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Preface 

 
The Public Interest Energy Research (PIER) Program supports public interest energy 
research and development that will help improve the quality of life in California by 
bringing environmentally safe, affordable, and reliable energy services and products to 
the marketplace. 
 
The PIER Program, managed by the California Energy Commission (Energy 
Commission), annually awards up to $62 million to conduct the most promising public 
interest energy research by partnering with Research, Development, and Demonstration 
(RD&D) organizations, including individuals, businesses, utilities, and public or private 
research institutions.  
 
PIER funding efforts are focused on the following six RD&D program areas: 

• Buildings End-Use Energy Efficiency 

• Industrial/Agricultural/Water End-Use Energy Efficiency 

• Renewable Energy 

• Environmentally Preferred Advanced Generation 

• Energy-Related Environmental Research 

• Strategic Energy Research 

What follows is the final report for Assessment of Carbon Sequestration Potential in 
California Agricultural Soil, , 500-02-004, Work Authorization MR-005, conducted by the 
Complex Systems Research Center at the University of New Hampshire; Applied 
Geosolutions, LLC; and the Center for Agroecology and Sustainable Food Systems at the 
University of California at Santa Cruz. The report is entitled Quantifying Carbon 
Dynamics and Greenhouse Gas Emissions in Agricultural Soils of California: A Scoping Study. 
This project contributes to the PIER program objectives of improving the environmental 
costs and risks of California’s electricity. 
 
For more information on the PIER Program, please visit the Energy Commission’s Web 
site at: http://energy.ca.gov/research/index.html or contact the Energy Commission’s 
Publications Unit at 916-654-5200. For more information on this research, please contact 
Dr. William Salas, Applied Geosolutions, LLC at 603-868-2369. 
 

http://energy.ca.gov/research/index.html
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Executive Summary 

 
Agriculture represents a significant opportunity for greenhouse gas (GHG) mitigation 
projects through soil carbon sequestration and reductions of methane (CH4) and nitrous 
oxide (N2O) emissions. Recently, significant investments are being made in assessing 
carbon sequestration projects in agricultural soils, due to the potential for trading carbon 
credits coupled with significant environmental benefits through improved soil quality, soil 
fertility, and reduced erosion potential. Changes in farming management practices, such as 
tillage, fertilization, irrigation, manure amendment, rotation with cover crops, and others 
are being evaluated for their potential in mitigating GHGs emitted from the agricultural 
sector. Because the cycles of water, carbon (C) and nitrogen (N) in the agroecosystems are 
tightly linked, any change in farming management could simultaneously alter crop yields, 
soil fertility, N leaching, soil C storage, and trace gas emissions. New methodologies 
linking GIS databases with process-based models are being used to bring complex 
agroecosystems into a computable framework for assessing the impact of alternative 
management practices on soil C storage and GHG emissions. 
 
Process-based models have been developed to examine the complex interactions of 
agricultural management practices, soil C dynamics, and N2O emissions.  An 
agroecosystem biogeochemistry model—Denitrification-Decomposition (DNDC)—was 
adopted for this project. It was constructed based on four basic biogeochemical concepts: 
(1) biogeochemical abundance, (2) field, (3) coupling, and (4) cycling. It consists of the six 
submodels for soil climate, crop growth, decomposition, nitrification, denitrification, and 
fermentation. The six interacting submodels have included the fundamental factors and 
reactions, which integrate C and N cycles into a computing system. DNDC has been 
validated and tested by researchers in many countries and applied for their national C 
sequestration and N2O and CH4 inventory studies. By tracking crop biomass production 
and soil organic carbon (SOC) decomposition rates, DNDC captures short- and long-term 
SOC dynamics. It predicts N2O emissions by tracking the reaction kinetics of nitrification 
and denitrification across climatic zones, soil types, and management regimes. With its 
prediction capacity of SOC, N2O, and CH4, DNDC is ready to serve offset analysis between 
C sequestration and non-CO2 greenhouse gas (N2O and CH4) emissions for agroecosystems.  
 
Objectives 

In this project, DNDC is being used to estimate recent SOC dynamics and N2O emissions at 
the county scale for all of the counties in California and to make recommendations for more 
detailed studies on carbon sequestration and N2O emissions under a wide scope of 
alternative management scenarios. DNDC is also being used to evaluate the impact of 
several management alternatives (e.g., changing irrigation practices, use of reduced tillage 
or no-till, use of cover crops, and other alternative farming practices) on county-scale 
estimates of SOC dynamics and CH4 and N2O emissions. These management alternatives 
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are being assessed to evaluate their potential in helping to mitigate GHG emissions from 
agriculture in California. 
 
Outcomes 

County summary data on soils, crop acreage, and climate have been compiled in a 
geographic information system (GIS) database. Daily climate data on precipitation and 
maximum and minimum temperature were obtained from the DAYMET and National 
Climate Data Center station data from 1980 through 1997.  County crop acreages were 
derived from a GIS coverage based on the California Department of Water Resources 
(DWR) analyses of aerial photos and field surveys taken in the mid 1990s. Soils were 
derived from the statewide State Soil Geographic (STATSGO) database. The major crop 
types, such as strawberry, artichoke, tomatoes, truck crops, and others have been 
parameterized in DNDC based on communications with the local experts. For each county, 
we calculated the minimum, maximum, area-weighted minimum, and area-weighted 
maximum values of clay fraction, bulk density, organic matter, and pH. Because soil 
properties are one of the major sources of the uncertainties produced during the upscaling 
processes, soil range values are included, to enable the use of Monte Carlo or other 
statistical approaches to bring the uncertainties under control. Agricultural management 
practices (e.g. , fertilizer use, residue incorporation, tillage practices, and planting and 
harvesting dates) were compiled based on discussions with the California Department of 
Food and Agriculture (CDFA) and the California Air Resources Board (CARB), and also on 
the University of California Cooperative Extension (UCCE) Crop Cost and Return reports.  
 
Preliminary results indicate that, as a whole, California agricultural soils are sequestering 
carbon. However, there are large differences in carbon dynamics across crop types and 
counties. In general, pastures are the largest sink of carbon. Cotton, corn, rice with winter 
flooding, tomatoes, citrus, and deciduous fruit cropping systems are additional sinks of 
carbon. On the other hand, truck crops (e.g., lettuce), beans, oats, and winter wheat 
cropping systems appear to be a net source of carbon, thus causing a decrease in soil 
carbon. Areas of rice paddies (without winter flooding), beets, sorghum, sunflowers, and 
viticulture do not appear to be significant sources or sinks of carbon. Fresno, Kern, and 
Kings counties had the largest net carbon sequestration—primarily because of their large 
areas of pasture and cotton production. San Joaquin, Monterey, and Santa Barbara were net 
sources of carbon due to their relatively large areas of truck crops (e.g., lettuce) and 
relatively little cotton and pasture. 
 
Conclusions, Recommendations, and Benefits to California 

Based on an initial validation activity using long-term SOC data for California, DNDC 
model simulations capture long-term SOC dynamics in agricultural soils in California. 
However, there are large uncertainties in the magnitude of SOC dynamics, due to 
uncertainties in initial soil conditions and crop residue management.  
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Nevertheless, these preliminary results suggest that: (1) management of agricultural soils in 
California has the potential for increasing C sequestration and reducing N2O emissions, 
and (2) effective alternative management policies or regulations should be spatially 
differentiated.  
 
Implementing the following recommendations would help improve understanding of 
overall carbon dynamics and GHG emissions in California: 
 

• Establish a program to collect data on agricultural management practices, to 
improve the spatial representation of mangement practices and account for 
regional and cropping system differences. Critical data should include information 
on residue and manure management. 

• For future study, use the updated Natural Resources Conservation Service’s Soil 
Survey Geographic (SSURGO) database. The improved spatial and thematic 
resolution of these data will result in improved model estimates of carbon 
dynamics and GHG emissions. 

• Further validate the DNDC model, to better quantify the model’s performance in 
simulating carbon dynamics, N2O, and CH4 over a range of California 
agroecosystems. This validation should consist of: (1) performing model 
validations using existing carbon dynamics field data, and (2) developing a field 
measurement program to cover critical gaps in field data across a range of major 
crops and management systems. 

• Evaluate alternative mitigation scenarios for: no-till, conservation tillage, and 
convential tillage; optimized fertilizer application rates; and the use of cover crops. 

 
California benefits from this work through an improved understanding of how to reduce 
its net contribution to atmospheric carbon through the agricultural strategies. This effort 
(and the implementation of the follow-on activities recommended above) can: (1) help 
identify areas in the state where these agricultural modifications will be feasible, and 
(2) help quantify benefits for specific regions and methods, thus enabling state decision 
makers to weigh the benefits against other potential mitigation measures. 
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Abstract 

 

Agriculture represents a significant opportunity for greenhouse gas (GHG) mitigation 
projects through soil carbon sequestration and reductions of methane (CH4) and nitrous 
oxide (N2O) emissions. Projects that result in soil carbon sequestration and reductions in 
CH4 and N2O emissions often result in compound environmental benefits through 
improved soil structure, which in turn can improve air and water quality. It is well known 
that carbon sequestration will inherently increase N2O (in upland soils) and CH4 (in 
wetland soils) emissions, due to the coupling of carbon and nitrogen biogeochemical cycles. 
Thus, the net offset between reductions in atmospheric CO2 and increases in atmospheric 
CH4 and N2O can be significant, and in some cases can result in a net increase in 
atmospheric CO2 equivalents. Therefore, assessing the efficacy of carbon sequestration 
projects in California agriculture must include comprehensive analyses that examine the 
impacts of management decisions on all greenhouse gases. Process-based models have 
been developed to examine the complex interactions of agricultural management practices, 
soil C dynamics and CH4 and N2O emissions.  An agroecosystem biogeochemistry model—
Denitrification-Decomposition (DNDC)—was used for this scoping study, to assess recent 
trends in SOC dynamics and CH4 and N2O emissions at the county-scale for California. 
Preliminary results indicate that, as a whole, California agricultural soils are sequestering 
carbon. However, there are large differences in carbon dynamics across crop types and 
counties. There are large uncertainties in our estimates of magnitude of SOC dynamics and 
trace gas emissions, due to uncertainties in initial soil conditions and crop residue 
management. Nevertheless, these preliminary results suggest that: (1) management of 
agricultural soils in California has the potential for increasing C sequestration and reducing 
N2O emissions, and (2) effective alternative management policies or regulations should be 
spatially differentiated. 
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1.0 Background 

1.1. Role of Agriculture in Greenhouse Gas Mitigation 

Agriculture represents a significant opportunity for greenhouse gas (GHG) mitigation 
projects through soil carbon sequestration and reductions of methane (CH4) and nitrous 
oxide (N2O) emissions. Recently, significant investments have been made in assessing 
carbon sequestration projects in agricultural soils, because of the potential for trading 
carbon credits, coupled with the significant environmental benefits that can be achieved 
through improved soil quality, soil fertility, and reduced erosion potential.  Changes in 
farming management practices, such as tillage, fertilization, irrigation, and manure 
amendment are currently being evaluated for their potential in mitigating GHGs emitted 
from the agricultural sector. For example, it has been widely reported that replacing 
conventional tillage with no-till results in soil organic carbon (SOC) storage (Lal et al. 1999; 
Smith et al. 2000). The carbon (C) sequestration potential of agricultural lands is being 
studied with experimental or modeling approaches in a number of ongoing research 
projects (e.g., Eve et al. 2002; Falloon et al. 2002; Paustin et al. 2002; Rickman et al. 2002.).  

Historically, conversion of natural ecosystems to managed agricultural systems during the 
17th, 18th, and 19th centuries resulted in a dramatic loss of soil organic matter caused by 
mineralization and erosion. Clearing, tilling, and draining native soils for agricultural 
production has released large amounts of carbon dioxide to the atmosphere from the soils’ 
fertile soil organic matter pool (Lal et al. 1999). The soil organic matter in topsoil has 
depleted as much as 40% to 60% of the original soil organic carbon (Cambardella 1992). Lal 
(1998) estimated the loss of soil organic content from U.S. cropland soils at about 
5 petagrams (Pg), which equals approximately 5 billion metric tons. Therefore, U.S. 
cropland has a potential to sequester approximately 5 Pg of carbon through improved soil 
management practices (Lal 2000).  

Robertson’s studies (2000) at the Kellogg Biological Station (KBS) Long Term Ecological 
Research site (LTER) showed that fields that have never been in agricultural production 
contain 40% to 50% more carbon by weight than active agricultural fields. Agricultural 
fields under no-till conservation tillage cropping methods were found to sequester 300 kg 
carbon per hectare per year; whereas, conventionally tilled crops exhibited no annual 
carbon sequestration (Robertson 2000). Other estimates of carbon sequestration rates for 
conservation tillage range from 500 kilograms of carbon per hectare pre year (kg/C/ha/yr) 
to 600 kg/C/ha/yr (Lal 1998). The United States Department of Energy also estimates that 
the conversion from conventional tillage to conservation tillage methods could potentially 
sequester 300 kg C/ha/yr.  

Unfortunately, most of the published research focuses only on the soil C dynamics, with 
little attention to other GHGs—namely, nitrous oxide (N2O) and methane (CH4)—which 
may offset gains in GHG emissions if not managed properly. Few of the reports assessed 
the impacts of the carbon sequestration induced by the management alternatives on N2O or 
CH4 emissions from the same lands. This omission is a drawback when evaluating carbon, 
because there is an inherent relationship between carbon storage and N2O or CH4 emissions 
in agricultural soils. 
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1.2. Carbon and Nitrogen Biogeochemical Processes 

In nature, chemical elements typically act in a coupled fashion determined by their 
chemical structures and abundances. The elemental coupling is one of the basic concepts of 
biogeochemistry. The coupling of carbon and nitrogen (N) is one of the best examples of 
biogeochemical coupling. Both C and N are essential elements for most life forms and are 
abundant in the atmosphere, the hydrosphere, and the biosphere. Photosynthesis, the 
process initiating the primary production of green plants, synthesizes atmospheric C into 
biomass C, based on the N compounds, chlorophyll. The coupled C and N in plant tissues 
will be incorporated in the soil after the plants die. In the soil environment, the coupled C 
and N will start their decoupling processes by way of soil microbes as they derive energy 
by breaking down the organic compounds. The processes will result in the separation of C 
and N by converting the C-N compounds into dissolved organic carbon (DOC) or inorganic 
C (e.g., CO2) as well as inorganic N (e.g., ammonium or nitrate). The energy is usually 
generated during the process by transferring electrons from the C atoms existing in the 
organic compounds to oxygen. If O2 is depleted in the soil, certain groups of microbes (e.g., 
denitrifiers) can use other oxidants as electron acceptors. After oxygen, the most ready-
reduced oxidant is nitrate. As soon as the microbes transfer the electrons from organic C to 
nitrate, nitrous oxide (N2O) and dinitrogen (N2) will be produced (Firestone 1982). The 
same is true for CH4 production, although the process occurs under more reductive 
conditions related to hydrogen production. These processes demonstrate how SOC content 
and N2O are related through the coupling and decoupling of C and N in the upland plant-
soil systems. In summary, increase in SOC storage elevates soil DOC and available N 
content through decomposition, which in turn will stimulate activity of a wide scope of soil 
microbes, including nitrifiers and denitrifiers, which are responsible for N2O production in 
the soils.  

1.3. Nitrous Oxide Emission and Soil Carbon Content 

The correlation of N2O production with soil C abundance has been observed in a wide 
scope of field measurements and laboratory experiments conducted over the past five 
decades. This relation comes from the following four observations: 

• Higher N2O fluxes have been measured from the soils with higher organic matter contents. 
Many researchers have measured N2O fluxes from several contiguous plots under 
similar climate and management conditions, the higher N2O emissions were mostly 
observed at the plots with higher SOC content. Among the observations, organic 
soils constantly emitted the highest N2O fluxes (Bremner and Shaw 1958; Bowman 
and Focht 1974; Burford and Bremner 1975; Stanford et al. 1975; Pluth and Nommik 
1981; Duxbury et al. 1982; Terry et al. 1981; Goodroad and Keeney 1984; Pang and 
Cho 1984; Klingensmith 1987; Robertson and Tiedje 1987; Mosier et al.1991; Vinther 
1992; and Papen and Butterbach-Bahl 2000).  

• The pattern of spatial variation in N2O fluxes has been found related to SOC content. 
Several researchers have conducted precise field measurements that focused on the 
spatial variation of N2O fluxes at small scales. For example, equipped with the dense 
chamber array sampling method, Ambus and Christensen (1994) observed marked 
spatial variability of N2O fluxes within a small field (0.18 ha) of grassland in 
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Denmark. After glucose amendment, the N2O fluxes increased by several fold, while 
the spatial variation of the N2O fluxes were diminished. The results imply that DOC 
content was one of the major limiting factors for N2O production in the experimental 
site. Federer and Klemedtsson (1988) measured N2O fluxes from the forest soils 
within two small watersheds in Sweden, and concluded that the organic fraction in 
the soils explained 81% of the spatial variation in N2O production rate.  

• Soil organic carbon content has been identified as a key factor to N2O production through 
incubation experiments. Incubation experiments provide a unique opportunity for 
distinguishing the effect of single factors. The incubation experiments carried out by 
Müller et al. (1980), Melillo et al. (1983), and Federer and Klemedtsson (1988) with 
the soil samples from Finland, the United States, and Sweden, respectively, 
demonstrated a positive correlation between higher N2O fluxes from the soils with 
greater organic carbon content.  Leffelaar and Wessel (1988) conducted 
denitrification kinetic experiments, and found that DOC, nitrate and redox potential 
were the major factors controlling N2O production in soils. Any one of the three 
could limit N2O emissions.  

• An increase in N2O emissions due to the addition of organic matter into the soils has been 
observed extensively worldwide (e.g., in the U.S. cropland by Goodroad et al. 1984; in 
the U.K. grassland, bush, and forest soils by Clayton et al. 1997 and Thomson et al. 
1997; in German pasture soils by Flessa et al.  1996; and in Chinese cropland by Dong 
et al. 2000).  For example, Christensen (1983) observed that manure amendment in a 
managed grassland in Denmark not only increased total N2O emissions from 16.4 (in 
the urea applied plot) to 182 (in the manure amended plot) g N/ha/day, but also 
elevated the N2O/N input rate from 8.2% to 37%. Dong and his colleagues observed 
that amendment of organic matter in the cropland soils in North China increased the 
fertilizer-induced N2O fluxes from 0.67% to 20% of the amount of N applied (Dong 
et al. 2000). These results imply that the manure-induced increase in N2O emissions 
is not due solely to the increase in soil N content. In Bouwman et al. (2002a,b) 
reviews of published literature, they note that N2O emissions for the same fertilizer 
rate tend to increase with higher soil carbon content. 

1.4. Process-based Models and Agricultural Mitigation of Greenhouse Gases 

Based on experimental observations and biogeochemical analysis, SOC and nitrate or 
nitrite have been recognized to be dominant factors affecting soil N2O emissions. Soil 
temperature, moisture, pH, redox potential, and other substrate concentrations can also 
affect N2O production. These soil environmental factors are driven by a group of primary 
drivers (e.g., climate, topography, soil texture, vegetation, and anthropogenic activity) on 
the one hand, and drive a series of biochemical or geochemical reactions that determine 
N2O production and consumption, on the other hand. It is the complex interactions among 
the primary drivers, soil environmental factors, and the biogeochemical reactions that 
result in the observed, highly variable N2O fluxes.  For example, conversion from 
conventional tillage to no-till could simultaneously alter soil temperature, moisture, redox 
potential, soil DOC, and available N content. These affected factors could then 
simultaneously and collectively alter the direction and rates of decomposition, nitrification, 
denitrification, and substrate diffusion, which collectively determine N2O emission.  
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Process-based modeling is the only solution to bring the complex system into a calculable 
framework. During the last decade, process models have been developed that focus on the 
correlation between soil C dynamics and N2O emissions.  

During the recent years, projects focusing on C sequestration are becoming popular. 
Several reports released recently discussed the potential of the alternative management 
practices in sequestering atmospheric C.  Unfortunately, most of the research reports or 
proposals have not addressed non-CO2 greenhouse gases, especially N2O. Actually, N2O is 
an important GHG, because of its high radiative efficiency (310 times higher than CO2) and 
relation with a series of farming practices (Li 1995; Robertson et al. 2000; Li et al. 2001). The 
net offset between reductions in atmospheric CO2 and increases in atmospheric N2O can be 
significant, and in some cases can result in a net increase in atmospheric CO2 equivalents 
(Robertson et al. 2000). Aulakh et al. (1984) and Robertson et al. (2000) observed N2O 
emissions from cultivated soils with conventional tillage and no-till in the United States, 
and found that N2O emissions were higher from the no-till cropland.  It is clear that 
scientifically sound process-based models are needed to compile and evaluate potential 
agricultural mitigation of GHGs. 

1.5. Greenhouse Gas Emissions from California Agriculture 

California agriculture emits CH4 and N2O from various agricultural sources, including 
enteric fermentation, agricultural soil management, rice paddy cultivation, and manure 
management. In 1999, agriculture in California generated approximately 28.4 million metric 
tons carbon dioxide equivalent (MMT CO2 eq.) of GHG emissions, which is approximately 
7% of the state’s total emissions (CEC 2002). Nitrous oxide and methane accounted for 15.57 
and 12.85 MMT CO2 eq., respectively. Agricultural soils were the dominant source of N2O 
(95% of total emissions), and enteric fermentation and manure management were the 
dominant agricultural sources of CH4 (approximately 96%). Direct emissions of N2O from 
agricultural soils accounted for 5.78 MMT CO2 eq., with indirect emissions accounting for 
8.96 MMT CO2 eq. These emission inventories were developed using emission factor 
approaches as specified in IPCC guidelines, with some California specific emission factors.  

 

2.0 Objectives 

It is well known that carbon sequestration will inherently increase N2O (in upland soils) 
and CH4 (in wetland soils) emissions due to the coupling of carbon and nitrogen 
biogeochemical cycles. Thus, the net offset between reductions in atmospheric CO2 and 
increases in atmospheric CH4 and N2O can be significant, and in some cases can result in a 
net increase in atmospheric CO2 equivalents. Therefore, assessing the efficacy of carbon 
sequestration projects in California agriculture must include comprehensive analyses that 
examine the impacts of management decisions on all GHGs. 

The objective of this scoping study is to use an existing process-based soil biogeochemical 
model called Denitrification-Decomposition, or DNDC, to simulate recent SOC dynamics 
and N2O emissions at the county scale for California and, based on the simulation results, 
to make recommendations for more detailed studies on carbon sequestration and N2O 
emissions under a wide scope of alternative management scenarios. Researchers are 
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assessing the impact of several management alternatives (e.g., changing irrigation practices, 
use of manure amendments, use of reduced tillage or no-till, use of cover crops, and other 
alternative farming practices) on county-scale estimates of SOC dynamics,  and CH4 and 
N2O emissions. These management alternatives are presented to illustrate how changes in 
management practices impact SOC dynamics and GHG emissions across cropping systems 
and counties in California. Outputs of this scoping study include: 

• county-scale databases on crop types, crop acreage, fertilizer use, climate, and soil 
statistics by major crop types; 

• county-scale estimates of annual carbon dynamics in agricultural soils under 
baseline conditions; 

• county-scale estimates of CH4 and N2O emissions under baseline conditions; 
• county-scale estimates of annual carbon dynamics in agricultural soils under 

alternative management practices; 
• county-scale estimates of CH4 and N2O emissions under alternative management 

practices; and 
• recommendation of a county for the further research on SOC dynamics and CH4 and 

N2O emissions. 
This scoping report presents results from the baseline scenario as well as the following 
alternative scenarios: over-irrigation (110% of agronomic demand), differences in climate, 
change in fraction of crop residue incorporated into the soils, and use of manure 
amendments. The goal of this scoping study report is to initiate and support discussions 
regarding future field and modeling research and a discussion of critical data needs for 
detailed modeling of carbon sequestration and GHG emissions n California. 

 

3.0 Methodology 

3.1. Input Databases 

To develop county-level simulations of carbon dynamics and GHG emissions, DNDC 
requires county data on climate, crop types and acreages, soils, and management practices. 

Climate: Climate inputs to DNDC include daily values of minimum and maximum air 
temperature, precipitation, and solar radiation. Climate data were obtained from: (a) the 
National Climate Data Center (NCDC), (b) California Irrigation Management System, 
(CIMIS), and (c) DAYMET. National Climate Data Center and CIMIS historical climate 
archives contain station data for weather stations throughout California. Alternatively, 
DAYMET is a model that generates daily surfaces of temperature, precipitation, humidity, 
and radiation over large regions of complex terrain (Thornton and Running 1999; Thornton 
et al. 1997). Using weather station and elevation parameters as input, DAYMET has 
generated an 18-year (1980–1997) daily climate data set at 10 km resolution. We extracted 
climate data from the DAYMET system based on county centroids.  
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Crop Acreages: The crop acreages were derived from GIS coverages based on the 
California Department of Water Resources (DWR) analyses of aerial photos and field 
surveys. The photos and surveys were taken in the mid 1990s, with the bulk acquired in 
1994–1997. The DWR databases contained data for only 41 out of 58 counties in California. 
Based on the 1997 National Agricultural Statistics Service (NASS) statistics, the missing 17 
counties contain less than 1.4% of total crop area in the state and thus were omitted from 
this analysis, because we did not have other sources of consistent data that include maps of 
the crop type. Total crop area for the 41 counties included in our study was 38,344 square 
kilometers (km2). Deciduous fruit and nuts and cotton were the largest crop areas. Figure 1 
presents that breakdown of total area by crop type. Figure 2 presents total crop area by 
county. Detailed crop areas by county are provided in Tables 3 and 4 (see Supplemental 
Tables and Figures).  

 

Figure 1. Total crop areas based on Department of Water Resources database 

 

The 1997 California Census of Agriculture reported 43,752 km2 of cropland in the state, 
with 34,572 km2 of it harvested. Excluding the 17 counties not provided in the DWR 
database, the census reported 34,015 km2 of harvest croplands for 1997. Although the total 
cropland acreage remained fairly constant from 1987 to 1997, the area of harvested 
croplands increased by 10% from 1987 to 1997, with harvested areas in 1987 and 1992 of 
31,089 m2 and 31,431 m2, respectively (USDA 1997 Census of Agriculture). The California 
Agricultural Statistics Service (CASS) data are useful for general distribution of crop types 
across counties; however, the data do not provide sub-county maps of crop locations, and  
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Figure 2. Crop Distribution by county. The 17 counties not included are grey. 

thus cannot be merged with the STATSGO and SUSRGO soils databases described below. 
Additional datasets, such as the National Resources Inventory (NRI) and California 
Department of Conservation’s Farmland Mapping and Monitoring Program (FMMP) were 
also available. However, although these databases do provide specific locations of 
croplands, they not provide specific information on crop types. 

Some crop polygons in the DWR database were broadly classified as field crop (field-99), 
grain crops (grain-99), and pasture (pasture-99). These are areas where DWR did not 
provide specific crop information, just broad crop type. We allocated these areas based on 
the proportions of the observed subclasses within each county. For example, if a county has 
100 ha of alfalfa, 50 ha of non-legume hay, and 60 ha of pasture-99, then alfalfa and non-
legume hay subclasses represent 66.67% and  33.33% proportions of observed subclasses. 
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So, we would then allocate the 60 ha of pasture-99 as 40 ha of alfalfa and 20 ha of non-
legume hay.  

California has a wide variety of specialty crops (the DWR Truck crop class includes, for 
example, artichokes, lettuce, berries, and tomatoes), with large annual variability in 
cropping area. Farmers often change specialty crops from one year to the next. The DWR 
database was derived from aerial photos acquired over several years. Therefore, since our 
objective of this scoping study was to look at general trends across cropping systems and 
counties,  we assumed that the total area of truck crops was evenly split into crops with 
either very low or moderate post-harvest biomass residues.  For the simulations, low-
biomass-residue crops were modeled as lettuce and moderate biomass residue crops were 
modeled as tomatoes. 

Soils: Soil data were obtained from both the Natural Resources Conservation Service 
(NRCS) STATSGO (1:250,000) and SSURGO (1:18,000) databases. SSURGO provides 
detailed information that was designed for analyses at the landowner, farm, or county 
level. However, at the present time, SSURGO data is not available for all counties in 
California ; therefore, for this scoping study we used the STATSGO database (see Figure 3 
for example).  

 

Figure 3.  Example of STATSGO soils database used for this scoping study. Soil texture for the 
Elkhorn Slough watershed in Monterey County. 

For future detailed studies for single counties, SUSRGO data will be the most appropriate 
database. Both soil datasets contain the same soil parameters, and thus are easily merged. 
DNDC uses four soil properties: (1) soil bulk density, (2) clay fraction, (3) pH, and (4) 
organic carbon content. The minimum and maximum values of these properties are 
provided in the databases and are utilized in our analysis for providing ranges of model 
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simulations and uncertainty analyses. For each county, we calculated the minimum, 
maximum, area-weighted minimum and area-weighted maximum values of clay fraction, 
bulk density, organic matter, and pH. Data were compiled by overlaying our DWR land 
use data on the STASTGO GIS data and then area-weighted statistics were derived for four 
major crop groups: pasture, rice, woody crops, and grains/field/truck crops. The woody 
crop class included all areas with deciduous fruits and nuts, citrus, and vineyards. Area-
weighted statistics are provided in Tables 5 through 8 in the Supplemental Tables and 
Figures. 

Fertilizer Use: Summary data on fertilizer application rates by DWR crop class were 
obtained from Potter et al. (2001). They derived the fertilizer rates based on numerous 
discussions with faculty at the California State University Fresno Plant Science Department, 
University of California (UC) Extension, various growers associations, and Dow 
Agrosciences. Potter et al. (2001) have a table with rates for eight general DWR classes and 
four major growing regions. For this scoping study, although these fertilizer use estimates 
vary by four major growing regions, we decided to use a single nominal application rate for 
our baseline analysis (see Table 1). However, to examine the sensitivity of our results on 
fertilizer application rates, we ran a scenario with a 25% reduction in fertilizer application 
rates. 

Crop Planting, Harvesting, and Tillage Practices : For each crop, we collected data from 
CARB on planting, cultivation, and harvesting periods, as well as on land preparation (e.g., 
tillage type, tillage dates, and tillage frequency). The California Air Resources Board 
collected the data through numerous consultations with UC Extension, UC agronomists, 
crop consultants, and farmers as part of their fugitive dust study. Data were obtained 
directly from Patrick Gaffney and Hong Yu at CARB. Table 1 lists tillage dates for each crop 
class modeled. 

Irrigation : The DWR database contains information on the irrigation status for each 
agricultural polygon. Based on this database, most of the crops in California are irrigated. 
Our discussions with CDFA and UC researchers also indicated that most crops are 
irrigated, but that irrigation practices are highly variable across California. For this scoping 
project, we have set the baseline conditions for irrigation based on agronomic demand.  

Therefore, irrigation is simulated based on climate data and crop evapotranspiration with 
sufficient irrigation to prevent crop water deficit. Clearly this is the ideal irrigation scheme. 
DNDC uses an irrigation index to set irrigation practices. An irrigation index of 1 simulates 
a level of irrigation that is used to meet agronomic demand. To examine the impact of over 
irrigation, we ran a simulation with the irrigation index set at 1.1 to simulate over-irrigation 
by 10%. 

Water management for rice paddies: We simulated continuous flooding throughout the  
rice cropping cycle. The use of winter flooding is becoming more frequent (Matt Summers 
2003, pers. comm.), so we simulated winter flooding on 50% of the rice fields in each 
county. 
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Table 1. Baseline fertilizer and tillage practices 

Crop Total (kg N/ha) Application Dates 
(with rate kg/ha) 

Tillage Dates 

Cotton 140 4/1 (100) and 6/1 (40) 3/1 and 12/1 
Sugarbeet 140 4/1 (100) and 6/1 (40) 3/1 and 12/1 
Corn 140 4/1 (140) 1/15 and 12/1 
Sorghum 140 4/1 (140) 1/15 and 12/1 
Beans, dry 140 6/1 (140) 3/1 and 12/1 
Sunflower 140 6/1 (140) 3/1 and 12/1 
Barley 100 6/1 (100) 3/1 and 12/1 
Wheat 100 12/1 (30) and 2/1 (70) 8/5 and 10/15 
Oats 100 6/1 (100) 3/1 and 12/1 
Alfalfa 0 NA 1/5 and 11/1 
Non-legume hay 50 5/1 (50) 1/5 and 11/1 
Citrus 140 4/1 (70) and 7/1 (70) 25-Dec 
Deciduous Fruit 110 4/1 (55) and 7/1 (55) 25-Dec 
Rice 120 5/1 (120) 3/1, 4/1, and 11/1 
Vineyards 70 3/1 (35) and 6/1 (35) 4/1 and 11/1 
Lettuce 265 3/1 (165) and 6/1 (100) 1/15 and 11/1 
Tomato 265 3/1 (165) and 6/1 (100) 1/15 and 11/1 

Source: Potter et al. (2001) and CARB Fugitive Dust study (pers. comm. Hong Yu)  

Manure: Manure use is not widespread in California. Manure usage is typically confined to 
areas near dairies where forage crops are grown. Although farmers know that manure 
effluent contains nutrients, they traditionally have not quantified the amount of nutrients in 
manure applied to their fields and thus have augmented the manure with traditional 
fertilizers (S. Pettygrove, pers. comm.). However, in counties with many large dairies, like 
San Joaquin, manure usage can be significant. Therefore, one of our scenarios examines the 
impact of including manure amendment as a general management practice with an 
application rate of 2000 kg C/ha.  

Crop physiological and harvest data: DNDC use a suite of parameters for simulating crop 
growth, including, for example, carbon and nitrogen allocation, water requirements, light 
use efficiencies, and optimum yield. In addition, for each crop we estimate the fraction of 
total biomass that is harvested, which in turn indicates the amount of crop residue. Values 
for these parameters were collected from literature, discussions with UCCE staff, CDFA, 
and a national EPIC (USDA Environmental Policy Integrated Climate model) database. For 
our baseline analysis, we assume that 50% of the aboveground crop residue remains on 
site. We also present a scenario where 90% of the aboveground crop residue remains on 
site. Table 2 provides a listing of the default parameters used for this scoping study. Based 
on these parameters, for example, corn produces almost 2800 kg C/ha (11,145 kg C/ha, total 
biomass times 0.25, the root fraction of total biomass) of belowground biomass. 
Assumptions on the fraction of biomass harvested and percentage of residue left on site 
have a tremendous impact on carbon sequestration and GHG emissions, and thus can be a 
significant source of uncertainty.  
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Table 2. Default DNDC crop parameters used for this scoping study 

 DNDC Input Crop Parameters (see listing at end of table) 

 1 2 3 4 5 6 7 8 9 10 11 12 

Corn 11,145 0.37 0.38 0.25 53.4 35 85 73 368 5.0 2.0 2550 

Wheat 3,956 0.40 0.40 0.20 31.2 18 48 71 513 3.0 0.5 2000 
NL Hay 22,000 0.40 0.15 0.45 57.4 50 70 50 770 3.0 0.5 2500 
Barley 6,140 0.30 0.43 0.27 34.5 19 44 61 550 3.0 0.5 3000 
Oats 4,606 0.28 0.47 0.25 39.1 25 50 50 597 3.0 0.5 1650 
Alfalfa 14,222 0.45 0.13 0.42 53.8 50 60 50 770 3.0 0.5 3000 

Sorghum 6,116 0.35 0.40 0.25 54.7 35 85 75 322 5.0 2.0 2600 
Cotton 4,580 0.19 0.56 0.25 27.7 16 40 30 646 4.0 0.7 3800 
Beets 6,376 0.80 0.15 0.05 99.6 110 80 70 397 4.0 0.5 2550 
Rice 7,506 0.45 0.48 0.07 42.9 35 40 55 710 6.0 0.5 2250 

Sunflower 2,401 0.30 0.45 0.25 25.0 15 50 30 350 3.0 5.0 1500 
Beans 2,946 0.30 0.45 0.25 25.6 15 40 35 550 3.0 0.5 1900 
Fruit & Nut 6,882 0.50 0.20 0.30 35.7 30 50 50 550 3.0 2.5 3000 
Citrus 5,381 0.50 0.20 0.30 37.5 30 50 50 550 3.0 2.5 3000 
Grapes 3,496 0.50 0.20 0.30 36.1 30 50 40 550 3.0 1.5 3000 

Lettuce 1,428 0.64 0.15 0.20 12.7 10 30 20 900 4.2 0.2 1400 
 

1 Total  biomass  C at harvest under optimum growing conditions (kg C/ha) 
2 Harvested fraction of total biomass 
3 Leaf and stem fraction of total biomass 
4 Root fraction of total biomass 
5 C/N ratio for total plant at harvest time 
6 C/N ratio for harvested parts 
7 Root C/N ratio at harvest time 
8 C/N ratio for leaves and stems at harvest time 
9 Water requirement, in g of water required for producing 1 g dry matter of harvested biomass 
10 Max LAI (Leaf Area Index) 
11 Max height (m) 
12 Thermal degree days (TDD) accumulated during growing season (degrees C) 

 

3.2. Modeling 

The Denitrification-Decomposition (DNDC) model is a process-based model that 
simultaneously models soil carbon dynamics and N2O emissions. DNDC was 
constructed based on four basic concepts:  (1) biogeochemical abundance, (2) field, 
(3) coupling, and (4) cycling. DNDC consists of six submodels for soil climate, crop 
growth, decomposition, nitrification, denitrification, and fermentation (Figure 4). The 
six interacting submodels have included the fundamental factors and reactions, which 
integrate C and N cycles into a computing system (Li et al. 1992, 1994; Li 2000). DNDC 
has been validated against numerous data sets observed worldwide. During the last 
several years, DNDC has been independently tested by the researchers in many 
countries and applied for their national C sequestration and N2O inventory studies. By 
tracking crop biomass production and decomposition rates, DNDC accurately tracks  
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short- and long-term SOC dynamics. DNDC models growth of over 40 types of crops 
based on such factors as their optimum yield; partitioning of assimilated C to root, leaf, 
stem, and grain; C/N ratios of root, leaf, stem, and grain; and water requirement.  
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Figure 4. DNDC model structure 

At harvest, the quantity and quality of residue (i.e., the root litter and aboveground 
litter) are determined based on the crop parameters, which vary across crop types. For 
example, corn usually produces 2,800 and 4,200 kg C/ha of below-ground (i.e., root) 
and aboveground (i.e., leaf and stem) litter, respectively (see Table 2).  

In contrast, lettuce only produces 280 and 210 kg C/ha of below-ground and 
aboveground litter, respectively. Harvest terminates root growth and turns 100% of the 
root biomass into root litter, which is automatically incorporated in the soil profile. A 
user-defined fraction of the aboveground litter defines the amount of the aboveground 
litter left in the field after harvest. Tillage following harvest will incorporate this part of 
the aboveground litter into the soil profile. As soon as the litter is incorporated in the 
soil, the litter will be partitioned into three soil litter pools: (1) very labile, (2) labile, and 
(3) resistant. The partitioning fractions are calculated based on the C/N ratio of the 
fresh litter.  

For example, the C/N ratio for corn leaves and stems is 73 (see Table 2). Based on the 
equations adopted in DNDC, 5%, 40%, and 50% of the fresh corn litter will be 
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partitioned into very labile, labile, and resistant soil litter pools, respectively. In 
contrast, the C/N ratio for lettuce leaves and stems is 20 (see Table 2). Based on the 
same equations in DNDC, 12%, 83%, and 5% of the fresh lettuce litter will be 
partitioned into very labile, labile, and resistant soil litter pools, respectively.  

Because each of the soil litter pools possesses its own specific decomposition rate, the 
partitioning algorithms will determine the difference in the bulk decomposition rate for 
each of the simulated specific crop residues. Through these mechanisms, DNDC is able 
to precisely track the turnover of crop litter in the soils driven by its quantity and 
quality (i.e., C/N ratio) as well as by the soil temperature, moisture, and aeration.  In 
DNDC, tillage affects SOC decomposition rates through two mechanisms. At first, 
tillage increases soil aeration, which elevates decomposition rates. Second, tillage 
redistributes SOC in the soil profile through the physical disturbance. Overall 
decomposition rates would decrease as more SOC is redistributed into the deep soil 
layers where the oxygen partial pressure is relatively low. DNDC tracks both effects 
and determines the net impacts.  

DNDC predicts N2O emissions by tracking the reaction kinetics of nitrification and 
denitrification driven by climatic conditions, soil properties, and management practices.  

With its prediction capacity of both SOC and N2O, DNDC is ready to serve offset 
analysis between C sequestration and N2O emissions for agroecosystems. Since C 
sequestration and N2O emission are both affected by many environmental factors (but 
in different ways), shifting from one location to another will inherently alter the effects 
of any management alternatives on the net global warming potential (GWP).  DNDC, 
with its fundamental biogeochemical processes, can quantify both carbon sequestration 
and non-CO2 greenhouse gas emissions, and can assess the net GWP effects of 
alternative management practices across climatic zones, soil types, and management 
regimes when coupled with GIS data for regional assessments.  

DNDC quantifies SOC dynamics by tracking inputs and outputs of eight SOC pools, 
namely very labile, labile, and resistant litter; labile and resistant microbial biomass; 
labile and resistant active humus (i.e., humads); and passive humus at a daily time step 
(Figure 5).   
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Figure 5. DNDC models soil organic carbon (SOC) dynamics by tracking the dynamics of 
eight SOC pools 

Each of the sub-pools has a specific decomposition rate, which is subject to variations in 
the soil temperature and moisture. The major source of SOC is litter incorporation. 
Especially, when the crop is harvested, all of the roots will be incorporated in the soil 
profile, and a fraction of the aboveground residue will be left in the field until the next 
tillage incorporates it into the soil. The SOC balance is hence determined by the total 
decomposition rates, which leads SOC loss, and the total litter incorporation, which 
leads SOC gain. The decomposition rates are well-modeled by DNDC, based on the 
SOC contents in all of the SOC pools and soil temperature/moisture conditions. Soil 
organic carbon gain must rely on a user-determined fraction of aboveground crop 
residue. Because crop residue incorporation is the most important source for SOC, any 
deviation in the fraction of crop residue incorporation will affect the modeled accuracy. 
Unfortunately, this information (i.e., fraction of aboveground crop residue 
incorporation) is usually missing or not precisely reported in most of publications or 
reports.  The inaccuracy in the amount of crop residue incorporated in soil is actually 
the most important factor introducing uncertainties in the modeled SOC sequestration 
(Li et al. 1994; Li et al. 2003).   

For this scoping study, SOC dynamics and N2O and CH4 emissions were modeled with 
DNDC version 8.2 for baseline and alternative scenarios. 

3.3. Management Scenarios 

Given the objectives of this general scoping study, several scenarios were modeled to 
examine differences in broad management practices. The objective of the scenario 
analyses is not necessarily to prescribe a single management practice for all counties in 
California, but rather to highlight the general impact on carbon sequestration and GHG 
emissions across counties. Thus, while management practices in the scenarios may 
represent potential practices in some regions, they are likely not representative of 
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potential management practices for all counties and cropping systems. Nevertheless, 
these scenarios are useful for assessing potential impacts on the trends in SOC 
dynamics and GHG emissions. 

3.3.1. Baseline scenario 

For our baseline management scenario we ran the simulation using a single year (1997) 
of climate data with the nominal tillage practices (Table 1), standard fertilizer 
application rates (Table 1), fully irrigated (irrigation index 1.0), no manure amended, 
and 50% of aboveground litter (residue) incorporation. We chose to run our baseline 
analysis over a single year (rather than a long-term analysis) to focus our scenario 
comparisons on the impact of management, rather than both climate and management. 
Although it is clear that the impact of various management decisions will vary 
depending on climate conditions, we felt for this scoping activity that varying 
management condition was a more tractable analysis. However, we did run an 18-year 
scenario for two counties to examine long-term dynamics and sensitivity to initial soil 
conditions. 

3.3.2. Alternative scenarios 

In several scenarios that were modeled, we changed only a single input data set—either 
climate or management practices, relative to the baseline assumptions. At this point, we 
have run the following scenarios: 

• 1983 climate: Since our baseline year 1997 was a relatively hot and dry year for 
California, we ran a scenario using climate data for 1983, which was relatively cool 
and wet year. 

• Alternative litter incorporation: We varied our assumption regarding the amount of 
residue left on site from our baseline assumption of 50% to 90% of aboveground 
litter incorporation. This was simulated for all counties. 

• Alternative irrigation: Our baseline scenario had the irrigation index set at 1, 
signifying that crops were irrigated to exactly meet agronomic demand. Since over-
irrigation is often practiced in California, we ran a scenario where crops were over 
irrigated by 10% by setting our irrigation index at 1.1, with 90% residue 
incorporation. 

• Alternative manure amendment: Our baseline scenario had no manure 
amendments. For this scenario we applied 2000 kg C/ha with 90% residue 
incorporation for all of crops in all counties. 

• Multiyear climate: We ran a scenario using 18 years of climate data (1980 through 
1997) for two counties (Fresno and Sutter), with 90% residue incorporation.  

 

4.0 Validation 

DNDC uses two categories of parameters: internal and external. Internal parameters 
include, for example, all of the coefficients employed in the equations for calculating 
such factors as soil temperature and moisture profiles, microbial growth, crop growth, 
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chemical reactions, decomposition, nitrification, denitrification, and gas diffusion.  
Examples of external parameters include meteorological conditions, soil properties, 
crop physiology and phenology, farming management practices, etc. All of the internal 
parameters are fixed as part of the source code; however, the external parameters are 
defined by the users. During the development of DNDC, all of the internal parameters 
were calibrated by the model developers against field data available to the developers. 
Examples of these internal parameters can be found in Li et al. 1992, 1994 and Li 2000.   

Because DNDC is a process-based model, it was constructed with a group of basic laws 
or equations from text books on physics, chemistry, and biology. To link the equations 
to the field-scale conditions, most of the coefficients in the equations must be calibrated. 
After the calibration, coefficients were fixed, and are not changed from one application 
to another. As new users run DNDC for their specific applications, most users test the 
model against their own observations that are independent of field data used to 
develop the model. We refer to this process as validation throughout this report. Based 
on indirect and direct feedback, most of the users obtained satisfactory results by 
setting their external parameters based on local conditions (e.g., soil texture, soil organic 
matter (SOM) partitioning, crop physiological or phenology constants, crop residue 
fraction for incorporation) without adjusting any of the internal parameters in DNDC. 
Actually, it is difficult for users to alter these internal parameters, as they are embedded 
in the source code. So the validation results reported in Figure 7 is an example 
demonstrating independent validation of DNDC’s capacity, in which the internal 
parameters remained static.  

4.1. Validating Carbon Dynamics 

A recent study published an analysis of soil survey data that was collected at 125 sites 
in the 1940s and 1950s and resurveyed in 2001 (DeClerck et al. 2003). It reported that at 
the state level, total soil carbon increased; however, the magnitude and sign of change 
varied significantly by land use and geographic region. Dr. Singer provided us with the 
soil carbon data from this study. In addition, he provided the current available land use 
information for each site. Without information on the historical land use, we assumed 
no land use change over the past 50 years. Using the initial SOC conditions based on 
historical soil surveys and general soil pH, bulk density, and soil texture from our GIS 
database for each county, we simulated 50 years of SOC dynamics for 27 sites in Colusa, 
Fresno, and Glenn counties. The remaining sites will be analyzed. In addition, Dr. 
Laosheng Wu at UC Riverside has been conducting research on the impact of irrigation 
on soil carbon stocks. Dr. Wu has agreed to provide his field data for further model 
validation. 

In spite of the many unknown factors (e.g., land-use history, used only one-year climate 
data (1990) for 50 years, uncertainties with crop residue management), the modeled 
SOC changes were consistent with observations (R2 = 0.62) across the 27 sites tested to 
date (Figure 6). Both the observations and modeled results indicate that: 

• SOC increased in pasture and rice paddies,  
• all of the row-crop sites lost SOC, and  
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• SOC changes at tree-crop sites were highly variable, implying that the tree litter 
management (e.g., fraction of residue incorporation) could be highly differentiated 
from site to site.  

Despite the potential for major uncertainties from: (1) fraction of crop residue 
incorporation, (2) initial SOC content, (3) land-use history during the simulated 50 
years, and (4) interannual climate variability, our model simulations capture the general 
trends of carbon dynamics in California agricultural soils at these sites. Examples of the 
50-year annual carbon dynamics for a few sites are provided in Figures 30–32 in the 
Supplemental Tables and Figures. 

 

Observed and DNDC-modeled average annual SOC changes at 27 sites in agricultural lands in 
Colusa, Fresno and Glenn Counties, CA during 1949-1999
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Figure 6. Validation of DNDC carbon dynamics for several cropping systems in California. 
Field observations were provided by Singer (DeClerck et al. 2003). 

4.2. Validating Nitrous Oxide and Methane Emissions 

For this scoping study, we did not have field data yet on N2O or CH4 emissions from 
California soils. However, DNDC has been validated across a wide range of 
agroecosystems under a broad variety of climate conditions (Figure 7). In anticipation 
of further studies detailing SOC dynamics and GHG emissions, we are collecting data 
from published studies on trace gas emissions from California agriculture. For example, 
we are discussing a validating our model predictions with a series of methane studies 
that examined the impact a rice straw incorporation versus burning (W. R. Horwath, 
pers. comm.). 
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Observed and DNDC-Modeled N2O Fluxes from Agricultural Soils in the U.S., Canada, 
the U.K., Germany, New Zealand, China, Japan, and Costa Rica
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Figure 7. Nitrous oxide validation of DNDC across a range of agricultural systems in several 
regions worldwide. SOC content in percent for each site is indicated by the labels. (Source: Li 

et al. 2004.) 

 
5.0 Results and Discussion 

DNDC models SOC dynamics and non-CO2 gas emission at site to regional scales, with 
quantified uncertainties. Our simulation results are presented in ranges using an 
approach we call the Most Sensitive Factor (MSF) method. This approach has been 
discussed in details in several former papers (Li et al. 1996; Li et al. 2002; Li et al. 2003).   

In brief, because in general SOC dynamics and N2O emissions are most sensitive to the 
initial SOC content (relative to soil pH, texture, and bulk density), the maximum and 
minimum SOC content, commonly obtained in a county soil survey data, are recorded 
for the county in the GIS database to support DNDC simulations. DNDC runs each 
cropping system in each county twice with the maximum and minimum SOC values, 
respectively. The two model runs will produce two results of SOC change (or N2O flux). 
The two flux values form a range, which we contend will, with a high probability, be 
wide enough to include the “real” flux.   

For example, our MSF method has been compared with a traditional statistical 
approach, Monte Carlo analysis, for two counties in California. 99% of SOC changes 
and 63% of N2O fluxes predicted by Monte Carlo approach are located within the 
ranges predicted by MSF method (Figure 8). The comparison of SOC and N2O indicated 
that the MSF method is reliable. Considering the huge difference in the computing time 
between Monte Carlo and MSF (3 hours vs. 10 seconds), we adopted MSF for our 

N2O 

N2O 
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regional predictions. Based on this methodology, our results for modeled SOC changes 
or N2O fluxes are presented as ranges. These ranges are based on the ranges of soil 
carbon conditions provided in the STATSGO soil databases. Given the wide range in 
SOC values for each polygon, or region, in the STATSGO data, our results have large 
ranges in estimates of soil carbon sequestration and GHG emissions. The results 
presented in ranges should provide more realizable and reliable pictures about the 
GHG fluxes with the unavoidable uncertainties at regional scale.  

5.1. Baseline Scenario 

5.1.1. Carbon sequestration 

Based on our baseline assumptions and scenario for 1997, California agricultural soils 
were either a small source of carbon (-0.6 teragrams of carbon, or Tg C), or sequestered 
6.1 Tg C, which in terms of GWP is -22.4 to 2.2 MMT CO2 eq.  The cropping systems of 
cotton, corn, alfalfa, non-legume hay (or pasture), citrus, and deciduous fruit orchards 
made positive contributions. This sequestration is likely due to the high litter 
production of these cropping systems. SOC was reduced for lettuce, dry beans, and 
sunflower cropping systems (reduced 0.003–0.8 Tg C), likely due to their low litter 
production. The SOC content for other crops (e.g., rice, sorghum, barley, wheat, oats, 
tomato, and grapes) were moderately changed with an increase or decrease, depending 
on the soil conditions. Figure 9 presents ranges by crop type for all of California. 
County level changes in SOC are provided in Figures 10 and 11. The counties with SOC 
increases by more than 0.1 Tg C were Fresno, Imperial, Kern, Kings, Lassen, Madera, 
Merced, Modoc, Stanislaus, Tehama, and Tulare.  SOC decreased in Colusa, Monterey, 
San Joaquin, and Santa Barbara counties. The remaining counties basically maintained 
SOC balance or slightly increased. 

Average carbon sequestration by county (Figure 12) was variable, due to large 
differences in carbon sequestration rates across cropping systems (Figure 13), soil 
conditions, and total cropping areas by county. Initial SOC content conditions had a 
significant impact on the modeled carbon sequestration rates. Pasture, tree crops, 
cotton, and corn systems had the highest sequestration rates. The low biomass truck 
crops (modeled as lettuce) consistently had negative sequestration rates. The remaining 
crops had either positive or negative sequestration rates, depending on the initial SOC 
content. 

These baseline results are basically consistent with the site analyses used for our model 
validation, described in Section 4.1. 
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Comparison between Monte Carlo and MSF methods on SOC change for lettuce 
farmland in Fresno County, CA in 1997
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Frequency of SOC changes for non-legume hay lands in 
Modoc, CA in 1997
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Figure 8. Comparison between MSF and Monte Carlo approaches. Comparison on annual 
SOC changes in croplands in Fresno and Modoc Counties, CA between Monte Carlo 

approach (vertical blue bars) and Most Sensitive Factor method (horizontal orange lines). 
More than 80% of SOC changes predicted by Monte Carlo approach are located within the 

ranges predicted by MSF method. 

 

 Comparison between Monte Carlo and MSF methods SOC    
change for lettuce farmland in Fresno     

                               County, CA in 1997 
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C sequestration in agricultural lands by crop types in California in 1997
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Figure 9. Ranges in C Sequestration by crop type (totals for California) based on the max 
initial SOC (blue) and min initial SOC (maroon) content for each county. 

C sequestration in agricultural lands by counties in California in 1997
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Figure 10. County carbon sequestration totals based on the maximum initial SOC (blue) and 
minimum initial SOC (maroon) contents for each county 
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Figure 11. County carbon sequestration ranges, based on initial SOC content. Results from 
higher (max) initial SOC content are presented in the upper graphic , and those representing 

lower (min) initial SOC content are presented in the lower graphic. 
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Figure 12. County average carbon sequestration rates based on max (upper graphic) and min 
(lower graphic) SOC ranges, from STATSGO 
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Figure 13. Average extreme carbon sequestration rates, by crop type 

 

5.1.2. Nitrous oxide emissions 

Based on our baseline assumptions and scenario for 1997, California agricultural soils 
emitted between 0.21-0.51 Tg N of nitrous oxide (or in terms of GWP, 10.0 to 24.7 MMT 
CO2 eq.). Fresno and San Joaquin counties had the highest total N2O emissions (Figure 
14), likely due to the large fertilizer-intensive crops. Trinity, Amador, Humboldt, and 
Marin counties had the highest N2O emissions rates (Figure 15), likely due to their 
relatively high SOC content. The cropping systems of cotton, corn, and grapes made the 
highest contributions to total nitrous oxide emissions (Figure 16). Once again the large 
range in our emissions estimates is due to the wide range between the minimum and 
maximum SOC values provided in the STATSGO soils database and the strong 
relationship between SOC and N2O emissions rates. 
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Total County N 2O Emission
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Figure 14. Total nitrous oxide emissions by county 
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Figure 15. Nitrous oxide emission rates by county 
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Figure 16. Total N2O emissions by crop type 

 

The patterns of N2O emissions based on county or crop type are very different from that 
of SOC dynamics. For example, lettuce had negative contribution to C sequestration but 
great contribution to N2O emissions. The results imply that assessing net effects in 
terms of both carbon and N2O is warranted for evaluating potential mitigation 
strategies.   

5.2. Alternative Management Scenarios Impact on Carbon Sequestration 

The impact of the four alternative management scenarios on average carbon 
sequestration rates is illustrated in Figure 17. In general: 

• Climate impact: Shifting climate data from 1997 to 1983 resulted in a slight increase 
in total carbon sequestration for California, likely due to slightly cooler and wetter 
weather resulting in lower decomposition rates. 

• Impact of residue incorporation: Increasing aboveground litter residue 
incorporation from 50% to 90% significantly increased C sequestration rates by about 
700 kg C/ha/yr. With higher residue incorporation conditions, California 
agricultural soils were a significant sink (2.2 to 9.0 Tg) of carbon. On the other hand, 
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if all aboveground residue is removed from the field, then agricultural soils could be 
a small 0.4 Tg sink to a large 7.8 Tg source of carbon. 

• Impact of manure amendment: Increasing manure application from 0 to 2000 kg 
C/ha with 90% residue incorporation substantially elevated C sequestration in 
California agricultural lands to 9.6–16.5 Tg C. 

• Over-irrigation impact: Increasing the irrigation index from 1.0 to 1.1 slightly 
increased C sequestration, most likely due to the decreased decomposition rates 
under higher soil moisture conditions.   

 
We also analyzed how alternative management practices influence carbon sequestration 
rates by crop types. Figures 18 and 19 illustrate differences in carbon sequestration rates 
for those crops that exhibited high positive or small negative sequestration rates in the 
baseline analysis, respectively. For all crops, an increase to 90% residue incorporation 
resulted in a increase in soil carbon, relative to the baseline analysis. A reduction to 0% 
aboveground residue incorporation resulted in a decrease in carbon sequestration (i.e., 
led to a loss of soil carbon). Manure amendment led to an increase in soil carbon 
relative to baseline conditions. 
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Figure 17. Average carbon sequestration rates across management scenarios 
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Figure 18. Average carbon sequestration rates by crop and management scenario for cotton, 
corn, non-legume hay, and deciduous fruit trees 
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Figure 19. Average carbon sequestration rates by crop and management scenario for beans, 
lettuce, and grapes 
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Additional management scenarios are being considered for sequestering carbon in 
agricultural soils: including a change in tillage through adoption of either reduced 
tillage or no-till, use of cover crops, and reduction in overall fertilizer application rates 
(see next steps discussion in Section 7). 

5.3. Multiyear Analysis 

For Sutter and Fresno counties, we used climate data from 1980 through 1997 to 
examine longer-term carbon dynamics. The modeled results illustrate that the 
interannual changes in SOC basically follow a general shape of parabolic curves. The 
results are consistent with the consensus that after long-term cultivation changes in soil 
carbon stocks can be minimal as the system reaches a new “equilibrium” if the climate, 
soil type, and land use system have been constant during the entire time span. In the 
real world, especially in agricultural soils, this is rarely the case, as farming practices are 
not constant year by year. In fact, for most agricultural soils, SOC content is dynamic 
and never reaches equilibrium. For a long-term simulation such as 18 years in this 
study, the SOC in the first several years is always in a transition from the user-defined 
initial content toward a new equilibrium with higher rates of change than in the later 
years. Figures 20 through 23 all illustrate these general patterns of carbon dynamics 
simulations in DNDC, although the parabolic curves are not absolutely smooth, due to 
the interannual variations in the climatic conditions. However, the results indicate that: 

• under constant management conditions, SOC approaches an equilibrium for all of 
the cropping systems; 

• different cropping systems affect SOC dynamics differently, mainly driven by the 
amount of crop litter incorporation; 

• initial SOC content has a large impact on net carbon dynamics and the rate at which 
the system approaches equilibrium; and  

• lower SOC leads to higher sequestration rates. 
Based on the above-described results, long-term C sequestration cannot be calculated 
by simply multiplying one year of observed SOC change. Only process-based models 
can provide a reasonable solution for estimating multiyear SOC dynamics. 

Figure 24 illustrates the large interannual variability of N2O emissions attributable to 
differences in timing of precipitation, irrigation, and fertilization. It is also clear that the 
magnitude of interannual variability of N2O emissions is related in part to SOC 
conditions (likely influencing DOC concentrations). In this case, higher SOC leads to 
higher interannual variability. 
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Dynamics of  C Sequestration 
Sutter County Cotton
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Figure 20. Long-term soil carbon dynamics for cotton in Sutter county 
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Figure 21. Long-term soil carbon dynamics for non-legume hay in Fresno county 
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Figure 22. Long-term soil carbon dynamics for corn in Sutter county 
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Figure 23. Long-term soil carbon dynamics for lettuce in Sutter and Fresno counties 
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Figure 24. Interannual variability in N2O Emission for corn in Sutter county 
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6.0 Conclusions 

The modeled SOC dynamics or N2O emissions presented in this report are provided in 
ranges, although we do not know exactly where the “real” values are located within the 
specified ranges. A large uncertainty in our analysis comes from crop residue 
incorporation estimates. In the baseline scenario, we assume 50% of aboveground 
residue was incorporated after harvest. Clearly, this assumption is a starting point to 
illustrate the impact of residue management on carbon dynamics and GHG emissions 
and does not represent actual management practices for all crops and all counties.  

Figures 25 and 26 illustrate that an assumption of 90% residue incorporation results in 
model estimates of total and rates of carbon sequestration are much higher than the 
baseline example (Figures 11 and 12). For example, we are currently obtaining 
publications (Jenkins et al. 1992; Jenkins and Turn 1994) that indicate a big portion (84% 
for almonds and 95% for walnuts) of fruit-tree residue is burned on an annual basis 
(CEC 2002). If this is a case for most cropping systems, the predicted C sequestration 
rates should be significantly reduced. To illustrate this point, we ran a scenario for 
another extreme where 100% of the aboveground residue was removed from the field 
(0% aboveground residue incorporation). In this case, agricultural soils in California 
were either a small sink (0.4Tg) or significant source (7.8 Tg) of carbon.  

On the other hand, although no manure was applied for our baseline scenario, we 
know that in some regions, especially counties with many dairies, that manure effluent 
is indeed applied to forage crops. If any manure is applied, then the C sequestration 
rate will be increased, relative to the baseline estimates. Obtaining better management 
data, especially for manure use and residue incorporation, will substantially improve 
the modeled results and should be the focus of a more detailed study for up to few 
counties. 

However, even though the provided SOC dynamics and N2O emissions estimates have 
large uncertainties, we are still able to assess the impact of various management 
scenarios by looking at modeled ranges which are comparable using their maximum 
and minimum values. Utilizing this methodology, we have distinguished the most 
important crops and counties regarding their contributions to carbon sequestration 
and/or N2O emissions in California. We expect this pilot study will provide a sound 
basis for more comprehensive assessments on GHG inventory and mitigation in 
California. 
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Figure 25. County carbon sequestration totals for 90% residue incorporation scenario.  
Higher and lower initial SOC content are presented in the upper and lower graphics, 

respectively. 
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Figure 26. Average county carbon sequestration rates for 90% residue incorporation scenario.  
Higher and lower initial SOC content are presented in upper and lower graphics, 

respectively. 
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Because DNDC has a unique capability to simulate SOC dynamics, N2O emissions, and 
CH4 fluxes from aerobic and anaerobic soils, we compared 100-year GWP across 
counties in California (Figures 27–28). There is a wide range in both the sign and 
magnitude of GWP ranges across counties, suggesting that opportunities for mitigating 
GHG emissions vary across California. For paddy rice, our model estimates indicate 
emissions factors across counties ranging from 243 to 347 kg CH4/ha. These factors are 
2 to 3 times the factor used in the CEC emission inventory report (CEC 2002). This large 
difference is likely due to the residue incorporation assumption and to a smaller degree 
the use of winter flooding. We assumed 90% residue incorporation, the CEC factor 
assumes a significant amount of residue burning. It is well known that rice straw 
incorporation can lead to increased CH4 fluxes from rice cultivation in California 
(Fitzgerald et al. 2000; Cicerone et al. 1992). 
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Figure 27. County 100-year GWP ranges from the baseline scenario 
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Figure 28. Net GWP from agricultural soils. Higher and lower initial SOC content are 
presented in the upper and lower graphics, respectively. 
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7.0 Research Recommendations 

Based on the estimates of soil carbon dynamics and GHG emissions provided in this 
scoping study, it is clear that there are large uncertainties in carbon dynamics and GHG 
emissions from agricultural soils in California as a whole. We contend that there is a 
relatively good understanding of the general processes that control soil carbon 
dynamics and GHG emissions and models exist to perform reliable inventories and 
assessment of GHG mitigation opportunities. Thus, the bulk of the uncertainty is a 
result of the quality of two critical inputs for modeling soil carbon dynamics and GHG 
emissions in agricultural systems of California: 

1. Quantification of management practices at the landscape scale 
2. Soil carbon databases 

Based on our modeling analysis, the range (or uncertainty) in average carbon 
sequestration rates across the 0% to 90% residue incorporation management scenarios 
was comparable to the uncertainty range in sequestration rates attributable to soil 
carbon minimum and maximum values for each management scenario. Figure 17 
shows these ranges in uncertainty. We compared the mid-point (average of minimum 
and maximum values) for each range carbon sequestration rate estimates for the 0% 
and 90% residue incorporation scenarios. Their difference in rates was 2,430 kg C/ha, 
which is comparable to the ranges provided for the individual 0%, 50%, and 90% 
residue incorporation scenarios (1,748, 1,770, and 2,153 kg C/ha, respectively). 
Therefore, the lack of good data on residue management and the large range in soil 
carbon estimates at the county scale contributed equally to the large uncertainties in our 
model estimates. 

Clearly, the uncertainties in this modeling analysis can be reduced significantly using 
existing data that are available but were beyond the scope of this study. The following 
recommendations highlight a couple of improvements that focus on using better spatial 
resolution data for California: (1) move beyond county averages in terms of soil 
characteristics (e.g., organic soils in San Joaquin) and climate conditions (use gridded 
climate data across each county rather than a single location, like the centroid approach 
used in the scoping study), and (2) use regionally specific crop fertilizer practices based 
on local climate and soils 

The following recommendations are made to improve understanding of overall carbon 
dynamics and GHG emissions in California, ability to assess California -specific 
mitigation alternatives and for improving techniques for compiling emission 
inventories for California: 

• Management Data Collection. A program to collect data on agricultural 
management practices is needed. Data collection should be conducted to obtain a 
better spatial representation of management practices to account for regional and 
cropping system differences. The critical data needs include residue management 
and manure amendment. These data are required to more accurately estimate soil C 
inputs. Residue management practices have changed significantly in California in 
response to past regulatory actions, such as the Rice Straw Burning Reduction Act of 
1991 and more recent bans on burning agricultural residue (e.g., the SB 705 goal to 
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phase out open field burning of agricultural waste). California has approximately 
2,700 dairies, which generate over 30 million tons of manure annually. Land 
application of manure can have a large impact on soil carbon stocks and direct and 
indirect GHG emissions. Data on regional patterns of manure quality (e.g., C/N 
ratio), manure application rates (lb./acre), and application methods/forms (e.g., 
liquid slurry, solids) would be useful. 

• GIS Soil Databases. Soil properties, in particular SOC content, have a significant 
influence on carbon dynamics and trace gas emissions. STATSGO soil survey data 
(1:250,000 scale) were used for the scoping study. Tables 5, 6, and 7 in the 
Supplemental Tables and Figures contain the area-weighted statistics by major crop 
type for each county based on the STATSGO GIS database. The large range in soil 
properties for a given agricultural area translates into very large uncertainties in 
model estimates. Fortunately, NRCS is already addressing this need. It has been 
compiling an improved soil survey data called the Soil Survey Geographic 
(SSURGO) database, with mapping scales ranging from 1:12,000 to 1:63,360. As of 
December 2003, over 80% of the data from the San Joaquin Valley, Sacramento 
Valley, and Central Coast regions of California have been entered into the SUSRGO 
database, and ultimately, NRCS plans to include data for the entire state.  Use of the 
improved spatial and thematic resolution SUSRGO data will improve model 
estimates of carbon dynamics and GHG emissions.  

• Further model validation. Although DNDC has been validated across a wide range 
of agroecosystems worldwide (see Section 4), additional validation is important to 
quantify how well the model performs in simulating carbon dynamics, and N2O and 
CH4 emissions for the wide range in Californian agroecosystems. We recommend 
two parallel activities: (1) perform model validation using existing field data on 
carbon dynamics (e.g., DeClerck et al. 2003), CH4 emissions (e.g. , Cicerone et al. 1992; 
Fitzgerald et al. 2000; Lauren et al. 1994) and N2O emissions (e.g., Venterea and 
Rolston 2000) for California, and (2) develop a field measurement program to cover 
critical gaps in field data across a range of major crops and management systems. 
Models can be useful for prioritizing field measurements needs based on previous 
validation studies and simulations to identify potential large ranges in emissions 
across climate, crops, and management systems. 

• Evaluation of additional management scenarios. This scoping study covered 
management scenarios focusing on residue incorporation, manure management, and 
irrigation. However, several additional scenarios should be considered for studying 
mitigation alternatives, including for example: 

• no-till, conservation tillage, and conventional tillage; 
• optimized  fertilizer application rates (see Table 2 for baseline application rates); and  
• use of cover crops.  
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Figure 29. SUSRGO GIS database development status as of December 2003 
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9.0 Supplemental Tables and Figures 

Table 3. County crop areas for grains and field crops (in hectares) 

County Cotton Beets Corn Sorghum Beans Sunflower Barley Wheat Oats 

AMADOR 0 23 387 0 0 0 108 108 108 
BUTTE 0 1,139 2,291 0 1,056 359 0 5,135 0 

COLUSA 6,284 470 4,754 234 2,748 606 99 13,556 0 

CONTRA COSTA 0 0 5,666 0 164 0 953 953 953 

DEL NORTE 11 0 11 0 0 0 0 0 0 

FRESNO 188,756 7,272 10,501 0 726 5 11,607 11,607 11,607 

GLENN 401 376 9,493 227 1,653 2,933 672 9,169 727 

HUMBOLDT 0 0 260 0 37 0 319 319 319 

IMPERIAL 161 27,535 2,604 0 50 0 1,476 42,489 158 

KERN 105,798 2,300 14,968 403 3,510 0 47,908 0 0 

KINGS 134,339 140 30,700 1,391 5 0 9,649 9,649 9,649 

LAKE 145 0 146 0 0 0 14 63 752 

LOS ANGELES 0 0 0 0 0 0 0 0 0 

LASSEN 0 63 10 3 1,296 0 32 2,451 3,093 

MADERA 20,956 159 6,343 15 3,515 0 11,298 0 0 

MARIN 0 0 0 0 0 0 637 637 637 

MARIPOSA 0 0 0 0 0 0 2 2 2 

MERCED 38,543 3,486 25,056 0 68 0 5,056 5,056 5,056 

MODOC 101 1,691 100 0 1,895 0 9,939 1,945 452 

MONTEREY 0 35 2,593 0 0 0 5,060 5,060 5,060 

PLACER 0 0 433 0 0 0 822 822 822 

PLUMAS 0 0 0 0 0 0 377 0 0 

RIVERSIDE 0 0 817 0 323 0 4,205 11,883 2,326 

SACRAMENTO 0 1,190 22,209 390 0 0 453 7,522 0 

SAN BENITO 0 85 1,721 0 0 0 3,140 3,140 3,140 

SAN BERNARDINO 0 0 1,030 0 0 0 120 0 1,139 

SAN DIEGO  0 0 70 0 6,868 648 38 1,421 2,107 

SAN JOAQUIN 0 2,729 38,457 247 20 0 10,148 10,148 10,148 

SAN LUIS OBISPO 0 0 343 0 1,697 0 33,462 4,180 14,957 

SANTA BARBARA  0 0 446 0 0 0 0 2,827 2,928 

SANTA CRUZ 0 0 47 0 0 0 46 46 46 

SHASTA 0 227 175 5 2,042 1,633 743 66 531 

SOLANO 0 4,107 11,390 20 12,675 1 9,209 9,209 9,209 

STANISLAUS 29 27 24,651 0 3,977 263 1,875 1,875 1,875 

SUTTER 1,139 1,528 12,027 99 173 88 0 0 7,925 

TEHAMA 0 157 2,135 0 5,101 15 449 5,087 798 

TRINITY 2 0 2 0 0 0 0 0 69 

TULARE  32,627 1,821 47,216 1,167 786 2,855 28,769 0 0 

TUOLUMNE 0 0 0 0 0 0 0 0 0 

YOLO 3,535 2,052 30,681 617 39 0 10,001 10,001 10,001 

YUBA 0 0 625 0 0 0 0 0 554 
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Table 4. County crop areas for pasture, rice, truck crops, deciduous fruits, citrus, and 
vineyards (in hectares) 

County Alfalfa NL Hay Citrus Deciduous Rice Lettuce Tomato Vineyards 

AMADOR 117 914 11 354 0 41 41 1357 
BUTTE 1321 3439 2910 35492 49076 100 100 17 
COLUSA 3185 1633 48 15653 58564 8376 8376 760 
CONTRA COSTA 1622 2865 2 2837 0 1425 1425 372 
DEL NORTE 0 3806 0 2 0 265 265 0 
FRESNO 35386 7172 13411 54213 1931 39475 39475 98238 
GLENN 5601 9959 2472 19966 36907 759 759 625 
HUMBOLDT 192 16914 3 55 0 108 108 2 
IMPERIAL 75197 18479 2869 13 0 19849 19849 108 
KERN 43473 3730 20168 72005 0 16906 16906 41842 
KINGS 17637 1619 464 12053 0 2945 2945 2100 
LAKE 149 2404 19 6870 477 10 10 1581 
LOS ANGELES 0 0 15 0 0 4 4 0 
LASSEN 15252 27467 0 6 292 198 198 0 
MADERA 14637 4688 2689 37263 173 964 964 36811 
MARIN 0 645 43 3 0 22 22 51 
MARIPOSA 0 1327 4 34 0 0 0 66 
MERCED 32950 24151 146 47111 2276 7994 7994 7606 
MODOC 15480 39038 0 31 1456 1843 1843 0 
MONTEREY 937 1169 674 273 0 33141 33141 17169 
PLACER 6 7516 75 1288 8641 101 101 39 
PLUMAS 2586 13802 0 2 0 92 92 0 
RIVERSIDE 3511 3054 8535 153 0 1669 1669 348 
SACRAMENTO 2988 12491 165 3613 4618 2037 2037 10707 
SAN BENITO 531 439 0 2964 0 3925 3925 1094 
SAN BERNARDINO 1076 1637 3224 215 0 569 569 1824 
SAN DIEGO 29 2748 23552 288 0 3469 3469 63 
SAN JOAQUIN 24850 14200 106 43448 2424 16765 16765 31120 
SAN LUIS OBISPO 1711 2888 1330 6291 0 5247 5247 5731 
SANTA BARBARA 1037 2565 4546 921 0 11179 11179 4970 
SANTA CRUZ 4 454 20 1724 0 3346 3346 24 
SHASTA 2366 17016 409 789 1171 211 211 15 
SOLANO 9233 7586 41 5655 0 5002 5002 944 
STANISLAUS 13989 25657 284 56146 1191 5329 5329 6426 
SUTTER 2040 2636 180 27981 42858 6641 6641 39 
TEHAMA 2147 13006 6448 14482 1281 98 98 72 
TRINITY 16 946 0 42 0 7 7 23 
TULARE 39562 3311 55902 50362 0 1712 1712 34668 
TUOLUMNE 230 230 0 106 0 5 5 2 
YOLO 16865 0 122 10424 12306 13024 13024 3819 
YUBA 5802 0 392 13802 15782 90 90 184 
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Table 5. STATSGO county soils data for deciduous fruits and nuts, citrus, and vineyard crop 
group 

COUNTY SOC (%) Clay Fraction pH Bulk Density 

 A.W.Max A.W.Min A.W.Max A.W.Min A.W.Max A.W.Min A.W.Max A.W.Min 
AMADOR 4.52 1.70 0.19 0.09 6.86 5.72 1.30 1.15 
BUTTE 2.74 0.92 0.27 0.18 7.59 6.07 1.54 1.41 
COLUSA 2.97 1.31 0.34 0.24 7.41 6.18 1.52 1.39 
CONTRA COSTA 2.23 1.07 0.52 0.34 8.38 5.92 1.56 1.42 
DEL NORTE 2.00 1.00 0.20 0.10 6.00 5.00 1.20 1.10 
FRESNO 1.11 0.53 0.21 0.10 8.00 6.10 1.57 1.46 
GLENN 1.50 0.68 0.23 0.15 7.36 5.74 1.55 1.44 
HUMBOLDT 5.75 2.53 0.20 0.10 6.91 5.77 1.48 1.36 
IMPERIAL 0.74 0.24 0.11 0.04 8.40 7.66 1.62 1.52 
KERN 0.93 0.43 0.20 0.10 8.33 7.24 1.58 1.48 
KINGS 1.94 0.97 0.19 0.11 8.36 6.56 1.60 1.49 
LAKE 2.79 0.95 0.28 0.18 7.19 5.69 1.37 1.29 
LOS ANGELES 3.00 1.00 0.34 0.23 8.26 6.10 1.49 1.36 
LASSEN 2.00 1.00 0.15 0.10 8.40 7.40 1.55 1.45 
MADERA 1.65 0.57 0.19 0.09 7.65 6.10 1.56 1.46 
MARIN 3.00 1.00 0.30 0.18 7.30 5.60 1.50 1.40 
MARIPOSA 1.39 3.70 0.12 0.23 5.36 6.70 1.18 1.39 
MERCED 1.57 0.63 0.15 0.09 7.75 6.19 1.62 1.51 
MODOC 2.95 1.12 0.26 0.17 7.30 6.10 1.27 1.16 
MONTEREY 2.99 1.22 0.26 0.15 7.16 5.44 1.46 1.35 
PLACER 3.25 1.10 0.21 0.10 7.14 5.56 1.55 1.33 
PLUMAS 2.30 1.00 0.22 0.13 6.74 5.40 1.50 1.38 
RIVERSIDE 1.57 0.64 0.20 0.12 7.97 6.34 1.58 1.46 
SACRAMENTO 4.08 1.10 0.31 0.20 7.18 5.83 1.51 1.41 
SAN BENITO 2.77 1.00 0.52 0.35 8.13 6.02 1.44 1.34 
SAN BERNARDINO 3.00 1.00 0.41 0.29 8.09 6.10 1.47 1.32 
SAN DIEGO 1.06 0.49 0.18 0.08 7.26 5.48 1.59 1.49 
SAN JOAQUIN 3.10 1.16 0.28 0.18 7.86 6.58 1.57 1.46 
SAN LUIS OBISPO 1.08 0.52 0.19 0.09 7.25 5.55 1.60 1.50 
SANTA BARBARA 3.28 0.94 0.22 0.12 7.13 5.86 1.59 1.47 
SANTA CRUZ 2.94 0.89 0.34 0.21 7.73 5.63 1.46 1.37 
SHASTA 1.71 0.62 0.19 0.10 7.68 5.73 1.55 1.45 
SOLANO 6.55 1.46 0.46 0.36 7.55 6.00 1.39 1.26 
STANISLAUS 2.15 0.83 0.22 0.14 7.92 6.29 1.58 1.47 
SUTTER 3.97 1.01 0.27 0.20 7.79 6.11 1.50 1.40 
TEHAMA 1.07 0.50 0.19 0.10 7.52 5.64 1.58 1.48 
TRINITY 9.88 4.45 0.18 0.07 6.54 5.18 1.49 1.35 
TULARE 1.22 0.60 0.27 0.15 7.31 6.02 1.52 1.42 
TUOLUMNE 4.88 1.95 0.21 0.11 6.52 5.17 1.35 1.11 
YOLO 6.57 1.50 0.46 0.34 7.54 5.97 1.39 1.27 
YUBA 2.94 0.82 0.26 0.18 7.26 5.87 1.53 1.43 
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Table 6. STATSGO county soils data for grains, field crops, and truck crop group 

COUNTY SOC (%) Clay Fraction pH Bulk Density 

 A.W.Max A.W.Min A.W.Max A.W.Min A.W.Max A.W.Min A.W.Max A.W.Min 
AMADOR 2.73 1.72 0.17 0.06 7.48 6.12 1.52 1.45 
BUTTE 2.63 0.93 0.30 0.19 7.78 6.10 1.54 1.41 
COLUSA 4.12 1.80 0.42 0.32 7.79 6.65 1.52 1.35 
CONTRA COSTA 5.70 1.60 0.50 0.34 8.01 5.61 1.48 1.35 
DEL NORTE 4.23 1.93 0.23 0.15 7.39 6.28 1.45 1.34 
FRESNO 1.89 0.58 0.52 0.35 8.42 7.28 1.44 1.26 
GLENN 1.99 0.89 0.27 0.18 7.04 5.68 1.54 1.42 
HUMBOLDT 3.90 1.78 0.22 0.14 7.36 6.25 1.48 1.38 
IMPERIAL 0.53 0.03 0.18 0.09 8.40 7.87 1.52 1.42 
KERN 0.68 0.17 0.20 0.11 8.78 7.37 1.56 1.46 
KINGS 2.00 1.00 0.51 0.41 8.40 7.23 1.48 1.30 
LAKE 5.22 1.72 0.28 0.18 7.01 5.54 1.33 1.21 
LOS ANGELES 3.00 1.00 0.27 0.18 8.40 6.10 1.50 1.40 
LASSEN 2.97 1.46 0.30 0.21 7.75 6.63 1.42 1.29 
MADERA 2.15 0.62 0.20 0.11 8.55 6.80 1.54 1.44 
MARIN 3.65 1.65 0.23 0.13 6.77 5.60 1.53 1.43 
MARIPOSA 2.00 1.00 0.25 0.12 7.30 5.60 1.55 1.40 
MERCED 2.18 0.77 0.28 0.21 8.41 7.01 1.51 1.40 
MODOC 2.73 1.24 0.23 0.15 7.94 6.62 1.45 1.30 
MONTEREY 2.94 1.10 0.36 0.24 7.75 5.78 1.44 1.33 
PLACER 1.91 0.88 0.20 0.11 7.07 5.58 1.66 1.54 
PLUMAS 10.82 3.61 0.40 0.26 7.30 6.10 1.24 1.11 
RIVERSIDE 1.46 0.61 0.22 0.13 8.20 6.78 1.55 1.44 
SACRAMENTO 5.14 1.25 0.35 0.25 7.30 5.98 1.47 1.37 
SAN BENITO 2.70 1.00 0.51 0.35 8.07 6.52 1.47 1.36 
SAN BERNARDINO 2.39 0.84 0.25 0.16 8.17 6.02 1.50 1.40 
SAN DIEGO 1.43 0.58 0.19 0.09 6.81 5.62 1.54 1.44 
SAN JOAQUIN 7.07 2.39 0.39 0.28 8.00 6.32 1.48 1.35 
SAN LUIS OBISPO 1.40 0.57 0.20 0.10 7.39 5.88 1.59 1.49 
SANTA BARBARA 3.47 0.92 0.17 0.07 7.59 6.71 1.59 1.49 
SANTA CRUZ 2.94 0.89 0.33 0.21 7.73 5.63 1.46 1.37 
SHASTA 3.12 1.57 0.19 0.10 7.21 5.83 1.62 1.52 
SOLANO 4.05 1.44 0.49 0.36 8.01 6.63 1.50 1.31 
STANISLAUS 1.93 0.82 0.30 0.20 8.10 6.26 1.56 1.45 
SUTTER 4.63 1.81 0.50 0.37 8.21 7.16 1.51 1.32 
TEHAMA 1.08 0.51 0.20 0.11 7.19 5.47 1.57 1.47 
TRINITY 4.89 2.20 0.20 0.13 6.90 5.80 1.38 1.15 
TULARE 1.21 0.60 0.26 0.17 8.55 7.09 1.55 1.43 
TUOLUMNE 3.59 1.39 0.24 0.12 6.65 5.60 1.33 1.15 
YOLO 5.00 1.70 0.51 0.36 8.04 6.81 1.47 1.30 
YUBA 1.30 0.55 0.25 0.15 6.62 5.63 1.59 1.49 
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Table 7. STATSGO county soils data for the pasture class 

COUNTY SOC (%) Clay Fraction pH Bulk Density 

 A.W.Max A.W.Min A.W.Max A.W.Min A.W.Max A.W.Min A.W.Max A.W.Min 

AMADOR 2.54 1.53 0.18 0.08 7.30 5.79 1.53 1.45 
BUTTE 3.41 1.16 0.35 0.23 7.51 6.13 1.52 1.37 
COLUSA 3.59 1.56 0.40 0.28 7.61 6.45 1.52 1.37 
CONTRA COSTA 4.69 1.42 0.55 0.37 8.26 5.88 1.48 1.34 
DEL NORTE 3.95 1.91 0.24 0.17 7.64 6.47 1.46 1.35 
FRESNO 1.55 0.66 0.31 0.20 8.51 6.94 1.52 1.40 
GLENN 1.66 0.79 0.24 0.16 6.80 5.42 1.55 1.43 
HUMBOLDT 4.11 2.02 0.25 0.17 7.69 6.51 1.45 1.35 
IMPERIAL 0.53 0.03 0.17 0.08 8.41 7.87 1.54 1.44 
KERN 0.54 0.03 0.18 0.10 8.94 7.38 1.55 1.45 
KINGS 2.00 1.00 0.43 0.34 8.40 7.07 1.51 1.35 
LAKE 4.97 1.79 0.26 0.15 6.97 5.56 1.28 1.16 
LOS ANGELES 3.00 1.00 0.27 0.18 8.40 6.10 1.50 1.40 
LASSEN 3.22 1.49 0.36 0.24 7.86 6.75 1.33 1.21 
MADERA 2.15 0.62 0.21 0.12 8.99 7.13 1.52 1.42 
MARIN 3.26 1.26 0.40 0.27 7.35 5.86 1.49 1.34 
MARIPOSA 3.19 1.18 0.21 0.11 6.62 5.44 1.33 1.11 
MERCED 2.11 0.73 0.26 0.19 8.47 6.98 1.52 1.42 
MODOC 4.27 1.93 0.27 0.18 7.58 6.28 1.39 1.22 
MONTEREY 4.17 1.56 0.28 0.18 7.61 5.78 1.35 1.25 
PLACER 2.18 0.86 0.21 0.10 7.06 5.58 1.60 1.39 
PLUMAS 8.66 2.89 0.35 0.25 7.18 6.03 1.31 1.16 
RIVERSIDE 1.66 0.65 0.23 0.14 8.25 6.84 1.54 1.43 
SACRAMENTO 2.18 0.78 0.27 0.17 6.84 5.75 1.56 1.47 
SAN BENITO 2.83 1.00 0.53 0.36 8.35 6.94 1.50 1.37 
SAN BERNARDINO 2.51 0.88 0.25 0.17 8.24 6.11 1.53 1.42 
SAN DIEGO 1.77 0.65 0.24 0.13 7.18 5.78 1.54 1.43 
SAN JOAQUIN 5.66 2.13 0.33 0.22 7.90 6.29 1.51 1.39 
SAN LUIS OBISPO 1.09 0.53 0.19 0.09 7.26 5.60 1.60 1.50 
SANTA BARBARA 3.46 0.91 0.16 0.07 7.36 5.79 1.59 1.49 
SANTA CRUZ 3.00 1.00 0.57 0.38 8.84 7.72 1.54 1.39 
SHASTA 3.52 1.44 0.20 0.12 6.94 5.56 1.54 1.43 
SOLANO 4.36 1.69 0.50 0.36 8.24 7.07 1.53 1.33 
STANISLAUS 1.80 0.72 0.23 0.14 7.93 6.22 1.58 1.47 
SUTTER 3.43 1.22 0.37 0.26 7.62 6.44 1.53 1.39 
TEHAMA 1.15 0.52 0.20 0.11 7.02 5.38 1.56 1.46 
TRINITY 6.25 3.03 0.21 0.13 6.94 5.62 1.46 1.26 
TULARE 1.13 0.54 0.23 0.15 8.87 7.33 1.56 1.45 
TUOLUMNE 3.33 1.38 0.22 0.11 6.84 5.43 1.41 1.21 
YOLO 5.26 1.80 0.51 0.37 8.12 6.94 1.47 1.30 
YUBA 1.43 0.65 0.25 0.14 6.72 5.61 1.58 1.47 
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Table 8. STATSGO county soils data for rice paddy areas 

COUNTY SOC (%) Clay Fraction pH Bulk Density 

 A.W.Max A.W.Min A.W.Max A.W.Min A.W.Max A.W.Min A.W.Max A.W.Min 
BUTTE 4.63 1.80 0.50 0.36 8.19 7.07 1.50 1.32 
COLUSA 4.30 1.96 0.39 0.31 7.69 6.56 1.53 1.36 
FRESNO 2.01 0.81 0.51 0.40 8.40 7.70 1.40 1.26 
GLENN 3.50 1.65 0.32 0.26 7.36 6.13 1.54 1.39 
LAKE 1.00 0.50 0.25 0.10 6.53 4.53 1.55 1.45 
LASSEN 1.22 0.61 0.53 0.35 7.74 6.54 1.31 1.16 
MERCED 1.25 0.60 0.29 0.20 9.32 7.76 1.44 1.34 
MODOC 14.85 7.45 0.38 0.20 8.00 6.49 0.94 0.65 
PLACER 1.15 0.57 0.24 0.14 6.62 5.60 1.62 1.51 
SACRAMENTO 4.54 1.72 0.49 0.35 8.10 7.04 1.51 1.33 
SAN JOAQUIN 1.10 0.53 0.16 0.06 7.32 5.64 1.60 1.50 
SHASTA 4.81 2.85 0.18 0.09 6.75 5.65 1.56 1.46 
STANISLAUS 2.16 1.02 0.19 0.09 7.37 5.98 1.55 1.47 
SUTTER 3.45 1.39 0.42 0.30 7.66 6.66 1.54 1.38 
TEHAMA 1.14 0.50 0.21 0.12 6.50 5.10 1.55 1.45 
YOLO 4.89 1.95 0.55 0.39 8.38 7.35 1.50 1.30 
YUBA 1.14 0.51 0.25 0.15 6.52 5.56 1.59 1.49 
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The following figures (30–32) illustrate the 50-year changes in SOC for pasture, row crop, 
and tree crop simulations for 3 of the 27 sites analyzed as part of our validation exercise 
using the DeClerck et al. (2003) data. 

SOC Dynamics: Colusa Pasture Example (field data from DeClerck et al. 2003)
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Figure 30. 50-year simulation for validation: Colusa county pasture example 

 

Carbon Dynamics: Row crops in Glenn County
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Figure 31. 50-year simulation for validation example for row crops in Glenn County 
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Carbon Dyanmics: Fresno Tree Crop
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Figure 32. 50-year simulation for tree crops in Fresno 

  
 




