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Presentation Overview

* Project Background and Objectives

 The Challenge of Multiple Time Scale Solar
Forecasting

* Forecasting Tools for Each Time Scale
e |ntegration of Methods

e Forecast Performance Evaluation

© 2011 AWS Truepower, LLC

eeeeeeeeeeeeeeeeeeeeeeeeeeeeeee



Project Overview

® OBJECTIVE: To refine, integrate, test and validate a set of existing
forecasting tools that can provide the highest possible performance for
frequently updated predictions of solar power production in California

over a broad range of look-ahead time periods from minutes to many
days ahead.

®* APPROACH:

— Refine most promising existing tools for specific look-ahead time scales

— Develop an algorithm that optimally blends methods for each look ahead period
— lteratively evaluate and refine the individual and integrated methods

® TEST VENUE: Sempra solar generation facility in Henderson,
NV as the forecast target and evaluation site.

® SUPPORT: CEC Agreement # 500-10-057
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Project Team

e AWST will be leading and managing all aspects of the project
including sub-awards to the other team members.

e MESO will develop the NWP and other modeling components in the
creation of multiple time scale forecasts.

e UC-San Diego (UCSD) will oversee equipment installation and data
collection at the Copper Mountain 48-MW PV plant in Henderson, NV.

« Clean Power Research (CPWR) will provide satellite derived
intra-hour and hour ahead solar forecasts and work with MESO and
UCSD to integrate them into the instrument-based and NWP forecast.

e CAISO will be assisting AWST and UCSD by providing expertise and
resources for data, testing, and evaluation of work performed.

o Servitek Solutions will review project design plans, technical
reports and assist with QC automation of existing meteorological data
networks and site instrumentation.
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The Challenge — Making the Best Forecast
for Various Time Scales

Minutes Ahead

Cumulus clouds, small-scale cloud structures, fog
Rapid and erratic evolution; very short lifetimes

Mostly not observed by current sensor network

Tools: persistence, skycams, local irradiance trends
Need: Data & tools to handle development & dissipation

Hours Ahead

* Frontal bands, mesoscale bands, fog, thunderstorms
» Rapidly changing, short lifetimes

e Current sensors detect existence but not structure

» Tools: satellite-based cloud motion and NWP

» Need: Better forecasts of development & dissipation
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Days Ahead

“Lows and Highs”, frontal systems

Slowly evolving, long lifetimes

Well observed with current sensor network
Tools: NWP with statistical adjustments

> ~ 10 days- climatology and climate trends
Need: better NWP performance & improved MOS
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Intra-hour Forecasts:

Total Sky Imager Cloud Motion Extrapolation

e Based on pattern recognition techniques applied to cloud images
 Estimates motion vector of cloud elements from sequential images
* Projects future cloud patterns from the motion vector

e Greatest value for 0 to 30 minute ahead forecasts

 Limitations

— Total Sky Imager’s (TSI) field of view limits forecast look ahead times
— Development or dissipation of clouds or cloud patterns
— Multiple layer cloud patterns with different motion vectors
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1-6 Hour Ahead Forecasts:

e Similar to the sky image method
except current cloud patterns are
detected through the use of images
from satellite-based sensors.

e Advantage: much larger area of
coverage (1000s km?) means that the
motion of the cloud field can be
projected forward over longer time
periods (several hours)

e Limitations:

— The spatial resolution (~ 1 km) is much
less than TSI images

— Difficult to anticipate cloud development
or dissipation

GOES Regional
Visible
1 B

— Hard to diagnose motion of multiple layer

cloud patterns
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Physics-based Numerical Weather

Prediction (NWP) Models

 Differential equations for basic physical
principles (conservation laws) are solved Au [ du  dv D ap"‘ ., #

— =l

on a 3-D grid dt
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v dy o

 Simulates the evolution of the
atmosphere over a 3-D volume

- explicitly predicts a time series of most
atmospheric variables including solar irradiance
at all grid points in the model domain
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6 hours to Many Days Ahead Forecasts
Standard Cycle NWP

e Regional and global scale models o N %
initialized every 6 hours at government  “" | 4
forecast centers o ST 24
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1-6 hours Ahead Forecasts

Rapid Update NWP

Customized very high res NWP
models initialized every 1 or 2 hours
— Techniques to optimize this approach
undergoing significant development
Can use cloud data from local
sensors and satellite-based
Images to improve the initialization
of clouds

Can improve upon standard cycle
NWP for very short-term forecasts

Alternative (or complement) to
satellite cloud vector technique

— Should be better at predicting cloud
development & dissipation

— Takes longer to generate forecasts so
impact of most recent data not available as
quickly

— More sensitive to input data limitations

© 2011 AWS Truepower, LLC
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Model Output Statistics (MOS)
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Statistical adjustment to individual model predictions

— Account for processes below the scales resolved by each method

— Correct for systematic errors caused by the limitations of each method
Requires a training sample of concurrent model forecasted
and measured values of the forecast variable

Many statistical approaches can be used
— Statistical models: linear regression, artificial neural networks etc.
— Training sample strategies: fixed, rolling, regime-based etc.
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Integrated Forecast System

o A statistical adjustment (MOS) will be applied to each method to
minimize systematic errors

e« Composite forecast from weighting individual forecasts based
on historical performance for each look-ahead time frame
— Weather regime-based weights
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Forecast Evaluation and Refinement

e Evaluation Venue and Data:
Sempra’s Henderson, NV PV
plant. Available data:

— 2 Total Sky Imagers (TSIs)

— 7 meteorological stations with
irradiance measurements

— 18 NREL calibrated panel modules

— Power output [kW] from 96 S SN
inverters with 300 kW of PV each e Forecast Evaluation.

— existing solar networks stations — Standard metrics (MAE, RMSE,
bias etc.)

e Method Refinement Cycle

— Diagnose error patterns in
components methods and forecast
integration algorithms

— Metrics to focus on performance
during periods of ramp events and
high temporal variability

— Stratified by a variety of factors

— Formulate and implement _
such as season, cloud regime etc.

modifications and repeat diagnostic

cycle
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Summary

e QObjective: Develop, test, refine and validate a solar
power generation forecast system that will produce
optimal and seamless performance over a wide range of
time scales ranging from minutes to many days ahead by
effectively integrating multiple existing forecast tools
that have performance advantages for specific look-
ahead time scales

e Development and Evaluation Venue: Sempra PV facility
in Henderson, Nevada

e Project Team: AWS Truepower, MESO, Inc., UCSD,
CPWR, CAISO, Servitek Solutions
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