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    If you cannot measure it,
you cannot improve it.

~ Lord Kelvin (William Thomson,
   1st Baron Kelvin), 1824 - 1907
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Outline
• Brief history of California’s GHG inventory
• Facts and figures
• Uncertainty and how to reduce it
• Criteria for selecting research priorities

• Our recommendations for research to
improve California’s GHG inventory

• Items we chose not to recommend
• Summary and conclusions
• Most importantly: your feedback!
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A brief history of
California’s GHG inventory

• The California Energy Commission compiled
California’s first GHG inventory in 1999,
following IPCC guidelines.

•  CEC continued to compile the inventory
until 2006, when AB 32 (the Global Warming
Solutions Act) became law.

• Since 2006, the California Air Resources
Board has assumed responsibility for the
inventory and for collecting “mandatory
reporting” data.
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California’s 2004 GHG emissions

Data from ARB’s inventory, completed 11/2007

CO2 = carbon dioxide
CH4 = methane
N2O = nitrous oxide
HGWP = high global

warming potential
gases

Carbon dioxide is by
far the largest
component of the
inventory.

by gas
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480

Data from ARB’s inventory, completed 11/2007

California’s 2004 GHG emissions
by sector
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Data from ARB’s inventory, completed 11/2007

California’s 2004 GHG emissions

480

by sector

In this discussion
paper, we considered
all categories except
CO2 from fossil fuel
combustion.



Slide 7 of 29

Trends in GHG emissions, 1990-2004

ODSS data from ARB’s inventory (2007); other data from CEC’s
inventory (Bemis, 2006)
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How do we measure GHG emissions?

• In most cases we must estimate them.
• Estimation methods include:

– Emissions factor (EF) × activity data

– Energy balance (how much energy was used?)

– Process model (more sophisticated than EF)

– Inverse modeling (tracing a plume to its source)

• Which approach is best?  This depends
upon the quality of our data, and how well
we understand the processes involved.
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Improving our estimates
To improve the inventory’s accuracy, we can:
– Collect better activity data (acres of cropland,

number of trucks).

– Develop more accurate emissions factors,
perhaps specific to a region, system, or crop.

– Switch from an EF model to a process model (if
the process model produces better results).

– Improve the representation of processes in a
process model.

– Include new gases or sources that have
previously been omitted.
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Uncertainty

• To improve the inventory’s accuracy, we
should focus research on the sectors that
contribute most to its uncertainty.

• This does not necessarily mean the largest
sectors; some sectors of small magnitude
have very large uncertainty.

• In this context, there are different ways of
defining and calculating uncertainty:
– Parameter uncertainty
– Model uncertainty
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Parameter uncertainty

• Parameter uncertainty is the combined uncertainty
in the input parameters, assuming the underlying
model structure is correct.

• The US EPA inventory includes Monte Carlo
estimates of parameter uncertainty (below).

GHG data from ARB’s inventory (2007); proportional
size of error bars from US EPA’s inventory (2008).
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Model uncertainty
• Model uncertainty is the difference between model

predictions and actual values.
• Unlike parameter uncertainty, it requires comparison

with another model and/or with empirical data.
• Often, model uncertainty overwhelms the

uncertainty in the input data.

The atmospheric N2O measurements of Crutzen
et al. (2008) suggest that average IPCC
emissions factors are too low.
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A methods change in the 2008 EPA inventory increased
the estimated manure management emissions by ~40%,
exceeding the parameter uncertainty.
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In greenhouse gas inventories, uncertainty
is rarely quantified at all; most assessments
of uncertainty are subjective.

We suggest that CEC-PIER rely wherever
possible on numerical estimates of uncertainty
when choosing research priorities.

Where these estimates do
not yet exist, it may be
worthwhile to create them.
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Past and current PIER research

  Completed:
– Carbon in CA forests (Brown et al., 2004-07)
– Process modeling of agricultural soils (DNDC, by Li

et al. 2004; DAYCENT, by De Gryze, Six et al., 2006)
– ...and of dairies (DNDC, by Salas et al., 2008)
– Atmospheric CO2 monitoring (Fischer et al., 2005)

  Ongoing:
– Atmospheric GHG monitoring (Fischer, Saber et al.)
– Methane from landfills (Bogner et al.)
– N2O measurements from agricultural soils (TBD)

(a brief list)
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What are other agencies doing to
improve GHG inventory methods?

US Environmental Protection Agency
– Developing nationally and regionally

specific emissions factors
– Collecting empirical observations to assess

inventory methods
– Implementing process models (e.g. DAYCENT)

California Air Resources Board
– Taking atmospheric measurements of

GHGs (both well-mixed and point source)
– Monitoring criteria pollutants

(only a partial list!)
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Identifying research priorities
• In recommending research priorities, we

took into account
– the magnitude of a category (sector or gas)
– its absolute and proportional uncertainty
– its potential for short- to medium-term

improvement

• We also considered PIER criteria, including:
– applicable to California specifically
– generation of co-benefits
– clear need for state support; likelihood of

securing co-funding
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Our list of research priorities

7. Inverse methods
6. Ozone (precursor inventory)
Medium Priority
5. CH4 from landfills
4. Fugitive CH4 emissions
3. High-GWP gases

2. N2O from agricultural soils
(including indirect emissions)

1. CO2 from agricultural soil;
reconciliation with forestry methods

High Priority
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1. CO2 from agricultural soil

• This sector is currently omitted from
California’s inventory, but the data exist to
calculate it.

• Previous studies indicated that agricultural
soil could be a net carbon source (Brown et
al., 2004) or a net carbon sink (Li et al., 2004).

• Following the new IPCC
guidelines, agricultural and
forestry data sets should be
reconciled.
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2. N2O from agricultural soil

• N2O is emitted from agricultural soil
through a series of intricate reactions.

• These reactions can take place where the N
fertilizer was applied (direct), or in a remote
location to which the fertilizer escaped
(indirect).

• CA’s current inventory uses an emissions
factor approach for both emissions types.
A process model may offer better accuracy;
data would be needed to verify this.

(direct and indirect emissions)
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N2O emissions: direct and indirect

Figure 4.10 from Farrell et al. (2005), “Research Roadmap for Greenhouse
Gas Inventory Methods.”
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3. High-GWP gases

• These diverse gases include the refrigerant
HFC-134a and the insulator SF6.

• Many have global warming potentials
thousands of times greater than CO2.

• Of concern is their rapid growth, and the
potential for new unknown sources to arise.

The only gas
species undergoing
rapid increase in
California’s
inventory
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4. Fugitive CH4 emissions

• Methane escapes from oil and gas drilling
operations directly into the atmosphere.

• These fugitive emissions, though significant,
are poorly monitored. CA’s current inventory
calculates fugitive emissions as a fraction of
ARB’s CEIDARS organic emissions database.

• This sector has been overlooked
relative to others of the same size,
and could be improved by the
collection of California-specific data.
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5. CH4 from landfills

• The processes that produce (and consume)
methane in landfills are complicated, and
imperfectly characterized by CA’s current
methodology.

• Jean Bogner et al. (Landfills, Inc.) are
currently conducting a PIER-funded study to
improve theoretical models of landfill decay.

• Given the size and complexity
of this sector, we expect more
research will be needed.
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6. Ozone precursors

• Ozone is not currently a mandatory part of
any inventory; however, it likely will be in
the future, as its radiative forcing is large.

• ARB tracks ozone precursor emissions by
mass of gas, but there is no protocol to
quantify their global warming potential.

• The estimation of ozone’s
global warming impact is a
long-term goal on which CEC
and ARB could collaborate.
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The
importance
of tropo-
spheric
ozone

Figure 2 from
FAQ 2.1, IPCC
4th Assessment
Report, WG1,
Chapter 2.
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7. Inverse methods

• Measuring atmospheric concentrations of
GHGs provides a valuable test of the
accuracy of “bottom-up” methods.

• For this reason, we recommend that PIER
continue funding inverse modeling work.

• Since ARB is working on similar
projects, the potential for
collaboration is great.
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Low priority research topics

We choose not to recommend the following
topics for PIER-funded research at this time:
– CH4 and N2O from wastewater

(very small magnitude)
– N2O from mobile sources

(small magnitude, work by ARB)
– CH4 and N2O from manure management and

enteric fermentation (work by PIER)

Again, note that we did not consider
emissions from fossil fuel combustion.
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Conclusions
• California’s GHG inventory has been much

improved since it began in 1999, but there are
still large gaps to fill.

• PIER should choose research priorities according
to a sector’s magnitude, uncertainty, and
potential for improvement.

• We recommend pursuing topics with a clear
short-term payoff (e.g. CO2 from agricultural
soils) but not neglecting longer-term projects
(indirect N2O; ozone precursors).

• Opportunities for collaboration abound!
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Thank you

Your comments and questions are
enthusiastically welcomed!
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