Advancements in Residential Water Metering Technology

Arthur Burns, Sensus USA
Overview

• Mechanical Water Meter Technology
 – Types
 – Performance Limitations
 – Effects of Wear

• New Solid-State Water Meter Technology
 – Benefits
 – 3 Different Types of Technology
 – Applications
Traditional Mechanical Meters

• Positive Displacement
 – Oscillating Piston
 – Nutating Disc

• Velocity
 – Multi-Jet
 – Single Jet
Nutating Disc

Oscillating Piston

Single Jet Meters

- Water Enters Single Inlet Port
- Small Aperature and Impeller

Source: Metron Farnier
Multi-Jet Meters

- Water Uniformly Spread Across Multiple Inlet Ports
- Flows across an impeller
- Impeller velocity determines flow rate
- Register determines volume
Benefits of Mechanical Meters

• Proven Technology
• Widely Accepted and Trusted in the Industry
• Technology has Evolved and Improved Over more than 100 Years
• Several Types Can Be Rebuilt - Extending their Useful Life
Disadvantages of Mechanical Meters

• Inherent Low Flow Performance Limitations
• Accuracy Relies on Close Tolerances that are Subject to Wear
• Particulates in Water Can Cause Problems
• Calcium in Water Can Cause Problems
• Maintenance Can Be Required
• Significant Pressure Loss
• Correct Sizing is Very Important
¾” Mechanical Meter Accuracy at Low Flows

No Meters Registered More than 50% of Flow at 0.06 GPM
No Meters Registered More than 25% of Flow at 0.03 GPM

Actual New Meter Performance Measured by an Independent Laboratory

Source: Apparent Losses Caused By Meter Inaccuracies at Ultralow Flows, Richards et.al, AWWA Journal, June 2010
Implications for Water Conservation

• You Can’t Count What You Can’t Measure

• Even the Best AMI System Can’t Detect Leaks Below a Meter’s Lowest Flow Sensitivity

• A Leak of 0.05 GPM (1/20th GPM) amounts to 39 Teaspoons, or about 0.8 Cups per Minute

• This is Not Just a “Drip” Every Few Minutes
Slow Leak?

- 0.05 GPM is **2,160 Gallons** over 30 Days, or **25,920 Gallons** per Year from **ONE** meter
- Across 10,000 Meters, this could amount to **259,200,000 Gallons** per Year (795 Acre Feet)
- How Many Meters Have Leaks at or Below 0.05 GPM?

 WE DON’T REALLY KNOW BECAUSE THE MECHANICAL METERS CANNOT MEASURE THESE FLOWS – EVEN WHEN NEW!
What We Do Know

• AWWA States That 16% of a Meter’s Usage Occurs at Low Flows (Less Than 1 GPM)
• Mechanical Meters Measure Only A Small Percentage of Flow Below 1/4 GPM – Even When New
• [Unmeasured Flow] Results in Significant Revenue Loss for the Utility

Source: Apparent Losses Caused By Meter Inaccuracies at Ultralow Flows, Richards et.al, AWWA Journal, June 2010
Sources of Non-Revenue Water

AWWA Standard Water Balance

<table>
<thead>
<tr>
<th>System Input (Corrected)</th>
<th>Authorized Consumption</th>
<th>Billed Authorized Consumption</th>
<th>Billed Water Exported</th>
<th>Revenue Water</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>Billed Metered Authorized Consumption</td>
<td>Billed Un-metered Authorized Consumption</td>
<td></td>
</tr>
<tr>
<td>Un-billed Authorized Consumption</td>
<td></td>
<td>Un-billed Metered Authorized Consumption</td>
<td>Un-billed Un-metered Authorized Consumption</td>
<td></td>
</tr>
<tr>
<td>Water Losses</td>
<td>Apparent Losses</td>
<td>Unauthorized Use (including theft of water)</td>
<td>Consumption Meter Error</td>
<td>Non-Revenue Water</td>
</tr>
<tr>
<td></td>
<td>Real Losses</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Source: AWWA
Apparent Losses From Meters

• Based on test studies of anonymous water utilities, typical average customer meter under registration is about 5 to 6 percent.

Graph Source: Apparent Losses Caused By Meter Inaccuracies at Ultralow Flows, Richards et.al, AWWA Journal, June 2010
Solid State Meter Technology
3 Different Types of Technology

• Meter Manufacturers Have Responded to Changing Needs By Developing New Residential Meter Technologies:
 – Fluidic Oscillator
 – Residential Ultrasonic
 – Residential Magnetic
Benefits of Solid State Technology

• Generally, These Technologies Share the Following Traits:
 – No Moving Parts to Wear Out
 – Particles Do Not Cause Meters to Stick or Stop
 – Reduced Pressure Loss
 – No Maintenance
 – Better Low Flow Accuracy
 – Better High Flow Durability
Fluidic Oscillator Technology
From Elster Metering – SM700

Diagram: Elster Metering
Elster SM700 in Action

Fluidic Oscillator Theory

- Meter Design Generates Oscillations
- Electrodes Count Oscillations
- Higher Flow Rate = More Oscillations per Time Period

Source: Elster Metering
Residential Ultrasonic Technology from Badger Meter – E Series
Ultrasonic Meter Theory

Ultrasonic flow meters measure the difference of the transit time of ultrasonic pulses propagating with and against flow direction. This time difference is a measure for the average velocity of the fluid along the path of the ultrasonic beam. By using the absolute transit times both the averaged fluid velocity and the speed of sound can be calculated. Using the two transit times t_{up} and t_{down} and the distance between receiving and transmitting transducers L and the inclination angle α one can write the equations:

$$
\nu = \frac{L}{2 \sin(\alpha)} \frac{t_{up} - t_{down}}{t_{up} t_{down}} \quad c = \frac{L}{2} \frac{t_{up} + t_{down}}{t_{up} t_{down}}
$$

Ultrasonic Meter Measurement Calculation

Typical Ultrasonic Meter Diagram

Source: Shenitech.com
Badger E-Series in Action

Transducers + Temperature = Accurate Consumption

Source: Badger Meter
Challenges for Ultrasonic Technology

• Requires Power to Generate Sound
• Low Flow and Combination Flow Accuracy Requires High Sample Rate
• No Way to Generate Sound Without Using Power
Residential Magnetic Technology from Sensus USA - iPERL
Magnetic Meter Theory

• Uses Faraday’s Law of Electromagnetic Induction
• A Magnetic Field is Applied to the Flow Tube
• Electrodes Measure Voltage Across the Field
• The Water Flow Rate Changes the Voltage Across the Field - Faster Flow Equals Higher Voltages
• Periodically “Flip” Field to Increase Accuracy
Electro Motive Force (emf) Theory: In Motion

\[\text{emf} = BLv \]
EMF Theory: iPERL Measurement

E = B \cdot L \cdot v

(Magnetic Flow Meter Principle)

Where:
E = Electro-motive Force (Voltage) induced at the electrodes
B = Magnetic field (magnetic flux density) generated by drive coil and pole pieces.
V = Velocity of water flow crossing measurement area
L = Distance between two pole pieces.

1. Flowtube
2. Pole piece
3. Measurement chamber
4. Electrode
5. Magnetic field
6. Magnetic drive coil
Challenges for Magnetic Technology

• Can Measure Continuously but Typically Must Use Lots of Power to Keep Magnetic Field Active
• Electromagnets Traditionally Used to Generate Field Required Lots of Power
• Noisy Electrodes = Bad Signal to Noise Ratio
• Low Flow and Combination Flow Accuracy Requires High Sample Rate
Remanence: What and Why?

- Definition: “The magnetization left behind in a material after the external magnetic field is removed”
- Only Ferromagnetic Materials Have This Property
- Traditional Electromagnets Typically Have High Loss
- Remanent Operation Permits Continuous Measurement Without Applying Power Continuously
Additional Considerations

• Optimal system
 – Electrical energy used to create field
 – Field maintained with zero energy input
 – Magnetic energy recovered back to electrical energy

• “Remanent” magnetic system
 – Only uses energy to switch the field
 – Field Area is Relatively Small and Efficient
 – Electrodes are Very Low Noise

Low noise allows the field to be flipped less often, uses less power, and improves repeatability
Advanced Alarms

• Solid State Meters Deliver Advanced Features and Alarms:
 – On-Board Data Logging at Register
 – High Resolution Leak Alarms
 – Backflow Alarms
 – Empty Pipe Alarms (Tamper or Water Line Break)
 – Flow Rate Logging
Solid State Meter Performance
Remember The ¾” Mechanical Meter Test Data?

No Meters Registered More than 50% at 0.05 GPM

No Meters Registered More than 25% at 0.03 GPM

Most Registered 0% at 0.03 GPM

Solid State Meters Can Measure Much Lower Flows at Very High Accuracy

Graph Source: Apparent Losses Caused By Meter Inaccuracies at Ultralow Flows, Richards et.al, AWWA Journal, June 2010
Solid State Accuracy

Source: Sensus USA
Accuracy Curve - Linearity

Source: Sensus USA
Accuracy Curve - Longevity

Source: Sensus USA
Elster SM 700 Head Loss and Accuracy

Source: Elster Metering
Badger E-Series 3/4” Accuracy

3/4-Inch E-Series Accuracy Chart

Source: Badger Meters

Flow Rate in GPM

Accuracy in Percent
iPERL Head Loss Curve
E-Series Head Loss Curve

3/4-Inch E-Series Pressure Drop

Source: Badger Meters
Utah Water Research Laboratory Study

Conclusions:

“Reduction of apparent losses caused by meter inaccuracies at low flows can result in substantial increases in revenue for a utility.”

“Additionally, increased meter accuracy will allow for more equitable billing of customers.”

Richards, Johnson and Barfuss; Utah Water Research Laboratory
Conservation and Revenue

• Solid State Technologies Offer a Win-Win for Utilities, Consumers, and the Environment
 – They Can Reduce Apparent Losses From Meters, Allowing Utilities to Bill for More of the Water Actually Delivered
 – They Can Help Eliminate the Smallest Leaks
 – They Can Pay for Themselves in a Few Years
 – They Deliver More Information Than Ever Before
 – Environmentally Friendly Composition
Conclusions

• Mechanical Meters Are Still a Viable Solution — They Have Served Us Well for Over 100 Years

• New Technologies *Available Today* Offer Compelling Financial and Ecological Benefits

• They Compliment AMI System Deployments but Offer Many Benefits Independent of AMI

• Utilities Should Explore and Understand the Potential of These Meter Technologies
Showcase Sponsors

Signature Sponsor

DELTA

Platinum Sponsor

EMCO Systems Solutions, Inc.

Media Sponsors

SAN FRANCISCO Business Times

SUSTAINABLE INDUSTRIES

Silver Sponsors

Bay Area Water Supply & Conservation Agency

Golden Gate Litho

San Francisco Public Utilities Commission
Thanks for Coming!

All Water Conservation Showcase presentations will be available at

www.usgbc-ncc.org/wcs

For a certificate of attendance, be sure to put your name and email on the list at the door.