
Comments of CLECA on RETI Draft Phase 1A Report 

 

The California Large Energy Consumers Association, California Manufacturers & 
Technology Association, and The Utility Reform Network (TURN) (hereafter called 
the Customer Group) jointly offer these comments on the Renewable Energy 
Transmission Initiative (RETI) Draft Phase 1A Report. The California Large Energy 
Consumers Association (CLECA) represents the interests of a group of large, high 
load-factor, process-type, industrial electricity consumers on electricity regulatory 
matters.  The California Manufacturers & Technology Association (CMTA) 
represents the interests of a diverse group of manufacturers operating in California on 
numerous policy matters.  The Utility Reform Network (TURN) represents the 
interests of residential and small commercial consumers on a broad array of utility 
matters.. As customers, we are greatly interested in the cost and benefits of the entire 
array of electricity resources available to serve the state.  Each member of the 
Customer Group has been actively involved in proceedings before the California 
Public Utilities Commission addressing cost-effectiveness and valuation of supply- 
and demand-side resources. Against this background, the Customer Group offers 
these brief comments on the methodology proposed to address the costs and value 
associated with adding renewable resources to the mix serving California. 

The Customer Group’s concerns lie in three areas: 

1. Evaluation of resources in the entire west in terms of what % they represent of 
2020 California Load.   

This concept implies an assumption that all of these resources are available to 
serve California load. However, this is clearly not the case.  The Customer Group 
believes it would be better to factor in an assumption that other western state and 
British Columbia will adopt their own renewable portfolio requirements (RPS) 
and that only a portion of these resources will be available to serve California 
load. 

2. Lack of assumptions for integration costs.   

Recent studies performed by the CEC and the CAISO indicate that there will be 
substantial integration issues associated with incorporating intermittent renewable 
resources into the supply mix in California, including substantial additional 
requirements for ramping and quick-start capability.  CLECA believes that 
information on integration costs must be developed in order to properly conduct 
evaluations among renewables resources.  We have attached a study done for 
ERCOT on wind integration which includes some preliminary cost estimates.  
However, we agree that more analysis is needed. 

3. Incorrect formulation of Capacity Value of New Resources 



The Phase 1A Report values the capacity of new generation resources using a 
$204/kW-year figure from the CEC Cost of new Generation report.  We have two 
concerns with the use of this figure. First, it is widely believed to be too high.  As 
a contrast, Southern California Edison Company (SCE) has used an annualized 
value of a new CT of $102/kW-year, in 2009 $.  The installed cost used by SCE is 
$705/kW.  In contrast, the installed cost used by the CEC is $800-1053/kW in 
2007 $ and the levelized cost is $212-253/kW-year.  In the PJM RTO, there have 
been major protests to an effort by PJM to raise the cost of new entry in 2010-
2011 (a figure based on the cost of a new CT), to $104/kW-year from $72.2/kW-
year.  While recognizing that levelized cost and RECC cost are not equivalent, 
there is enough of a difference here and enough debate over the CEC figure that, 
at a minimum, there should be a sensitivity analysis done around the capacity 
value used. 

Second, it has become a commonly-used methodology to subtract the value of 
energy and ancillary services sold by a CT (this is sometimes called the “gross 
margin”) from the cost of a CT in order to determine the marginal capacity cost or 
avoided capacity cost, which may be considered the capacity value.  Otherwise, 
the argument is made that the energy value is included twice, first in the capacity 
value unless the adjustment for sale of energy and ancillary services is made, and 
then again in the separate determination of energy value.  For example, a 
settlement submitted by numerous parties to the CPUC on cost-effectiveness for 
demand response, stated the following: 

“The generation capacity costs avoided by a DR program will be based on 
the annual market price ($/kW-year) of the capacity of a new combustion 
turbine The generation capacity costs avoided by a DR program will be 
based on the annual market price ($/kW-year) of the capacity of a new 
combustion turbine (CT), annualized using a real economic carrying 
charge rate that takes into account return, income taxes, and depreciation, 
with O&M, ad valorem and payroll taxes, insurance, and similar 
incremental costs added, and reduced to reflect expected “gross margins” 
earned by selling energy (“CT cost”).  PG&E proposes to calculate “gross 
margins” based on an options pricing methodology, whereas SCE 
proposes to calculate “gross margins” based on the results of production 
cost modeling exercises.”  (“JOINT COMMMENTS OF CALIFORNIA 
LARGE ENERGY CONSUMERS ASSOCIATION, COMVERGE, INC., 
DIVISION OF RATEPAYER ADVOCATES, ENERGYCONNECT, 
INC., ENERNOC, INC., ICE ENERGY, INC., PACIFIC GAS AND 
ELECTRIC COMPANY (U 39-M), SAN DIEGO GAS & ELECTRIC 
COMPANY (U 902-E), SOUTHERN CALIFORNIA EDISON 
COMPANY (U 338-E) AND THE UTILITY REFORM NETWORK 
RECOMMENDING A DEMAND RESPONSE COST EFFECTIVENESS 
EVALUATION FRAMEWORK”, dated November 19, 2007, in R. 07-01-
041, pp. 2-3 in Attachment A, emphasis added).  

 



In conclusion, the Customer Groups agree with the draft report that it is important to 
develop a method to “measure the economics of resources on a consistent basis” (page 3-
24).  Customers will be best served by a resource valuation process that allows an “apples 
to apples” comparison to be applied in the selection process for renewable resources. 
Such a valuation process should also be consistent with valuation processes used for 
other resources in the state.  The valuation method developed by Black & Veatch is a 
good starting point, but we believe that the methodology needs to be revised as we have 
described in order to identify the resources “with the lowest cost and highest value” to the 
California grid.  Since customers bear ultimate responsibility for all the costs of acquiring 
renewables, customers also have an interest in assuring that any valuation methodology is 
complete and accurate.   
 
Dr. Barbara R. Barkovich, on behalf of the California Large Energy Consumers 
Association 
 
Karen Lindh, on behalf of the California Manufacturers &Technology Association 
 
Michael Florio, on behalf of The Utility Reform Network 
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Project Scope

Evaluate the impacts of wind development in the 
ERCOT system on ancillary services requirements 
and related practices.
Specifically:
• Evaluate the suitability of ERCOT’s existing 

practices for determining A/S procurement
• Recommend improvements to accommodate wind 

penetration
• Determine amount and estimated cost of A/S 

requirements for various wind scenarios
• Recommend procedures for impending severe 

weather
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A Few Words About Net Load

Net Load is the instantaneous system 
consumer load, minus the generation output of 
non-dispatchable wind generation

Net load* is the amount of generation required 
from dispatchable units

The study is concentrated on net load, instead 
of the wind generation in isolation, because 
some amount of the variations in each cancel

* Net load is also called “Load – Wind” in parts of this presentation
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Project Overview

Phase 1 - Net Load Variability and Predictability Characterization
Objective is to obtain fundamental qualitative and quantitative information on 

the characteristics and predictability of net load in the ERCOT system.
– Comparison of wind development scenarios
– Correlations of variability and predictability with load level, 

season, time of day
The insights obtained in this analytic investigation help to identify system 

operating challenges and determine when they will occur

Phase 2 - Ancillary Services Evaluation
Evaluate A/S requirements and recommend improvements to ERCOT’s A/S 

procedures
– A/S requirements as a function of wind penetration
– Evaluate existing methodologies to determine A/S needed
– Recommend changes to accommodate wind
– Evaluate and improve practices for impending severe weather
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Analysis Approach

• Construct system load, wind generation, and 
net load model time series database

• Time series analysis
– Characterize impact on load curve
– Daily maxima and minima
– Net load ramp rates

• Statistical analysis of variability
– Analyze variations over different timeframes
– Analysis of operating periods with particular challenges

• Model and analyze regulation requirements
– Regulation requirements
– Regulation procurement procedure

• Extreme wind analysis – responsive reserves 
• Analysis of day-ahead prediction error

– Impacts on non-spin reserve requirements
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Net Load Model

• Two years of data used
– More accuracy and consistency
– Two consecutive years needed later in Phase 2 for testing A/S 

methodology
• Essential for system load and wind generation data to be for consistent 

time period
– Common factors affect both wind and load

• System one-minute load data
– Based on 2005 and 2006 ERCOT historical recordings
– 2006 data scaled up to achieve average load (energy) consistent 

with 2008 ERCOT predictions – “Study Year”
– 2005 data scaled by the same factor – “Previous Year”
– Scale factor = 1.037, computed from the average ratio of forecasted 

2008 load to 2006 actual load across all hours 
– Day-ahead load forecasts provided by ERCOT
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Wind Generation Model

• Wind data developed for 2005 and 2006 by AWS Truewind
– Hourly meso-scale weather model
– Wind generation output defined for multiple individual hypothetical 

wind plants in each CREZ
– Minute-by-minute variations synthesized based on ERCOT wind 

data for seventeen existing sites (2 years of data)
– Wind data for other time-frames (5-minute, 15-minute, 30-minute) 

obtained by integrating 1-minute data
• CREZ scenarios developed

– 5000 MW, 15000 MW and two 10000 MW scenarios 
– Wind capacity totals per CREZ per ERCOT selection (next slide)
– Wind plants added to CREZ portfolio in order of decreasing annual 

capacity factor (most productive sites used first)
– Plant capacity scaled up to produce desired output for CREZ

• Day-ahead wind generation predictions synthesized by AWS Truewind
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CREZ Scenarios

 Wind Development Scenario 
CREZ Zone 5000 MW 10,000 MW (1) 10,000 MW (2) 15,000 MW 

none 120 120 120 120 
2 60 1,560 1,560 2,340 
4 0 1,500 0 0 
5 355 1,355 1,355 1,355 
6 400.5 400.5 400.5 1,278.3 
7 65 65 65 97.5 
9 814 1,314 1,314 1,971 

10 2,464.5 2,964.5 2,964.5 4,446.8 
12 400 400 400 600 
14 160 160 160 240 
15 60 60 60 90 
19 101 101 101 211.5 
24 0 0 1,500 2,250 

 

Difference in two 10,000 MW scenarios is that the 
second has 1,500 MW of wind generation in the Gulf 
coastal area, substituting for a like amount in the 
panhandle
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Time Series Plots and 
Daily Profiles
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In this next set of slides, we will show how 
wind and load interact to create the net load 
curves.  

Key issues are:
• Impacts on net load peaks and valleys
• Increases in ramp rates
• Common factors affecting wind and load 
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Wind and Load (15,000 MW Wind Scenario) (Study Year Hourly Data)

 Load-15,000 MW Wind - April Time Series Plot
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Average April Daily Load and Wind Profile (15,000 MW Wind)
2008 Load-15,000 MW Wind - April Daily Profile
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Daily Curve From One-Minute Data   (Study Year Hourly Data, 15000 MW Scenario)

Typical Spring Day (April 23) 
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• Curves are quite smooth, wind appears smoother
• Diversity smoothes out wind, just as it does for loads
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Net Load (15,000 MW Wind Scenario) (Study Year Hourly Data)

 Load-15,000 MW Wind - April Time Series Plot
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Net Load Comparisons – One January Week (Study Year Hourly Data)
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Net Load Comparisons – One April Week (Study Year Data)
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In summary:

• Both wind and load are variable
– Daily wind generation cycle is generally out-of-phase 

with load
– Shorter term variations tend to be less correlated

• Common factors affect both wind and load
– Wind impacts cannot be correctly considered 

independently of load behavior
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Time of Year (Seasonal) 
Analysis
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In the next series of slides, time periods with critical 
operating situations are identified and the impacts of 
wind are illustrated by time series plots (all with the 
15000 MW scenario to more clearly demonstrate 
wind impacts)
Critical situations include:  
• Maximum system load
• Minimum net load
• Maximum net load
• Most variable day
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Profiles of Daily Average Load and Net Load and 1-Hour Deltas
(Study Year Data, 15000 MW Scenario)
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• Basis for selection of key dates for further 
illustration and analysis
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Largest Net-Load Delta Day - Profiles and Deltas (Study Year Data, 15000 MW Scenario)

Largest Net-Load Delta Day (May 8) 
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Most Variable* Day - Profiles and 1-Hour Deltas (Study Year Data, 15000 MW Scenario)

Most Variable Net Load Day (July 12) 
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• Anti-correlation of diurnal load and wind curves 
cause severe morning and evening ramps



24 /

In summary:
• Wind has the greatest impact on hour-to-hour net load 

variation in the late spring and summer
– Strong coincidence of wind drop-off with

morning load pickup
– Strong coincidence of wind pickup with evening load 

drop-off
– Larger day vs. night net load swing results in greater 

ramp rates 
• Variations in the winter and early spring may be more 

operationally significant, however, due to low net load levels
• Net load peaks can be shifted to unusual times of day by 

wind changes with high penetration
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Net-Load Variability for 
Various Timeframes
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Statistical analysis of the load and net load 
variability is shown in the next series of slides, 
for different timeframes
Some explanations and points to consider:
• Deltas are the changes in average net load 

for successive periods – (1, 5, 15, and 60 
minutes considered in this study)

• Average deltas over a day or longer period 
are inherently near zero, so the standard 
deviation of the deltas are used as a 
measure of variability

• Deltas include both the effects of longer-
cycle ramping as well as random “jitter” 
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One-Minute Load-Wind Variability         (Study Year Data, 15000 MW Scenario)
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Hourly Load-Wind Variability (Study Year Data, 15000 MW Scenario)
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Variability as a Function of Wind Penetration
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Normalized Variability as a Function of Wind Penetration
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• Sigmas normalized in terms of MW/min (e.g., σ5 / 5)
• Increase is linear, but with a shallow slope
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Normalized Sigma as a Function of Timespan
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Increase in Variability Relative to Time Span 

For all wind scenarios, the relative increase in 
variability (sigma), relative to sigma of load 
alone, becomes more significant for longer 
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In summary:
• Variations over timespans of 10+ minutes are primarily due 

to load cycle
• Shorter timespans have an incremental component due to 

random “noise” variations
• Wind causes a slight, linear increase in period-to-period 

variability over all timespans
• Impact is somewhat more significant for longer timespans

– I.e., wind adds to variability primarily due to creating 
larger daily net load swings

– Addition to the random “noise” is less significant
• Small differences in statistical metrics between “study year” 

(based on 2006) and “previous year” (based on 2005) 
indicate stability of results
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Variability at Different 
Load Levels
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The ability of the system to accommodate net 
load variations is greatly a function of the 
absolute net load level.  

System maneuverability tends to increase with 
the generation level because:
• Variations of a given magnitude are larger in 

proportion to the committed generators
• Units lower on the dispatch stack tend to be 

base load units that are less maneuverable

The following slides correlate variability with 
load level



36 /

Wind Duration and Penetration (15000 MW) (Study Year Data)
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Load and Net Load Variability by Load Level       (Study Year Hourly Data, 15000 MW Scenario)
(Average +/- x*sigma, Minimum, Maximum)
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• Same variability, but with fewer dispatchable generators
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Net Load Duration Curves for Various Wind Scenarios (Study Year Data)
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• Net loads below current minimum load may be a real 
operational challenge

• Average wind output is double during low net-load hours
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Net Load Duration Curves for Low Load Periods (Study Year Data)
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• There are inherent tradeoffs between costs of generation 
flexibility and energy lost to curtailment

Curtailment to hold 
current minimum for 15 
GW of wind results in 
excessive energy loss
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In summary:
• In general, variability is relatively constant over the range of

load levels
• Wind contribution to variability is also relatively constant
• Net loads can be driven to low levels with large wind 

capacity
– Instantaneous penetration reaches 55% with 15,000 MW 

of wind and 2008 load levels
• It is not feasible to maintain the same minimum load levels

Ability of the ERCOT system to meet ramping requirements 
will be specifically studied in Phase 2
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Time of Day Variability 
Analysis
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The next slides examine how load 
variability varies over the hours of the 
day for different seasons
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April, Hourly Load and Net Load Deltas                (Study Year Data, 15000 MW Scenario)

(Avg. +/- sigma, Minimum, Maximum)
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Wind is a large contributor to 
ramping requirements during 
morning load rise and evening load 
drop off in the spring
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July, Hourly Load and Net Load Deltas (Study Year Data, 15000 MW Scenario)

(Avg. +/- sigma, Minimum, Maximum)
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In summer, wind makes the 
largest impact during the early 
morning load rise and evening 
load drop off

6650 MW/hr rise

6400 MW/hr drop
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Summer Morning Load Rise Period
June – September

7 – 11 AM
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Summer Morning Load Rise Variability – 15,000 MW (Study Year Data)
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Summer Morning Load Rise Variability (Study Year Data)
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• Extrema increase more quickly with additional wind 
generation than mean + 2.5 s.d.

• Distribution is less characterized by a normal distribution; 
more outliers
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Winter Afternoon Load Rise Period
November – February

4 – 6 PM
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Winter Afternoon Load Rise Variability (Study Year Data)

15731517Mean (Delta)

-2768-886Min. Delta

Max. Delta

Sigma (Delta)

68613678

1556866

with Wind 
(MW)

Load-alone 
(MW)

2008 Load-15,000 MW Wind - Winter Afternoon Load Rise (Nov-Feb, 4-6PM)

0

5

10

15

20

25

30

35

< -2800
-2800 – -2700
-2700 – -2400
-2400 – -2100
-2100 – -1800

-1800 – -1500
-1500 – -1200
-1200 – -900
-900 – -600

-600 – -300
-300 – 0
0 – 300
300 – 600
600 – 900

900 – 1200
1200 – 1500
1500 – 1800
1800 – 2100

2100 – 2400
2400 – 2700
2700 – 3000
3000 – 3300
3300 – 3600

3600 – 3900
3900 – 4200
4200 – 4500
4500 – 4800

4800 – 5100
5100 – 5400
5400 – 5700
5700 – 6000
> 6000

MW

N
o.

 o
f 1

 h
r p

er
io

ds

Load - Wind
Load

More outliers, 
both directions Mean 1-hour delta increases by 

3.7% due to wind

Sigma increases by 79.7%

Number of 1-hour rises greater 
than 3000 MW increases from 
11 to 36

2250> µ +2.5σ

0

0

Load-alone 
(Delta-MW)
σ = 866

70> µ + 4σ 

> µ +3σ 144

With Wind
(Delta-MW)
Using  load σ

With Wind 
(Delta-MW)
σ = 1550

Extreme 1-Hour Rises



50 /

• Wind variability increases linearly with penetration
– 1-hour sigma increases by 23% with 15,000 MW of wind
– Greater variability and extreme ramps observed during 

certain morning, afternoon and evening periods
– Greater net load variability in the spring and summer

• The more significant impact is that minimum net 
loads are greatly reduced
– Greater relative variability at light load
– Less system responsiveness

• Wind impact on variability is primarily due to multi-
hour cycles, increment due to “noise” is small

• Wind has incremental impact on average and 
extreme errors, especially during early mornings and 
afternoons in winter & spring
– On average, net load is nearly as predictable as load alone

Variability Analysis Summary
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Extreme Weather 
Conditions

Impact on Ancillary Services
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Impact of Extreme Weather Conditions

• ERCOT’s current “extreme” weather conditions are 
largely defined by temperature … 
– Regulation reserves may be increased by a 

factor of two
– Responsive reserves and non-spinning reserves 

may be procured
• With large amounts of wind, other weather 

conditions may create abnormal net load deviations
– Investigate most severe events in wind and Net-

Load
– Develop modified procedures or requirements for 

identifying and responding to the ancillary service 
needs driven by extreme weather.
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Impact on Responsive Reserve Services (RRS) 
(Spinning Reserves)

• Used to restore ERCOT system frequency within the 
first few minutes of an event … 

• Set at 2300 MW for normal conditions
– based on simultaneous loss of largest two 

generation units
• May be increased under “extreme conditions”
• Non-spinning reserves (NSRS) may be deployed 

when “large” amounts of spin are not available
– NSRS can be ramped to output level within 30-

minutes

Extreme drops in wind production within 30 mins
are investigated to determine impact on RRS
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In this next set of slides, we will show:
• AWST analysis of ramp events in existing wind

– Causes, frequency and predictability
– Implications for wind scenarios

• Probability of “large” wind transitions/ramp events
• Impact of diversity on wind ramp events
• Distribution, timing and magnitude of events
• Implications for RRS requirements
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Analysis of West Texas Wind Plant Ramp Events
To identify and classify events, AWS Truewind:
• Examined two years of one-minute plant output data provided by 

ERCOT
– Identified 30-minute periods with aggregate wind generation 

changes > 200 MW
Total 976 MW rated capacity for plants in analysis
Obvious cases of non-weather curtailments and shutdowns 
excluded

– Examined available meteorological records for the periods 
– Categorized the events by meteorological causes

• Analyzed significant 2005-2006 weather events identified by 
ERCOT, determined those were associated with large changes in 
wind generation

• Analyzed the event of 24 February 2007 and established the cause
for the decrease in energy production.

From the results, AWS Truewind estimated the maximum 
likely change in a 30-minute period for the 15,000 MW 
scenario
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Meteorological Causes of Wind Ramp-Up Events
• Frontal system/trough/dry line 

– Density fronts or air mass discontinuities 
– Accompanying fall/rise pressure couplet, results in rapid wind-

speed change, 
– Mostly move west to east or northwest to southeast 
– Up to 1000 km long and 100-200 km wide
– Propagate at over 15 m/s (34 mph)

• Convection-induced outflow or gust fronts 
– Occur on the mesoscale (tens to hundreds of square km) 
– Usually propagate radially outward from thunderstorm clusters 
– Propogation speeds in excess of 25 m/s

• Low-level jet (LLJ) 
– Occur regularly year-round in the Southern Great Plains
– Two types:

1) Nocturnal LLJ – maximum at 5 AM
2) Pre-frontal LLJ – ahead of cold front
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Meteorological Causes of Wind Ramp-Down Events

• Slackening of a pressure gradient 
• Passage of a local pressure couplet 
• Each can occur for same events causing ramp-up
• High wind speeds that exceed wind turbine cut-out 

– Threshold (22-25 m/s) 
– Responsible for February 24, 2007 event
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Event Propagation Example (August 11, 2006)

• LEFT: NEXRAD (radar) image from Midland TX (KMAF) for 1801 LT on 11 August 
2006 - Red arrows show outflow from thunderstorm complex to the west

• RIGHT: Outflow boundary an hour later (1901 LT) now approaching cluster of wind 
plants south and northeast of KMAF

• Shortly after, ramp event of +600 MW was observed within a 30 minute period 
• Lower arrows indicate boundary traversed about 100 km (62 miles) in an hour
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Extreme Wind Events* in Existing Data (2006)**

* 200 MW excursion 
within 30 minutes

** Based on 
approximately 976 MW 
of installed capacity
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Summary of Ramp Events for Existing Wind Data (2005/2006)

• 59 ramp events identified (60% up, 40% down)
• Largest ramp-up event on 9 July 2005

– nearly 400 MW increase (over 300% from 200 MW) 

• Largest ramp-down event on 12 May 2005 
– 331 MW decrease, (more than 58% from 571 MW)

• Primary causes: (1) convective (2) frontal 
passages (3) weakening pressure gradients

• Distinct diurnal increase in the frequency of ramp-
up events during the evening hours, particularly 
around 5 PM local time, due to convection, 
especially strong to severe thunderstorms

• Seasonal increase in frequency of ramp-up events 
from late winter through summer, while ramp-
down events show no clear pattern.
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Ramp Event Case Study (December 28, 2006)

• Weak gradient ahead of cold front
– An area of weak pressure gradient moves 

eastward across west-central Texas 
between 14:00 and 15:00 LST

– Since wind speed is proportional to the 
pressure gradient, there is a significant 
reduction in wind power output and wind 
speed as this feature passes

– The drop in wind speed is most notable at 
Fort Stockton (KFST), Lubbock (KLBB) and 
Odessa (KODO)

– There is a secondary drop in power output 
around 16:00 LST as winds continue to 
diminish (to below the cut-in value of 4 m/s 
at the stations)

• Frontal passage
– Following the weak pressure field, a 

stronger gradient moves into the area after 
the frontal passage (approximately 15:00 –
16:00 LST) 

– Wind speeds and output increase rapidly 
by 18:00 

– Plant output, which had decreased to about 
100 MW (or 10% of the rated capacity), 
then rapidly rose as wind speeds rose 
above the cut-in value.
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Ramp Event Case Study (February 24, 2007)
• Strong upper-level storm system passed over 

northern New Mexico and the panhandle of Texas 
substantially tightening the pressure gradients over 
west Texas, resulting in strong to severe winds 
along a straight line across much of the area

– 8 AM - high wind speeds seen by most wind projects, 
maximum wind gust reported was 94 mph 

– 9 AM - aggregate output increased from just over 
1100 MW to nearly 2000 MW (rated capacity)

– 10 AM - sustained winds exceeded 25 m/s (55 mph) 
output at most wind farms, output declined as turbine-
cutoff threshold reached

– 11 AM - most intense pressure gradients and winds 
moved eastward, wind speeds relaxed, turbines 
resumed power production, resulting in a gradual 
increase in total output to pre-event levels

• Total drop in plant output was more than 1500 MW 
over a 90 minute period

• Most rapid declines occurred at the Horse Hollow 
interconnections 

• Largest 30-minute drop of 450 MW (between 1104 
and 1134 LST) represents about 22.5% of the plant 
rated capacity

• The event was unusual both in the magnitude of the 
90-minute drop and the large geographic area 
affected

• Arrival of such fronts is generally forecastable, 
several hours ahead within a 30-minute window
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February 24, 2007, 1400 Local Standard Time



64 /

Probability and Predictability of Ramp Events
• Frontal passages/troughs/dry lines of any severity 

occur every 3-5 days during cold season, and every 5-7 
days during warm season
– Fast ramp-up events (as defined for 2005/2006 existing data) 

likely to occur 20 times/year or every 2-3 weeks
– Fast down-ramps likely to occur once every 2 months

• Convective events occur with varying frequency
– Number of severe thunderstorms (winds over 29 m/s) in 

ERCOT territory over last 10 years varies from 32 in 2000 to 
134 in 2003

• All weather phenomena causing ramp events can be 
forecasted
– Lead time and accuracy varies considerably
– Frontal passages (winter) can be forecasted several days in 

advance with limited accuracy and timing, but to within a 30-
minute window several hours in advance

– Severe thunderstorms (summer) more difficult to forecast, 
better for active periods – average lead time in West Texas is 
20 minutes, 70-85% accuracy, but only 30-40% dependability
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Analysis of 15,000 MW Wind Scenario

Pressure 
Gradient 
Strengthening

• Additionally, since CREZ 10 has by far the largest wind capacity
(4607 MW), a system affecting this entire zone could conceivably
result in a 30-minute excursion of more than 1100 MW

• An event of the magnitude and coverage of 24 February 2007 
could produce over a 20% reduction in power over most of the
CREZs (see row 4 in table) once every 3 - 5 years.
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15-Minute Wind State Transition Probabilities (15,000 MW*)
Probability that wind output will change from one level to another within 15 minutes

Next State (Output, % rated capacity)

C
ur

re
nt
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ta

te
 (O

ut
pu

t)

0-10% 11-20% 21-30% 31-40% 41-50% 51-60% 61-70% 71-80% 81-90% 91-100%

0-10% 0.8386 0.1614 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000

11-20% 0.0225 0.8602 0.1173 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000

21-30% 0.0000 0.0486 0.8445 0.1069 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000

31-40% 0.0000 0.0000 0.0598 0.8232 0.1170 0.0000 0.0000 0.0000 0.0000 0.0000

41-50% 0.0000 0.0000 0.0000 0.0655 0.8176 0.1169 0.0000 0.0000 0.0000 0.0000

51-60% 0.0000 0.0000 0.0000 0.0000 0.0667 0.8079 0.1253 0.0000 0.0000 0.0000

61-70% 0.0000 0.0000 0.0000 0.0000 0.0000 0.0641 0.8495 0.0864 0.0000 0.0000

71-80% 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0514 0.8701 0.0785 0.0000

81-90% 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0516 0.9134 0.0350

91-100% 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0791 0.9209

• Diagonal probabilities show that on average there is a 85% chance that wind output 
will persist – change by no more that 10% of rated capacity in fifteen minutes

– Average probability of <7% that wind output will drop by more than 10% of rated in 15 minutes
• Negligible chance that wind will change by more than 20% of rated in 15 minutes

*From AWST wind production data



67 /

30-Minute Wind State Transition Probabilities (15,000 MW*)
Probability that wind output will change from one level to another within 30 minutes

Next State (Output, % rated capacity)
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0-10% 11-20% 21-30% 31-40% 41-50% 51-60% 61-70% 71-80% 81-90% 91-100%

0-10% 0.8139 0.1861 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000

11-20% 0.0199 0.8094 0.1707 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000

21-30% 0.0000 0.0595 0.7698 0.1699 0.0008 0.0000 0.0000 0.0000 0.0000 0.0000

31-40% 0.0000 0.0000 0.0820 0.7324 0.1835 0.0021 0.0000 0.0000 0.0000 0.0000

41-50% 0.0000 0.0000 0.0000 0.0916 0.7247 0.1832 0.0005 0.0000 0.0000 0.0000

51-60% 0.0000 0.0000 0.0000 0.0000 0.0939 0.7209 0.1847 0.0005 0.0000 0.0000

61-70% 0.0000 0.0000 0.0000 0.0000 0.0011 0.0879 0.7840 0.1270 0.0000 0.0000

71-80% 0.0000 0.0000 0.0000 0.0000 0.0000 0.0013 0.0583 0.8362 0.1042 0.0000

81-90% 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0477 0.9019 0.0503

91-100% 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0658 0.9342

• Diagonal probabilities show that on average there is a 80% chance that wind output will 
persist – change by no more that 10% of rated capacity in 30 minutes

– Average probability of <10% that wind output will drop by more than 10% of rated in 30 minutes
• Minute chance that wind will change by more than 20% of rated in 30 minutes
• Persistence is greater at high and low output levels

*From AWST wind production data
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1-Hour Wind State Transition Probabilities (15,000 MW*)
Probability that wind output will change from one level to another within 60 minutes

Next State (Output, % rated capacity)

C
ur

re
nt
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 (O
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0-10% 11-20% 21-30% 31-40% 41-50% 51-60% 61-70% 71-80% 81-90% 91-100%

0-10% 0.7244 0.2742 0.0014 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000

11-20% 0.0590 0.6881 0.2419 0.0103 0.0007 0.0000 0.0000 0.0000 0.0000 0.0000

21-30% 0.0000 0.1398 0.6106 0.2250 0.0246 0.0000 0.0000 0.0000 0.0000 0.0000

31-40% 0.0000 0.0043 0.1845 0.5527 0.2355 0.0221 0.0009 0.0000 0.0000 0.0000

41-50% 0.0000 0.0000 0.0066 0.1915 0.5315 0.2357 0.0347 0.0000 0.0000 0.0000

51-60% 0.0000 0.0000 0.0000 0.0161 0.1847 0.5432 0.2390 0.0171 0.0000 0.0000

61-70% 0.0000 0.0000 0.0000 0.0000 0.0149 0.1943 0.5934 0.1890 0.0085 0.0000

71-80% 0.0000 0.0000 0.0000 0.0000 0.0000 0.0039 0.1399 0.7242 0.1320 0.0000

81-90% 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0077 0.1231 0.8077 0.0615

91-100% 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0286 0.1429 0.8286

• Diagonal probabilities show that on average there is a 66% chance that wind output will 
persist – change by no more that 10% of rated capacity in 60 minutes

– Average probability of <18%  that wind will change by more than 10% of rated in 60 minutes
• Small chance that wind will change by more than 20% of rated in 60 minutes
• Persistence is significantly greater at high and low output levels

*From AWST wind production data
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Largest One-Hour Wind Drop in 15,000 MW Wind (Jan 28 ’06)
January 28, 2006 Wind Negative Ramp Event 
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Largest One-Hour Wind Drop in CREZ 10 Wind (Jan 28 ’06)
January 28 Event in CREZ 10
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Timing of Extreme Thirty-Minute Wind Drops                  (Study Year)
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Conclusions – Extreme Weather Conditions

• Large sudden wind excursions (greater than 20% of 
rated capacity within 30 minutes) are infrequent
– Changes occur as fast ramps, not steps

• When sudden changes do occur, CREZ diversity 
significantly reduces the impact of any single change 
on the aggregate output 

• Weather events causing widespread impact are 
reasonably predictable 

• Local convective events are less predictable
– Tend to have a limited geographic extent
– Large wind concentrations increase vulnerability
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Conclusions  - Impact on Spinning Reserves

• Maximum 15 minute wind drop for 15,000 MW scenario is 
1337 MW; well within present 2300 MW RRS

• Across the year, three observed cases when wind drops by 
over 2300 MW in 30 minutes
– Late afternoon September 21, January 28, December 30
– Some severe drops will inherently fall in periods of 

“uncertain weather” where reserves are already boosted
• Load-alone has extreme up-ramps, but wind creates 

incremental requirements in net load, mostly in mornings and 
late winter afternoons

• Alternative approaches:
– Increase RRS for periods of forecast “meteorological risk”
– Revise the NSRS definition to provide for a 15-minute 

response service; procure this service at periods of 
designated risk
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Regulation
Requirements
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In this next set of slides, we will show:
• How regulation in the ERCOT nodal market is 

calculated in this study
• Regulation required (deployed)
Key issues are:
• Differences with regulation requirements in the 

present zonal market
• Changes in regulation requirements with increased 

wind penetration
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Dispatch Procedure in the ERCOT Nodal Market

• Economic dispatch is on a 5-minute basis; 
• ERCOT is considering predictive tuning factors to reduce 

regulation requirements driven by load following
– Dispatch setpoint is initial actual load + k times expected change 

over 5-minute period
– Tuning factors have not yet been resolved

• Scope of this study focuses on wind, not operating practices 
independent of wind
– Regulation results are intended for relative comparison between 

wind scenarios
– Comparison with present regulation requirements are not 

appropriate

• Assuming k = 0 maximizes impact of ramp rate; most 
conservative with respect to wind impact
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Regulation Calculation in the Nodal Market

• Units on economic
dispatch “step” to setpoints
at discrete 5-minute points

• Difference between actual 
load and economic 
setpoints is defined as 
regulation
– Positive deviations defined 

as “Up Reg” (+REG)
– Negative deviations 

defined as “Down Reg” 
(-REG)
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• Regulation is biased by load ramp rate – not just the
“random jitter” component
– Virtually no Down Reg during load rise
– Virtually no Up Reg during load drop
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Terminology and Abbreviations

The following terminology and abbreviations regarding 
regulation are used in this presentation:

Deployed Regulation – Maximum difference over each 
5-minute period between the net load and the dispatch 
base point (actual net load at the beginning of period)

Procured Regulation – Amount of regulation “reserved” 
based on statistical analysis of prior deployments

+REG – Up Regulation – Positive difference between net 
load and base point.

-REG – Down Regulation - Difference between net load 
and base point (expressed in this presentation as a 
negative number)
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Max. Hourly Deployed Regulation – January Example

• ~4 day time period plotted
• Diurnal patterns visible

• ~4 days plotted
• Diurnal pattern in REG are 

visible
• Significant impact of outliers

– A few driven by wind
– Most outliers changed 

incrementally
– Some not changed at all 
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Deployed Regulation Statistics

Up-Regulation
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12.7%
14.2%
6.4%

% 
Change

3.7%261.5 MW10.2%81.4 MW10,000 (2)
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Cumulative Distributions of Maximum Hourly Up-Regulation
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Extreme Up-Regulation and Down-Regulation
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Except for an extreme outlier in 
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Hourly Maximum Regulation Increase with 15,000 MW Wind
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Up Regulation Correlation with Time of Day and Month
98.8th Percentile of +REG Deployed
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Differential Up Regulation Requirements for 15 GW Wind
1 3 5 7 9 11 13 15 17 19 21 23
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• Increases during morning load ramp due to wind decline
• Increases during early evening during spring and fall
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Differential Down Regulation Requirements for 15 GW Wind
98.8th Percentile of –REG Deployed
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• More down regulation in the evening, particularly in fall, 
winter and spring

• Decreased down regulation during summer mornings



93 /

Variation in Up Regulation for Selected Periods
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• Relative impact is not uniform, wind does substantially increase
regulation requirements at times when regulation requirements had 
been small to moderate

• Linearity allows scale-up of regulation procurement to 
accommodate year-to-year wind additions
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Increase of Evening Down Regulation Requirements
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Impact of Wind Penetration on Regulation

• Regulation peaks caused by load ramping are incrementally 
increased due to added ramp caused by wind

• Relative to load alone, 98th percentile of regulation 
increases on the order of 20% - 23% at 15 GW of wind

• Regulation increases linearly with wind penetration

• Extrema appear both with and without wind, with 
magnitudes incrementally greater with 15 GW of wind

• Largest changes are concentrated in particular times of day 
and seasons -- +REG in the evenings increases 65%
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Evaluation of Regulation
Procurement Methodology
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In this next set of slides, we will show:
• How ERCOT presently determines the amount of 

regulation to procure
• The robustness of this methodology to increased 

wind penetration
Key issues are:
• Frequency of under-procurement
• Severity of under-procurement
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ERCOT Regulation Procurement Methodology
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• Regulation procurement algorithm seeks to cover most, 
but not all time periods; occasional “misses” are expected

• Procurement based on 98.8th percentile of maximum deployment in 
5-minute intervals for same hour of day in:
– Same month, prior year
– Prior month, same year



99 /

Regulation Deployed vs. Procured Time Series Example 
January with 15,000 MW Wind
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Changes in Deployed and Procured Regulation
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• Gap between maximum deployed and maximum 
procured narrows as wind penetration increases

• Point of comparison: sigma of 5-min delta increased 
18% from load alone to load minus 15 GW of wind
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Up Regulation Frequency Distribution Examples
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Percentage of Hours with +REG Under-Procurement
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Root Mean Square of +REG Under-Procurement
Load Alone Load – 15,000 MW Wind
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Regulation Under-Procurement Statistics

• Present methodology produces regulation requirements 
consistent with current accuracy

• Growth in absolute magnitude of deficiencies 
commensurate with regulation increase
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Extreme
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In summary:
• Regulation requirements for net load with high wind 

penetration are statistically as “well behaved” as load only
• The present ERCOT methodology for determining the 

amount of regulation to procure remains effective with 
15 GW of wind

• Linearity allows scale-up of regulation procurement to 
accommodate year-to-year wind additions

• Under-procurements are not substantially more severe
• There may be improvements which might be made to the 

methodology to reduce the amount of regulation procured 
while maintaining accuracy of procurement
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Production Simulation
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In this next set of slides, we will show:
• Hour-by-hour power production simulations for the wind 

scenarios, using GE Multi-Area Production Simulation 
(MAPS) program
– Unit commitment
– Dispatch

• Program outputs
– Production costs
– Spot prices
– Spinning reserve prices
– Ramping capability and range
– Emissions

Issues:
• How wind affects unit commitment and production
• Impact on market prices (energy and ancillary services)
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Energy Output Commitment Based on State-of-Art Forecast
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Major impact is on combined cycle unit operation, 
consistent with results observed in other studies
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Peak Load Week (Aug 11-18) - State of the Art Forecast
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Production Cost Reductions Due to Wind
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Total Annual Emissions (State-of-Art Wind Forecast Assumed)
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Energy Spot Prices – Assumes State of the Art Forecast
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Impact of Wind Forecast on Energy Prices – 15 GW Wind 
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In summary:

• Emissions and nodal energy prices decrease as wind 
penetration increases

• Value of wind per MWh decreases slightly with increased 
wind penetration

• Bulk of energy displacement is from combined cycle units

• Lack of wind forecast results in significant over commitment 
of units – depressing nodal prices
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Available 
Regulation Range
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In this next set of slides, we will show:
• How the changes in unit commitment and dispatch 

affect the ability to meet regulation requirements 
with increased wind penetration

Key issues are:
• Displacement of conventional generation
• Flexibility of committed units
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Down Regulation Resources Based on state of the art forecast
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System Regulation Capacity
Load Alone Load – 5000 MW Wind

Load – 10,000 MW Wind (1) Load – 15,000 MW Wind

Range is limited to the amount which can be supplied in five minutes
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Down Regulation Range Deficiencies
Down-regulation requirements 
increase slightly.

System flexibility is decreased due 
to reduced net load 

Result: system cannot 
accommodate down-regulation 
needs without adjusting dispatch

Tradeoff between costs of adjusting 
dispatch versus curtailment or ramp 
limit of wind generators.
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Regulation Range

• Up-regulation range margin is reduced, but remains ample
– Assuming 5-minute delivery
– Margin could be less if a faster delivery is required

• Down-regulation range becomes an occasional issue for 
> 5,000 MW of wind
– Committed conventional units are pushed toward their minimum 

load levels
– Relatively few hours are involved for wind levels investigated

• Alternatives
– Conventional units can be de-committed to provide range,

can adversely impact economics during the next day
– Allow wind plants to provide down-regulation
– Apply up-ramp limits on wind generation
– Curtail wind output

• Future operations will require increased flexibility from 
balance of generation
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Regulation Service
Costs
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In this next set of slides, we will show:
• The impact of wind on per-unit costs of regulation 

services
• The costs of increased regulation services to 

accommodate wind penetration
• Emphasis on relative metrics
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Regulation Cost Assumptions

• REG cost is the greater of $5/MWh or the cost of 
spinning reserve

• Cost of wind curtailment added when –REG exceeds 
available range 
(spot price)

• Results most useful when considered on a relative 
basis
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Cost of Meeting Regulation Service Requirements – S-o-A Forecast

• Reduction of net load slightly 
decreases per MWh cost of 
+REG and –REG, up through 
10,000 MW scenarios

• Excess unit commitments due to 
load forecast errors, and reduced 
net load sharply drops regulation 
cost at 15,000 MW
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Cost of Meeting Regulation Service Requirements –
Perfect Forecast

• Reduced unit over-commitment 
allows unit costs of regulation to 
decrease gradually as net load is 
reduced by increased wind

• Total cost of +/- REG increases 
at a much lower rate than linear 
with respect to wind capacity
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Regulation Costs Summary

• Per-unit costs of regulation are 
highly dependent on impacts of 
wind on dispatch

• Imperfect wind forecast leads to 
unit excess unit commitment, 
reducing regulation costs

• Results are volatile, makeup of 
future generation portfolio is critical
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Forecast Error Analysis
Impact on Non-Spinning Reserves
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Predictability Analysis
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Day-ahead predictability of net load is 
important to unit commitment; inaccuracies 
increase operating costs and may require 
greater A/S procurement.
The next slides analyze net load predictability
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Time of Year Predictability Analysis
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Load Yearly Average Profile and Largest Forecast Errors
Study Year Load with 15000 MW of Wind
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Greater tendency to over-forecast load during the 
summer months
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Net Load Yearly Average Profile and Largest Forecast Errors
Study Year Load with 15000 MW of Wind
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Wind generally increases net-load forecast errors 
in Winter and Spring more than Summer
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Net Load and Wind Day-Ahead Predictability – Summary            (Study Year Data)
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Hourly Wind Predictability (Forecast Errors*)                   (Study Year Data)
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Correlation of Load and Wind Forecast Errors By Season (Study Year Load W/ 15000 MW)
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Timing of Negative Net-Load (Under-Commitment) Forecast Errors
(Study Year Load with 15000 MW of Wind)
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Incremental Under-Forecast Errors  Due to Wind   (Study Year Load with 15000 MW of Wind)
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January Hourly Load and Net Load Forecast Errors           (Study Year Load with 15000 MW of Wind)
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July Hourly Load and Net Load Forecast Errors  (Study Year Load with 15000 MW of Wind)

(Avg. +/- sigma, Minimum, Maximum)
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Observations and Conclusions

• Risk of under-commitment tends to occur off-peak when 
impact is low
– Under-commitment aggravated by using a higher 

confidence level wind forecast
• During summer peak hours, wind forecast error tends to 

partially cancel apparent bias in mean load forecast towards 
over-commitment

• Increased wind penetration does not create an obvious 
requirement for across-the-board non-spin reserve 
requirements increase
– Periods where uncertainty is high and resources are tight 

may require addition of NSRS
– Consider a longer-term NSRS service
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• Addition of wind requires a moderate increase of ancillary service 
requirements

• At certain low-load, high-wind conditions, providing down-regulation can 
be a challenge

• Present ERCOT procurement methodologies:
– Regulation algorithm adequate, some incremental improvements are

possible
– Responsive reserve procedure adequate, may need to account 

for predicted wind risk periods
– Non-spin can be a preferable alternative to carrying large amounts 

of RRS during high-risk periods
• Increased regulation services create a small increment (1%) in cost 

relative to value of MWh supplied by wind

Overall Conclusions
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