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Executive Summary

A study was conducted to quantify the ground motion amplification that takes place at the base
of bushings mounted on electric substation transformers as a result of the flexibility of the trans-
former tank and turrets to which they are connected. This study was part of a comprehensive proj-
ect sponsored by the Pacific Gas and Electric Company to reduce the seismic vulnerability of gas
and electrical distribution and transmission systems, and was undertaken to assess the adequacy of
the amplification factor of 2.0 specified by the Institute of Electrical and Electronic Engineers in
Standard IEEE 693-1997 for the seismic qualification of transformer bushings. The study in-
cluded field tests of typical transformers to obtain experimentally their natural frequencics and
damping ratios, the development of simple analytical models that closely matched the experimental
data, and the calculation of the transformers’ dynamic response under different earthquake excita-
tions using these analytical models.

The field tests were conducted on four different units at four different Pacific Gas & Electric
substations: (a) a Pauwels, single phase, 500 kV transformer at the Moss Landing substation in
Moss Landmg, Cahf (b) a Westinghouse, single-phase, 500 kV transformer at the Midway sub-
station in Buttonwdlow Calif.; (c) a Smit, three-phase 230 kV transformer at the Gold Hill sub-
station in Folsom, Calif.; and (d) a Westinghouse, single-phase, 230 kV transformer at the Ignacxo
substation in Novato, Calif. The tests were conducted by placing a 160-1b shaker on top of the
transformers’ tank, laterally exciting the transformers with a random force of up to 100 pounds,
and measuring the transformers’ acceleration or velocity response at several points along their
height. The fundamental frequencics obtained from such ficld tests were 3.4, 2.4, 4.1, and 3.8 Hz,
respectively for each of the transformers listed above. The modal damping ratios were all centered
around the average of 2 per cent of critical.

Three-dimensional analytical models were developed for the two 500 kV transformers and their
seismic response calculated using either a response spectrum or a time-history analysis. The mod-
els were developed using linear elastic beam elements with lumped masses to represent the behav-
ior of the 500-kV and 230-kV bushings, turrcts, and transformer casc. All other components were
considered as rigid elements connected to the transformer’s centers of gravity with a single lumped
mass located at the components’ centers of gravity. The exception were the conservator tank-for
the Pauwcls 500 kV transformer and the lightning arrcster for the 500 kV Westinghousc trans-
former, both flexible components with low natural frequencies, which were also modeled with
beam elements and lumped masses. The transformers® base was assumed fully fixed so soil-
structure interaction effects were neglected. Similarly, no oil sloshing effccts were considered since
the transformers” tanks are supposed to be always completely full under operating conditions. In
both cases, adjustments were made to the dimensions and properties of the transformers® compo-
nents to match as closely as possible the values of the transformers’ lower natural frequencies ob-
tained from the field tests. The excitations considered in the analysis were (a) the 2 %-damping re-
sponse spectrum specified in Standard IEEE 693-1997 for the seismic design of substations (IEEE
693 response spectrum); (b) acceleration time historics that envelope the low frequency range of
the 2 %-damping IEEE 693 response spectrum; (c) acceleration time histories that envelope the
high frequency range of the 2 %-damping IEEE 693 response spectrum; (d) acceleration time his-
tories recorded at Los Gatos near-fault station during thc 1989 Loma Pricta carthquake; and (c)
acceleration time histories recorded at the Olive View Hospital near-fault station during the 1994
Northridge earthquake. In each case, the analysis was carried out considering simultaneously the
three components of ground motion. In the case of the IEEE 693 response spectrum, the excitation
along each of the three orthogonal directions was defined by this spectrum, except that in the verti-
cal direction the spectrum was scaled by a factor of 2/3.
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For each of the excitations considered, the transformers’ peak response and the corresponding
ground motion amplification factors were calculated at the base of the 500-kV and 230-kV bush-
ings. These amplification factors were obtained by dividing the computed peak shear force at the
base of the bushings by the corresponding shear force when the bushings are assumed mounted di-
rectly. on the ground. Respectively for the 500-kV and 230-kV bushings, amplification factors as
large ¢ as 1,89 and 3.39 were obtained for the Pauwels transformer and 1.74 and 3. 95 for the West-
inghouse transformer.

It is found, thus, that the amplification factors for the 500-kV bushings are within the amplifi-
cation factor of 2.0 specified by Standard IEEE 693 but not those for the 230-kV bushings, which
exceed the IEEE 693 amplification factor by almost a factor of two. Another conclusion that can
be drawn from the study is that the use of simple analytical models calibrated with experimental
data constitutes an adequate but inexpensive way to define the earthquake input to equipment in
electric substations. It is recommended, however, the use of impact tests as opposed to the use of
the shaker employed in this study, as it was found that the input energy imparted by the shaker was
in many instances inadequate to define the transformers’ dynamic properties with sufficient clarity.
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Chapter 1

INTRODUCTION

1.1 Background

When the distance between the generating station and the load is significant in electric power
transmission systems, it is advantageous to transmit electricity at a high voltage. For the same
power, a high voltage line carries less current and thus has fewer losses for the same conductor
size. In such cases, voltage transformers are installed at the generating station end to step up the
voltage and at the load end to step it down. Ordinarily, voltage transformers are also installed be-
tween the generating station end and the load end. Transformers and related auxiliary equipment
are generally placed in a dedicated plant known as a substation.

An integral part of a voltage transformer is its bushings, which serve to isolate the metal rod
that connects the external power line to the coils inside the transformer and prevent a flashover.
Normally, bushings are filled with oil, which surrounds the connecting metal rod and insulates it.
The external part of a bushing is usually constructed with porcelain, which further insulates the
connecting metal rod. To prevent a flashover, the porcelain is designed to have a relatively large
distance along the external surface between the power line and the transformer coils. This large
distance is achieved with “petticoats,” the accordion-like rings along the external surface of the
bushing.

Transformer bushings have a limited capacity to withstand strong earthquakes. The porcelain
used in their construction has little strength, is inherently brittle, and its non-homogeneous nature
causes a wide variation in strength in otherwise identical members. Furthermore, their long slender
design compounds the problem by creating a large bending moment at the base of the bushing,.

Transformers in electric power substations have been the subject of severe damage during past
carthquakes. For example, transformers in substations owned by the Pacific Gas and Electric
Company in northern California were damaged during the 1989 Loma Prieta earthquake. Most of
the damage was to 500- and 230-kV transformers and consisted of cracked porcelain bushings, an-
choragc failurcs, and devclopment of oil Icaks (Benuska, 1990). Damage was also obscrved in
transformers at substations owned by Southern California Edison during the 1994 Northridge
earthquake in southern California. During this earthquake, transformers éxperienced problems
with their bushings, anchorage, radiators, lightning arrcsters, and conscrvator tanks (Schiff, 1995).
The most common form of failure was a shift in the porcelain bushings in relation to the flange at
their base, resulting in oil leaks. However, two 500-kV transformer bushings experienced exten-
sive porcelain cracking. Similarly, in an isolated case, the bolts attaching the bushing-supporting
turret to the transformer tank broke, causing the bushing to fall and shatter.

1.2 Objective

In view of the damage experienced by electric power transmission and distribution systems
during past earthquakes and a recognition of their susceptibility to earthquake damage during fu-
ture events, Pacific Gas and Electric (PG&E), the California Energy Commission, and the Pacific
Earthquake Engineering Research Center (PEER) initiated a comprehensive research project with
the purpose of reducing the seismic vulnerability of these systems and improving their safety and



reliability. An important component of this project were studies directed to reduce the vulnerability
of existing equipment in electric power substations known to be critical for the post-earthquake op-
erability of the entire transmission system. A task within this component aimed at estimating the
level of ground motion amplification that takes place at the base of the bushings mounted on elec-
tric substation transformers as a result of the flexibility of the transformer tanks and turrets to
which they are connected. Quantification of this factor has important implications in the design
and retrofit of transformer bushings, as only limited information in this regard is currently avail-
able. The research herein reported was dedicated to this task. Hence, the objective of this study
was to shed some light as to what is the magnitude of such an amplification factor and assess, in
addition, thc adequacy of thc amplification factor specified by Standard IEEE 693-1997 for the
seismic qualification of transformer bushings.

1.3 Approach

The objectives of the study were accomplished by means of experimental and analytical inves-
tigations. In the experimental investigation, field tests were conducted on four different types of
transformers with the purpose of determining their natural frequencies and damping ratios. In the
analytical investigation, mathematical models that closely matched the natural frequencies obtained
from the filed tests were developed and used to determine the transformers' dynamic response to a
variety of earthquake excitations. Only 500- and 230-kV were considered in the study as experi-
cuce from past earthquakes has shown that earthquakes affect these types of transformers the most.
Also, only two different types of transformers were considered in the analytical investigation de-
spite the fact that transformér bushings are mounted in a large variety of ways that differ between

" different models and different manufacturers. The reason for this limitation was simply the enor-
mous task that would represents to consider a number that is more representative of the existing
large variety of models. The desired amplification factors were computed in terms of the maxi-
mum shear forcc observed at the level of the bushings' mounting flange when the bushings are
mounted on the transformers and the corresponding force when the bushings are assumed mounted

directly on the ground.

1.4 Previous Related Work

Not much work has been reported in the literature to define the dynamic properties of power
transformers or the seismic input to transformer bushings. The only few studies that deal with this
subject are those of Ib4fiez et al. (1973), Palk et al. (1975) Suzuki et al. (1987), and Bellorini et al.
(1996). Bellorini et al. performed experimental field tests and finite element analyses of a three-
phase, ATR, 230-kV transformer to determine the dynamic properties of the transformer and
evaluate the ground motion amplification at the level of the bushing flange and the bushing's center
of gravity. From the experimental tests, they found that the fundamental natural frequency of the
transformer was 3.5 Hz and the corresponding damping ratio was around two percent of critical.
From the finite element analyses, they found that the average ground motion amplification factor at
the level of the bushing flange and bushing's center of gravity when the transformer was subjected
to a series of different ground motions was 2.16 and 2.8, respectively. Suzuki et al. studied the ef-
fectiveness of a base-isolated scheme to reduce the response of porcelain bushings in electric power
transformers. For this purpose, they conducted a shake table test with a scaled model of a 275kV
transformer mounted on sliding isolators. The prototype weighed 617 kips and its high-voltage



bushings exhibited a natural frequency of 7.5 Hz. They also base isolated, instrumented, and
measured the response under several earthquakes of a three-phase, 154 kV spare transformer
weighing 476 kips. In both cases, they found that the isolators were effective to reduce the re-
sponse of the bushings for excitations that exceeded the frictional resistance of the isolators. Fi-
nally, Ibéfiez et al. (1973) and Palk et al. (1975) reported the results of forced vibration tests of,
among several pieces of equipment, a 386-kip, 500-kV transformer at a Los Angeles Department
of Water and Power's substation. In these tests, they found that the first three natural frequencies
of the transformer were 2.70, 3.35, and 3.38 Hz, which approximately correspond to the natural
frequencies of the oil conservator tank and the high-voltage bushing in the north-south and east-
west directions, respectively. They also found that the dampmg ratios of ﬂ:c transformer varied
between 2 and 10 per cent of critical.

1.5 Organization

This report is organized into this introductory chapter, three additional chapters, and four ap-
pendices. The details of the experimental study are presented in Chapter 3. The natural frequen-
cies and damping ratios obtained from this experimental study are also presented in Chapter 3.
Chapter 4 is devoted to the analytical investigation. This chapter describes the way this analytical
investigation was carried out and the results from the simulation studies that were conducted to
quantify the desired ground motion amplification factors. The conclusions of the study and rec-
ommendations for firture work are stated in Chapter 4. The power spectra obtained from the ex-
perimental data are shown in Appendices A through D.






Chapter 2

EXPERIMENTAL STUDY

2.1 Introduction

As mentioned above, field tests were conducted with the purpose of determining the natural
frequencies and damping ratios of representative 500- and 230-kv power transformers. This
chapter will describe the transformers tested, the procedure used to carry out the tests, and the
equipment used in these tests. It will also summarize the main results obtained from the tests.

2.2 Transformers Tested

The field tests were conducted on four different transformers at four different Pacific Gas &
Electric substations. These transformers were: (a) a Pauwels 500-kV, single-phase transformer at
the Moss Landing substation in Moss Landing, Calif.; (b) a Westinghouse 500-kV, single-phase
transformer at the Midway substation in Buttonwillow, Calif.; (c) a Smit 230-kV, three-phase
transformer at the Gold Hill substation in Folsom, Calif.; and (d) a Westinghouse 230-kV, single-
phase transformer at the Ignacio substation in Novato, Calif, Figure 2.1 through 2.9 show pano-
ramic views of these transformers, close ups of their high-voltage bushings and turrets, and details
of the bushing-turret connections. The weights and dimensions of the 500-kV transformers will be
described in detail in Chapter 3. It should be noted here that the tested transformers were all dis-
connected from the external power line to which they are connected when they are in service.
Hence, the results from these tests do not account for the interaction that might exist between a
transformcr and such an ¢xternal power linc.

2,3 Equipment

The primary equipment utilized in the field tests was a shaker, a signal analyzer, and an as-
sortment of accelerometers and seismometers. The following subsections briefly describe the main

characteristics of these pieces of equipment.

Accelerometers )
The accelerometers used were PCB Piezotronics Structcel motion sensors, Models 333A12 and

308B. These accelerometers contain 2 moving mass, a piezoelectric element, and a built-in signal
conditioner that together convert the acceleration of the moving mass to a voltage. The 308B
model has an operational range of 50g with a resolution of 0.001g and a nominal sensitivity of

100mV/g. The 333A12 model has an operational range of 5g, a sensitivity of 1V/g and a resolu-
tion of 0.0005 g. The frequency range of both models is between 1 and 3,000 Hz. These acceler-
ometers work with an external DC power unit. Those employed in the tests were Models 480, also

from Piezotronics.



Seismometers

The seismometers used were Model SS-1 Ranger Seismometers linked to a Model SC-1 Signal
Conditioner, both produced by Kinemetrics. The SS-1 Ranger Seismometer is a high-sensitivity
portable spring-mass instrument with electromagnetic transduction, specifically designed for a va-
riety of seismic field applications. It has a permanent magnet assembly, which constitutes its seis-
mic mass, and a coil that is attached to its frame. Its spring-mass system produces a voltage pro-
portional to the velocity imparted to its mass, The SC-1 signal conditioner is a low-noise wide-
band amplifier with up to a 142-dB gain. When the SS-1 Ranger seismometer is used as a sensor,
the system’s sensitivity outputs + 6 volts if the vibratory motion produces a dlsplacement of 1.5x
10* meters, a velocity of 4 x 107 meters/second, or an acceleration of 2 x 10 meters/sec’. Its fre-
quency range is between 0.03 and 100 Hz.

Shaker

The shaker used was a Model 400 electromagnetic shaker produced by APS Dynamics, Inc.
This shaker weighs 160 pounds, can exert a lateral force of up to 100 pounds, and has a stroke of
6.25 inches. It has a frequency range between 0 and 200 Hz. It is powered by a Model 144 ampli-
fier, also produced by APS Dynamics, Inc. The shaker is controlled by a signal generated by the
signal analyzer and fed into the shaker’s amplifier.

Signal Analyzer

The signal analyzer used was a Hewlett Packard 3567A, a PC-based system with up to 14
charmels a dynamic range of 72 dB, and a maximum frequcncy span of 12.8 kHz. Its basic func-
uon is to capture time signals and characterize these signals in either the time or the’ ﬁequency do-
main via the fast Fourier transform. It can also generate continuous random, continuous sine, and
other signals that can be used as a source for an external excitation. It consists of a personal com-
puter, application software, and measurement hardware, which together form a complete multi-
channel signal analyzing system with the capabilities to store vast amounts of data on conventional
IBM formatted media. The measurement hardware includes a HP 35654B interface/signal proces-
sor, a HP 35652A input card, and a HP 25653 A source (signal generating) card.

2.4 Test Procedure

The tests were conducted by placing the 160-Ib shaker on top (off-center) of the transformers’
tanks, laterally exciting the transformers with a random force of up to 100 pounds, and measuring
the transformers' acceleration or velocity response with the accelerometers and seismometers at
several points along their height. The general arrangement of the accelerometers and seismometers
is shown schematically in Figure 2.10. In particular, two seismometers, one along the north-south
and the other along the east-west direction, were placed on the concrete foundation and another two
on top of the tank. The accelerometers were placed on top of the bushings, also along the north-
south and east-west directions. An accelerometer was also installed on the shaker to record the in-
put signal. In the case of the Moss Landing Station transformer, the first unit tested, sensors were
also placed at some other points along the height of the transformer’s tank, turrets and bushings
with the purpose of examining in detail the variation with height of the transformer’s dynamic re-
sponse. Each transformer was tested several times, varying from test to test the direction of the
shaker, the location of the accelerometers, or the range of the sensors. In each case, the duration of
the excitation was determined automatically by the signal analyzer after specifying the desired
number of frequency lines, frequency span, and number of averages. In all tests, the number of



frequency lines was set to 400, Similarly, the frequency span was set to either from 0 to 25 Hz or
from 0 to 50 Hz. The number of averages was set to 30. The output signals from the seismome-
ters and accelerometers were digitized and recorded by the signal analyzer for processing at a later
time. .

Limited impact tests were also conducted at the Ignacio substation. In these tests, the structure
or structural component is excited by hitting it with an instrumented sledgehammer. This sledge-
hammer is implemented with a force transducer that is connected to the signal analyzer, Thus,
when the structure or structural component is impacted during an experiment, the force transducer
measures the applied force and sends the information to the signal analyzer. Once it receives this
information, the signal analyzer computes the corresponding transfer function by dividing the Fou-
rier transform of the recorded output signal by the Fourier transform of the input signal. Impact
tests offer the advantage that through a series of them one can excite all the desired components of

a structure.

2.6 Measured Natural Frequencies and Damping Ratios

The output signals from the accelerometers and seismometers were all transformed to the fre-
quency domain by the signal analyzer via the fast Fourier transform. These signals were further
processed to generate average power spectra. These average power spectra were obtained by aver-
aging the power spectra of the collected output time histories (samples). As described above, the
number of time histories considered corresponds to the number of averages set in each test. Power
spectrum averaging is an effective technique to remove extraneous noise from measurements. The
spectra obtained are presented in Appendices A through C, respectively for the Moss Landing,
Midway, Gold Hill, and Ignacio transformers.

The transformer’s natural frequencies and damping ratios were obtained from these average
power spectra. The natural frequencies were determined from the most prominent peaks in the
spectra and those that consistently appeared in several of the spectra. The damping ratios were es-
timated by means of the half-power method applied to peaks in the spectra that defined the ob-
tained natural frequencies. In this regard, it is important to note that the half-power method is, -
strictly speaking, only valid for single-degree of freedom systems. It may, nevertheless, provide
good estimates of the modal damping ratios of multi-degree-of-freedom system when there is not a
significant coupling between modes. That is, when the resonance curves from other modes are not
close to the resonance peak of the mode in question (Richardson, 1978).

The frequencies and damping ratios obtained are listed in Tables 2.1 through 2.4, In particu-
lar, it was found that the fundamental frequencies of the Moss Landing, Midway, Gold Hill, and
Ignacio transformers were 3.4, 2.4, 4.1, and 3.8 Hz, respectively. The modal damping ratios var-
ied between 0.4 and 5.4 per cent of critical, with an average around 2 per cent.






Chapter 3

ANALYTICAL STUDY

3.1 Introduction

As indicated in Chapter 1, the quantification of the amplification factors under investigation
was determined by developing simple analytical models that closely match the natural frequencies
obtained from the filed tests, and by analyzing these analytical models under a series of earthquake
excitations. This chapter describes these analytical models, the excitations used to analyze them,
and the method employed to obtain the desired amplification factors. It also describes the obtained

results.

3.2 Analytical Models

Three-dimensional analytical models were developed for the two 500-kV transformers. That
is, the Pauwels transformer at the Moss Landing substation and the Westinghouse transformer at
the Midway substation. The models were developed using linear elastic beam elements with

. lJumped masses to represent the behavior of the 500-kV and 230-kV bushings, the two supporting

. turrets, and the transformer’s tank. All other components were considered as rigid elements con-
. nected to the transformer’s centers of gravity with a single lumped mass located at the components'
“centers of gravity. The exception were the conservator tank for the Pauwels transformer and the

- lightning arrester for the Westinghouse transformer, both flexible components with low natural fre-
quencies, which were also modeled with beam elements and lumped masses. Box sections were
considered for the transformer tank and annular sections for the bushings, turrets, and lightning ar-
resters. The transformers' base was assumed fully fixed so soil-structure interaction effects were
neglected. Similarly, no oil sloshing effects were considered since the transformers’ tanks are sup-
posed to be completely full under operating conditions. In both cases, adjustments were made to
the dimensions and properties of the transformers' components to match as closely as possible the
values of the transformers’ lower natural frequencies obtained from the field tests.

The main dimensions and the nodes used in the analytical models are shown in Figures 3.1
through 3.3 for the Pauwels transformer and Figures 3.4 through 3.6 for the Westinghouse trans-
former. The configuration and dimensions (in inches) of the considered 500-kV and 230-kV
bushings are depicted in Figures 3.7 and 3.8. These dimensions and configuration correspond to
the bushings manufactured by ABB Power T&D Company, Inc., of Alamo, Tennessee. Exactly
the same bushings were considered for the two transformers. The weights considered for the Pau-
wels transformer were the following:

Tank and fittings: 16,915 Ib.
Core and coil: 252,270 Ib.
Tank oil: 91,675 Ib.
Oil conservator with oil and support: 16,068 Ib.
Lightning arrester and support: 1,036 Ib.
Headers and coolers with oil: 24,018 Ib.



Similarly, the weights considered for the Westinghouse transformer were:

Case and fittings: 48,800 Ib.
Core and coils: 254,000 1b.
Radiators: 72,000 Ib.
Main unit oil: 67,350 Ib.
Radiator oil: 20,750 1b.
Lightning arrester: 1,036 Ib.

The weight of the turrets was estimated in terms of the weight of the steel section with which
they are made and the oil contained by them in the case of the Pauwels transformer. The weights
considered for the bushings were 4,190 pounds for the 500-kV bushings and 1100 pounds for the
230-kV bushings. These weights and the dimensions shown in Figures 3.1 through 3.8 were ob-
tained from copies of the manufacturers’ drawings as well as the identification plates attached to
the transformers’ tanks. It should be noted, however, that some of the weights and dimensions
used in the study were estimated since they were not given explicitly in the drawings and the
drawings were not to scale.

The nodal masses in the analytical models were calculated according to the weights listed
abovc and the corresponding tributary volumcs. In rcgard to the masscs considercd for the trans-
formers’ tanks, it was assumed that the core and coils mass were an integral part of them. This as-
sumption was based on the fact that, according to the notes in the drawings for the Westinghouse
transformer, the core and coils inside a transformer’s tank are permanently braced to withstand
handling, shipping, and operating forces.

It should be noted at this point that the analytical models described above do not account for
many local flexibilities. An example is the flexibility of the cover plate on top of the turrets, which
serves as the mounting surface for a bushing’s flange. It has been shown that as result of this
flexibility, the natural frequency of a bushing may change appreciably from the natural frequency
that would be obtained under the assumption of a fixed base. Another example is the flexibility of
.the rubber gaskets that separate the different porcelain units in a bushing. It should be realized,
thus, that the intention of the developed analytical models was to capture the main vibrational
characteristics of the transformers. 1t should be realized too that these main vibrational character-
istics may be captured accurately if thé models have the same natural frequencies and damping ra-
tios than the prototypes they are supposed to represent. Furthermore, it should be realized that an
attempt to model these local flexibilities without a detailed knowledge of the dimensions, proper-
ties, and boundary conditions of all the transformers’ components would be just an exercise in fu-
tility.
The developed analytical models are shown in their undeformed configuration in Figures 3.9
and 3.10. ' ;

3.3 Analytical Natural Frequencies and Mode Shapes

The natural frequencies and mode shapes of the three-dimensional models described in the
foregoing section were computed using the computer program SAP 2000 (Computers and Struc-
tures, 1997). The natural frequencies obtained and a comparison with the values attained experi-
mentally are listed in Tables 3.1 and 3.2, respectively for the Pauwels and Westinghouse trans-
formers. The mode shapes for the first eight modes are depicted in Figures 3.11 through 3.18 for
the Pauwels transformer and Figures 3.19 through 3.26 for the Westinghouse transformer. From



the analysis of these figures and the animation of the mode shapes using SAP 2000, it was found
that the first six modes of the Pauwels transformer respectively corresponded to the predominant
vibration of the (1) HV bushing in the X direction; (2) HV bushing in the Y direction; (3) conser-
vator tank in the Y direction; (4) LV bushing in the X direction; (5) L'V bushing in the Y direction;
and (6) conservator tank in the X direction; where the X and Y directions respectively correspond
to the transformer’s longitudinal and transverse directions. Similarly, it was found that the first six
modes of the Westinghouse transformer corresponded to the predominant vibration of the (1) light-
ning arrester along a line between the positive X and Y directions; (2) lightning arrester along a
line between the positive X and negative Y directions; (3) HV bushing in the Y direction; (4) HV
bushing in the X direction; (5) LV bushing in the Y direction; and (6) L'V bushing in the X direc-
_tion; where the X and Y directions respectively correspond to the transformer’s transverse and lon-
. gitudinal directions.

3.4 Response Spectrum and Time History Analyses

The analytical models described above were also analyzed under a variety of earthquake exci-
tations to study the transforniers' dynamic response and quantify the desired amplification factors.
The excitations considered in this analysis were: (a) the 2 %-damping response spectrum specified
by the Institute of Electrical and Electronic Engineers for the seismic design of substations (IEEE
693 response spectrum); (b) acceleration time histories that envelope the low frequency range of
the 2 %-damping IEEE 693 response spectrum (scaled to a peak ground acceleration of 0.5 g in the
two horizontal directions and g/3 in the vertical direction); (c) acceleration time histories that en-

+velope the high frequency range of the 2 %-damping IEEE 693 response spectrum (scaled as in the

previous case); and (d) acceleration time histories recorded at Los Gatos near-fault station during
the 1989 Loma Prieta earthquake [obtained from the suit of near-fault time histories developed for
the SAC steel project (Somerville, 1997)]; and (e) acceleration time histories recorded at Olive
View Hospital near-fault station during the 1994 Northridge earthquake (also obtained from the
aforementioned suite). The IEEE 693 acceleration response spectrum for 2 per cent damping is-
shown in Figure 3.27. Figures 3.28 through 3.35 depict the aforementioned acceleration time his-
tories and their corresponding acceleration response spectra. Note that together these excitations
represent a broad variety of ground motions, ranging from excitations with a wide frequency con-
tent, such as the IEEE 693 spectrum, to excitations with a strong pulse that is characteristic of the
ground motions recorded at near-fault sites.

As with the calculation of the models” natural frequencies and mode shapes, the computation
of their dynamic response was also performed with the computer program SAP 2000, which has
the capability of representing an ‘earthquake input either in the form of a response spectrum or an
acceleration time history. In each case, this computation was carried out considering simultane-
ously three components of ground motion, two horizontal and one vertical. In the case of the IEEE
693 response spectrum, the excitation along each of the three orthogonal directions was defined by
this spectrum, except that in the vertical direction the spectrum was scaled by a factor of 2/3. It
was considered, also, that every mode was damped with a damping ratio of 2 per cent, which is the
average value obtained from the field tests. The response of interest was in all cases the shear
force at the base of the bushings as the objective of the analysis was to quantify the amplification
factors under investigation and, as indicated in Section 1.3, these amplification factors were de-
fined in terms of such forces.



3.5 Ground Motion Amplification Factors

The results of the response analysis are summarized in Table 3.3. For each of the excita-
tions considered, this table shows the peak shear force at the base of the transformers' bushings for
two different cases. In the first case, the bushings are considered mounted on the top of the turrets,
i.e., the actual turret and transformer tank flexibility is taken into account. In the second case, the
bushings are assumed mounted directly on the ground. That is, it is considered that the turrets and
transformer tanks are infinitely rigid. Table 3.3 also shows the corresponding ground motion am-
plification factors, which are computed by dividing the peak shear force obtained in the first case

by the peak shear force obtained in the second case.
It may be observed from the results in Table 3.3 that, respectively for the 500kV and 230-kV

bushings, the obtained ground motion amplification factors were as large as 1.89 and 3.39 for the
Pauwels transformer and 1.74 and 3.95 for the Westinghouse transformer. In other words, the
largest ground motion amplification factors turned out to be close to 2.0 for the 500-kV bushings

and close to 4.0 for the 230-kV bushings.
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Chapter 4

CONCLUSIONS

4.1 Summary

A study was conducted to quantify the ground motion amplification that takes place at the base
of the bushings mounted on electric substation transformers as a result of the flexibility of the
_transformer tank and turrets to which they arc connected. The study included field tests of typical
transformers to obtain experimentally their natural frequencies and damping ratios, the develop-
-ment of simple, three-dimensional, analytical models that closely matched the experimental data,
and the calculation of the transformers” dynamic response under a series of different earthquake
excitations using these analytical models. The field tests were conducted by placing a 160-Ib
shaker on top of the transformers’ tanks, laterally exciting the transformers with a random force of
up to 100 pounds, and measuring the transformers® acceleration or velocity response at several
points along their height. The calculation of the transformers’ dynamic response involved response
spectrum and time history analyses under three components of ground motion. It also entailed the
calculation of the transformers’ ground motion amplification factors at the base of the 500-kV and
230-kV bushings for each of the excitations considered. These amplification factors were obtained
by dividing the computed peak shear force at the base of the bushings by the corresponding shear
force when the bushings arc assumed mounted directly on the ground.

‘4.2 Conclusions

From the results of the analytical study, it is found that the ground motion amplification fac-
tors may be as large as 1.89 for the 500-kV bushings, and as large as 3.95 for the 230-kV bush-
ings. Hence, it is found that the amplification factors for the 500-kV bushings are within the am-
plification factor of 2.0 specified by Standard IEEE 693 but not those for the 230-kV bushings,
which exceed the Standard TEEE 693 amplification factor by a factor of almost two.

In the interpretation of these findings, it is important to keep in mind that only two out of an
existing large variety of transformers were studied. It is possible, therefore, that other types of
transformers could exhibit larger amplification factors, particularly older models with no seismic
design. It is also important to keep in mind that the experimental and analytical studies on which
these findings are based were both conducted with some limitations. The experimental studies
were limited by the small level of the force used to excite the transformers. Although useful infor-
mation was extracted with such a small exciting force, it is possible that some parts or components
were not sufficiently excited during the tests and, hence, it is possible that the contribution of these
parts or components towards the overall vibrational characteristics of the transformers was not ac-
counted for. Along the same lines, the small exciting force prevented the activation of nonlinear ef-
fects such as the interaction between internal components and the slippage of the bushings® porce-
lain units. These nonlinear effects are likely to affect the vibrational characteristics of the trans-
formers and likely to be present during a strong earthquake, although it is not know at this time
how significant this influence might be. Low excitation levels may also result in unrealistic damp-
ing values since, as is well known, these damping values may increase significantly with the level
of excitation. The limitations of the analytical study lie on the simplicity of the models used and
the assumptions made in regard to some of the dimensions and properties of the transformers’
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components. As indicated in Section 3.2, the models neglect soil-structure interaction effects and
important local flexibilities such as the flexibility of the turret cover plates on which the bushings
are mounted and the flexibility of the rubber gaskets that separate the different porcelain units in a
bushing. They also neglect the aforementioned interaction between internal components and non-
linear effects.

Despite its limitations, it is believed that the study herein reported gives an overall idea of the
dynamic properties of the investigated transformers and their response to earthquake ground mo-
tions. Therefore, another conclusion that can be drawn from this study is that the use of simple
analytical models calibrated with experimental data constitutes an adequate but inexpensive way to
define the earthquake input to equipment in electric substations.

4.3 Recommendations for Future Studies

Power transformers are large, complicated, asymmetric structures with a large number of parts
and components, materials that defy characterization, and a large number of closely coupled modes
of vibration. Further field tests are therefore recommended to investigate fully their dynamic char-
acteristics and generate the experimental data that is needed to be able to develop and calibrate ad-
vanced analytical models. To this end, it is recommended to conduct tests under levels of excita-
tions higher than the levels used in this study. In particular, it is suggested the use of impact tests
as opposed to the use of the shaker employed in this investigation, as it was found that the input
energy imparted by the shaker was in many instances inadequate to define the transformers' dy-
namic properties with sufficient clarity. An exhaustive test using an impact hammer at a large
number of locations may provide the data that is needed to thoroughly define the dynamic charac-
teristics of power transformers.

Another recommendation is the instrumentation of a number of transformers with strong mo-
tion accelerographs. Field instrumentation is the only viable alternative to investigate the actual
behavior of transformers under earthquake ground motions and may provide, in the event of a
strong earthquake, with invaluable data to validate findings from this and other studies. -
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Table 2.1, Natural frequencies and damping ratios of Pauwels 500-kV transformer from ex-

perimental data
Mode | Natural frequency | Damping ratio

(Hz) (%)
1 34 1.5
2 34 2.1
3 5.1 2.6
4 5.6 1.6
S 5.8 1.8
6 6.4 1.7
7 13.1 1.7
8 18.4 0.8
9 19.8 0.3
10 22.1 0.7

Table 2.2, Natural frequencies and damping ratios of Westinghouse 500-kV transformer

from experimental data
Mode | Natural Frequency | Damping ratio

' (Hz) (%)
1 24 3.6
2 24 3.6
3 3.1 3.8
4 3.6 3.7
5 4.6 2.3
6 6.2 2.0
7 8.2 14
8 9.2 1.6
9 10.1 1.8
10 12.0 0.7
11 19.1 0.4
12 20.2 0.4
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Table 2.3. Natural frequencies and damping ratios of Smit 230-kV transformer from experi-

mental data ’
Mode Natural frequency Damping ratio

(Hz) (%)

1 4.1 4.5
2 4.6 4.2
3 5.9 1.9
4 6.0 2.1
5 7.4 1.8
6 8.1 2.5
7 8.8 1.3
8 104 . 1.0
9 10.5 1.2
10 11.0 0.9
11 11.6 1.3
12 12.9 2.1

Table 2.4. Natural frequencies and damping ratios of Westinghouse 230-kV transformer
from experimental data

Mode Natural frequency Damping ratio

(Hz) (%)
1 3.8 ' 14
2 3.9 2.0
3 5.1 3.0
4 59 54
5 6.1 5.2
6 6.2 3.0
7 6.7 2.3
8 7.1 1.3
9 7.9 27
10 8.1 3.6
11 8.7 1.8
12 134 3.7

15



Table 3.1. Natural frequencies of Pauwels 500-kV transformer according to analytical model

and comparison with values obtained experimentally

Mode Direction Analytical natural Experimental
: frequency natural frequency

(Hz) (Hz)

1 Longitudinal 3.5 3.4

2 Transverse 35 34

3 Transverse 5.1 5.1

4 Longitudinal 55 5.6

5 Transverse 5.5 5.8

6 Longitudinal 6.4 6.4

7 Longitudinal 18.6 13.1

8 Transverse 18.8 18.4

9 Transverse 21.2 19.8

10 Longitudinal 23.1 22.1

11 Transverse 24.9 -

12 Longitudinal 30.5 -

Table 3.2. Natural frequencies of Westinghouse 500-kV transformer according to analytical

model and comparison with values obtained experimentaily

Mode Direction Analytical natural | Experimental
frequency natural frequency

(Hz) (Hz)

1 Both 24 24

2 Both 2.5 24

3 Longitudinal 3.6 -3.1

4 Transverse 3.6 3.6

5 Longitudinal 6.0 4.6

6 Transverse 6.0 6.2

7 Longitudinal 715 8.2

g Transverse 9.3 9.2

9 Both 11.1 10.1

10 Both 11.5 12.0

11 Both 15.3 19.1

12 Both 20.3 20.2
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Figure 2.1. Panoramic view of Pauwels S00-kV transformer showing oil conservator tank in
foreground
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Figure 2.3. Close-up view of turret-bushing connection in Pauwels 500-kV transformer

showing also a seisometer resting on turret cover plate
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Figure 2.4. Panaramic view of Westinghouse 500-kV transformer
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Figure 2.2, Panoramic wew of Westinghouse 230-kV transformer showang bushings and lightning arrester
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Figure 3.1. Plan view of Pauwels 500-kV transformer
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Figure 3.2. Transverse elevation of Pauwels 500-kV transformer
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Figure 3.9. Analytical model for Pauwels 500-kV transformer (note: dots represent nodal masses)
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Figure 3.10. Analytical model for Westinghouse 500-KV transformer (note: dots represent nodal masses)
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Figure 3.11. First mode of vibration, Pauwels 500-kV transformer
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Figure 3.12. Second mode of vibration, Pauwels 500-kV transformer
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Figure 3.13. Third mode of vibration, Pauwels S00-kV transformer
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Figure 3.14. Fourth mode of vibration, Pauwels S00-kV transformer
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Figure 3.15. Fifth mode of vibration, Pauwels 500-kV transformer
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Figure 3.16. Sixth mode of vibration, Pauwels S00-kV transformer
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Figure 3.17. Seventh mode of vibration, Pauwels 500-kV transformer
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Figure 3.18. Eighth mode of vibration, Pauwels 500-kV transformer
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Figure 3.19. First mode of vibration, Westinghouse 500-kV transformer
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Figure 3.20. Second mode of vibration, Westinghouse 500-kV transformer
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Figure 3.21. Third mode of vibratidn, Westinghouse 500-kV transformer
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Figure 3.22. Fourth mode of vibration, Westinghouse S00-kV transformer
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Figure 3.24, Sixth mode of vibration, Westinghouse 500-kV transformer
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Figure 3.25. Seventh mode of vibration, Westinghouse 500-kV transformer
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Figure 3.26. Eighth mode of vibration, Westinghouse 500-kV transformer
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kigure 3.28. Synthetic acceleration time histories generated to match low frequency range of
2 %-damping IEEE 693 response spectrum
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Figure 3.29. Synthetic acceleration time histories generated to match high frequency range of
2 %-damping IEEE 693 response spectrum
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Figure 3.30. Acceleration time histories recorded at Los Gatos near-fault station during the
1989 Loma Prieta earthquake
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Figure 3.31. Acceleration time histories recorded at Olive View Hospital near-fault station
during the 1994 Northridge earthquake
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Appendix A

POWER SPECTRA FROM FIELD TESTS OF PAUWELS 500-KV
TRANSFORMER AT MOSS LANDING SUBSTATION

Five separate tests were conducted on the Pauwels 500-kV transformer using up to seven sen-
sors in each test. The sensor orientation, sensor type, and correspondence between channel number
and sensor location are shown in the table below. The average power spectra corresponding to the

signals recorded by each of the listed channels are given in Figures A1 through A18.

Test No. | Direction Channel Sensor location Sensor type
1 Shaker Accelerometer
2 - Tank top Accelerometer
1 Transverse 3 Tank mid-height Accelerometer
4 Tank bottom Accelerometer
5 Foundation Accelerometer
6 Foundation Seismometer
1 Shaker Accclerometer
2 HYV turret cover plate Accelerometer
2 Transverse 3 HYV turret 2/3 height Accelerometer
4 HYV turrct bottom Accelerometer
5 HYV turret flange Accelerometer
6 Foundation Seismometer
1 Shaker Accelerometer
2 HYV turret cover plate Accelerometer
3 HYV bushing bottom Accelerometer
3 Transverse 4 HYV bushing mid-height Accelerometer
5 HYV bushing top Accelerometer
6 HV turret cover plate Seismometer
7 Foundation Seismometer
1 Shaker Accelerometer
2 HYV turret cover plate Accelerometer
3 HY bushing bottom Accelerometer
4 Longitudinal 4 HYV bushing mid-height | Accelerometer
5 HYV bushing top Accelerometer
6 HYV turret cover plate Seismometer
7 Foundation Seismometer
1 Shaker Accelerometer
2 HYV turret cover plate Accelerometer
3 HYV turret mid-height Accelerometer
5 Longitudinal 4 HV turret bottom Accelerometer
5 HYV turret flange Accelerometer
6 HYV turret cover plate Seismometer
7 Foundation Seismometer
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Figure Al. Average power spectra of signals from Channels 1 and 2, Test No. 1
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Figure A2. Average power spectra of signals from Channels 3 and 4, Test No. 1
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Figure A3, Average power spectra of signals from Channels 5 and 6, Test No. 1
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Figure A4. Average power spectra of signals from Channels 1 and 2, Test No. 2
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Figure A6. Average power spectra of signals from Channels 5 and 6, Test No. 2
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Figure A7. Average power spectra of signals from Channels 1 and 2, Test No. 3
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Figure A8. Average power spectra of signals from Channels 3 and 4, Test No. 3
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Figure A9. Average power spectra of signals from Channels S and 6, Test No. 3
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Figure Al1l. Average power spectra of signals from Channels 1 and 2, Test No. 4



200u

25u

/aiv

Mag

Peak

200u

25u

Power Spectrum Chan 3

75

Avg=30

A

TN

0 Lin

Power Spectrum Chan 4

Hz

Avg=30

25

OVLD

/div

Mag

Peak

I

N

e e ]

L™ N )

|~

B R

D g

.0 Lin

Hz

Figure A12. Average power spectra of signals from Channels 3 and Channel 4, Test No. 4
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Figure A13. Average power spectra of signals from Channels 5 and 6, Test No. 4
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Figure A17. Average power spectra of signals from Channels 5 and G, Test No. 5
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Appendix B

POWER SPECTRA FROM FIELD TESTS OF WESTINGHOUSE
500-KV TRANSFORMER AT MIDWAY SUBSTATION

Seven separate tests were conducted on the Westinghouse 500-kV transformer using up to six
sensors in each test. The sensor orientation, sensor type, and correspondence between channel
number and sensor location are shown in the table below. The average power spectra correspond-
ing to the signals recorded by each of the listed channels are given in Figures B1 through B11,

Test No. | Direction Channel Sensor location Sensor type

Longitudinal 1 Foundation Seismometer

Transverse 2 Foundation Seismometer

1 Longitudinal 3 HYV turret top Seismometer

Transverse 4 HYV turret top . Seismometer
Longitudinal 5 HV bushing top Accelerometer
Transverse 6 HV bushing top Accelerometer

Longitudinal 1 Foundation Seismometer

Transverse 2 Foundation Seismometer

2 Longitudinal 3 HV turret top Seismometer

Transverse 4 HV turret top Seismometer
Longitudinal 5 HV bushing top Accelerometer
Transverse 6 HYV bushing top Accelerometer

Longitudinal 1 Foundation Seismometer

Transverse 2 Foundation Seismometer

Longitudinal 3 HV turret top Seismometer

3 Transverse 4 HYV turret top Seismometer
.| Longitudinal 5 HYV bushing top Accelerometer
Transverge 6 HV bushing top Accelerometer

Longitudinal 1 Shaker Seismometer

Longitudinal 3 HYV turret top Seismometer

4 Transverse 4 HYV turret top Seismometer
Longitudinal 5 HYV bushing top Accelerometer
Transverse 6 HYV bushing top Accelerometer
Transverse 1 Shaker Accelerometer

5 Longitudinal 5 HYV bushing top Accelerometer
Transverse 6 HYV bushing top Accelerometer
Transverse 1 Shaker Accelerometer
6 Longitudinal 5 HV bushing top Accelerometer
Transverse 6 HV bushingtop ' | Accelerometer
Longitudinal 1 Shaker Accelerometer
7 Longitudinal 5 HYV bushing top Accelerometer
Transverse 6 HYV bushing top Accelerometer
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Figure B5. Average power spectra of signals from Channels 1 through 3, Test No, 3
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Figure B6. Average power spectra of signals from Channels 4 through 6, Test No. 3
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Figure B7. Average power spectra of signals from Channels 1, 3, and 4, Test No. 4



90
Power Spectrum ' chan 5 Avg=30

2m

250u

Jdiv

Mag . A

i
|

0 : Lin  Hz 50
Power Spectrum Chan 6 Avg=30
40u
S5u
Jdiv f\ H
Mag
Peak

" B

L A
RS R

0 Lin Hz
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Figure B10. Average power spectra of signals from Channels 1, 5, and 6, Test No. 6
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Figure B11. Average power spectra of signals from Channels 1, 5, and 6, Test No. 7



Appendix C

POWER SPECTRA FROM FIELD TESTS OF SMIT 230-KV
TRANSFORMER AT GOLD HILL SUBSTATION

Four separate tests were conducted on the Smit 230-kV transformer using up to nine sensors in
each test. The sensor orientation, sensor type, and correspondence between channel number and

sensor location are shown in the table below. The average power spectra corresponding to the sig-

nals recorded by each of the listed channels are given in Figures C1 through C12.

Test No. | Direction Channel Sensor location Sensor type
Longitudinal 1 Foundation Seismometer
Transverse 2 “Foundation Seismometer
Longitudinal 3 Tank top Seismometer
Transverse 4 Tank top Seismometer
1 Transverse 5 HV bushing top Accelerometer
Longitudinal 6 HYV bushing top Accelerometer
Longitudinal 7 Tank 1/3 height Accelerometer
Longitudinal 8 Tank 2/3 height Accelerometer
Transverse 9 Shaker Accelerometer
Longitudinal 1 Foundation Seismometer
Transverse 2 Foundation Seismometer
Longitudinal 3 Tank top Seismometer
Transverse 4 Tank top Seismometer
2 Transverse . 5 HYV bushing top Accelerometer
Longitudinal 6 . HV bushing top Accelerometer
Longitudinal 7 Tank 1/3 height Accelerometer
Longitudinal 8 Tank 2/3 height Accelerometer
Transverse 9 Shaker Accelerometer
Longitudinal 1 Foundation Seismometer
Transverse 2 Foundation Seismometer
Longitudinal 3 Tank top Seismometer
Transverse 4 Tank top Seismometer
3 Transverse 5 HYV bushing top Accelerometer
Longitudinal 6 HYV bushing top Accelerometer
Longitudinal 7 Tank 1/3 height Accelerometer
Longitudinal 8 Tank 2/3 height Accelerometer
Longitudinal 9 Shaker Accelerometer
Longitudinal 1 Foundation Scismometer
Transverse 2 Foundation Seismometer
Longitudinal 3 Tank top Seismometer
Transverse 4 Taok {op Seismometer
4 Transverse 5 HV bushing top Accelerometer
Longitudinal 6 HV bushing top Accelerometer
Longitudinal 7 Tank 1/3 height Accelerometer
Longitudinal 8 Tank 2/3 height Accelerometer
Longitudinal 9 Shaker Accelerometer
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Figure C2. Average power spectra of signals from Channels 4 through 6, Test No. 1
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Figure C3. Average power spectra of signals from Channels 7 through 9, Test No. 1
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Figure C4. Average power spectra of signals from Channels 1 through 3, Test No. 2
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Figure C5. Average power spectra of signals from Channels 4 through 6, Test No. 2
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Figure C6. Average power spectra of signals from Channels 7 through 9, Test No. 2
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Figure C7. Average power spectra of signals from Channels 1 through 3, Test No. 3
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Figure C9. Average power spectra of signals from Channels 7 through 9, Test No. 3
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Figure C10. Average power spectra of signals from Channels 1 through 3, Test No. 4
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Figure C12. Average power spectra of signals from Channels 7 through 9, Test No. 4



POWER SPECTRA FROM FIELD TESTS OF WESTINGHOUSE

Appendix D

230-KV TRANSFORMER AT IGNACIO SUBSTATION

Five separate tests were conducted on the Westinghouse 230-kV transformer using up to nine
sensors in each test. The sensor orientation, sensor type, and correspondence between channel
number and sensor location are shown in the table below. The average power spectra or frequency
- response functions corresponding to the signals recorded by each of the listed channels are given in
Figures D1 throngh D13. Note that tests 3, 4 and 5 were conducted with a sledgehammer instead
of the shaker used in the other tests. In these special tests, the transformer was excited by hitting

« the HV bushing or the lightning arrester with the sledgehammer.

Test No. {| Direction Channel Sensor location Sensor type
Longitudinal 1 Shaker Accelerometer
Transverse 2 HYV bushing top Accelerometer
Longitudinal 3 HYV bushing top Accelerometer
Transverse 4 Foundation Seismometer
1 Longitudinal 5 Foundation Seismometer
Transverse 6 Tank top Seismometer
Longitudinal 7 Tank top Seismometer
Transverse 8 Lightning arrester Accelerometer
Longitudinal 9 Lightning arrester Accelerometer
Transverse 1 Shaker Accelerometer
Transverse 2 HV bushing top Accelerometer
Longitudinal 3 HYV bushing top Accelerometer
Transverse 4 Foundation Scismometer
2 Longitudinal 5 Foundation Seismometer
Transverse 6 Tank top Seismometer
Longitudinal 7 Tank top Seismometer
Transverse 8 Lightning arrester Accelerometer
Longitudinal 9 Lightning arrester Accelerometer
Transverse 1 Sledgehammer Transducer
3% Transverse 2 HV bushing Accelerometer
Longitudinal 3 HYV bushing Accelerometer
Transverse 4 Foundation Seismometer
Longitudinal 1 Sledgehammer Transducer
4* Transverse 2 HV bushing Accelerometer
Longitudinal 3 HV bushing Accelerometer
Longitudinal 4 Foundation Seismometer
Transverse 1 Sledgehammer Transducer
5% Transverse 2 Lightning arrester Accelerometer
Longitudinal 3 Lightning arrester Accelerometer
Transverse 4 Foundation Seismometer
* Test conducted with sledgehammer
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Figure D1. Average power spectra of signals from Channels 1 and 2, Test No. 1
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Figure D2. Average power spectra of signals from Channels 2 and 3, Test No. 1
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Figure D3. Average power spectra of signals from Channels 4 and 5, Test No. 1
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Figure D4. Average power spectra of signals from Channels 6 and 7, Test No. 1
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Figure D5. Average power spectra of signals from Channels 8 and 9, Test No.1
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Figure D7. Average power spectra of signals from Channels 2 and 3, Test No. 2
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Figure D8. Average power spectra of signals from Channels 4 and 5, Test No. 2
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Figure D9. Average power spectra of signals from Channels 6 and 7, Test No, 2
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Figure D10. Average power spectra of signals from Channels 8 and 9, Test No. 2
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Figure D11. Average frequency response function of signals from Channels 2, 3 and 4, Test No. 3
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Figure D12. Average frequency response function of signals from Channels 2, 3 and 4, Test No. 4
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Figure D13. Average frequency response function of signals from Channels 2, 3 and 4, Test No. 5



