Drip and Microirrigation for Trees, Vines, and Row Crops

(with special sections on buried drip)

Water Management Series
Irrigation Training and Research Center (ITRC)
Department of Agricultural Engineering
California Polytechnic State University (Cal Poly) 1994

By:

Charles M. Burt
Stuart W. Styles

Table of Contents:

Section 1.

Drip And Microirrigation - General Principles

Chapter 1. Background To Drip/Microirrigation

Chapter 2. Irrigation Efficiency and Uniformity

Introduction
Initial Definitions and Terms
 Distribution Uniformity (Du)
 Emission Uniformity (Eu)
 Beneficial Use
 Reasonable Use
 Irrigation Efficiency (Ie)
 Irrigation Sagacity (Is)
On-Farm Irrigation Evaluations

Water Destination Diagrams

Distribution Uniformity
 General
 Coefficient Of Variation (Cv)
 The Global Uniformity Concept
 Combining Various Du Components
 Du Of A Brand New System
 Actual vs. Potential Du
Microirrigation Deterioration with Time
Evaluating Drip/Microirrigation Systems

Chapter 3. System Flow Rate Requirements

Crop Evapotranspiration (Et)
Published Et Values
Soil Wetted Volume
Application Rates
 Net Vs. Gross
 Peak Et Application Rate Per Day
 Hours of Pump Operation Per Day or Week
 The Effects of A Slight Under-Irrigation

Chapter 4. Emitter/Sprayer Designs

General
Emitter Attachment
Emitter Discharge Exponent
Emitter Path Type
Microsprayers with Accumulators
Flow Rates and Plugging

Chapter 5. Hose Friction and Hydraulics

General
Friction Computations
 Darcy-Weisbach Equation
 Hazen-Williams Equation Computations
 Example Friction Computations
Pressures Along A Hose
Spaghetti and Coupling Losses for Microsprayers
Hose Inlet Pressure Computations

Chapter 6. Strategies for Sizing Pipes and Hoses Throughout A System

Introduction
 Design Tools
 Design Procedures
Pipeline System Description
 Conventional Description
 Holistic Description
 Critical Path
Possible Pipeline Sizing Strategies
Summary of Pressure Regulation Strategies For Drip/Micro
Chapter 7. Pressures, Pipe Sizing, And Pipe Positioning

Manifold Pipe Positioning on Sloping Ground
Determination of Allowable Pressure Differences in The System
Pre-Set Pressure Regulators
 General
 Inlet Flow Rate Determination with Pre-Set Pressure Regulators

Chapter 8. Filtration (Solids Removal)

Introduction
Reservoirs
Pre-Screening
 Simple Bar Grills (Debris Racks)
 Perforated, Flat Steel Screen Plates
 Rotating, Self-Cleaning Screen Belts
 Self-Cleaning Rotating Screen
Gravity Overflow Screens
Centrifugal-Action Sand Separators
Tubular Screen Filters
Media Tanks
 Introduction
 Application
 Media Selection
 Selection Of The Number And Sizes Of Tanks
Media And Tank Sizing Summary
Underdrain Design
Accessory Hardware For Media Tanks
Initial Cleaning Of The Media
Backflush Adjustments
Obtaining Sufficient Backflush Flow Rates
Backflush Water Disposal
Tank Materials And Coatings
Pressure Ratings
Disc Filters
Rotary Cleaning Tubular Screen Filters
Other Special Screen Designs

Chapter 9. Chemical Injection for Water Treatment

Introduction
Uniformity
Constant Rate vs. Variable
Injector Location
Other Injection Notes
Plugging Prevention
Slimy Bacteria
Iron and Manganese Oxides
Iron and Manganese Sulfides
Calcium and Magnesium Carbonate Precipitation
Agronomic Purposes

Chapter 10. Irrigation Consumer Bill Of Rights(TM)

Section 2.
Row Crop Drip

Chapter 11. Introduction to Row Crop Drip

Chapter 12. Background

Chapter 13. Benefits From Row Crop Drip

Water Savings
Energy Savings
Crop Yield and Quality Improvements
Other Grower Benefits
Total Energy Consumption
Remaining Concerns
Crop Response to Row Crop Drip

Chapter 14. Typical Field Layouts (Designs)

Chapter 15. Management and Design Considerations

Reducing Root Intrusion Problems
Prevention of Soil Back-Siphoning into The Tape
Tape Installation/Extraction Equipment
Tape Orientation
Tape Depth Placement
Hole Spacing
Low Flow vs. Medium Flow vs. High Flow Path
Tape Wall Thickness
Tape Materials
Emitter/Outlet Design
Initial Damage from Crushing of Tape, Insects
Salinity and Using Sprinklers vs. Drip for Germination/Transplanting
Fertigation Location
Flushing
Flow Rate/Acre
Land Preparation
Minimum Land Area for A Trial
Land Grading
Tape Alignment
Manifold Materials
Other Rules

Chapter 16. Design Of Tape/Hose Laterals

Manifold/Tape Connections
Distribution Uniformity Concept
Emitter Discharge Exponents
Tape/Hose Friction

Chapter 17. Sizing Of Supply (Header) And Flushing Manifolds for Row Crop Drip

Introduction
Required Tape Inlet Pressure During Flushing
Required Tape Inlet Flow Rate During Flushing

Chapter 18. Example Design of Manifold Sizing

Conclusions

Chapter 19. Grower Explanation of Drip System Characteristics

Section 3.

Permanent Buried Drip On Trees/Vines

Back To Top

Chapter 20. Permanent Buried Drip On Trees/Vines

Major Problems
Burial Depth
Hose and Emitter Selection
Surface Water Ponding
Air Vents
Hydraulics
Location of The Hoses
Other
Section 4.

Design Examples 1A & 1B: Drip Irrigation

Back To Top

Chapter 21. Design Examples 1A & 1B: Drip Irrigation

Given Conditions
Find
Solution
1. Estimate the Gph/Vine Needed
2. Estimate the Number of Emitters/Vine
3. Examine the Number of Irrigation Blocks Needed
4. Determine the Allowable Pressure Difference between Emitters

Design #1A: Pressure Regulator At Each Hose
4. Determine the Allowable Pressure Difference between Emitters (Cont.)
5. Selection of the Proper Pre-Set Pressure Regulator
6. Manifold (Submain) Pipe Positioning on Sloping Ground
7. Hose Hydraulic Calculations
8. Submain (Manifold) Pipe Sizing
9. Filtration
10. Flow Meter
11. Total Dynamic Head Required From the Pump

Design Example 1B: Drip Irrigation
4. Design Parameters
5. Design Strategy
6. Manifold Pipe Positioning on Sloping Ground
7. Submain Sizing
8. Pressure Required At the Inlet To Each Submain
9. Mainline Sizing
10. Filtration, Etc.
11. Total Dynamic Head Required From the Pump

Section 5.

Design Example 2: Microspray Design
Chapter 22. Design Example 2: Microspray Design

Given Conditions
Solution
 1. Estimate the Gph/Tree Needed
 2. Estimate the Number of Sprayers/Tree
 3. Examine the Number of Irrigation Blocks Needed
 4. Determine the Allowable Pressure Difference between Emitters/Sprayers
 5. Hose Design
 6. Pressure Regulator Selection And Adjustment Of Flow Rates
 7. Block Configurations
 8. Buried PVC Pipe Sizing
 9. Filtration
 10. Chemical Injection
 11. Flow Meter
 12. Total Pumping Pressure Required
 13. Reducing the Total Pumping Pressure Required

Appendix

Index

References
Questions or comments:

Questions and comments about the manual should be directed to:

Irrigation Training and Research Center (ITRC)
Department of Agricultural Engineering
California Polytechnic State University (Cal Poly)
San Luis Obispo, California 93407
PH: (805) 756-2434
FAX: (805) 756-2433

ORDERING INFORMATION:

Copies of this publication can be ordered from:

Irrigation Training and Research Center (ITRC)
Department of Agricultural Engineering
California Polytechnic State University (Cal Poly)
San Luis Obispo, California 93407
PH: (805) 756-2434
FAX: (805) 756-2433