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to provide high quality information will require
Improved observations, models
and considerable work to diagnose and understand them.



Motives

what IS the current status of California’s climate?
how has climate changed in California’s past?

*how Is California’s climate changing now and
why Is it changing?

*how will California’s climate change in future
decades? how certain can we be?

swhat locations and systems are most vulnerable?

«are models used to simulate climate changes
and impacts working realistically?

swhat are the interconnections and impacts?



SENSITIVITY TO A +5°C WARVING. ,,

FRACTION OF ANNUAL PRECIPITATION FALLING
IN THE DAILY TEMPERATURE RANGE: -3C < Tavg <0C
’ . [from 1950-1993 VIC 1/8-degree INPUT DATA]
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DEGREES F

California Statewide

Mean Temperature Departure Jan-Dec

observed temperature
records suggest that

California has warmed
1.5°F over last 100yr
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11% discontinued
since peak

Total number of streamflow
gages since 1900
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elevations
HCDN
stream gages
have diminished
In number
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Suggestions for Observational Program

o Develop climate observations in California’s sensitive, vulnerable and

sparsely observed areas.

Ex: coast-inland transition zones, valley-mountain gradients, and
rain-snow transitions.

o Augment traditional measurements with new observations to track
multivariate climate changes :
Ex: soil moisture, aerosols, radiation, GPS water vapor, water temp

o Place greater emphasis on remote sensing of surface, snow,
vegetation, and atmosphere; develop operational monitoring products
describing variations of snow cover, snow albedo, vegetation greenness
and vigor, seasonal wetlands and inundation, etc, at State and watershed
scales

o Develop more pervasive real time observation capacity—
communications are a key technology that enables more effective use,
analyses and maintenance of the observing system.



Suggestions for Observational Program, con’d-1

o Build hierarchical observation networks, to include selected numbers of
highest quality sensors and stations, and denser numbers of lesser quality
stations.

o Monitor the vertical structure of the atmosphere (e.g., profilers and
radar)

0 Increase observations of urban climate (e.g. temperature, humidity,
radiation, winds, precipitation).

0 Access pertinent paleoclimate records, particularly high resolution
records that provide proxy records of recent Holocene climate in California;
support integration of paleoclimatic records across and between California’s
critical climate gradients, linking paleoclimates of the mountains with valleys,
the coast with the inland areas, more fully than has been the case to date

0 Integrate efforts with the coastal ocean monitoring community.



Suggestions for Observational Program, con’d-2

o Fund climate data managers to organize climate observing system, including
climate archive.

o Work to develop “Citizen Science” observing programs.
e.g. cooperative weather observers, phenological observers.

o Work with climate impact and other communities to develop non-traditional
retrospective and ongoing datasets needed to evaluate climate impacts.

o Collaborate across agencies (federal, local, private, ..) to collect observations

o Conduct a California climate-observation-system summit: work with the
State Climatologist and other to communally assess and identify future monitoring
needs and opportunities

o Periodically (e.g. every 5 years), evaluate and publish an Assessment of
state of the State’s climate observation system, perhaps in concert with an
assessment of the State’s recent climate.
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across California
over last six decades
daytime heat waves have
been roughly unchanging
but nighttime heat waves
have shown strong increase
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morning cloud cover
Is a key factor
determining
afternoon temp
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CaRD10 provides small scale features
not in the global reanalysis

Global Reanalysis
200-km resolution
1200 UTC
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CaRD10 provides small scale features
not in the global reanalysis

CaRD10 Global Reanalysis
10-km resolution 200-km resolution
1 500 UTC 1200 UTC
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CaRD10 Global Reanalysis North American Regional Reanalysis
10-km resolution 200-km resolution 32-km resolution
1500 UTC 1200 UTC 1500 UTC
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CaRD10 provides analysis of different time scales
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Need for even higher resolution model
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Precipitation Bias
Cumulative November-March precipitation
climatological mean for 1980-1989.

CANA

200 250
mm/yr

(From Miller et al 2008)
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RSM : model
WRF : model
Reg : model



Boundary layer
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Temperature profiles at San Diego, CA on 13
Aug 1989 127 from radiosonde (black), SCM
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The two models,

and SCM do reasonable
job in resolving marine
boundary layer but still
Display significant errors.

Note that the two models are
much better than the coarse
resolution global Reanalysis
standard pressure level
Fields (in red).

Temperature profiles at Medford, OR on 02
Dec 1988 12Z from radiosonde (black), SCM
(blue), RSM (green), and NCEP Reanalysis 2

(red).



Recommendations for California Regional Model Development

o Continue the model development and intercomparisons, such as
the REBI Expand this effort to perform an intercomparison of the
downscaling of global warming simulations. This project should be
accompanied by more detailed analysis than was possible during the first
REBI project, providing skill mask, model systematic errors and ensemble
averaging.

o Conduct dynamical downscaling of multiple-global model
simulations to identify uncertainties in results due to global model
simulations. Compare the uncertainties due to the global model and the
uncertainties coming from interannual variability. Compare dynamical
downscaling results with (limited variables) statistical downscaling results.
o Continue improving regional model physics. Particular
emphasize snow model and marine stratocumulus parameterizations, and
focus upon processes that are most crucial to California results. Continued
attention should be given to determining which aspects of the physics
result in the largest intermodel differences over California.



California Regional Model Development, con’d

o Develop and evaluate coupled regional atmosphere/ocean/land
model(s) for the California region.

o Conduct modeling experiments with offline models, but linked to the
forcing of atmosphere and coupled atmosphere/ocean/land models, regional
and global.  e.g., California’s physical hydrology, water resources, coastal
waves, air quality, and ecosystems.

o Work to obtain computer resources for modeling activities.

o Continue to collaborate across modeling, analysis, prediction and

diagnostics for the California region. Move towards a comprehensive data
assimilation model that incorporates multivariate environmental processes.



PROJECTED CHANGES IN ANNUAL PRECIPITATION, NORTHERN CALIFORNIA
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storm-forced sea levels during an extreme tide, massive El Nino



Climate Diagnostics of Importance to California

. Climate Change Detection in California region—where,
when, how much?

. Climate Change Attribution in California region—natural
variability or related to
anthropogenic forcings?

o Understanding and quantifying uncertainties within and
among climate change
projections and expected impacts

. Understanding Climate linkages within the climate and
hydrologic system

o Understanding climate impacts, along with other factors in
present-day and future changes



Diagnostics, con’d-1

o Understanding Climate linkages within the climate and
hydrologic system

o What are the best predictors of long-term climate
variability in California and are these also the best predictors of
long-term climate change influences?

o What Is the role and future of Pacific (and global) climate
modes like ENSO, as affects California?

o How much of projected California climate change reflect
local radiative changes and how much will be advected into the
region from global responses?



Diagnostics, con’d-2

. How does the 3-dimensional structure of winds, humidity
and other air mass characteristics affect precipitation, e.g. in high
precipitation storm events?

o Will major storms change in frequency or strength?

o How do ocean and land feedbacks affect weather and
climate? What is the role and future of coastal upwelling and coastal
clouds and their effects on coastal and inland climates?

o What is the aerosol budget ? How do aerosols affect
precipitation and snowmelt?

o How/why has vegetation changed over the last century,
how will vegetation change as climate changes and how will that
affect climate and hydrology?



Diagnostics, con’d-3

o How will urban climates change as climate changes? Which
urban centers are likely to be most impacted by warming and other
climate changes?

o How will climate warming and other climate change effects
vary from the coast to the interior and from low to high altitude
settings in California?

o Which critical micro-climates will respond adversely to
climate change?

o Will droughts increase in frequency, intensity or duration?
How will atmospheric demands for evaporation and transpiration
change?

o How will the impacts of climate change cut across
multiple sectors? factors in present-day and future changes?
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Comments Welcome

please send comments to
Dan Cayan dcayan@ucsd.edu
Mike Dettinger mdettinger@ucsd.edu
Masao Kanamitsu mkanamitsu@ucsd.edu
Guido Franco gfranco@energy.state.ca.us
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