EPIC Symposium

Improving Water and Energy Efficiency in California’s Dairy Industry

Theresa Pistochni and Grazyne Tresoldi
University of California, Davis
“Accelerate the development and commercialization of efficient heating, cooling, and energy distribution solutions through stakeholder engagement, innovation, R&D, education, and outreach.”
California’s Dairies

- California has:
 - 1,450 Dairies
 - 1.78 million dairy cows
 - Mostly located in the central valley
Milk Production = Heat Production

- Average CA cow produces over 8 gallons of milk each day
- Production generates a lot of metabolic heat
Cattle Responses to Heat Load: Behavior and Physiology

- ↑ Use of heat abatement resources
- ↑ Sweating (limited)
- ↑ Respiration rate, panting
- ↓ Eating
- ↑ Time standing up
- ↓ Movement/activity
If Heat Load is Not Managed…

↑ Body temperature
↓ Milk production
↓ Reproduction/fertility
↑ Disease risk
↑ Mortality
Typical Cooling Strategy

- One of top 3 uses of water at a dairy
- Sprinklers over feed bunk, milking parlor
- Fans in bedding area, milking parlor
Energy Costs for a California Dairy

Energy costs at California’s dairies peak in summer.
Scope of the Project

BASELINE APPROACH

(A) CONDUCTION COOLING

(B) TARGETED CONVECTION COOLING
Conduction Cooling

Conduction Cooling Mats Under Bedding

Heat Exchanger

Insulator

Sub Wet-bulb Evaporative Chiller
Calculated Water and Energy Impacts for Baseline vs Proposed Cooling Systems

<table>
<thead>
<tr>
<th></th>
<th>Baseline (fans/soakers)</th>
<th>Conduction Cooling Approach</th>
<th>Targeted Convection Cooling Approach</th>
</tr>
</thead>
<tbody>
<tr>
<td>Water use Gallons/cow/year</td>
<td>11,424 (soakers)</td>
<td>2,166 (soakers)</td>
<td>1,560 (chiller)</td>
</tr>
<tr>
<td></td>
<td>11,424 (total)</td>
<td>928 (chiller)</td>
<td>1,560 (total)</td>
</tr>
<tr>
<td>% Water Use Reduction</td>
<td>-</td>
<td>73%</td>
<td>86%</td>
</tr>
<tr>
<td>Electricity use kWh/cow/year</td>
<td>86 (fans)</td>
<td>19 (fans)</td>
<td>94 (chiller)</td>
</tr>
<tr>
<td></td>
<td>55 (on-site pumps)</td>
<td>14 (on-site pumps)</td>
<td>8 (on-site pumps)</td>
</tr>
<tr>
<td></td>
<td>17 (CC recirc pump)</td>
<td>37 (chiller)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>141 (total)</td>
<td>87 (total)</td>
<td>102 (total)</td>
</tr>
<tr>
<td>% Electricity use Reduction</td>
<td>-</td>
<td>38%</td>
<td>28%</td>
</tr>
</tbody>
</table>
Technical Tasks and Approximate Timeline

PHASE 1 - UC DAVIS DAIRY

- **PLANNING, DESIGN & INSTALLATION**
 - Nov. 16 - Apr. 17
- **DATA COLLECTION AND ANALYSIS**
 - May 17 - Oct. 17

PHASE 2 - COMMERCIAL DAIRY

- **PLANNING, DESIGN & INSTALLATION**
 - Nov 17 - Apr. 18
- **DATA COLLECTION AND ANALYSIS**
 - May 18 - Dec. 18

MARKET ANALYSIS
- Jun. 17 - Dec. 18

At UC Davis Dairy

Compare conduction cooling and targeted convection cooling approaches against a baseline. Select most promising technology based on energy consumption, water consumption, performance, and cost.

At Commercial Dairy

For selected approach, characterize energy, water use and cow productivity and health at a commercial dairy scale in Tulare, CA.