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There are three ways to reduce carbon dioxide
emissions:

1) Efficiency/conservation

2) Non-fossil fuel energy
(renewables and nuclear)

3) Carbon capture and storage
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There are three ways to reduce carbon dioxide
emissions:

1) Efficiency/conservation

2) Non-fossil fuel energy
(renewables and nuclear)

3) Carbon capture and storage




Most Emissions Come from Relatively Few Sources
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Most Emissions Come from Relatively Few Sources
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What about wind and solar? Why can't
we simply replace all the existing
power generation facilities with
renewable sources?

* Industrial uses of energy that will be very
difficult to replace with electricity

* Intermittency of wind and solar
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In 2008, U.S. Electricity came from:

Coal (1,994 Terawatt hours
equivalent to 15 tcf of natural gas)

Natural Gas (877 Terawatt hours — 6.66 tcf)
Nuclear (806 Terawatt hours)
Hydroelectric (248 Terawatt hours)
Other renewables (123 Terawatt hours)

Petroleum (31 Terawatt hours)



Carbon capture and storage (CCS) is an essential
part of a low-carbon energy economy, mostly for
dispatchable, intermittent power generation, fuel
production, fertilizer production, and other
iIndustrial processes.

Retrofitting most existing coal plants in the U.S. is

highly unlikely, as many are too old and inefficient.
CCS is not an excuse to keep operating our
existing coal plants.

Polygeneration with pre-combustion capture is an
excellent way to make CCS affordable by
allocating capital in a more efficient manner.




=

-___,

—— - —
=

: %

st BLLS

N
-
- L e

-
e R T Y.
ame . e X

.

-
-
ot - .o

‘-
o

Sleipner Project, Norwegian North Sea (Statoil)



eheh

I\

CO, injection well

Utsira formation
(800 = 1000 m depth)

Sleipner East Field




Geological storage

Overview of Geological Storage Options
1 Daphtad of and gis raservors
2 Use of CO, in enhanced ol and gas recovery

4 Useof CO, n enhancad coal bed methane recovery

RPe

mate Research Programme




Depth (km)

Assuming a geothermal gradient
of 25°C/km from 15°C at the
surface, and hydrostatic pressure.
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Figure 5.2 Variation of CO, density with depth, assuming hydrostatic
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Annex I: Properties of CO, and carbon-based fuels
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Injection Well
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After injection, carbon dioxide 1s remarkably immobile,
trapped in the geological formation by three mechanisms:

1) Structural trapping — confinement by impermeable
layers (usually shale)

2)Residual trapping (capillary trapping) — immobility
caused by interactions with the walls of the pore spaces

3) Solubility trapping — dissolution of CO, in the brine,
creating a CO,-saturated solution that 1s denser than
either supercritical CO, or the original bring.



(a) After 50 years of CO, storage (b) After 1000 years of CO, storage

Figure 5.8 Simulation of 50 years of injection of CO, into the base of a saline formation. Capillary forces trap CO, in the pore spaces of
sedimentary rocks. (a) After the 50-year injection period, most CO, is still mobile, driven upwards by buoyancy forces. (b) After 1000 years,
buoyancy-driven flow has expanded the volume affected by CO, and much is trapped as residual CO, saturation or dissolved in brine (not shown).
Little CO, is mobile and all CO, is contained within the aquifer (after Kumar et al., 2005).
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Profile of Stevens Structure showing the vertically
proximate lateral spill point (LSP) located below the
Stevens free water level (FWL). The targeted CO, injection
zone is above the FWL.

Figure 19 - View of Stevens Cross Section Showing Spill Point and Free Water Level




What about old wells that puncture the Ridge Reef shale?

1) OIld wells have all been sealed.

2) Data collected during oil extraction above and below
the Reef Ridge shale demonstrates that these old wells

do not provide pathways for significant leakage of
CO,.

3) The presence of large quantities of methane (natural
gas) below the Reef Ridge Shale 1s also very strong
evidence that leakage cannot occur.



CONCLUSIONS

Enhanced o1l recovery (EOR) is an excellent way to provide
long-term geologic storage of CO, at low cost, in advance of
an economic or regulatory incentive that makes non-EOR
CO, injection feasible.

The CO, injected into a geologic formation is usually in a
supercritical state, behaving more like o1l than like gas.

The specific geology in the Elk Hills oil field is ideally
suited for long-term (permanent) storage of CO, as the
injection target is relatively deep, with an excellent seal
(Reef Ridge shale), and with extensive knowledge of the
subsurface geology.



