Demand Response - Innovation for Renewable Support

Transmission Research – Paving the Way for Renewables

Mary Ann Piette
Lawrence Berkeley National Laboratory
Demand Response Research Center

Sponsored by California Energy Commission

October 25, 2010
Presentation Outline

- Automation of Demand Response
- Statewide and National Progress
- Linking Demand Response and Renewables
- Future Directions
Motivation for Automating Demand Response

- **Automated DR** developed to meet goals from 2002
 - **Cost** - Develop low-cost, automation infrastructure
 - **Technology** - Evaluate “readiness” for common signals
 - **Capability** - Evaluate control strategies to modify electric loads

- **Open Automated Demand Response (OpenADR)** is a public domain specification to communicate price and reliability signals

- **Automated DR programs**, offered by utilities or ISOs, automate DR using OpenADR. Programs in 4 states.
OpenADR Technology Concepts

- **2002** - Initial Research Concept
- **April 2009** – OpenADR Spec Published
- **May 2009** - one of 1st 16 NIST Smart Grid Standards
- **2010** – OpenADR in over 250 facilities in California, over 150 MW planned

Elements -
1. **Utility System**
2. **DR Automation Server**
3. **Two Way Signals to Facility**
4. **Facility Controls**
5. **Client Acknowledges Signal**

Graphical Diagram

- **Pricing Data Models**
- **Physical Communications**
- **Control Strategies**

- **Price Signal** \(\$/kWh \)
- **Data Model** OpenADR
- **Comms** Internet
- **Auto-DR** Client Server
- **End-Use Controls** Building Action
Historic focus on Seasonal Grid Stress

OpenADR PG&E Demand Bid Test Day

OpenADR Northwest Test on Cold Morning

OpenADR Cumulative Shed in July 2008
What Combination of DR Resources Needed?

- Daily Peak Management
- Ramp Smoothing
- Shift Load to Night - Regulation Down
Demand Response for Variable Generation

DR has value in many other hours than 2PM to 6 PM. The “ramping” hours will be increasingly important in future years as intermittent renewables increase.
Linking Efficiency and Demand Response

- Daily Energy Efficiency
- Time-Of-Use Energy
- Daily Peak Load Managed
- Day-Ahead (slow) DR
- Real-Time DR
- Spinning Reserve (fast) DR

- Service Levels Optimized
- Time of Use Optimized
- Service Levels Temporarily Reduced

- Increasing Levels of Granularity of Controls
- Increasing Speed of Telemetry

Demand Response Research Center
Linking Efficiency, DR and Renewables

1. Shift load to maximize use of wind
2. Facilitate smoother ramp
3. Provide reserves to manage forecast error and intra-hour variability

Explore best demand side end-uses to store, shift and shed load
Facilities Type and Key End Uses for DR

<table>
<thead>
<tr>
<th>End Use</th>
<th>Type of Response</th>
<th>Response Time</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Scaling Down</td>
<td>Switching Off</td>
</tr>
<tr>
<td>HVAC</td>
<td>Global temperature adjustment, Decreasing duct static pressure, etc.</td>
<td>Turning off compressor(s), chiller(s), etc.</td>
</tr>
<tr>
<td>Lighting</td>
<td>Dimming down lights</td>
<td>Turning off lights</td>
</tr>
<tr>
<td>Plug Loads</td>
<td>N/A</td>
<td>Turning off equipment</td>
</tr>
<tr>
<td>Miscellaneous Electric Loads</td>
<td>Turning off power</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>DR Strategy*</th>
<th>Very Fast (Same hour)</th>
<th>Fast (Same Day)</th>
<th>Slow (Day Ahead)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Refrigerated Warehouse</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Precooling</td>
<td>2</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>Short term shutdown</td>
<td>3</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Water Pumping</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Municipal Water Pumping</td>
<td>2 (w/ storage)</td>
<td>3</td>
<td>1</td>
</tr>
<tr>
<td>Agricultural Pumping</td>
<td>1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Wastewater Treatment</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Storage</td>
<td>2</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>Over oxygenation</td>
<td>3</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Scheduling</td>
<td>1</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

(*Number indicates priority)
Preliminary Concepts for Continuously Dispatchable Demand Response Resources

Demand Response Potential - Typical Winter Day

- Wastewater
- Data Centers
- Ag Pumping
- Refrigerated Warehouses - Chilled Storage
- Refrigerated Warehouses - Frozen Storage
- Lights - Offices & Refrigerated Warehouses
- HVAC - Offices & Refrigerated Warehouses

GW Reduction Potential

Hour
Future Directions

- Develop framework for DR resources to continuously link with grid: market prices, renewable integration, ancillary services
 - Design communications and control infrastructure
 - Evaluate technical and market potential, predictability of DR
 - Ensure linkage to daily energy efficiency
- Conduct demonstrations and field trials
- Link with Building Codes, require interoperable controls, minimize deployment costs