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PREFACE 

The California Energy Commission Energy Research and Development Division supports 
public interest energy research and development that will help improve the quality of life in 
California by bringing environmentally safe, affordable, and reliable energy services and 
products to the marketplace. 

The Energy Research and Development Division conducts public interest research, 
development, and demonstration (RD&D) projects to benefit California. 

The Energy Research and Development Division strives to conduct the most promising public 
interest energy research by partnering with RD&D entities, including individuals, businesses, 
utilities, and public or private research institutions. 

Energy Research and Development Division funding efforts are focused on the following 
RD&D program areas: 

• Buildings End-Use Energy Efficiency 

• Energy Innovations Small Grants 

• Energy-Related Environmental Research 

• Energy Systems Integration 

• Environmentally Preferred Advanced Generation 

• Industrial/Agricultural/Water End-Use Energy Efficiency 

• Renewable Energy Technologies 

• Transportation 

 

Plug-in Electric Vehicle Battery Recycling Scale-up Strategies for Califirnia (2015-2050): Logistics, Life-
Cycle Environmental Implications, and SecondLlife Applications is the final report for the Strategies 
for Sustainable and Cost-effective Scale-up of Second-life, Recycling, and Disposal Pathways for 
PEV Battery Packs project (contract number PIR-12-015), conducted by Lawrence Berkeley 
National Laboratory. The information from this project contributes to Energy Research and 
Development Division’s Transportation Program. 

When the source of a table, figure, or photo is not otherwise credited, it is the work of the 
author of the report. 

For more information about the Energy Research and Development Division, please visit the 
Energy Commission’s website at www.energy.ca.gov/research/ or contact the Energy 
Commission at 916-327-1551. 
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ABSTRACT 

Plug-in electric vehicle sales, while currently a small fraction of the total light-duty vehicle 
market, are increasing rapidly because of improving performance, decreasing costs, and 
incentives aimed at reducing greenhouse gases and reliance on petroleum. California leads the 
United States, accounting for almost one-third of national PEV sales. However, as these vehicles 
age, the number of used battery packs requiring end-of-life management will increase 
dramatically. 

This report discusses the challenges and tradeoffs associated with end-of-life management 
strategies for plug-in electric vehicle batteries and the pace at which new collection, second-life, 
and recycling infrastructure must be scaled up in California to handle future numbers of retired 
battery packs. Researchers charted a path for scaling up plug-in electric vehicle battery second-
life energy storage and recycling and quantified the economic and environmental tradeoffs of 
competing strategies by developing scenarios, using logistics and scale-up modeling, and 
assessing the recycling processes and second-life strategies of PEV batteries. 

Results indicate California is likely to reach a sufficient battery pack disposal rate to justify a 
pilot-scale facility running at full capacity by approximately 2030. However, this rate may not 
justify a commercial-scale facility until after 2050. If batteries are routed to second life 
applications, they could play a modest role in achieving the state’s stationary energy goals and, 
if paired with renewables, would reduce greenhouse gas emissions significantly by 2050. The 
tradeoffs between battery recycling processes are highly relevant to scale-up: while 
hydrometallurgy recovers a greater fraction of battery materials, pyrometallurgy may prove to 
be preferable in the face of small battery volumes and uncertain technologies because of its 
ability to accept a wider range of battery types. 

This analysis will help state decision-makers develop long-term infrastructure for managing 
used batteries. 
 

 

Keywords: batteries, recycling, second-life, pyrometallurgy, hydrometallurgy, plug-in electric 
vehicles, energy, greenhouse gas emissions, water, human health, cost, transportation, logistics, 
scale-up, life-cycle assessment, renewables, electricity, energy storage 
 

 

Please use the following citation for this report: 

Hendrickson, T. P.; R. Sathre; O. Kavvada; C. D. Scown. Lawrence Berkeley National 
Laboratory. 2015. Plug-In Electric Vehicle Battery Recycling Scale-Up Strategies for 
California (2015-2050): Logistics, Life-Cycle Environmental Implications, and Second-
Life Potential. California Energy Commission. Publication number: CEC-500-2016-051. 



iv 

TABLE OF CONTENTS 

Acknowledgements ................................................................................................................................... i 

PREFACE ................................................................................................................................................... ii 

ABSTRACT .............................................................................................................................................. iii 

TABLE OF CONTENTS ......................................................................................................................... iv 

LIST OF FIGURES .................................................................................................................................. vi 

LIST OF TABLES ................................................................................................................................... vii 

EXECUTIVE SUMMARY ........................................................................................................................ 1 

Introduction ........................................................................................................................................ 1 

Project Purpose and Research .......................................................................................................... 1 

Project Results ..................................................................................................................................... 2 

Project Benefits ................................................................................................................................... 3 

CHAPTER 1:  Introduction ...................................................................................................................... 5 

1.1 Problem Significance ................................................................................................................. 5 

1.2 Project Overview ........................................................................................................................ 5 

1.3 Literature Review ....................................................................................................................... 6 

1.3.1 PEV Market Adoption and Battery Disposal ................................................................. 6 

1.3.2 Infrastructure Scale-up and Logistics .............................................................................. 7 

1.3.3 PEV Battery Recycling ....................................................................................................... 7 

1.3.4 PEV Battery Second Life .................................................................................................... 9 

CHAPTER 2:  PEV Adoption and Battery Disposal ......................................................................... 11 

2.1 Background and Objectives .................................................................................................... 11 

2.2 Methods ..................................................................................................................................... 11 

2.2.1 Adoption and Disposal Curves ...................................................................................... 11 

2.2.2 County-level Projections ................................................................................................. 13 

2.2.3 Vehicle Range and Battery Technology Projections .................................................... 14 

2.3 Results and Discussion ............................................................................................................ 15 

CHAPTER 3:  Infrastructure Scale-up and Logistics ........................................................................ 19 



v 

3.1 Background and Objectives .................................................................................................... 19 

3.2 Methods ..................................................................................................................................... 20 

3.2.1 Recycling Logistics ........................................................................................................... 21 

3.2.2 Second Life Logistics ....................................................................................................... 21 

3.2.3 Human Health Impacts ................................................................................................... 22 

3.3 Results and Discussion ............................................................................................................ 22 

3.3.1 Optimal Infrastructure Scale-up .................................................................................... 22 

3.3.2 Cost and Emissions Calculations for Direct Recycling ............................................... 25 

3.3.3 Human Health Impact Results ....................................................................................... 27 

3.4 Sensitivity Analysis .................................................................................................................. 28 

CHAPTER 4:  PEV Battery Recycling Scenarios and Life-cycle Assessment .............................. 31 

4.1 Background and Objectives .................................................................................................... 31 

4.2 Methods ..................................................................................................................................... 31 

4.2.1 Battery Production Life-Cycle Assessment .................................................................. 31 

4.2.2 Battery Recycling Life-cycle Assessment ...................................................................... 32 

4.3 Results and Discussion .................................................................................................................. 33 

CHAPTER 5:  Assessment of PEV Battery Second Life Potential .................................................. 40 

5.1 Background and Objectives .................................................................................................... 40 

5.2 Methods ..................................................................................................................................... 40 

5.2.1 Modeling Framework ...................................................................................................... 40 

5.2.2 Battery Degradation ......................................................................................................... 43 

5.2.3 Battery Second Life Use ................................................................................................... 47 

5.2.4 Battery Logistics ............................................................................................................... 48 

5.3 Results and Discussion ............................................................................................................ 49 

GLOSSARY .............................................................................................................................................. 57 

REFERENCES .......................................................................................................................................... 59 

APPENDIX A: PEV Adoption Assumptions .................................................................................... A-1 

APPENDIX B: Battery Production Data Sources ............................................................................. B-1 



vi 

APPENDIX C: Battery Recycling Data Sources ............................................................................... C-1 

 

LIST OF FIGURES 

Figure 1: Low, Mid, and High PEV Market Adoption Curves .......................................................... 12 

Figure 2: Battery Disposal Curves for PEVs - Underperforming, Default Scenario, and 
Overperforming ....................................................................................................................................... 13 

Figure 3: Energy Density Projections for PEV Batteries ..................................................................... 15 

Figure 4: Mass of Lithium-ion Batteries Projected to be Available for Recycling/Disposal by Year 
in California .............................................................................................................................................. 16 

Figure 5: Quantity of PEV Batteries Projected to Reach Their End-of-Life Annually by 
Remaining Energy MWh Storage Capacity (default scenario) .......................................................... 17 

Figure 6: Distribution of PEV Batteries Disposed Annually in California (number of batteries) 18 

Figure 7: Candidate and Chosen Locations for In-state Direct Recycling Using Truck 
Transportation .......................................................................................................................................... 23 

Figure 8: GIS-Results for Three Different Second-life Application Scenarios: (a) Decentralized 
Solar, (b) Decentralized Wind, (c) Centralized Renewable ................................................................ 24 

Figure 9: Transportation Costs and GHG Emission Metrics for In-state and Out-of-state 
Scenarios .................................................................................................................................................... 26 

Figure 10: Spatial Distribution of Human Health Impacts of In-state Recycling for Trucking 
Transportation .......................................................................................................................................... 28 

Figure 11: Sensitivity Analysis of Relation between the Number of Dismantling Facilities and 
Total Ton-kilometers Traveled (Red Curve), and between Capacity of Recycling Facility and 
Marginal Cost (Blue Curve), for In-State Recycling Using Truck Transportation .......................... 29 

Figure 12: Sensitivity Analysis of the Relation between the Capital Cost of Infrastructure and 
Number of Dismantling Facilities for In-state Recycling Using Truck Transportation. ................ 30 

Figure 13: Resource Use and Environmental Emissions of Battery Production and Recycling 
(Using Hydrometallurgy and Pyrometallurgy)................................................................................... 34 

Figure 14: Results of Energy Consumption and Water Use Metrics for a Pyrometallurgically 
Recycled LMO Battery. ............................................................................................................................ 36 

Figure 15: Results of Air Pollutant Emissions for a Pyrometallurgically Recycled LMO Battery 37 

Figure 16: Results of Energy Consumption and Water Use Metrics for Pyrometallurgically 
Recycled LFP Battery ............................................................................................................................... 38 



vii 

Figure 17: Results of Energy Consumption and Water Use Metrics for Pyrometallurgically 
Recycled NMC Battery ............................................................................................................................ 39 

Figure 18: Analytical Framework Integrating Battery System Modeling with Broader Energy 
System Modeling ...................................................................................................................................... 41 

Figure 19: Modeled Range of Battery Degradation Profiles .............................................................. 44 

Figure 20: Relation between First-life and Second-life of Batteries................................................... 45 

Figure 21: Battery Degradation Profiles under Base-case Conditions (Top); Low and High 
Values of Phase 1 Degradation Rate, Phase Inflection Point, and Phase 2 Degradation Rate ...... 46 

Figure 22: Projected Supply of Disposed Vehicle Batteries in California ........................................ 49 

Figure 23: Energy Balance of Modeled Second-life Battery Use in California ................................ 50 

Figure 24: GHG Balance of Modeled Second-life Battery Use in California .................................... 52 

Figure 25: Change in Three Metrics Due to Variation of Individual Parameters between “Low” 
and “High” Values ................................................................................................................................... 53 

Figure 26: Change in Second-life ESOI Metrics Due to Variation of Individual Parameters 
between “Low” and “High” Values ...................................................................................................... 54 

 

LIST OF TABLES 

Table 1: Related Literature on LCA of LIB ............................................................................................. 8 

Table 2: Energy and Emission Intensities of Transporting Batteries in Three Second-life 
Applications Logistics Scenarios............................................................................................................ 25 

Table 3: Comparison of Energy Results with Existing Literature ..................................................... 35 

Table 4: Life-cycle GHG Emissions from Four Electricity Sources ................................................... 47 

Table 5: Base-case Analysis of Second-life Battery Use ...................................................................... 51 

Table 1: County-level Data ................................................................................................................... A-1 

Table 1: Material Inputs for Lib Chemistries...................................................................................... B-1 

Table 1: Pyrometallurgy Recycling Resource Inputs, Emission Factors, and Data Sources ........ C-1 

Table 2: Pyrometallurgy Recycling Resource Inputs, Emission Factors, and Data Sources ........ C-4 

 

 

  



viii 

 

  



1 

EXECUTIVE SUMMARY 

Introduction 
Plug-in electric vehicle (PEV) sales, while a small fraction of the light-duty vehicle market, are 
increasing rapidly because of improving performance, decreasing costs, and incentives aimed at 
reducing greenhouse gases (GHG) and petroleum use. Currently, batteries used in PEVs have a 
lifetime of 8-10 years; they still have significant capacity left for less demanding, second-life 
stationary energy storage applications after their capacity fades below acceptable levels. This 
second-life battery can be used in California’s electricity grid for demand response and 
frequency regulation to help stabilize the network, or to support residential customers using 
off-grid solar arrays. 

Recycling processes can reduce waste and recover valuable inputs once batteries are no longer 
suitable for these applications. 

Project Purpose and Research 
This project charted a path for scaling up PEV battery second-life energy storage and recycling 
methods, while quantifying the economic and environmental tradeoffs of competing strategies. 
Researchers developed and evaluated competing strategies for managing PEV batteries once 
they are no longer suitable for vehicle use. The research focused on four main components: 

• Developing scenarios for PEV market adoption and battery disposal  

• Infrastructure scale-up and logistics modeling 

• Assessing PEV battery recycling processes 

• Assessing PEV battery second-life strategies 

Researchers developed PEV market adoption and battery disposal scenarios to estimate battery 
disposal rates by county through 2050 based on expected PEV market adoption rates and 
battery lifetimes. These scenarios provide reasonable limits for used battery availability for 
second-life applications and material recovery. 

Infrastructure scale-up and logistics modeling used county-level data on used battery 
availability to determine collection, second-life, dismantling, and recycling locations and facility 
sizes. The analysis considered rail and road networks, comparing centralized and decentralized 
approaches to handling post-consumer batteries. Transportation distances and facility sizes are 
important factors to overall costs, energy inputs, and emissions of infrastructure scale-up. 

The recycling process assessment also compared the two main battery recycling processes and 
includes collection, transportation, recycling inputs and co-products, and capital equipment. 
Both recycling processes are also compared with the no-recycling strategy for energy use, water 
use, GHG emissions, and criteria air pollutant emissions. The analysis also highlights the 
tradeoff between the range of battery types that can be processed in a single facility and the rate 
of material recovery. 
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Researchers also explored the net energy and environmental costs and benefits of using PEV 
batteries for second-life applications before routing them to recycling facilities. The second-life 
assessment models evaluated energy losses during charging and discharging, energy demand 
for cooling, energy required to transport batteries to second-life locations, expected energy 
capacity fade, and the potential net impact of additional energy storage on California’s grid. The 
study identified the role post-consumer PEV batteries can have in achieving California’s energy 
storage and GHG mitigation goals. 

Project Results 
PEV Adoption and Battery Disposal 

• The number of PEV battery packs reaching their end-of-life is projected to show 
exponential growth through 2050. 

• California is likely to reach a battery pack disposal rate sufficient to justify a pilot-scale 
facility running at full capacity by approximately 2030, but may not reach a level to 
justify a commercial-scale facility until after 2050. 

• The most effective strategy for scaling up recycling may be to build a centralized facility 
that draws materials from multiple western states, including Oregon and Washington. 

Infrastructure Scale-up and Logistics 
• Car dealerships are probable candidates for collection locations for used PEV battery 

packs and will benefit from the ability to conduct basic battery health testing within 
their maintenance centers. This allows them to correctly diagnose problems and 
determine whether a battery pack should be sent out for refurbishment or reuse in 
second-life applications. 

• The optimal number of dismantling facilities is two when only PEV batteries are 
recycled in-state. At these facilities, 50 percent of the battery pack’s mass can be diverted 
to traditional recycling facilities. 

• Although out-of-state recycling scenarios, including Arizona and Nevada, increase total 
transportation distances by a factor of three, the ability to use rail networks results in 
lower costs and GHG emissions relative to in-state scenarios that rely solely on trucks. 

• If batteries are first routed to second-life applications where they are paired with solar 
and wind farms, the optimal recycling facility location would be nearly equidistant from 
San Francisco and Los Angeles. If batteries go straight from dealership collection points 
to recycling, the optimal location is closer to Los Angeles. 

PEV Battery Recycling Scenarios and Life-cycle Assessment 
• A comparison of hydrometallurgical and pyrometallurgical recycling on the basis of net 

energy use, criteria air pollutant emissions, GHG emissions, and water use shows that 
hydrometallurgical is more favorable in most categories, with the exception of water 
consumption and withdrawals. 
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• The tradeoffs between recycling processes are highly relevant to scale-up: While 
hydrometallurgy recovers a greater fraction of battery materials, pyrometallurgy may 
prove to be preferable in the face of small battery volumes and uncertain technologies 
because of its ability to accept a wide range of chemistries, including both lithium-ion 
(Li-Ion) and nickel-metal hydride (NiMH) batteries. 

• Human health damages caused by emissions from truck transportation must also be 
considered. Truck transportation was responsible for the majority of criteria air 
pollutant-related damages associated with battery recycling: 99 percent of particulate 
matter (PM) damages; 54 percent of sulfur dioxide (SO2) damages; and 62 percent of 
total volatile organic compound (VOC) damages. 

Assessment of PEV Battery Second-life Potential 
• The contribution of second-life batteries to meet energy storage and GHG mitigation 

goals is sensitive to the rate at which their capacity degrades. At this time, the late-stage 
degradation pattern of batteries is not yet quantified. 

• Under base-case or initial modeling conditions, second-life use of retired PEV batteries 
in California has the potential to deliver 15 terawatt-hours per year (TWh/year) in 2050. 
This is about 5 percent of the 310 TWh/year total anticipated electricity production in 
2050, representing a modest role in California’s future energy system. 

• The battery second-life analysis is projected to support and enable part of the increased 
production of intermittent renewable power by storing electricity produced during peak 
generation periods and later delivering it during peak demand periods. Other higher-
value storage applications may be possible and should be considered in future work. 

• Second-life battery use in California has the potential to reduce GHG emissions by about 
7 metric tons of carbon dioxide emissions per year (MtCO2e/year) in 2050, by displacing 
natural gas-fired electricity. 

Project Benefits 
This project provided new insight into the number of PEV battery packs that may reach their 
end-of-life through 2050, the location of these batteries, and a set of potential strategies for 
deriving additional value through second-life applications and material recovery. The analysis 
produced for this project will help decision-makers weigh the potential economic, energy, 
climate, and human health costs and benefits of centralized and decentralized strategies for 
managing used batteries, and plan for the state’s long-term infrastructure needs. 
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CHAPTER 1:  
Introduction 
1.1 Problem Significance 
Plug-in electric vehicle (PEV) sales, while still a small fraction of the total light-duty vehicle 
market, are increasing rapidly because of improving performance, decreasing costs, and 
incentives aimed at reducing greenhouse gas (GHG) emissions and reliance on petroleum. PEV 
sales in the United States (US) increased by a factor of more than five between 2011 and 2013, 
from 18,000 to 100,000 vehicles per year (SAFE, 2014). By 2020, PEV sales are projected to 
account for 3 percent of total US vehicle sales (Electrification Coalition 2013). A recent report 
projected that PEVs will compose 30 percent of US light-duty vehicle sales by 2030, and 80 
percent by 2050 (National Academy of Sciences, 2013). California leads the US, accounting for 
almost one-third of national PEV sales (UC Davis, 2014). California also has more than 2,000 
public PEV charging stations, more than double the number in any other state and 
approximately 25 percent of the US total (SAFE, 2014). 

Much of the prior research focused on PEV deployment is related to reducing battery upfront 
costs, facilitating PEV integration with the grid, and maximizing the net energy, carbon, and 
other environmental benefits during vehicle operation. Less attention has been paid to the fate 
of the batteries after they leave the vehicles. If the current California vehicle fleet were fully 
electrified, the resulting post-consumer battery flow would total roughly 900,000 metric tons 
per year, reversing progress that many California cities have made towards achieving strategic 
“zero waste” goals (Hendrickson et al., 2015; Zaman & Lehmann, 2013). Recent publications 
suggest that PEV batteries can be used in second-life stationary energy storage applications 
after their capacity fades below levels acceptable to drivers and, once batteries are no longer 
suitable for stationary applications, recycling processes can reduce waste and recover valuable 
inputs (Cready et al., 2003; Hendrickson et al., 2015; Dunn et al., 2015). However, little research 
has been devoted to understanding the challenges and tradeoffs associated with end-of-life 
management strategies for PEV batteries, and the pace at which new collection, second life, and 
recycling infrastructure must be scaled up. 

1.2 Project Overview 
This project mapped a path to scaling up PEV battery second-life energy storage and recycling, 
and quantifying the economic and environmental tradeoffs of competing strategies. The project 
focused on quantitative insight, and combines geographic information systems (GIS) and life-
cycle assessment (LCA) to develop and evaluate competing strategies for managing PEV 
batteries once they are no longer suitable for use in vehicles. The research assessed four main 
components: 

• PEV market adoption and battery disposal scenario development (Chapter 2) 

• Infrastructure scale-up and logistics modeling (Chapter 3) 
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• Assessment of PEV battery recycling strategies (Chapter 4) 

• Assessment of PEV battery second life potential (Chapter 5) 

The PEV market adoption and battery disposal scenarios (Chapter 2) are formulated to provide 
projected battery disposal rates in California by county, based on expected PEV market 
adoption rates and battery lifetimes. These scenarios, while not meant to be predictive, provide 
reasonable bounds for expected used battery availability for second life applications and 
material recovery. 

Infrastructure scale-up and logistics modeling utilizes county-level used battery availability 
data to determine collection, second life, dismantling, and recycling locations and facility sizes. 
The analysis presented in Chapter 3 compares centralized and decentralized approaches to 
handling post-consumer batteries using both rail and road networks, and reveals the 
importance of transportation distances and facility sizes for overall costs, energy inputs, and 
emissions. 

Chapter 4 compares pyrometallurgical and hydrometallurgical recycling processes, including 
collection, transportation, recycling inputs and co-products, and capital equipment. These 
processes are also compared with a no-recycling strategy on the basis of energy use, water use, 
GHG emissions, and criteria air pollutant emissions. The analysis also highlights the tradeoff 
between flexibility in chemistries that can be processed in a single facility, and the rate of 
material recovery. 

Chapter 5 explores the net energy and environmental costs and benefits of utilizing PEV 
batteries for second life applications before ultimately routing them to recycling facilities. By 
modeling energy losses during charging and discharging, cooling energy demand, energy 
required to deliver batteries to second life locations, expected capacity fade, and the potential 
net impact of energy storage on California’s grid mix, this task quantifies the potential role that 
post-consumer PEV batteries can play in reaching California’s energy storage and GHG 
mitigation goals. 

1.3 Literature Review 
1.3.1 PEV Market Adoption and Battery Disposal 
Market adoption curves are widely used to predict growing market shares of new technologies, 
including pure electric and plug-in hybrid electric vehicles (McManus & Senter, 2009). 
Although many organizations make conservative linear projections for market growth (EIA, 
2013), consumer choice modeling and past data generally indicates that new technologies 
generally follow an “s” or sigmoid curve, in which slow growth is followed by more rapid 
growth once critical mass is reached, followed by a slowing of growth as the market reaches 
saturation (Sullivan et al., 2014). This curve is the basis for the market adoption scenarios. 

Fleet turnover models are also useful for a wide variety of applications including estimates of 
energy use, air quality impacts, and demands on road infrastructure. Fleet models also play a 
major role in the scenarios. Rather than track data collected on vehicles on the road, this project 
tracks vehicles as they are newly purchased, beginning with historical data from the 1970’s and 
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extending to future sales projections through 2050. A set of governing equations can be 
employed to estimate the fraction of vehicles of a particular model year that are retired each 
year and the annual vehicle-miles traveled by vehicle age. The VISION model by Argonne 
National Laboratory is an excellent example of such a model, and many of the governing 
equations are based on those used in the VISION model (ANL, 2014a). However, existing fleet 
turnover models lack geospatial specificity; the focus has been almost exclusively on US 
national totals. This leaves a pressing need for state- and county-level estimates for purposes of 
charging, battery collection, and recycling infrastructure planning. 

1.3.2 Infrastructure Scale-up and Logistics 
GIS tools have been implemented in various applications in the past; for example, previous 
work has been done in the areas of resource assessment and facility location choice for 
analyzing bioenergy systems (Western’s Governors Association, 2008; Graham et al., 2000; 
Kaylen et al., 2000). Location-allocation models have also been used as a tool for public facilities 
planning with the goal of minimizing transportation distances (Yeh & Chow, 1997). Corbett et 
al. prepared a Geospatial Intermodal Freight Transportation (GIFT) model for the California Air 
Resources Board and the California Environmental Protection Agency that describes the energy 
and environmental impacts of goods movement through California’s intermodal transportation 
systems (Corbett, 2010). This analysis builds on the previous GIS optimization work by adding 
the capability to estimate the corresponding economic costs, energy use and GHG emissions, 
and county-level human health damages. 

1.3.3 PEV Battery Recycling 
Researchers used LCA to quantify the environmental impacts of lithium-ion battery (LIB) 
production and recycling. LCA is a holistic approach for analyzing all aspects of product or 
process’s lifetime to fully determine the associated environmental implications. This method 
has been used often in the related LIB production and recycling literature, which is summarized 
in Table 1. 
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Table 1: Related Literature on LCA of LIB 

Reference Chemistries Description 
Samaras 
& 
Mesterling 
(2008) 

NMC Assessed and compared GHG emissions of four 
different plug-in/standard hybrid electric vehicles. 
Cradle-to-gate emissions for Li-ion battery 
manufacturing were taken from (Rydh & Sandén, 2005). 
PHEVs were found to reduce emissions by 32% when 
used in place of typical internal combustion vehicles. 
Batteries were found to contribute .01-.1% of total 
vehicle emissions. 

Dewulf et 
al. (2010) 

NMC Compared differences in production of rechargable 
lithium-ion batteries from virgin materials and 
pyrometallurgically recycled materials, where material 
and exergy flow for recycling and production are 
deatiled. LCA results revealed that 140 MJ of exergy 
were saved in 1 kg of cathode production from recycled 
materials. 

Dunn et al. 
(2012) 

LiMn2O4 Examined the effects of three different vehicle battery 
recycling techniques (hydrometallurgy, indirect physical, 
direct physical) on energy consumption in battery 
production. It was found that significant reductions in 
consumption could be achieved using all three 
technqiues, but closed-loop recycling achieved the 
greatest savings in battery and cathode production. 

Notter et 
al. (2010) 

LiMn2O4 Developed a process-based model for assessing several 
environmental metrics of battery electric vehicles, 
focusing on cradle-to-gate contributions of vehicle 
batteries. Battery manufacturing was found to contribute 
7-10% of energy demand and GHG emissions, where 
the active cathode materials accounted for roughly 20% 
of these impacts. 

Majeau-
Bettez et 
al. (2011) 

NMC, LFP This study assessed nickel metal hydride (NiMH) and Li-
ion vehicle battery production. Life-cycle production 
numbers for Li-ion batteries were based on the same 
data source as Samaras and Mesterling (2008).LFP 
cathodes were found to have less environmental 
impacts based on 13 different metrics. The results for 
NCM batteries were significantly higher than those of 
Notter et al. (2010) and Dunn et al. (2012). 

Ellingsen 
et al. 
(2014) 

NMC Assessed NCM Li-ion batter with a focus on using 
primary data from manufacturers and transparency in 
life-cycle inventory. Primary data was taken from Miljobil 
Grenland (EU li-ion battery manufacturer) for battery 
structure and production processes, where data gaps 
were filled from existing studies (Majeau-Bettez, Notter). 
Results were closer to those of Majeau-Bettez and 
Zackrisson than process-level studies of Notter and 
Dunn. 
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Reference Chemistries Description 
EPA 
(2013) 

LiMn2O4, LFP Incorporated primary data from battery manufacturers 
and recycling centers, which was coupled with data from 
existing studies. Assessed the cradle-to-gate impacts of 
carbon nanotubes in anode production. Results were 
aggregated for three recycling technologies in order to 
protect propreitory data provided by industry 
representatives. Cradle to gate emissions are similar to 
those of Notter and Dunn. 

Li et al. 
(2014) 

NMC Compared cradle-to-grave Li-ion vehicle battery impacts 
for eight different environmental metrics for graphite and 
silicon nanowire anodes. Recycling processes assumed 
no materials could be reused in batteries, where data 
was accessed from existing studies in a combination of 
physical, hydrometallurgy, and pyrometallurgy. Primary 
data for battery production was taken from laboratories 
and prototyping facilities. Results for GHG emissions 
and energy use in battery production were 
approximately double of that of Notter et al. (2010) for 
the graphite anode case. 

Source: Lawrence Berkeley National Laboratory 
Battery Chemistries are Denoted as LiMn2O4 (LMO), LiFePO4 (LFP), LiNi4Mn4Co2O2 (NMC). 

 

1.3.4 PEV Battery Second Life 
Various authors have explored different aspects of second-life PEV battery use, especially 
economic issues. In a pioneering study, Cready et al. (2003) considered the techno-economic 
potentials of using retired PEV batteries for a variety of second-life applications, identifying 4 
promising candidates: transmission support, light commercial load following, residential load 
following, and distributed node telecommunications backup power. They observed that major 
uncertainties exist regarding the performance and life span of used PEV batteries. Narula et al. 
(2011) conducted an economic analysis of PEV batteries used for a variety of second-life 
applications, assuming a fixed (either 5- or 10-year) service life. They found marginal economic 
benefits for single-use applications, through results improved with multiple simultaneous 
applications, e.g. area regulation; transmission and distribution upgrade deferral; and energy 
time shifting. Neubauer & Pesaran (2011) assessed the economic impact that second-life battery 
use may have on initial PEV costs. They found the benefits to be relatively minor, and strongly 
dependent on the battery degradation profile and on the specific second-life application. 
Williams & Lipman (2012) analyzed the potential economic impacts of second-life battery use, 
finding modest but positive economic benefits of second-life battery use. The benefits were 
strongly affected by the extent to which multiple services (e.g. area regulation, and transmission 
and distribution upgrade deferral) could be obtained from the batteries, and by costs associated 
with potential power-conditioning requirements. Heymans et al. (2014) studied the economics 
of second-life battery storage in the context of the Canadian electricity supply system, finding 
marginal feasibility without economic policy incentives. Ambrose et al. (2014) considered the 
potential for retired PEV batteries to provide electricity storage for rural micro-grids in 
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developing regions, concluding that second-life lithium-ion batteries may be price competitive 
with new lead-acid batteries, while potentially delivering improved performance. 

Fewer studies have considered the environmental or energetic implications of second-life 
battery use. Ahmadi et al. (2014) estimated the potential CO2 emission reduction of using 
repurposed vehicle batteries to store off-peak electricity in Canada, thus avoiding natural gas-
fired peak generation. Faria et al. (2014) conducted an environmental assessment of second-life 
PEV battery use for electricity peak shaving and load shifting, based on grid characteristics of 
several European countries. Both studies found that GHG emission reduction from second-life 
use depends strongly on the emission intensity of the electricity sources involved. However, the 
studies assumed fixed values for uncertain system parameters including battery degradation 
and capacity thresholds of first- and second-life use, and did not comprehensively explore the 
sensitivity of the results to potential variation of these parameters. 
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CHAPTER 2:  
PEV Adoption and Battery Disposal 
2.1 Background and Objectives 
Recovering some Li-ion battery components, and even remanufacturing or refurbishing used 
batteries for reuse in automotive or stationary applications, can slow the disposal of batteries 
and generate additional value for vehicle owners and utilities. Developing a roadmap for 
building the infrastructure necessary to process used batteries and divert them to appropriate 
uses requires some information about expected PEV market adoption and battery disposal rates 
in coming decades. Market adoption of PEVs is arguably the greatest source of uncertainty in 
projections of transportation-related electricity demand, battery recycling needs, and 
availability of PEV batteries for second life applications. External factors such as gas prices, 
high-occupancy vehicle (HOV) lane access, tax rebates, vehicle purchase costs, and availability 
of charging infrastructure all play a role in determining which consumers will choose to 
purchase a PEV. Researchers applied a fleet turnover model, combined with sigmoid market 
adoption curves, to estimate low, mid, and high cases for PEV adoption and resulting used 
battery generation. This analysis developed a range of possible quantities of used batteries 
generated annually across California and in individual counties. 

2.2 Methods 
The fleet turnover model combines vehicle sales in California, beginning with historical data 
and ultimately shifting to market projections, with vehicle retirement curves to determine the 
number and age of automobiles on the road at any given time. This base case scenario is then 
combined with sigmoid PEV adoption curves that predict sales in terms of the share of overall 
automobile sales in California. Although previous studies use a sigmoid curve to model the 
total number of PEVs sold, this approach prevents the model from ever assuming PEV sales 
exceed total automobile sales. Using PEV sales and retirements, researchers are able to track 
battery packs through their lifetime in vehicles and project the number of batteries requiring 
end-of-life management each year. 

2.2.1 Adoption and Disposal Curves 
Automobile sales data and projections are provided by US census region and vehicle type in the 
Energy Information Administration’s (EIA) 2013 Annual Energy Outlook. US census regions are 
comprised of collections of states; California belongs to the Pacific region, which also includes 
Washington, Oregon, Hawaii, and Alaska. Sales were allocated to individual counties based on 
county-level population projections (Zarnoch et al., 2010). The downside of this approach is that 
differences in vehicle ownership (and thus sales) among counties are not accounted for. 
However, because the model is entirely sales-based, county-by-county differences in vehicle 
ownership could not be accounted for without county-level sales data. 

Researchers applied the PEV adoption curve to the entire California market, and then 
distributed sales among counties based on characteristics such as high-occupancy vehicle 
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(HOV) lane access, charging infrastructure, and affluence. Equation 1 is used to approximate 
the proportion of California passenger car sales that are PEVs between 2014 and 2050. To avoid 
allowing small fractions of vehicles to survive indefinitely on the road, all cars from a particular 
model year are assumed to have retired after 36 years. This assumption also prevents the 
scenario from requiring sales data from years too early for reliable data collection. With a 36-
year maximum lifetime, sales data incorporated into the scenario begins in 1978. 

Equation 1: PEV Sales Penetration 

𝑃𝑃(𝑡𝑡) =  
1

1.41(1 + 𝑒𝑒−0.25𝑡𝑡+5)
 

where 𝑃𝑃 = the fraction of automobile sales comprised of PEVs and 𝑡𝑡 = years elapsed since 2014. 

Figure 1: Low, Mid, and High PEV Market Adoption Curves 

 
Source: Lawrence Berkeley National Laboratory 

 

As vehicles are retired due to age, collisions, or other failures, new vehicles enter the passenger 
car fleet. Equation 2 presents the model that defines the fraction of new vehicles purchased 
during a particular year that remain on the road after a given number of years. This model is 
based on conventional passenger cars, but is applied to all cars in the scenario, including PEVs 
and flex-fuel vehicles. The functional life of LIBs that are used in PEVs is not well understood. 
Battery replacement was assumed to be more cost-effective than full vehicle replacement. 
replacement batteries are expected to be comparable to the vehicle’s original battery, and, aside 
from the possible need for battery replacement, PEVs are not expected to have substantially 
different lifetimes than conventional vehicles. Regional variations in vehicle retirement rates 
were not accounted for. Across California, these differences are unlikely to be important, but 
harsh winters in some parts of the US might result in substantially different vehicle lifetimes. 
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Equation 2: Fraction of Vehicles Remaining on the Road (FVR) 

𝐹𝐹𝐹𝐹𝐹𝐹(𝑎𝑎) =  
1

1 + 𝑒𝑒−0.28(16.9−𝑎𝑎) 

where 𝑎𝑎 = vehicle age in years (Scown et al., 2013). 

The next crucial step in the project was to translate market adoption scenarios into battery 
disposal estimates. Researchers used logistic curves to represent the fraction of batteries 
remaining after a given numbers of years beyond its initial purchase date; these curves are 
simply scaled versions of Equation 2. In the default scenario, 75 percent of batteries last 10 years 
or longer. The “underperforming” scenario has only 60 percent of batteries lasting 10 years or 
longer, and the “overperforming” scenario has 90 percent of batteries lasting 10 years or longer. 
Cars, however, may outlast their batteries, so new batteries were assumed to be purchased for 
cars that remain on the road, but whose batteries have reached their end-of-life. However, cars 
within 2 years of their end-of-life were assumed to retire early rather than have a new battery 
installed. It is possible that older batteries can be refurbished to last only a few years for a lower 
price than a new battery, which would make it possible to further extend the life of such cars. 

Figure 2: Battery Disposal Curves for PEVs - Underperforming, Default Scenario, and 
Overperforming 

 
Source: Lawrence Berkeley National Laboratory 

 

2.2.2 County-level Projections 
On a national level, California is an early-adopter state for a number of reasons: the state has 
aggressive zero emission vehicle (ZEV) sales goals, a relatively large network of charging 
stations, and progressive environmental policies (McManus & Senter, 2009). Within California, 
regional variations in PEV adoption can also be expected because of differences in affluence, 
charging infrastructure, incentives, and driving behavior. Appendix A shows the categorization 
for each county in California, such that adoption group 1 is comprised of the earliest PEV 
adopters while adoption group 5 are the latest adopters. As discussed in Scown et al. (2013), the 
results of such a categorization are largely consistent with the regional differences in hybrid 
electric vehicle (HEV) adoption. 

Researchers matched counties with metropolitan statistical areas (MSAs). Some cities have 
instituted local policies such as HOV lane access for PEVs and initiatives for constructing 
charging stations; these cities are categorized as “early-adopter MSAs” and are put in adoption 
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group 1; they are responsible for the majority of very early growth in PEV sales. Although 
affluence is not taken into account, these tend to include either large and/or very affluent cities. 
Alameda, Contra Costa, Los Angeles, Marin, San Francisco, and San Diego Counties, for 
example, are all within early-adopter MSAs. Because of the higher upfront cost associated with 
PEVs, and the advantages of living in a home with access to charging (either in a garage or 
other dedicated parking spot), affluence is expected to be major factor in determining where 
PEVs are adopted early on. Counties in the 80th percentile or above nationally in terms of 
median income are categorized as adoption group 2, if they have not already been included in 
group 1. Most of California’s affluent counties are already included in group 1, so group 2 
includes a small collection of counties such as Santa Clara, Napa, and Solano. Counties with a 
median income in the 70th percentile nationally or greater are categorized as group 3, if they 
have not already been included in previous groups. Sonoma, Yolo, Santa Cruz, and San Benito 
Counties, for example, fall into this group. Counties between the 50th and 70th national median 
income percentile fall into adoption group 4, and those below the 50th percentile are in group 5, 
which consists primarily of rural/agricultural counties. 

The year in which each adoption group enters the PEV market is largely arbitrary and acts as a 
parameter that can be used for sensitivity analysis. Currently, group 1 begins purchasing new 
PEVs in 2014 (current year), group 2 begins purchasing PEVs in 2020, group 3 joins the market 
in 2022, group 4 joins in 2025, and group 5 joins in 2035. Upon reaching the year in which the 
group joins the PEV market, its share of sales growth is proportional to its population during 
that year. Allocating new sales growth, rather than total new sales, by population prevents the 
projection of decreases in PEV sales in earlier-adopting counties when new counties begin 
purchasing PEVs. 

2.2.3 Vehicle Range and Battery Technology Projections 
There are two additional factors that must be accounted for to estimate the total mass and 
energy storage capacity available from used batteries disposed each year: expected PEV battery 
storage capacity projections and the energy density of those batteries. (Kassakian et al., 2013) 
project modest decreases in mass of battery required per kWh of energy storage capacity 
between now and 2050, reaching around 3.3 kg/kWh by 2050 down from nearly 5 kg/kWh 
currently (see Figure 3). Battery range estimates were taken from Scown et al. (2013). 
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Figure 3: Energy Density Projections for PEV Batteries 

 
Data source: Kassakian et al. (2013) 
 

2.3 Results and Discussion 
The results for the mass of batteries disposed each year through 2050 are shown in Figure 4. 
Umicore has provided two recycling facility benchmarks: a 7,000 annual metric ton pilot facility 
(with their Hoboken, Belgium facility as an example) and a 70,000 annual metric ton facility as 
the commercial-scale goal. The results indicate that California will reach a disposal rate 
sufficient to justify a pilot-scale facility running at full capacity by approximately 2030, but may 
not reach 70,000 metric tons per year until after 2050. This implies that the most effective 
strategy for scaling up recycling may be to build a centralized facility that draws from multiple 
western states, including Oregon and Washington. 
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Figure 4: Mass of Lithium-ion Batteries Projected to be Available for Recycling/Disposal by Year in 
California 

 

 

The disposal scenarios also provide researcgers with insight into the potential for battery 
second life energy storage. By 2050, Californians alone may be generating more than 10 GWh-
worth of energy storage capacity, after accounting for the degradation of batteries during their 
life in automobiles (see Figure 5). The key to understanding the value of this storage is a better 
understanding of how Li-ion batteries degrade over time with different cycling, such as the 
cycling required for peak-shaving or other grid services. This is an area of ongoing work, and 
one that requires additional time and expertise to fully address. 
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Figure 5: Quantity of PEV Batteries Projected to Reach Their End-of-Life Annually by Remaining 
Energy MWh Storage Capacity (default scenario) 

 
Source: Lawrence Berkeley National Laboratory 

 

Results of these scenarios by county for 2020, 2030, 2040, and 2050 are shown in Figure 6. 
Although the San Francisco Bay Area is responsible for a large proportion of early PEV sales, 
the difference in population between the Bay Area and Los Angeles result in more PEVs sold in 
Southern California. The Central Valley, including Sacramento, gains a substantial share of PEV 
sales by 2040. 
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Figure 6: Distribution of PEV Batteries Disposed Annually in California (number of batteries) 

 
Source: Lawrence Berkeley National Laboratory 
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CHAPTER 3:  
Infrastructure Scale-up and Logistics 
3.1 Background and Objectives 
As PEV adoption increases, there are concerns about the amount of waste generated at the end-
of-life stage. Battery recycling has energy and economic incentives as it can contribute to a 48 
percent reduction on the overall energy intensity of Li-ion battery production (Dunn et al., 
2012). The environmental impacts of the transportation processes are only now beginning to be 
evaluated in a systematic way that values their importance. Freight transport and supply chain 
logistics should be evaluated holistically based on the economic and environmental costs using 
a life cycle assessment. New analytical methods that include data management techniques and 
computing need to be developed in order to improve planning and decision making for new 
industries that rely on efficient logistics (Corbett et al., 2010). Geospatial models allow the 
decision makers to quantify the environmental costs of the freight transport, compare 
alternatives and evaluate the impacts of their decisions. 

This report addresses the task of understanding potential strategies for scaling up the battery 
recycling industry in California, given the projected market adoption and the disposal rates of 
the batteries. From the analysis, it is clear that the process of collecting and transporting the 
disposed batteries contributes substantially to the overall costs and GHG footprint of battery 
recycling. It is particularly important to accurately estimate the transportation impacts and to be 
able to calculate the total embodied distance across the supply chain. The battery recycling 
logistics need to be evaluated based on the spatial distribution of the facilities and capital costs, 
allowing the identification of optimal strategies for minimizing the GHG emissions and costs of 
the battery recycling industry. 

This project’s purpose is to develop geospatial freight transportation models to simulate the 
transportation between battery collection, disassembly, reuse and recycling sites and optimize 
the transportation logistics procedure. The project utilizes California-specific data and inputs 
for calculating the economic costs and GHG emissions associated with batteries movement 
through California’s highway, and rail systems. The project is implemented in Geographical 
Information System (GIS) that integrates different modal networks (railway and highways) and 
contributes to improved decision making associated with the recycling process of batteries of 
EVs at a state level. Specifically, the model evaluates: 

• GHG footprint and economic costs associated with the transport and processing of Li-
ion automotive batteries during their second life applications and end-of-life in 
California and, 

• Optimal locations and sizes of dismantling and recycling infrastructure. 

This project develops a methodology that combines optimization methods and spatial analysis 
tools available through GIS into several integrated models for the transportation of PEV 
batteries during their recycling process. The desired outcome is a transportation cost-
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minimizing system that enables users to analyze both cost and environmental impacts of the 
battery movement during end-of-life. The models use geographic data to locate the optimal 
infrastructure sites and the best routing option for the transportation sector. The corresponding 
outcomes are described by the location, size and types of required infrastructure as well as the 
most appropriate means of transportation regarding each available scenario. 

3.2 Methods 
The GIS modeling methodology was designed to estimate the economic costs, GHG emissions, 
and human health impacts associated with the supply chain of the PEV batteries during their 
end-of-life. Recognizing the value of other GIS-based freight analysis tools, this project 
integrated economic and environmental attributes into network analysis in GIS (Corbett, 2010). 
This study developed an algorithm for geospatial optimization using a location-allocation 
methodology in GIS that integrated economic and environmental performance measures 
associated with current freight flows into the segments of the network. The optimization 
process was based on the minimization of the total ton-kilometers transported between the 
collection points and the final recycling destination. This is the appropriate objective function to 
minimize, as the economic and environmental costs correspond to the total distance traveled by 
applying specific metrics and emission factors. 

Two alternative scenarios were developed to illustrate the end-of-life options after the batteries 
have reached the threshold point of not being able to be used in vehicles. The first scenario 
considered direct recycling of their batteries after their first use whereas the second one 
included possible second life applications of the batteries before their final recycling. 

To model the supply chain, researchers created a network dataset in an ArcGIS software 
environment to calculate the transportation distances and corresponding costs. Data on 
California’s highway network, railway network, and other required data such as locations of 
major cities and train stations, and borders of counties and census tracts, were sourced from 
federal sources including the US Department of Commerce and the US Census Bureau (US 
Census Bureau, 2013). Geographically explicit car dealership locations were acquired from the 
Data Lists website (Data Lists, 2014). 

The optimization models consider the spatial distributions of the collecting, dismantling, reuse 
and recycling facilities and find the best design for the recycling supply chain. The goal of the 
models is to optimize the facility locations in order to minimize the total transportation costs 
associated with battery dismantling and recycling. The models calculate both economic (total 
miles driven for fuel efficiency cost) and environmental (GHG emissions from the 
transportation) metrics for transportation. The collection points of the batteries were assumed to 
be car dealerships, as these locations are currently used for battery testing and take-back (Smith, 
2014). For the facility optimization process, all California county centroids were considered as 
candidate locations, serving as approximation for the purposes of this analysis (Vidovic et al., 
2011). This is a generalization of the available location points, but serves as a useful 
approximation for the purposes of these models. An important feature of the model is that it 
allows the user to set the preferred distance of the recycling facility from big city centers; 
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placing facilities far away can minimize the health impacts from on-site emissions, while 
placing facilities within big cities may improve access to qualified labor force and critical 
infrastructure. The disposed battery mass was assumed to be equally distributed among the car 
dealerships in each county to avoid market projections and the total battery mass per county 
was based on future demand projection scenarios (Scown et al., 2013). 

3.2.1 Recycling Logistics 
This scenario illustrates the case where the PEV batteries are recycled directly after their first 
life. From the collection points, the batteries are transported to dismantling facilities for the 
second stage of the recycling process, where the separation of the non-hazardous materials for 
traditional recycling takes place. At this stage, approximately 50 percent of the battery mass is 
diverted to traditional recycling facilities, since only the hazardous components of the batteries 
must be sent to a centralized battery recycling facility (Spiers, 2014). Two main scenarios were 
selected as the most realistic versions of the recycling industry structure, in-state or out-of-state 
recycling. In-state recycling assumes that the recycling facility is located inside the state and can 
handle the amount of batteries disposed in the state. In the out-of-state recycling case the 
recycling facility is assumed to be in a different state to allow for more centralized recycling 
applications. In-state recycling can offer greater independence to the system and decrease the 
distance the batteries would need to travel for recycling. On the other hand, having out-of state 
recycling facilities would allow for larger centralized facilities with economies of scale and 
easier access to batteries and markets for recovered materials beyond the West Coast. The 
model performs an optimization for each scenario, in order to provide the optimal spatial 
distribution of the required infrastructure and calculates the associated transportation costs. 
Using a location-allocation network analysis in GIS, researchers located the optimal locations 
for the facilities. The distances are weighted by the mass of the batteries transported in order to 
provide reliable results for the entire system. 

3.2.2 Second Life Logistics 
In this scenario, the second life of the PEV batteries is taken into consideration before the final 
recycling. This scenario takes into account the need for energy storage, especially in areas with 
high renewable energy generation (solar and wind). The supply chain for this scenario follows 
the described flow. From the initial collection points the batteries are transported to the 
dismantling facilities to go through the first processing stage, where 10 percent of the battery 
mass is assumed to be diverted to traditional recycling (Spiers, 2014). The batteries are then 
transported to their final second life application locations, and at the end of their second life 
they are sent to the centralized battery recycling facility. Three alternative logistics scenarios for 
battery second-life use were modeled: decentralized solar, decentralized wind, and centralized 
wind/solar. The centralized scenario assumes that all the batteries are used in a single large 
facility in Kern County where the average solar and wind intensities are both greatest of all 
California counties. The decentralized solar and wind scenarios assume that quantities of 
second-life batteries are distributed to different counties in proportion to each county’s resource 
intensity for solar and wind, respectively. The total resource intensity of each county was 
calculated according to the IPCC Report based on the Direct Normal Irradiance (DNI) (IPCC, 
2011). Solar and wind intensity data were sourced from NREL (NREL, 2014a). 
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3.2.3 Human Health Impacts 
The results from the modeling process of the above scenarios were combined with the Air 
Pollution Emission Experiments and Policy model (APEEP) to determine the human health 
implications of the supply chain of the battery recycling process (Muller & Mendelsohn, 2006). 
The APEEP model estimates the health damages that occur from the emissions of SO2, NOx, 
particulate matter (PM) and volatile organic compounds (VOCs). The air pollutant emissions 
that were taken into consideration were associated with the trucking and rail transportation 
from the GIS model, and the electricity consumption and on-site emissions of the 
pyrometallurgy facilities from the LCA model. Air pollutant emission factors for rail and truck 
transportation were taken from Carnegie Mellon’s economic input-output LCA tool (EIO-LCA) 
(CMU, 2014). The emissions of the corresponding power plants that are responsible for the 
electricity production in California were also taken into consideration for the estimation of the 
health impacts. Ground-level emission sources were assumed for the calculations. 

3.3 Results and Discussion 
3.3.1 Optimal Infrastructure Scale-up 
Using California-specific data, researchers calculated the optimal facility locations and the 
corresponding total ton-kilometers traveled for both direct recycling and second life 
applications scenarios. Figure 7 shows the candidate and chosen locations for dismantling and 
recycling facilities that were estimated by an algorithm developed by the researchers for direct 
recycling using only truck transportation. Figure 8 shows the candidate and chosen locations for 
dismantling and recycling facilities for the second life application scenario using truck 
transportation. The optimization model sited the facilities in close proximity to the clusters of 
the collection points, which is intuitive, as the objective function of the optimization was the 
minimization of total ton-kilometers transported from all collection points. The sensitivity 
analysis indicated that the economics are most favorable for two dismantling facilities and as 
expected, the model optimally located them close to San Francisco and Los Angeles, the state’s 
two largest population centers. If a third dismantling facility is added, the model recalculates 
the transportation distances and divides the collection points into three clusters (San Francisco, 
Los Angeles, and Central Valley) in order to satisfy the new system optimal facility locations. 
The algorithms take into account the battery mass allocation at the collection points, which is 
why the optimal recycling facility is located closer to the cluster with the greatest number of 
dealerships and is not equidistant from both dismantling facilities. The allocation of battery 
mass at the collection points, the system-wide travel time minimization, and the siting criteria 
are some of the most important parameters that define the optimal locations of the facilities and 
allow for the calculation of the emissions and economic costs of the transportation system. 
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Figure 7: Candidate and Chosen Locations for In-state Direct Recycling Using Truck 
Transportation 

 
Source: Lawrence Berkeley National Laboratory 
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Figure 8: GIS-Results for Three Different Second-life Application Scenarios: (a) Decentralized 
Solar, (b) Decentralized Wind, (c) Centralized Renewable 

 
Source: Lawrence Berkeley National Laboratory 

 

The energy and emissions intensities of transporting batteries to and from their locations of 
second-life use are shown in Table 2, based on results of the GIS analysis. This includes 
collection of the batteries from dealerships, distribution of batteries to the second-life site, and 
final transport from the second-life site to a recycling facility. The centralized renewable 
scenario requires the least energy use and emits the least GHGs, per ton of battery used in 
second-life applications. The decentralized solar scenario is most intensive, while the 
decentralized wind scenario is medium intensity. This has to do with the distribution of the 
batteries in each county based on the resource intensity of each. 
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Table 2: Energy and Emission Intensities of Transporting Batteries in Three Second-life 
Applications Logistics Scenarios 

 

Energy Use 

(MJp per ton of batteries) 

Emissions 

(kgCO2e per ton of batteries) 

Decentralized Solar 

Collection 151 11.2 

Distribution 454 33.8 

Recycling 639 47.6 

Total 1,243 92.6 

Decentralized Wind 

Collection 151 11.2 

Distribution 423 31.5 

Recycling 484 36.1 

Total 1,058 78.8 

Centralized Renewable 

Collection 151 11.2 

Distribution 469 34.9 

Recycling 260 19.4 

Total 880 65.5 
Source: Lawrence Berkeley National Laboratory 
 

3.3.2 Cost and Emissions Calculations for Direct Recycling 
Based on analysis of the in-state versus out-of-state recycling scenarios for direct recycling, the 
detailed results of the transportation costs and GHG emissions are shown in Figure 9. Two 
dismantling facilities were assumed for all the different scenarios and the optimal locations for 
all the facilities that were estimated from the model were used. The optimal locations for the 
dismantling facilities were the same in all scenarios, as the collection locations and their 
corresponding battery mass disposed were kept constant while the optimal location for the 
recycling facility was estimated for each scenario separately. For the rail transportation 
scenarios the locations of the freight railway stations were taken into account when estimating 
the optimal facility locations in order to accurately calculate the distance traveled by rail. In the 
out-of-state scenarios the recycling facility location was assumed to be the railway station that 
was closer to the state centroid in order to account for other parameters that would affect the 
siting decisions, such as imports from other states, which is outside of the scope of this paper. 
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The capital cost of the facilities is estimated by scaling the original cost using an appropriate 
scaling factor (NREL, 2011), according to Equation 3. The applied scaling factor corresponds to 
the infrastructure scaling as capacity increases (Moore, 1959). This method, widely used in the 
literature, allows for a quick estimation of the capital cost, but has limitations considering the 
accuracy of the applied scaling factor (NETL, 2013). The cost estimate of the scaled facility is 
determined by the cost of the original facility using a scaling factor that corresponds to the 
category of the facility (NETL, 2013). 

Equation 3: Capital Cost Scaling 

𝑁𝑁𝑒𝑒𝑁𝑁 𝐶𝐶𝐶𝐶𝐶𝐶𝑡𝑡 = 𝐵𝐵𝑎𝑎𝐶𝐶𝑒𝑒 𝐶𝐶𝐶𝐶𝐶𝐶𝑡𝑡 ∗ �
𝑆𝑆𝑆𝑆𝑆𝑆𝑒𝑒(𝑁𝑁𝑒𝑒𝑁𝑁)
𝑆𝑆𝑆𝑆𝑆𝑆𝑒𝑒(𝐵𝐵𝑎𝑎𝐶𝐶𝑒𝑒)

�
0.6

 

The costs for loading and unloading, considered as bulk solids, were estimated to be $5/ton 
(Western Governors’ Association, 2008). The distance-dependent costs were estimated at 
$0.21/ton-km for trucking and $0.03/ton-km for rail transportation (US DOT, 2014). The 
economic input-output life-cycle assessment model (EIO-LCA) is used as a data source as it 
provides a comprehensive LCA assessment for trucking emissions. The emission factors, used 
both in the GIS and LCA models, were assumed to be 294 gCO2e/ton-km for trucking and 43 
gCO2e/ton-km for rail transportation (CMU, 2014). The effect of rail transportation was 
significant in the results as the overall costs and GHG emissions for in-state transportation 
decrease by 12 percent and 45 percent respectively when rail was considered. This effect is 
substantial in the transport to Arizona or Nevada in out-of-state scenarios, as the costs remain 
the same and the emissions decrease by 23 percent compared to the in-state trucking option, 
even though the total miles traveled are 3 times higher when traveling to Arizona or Nevada. 

Figure 9: Transportation Costs and GHG Emission Metrics for In-state and Out-of-state Scenarios 
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3.3.3 Human Health Impact Results 
By combining the transportation distances from the GIS model with the air pollutant on-site 
emissions and electricity use from the LCA modeling, researchers calculated the health impacts 
using the APEEP model. The APEEP model estimates the mortality risk, which is referred to as 
the value of statistical life (VSL), and assigns an economic value to each county to represent that 
effect (Muller & Mendelsohn, 2006). The results shown in Figure 10 are based on the optimal 
facilities locations and truck transportation routes for the direct recycling scenario. For the in-
state scenario, freight trucks were the main source of PM, SO2 and VOCs, which were 
consequently highest in counties along the shipping routes for used LIBs. NOx emissions, which 
were mainly attributable to the pyrometallurgy facility, peaked in counties around the location 
of the facility. Air pollutants from the electricity generation were assigned to the existing power 
plant locations distributed throughout the state and their effect is based on each county’s 
mortality risk parameters. Currently, trucks provide the primary mode of transportation for 
used batteries, so the corresponding health impacts were estimated assuming a business as 
usual (BAU) case (Spiers, 2014). As illustrated in Figure 10, most health impacts occur in Kern 
and Los Angeles counties because of their higher population density, topography, and large 
share of total distance traveled. Aside from NOx health damages, which were mostly 
attributable to the pyrometallurgy facility (96 percent of total), truck transportation was 
responsible for the majority of criteria air pollutants: 99 percent of PM damages, 54 percent of 
SO2 damages, and 62 percent of total VOC damages. The pyrometallurgy facility was 
responsible for 37 percent of the total VOC health damages and the electricity generated for 
pyrometallurgy processing accounted for the bulk of remaining SO2 health damages (45 
percent). The pyrometallurgy recycling process emitted a negligible amount of SO2 on-site as a 
lime-scrubbing process controls these emissions. 
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Figure 10: Spatial Distribution of Human Health Impacts of In-state Recycling for Trucking 
Transportation 

 
Source: Lawrence Berkeley National Laboratory 

 

3.4 Sensitivity Analysis 
Intuitively, more collection and recycling points in a system would yield greater transportation 
cost savings as the total ton-kilometers traveled are minimized. However, an increased number 
of facilities lead to greater capital costs. Considering such a tradeoff, it is important to examine 
the connections between capital and transportation costs. 

Sensitivity analysis can provide insights into the tradeoffs between transportation cost savings 
and capital expenditures, yielding an optimal number of facilities (NETL, 2013). The 
relationship between transportation costs and the number of dismantling facilities is 
highlighted in Figure 11. There is a drop-off in the total ton-kilometers traveled when two 
dismantling facilities exist in the system. Beyond that point, the curve reflects a flatter 
relationship with the transportation distances. Similar curves were found for out-of-state 
recycling scenarios as well. A sensitivity analysis was also used to determine the effect of the 
battery mass transported in relation to the marginal cost for the industry (Figure 11). That 
analysis gave an exponential curve with the optimal recycling facility size of 7,000 tons/yr, 
which translated to a marginal cost of $34/ton (includes capital and transportation cost). The 
battery mass used in this study (7,000 tons/yr) was validated by the industry as it is the capacity 
of Umicore’s facility (Caffarey, 2014) and it was used in the rest of the analysis to calculate the 
corresponding costs and emissions. 
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Figure 11: Sensitivity Analysis of Relation between the Number of Dismantling Facilities and Total 
Ton-kilometers Traveled (Red Curve), and between Capacity of Recycling Facility and Marginal 

Cost (Blue Curve), for In-State Recycling Using Truck Transportation 

 
Source: Lawrence Berkeley National Laboratory 

 

The capital cost of the facilities was calculated based on a facility’s original cost and capacity by 
applying an appropriate scaling factor to vary the cost by size. This factor approximates the 
effects of economies of scale (Moore, 1959). In this case a scaling factor of 0.6 was used reflecting 
the use of the facilities. This general method, widely used in the literature, allows for a quick 
estimation of the capital cost, but contributes a degree of uncertainty to the results because it is 
not tailored specifically to the investments required for battery recycling (NETL, 2013). Two 
other cost components were taken into consideration: a loading/unloading cost and a distance-
dependent travel cost. 

Because the capital cost of the infrastructure is uncertain, a sensitivity analysis was run to 
determine the optimal number of dismantling facilities in the system for different capital costs. 
Assuming a capital cost of $1 million in Figure 12, which was used in this study as indicated by 
industry feedback (Caffarey, 2014), there is a threshold in the number of facilities in the system 
and the most cost effective option is using two dismantling facilities. 

  



30 

Figure 12: Sensitivity Analysis of the Relation between the Capital Cost of Infrastructure and 
Number of Dismantling Facilities for In-state Recycling Using Truck Transportation. 

 
Source: Lawrence Berkeley National Laboratory 

 

When capital costs are significantly higher ($5 million), minimizing the number of dismantling 
facilities is the most cost-effective option as facility capital costs are the driver of total costs. The 
opposite stands for a very low capital cost where it can be neglected in comparison to the 
transportation costs. 



31 

CHAPTER 4:  
PEV Battery Recycling Scenarios and Life-cycle 
Assessment 
4.1 Background and Objectives 
California currently lacks the infrastructure to manage LIBs at their end-of-life, and the 
supporting supply chain growth must comply with GHG emission restrictions (CARB 2011). 
The state also presents unique environmental challenges, as the impact of water use and criteria 
air pollutant emissions can vary significantly across the region. To fully understand the 
implications of scaling up PEV recycling in California, decision makers must be equipped with 
models that provide likely infrastructure build-out scenarios for battery collection, dismantling, 
and recycling, accounting for complete life-cycle environmental implications. 

To accomplish this, researchers assessed the available recycling technologies and supporting 
infrastructure on the basis of environmental and economic criteria. Using state-specific data, 
researchers employed geospatial modeling to create scenarios for projected LIB waste streams 
and determine optimal dismantling and recycling facility locations for both in-state and multi-
state systems. LCA was used to assess hydrometallurgy and pyrometallurgy recycling systems, 
resulting in new factors for life-cycle GHG emissions, primary and secondary energy demand, 
water use, and criteria air pollutant emissions. Hydrometallurgy is a more specialized, 
chemistry-specific process capable of recovering lithium and aluminum in addition to higher-
value metals. Pyrometallurgy is a flexible process, capable of accepting a wide variety of LIB 
chemistries in a single facility, as well as nickel metal hydride (NiMH) batteries, that focuses on 
recovering only high-value materials including nickel, cobalt, and copper; unrecovered 
materials are incorporated into slag that can be sold as a cement supplement (Ellis and Mirza, 
2011; EPA 2013). 

4.2 Methods 
4.2.1 Battery Production Life-Cycle Assessment 
Performance characteristics of the Nissan Leaf battery (24 kWh capacity) are used as a general 
industry proxy in determining the full theoretical battery design for three LIB chemistries 
(LMO, LFP, NMC) (Nissan USA, 2014). Argonne National Laboratory’s Battery Performance 
and Cost tool (BatPaC), which generates LIB material needs based on real world data, was used 
to model anode and cathode materials requirements (ANL, 2014b). The mass distribution for 
the remaining battery components are taken from standard values in Argonne’s Greenhouse 
gases, Regulated Emissions, and Energy use in Transportation (GREET2) tool, which estimates 
environmental outputs and resource requirements for electric vehicles (ANL, 2013a). The total 
masses for the three different electrode chemistries analyzed in this study are found to be 191 
(LMO), 183 (LFP), and 167 (NMC) kg. 

For LIB production, researchers expanded on the related LCA literature by including new 
environmental criteria results for battery production in primary and secondary energy sources, 
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water consumption, and water withdrawals for LMO, LFP, and NMC chemistries. Appendix B 
shows the sources used in the LIB production LCA. 

Electricity mixes for production wae based on the GREET2 defaults, with aluminum smelting 
based on the average California mix (Gursel and Custodio, 2014). Transportation 
emission/consumption factors are taken from Carnegie Mellon’s EIO-LCA model (CMU, 2014). 
Transportation distances for all materials other than cathodes are assumed to be 50 miles of 
road and 50 miles of rail. LMO cathode transportation is included in the GREET2 tool (ANL, 
2013a). For LFP and NMC cathodes, where production was assumed to occur in South America, 
transportation distances are assumed to be 8,000 miles water freight, 50 miles road, and 50 miles 
rail. 

4.2.2 Battery Recycling Life-cycle Assessment 
This study characterizes the material flows and emissions for LIB recycling, with a focus on 
hydrometallurgical and pyrometallurgical recycling. Hydrometallurgy is a chemical leaching 
intensive process used to separate and refine materials with the capability of capturing both 
valuable metals and lithium. This process is currently under development for commercial use 
(Dunn et al., 2012). Pyrometallurgy uses a kiln firing process followed by leaching to recover 
slag and valuable metals. As discussed previously, existing literature has analyzed 
hydrometallurgy, but this study expands on those results by including separate energy sources, 
water use, and criteria air pollutants for LMO batteries using life-cycle emission factors from 
GREET2 and Scown, including recycling materials production, process demands, and recovered 
material benefits (ANL, 2013a; Scown, 2010). 

Pyrometallurgy offers an economical method for material recovery in reducing solid waste 
flows from PEV LIB use, provided enough high-value materials can be recovered. Industry 
practitioners of pyrometallurgy maintain that this process has the potential for economical 
material recovery for a large array of electrode chemistries without significant alterations to the 
method (Caffarey, 2014). This characteristic is crucial for LIB recycling processes that must 
adapt to evolving technologies. The single-stack method offers economic advantages over 
hydrometallurgy in avoiding high operational costs and complexities (Cheret & Santen, 2007). 
However, challenges exist for pyrometallurgy with chemistries such as LMO, where the active 
materials are relatively cheap and recycling for reuse is not currently economical (Gaines, 2014). 

The pyrometallurgy inputs and emissions were calculated based on Umicore’s patented one-
stack technique, where alloy outputs are refined using leaching. Typically, industrial 
pyroprocessing is completed using two smelting stacks, or furnaces, where pyrolyzing occurs in 
the first stack and smelting in the second stack. This requires high capital and operational costs. 
The Umicore technique avoids this by combining plastic pyrolyzing, smelting, and reduction 
into one stack. This is achieved by adding charges of slag, limestone, and sand with the 
batteries. Coke is the predominant fuel used in heating the smelting stack. The pyrolysis of 
plastic adds heat to the process while reducing fuel needs (Cheret & Santen, 2007; ANL, 2012). 

Previous work has analyzed pyrometallurgy, but used general industry averages in applying 
values to LIB recycling (ANL, 2012). In this study, life-cycle emission and consumption factors 
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are calculated based on the material inputs, recycling processes, slag outputs for cement use, 
and materials recovered. Life-cycle pyrometallurgy emission factors are quantified for primary 
and secondary energy consumption, GHG emissions, water use, and criteria air pollutants. 
Appendix C details the inputs, outputs, and sources used in determining the life-cycle 
environmental impacts of pyrometallurgical battery recycling. 

Total pyrometallurgy results are based on the assumption that 50 percent of Cu, Ni, and Fe are 
recovered and are used to offset virgin production of these materials. The NMC battery includes 
cobalt recovery at 25 percent. All slag produced in the recycling process is assumed to be 
processed and used as a cement substitute. The results are calculated per unit mass of battery 
for the Umicore samples, and then applied to the individual battery results. Pyrometallurgy 
electricity mixes are based on the California average for use in the GIS model in Chapter 3 
(Gursel and Custodio 2014). Transportation for coke and limestone is based on the assumption 
of 50 miles road and 50 miles rail transport. Transportation of batteries to the recycling facility is 
based on GIS model results. 

4.3 Results and Discussion 
Figure 13 shows the LCA production and recycling results for the LMO battery. The 
hydrometallurgy results reflect the recycling process emissions and consumption factors from 
customizing GREET2 to separate primary and secondary energy sources. Based on the potential 
material recovery, pyrometallurgy can offer advantages in water use due to recovered steel and 
copper. Water use in recycling processes was not captured in the modeling. Hydrometallurgy 
recovers copper and aluminum, but GREET2 does not account for hydrometallurgy specific 
values for recycling these materials (ANL, 2013; Dunn et al., 2012). Hydrometallurgy recycling 
values were assumed to be similar to the industrial processes available in GREET2, and account 
for recovered steel and aluminum in LIB recycling. Hydrometallurgy achieves greater energy 
savings, especially in electricity consumption whereas pyrometallurgy has a high electricity 
demand due to recovered slag processing for use as a supplement for cement. Air pollutant and 
GHG emissions are also higher in pyrometallurgy due to coke production and combustion. On-
site SO2 emissions from pyrometallurgy are controlled using a limestone sulfur scrubbing 
system. 
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Figure 13: Resource Use and Environmental Emissions of Battery Production and Recycling 
(Using Hydrometallurgy and Pyrometallurgy) 

. 

Source: Lawrence Berkeley National Laboratory 

 

Researchers benchmarked their LCA results against the existing literature in Table 3. The 
significant variation of results in these studies is due to differences in battery design, assessment 
scopes, and supply-chain processes (i.e., transportation and battery assembly). Recent studies 
have focused on nanotechnologies in anode production, which offer higher energy densities for 
battery operation but require greater inputs for production (EPA, 2013; Li et al., 2014). This 
study shows similar results to Dunn et al., whose authors also developed the GREET2 model 
(Dunn et al., 2012; ANL, 2012). This study utilized a fully optimized battery design that 
minimized economic costs in production, driving the lower energy consumption in Table 3 
(ANL, 2014b). 

The recycling results of three studies are shown in Table 3. The greater recovered energy in the 
EPA study is due to the direct physical recycling process that was included, where electrode 
materials can be recovered and reused without any further processing. NMC energy recovery in 
this study was greater than the other two chemistries because cobalt was recovered in the 
pyrometallurgy recycling process (Cheret & Santen, 2007). 
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Table 3: Comparison of Energy Results with Existing Literature 

  Embodied Energy (MJ/kg) 

 LMO Battery LFP Battery NMC Battery 

Study Virgin LIB 
Production Recycling Virgin LIB 

Production Recycling Virgin LIB 
Production Recycling 

Dunn et 
al. 
(2012)a  

74 -5 - - - - 

Notter 
et al. 
(2010)  

104 - - - - - 

EPA 
(2013)b  220 -31.9 541 -70.5 435 -64.7 

Majeau-
Bettez 
et al. 
(2011)  

- - 165.9 - 169.5 - 

Li et al. 
(2014)  - - - - 290.2 - 

Dunn et 
al. 
(2015)  

74 - 80 - 110 - 

This 
Studyc 54.1 -6.5 64.4 -6.5 70.4 -12.2 

aHydrometallurgy recycling values, bAverage of hydrometallurgy, pyrometallurgy and direct physical 
recycling values, cPyrometallurgy recycling values. 
Source: Lawrence Berkeley National Laboratory 

 

For more detailed results for what is displayed in Table 3, Figure 14, Figure 15, Figure 16, and 
Figure 17 show the detailed pyrometallurgy LCA results for all three battery chemistries. 
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Figure 14: Results of Energy Consumption and Water Use Metrics for a Pyrometallurgically 
Recycled LMO Battery. 

 
Source: Lawrence Berkeley National Laboratory 
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Figure 15: Results of Air Pollutant Emissions for a Pyrometallurgically Recycled LMO Battery 

 
Source: Lawerence Berkeley National Laboratory 
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Figure 16: Results of Energy Consumption and Water Use Metrics for Pyrometallurgically 
Recycled LFP Battery 

 
Source: Lawerence Berkeley National Laboratory 
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Figure 17: Results of Energy Consumption and Water Use Metrics for Pyrometallurgically 
Recycled NMC Battery 

 
Source: Lawrence Berkeley National Laboratory 
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CHAPTER 5:  
Assessment of PEV Battery Second Life Potential 
5.1 Background and Objectives 
Recycling is typically considered as the default end-of-life management for PEV batteries, but it 
may be worthwhile to use these retired batteries in stationary second-life applications. For 
second-life battery use to be viable, the benefits accrued from the second life must be greater 
than the impacts needed to enable it. These benefits and impacts include economic, energetic 
and environmental considerations. 

PEVs (and their retired batteries) will co-develop in the future with an evolving energy supply 
system, including increasing amounts of renewable electricity sources. The intermittency of 
these sources (e.g. solar and wind) demand an energy storage medium for maximum 
performance. In this study, the researchers explored the extent to which second-life use of 
retired PEV batteries can provide this electricity storage role. Researchers asked several research 
questions during this analysis. First, what are the factors that most significantly affect the net-
energy viability of second-life usage of retired batteries PEVs? Second, will second-life use of 
retired PEV batteries play a significant energy storage role in California through 2050? Finally, 
in a life-cycle perspective, what are the quantifiable potential climate benefits from using 
second-life batteries to support intermittent renewable electricity sources? 

5.2 Methods 
5.2.1 Modeling Framework 
Researchers developed and applied a parametric life cycle model to describe the interrelated 
energy and material flows of the PEV battery system. The model is driven by scenarios of future 
adoption of PEVs in California, and the resulting stream of retired PEV batteries. Researchers 
focused on the potential for second-life usage of the retired batteries, while assuming other life-
cycle phases (battery manufacture, first life, and recycling) remain unchanged. The system 
boundaries of this study include all direct impacts of second-life use such as battery transport, 
cooling and charging. The boundaries also encompass parts of the broader energy system, 
including the displacement of fossil energy production by enabling diurnal energy shifting 
based on intermittent renewable electricity production. The analytical framework is shown 
schematically in Figure 18. Researchers assumed that future electricity output from renewable 
sources will exceed demand during peak generation times and electricity storage allows the use 
of this electricity later in the diurnal cycle during peak demand times. 
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Figure 18: Analytical Framework Integrating Battery System Modeling with Broader Energy 
System Modeling 

 
Electricity storage in second-life PEV batteries enables dispatchable output of intermittent renewable 
electricity, thus avoiding fossil electricity generation. Scenario modeling of PEV adoption and battery 
degradation defines the scale of the operation. 
Source: Lawrence Berkeley National Laboratory 

 

Based on modeled material and energy flows through the year 2050, researchers calculated and 
compared several metrics of second-life system performance. These include the cumulative 
electricity delivered, the cumulative energy balance, the cumulative GHG balance, and the 
energy stored on invested (ESOI). The cumulative electricity delivered is simply the summation 
of the electrical energy discharged from the second-life batteries through 2050, in units of TWh. 
The cumulative energy balance is a summation of major energy flows throughout the system 
through 2050, and is defined by Equation 4. 

Equation 4: Energy Balance of Battery Second Life 

𝐸𝐸𝐸𝐸𝑒𝑒𝐸𝐸𝐸𝐸𝐸𝐸 𝐵𝐵𝑎𝑎𝐵𝐵𝑎𝑎𝐸𝐸𝐵𝐵𝑒𝑒 = 𝐸𝐸𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑 − 𝐸𝐸𝑐𝑐ℎ𝑎𝑎𝑑𝑑𝑎𝑎𝑑𝑑𝑎𝑎𝑎𝑎 − 𝐸𝐸𝑐𝑐𝑐𝑐𝑐𝑐𝑑𝑑𝑑𝑑𝑎𝑎𝑎𝑎 − 𝐸𝐸𝑡𝑡𝑑𝑑𝑎𝑎𝑎𝑎𝑡𝑡𝑡𝑡𝑐𝑐𝑑𝑑𝑡𝑡 

where Edelivered is the electrical energy delivered by the batteries during their second life, Echarging is 
the electrical energy used to charge the batteries during their second life, Ecooling is the electrical 
energy used for cooling of batteries during their second life, and Etransport is the energy used to 
transport batteries to and from their second-life applications. Energy is accounted for in units of 
TWh of electrical energy, or its equivalent. Energy used for battery transport is assumed to be 
diesel fuel for trucks, thus the TWh of diesel used was divided by a factor of 3, corresponding to 
an assumed conversion efficiency of 33 percent from diesel fuel to equivalent electricity. 

The cumulative GHG balance is a summation of actual and avoided GHG emissions to the 
atmosphere through 2050, and is defined by Equation 5. 

Equation 5: GHG Balance of Battery Second Life 

𝐺𝐺𝐺𝐺𝐺𝐺 𝐵𝐵𝑎𝑎𝐵𝐵𝑎𝑎𝐸𝐸𝐵𝐵𝑒𝑒 = 𝐺𝐺𝐺𝐺𝐺𝐺𝑐𝑐ℎ𝑎𝑎𝑑𝑑𝑎𝑎𝑑𝑑𝑎𝑎𝑎𝑎 + 𝐺𝐺𝐺𝐺𝐺𝐺𝑐𝑐𝑐𝑐𝑐𝑐𝑑𝑑𝑑𝑑𝑎𝑎𝑎𝑎 + 𝐺𝐺𝐺𝐺𝐺𝐺𝑡𝑡𝑑𝑑𝑎𝑎𝑎𝑎𝑡𝑡𝑡𝑡𝑐𝑐𝑑𝑑𝑡𝑡 − 𝐺𝐺𝐺𝐺𝐺𝐺𝑎𝑎𝑑𝑑𝑐𝑐𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑 

where GHGcharging is the GHG emissions from producing electricity to charge the batteries during 
their second life, GHGcooling is the GHG emissions from producing electricity to cool the batteries 
during their second life, GHGtransport is the GHG emissions from transporting the batteries to and 
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from their second-life applications, and GHGavoided in the GHG emissions avoided by not 
generating fossil-based electricity during peak demand times. GHG emissions were accounted 
for in units of million metric tons of CO2 equivalent (Mt CO2e). 

Energy stored on energy invested (ESOI) was introduced by Barnhart & Benson (2013) to 
compare the energy stored and delivered by a device during its service life to the energy needed 
to manufacture the device. Barnhart & Benson defined ESOI with Equation 6. 

Equation 6: ESOI as Defined by Barnhart & Benson (2013) 

𝐸𝐸𝑆𝑆𝐸𝐸𝐸𝐸𝐵𝐵&𝐵𝐵 =
𝐶𝐶0 × 𝜆𝜆 × 𝜂𝜂 × 𝐷𝐷

𝐶𝐶0 × 𝜀𝜀
 

where C0 is the initial storage capacity of the battery, λ is the number of cycles in the battery’s 
service life, η is the round-trip charge-discharge efficiency, D is the depth of discharge, and ε is 
the cradle-to-gate embodied primary energy per unit of electrical storage capacity. This 
definition is of limited use for battery second-life analysis, as the numerator ("energy stored") 
may aggregate the energy stored and delivered during both first and second lives, it does not 
explicitly consider battery degradation during the service life, and the denominator includes 
only the energy used at the beginning of the life cycle for material sourcing and battery 
manufacturing. Here, a metric is required that distinguishes between energy stored during first 
and second lives, as well as between energy inputs during manufacturing, operation, 
reconfiguration, and end-of-life stages. The ESOI metric was adapted by considering only the 
energy stored during the second life in the numerator, and the direct transport and cooling 
energy inputs needed to enable this second life in the denominator. ESOI' is defined in 
Equation 7. 

Equation 7: Second-life Energy Stored on Energy Invested 

𝐸𝐸𝑆𝑆𝐸𝐸𝐸𝐸′ =
𝐸𝐸𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑

𝐸𝐸𝑐𝑐𝑐𝑐𝑐𝑐𝑑𝑑𝑑𝑑𝑎𝑎𝑎𝑎 + 𝐸𝐸𝑡𝑡𝑑𝑑𝑎𝑎𝑎𝑎𝑡𝑡𝑡𝑡𝑐𝑐𝑑𝑑𝑡𝑡
 

where Edelivered, Ecooling and Etransport are as defined in Equation 4. Further seeking to refine the metric, 
researchers defined ESOI'', which also includes round-trip efficiency losses in the denominator 
(Equation 8). 

Equation 8: ESOI Including Round-Trip Efficiency Losses 

𝐸𝐸𝑆𝑆𝐸𝐸𝐸𝐸′′ =
𝐸𝐸𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑

𝐸𝐸𝑡𝑡𝑑𝑑𝑎𝑎𝑎𝑎𝑡𝑡𝑡𝑡𝑐𝑐𝑑𝑑𝑡𝑡 + 𝐸𝐸𝑐𝑐𝑐𝑐𝑐𝑐𝑑𝑑𝑑𝑑𝑎𝑎𝑎𝑎 + 𝐸𝐸𝑑𝑑𝑐𝑐𝑡𝑡𝑡𝑡
 

where Edelivered, Ecooling and Etransport are as in Equation 4, and Eloss is defined in Equation 9. 

Equation 9: Second-life Round-Trip Energy Loss 

𝐸𝐸𝑑𝑑𝑐𝑐𝑡𝑡𝑡𝑡 = 𝐸𝐸𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑 �
1
𝜂𝜂
− 1� 
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where η is the round-trip charge-discharge efficiency. The ESOI'' metric (Equation 8) considers 
the round-trip efficiency loss as invested operational energy input, rather than as simple 
reduction of delivered energy as in Barnhart & Benson’s definition (Equation 6). 

The system model consists of four elements: battery supply, battery degradation, battery 
second-life use, and battery logistics. Battery supply is described in detail in Chapter 2; the 
other elements are described in the following sections. 

5.2.2 Battery Degradation 
It is broadly understood that battery performance degrades with usage and time, but 
comprehensive and quantitative description of such degradation remains elusive. More is 
known about early stages of battery degradation, such as the growth of solid electrolyte 
interface (Millner, 2010). Less is known about later stages of degradation such as lithium 
plating, growth of dendrites, and structural failure (Barré et al. 2013). This makes the robust 
modeling of life-cycle battery performance more challenging, as the literature lacks detailed 
quantitative description of the latter stages of battery life. 

It is generally recognized that a battery will experience an initial capacity loss that decreases in 
rate, after which an inflection point is reached and the battery suffers terminal degradation that 
increases in rate (Spotnitz 2003). In this analysis, researchers developed a simple model to 
generically describe this pattern of life-cycle PEV battery degradation based on 3 parameters: 
Phase 1 initial degradation rate, Phase inflection point, and Phase 2 terminal degradation rate. 
The energy storage capacity of the battery is tracked over time, expressed as a percent of the 
capacity when the battery was new. Phase 1 of the degradation profile is described 
mathematically by Equation 10. 

Equation 10: Phase 1 Battery Degradation Profile 

𝐶𝐶1 = 100− (303 × 𝐷𝐷𝑥𝑥) 

where C1 is the energy storage capacity of the battery during Phase 1 (expressed as percent of 
original capacity), D is the ideal cumulative energy discharged from the battery (disregarding 
capacity loss), and X is an exponential factor with a base-case value of 0.55. This equation is 
based on Wang et al. (2011), who considered the ideal cumulative energy discharge (D) by as 
the number of cycles multiplied by the depth of discharge multiplied by the full cell capacity 
(i.e. not including the effects of capacity degradation). The cumulative energy discharge 
accounting for battery degradation was recalculated, and the analysis was conducted based on 
cumulative energy delivered by the battery, expressed in multiples of original storage capacity. 
The capacity loss function corresponds to graphite-LiFePO4 cells with a charge/discharge rate of 
2C and a temperature of 60 °C (Equation 11 from Wang et al. 2011). Other Li-ion battery 
chemistries and usage conditions will result in other degradation patterns, though due to the 
scarcity of robust literature data, these uncertainties were assumed to be accommodated within 
the parameter variations. The Phase 1 degradation rate is varied by changing the value of the 
exponential factor X from its base-case value of 0.55, to a faster degradation value of 0.60 and a 
slower degradation value of 0.50. 
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The inflection point was modelled between initial Phase 1 and terminal Phase 2 degradation, 
specified as a percentage of original energy storage capacity. In the absence of more compelling 
data, a base-case inflection point at 60 percent of original capacity was assumed, with values of 
80 percent and 40 percent corresponding to faster and slower degradation. The terminal Phase 2 
degradation was modelled based on exponential decay defined by Equation 11. 

Equation 11: Phase 2 Battery Degradation 

𝐶𝐶2 = 𝑃𝑃 − 1.006(𝐸𝐸×𝑌𝑌) 

where C2 is the energy storage capacity of the battery during Phase 2 degradation (expressed as 
percent of original capacity), P is the location of the inflection point between Phases 1 and 2 (in 
percent of original capacity), and E is the cumulative energy delivered by the battery during 
Phase 2 (in multiples of original full storage capacity), and Y is a multiplier. The Phase 2 
degradation rate was varied by changing the value of the multiplier Y from its base case value 
of 1 to a faster degradation value of 2.0 and slower degradation value of 0.50. The base-case 
degradation curve, as well as curves representing variations of each parameter, is shown in 
Figure 19. 

Figure 19: Modeled Range of Battery Degradation Profiles 

 
Each profile is composed of an initial Phase 1 degradation, followed by an inflection point and terminal 
Phase 2 degradation. 
Source: Lawrence Berkeley National Laboratory 
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Within each defined battery degradation profile, researchers consider various arrangements for 
first and second lives. The base-case condition assumes the first life (as a PEV battery) continues 
until the energy storage capacity decreases to a threshold value of 70 percent of its original 
value when the car was new. The battery (or its disassembled cells) is assumed to be placed into 
a stationary second-life application, which continues until the storage capacity declines to a 
final threshold, assumed to be 30 percent in the base case. This is illustrated in Figure 20 for the 
base-case conditions, where 53 percent of total life-cycle electricity is delivered during the first-
life and 47 percent is delivered during the second-life. Figure 21 shows corresponding results 
for alternative values of battery degradation parameters. To determine the significance of 
different threshold locations, the first-life threshold was varied between 60 percent and 80 
percent, and the second-life threshold was varied between 20 percent and 40 percent. 

Figure 20: Relation between First-life and Second-life of Batteries 

 
The relation was determined by the degradation profile and by first- and second-life end-of-life thresholds. 
The base-case is shown in the image above. 
Source: Lawrence Berkeley National Laboratory 
 

  



46 

Figure 21: Battery Degradation Profiles under Base-case Conditions (Top); Low and High Values 
of Phase 1 Degradation Rate, Phase Inflection Point, and Phase 2 Degradation Rate 

 
The percent numbers in the image above indicate the percentage of total life-cycle electricity output that 
is delivered during the first-life and second-life. 
Source: Lawrence Berkeley National Laboratory 
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5.2.3 Battery Second Life Use 
Researchers considered the use of second-life PEV batteries to enable diurnal energy shifting, 
allowing expanded use of intermittent renewable energy sources such as wind and solar. This 
daily storage and discharge of renewable electricity is assumed to substitute electricity 
generation from natural gas-fired power plants. In a sensitivity analysis, researchers considered 
the substitution of electricity from coal-fired power plants. Although coal-fired electricity is 
unlikely in California, the second-life batteries may, in principle, be used in other locations 
where coal-fired power is more common. The base-case analysis assumes second-life batteries 
are used in decentralized photovoltaic (PV) facilities, while decentralized wind and centralized 
renewable generation were considered in a sensitivity analysis. GHG intensities of electricity 
generation are based on median values from recent authoritative LCA studies. For PV 
electricity, average values for crystalline silicon PV (Hsu et al., 2014) and thin-film PV (Kim et 
al., 2014) were used. For wind electricity, data from Dolan & Heath (2012) was used. Emissions 
from natural gas-fired electricity are based on O'Donoughue et al. (2012), while those from coal-
fired electricity are based on Whitaker et al. (2012). These values are detailed in Table 4. 

Table 4: Life-cycle GHG Emissions from Four Electricity Sources  

Electricity source Life-cycle GHG emission 
(gCO2e/kWh) Reference 

Wind 15 Dolan & Heath (2012) 

Photovoltaic 27 Hsu et al. (2014), Kim et al. (2014) 

Natural gas 510 O'Donoughue et al. (2012) 

Coal 980 Whitaker et al. (2012) 
Source: Lawrence Berkeley National Laboratory 
 

Researchers considered the direct energy use and GHG emissions from activities needed to 
enable second-life applications, including battery cooling. Cooling of batteries during use is 
important to avoid excessive degradation due to overheating. Researchers estimated the waste 
heat to be removed based on the round trip efficiency of the batteries, and the cooling energy 
inputs based on the coefficient of performance (COP) of the cooling system, described by 
Equation 12. 

Equation 12: Cooling Energy Requirements 

𝐸𝐸𝑐𝑐𝑐𝑐𝑐𝑐𝑑𝑑𝑑𝑑𝑎𝑎𝑎𝑎 = 𝐸𝐸𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑 × 1−𝜂𝜂
𝐶𝐶𝐶𝐶𝐶𝐶

 (8) 

where Ecooling is the electrical energy needed for battery cooling, Edelivered is the electricity delivered 
by the batteries, η is the round-trip charge/discharge efficiency of the batteries (in percent), and 
COP is the coefficient of performance of the cooling system. The base-case analysis assumes a 
round-trip efficiency of 80 percent for the second-life batteries, and a COP of 4. In a sensitivity 
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analysis, researchers considered a round-trip efficiency range of 70 percent to 90 percent, and a 
COP range of 2 to 6. 

5.2.4 Battery Logistics 
Battery logistics analysis is described in detail in Chapter 3, and summarized here. Researchers 
conducted geographic information system (GIS) modeling to estimate the energy use and GHG 
emissions associated with the supply chain of the PEV batteries during their second life stage. 
Geospatial optimization methods were used to model the effects of the supply chain logistics, 
integrating energy and environmental metrics (Corbett et al., 2010). A location-allocation 
analysis was used to determine the optimal facility locations, with the objective function to 
minimize the total weighted distance (ton-km) that the batteries must travel from their initial 
collection points to their second life application locations and finally to their recycling point. For 
modeling the supply chain logistics, the weighted distance is the appropriate function to 
minimize, as the environmental impacts are linearly related to the total distance traveled. 

Researchers modeled three alternative logistics scenarios for battery second-life use: 
decentralized solar, decentralized wind, and centralized wind/solar. The centralized scenario 
assumes that all batteries are used in a single large facility in Kern County, where the average 
solar and wind intensities are both greatest. The decentralized solar and wind scenarios assume 
that the amounts of second-life batteries are distributed to different counties in proportion to 
each county’s resource intensity for solar and wind, respectively. The total resource intensity of 
each county is calculated using the direct normal irradiance, taking into consideration the 
minimum intensity requirements for electricity production (IPCC, 2011). These three scenarios 
cover the range of potential battery distribution alternatives that are expected to occur through 
2050. 

To model the supply chain, researchers created a network dataset in an ArcGIS software 
environment to calculate the transportation distances. Batteries are assumed to be transported 
by trucks. Data on California’s highway network and the borders of the counties were sourced 
from the US Department of Commerce and the US Census Bureau (US Census Bureau, 2013). 
Solar and wind intensity data were sourced from the National Renewable Energy Laboratory 
(NREL, 2014a). Geographically explicit car dealership locations were acquired from the Data 
Lists website (Data Lists, 2014). 

The collection points of the vehicle batteries are assumed to be car dealerships, as these 
locations are currently used for battery testing and take-back (Smith, 2014). The mass of 
batteries that would be disposed at each collection point is calculated based on the spatial 
location of each dealership and the amount of batteries disposed per county in 2050 (Scown et 
al., 2013). The transportation between consumers and collection points is typically not 
accounted for in the literature, and is excluded from this model (Yeh & Chow, 1996). From the 
initial collection points the batteries are transported to dismantling facilities for processing, 
where 10 percent of the battery mass is assumed to be diverted to traditional recycling (Spiers, 
2014). The batteries are then transported to the location of their second-life applications, and at 
the end of their second life they are sent to a centralized battery recycling facility. For the facility 
optimization process, all California county centroids were considered as candidate locations 
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(Vidovic et al., 2011). GIS modeling identified the optimal facility locations for each logistics 
scenarios, and transportation energy use and GHG emissions were calculated. GIS modeling 
results for the 3 different logistics scenarios for second-life battery use in California 
(decentralized solar, decentralized wind, and centralized renewable) are shown in Chapter 3. 

5.3 Results and Discussion 
Modeled results for PEV battery disposal, based on scenario projections of PEV adoption in 
California through 2050, are shown in Figure 22. Under base-case conditions, about 60,000 
metric tons of batteries per year are anticipated for 2050, ranging from 30,000 to 90,000 tons/year 
in the slow and fast adoption scenarios. This battery supply represents about 15,000 MWh of 
original (when the batteries were new) energy storage capacity, ranging from 8,000 to 25,000 
MWh. 

Figure 22: Projected Supply of Disposed Vehicle Batteries in California  

 
Left figure shows tons of batteries disposed per year; right figure shows MWh of original storage capacity 
of batteries disposed each year. 
Source: Lawrence Berkeley National Laboratory 

 

The energy and emissions intensities of transporting batteries to and from their locations of 
second-life use are detailed in Chapter 3, based on results from the GIS analysis of supply-chain 
logistics. This includes collection of the batteries from dealerships, distribution of batteries to 
the second-life site, and final transport from the second-life site to a recycling facility. The 
centralized renewable scenario requires the least energy use and emits the least GHG, per ton of 
battery used in second-life applications. The decentralized solar scenario is most intensive, 
while the decentralized wind scenario is medium intensity. 

The energy balance under base-case conditions is shown in Figure 23, and detailed in Table 5. In 
2050, about 15 TWh of electricity are projected to be delivered by second-life PEV batteries. This 
will require about 18 TWh of renewable intermittent electricity for charging, taking into account 
the assumed round-trip efficiency of 80 percent. Cooling of the second-life batteries in use 
requires about 1 TWh of electricity. Energy use for transport of batteries to and from their 
locations of second-life use is comparatively minor. 
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Figure 23: Energy Balance of Modeled Second-life Battery Use in California 

 
Second-life batteries are projected to deliver about 15 TWh of electricity per year in 2050. 
Source: Lawrence Berkeley National Laboratory 

 

  



51 

Table 5: Base-case Analysis of Second-life Battery Use 

 Cumulative 2050 

 TWh TWh per year 

Energy balance -31.76 -4.43 

 Battery transport -0.06 -0.01 

 Battery cooling -5.28 -0.74 

 Battery charging -132.10 -18.43 

 Electricity delivered 105.68 14.75 

    Mt CO2e Mt CO2e per year 

GHG balance -50.11 -6.99 

 Battery transport 0.05 0.01 

 Battery cooling 0.14 0.02 

 Battery charging 3.59 0.50 

 Substituted electricity generation -53.90 -7.52 

This table shows cumulative (2015-2050) and annual (2050 only) components of energy and GHG 
balances. 
Source: Lawrence Berkeley National Laboratory 

 

The GHG balance under base-case conditions is shown in Figure 24. In 2050, charging the 
second-life batteries will emit about 0.5 Mt CO2e per year, due to life-cycle emissions from 
intermittent PV electricity generation. Discharging this electricity later during the diurnal cycle, 
to replace natural gas-fired electricity generation, will avoid about 7.5 Mt CO2e per year. Battery 
transport and cooling are projected to cause relatively minor GHG emissions. 
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Figure 24: GHG Balance of Modeled Second-life Battery Use in California 

 
This figure is based on the assumption that batteries will be charged with solar PV electricity and battery 
discharging will replace natural gas-fired electricity generation. Net emissions reduction of about 7 
MtCO2e per year is projected for 2050. 
Source: Lawrence Berkeley National Laboratory 

 

Figure 25 shows the sensitivity of three performance metrics to parameter variations. The 
central axis of each figure shows the base case value of the metric, and each bar shows the effect 
of each individual parameter shifting to its low value (left bars) and high value (right bars). The 
cumulative electricity delivered, cumulative energy balance, and cumulative GHG reduction 
metrics are all very sensitive to the PEV adoption scenario, which directly affects the amount of 
second-life batteries available. These metrics are also sensitive to the battery degradation 
inflection point, when the batteries change from initial Phase 1 degradation to terminal Phase 2 
degradation. The cumulative GHG reduction is very sensitive to the source of substituted 
electricity. If coal-fired electricity is displaced by the renewable intermittent electricity 
supported by second-life batteries (instead of base-case natural gas-fired electricity), the 
cumulative GHG emission reduction is doubled. 
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Figure 25: Change in Three Metrics Due to Variation of Individual Parameters between “Low” and 
“High” Values 

 
From top to bottom: cumulative second-life energy delivered; cumulative energy balance; cumulative 
GHG emission reduction. For each metric, the six most significant parameters are shown. 
Source: Lawrence Berkeley National Laboratory 

 

The ESOI performance of second-life systems is primarily affected by round-trip efficiency and 
cooling system COP. For base-case conditions, the ESOI’ metric of second-life battery use is 19.8. 
The broader ESOI’’ metric, including energy investment for battery transportation and cooling 
as well as round-trip losses, is 4.0. The sensitivity of these performance metrics to parameter 
variations is shown in Figure 26. The ESOIB&B (see Equation 6) of new lithium-ion batteries was 
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estimated by Barnhart & Benson (2013) at about 10, comparing the first-life electricity output to 
the primary energy investments for raw material supply and battery manufacture. 

Figure 26: Change in Second-life ESOI Metrics Due to Variation of Individual Parameters between 
“Low” and “High” Values 

 
Top figure shows ESOI’ including operational energy investments for battery transport and cooling. 
Bottom figure shows ESOI’’ also including round-trip charge-discharge losses as operational energy 
investment. For each metric, the four most significant parameters are shown. 
Source: Lawrence Berkeley National Laboratory 
 

This exploratory analysis suggests that second-life use of retired PEV batteries may play a 
modest, though not insignificant, role in California’s future energy system. The electricity 
delivered under base-case modeling conditions, 15 TWh/year in 2050 (Figure 23 and Table 5), is 
roughly 5 percent of the current total electricity production in California of about 300 TWh/year. 
The total anticipated electricity production in California in 2050 is about 310 TWh/year (based 
on Scenario 2 of Greenblatt (2013). Electricity production from onshore wind, distributed PV, 
and centralized PV is anticipated to increase from current low values to about 100 TWh/year by 
2050. The second-life battery use analyzed here is projected to support and enable part of this 
increased production, by storing electricity produced during peak generation periods and 
delivering it later during peak demand periods. 

Under base-case modeling conditions, second-life battery use in California is projected to 
reduce GHG emissions by about 7 MtCO2e/year in 2050 (Figure 24 and Table 5). This is roughly 
1.5 percent of current total California emissions, and is about 4 percent of the anticipated total 
emission reduction of 160 MtCO2e/year from 2010 to 2050 (based on Scenario 2 of Greenblatt 
(2013)). Emissions from electricity production are anticipated to decrease from about 100 
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MtCO2e/year currently to about half that amount in 2050, and the 7 MtCO2e/year avoided due to 
projected second-life battery use comprise about 15 percent of that reduction. 

The magnitude of energy and climate benefits of second-life battery use is directly proportional 
to the number of retired vehicle batteries available, which depends strongly on the future 
adoption rate of PEVs in California. This PEV adoption rate, bounded by the slow and fast rates 
shown in Figure 22, thus becomes a key uncertainty surrounding future benefits of second-life 
battery use in California. The capacity threshold for retirement of batteries from a PEV is also 
identified as an important variable. In the analysis, the base-case threshold between first and 
second lives is 70 percent of original capacity, and moving this threshold to 60 percent or 80 
percent is found to have a significant impact of second-life performance. PEV batteries are 
typically considered to be still useful in vehicles until they degrade to about 70 percent of their 
original capacity, though there has been little rational analysis to support this retirement 
threshold. Recent work suggests that PEV functionality remains high, even as the battery 
capacity drops below the commonly accepted threshold of 70 percent capacity. Saxena et al. 
(2015) found that a large fraction of the mobility needs of US drivers continue to be satisfied 
with PEV batteries with less that 70 percent remaining capacity. This suggests that future 
rationalization of the retirement threshold may lengthen first lives for batteries, and 
correspondingly shorten their second-life potential. 

For any given amount of batteries produced, the degradation profile determines how much 
electricity can be stored and delivered by the batteries during their life spans. Acknowledging 
the complexity of physical and chemical factors determining battery degradation, researchers 
simply characterized the degradation based on three parameters: Phase 1 initial degradation 
rate, Phase inflection point between Phases 1 and 2, and Phase 2 terminal degradation rate. The 
inflection point location has the greatest influence on second-life battery performance. The base-
case assumes that Phase 1 degradation continues until the battery reaches 60 percent of its 
original storage capacity, when terminal Phase 2 degradation begins. Delaying this inflection to 
40 percent of original capacity significantly increases second-life opportunities, while early 
inflection at 80 percent of original capacity substantially decreases them. The rate of Phase 1 
degradation has moderate impact on second-life, while the rate of Phase 2 degradation has very 
little impact. These results suggest that designing and building batteries such that terminal 
degradation is delayed or avoided, will enable much greater opportunities for second-life 
benefits. 

The uncertainties of this analysis are substantial, due to the limited quantitative data available 
on performance of batteries during their full life-cycle. Much more is known about battery 
performance during their earlier stages of use and degradation, while comparatively little detail 
is available to inform robust modeling of later stages of battery use and degradation. 
Researchers accommodated this uncertainty by conducting a comprehensive sensitivity analysis 
of model parameters, to determine which system-wide factors are most critical for successful 
second-life battery use. Several parameters are particularly significant: PEV adoption rates, 
inflection point between initial and terminal degradation, threshold between first- and second-
life applications, round-trip change/discharge efficiency, and the source of electricity generation 
that is offset by enabled renewable generation. Future work should focus on understanding and 
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optimizing these factors, to allow second-life PEV batteries to play a beneficial role in 
California’s energy future. 
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GLOSSARY 

Term Definition 

ANL Argonne National Laboratory 

APEEP Air Pollution Emission Experiments and Policy Model 

BAU Business as Usual 

CO2e Carbon Dioxide Equivalent 

COP Coefficient of Performance 

DNI Direct Normal Irradiance 

EIO-LCA Economic Input-output Life-cycle Assessment 

Energy Balance A summation of major system-wide energy flows 

EPA Environmental Protection Agency 

ESOI Energy Stored on (Energy) Invested 

DOT Department of Transportation 

GHG Greenhouse Gas 

GHG Balance A summation of system-wide actual and avoided GHG emissions to the 
atmosphere 

GIS Geographic Information Systems 

GREET Greenhouse Gas, Regulated Emissions, and Energy Use in Transportation 
Model 

HOV High-occupancy Vehicle 

Hydrometallurgical 
Recycling 

Lithium-ion battery recycling process that uses chemical leaching to 
extract materials 

kWh Kilowatt-hour 

LCA Life-cycle Assessment 

LIB Lithium-ion Battery 

MSA Metropolitan Statistical Area 

Mt Million metric tons 

MWh Megawatt-hour (=103 kWh) 
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Term Definition 

NETL National Energy Technology Laboratory 

NHTS National Household Transportation Survey 

NREL National Renewable Energy Laboratory 

PEV Plug-in Electric Vehicle 

PM Particulate Matter 

PV Photovoltaic 

Pyrometallurgical 
Recycling 

Lithium-ion battery recycling process that uses smelting to recover 
precious metals and slag 

Second Life Use of retired PEV batteries for additional electricity storage applications 

Sigmoid Curve “S”-shaped curve used to approximate market adoption of new 
technologies 

TWh Terawatt-hour (=109 kWh) 

VOC Volatile Organic Compounds 

VSL Value of Statistical Life 

ZEV Zero Emission Vehicle 
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APPENDIX A: 
PEV Adoption Assumptions 

Table 1: County-level Data 

County 
name FIPS 

Census 
region 
name 

CBSA 
code 

MSA: 
1:metro 
2:micro 

Central 
or 

outlying 

Early 
adopter 
MSA? 

Median 
income 

nat’l 
%ile 

Population 
density 

nat’l %ile 

Adoption 
group 

number 

Alamed
a 6001 Pacific 41860 1 Central 1 86% 80% 1 

Alpine 6003 Pacific 0 0 NO MSA 0 31% 0% 5 

Amador 6005 Pacific 0 0 NO MSA 0 48% 12% 5 

Butte 6007 Pacific 17020 1 Central 0 20% 23% 5 

Calaver
as 6009 Pacific 0 0 NO MSA 0 54% 9% 4 

Colusa 6011 Pacific 0 0 NO MSA 0 34% 3% 5 

Contra 
Costa 6013 Pacific 41860 1 Outlying 1 92% 71% 1 

Del 
Norte 6015 Pacific 18860 2 Central 0 6% 5% 5 

El 
Dorado 6017 Pacific 40900 1 Outlying 0 84% 19% 2 

Fresno 6019 Pacific 23420 1 Central 0 34% 26% 5 

Glenn 6021 Pacific 0 0 NO MSA 0 19% 4% 5 

Humbol
dt 6023 Pacific 21700 2 Central 0 11% 7% 5 

Imperial 6025 Pacific 20940 1 Central 0 13% 7% 5 

Inyo 6027 Pacific 13860 2 Central 0 33% 0% 5 

Kern 6029 Pacific 12540 1 Central 0 34% 18% 5 

Kings 6031 Pacific 25260 1 Central 0 31% 20% 5 

Lake 6033 Pacific 17340 2 Central 0 7% 10% 5 

Lassen 6035 Pacific 45000 2 Central 0 50% 1% 4 

Los 
Angeles 6037 Pacific 31100 1 Central 1 66% 86% 1 

Madera 6039 Pacific 31460 1 Central 0 29% 14% 5 

Marin 6041 Pacific 41860 1 Central 1 97% 47% 1 
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County 
name FIPS 

Census 
region 
name 

CBSA 
code 

MSA: 
1:metro 
2:micro 

Central 
or 

outlying 

Early 
adopter 
MSA? 

Median 
income 

nat’l 
%ile 

Population 
density 

nat’l %ile 

Adoption 
group 

number 

Maripos
a 6043 Pacific 0 0 NO MSA 0 25% 2% 5 

Mendoci
no 6045 Pacific 46380 2 Central 0 18% 4% 5 

Merced 6047 Pacific 32900 1 Central 0 22% 23% 5 

Modoc 6049 Pacific 0 0 NO MSA 0 4% 0% 5 

Mono 6051 Pacific 0 0 NO MSA 0 67% 1% 4 

Montere
y 6053 Pacific 41500 1 Central 1 69% 22% 1 

Napa 6055 Pacific 34900 1 Central 0 82% 27% 2 

Nevada 6057 Pacific 46020 2 Central 0 70% 19% 4 

Orange 6059 Pacific 31100 1 Central 1 90% 91% 1 

Placer 6061 Pacific 40900 1 Central 0 87% 32% 2 

Plumas 6063 Pacific 0 0 NO MSA 0 21% 1% 5 

Riversid
e 6065 Pacific 40140 1 Central 0 70% 37% 4 

Sacram
ento 6067 Pacific 40900 1 Central 0 67% 72% 4 

San 
Benito 6069 Pacific 41940 1 Outlying 0 76% 8% 3 

San 
Bernardi
no 

6071 Pacific 40140 1 Central 0 61% 19% 4 

San 
Diego 6073 Pacific 41740 1 Central 1 78% 58% 1 

San 
Francisc
o 

6075 Pacific 41860 1 Central 1 90% 97% 1 

San 
Joaquin 6077 Pacific 44700 1 Central 0 49% 48% 5 

San Luis 
Obispo 6079 Pacific 42020 1 Central 0 68% 15% 4 

San 
Mateo 6081 Pacific 41860 1 Central 1 97% 75% 1 

Santa 
Barbara 6083 Pacific 42060 1 Central 1 72% 25% 1 
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County 
name FIPS 

Census 
region 
name 

CBSA 
code 

MSA: 
1:metro 
2:micro 

Central 
or 

outlying 

Early 
adopter 
MSA? 

Median 
income 

nat’l 
%ile 

Population 
density 

nat’l %ile 

Adoption 
group 

number 

Santa 
Clara 6085 Pacific 41940 1 Central 0 98% 71% 2 

Santa 
Cruz 6087 Pacific 42100 1 Central 0 79% 52% 3 

Shasta 6089 Pacific 39820 1 Central 0 20% 9% 5 

Sierra 6091 Pacific 0 0 NO MSA 0 28% 0% 5 

Siskiyou 6093 Pacific 0 0 NO MSA 0 7% 1% 5 

Solano 6095 Pacific 46700 1 Central 0 82% 50% 2 

Sonoma 6097 Pacific 42220 1 Central 0 76% 37% 3 

Stanisla
us 6099 Pacific 33700 1 Central 0 43% 39% 5 

Sutter 6101 Pacific 49700 1 Central 0 39% 25% 5 

Tehama 6103 Pacific 39780 2 Central 0 11% 3% 5 

Trinity 6105 Pacific 0 0 NO MSA 0 6% 1% 5 

Tulare 6107 Pacific 47300 1 Central 0 26% 17% 5 

Tuolumn
e 6109 Pacific 38020 2 Central 0 33% 4% 5 

Ventura 6111 Pacific 37100 1 Central 0 91% 45% 2 

Yolo 6113 Pacific 40900 1 Outlying 0 70% 28% 3 

Yuba 6115 Pacific 49700 1 Central 0 20% 21% 5 
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APPENDIX B: 
Battery Production Data Sources 

Table 1: Material Inputs for Lib Chemistries 

  LMO LFP NMC 

  Mass (kg) Data Source Mass (kg) Data Source Mass (kg) Data Source 

Cathode - 
Active 
Marerial 

68.8 ANL (2013a) 55.5 EPA (2013) 41.9 EPA (2013) 

Anode - 
Graphite 

23.8 ANL (2013a) 28.8 ANL (2013a) 26.6 ANL (2013a) 

Binder (PVDF) 4.7 ANL (2013a) 4.7 ANL (2013a) 4.7 ANL (2013a) 

Copper 20.6 ANL (2013a), 
Scown (2010) 

20.6 ANL (2013a), 
Scown (2010) 

20.6 ANL 
(2013a), 
Scown 
(2010) 

Aluminum 36.1 ANL (2013a), 
Scown (2010) 

36.1 ANL (2013a), 
Scown (2010) 

36.1 ANL 
(2013a), 
Scown 
(2010) 

Electrolyte: 
LiPF6 

3.4 ANL (2013a) 3.4 ANL (2013a) 3.4 ANL (2013a) 

Electrolyte: 
Ethylene 
Carbonate 

10.0 ANL (2013a) 10.0 ANL (2013a) 10.0 ANL (2013a) 

Electrolyte: 
Dimethyl 
Carbonate 

10.0 ANL (2013a) 10.0 ANL (2013a) 10.0 ANL (2013a) 

Plastic: 
Polypropylene 

3.2 ANL (2013a) 3.2 ANL (2013a) 3.2 ANL (2013a) 

Plastic: 
Polyethylene 

0.6 ANL (2013a), 
Scown (2010) 

0.6 ANL (2013a), 
Scown (2010) 

0.6 ANL 
(2013a), 
Scown 
(2010) 

Plastic: 
Polyethylene 
Terephthalate 

2.3 ANL (2013a) 2.3 ANL (2013a) 2.3 ANL (2013a) 

Steel 2.6 ANL (2013a), 
Scown (2010) 

2.6 ANL (2013a), 
Scown (2010) 

2.6 ANL 
(2013a), 
Scown 
(2010) 
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  LMO LFP NMC 

  Mass (kg) Data Source Mass (kg) Data Source Mass (kg) Data Source 

Thermal 
Insulation 

0.6 ANL (2013a) 0.6 ANL (2013a) 0.6 ANL (2013a) 

Coolant: 
Glycol 

1.9 ANL (2013a) 1.9 ANL (2013a) 1.9 ANL (2013a) 

Electronic 
Parts (BMS) 

2.3 ANL (2013a) 2.3 ANL (2013a) 2.3 ANL (2013a) 

TOTAL 191.0   182.6   166.8   
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APPENDIX C: 
Battery Recycling Data Sources 

Table 1: Pyrometallurgy Recycling Resource Inputs, Emission Factors, and Data Sources 

  Inputs 
(kg) 

Outputs 
(kg) 

Fossil 
Fuels 
(MJ) 

Coal 
(MJ) 

Natural 
Gas (MJ) 

Petroleum 
(MJ) 

Electricity 
(kWh) 

GHGs 
(kg 
CO2e) 

Source/Notes 

Coke 400                 

Production     102.97 102.97     15.60 52.00 NREL (2014b), Coal 
energy density: EIA 
(2014) 

Combustion               1472.00 Gursel & Custodio 
(2014) 

Transportation 
(mi) 

 100   55.23     55.23   4.21   

Limestone 
(Ca(OH)2) 
Scrubber 

27.75   0.86 0.03 0.15 0.67 0.46 0.12 Limestone production: 
Gursel & Custodio 
(2014), Scrubbing 
process: Rosemount 
Analytical (2009), 
assume water is 
recycled, 3% coke 
sulfur content 

Sand 110                 

Production     48.00         3.31 CMU (2014), purchaser 
price: USGS (2003) 

Transportation     15.19     15.19   1.16   
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  Inputs 
(kg) 

Outputs 
(kg) 

Fossil 
Fuels 
(MJ) 

Coal 
(MJ) 

Natural 
Gas (MJ) 

Petroleum 
(MJ) 

Electricity 
(kWh) 

GHGs 
(kg 
CO2e) 

Source/Notes 

Limestone 100                 

Production     3.09 0.11 0.55 2.43 1.67 0.44 Gursel & Custodio 
(2014), assumed 60% 
CaO content. 

Pyroprocessin
g 

              44.00   

Transportation 
(mi) 

100    13.81     13.81   1.05   

Li-ion 
Batteries 

1200                 

Transportation 
(mi) 

143   422.29     422.29   31.45   

Cu 84                 

Ni 30                 

Fe 420                 

Al 60                 

Co 168                 

Li2O 12                 

Other 426                 

Slag 200 679               

Processing for 
Cement Use 

    298.53       844.98 59.04 Gursel & Custodio 
(2014), assumed 20% 
slag in concrete mix. 
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  Inputs 
(kg) 

Outputs 
(kg) 

Fossil 
Fuels 
(MJ) 

Coal 
(MJ) 

Natural 
Gas (MJ) 

Petroleum 
(MJ) 

Electricity 
(kWh) 

GHGs 
(kg 
CO2e) 

Source/Notes 

Portland 
Cement Offset 

    2225.93 1.14 6.33 30.08 326.70 735.37 Gursel & Custodio 
(2014) 

Alloy 
(Offsets) 

0 538               

Cu 0 78 1341.41 299.43 803.57 238.41 192.18 223.14 Virgin material 
production from ANL 
(2013a) 

Ni 0 30 2640.60 12.16 1339.99 1288.45 107.43 258.60   

Fe 0 272 9716.16 7080.9
9 

2048.62 586.55 534.77 1092.99   

Co 0 158 13859.4
8 

63.84 7032.58 6763.06 3854.09 1358.09   

Alloy 
Leaching 

    68.10    ANL (2013b) 

TOTAL (per 
kg battery) 

    -6.83 -3.00 -1.69 -0.55 0.10 -1.15   
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Table 2: Pyrometallurgy Recycling Resource Inputs, Emission Factors, and Data Sources 

  

Water 
Consumption 
(L) 

Water 
Withdrawals 
(L) 

PM2.5 (kg 
PM2.5) 

PM10 (kg 
PM10) 

NOx (kg 
NOx) 

SO2 (kg 
SO2) 

VOCs 
(kg 
VOCs) Source/Notes 

Coke 

Production     0.57   0.31 1.60 1.28 

NREL (2014b), Coal 
energy density: EIA 
(2014) 

Combustion         6.20   2.14E-02 
Gursel & Custodio 
(2014) 

Transportation     1.78E-03 7.90E-03 0.04 3.30E-03 4.50E-03   

Limestone 
(Ca(OH)2) 
Scrubber 0.01 7.27 2.02E-05 2.55E-05 8.16E-05 1.96E-04 4.45E-05 

Limestone 
production: Gursel & 
Custodio (2014), 
Scrubbing process: 
Rosemount 
Analytical (2009), 
assume water is 
recycled, 3% coke 
sulfur content 

Sand 

Production   606.34 0.01 0.06 0.01 8.87E-03 1.82E-03 

CMU (2014), 
purchaser price: 
USGS (2003) 

Transportation     4.90E-04 2.17E-03 0.01 9.08E-04 1.24E-03   

Limestone 

Production 0.04 26.20 7.29E-05 9.20E-05 2.94E-04 7.07E-04 1.60E-04 Gursel & Custodio 
(2014), assumed 
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Water 
Consumption 
(L) 

Water 
Withdrawals 
(L) 

PM2.5 (kg 
PM2.5) 

PM10 (kg 
PM10) 

NOx (kg 
NOx) 

SO2 (kg 
SO2) 

VOCs 
(kg 
VOCs) Source/Notes 

60% CaO content. 

Pyroprocessing                 

Transportation     4.45E-04 1.98E-03 9.78E-03 8.25E-04 1.13E-03   

Li-ion Batteries 

Transportation 
(mi)     0.01 0.06 0.24 0.02 0.03   

Cu                 

Ni                 

Fe                 

Al                 

Co                 

Li2O                 

Other                 

Slag 

Processing for 
Cement Use   639.77 0.37 1.66E-03 0.08 0.24   

Gursel & Custodio 
(2014), assumed 
20% slag in 
concrete mix. 

Portland 
Cement Offset 81.77 5668.33 0.08 1.00 3.51 1.74 0.05 

Gursel & Custodio 
(2014) 

Alloy (Offsets) 
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Water 
Consumption 
(L) 

Water 
Withdrawals 
(L) 

PM2.5 (kg 
PM2.5) 

PM10 (kg 
PM10) 

NOx (kg 
NOx) 

SO2 (kg 
SO2) 

VOCs 
(kg 
VOCs) Source/Notes 

Cu 0.09 4602.59 0.09 0.27 0.35 11.26 2.57E-02 

Virgin material 
production from ANL 
(2013a) 

Ni 0.00 0.00 0.09 0.19 0.36 11.83 1.51E-02   

Fe 1674.20 1796.70 0.64 1.96 1.23 3.96 9.44E-01   

Co 0.00 0.00 0.37 0.85 1.87 2.53 7.92E-02   

Alloy Leaching        ANL (2013b) 

TOTAL (per kg 
battery) -0.77 -6.32 3.96E-04 -1.73E-03 -3.15E-03 -1.12E-02 6.50E-04   
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