points taken 
Results(rit,2) = P(1,1,1); % initial EA 
Results(rit,3) = P(1,2,1); % initial FS 
Results(rit,4) = P(4,1,it); % final EA 
Results(rit,5) = P(4,2,it); % final FS 
Results(rit,6) = J1; % final cost function value 
Results(rit,7) = J2; % percent error from global cost function value 
Results(rit,8) = X(4,1,it); % NOx at final position 
  end 
end  
  
%% Finished 
display('done') 

Downhill Simplex Algorithm for Single Point 
(DHS_Single.m) 
%% Downhill Simplex Algorithm 
% The following algorithm is outlined in Chapter 2 
clear 
clc 
clf 
  
% Initial Gas 
NG = 100; %Gas blends: 100-0, 95-5, 92.5-7.5 NG-PG...use NG value to declare 
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% Cost Function topology for given NG 
J = Fmap(NG,1); 
  
% Simulated noise on SN = 1 or off SN = 0 
SN = 0; 
  
%% Gains 
alpha = 1.5; 
beta = .4; 
gamma = 1.65; 
  
%% Initialization  
muEA = 30; %EA upper bound 
mlEA = 10; %EA lower bound 
muFS = 5; %FS upper bound 
mlFS = -5; %FS lower bound 
  
% Initial Position:  
% P(vertex,EA/FS,iteration) = P(1,:,1) = [EAi FSi] 
% X(vertex,NOx/LPKPK,iteration) = X(1,:,1) = [NOxi LPKPKi] 
  
%Initial random point, right angle triangle generation for two other points 
% EAi = 10 + (30-10).*rand(1); 
% FSi = -5 + (5-(-5)).*rand(1); 
EAi = 14; 
FSi = -2; 
P(1,:,1) = [EAi FSi]; %Initial position 1 
  
st = 4; %EA direction 
P(2,:,1) = [P(1,1,1)+st P(1,2,1)]; %Initial position 2 
if P(2,1,1) > muEA || P(2,1,1) < mlEA || P(2,2,1) > muFS || P(2,2,1) < mlFS 
  P(2,:,1) = [P(1,1,1)-st P(1,2,1)];  
end 
  
st = 2.5; %FS direction 
P(3,:,1) = [P(1,1,1) P(1,2,1)+st]; %Initial position 2 
if P(3,1,1) > muEA || P(3,1,1) < mlEA || P(3,2,1) > muFS || P(3,2,1) < mlFS 
  P(3,:,1) = [P(1,1,1) P(1,2,1)-st];  
end 
  
win = 0; %Logical arguement for algorithm being completed or not 
nit = 0; %Number of data points taken 
it = 0; %Number of iterations of algorithm 
tol = 0.0005; %Convergence tolerance  
while win == 0  
it = it + 1; 
%Block 1: Find Centroid, compute F's, rank point H,M,L     
Pc(it,:) = (P(1,:,it)+P(2,:,it)+P(3,:,it))/3; %Centroid position 
F(1,1,it) = objfcn(NG,P(1,:,it),SN); %F vertex 1 
F(2,1,it) = objfcn(NG,P(2,:,it),SN); %F vertex 2 
F(3,1,it) = objfcn(NG,P(3,:,it),SN); %F vertex 3 
if it == 1     
 nit = nit + 3; %Further iterations have already computed vertices' F's  
end 
[Fh, hi] = max(F(:,1,it)); 
H = P(hi,:,it); 
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[Fl, li] = min(F(:,1,it)); 
L = P(li,:,it); 
if (hi == 1 && li == 2) || (hi == 2 && li == 1) 
 M = P(3,:,it); 
 Fm = F(3,:,it); 
elseif (hi == 1 && li == 3) || (hi == 3 && li == 1) 
 M = P(2,:,it); 
 Fm = F(2,:,it);  
else 
 M = P(1,:,it); 
 Fm = F(1,:,it); 
end 
  
%Block 2: Reflection 
H1 = (1+alpha)*Pc(it,:) - alpha*H; 
Fh1 = objfcn(NG,H1,SN); %F reflection vertex 
nit = nit + 1; 
  
if Fh1 < Fl 
 %Block 3: Expansion    
  H2 = gamma*H1 + (1-gamma)*Pc(it,:); 
  Fh2 = objfcn(NG,H2,SN); %F expansion vertex 
  nit = nit + 1;  
  if Fh2 < Fh1 
   H = H2;        
  else 
   H = H1;          
  end 
       
else 
 if Fh1 < Fm 
   H = H1;      
 else  
 %Block 4: Single Contraction  
  H3 = beta*H + (1-beta)*Pc(it,:); 
  Fh3 = objfcn(NG,H3,SN); %F contraction vertex 
  nit = nit + 1;   
   
  if Fh3 < Fh 
   H = H3;      
  else 
  %Block 5: Double Contraction 
   M = (M+L)/2; 
   Fm = objfcn(NG,M,SN); %F mid contraction vertex 
   nit = nit + 1;  
   H = H3; 
  end 
   
 end       
end 
  
%Block 6: Convergence check 
Fh = objfcn(NG,H,SN);  
cnv = abs(Fh - Fl); 
if cnv <= tol 
 win = 1; 
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 [J1 xi] = min([Fh Fm Fl]); 
 Pc(it+1,:) = (H+M+L)/3; 
 if xi == 1 
    pr = H; 
 elseif xi == 2 
    pr = M; 
 else 
    pr = L; 
 end 
  
 P(1,:,it+1) = H; 
 P(2,:,it+1) = M; 
 P(3,:,it+1) = L; 
 Pc(it+1,:) = (P(1,:,it+1)+P(2,:,it+1)+P(3,:,it+1))/3; %Centroid position 
  
else 
 P(1,:,it+1) = H; 
 P(2,:,it+1) = M; 
 P(3,:,it+1) = L;    
end 
end 
  
% Plotting statement 
% Plots initial simplex and then only shows centroid movement 
plot(Pc(:,1),Pc(:,2),'m-x') 
plot(P(1,1,1),P(1,2,1),'k-x',P(2,1,1),P(2,2,1),'k-x',P(3,1,1),P(3,2,1),'k-x') 
  
% Percent error in cost function from global value 
J2 = abs(min(min(J))-J1)/min(min(J))*100; 
% Calculates the NOx value at final position 
[J3 X] = objfcn(NG,pr,SN); 
  
%% Results from run 
Results(1,1) = nit; % number of data points taken 
Results(1,2) = P(1,1,1); % initial EA 
Results(1,3) = P(1,2,1); % initial FS 
Results(1,4) = pr(1); % final EA 
Results(1,5) = pr(2); % final FS 
Results(1,6) = J1; % final cost function value 
Results(1,7) = J2; % percent error from global cost function value 
Results(1,8) = X(1,1); % NOx at final position 
  
Results 
  
%% Plots of NOx and LPkPk 
Jn = Fmap(NG,2); 
plot(Pc(:,1),Pc(:,2),'m-x') 
plot(P(1,1,1),P(1,2,1),'k-x',P(2,1,1),P(2,2,1),'k-x',P(3,1,1),P(3,2,1),'k-x')   
  
Jn = Fmap(NG,3); 
plot(Pc(:,1),Pc(:,2),'m-x') 
plot(P(1,1,1),P(1,2,1),'k-x',P(2,1,1),P(2,2,1),'k-x',P(3,1,1),P(3,2,1),'k-x')  
  
  
%% Finished 
display('done') 
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Downhill Simplex Algorithm for Full FS/EA Map 
(DHS_Full.m) 
%% Downhill Simplex Algorithm 
% The following algorithm is outlined in Chapter 2 
clear 
clc 
clf 
  
% Initial Gas 
NG = 100; %Gas blends: 100-0, 95-5, 92.5-7.5 NG-PG...use NG value to declare 
  
% Cost Function topology for given NG 
J = Fmap(NG,1); 
  
% Simulated noise on SN = 1 or off SN = 0 
SN = 0; 
  
%% Gains 
alpha = 1.5; 
beta = .4; 
gamma = 1.65; 
  
rit = 0; 
for EAi = 10:1:30 
  for FSi = -5:.5:5 
  rit = rit+1; 
%% Initialization  
muEA = 30; %EA upper bound 
mlEA = 10; %EA lower bound 
muFS = 5; %FS upper bound 
mlFS = -5; %FS lower bound 
  
% Initial Position:  
% P(vertex,EA/FS,iteration) = P(1,:,1) = [EAi FSi] 
% X(vertex,NOx/LPKPK,iteration) = X(1,:,1) = [NOxi LPKPKi] 
  
%Initial random point, right angle triangle generation for two other points 
P(1,:,1) = [EAi FSi]; %Initial position 1 
  
st = 4; %EA direction 
P(2,:,1) = [P(1,1,1)+st P(1,2,1)]; %Initial position 2 
if P(2,1,1) > muEA || P(2,1,1) < mlEA || P(2,2,1) > muFS || P(2,2,1) < mlFS 
  P(2,:,1) = [P(1,1,1)-st P(1,2,1)];  
end 
  
st = 2.5; %FS direction 
P(3,:,1) = [P(1,1,1) P(1,2,1)+st]; %Initial position 2 
if P(3,1,1) > muEA || P(3,1,1) < mlEA || P(3,2,1) > muFS || P(3,2,1) < mlFS 
  P(3,:,1) = [P(1,1,1) P(1,2,1)-st];  
end 
  
win = 0; %Logical arguement for algorithm being completed or not 
nit = 0; %Number of data points taken 
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it = 0; %Number of iterations of algorithm 
tol = 0.0005; %Convergence tolerance  
while win == 0  
it = it + 1; 
%Block 1: Find Centroid, compute F's, rank point H,M,L     
Pc(it,:) = (P(1,:,it)+P(2,:,it)+P(3,:,it))/3; %Centroid position 
F(1,1,it) = objfcn(NG,P(1,:,it),SN); %F vertex 1 
F(2,1,it) = objfcn(NG,P(2,:,it),SN); %F vertex 2 
F(3,1,it) = objfcn(NG,P(3,:,it),SN); %F vertex 3 
if it == 1     
 nit = nit + 3; %Further iterations have already computed vertices' F's  
end 
[Fh, hi] = max(F(:,1,it)); 
H = P(hi,:,it); 
[Fl, li] = min(F(:,1,it)); 
L = P(li,:,it); 
if (hi == 1 && li == 2) || (hi == 2 && li == 1) 
 M = P(3,:,it); 
 Fm = F(3,:,it); 
elseif (hi == 1 && li == 3) || (hi == 3 && li == 1) 
 M = P(2,:,it); 
 Fm = F(2,:,it);  
else 
 M = P(1,:,it); 
 Fm = F(1,:,it); 
end 
  
%Block 2: Reflection 
H1 = (1+alpha)*Pc(it,:) - alpha*H; 
Fh1 = objfcn(NG,H1,SN); %F reflection vertex 
nit = nit + 1; 
  
if Fh1 < Fl 
 %Block 3: Expansion    
  H2 = gamma*H1 + (1-gamma)*Pc(it,:); 
  Fh2 = objfcn(NG,H2,SN); %F expansion vertex 
  nit = nit + 1;  
  if Fh2 < Fh1 
   H = H2;        
  else 
   H = H1;          
  end 
       
else 
 if Fh1 < Fm 
   H = H1;      
 else  
 %Block 4: Single Contraction  
  H3 = beta*H + (1-beta)*Pc(it,:); 
  Fh3 = objfcn(NG,H3,SN); %F contraction vertex 
  nit = nit + 1;   
   
  if Fh3 < Fh 
   H = H3;      
  else 
  %Block 5: Double Contraction 
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   M = (M+L)/2; 
   Fm = objfcn(NG,M,SN); %F mid contraction vertex 
   nit = nit + 1;  
   H = H3; 
  end 
   
 end       
end 
  
%Block 6: Convergence check 
Fh = objfcn(NG,H,SN);  
cnv = abs(Fh - Fl); 
if cnv <= tol 
 win = 1; 
 [J1 xi] = min([Fh Fm Fl]); 
 Pc(it+1,:) = (H+M+L)/3; 
 if xi == 1 
    pr = H; 
 elseif xi == 2 
    pr = M; 
 else 
    pr = L; 
 end 
  
 P(1,:,it+1) = H; 
 P(2,:,it+1) = M; 
 P(3,:,it+1) = L; 
 Pc(it+1,:) = (P(1,:,it+1)+P(2,:,it+1)+P(3,:,it+1))/3; %Centroid position 
  
else 
 P(1,:,it+1) = H; 
 P(2,:,it+1) = M; 
 P(3,:,it+1) = L;    
end 
end 
  
% Percent error in cost function from global value 
J2 = abs(min(min(J))-J1)/min(min(J))*100; 
% Calculates the NOx value at final position 
[J3 X] = objfcn(NG,pr,SN); 
  
% Results from run 
Results(rit,1) = nit; % number of data points taken 
Results(rit,2) = P(1,1,1); % initial EA 
Results(rit,3) = P(1,2,1); % initial FS 
Results(rit,4) = pr(1); % final EA 
Results(rit,5) = pr(2); % final FS 
Results(rit,6) = J1; % final cost function value 
Results(rit,7) = J2; % percent error from global cost function value 
Results(rit,8) = X(1,1); % NOx at final position 
  
  end 
end 
  
  
%% Finished 
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display('done') 
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