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TABLE J-1
WELLS DATABASE

FOR CHUCKWALLA GROUNDWATER BASIN
SOLAR MILLENIUM, LLC

PALEN SOLAR POWER PROJECT
RIVERSIDE COUNTY, CALIFORNIA

PROJECT BEACON

LATITUDE LONGITUDE
Ground 
Surface 

Elevation

Total 
Depth

Perforation 
Interval(s)

Groundwater
Elevation

Pumping 
Test Date

Pumping 
Rate

Specific 
Capacity

02S/17E-30E01S -- -- 850 624 uncased Jan-33 325 525

02S/17E-30E01S -- -- 1/30/1933 7

03S/15E-04J01S 33.93667885 -115.4099836 1,081 575 Dec-54 150 931

03S/15E-04J01S 33.93667885 -115.4099836 1,081 575 Jun-55 154.94 926

03S/15E-04J01S 33.93667885 -115.4099836 1,081 575 Sep-55 155.2 925

03S/15E-04J01S 33.93667885 -115.4099836 1,081 575 Dec-55 155.6 925

03S/15E-04J01S 33.93667885 -115.4099836 1,081 575 Feb-56 155.2 925

03S/15E-04J01S 33.93667885 -115.4099836 1,081 575 Feb-56 155.1 926

03S/15E-04J01S 33.93667885 -115.4099836 1,081 575 Feb-56 155 926

03S/15E-04J01S 33.93667885 -115.4099836 1,081 575 Mar-56 155 926

03S/15E-04J01S 33.93667885 -115.4099836 1,081 575 May-56 154.88 926

03S/15E-04J01S 33.93667885 -115.4099836 1,081 575 Jul-56 155.3 925

03S/15E-04J01S 33.93667885 -115.4099836 1,081 575 Aug-56 155.3 925

03S/15E-04J01S 33.93667885 -115.4099836 1,081 575 Sep-56 155.7 925

03S/15E-04J01S 33.93667885 -115.4099836 1,081 575 May-57 155.21 925

03S/15E-04J01S 33.93667885 -115.4099836 1,081 575 May-57 155.65 925

03S/15E-04J01S 33.93667885 -115.4099836 1,081 575 Jun-57 155.48 925

03S/15E-04J01S 33.93667885 -115.4099836 1,081 575 Aug-57 155.49 925

03S/15E-04J01S 33.93667885 -115.4099836 1,081 575 Sep-57 155.37 925

03S/15E-04J01S 33.93667885 -115.4099836 1,081 575 Nov-57 155 926

03S/15E-04J01S 33.93667885 -115.4099836 1,081 575 Mar-58 155.1 926

03S/15E-04J01S 33.93667885 -115.4099836 1,081 575 May-58 155.4 925

03S/15E-04J01S 33.93667885 -115.4099836 1,081 575 Sep-58 155.6 925

03S/15E-04J01S 33.93667885 -115.4099836 1,081 575 Jan-59 155.7 925

03S/15E-04J01S 33.93667885 -115.4099836 1,081 575 Mar-59 155.6 925

03S/15E-04J01S 33.93667885 -115.4099836 1,081 575 Jun-59 155.8 925

03S/15E-04J01S 33.93667885 -115.4099836 1,081 575 Sep-59 155.71 925

03S/15E-04J01S 33.93667885 -115.4099836 1,081 575 Dec-59 155.74 925

03S/15E-04J01S 33.93667885 -115.4099836 1,081 575 Mar-60 155.6 925

03S/15E-04J01S 33.93667885 -115.4099836 1,081 575 Jun-60 155.9 925

03S/15E-04J01S 33.93667885 -115.4099836 1,081 575 Oct-60 155.93 925

03S/15E-04J01S 33.93667885 -115.4099836 1,081 575 Jan-61 156.14 924

03S/15E-04J01S 33.93667885 -115.4099836 1,081 575 Mar-61 156.81 924

03S/15E-04J01S 33.93667885 -115.4099836 1,081 575 Nov-61 157.49 923

03S/15E-04J01S 33.93667885 -115.4099836 1,081 575 Nov-61 157.77 923

03S/15E-04J01S 33.93667885 -115.4099836 1,081 575 Nov-62 158.79 922

03S/15E-04J01S 33.93667885 -115.4099836 1,081 575 Mar-63 159.28 921

03S/15E-04J01S 33.93667885 -115.4099836 1,081 575 Oct-63 159.34 921

03S/15E-04J01S 33.93667885 -115.4099836 1,081 575 Mar-64 159.49 921

03S/15E-04J01S 33.93667885 -115.4099836 1,081 575 Nov-64 159.53 921

03S/15E-04J01S 33.93667885 -115.4099836 1,081 575 Mar-65 159.81 921

03S/15E-04J01S 33.93667885 -115.4099836 1,081 575 Nov-65 160.21 920

03S/15E-04J01S 33.93667885 -115.4099836 1,081 575 Mar-66 161.95 919

03S/15E-04J01S 33.93667885 -115.4099836 1,081 575 Oct-66 162.94 918

03S/15E-04J01S 33.93667885 -115.4099836 1,081 575 Mar-67 163.38 917

03S/15E-04J01S 33.93667885 -115.4099836 1,081 575 Oct-67 163.78 917

03S/15E-04J01S 33.93667885 -115.4099836 1,081 575 Oct-69 165.06 916

03S/15E-04J01S 33.93667885 -115.4099836 1,081 575 May-70 164.86 916

03S/15E-04J01S 33.93667885 -115.4099836 1,081 575 Oct-70 166.17 914

03S/15E-04J01S 33.93667885 -115.4099836 1,081 575 Mar-71 166.54 914

GROUNDWATER LEVELS

Mo/Yr gpmfeet-mslDate feet-bgs

Depth to Groundwater

WELL COMPLETION DATA

NAD 83 NAD 83 feet-msl

WELL DATA1

feet-bgs

STATE WELL NUMBER COMMENTS

gpm/ft

WELL PERFORMANCE DATA2
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TABLE J-1
WELLS DATABASE

FOR CHUCKWALLA GROUNDWATER BASIN
SOLAR MILLENIUM, LLC

PALEN SOLAR POWER PROJECT
RIVERSIDE COUNTY, CALIFORNIA

PROJECT BEACON

LATITUDE LONGITUDE
Ground 
Surface 

Elevation

Total 
Depth

Perforation 
Interval(s)

Groundwater
Elevation

Pumping 
Test Date

Pumping 
Rate

Specific 
Capacity

GROUNDWATER LEVELS

Mo/Yr gpmfeet-mslDate feet-bgs

Depth to Groundwater

WELL COMPLETION DATA

NAD 83 NAD 83 feet-msl

WELL DATA1

feet-bgs

STATE WELL NUMBER COMMENTS

gpm/ft

WELL PERFORMANCE DATA2

03S/15E-04J01S 33.93667885 -115.4099836 1,081 575 Jan-72 165.04 916

03S/15E-04J01S 33.93667885 -115.4099836 1,081 575 Jun-72 166.67 914

03S/15E-04J01S 33.93667885 -115.4099836 1,081 575 Mar-73 166.31 914

03S/15E-04J01S 33.93667885 -115.4099836 1,081 575 Sep-73 167.72 913

03S/15E-04J01S 33.93667885 -115.4099836 1,081 575 Feb-74 167.72 913

03S/15E-04J01S 33.93667885 -115.4099836 1,081 575 Oct-74 167.48 913

03S/15E-04J01S 33.93667885 -115.4099836 1,081 575 Apr-75 167.88 913

03S/15E-04J01S 33.93667885 -115.4099836 1,081 575 Nov-75 168 913

03S/15E-04J01S 33.93667885 -115.4099836 1,081 575 Mar-76 168.25 912

03S/15E-04J01S 33.93667885 -115.4099836 1,081 575 Nov-76 168.91 912

03S/15E-04J01S 33.93667885 -115.4099836 1,081 575 Apr-77 169 912

03S/15E-04J01S 33.93667885 -115.4099836 1,081 575 Oct-77 169.43 911

03S/15E-04J01S 33.93667885 -115.4099836 1,081 575 May-78 169.08 912

03S/15E-04J01S 33.93667885 -115.4099836 1,081 575 Oct-78 169.75 911

03S/15E-04J01S 33.93667885 -115.4099836 1,081 575 Apr-79 168.65 912

03S/15E-04J01S 33.93667885 -115.4099836 1,081 575 Oct-79 170.49 910

03S/15E-04J01S 33.93667885 -115.4099836 1,081 575 Apr-80 170.55 910

03S/15E-04J01S 33.93667885 -115.4099836 1,081 575 Oct-80 170.2 910

03S/15E-04J01S 33.93667885 -115.4099836 1,081 575 Apr-81 170.03 911

03S/15E-04J01S 33.93667885 -115.4099836 1,081 575 Oct-81 171.49 909

03S/15E-04J01S 33.93667885 -115.4099836 1,081 575 Apr-82 170.89 910

03S/15E-04J01S 33.93667885 -115.4099836 1,081 575 Jan-83 169.73 911

03S/15E-04J01S 33.93667885 -115.4099836 1,081 575 Aug-84 167.24 913

03S/15E-04J01S 33.93667885 -115.4099836 1,081 575 Feb-85 166.44 914

03S/15E-04J01S 33.93667885 -115.4099836 1,081 575 Jun-85 166.27 914

03S/18E-03Q01S -- -- 1,675 17 Jun-61 13 1662

03S/18E-11A01S -- -- 1,580 40 Jun-61 37 1543

04S/15E-13C01S -- -- 683 452 220-248, 317-328 Feb-61 188 495 Feb-32 450

04S/16E-19M01S -- -- 610 585 Oct-61 127 483

04S/16E-19N01S -- -- 600 151 Apr-61 112 488

04S/16E-21N01S -- -- 565 39 Apr-61 -- --

04S/16E-29R01S -- -- 545 110 Jun-61 80 465

04S/16E-29R01S 33.7902952 -115.3202862 540 110 Apr-61 79.95 460

04S/16E-29R01S 33.7902952 -115.3202862 540 110 Sep-61 80 460

04S/16E-29R01S 33.7902952 -115.3202862 540 110 Oct-61 79.93 460

04S/16E-29R01S 33.7902952 -115.3202862 540 110 Nov-61 79.92 460

04S/16E-29R01S 33.7902952 -115.3202862 540 110 Dec-61 79.94 460

04S/16E-29R01S 33.7902952 -115.3202862 540 110 Jan-62 79.92 460

04S/16E-29R01S 33.7902952 -115.3202862 540 110 Feb-62 79.94 460

04S/16E-29R01S 33.7902952 -115.3202862 540 110 Mar-62 79.93 460

04S/16E-29R01S 33.7902952 -115.3202862 540 110 Apr-62 79.86 460

04S/16E-29R01S 33.7902952 -115.3202862 540 110 May-62 79.93 460

04S/16E-29R01S 33.7902952 -115.3202862 540 110 Jun-62 79.97 460

04S/16E-29R01S 33.7902952 -115.3202862 540 110 Nov-62 79.96 460

04S/16E-29R01S 33.7902952 -115.3202862 540 110 Mar-63 79.96 460

04S/16E-29R01S 33.7902952 -115.3202862 540 110 Oct-63 80 460

04S/16E-29R01S 33.7902952 -115.3202862 540 110 Mar-64 80.04 460

04S/16E-29R01S 33.7902952 -115.3202862 540 110 Mar-65 80.11 460

04S/16E-29R01S 33.7902952 -115.3202862 540 110 Nov-65 80.27 460

04S/16E-29R01S 33.7902952 -115.3202862 540 110 Oct-66 79.1 461
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TABLE J-1
WELLS DATABASE

FOR CHUCKWALLA GROUNDWATER BASIN
SOLAR MILLENIUM, LLC

PALEN SOLAR POWER PROJECT
RIVERSIDE COUNTY, CALIFORNIA

PROJECT BEACON

LATITUDE LONGITUDE
Ground 
Surface 

Elevation

Total 
Depth

Perforation 
Interval(s)

Groundwater
Elevation

Pumping 
Test Date

Pumping 
Rate

Specific 
Capacity

GROUNDWATER LEVELS

Mo/Yr gpmfeet-mslDate feet-bgs

Depth to Groundwater

WELL COMPLETION DATA

NAD 83 NAD 83 feet-msl

WELL DATA1

feet-bgs

STATE WELL NUMBER COMMENTS

gpm/ft

WELL PERFORMANCE DATA2

04S/16E-29R01S 33.7902952 -115.3202862 540 110 Mar-67 78.93 461

04S/16E-29R01S 33.7902952 -115.3202862 540 110 Oct-67 78.76 461

04S/16E-29R01S 33.7902952 -115.3202862 540 110 May-70 78.25 462

04S/16E-30D01S -- -- 603 610 Oct-61 114 489 Oct-60 5075 110

04S/16E-30D01S 33.8008503 -115.3347034 603 610 May-61 113.91 489 Oct-60 5075 110

04S/16E-30D01S 33.8008503 -115.3347034 603 610 Jun-61 114.3 489

04S/16E-30D01S 33.8008503 -115.3347034 603 610 May-70 118.53 484

04S/16E-31D01S -- -- 595 600 135-597 Jun-61 95 500 Jun-61 2328 44

04S/16E-31R01S -- -- 555 36 Apr-61 -- --

04S/16E-32D01S -- -- 555 610 265-555 Jun-61 79 476

04S/16E-32D01S -- -- Oct-61 2750 80

04S/16E-32E01S -- -- 555 77 63-95, 245-252 Apr-61 -- --

04S/16E-32M01S -- -- 555 555 Jun-61 74 481

04S/16E-32M01S -- -- Jun-61 2000

04S/16E-32M01S 33.7797398 -115.333592 548 555 Apr-61 71.41 477 Jun-61 2000

04S/16E-32M01S 33.7797398 -115.333592 548 555 Apr-61 71.61 476

04S/16E-32M01S 33.7797398 -115.333592 548 555 Jun-61 71.43 477

04S/16E-32M01S 33.7797398 -115.333592 548 555 Jun-61 73.46 475

04S/16E-32M01S 33.7797398 -115.333592 548 555 Feb-62 69.32 479

04S/16E-32M01S 33.7797398 -115.333592 548 555 Mar-62 70.29 478

04S/16E-32M01S 33.7797398 -115.333592 548 555 Apr-62 72.45 476

04S/16E-32M01S 33.7797398 -115.333592 548 555 May-62 73.82 474

04S/16E-32M01S 33.7797398 -115.333592 548 555 Aug-62 79.95 468

04S/16E-32M01S 33.7797398 -115.333592 548 555 Sep-62 79.57 468

04S/16E-32M01S 33.7797398 -115.333592 548 555 Nov-62 77.17 471

04S/16E-32M01S 33.7797398 -115.333592 548 555 May-70 77.25 471

04S/16E-32M01S 33.7797398 -115.333592 548 555 Apr-79 66.95 481

04S/16E-32M01S 33.7797398 -115.333592 548 555 Jul-80 72.87 475

04S/16E-32M01S 33.7797398 -115.333592 548 555 Jan-81 74.16 474

04S/16E-32M01S 33.7797398 -115.333592 548 555 Oct-81 86.9 461

04S/16E-32M01S 33.7797398 -115.333592 548 555 Apr-82 82.01 466

04S/16E-32M01S 33.7797398 -115.333592 548 555 Jan-83 90.29 458

04S/16E-32M01S 33.7797398 -115.333592 548 555 Jul-84 121.88 426

04S/16E-32M01S 33.7797398 -115.333592 548 555 Feb-85 120.8 427

04S/16E-35Z01S -- -- 470 -- Jan-17 13 457

04S/17E-06C01S -- -- 500 501 Oct-61 22 478

04S/17E-06C01S 33.85918308 -115.2394237 500 Jan-32 22.5 478 Apr-61 106

04S/17E-06C01S 33.85918308 -115.2394237 500 May-52 21 479

04S/17E-06C01S 33.85918308 -115.2394237 500 Sep-54 21.2 479

04S/17E-06C01S 33.85918308 -115.2394237 500 Oct-56 21.4 479

04S/17E-06C01S 33.85918308 -115.2394237 500 May-57 21.6 478

04S/17E-06C01S 33.85918308 -115.2394237 500 Sep-59 21.9 478

04S/17E-06C01S 33.85918308 -115.2394237 500 Apr-61 21.82 478

04S/17E-06C01S 33.85918308 -115.2394237 500 Nov-61 22.4 478

04S/17E-06C01S 33.85918308 -115.2394237 500 Jan-62 22.2 478

04S/17E-06C01S 33.85918308 -115.2394237 500 Mar-62 22.14 478

04S/17E-06C01S 33.85918308 -115.2394237 500 Nov-62 22.41 478

04S/17E-06C01S 33.85918308 -115.2394237 500 Mar-63 22.22 478

04S/17E-06C01S 33.85918308 -115.2394237 500 Oct-63 22.31 478

04S/17E-06C01S 33.85918308 -115.2394237 500 Mar-64 22.41 478
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TABLE J-1
WELLS DATABASE

FOR CHUCKWALLA GROUNDWATER BASIN
SOLAR MILLENIUM, LLC

PALEN SOLAR POWER PROJECT
RIVERSIDE COUNTY, CALIFORNIA
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LATITUDE LONGITUDE
Ground 
Surface 
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Depth
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Test Date
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WELL DATA1
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STATE WELL NUMBER COMMENTS

gpm/ft

WELL PERFORMANCE DATA2

04S/17E-06C01S 33.85918308 -115.2394237 500 Nov-64 22.4 478

04S/17E-06C01S 33.85918308 -115.2394237 500 Mar-65 22.51 477

04S/17E-06C01S 33.85918308 -115.2394237 500 Nov-65 22.3 478

04S/17E-06C01S 33.85918308 -115.2394237 500 Mar-66 22.5 478

04S/17E-06C01S 33.85918308 -115.2394237 500 Oct-66 22.74 477

04S/17E-06C01S 33.85918308 -115.2394237 500 Mar-67 22.55 477

04S/17E-06C01S 33.85918308 -115.2394237 500 Oct-67 22.95 477

04S/17E-06C01S 33.85918308 -115.2394237 500 Apr-68 22.8 477

04S/17E-06C01S 33.85918308 -115.2394237 500 Nov-68 22.71 477

04S/17E-06C01S 33.85918308 -115.2394237 500 Apr-69 25.02 475

04S/17E-06C01S 33.85918308 -115.2394237 500 Oct-69 24.72 475

04S/17E-06C01S 33.85918308 -115.2394237 500 Apr-70 23.15 477

04S/17E-06C01S 33.85918308 -115.2394237 500 Oct-70 23.55 476

04S/17E-06C01S 33.85918308 -115.2394237 500 Mar-71 23.57 476

04S/17E-06C01S 33.85918308 -115.2394237 500 Apr-79 23.88 476.12

04S/17E-06C01S 33.85918308 -115.2394237 500 Jul-80 24.4 476

04S/17E-06C01S 33.85918308 -115.2394237 500 Jan-81 24.52 475

04S/17E-06C01S 33.85918308 -115.2394237 500 Oct-81 25.23 475

04S/17E-06C01S 33.85918308 -115.2394237 500 Apr-82 26.69 473

04S/17E-06C01S 33.85918308 -115.2394237 500 Jan-83 25.01 475

04S/17E-06C01S 33.85918308 -115.2394237 500 Jul-84 25.31 475

04S/17E-06C01S 33.85918308 -115.2394237 500 Feb-85 25.42 475

04S/17E-06C01S 33.85918308 -115.2394237 500 Jun-85 25.65 474

05S/14E-24R01S -- -- 1,072 733 Jan-33 570 502

05S/14E-35L01S -- -- 1,270 600 349-784 Sep-61 570 700

05S/14E-35L01S -- -- 1,270 641 Sep-61 571 699

05S/14E-35L01S -- -- 1,190 877 526-746 Sep-61 485 705

05S/14E-35L01S -- -- 1,369 501 400-501 Nov-80 Dry --

05S/14E-35L01S -- -- 1,342 805 599-799 Nov-80 635 708

05S/14E-35L01S -- -- Nov-61 2

05S/14E-35L02S -- -- Nov-61 6

05S/15E-01E01S -- -- 645 755 215-788 Oct-61 146 499

05S/15E-01L01S -- -- 640 790 Oct-61 139 501

05S/15E-01L01S -- -- Mar-61 1674 42

05S/15E-01L01S -- -- Mar-60 3150

05S/15E-02E01S -- -- Nov-60 3300 56

05S/15E-12N01S -- -- 688 746 -- May-61 173 515

05S/15E-12N01S 33.7440238 -115.3781377 671 746 Apr-61 173 498 May-61 1900

05S/15E-12N01S 33.7440238 -115.3781377 671 746 Jun-67 172 499

05S/15E-12N01S 33.7440238 -115.3781377 671 746 May-70 172 499

05S/15E-12N01S 33.7440238 -115.3781377 671 746 Mar-92 190 481

05S/15E-12N01S 33.7440238 -115.3781377 671 746 Mar-00 183 488

05S/15E-13B01S -- -- 650 788 -- Sep-61 160 490

05S/15E-14E01S -- -- 750 799 -- Nov-61 245 505

05S/15E-14J01S -- -- 710 63 -- -- -- --

05S/15E-15E01S -- -- 805 808 -- Nov-61 313 492

05S/15E-23N01S -- -- 880 409 -- Mar-61 367 513

05S/15E-27B01S -- -- 900 644 553-625 Oct-61 395 505

05S/15E-27B01S 33.71390794 -115.4038719 900 644 May-58 395 505

05S/15E-27B01S 33.71390794 -115.4038719 900 644 Mar-61 395 505
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TABLE J-1
WELLS DATABASE

FOR CHUCKWALLA GROUNDWATER BASIN
SOLAR MILLENIUM, LLC

PALEN SOLAR POWER PROJECT
RIVERSIDE COUNTY, CALIFORNIA

PROJECT BEACON

LATITUDE LONGITUDE
Ground 
Surface 

Elevation

Total 
Depth

Perforation 
Interval(s)

Groundwater
Elevation

Pumping 
Test Date

Pumping 
Rate

Specific 
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GROUNDWATER LEVELS

Mo/Yr gpmfeet-mslDate feet-bgs

Depth to Groundwater

WELL COMPLETION DATA

NAD 83 NAD 83 feet-msl

WELL DATA1

feet-bgs

STATE WELL NUMBER COMMENTS

gpm/ft

WELL PERFORMANCE DATA2

05S/15E-27B01S 33.71390794 -115.4038719 900 644 Jun-61 395 505

05S/15E-27B02S -- -- 900 -- 224-705 -- -- --

05S/15E-27H01S -- -- 904 598 -- Mar-61 429 475

05S/15E-29F01S -- -- 1,046 680 -- Sep-61 366 680

05S/15E-2E01S -- -- 700 728 -- Oct-61 210 490

05S/16E-05B01S -- -- 560 114 -- Jul-61 71 489

05S/16E-05B02S -- -- 548 715 -- Oct-61 69 479

05S/16E-05E01S -- -- 570 124 -- -- -- --

05S/16E-05F01S 33.7679373 -115.3378755 544 Oct-00 79 464

05S/16E-05F02S 33.76787344 -115.3380088 545 250 Jun-99 81 464

05S/16E-05F02S 33.76787344 -115.3380088 545 250 Oct-00 80 465

05S/16E-05F02S 33.76787344 -115.3380088 545 250 Oct-00 80 465

05S/16E-05M01S 33.765729 -115.3441312 557 Oct-00 90 467

05S/16E-06N01S -- -- 604 723 228-331, 334-722 Jun-61 126 478

05S/16E-07M01S -- -- 614 648 Jun-61 61 553

05S/16E-07M01S -- -- 611 789 280-789 Jul-61 126 485

05S/16E-07M01S 33.749171 -115.3573315 604 648 Apr-61 121 483 Feb-59 1324 94

05S/16E-07M01S 33.749171 -115.3573315 604 648 Apr-61 126 478 Feb-58 3634 110

05S/16E-07M01S 33.749171 -115.3573315 604 648 Jun-61 125 479 Jun-61 1118 124

05S/16E-07M01S 33.749171 -115.3573315 604 648 Jun-61 127 477 Apr-59 707

05S/16E-07M01S 33.749171 -115.3573315 604 648 Jun-61 127 477 Apr-61 1115

05S/16E-07M01S 33.749171 -115.3573315 604 648 Jun-61 126 478

05S/16E-07M01S 33.749171 -115.3573315 604 648 Jun-61 128 476

05S/16E-07M01S 33.749171 -115.3573315 604 648 Jun-61 129 475

05S/16E-07M01S 33.749171 -115.3573315 604 648 Aug-61 127 477

05S/16E-07M01S 33.749171 -115.3573315 604 648 Oct-61 124 480

05S/16E-07M01S 33.749171 -115.3573315 604 648 Oct-61 124 480

05S/16E-07M01S 33.749171 -115.3573315 604 648 Oct-61 125 479

05S/16E-07M01S 33.749171 -115.3573315 604 648 Oct-61 125 479

05S/16E-07M01S 33.749171 -115.3573315 604 648 Nov-61 127 477

05S/16E-07M01S 33.749171 -115.3573315 604 648 Nov-62 140 464

05S/16E-07M01S 33.749171 -115.3573315 604 648 Apr-70 128 476

05S/16E-07M01S 33.749171 -115.3573315 604 648 Oct-91 194 409

05S/16E-07M01S 33.749171 -115.3573315 604 648 Feb-92 189 415

05S/16E-07M01S 33.749171 -115.3573315 604 648 Mar-92 190 414

05S/16E-07M01S 33.749171 -115.3573315 604 648 Sep-92 188 415

05S/16E-07M01S 33.749171 -115.3573315 604 648 Apr-93 183 421

05S/16E-07M01S 33.749171 -115.3573315 604 648 Sep-93 182 421

05S/16E-07M01S 33.749171 -115.3573315 604 648 Apr-94 179 425

05S/16E-07P01S -- -- 608 347 248-296, 299-347 Apr-61 121 487

05S/16E-07P01S 33.74557395 -115.3533147 598 347 Sep-52 108 490

05S/16E-07P01S 33.74557395 -115.3533147 598 347 Jun-90 213 385

05S/16E-07P01S 33.74557395 -115.3533147 598 347 Oct-90 208 390

05S/16E-07P01S 33.74557395 -115.3533147 598 347 Mar-91 199 399

05S/16E-07P01S 33.74557395 -115.3533147 598 347 Feb-92 188 410

05S/16E-07P02S 33.7453656 -115.3535703 598 767 Oct-00 137 462

05S/16E-08F01S -- -- 560 206 103-168, 172-188 Sep-61 83 477

05S/16E-08K01S -- -- 555 212 124-162, 178-180 Jun-61 83 472

05S/16E-09E01S -- -- 545 -- Jun-61 -- --

05S/16E-10Z01S -- -- -- 76 Jun-61 74 --
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TABLE J-1
WELLS DATABASE

FOR CHUCKWALLA GROUNDWATER BASIN
SOLAR MILLENIUM, LLC

PALEN SOLAR POWER PROJECT
RIVERSIDE COUNTY, CALIFORNIA

PROJECT BEACON

LATITUDE LONGITUDE
Ground 
Surface 

Elevation

Total 
Depth

Perforation 
Interval(s)

Groundwater
Elevation

Pumping 
Test Date

Pumping 
Rate

Specific 
Capacity

GROUNDWATER LEVELS

Mo/Yr gpmfeet-mslDate feet-bgs

Depth to Groundwater

WELL COMPLETION DATA

NAD 83 NAD 83 feet-msl

WELL DATA1

feet-bgs

STATE WELL NUMBER COMMENTS

gpm/ft

WELL PERFORMANCE DATA2

05S/16E-18M01S -- -- 646 790 Apr-61 161 485

05S/16E-18Q01S -- -- 660 37 Jun-61 -- --

05S/16E-22N01S -- -- 653 516 Dec-61 188 465

05S/16E-25F01S -- -- 598 680 May-61 135 463

05S/16E-36M01S -- -- 730 357 261-357 Sep-61 274 456

05S/17E-17F01S 33.70807585 -115.2488671 574 698 Apr-61 108 466

05S/17E-17F01S 33.70807585 -115.2488671 574 698 May-70 111 463

05S/17E-17F01S 33.70807585 -115.2488671 574 698 Mar-92 113 461

05S/17E-19Q01S -- -- 535 760 314-758 Apr-61 76 459

05S/17E-19Q01S 33.71446456 -115.2472004 538 760 Apr-61 76 462

05S/17E-19Q01S 33.71446456 -115.2472004 538 760 Apr-61 76 462

05S/17E-19Q01S 33.71446456 -115.2472004 538 760 May-70 75 463

05S/17E-19Q01S 33.71446456 -115.2472004 538 760 Feb-92 82 456

05S/17E-20F01S -- -- 465 10

05S/17E-21Z01S -- -- Jan-17 98

05S/17E-29E01S -- -- 533 983 Apr-61 84 449

05S/17E-29H01S -- -- 495 1,025 uncased Aug-61

05S/17E-30F01S -- -- 570 720 120-288, 314-698 Apr-61 108 462

05S/17E-30G01S 33.7079481 -115.2388196 543 Mar-00 116 428

05S/17E-30P01S -- -- 620 147 Jun-61

05S/17E-30P01S 33.70057607 -115.2494227 607 152 May-57 150 457

05S/17E-33N01S -- -- 597 758 266-758 Apr-61 173 424

05S/17E-33N01S 33.6861321 -115.2210885 592 758 Apr-61 173 419

05S/17E-33N01S 33.6861321 -115.2210885 592 758 Apr-61 173 419

05S/17E-33N01S 33.6861321 -115.2210885 592 758 Oct-61 173 419

05S/17E-33N01S 33.6861321 -115.2210885 592 758 Apr-70 175 417

06S/15E-24E01S 33.63391075 -115.3774823 1,995 22 Aug-61 17 1978

06S/15E-24E02S 33.63529958 -115.3794268 2,000 22 Aug-61 19 1981

06S/15E-24E03S 33.63279968 -115.3758156 1,995 14 May-52 10 1985

06S/15E-30Q01S 33.61613324 -115.4580404 2,200 15 Aug-61 12 2188

06S/17E-03M01S -- -- 565 818 Apr-61 190 375

06S/17E-03M01S 33.67641019 -115.2035878 566 818 Apr-61 190 376

06S/17E-03M01S 33.67641019 -115.2035878 566 818 Apr-61 190 376

06S/19E-28R01S 33.6130791 -114.9955244 354 Sep-90 81 273

06S/19E-28R01S 33.6130791 -114.9955244 354 Sep-90 82 272

06S/19E-28R01S 33.6130791 -114.9955244 354 Feb-92 81 273

06S/19E-32K01S 33.60406264 -115.0196002 390 Feb-92 104 286

06S/19E-32K01S 33.60406264 -115.0196002 390 Mar-00 97 293

06S/19E-32K02S 33.6041904 -115.0196919 390 Feb-92 110 280

06S/20E-33C01S 33.61002386 -114.9013548 392 Sep-90 134 258

06S/20E-33C01S 33.61002386 -114.9013548 392 Feb-92 135 257

06S/20E-33L01S 33.60465735 -114.9017964 388 800 Feb-02 125 262

07S/18E-14F01S 33.56214983 -115.073652 563 1,000 Dec-82 300 263

07S/18E-14F01S 33.56214983 -115.073652 563 1,000 Feb-92 270 292

07S/18E-14F01S 33.56214983 -115.073652 563 1,000 Mar-00 270 293

07S/18E-14H01S 33.56226096 -115.0650739 546 985 Jan-83 270 276

07S/18E-14H01S 33.56226096 -115.0650739 546 985 Feb-92 258 288

07S/18E-14H01S 33.56226096 -115.0650739 546 985 Mar-00 257 289

07S/19E-04R01S 33.5849549 -114.9955658 424 Sep-90 144 280

07S/19E-04R01S 33.5849549 -114.9955658 424 Mar-00 144 279
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TABLE J-1
WELLS DATABASE

FOR CHUCKWALLA GROUNDWATER BASIN
SOLAR MILLENIUM, LLC

PALEN SOLAR POWER PROJECT
RIVERSIDE COUNTY, CALIFORNIA

PROJECT BEACON

LATITUDE LONGITUDE
Ground 
Surface 

Elevation

Total 
Depth

Perforation 
Interval(s)

Groundwater
Elevation

Pumping 
Test Date

Pumping 
Rate

Specific 
Capacity

GROUNDWATER LEVELS

Mo/Yr gpmfeet-mslDate feet-bgs

Depth to Groundwater

WELL COMPLETION DATA

NAD 83 NAD 83 feet-msl

WELL DATA1

feet-bgs

STATE WELL NUMBER COMMENTS

gpm/ft

WELL PERFORMANCE DATA2

07S/20E-04R01S 33.5839135 -114.8910764 418 Jun-61 152 266

07S/20E-04R01S 33.5839135 -114.8910764 418 Oct-61 151 267

07S/20E-04R01S 33.5839135 -114.8910764 418 Nov-61 151 267

07S/20E-04R01S 33.5839135 -114.8910764 418 Jan-62 151 267

07S/20E-04R01S 33.5839135 -114.8910764 418 Mar-62 151 267

07S/20E-04R01S 33.5839135 -114.8910764 418 Apr-62 151 267

07S/20E-04R01S 33.5839135 -114.8910764 418 May-62 151 267

07S/20E-04R01S 33.5839135 -114.8910764 418 Oct-62 151 267

07S/20E-04R01S 33.5839135 -114.8910764 418 Mar-63 151 267

07S/20E-04R01S 33.5839135 -114.8910764 418 Oct-63 151 267

07S/20E-04R01S 33.5839135 -114.8910764 418 Mar-64 151 267

07S/20E-04R01S 33.5839135 -114.8910764 418 Nov-64 151 267

07S/20E-04R01S 33.5839135 -114.8910764 418 Mar-65 151 267

07S/20E-04R01S 33.5839135 -114.8910764 418 Nov-65 151 267

07S/20E-04R01S 33.5839135 -114.8910764 418 Mar-66 151 267

07S/20E-04R01S 33.5839135 -114.8910764 418 Oct-66 151 267

07S/20E-04R01S 33.5839135 -114.8910764 418 Mar-67 151 267

07S/20E-04R01S 33.5839135 -114.8910764 418 Oct-67 151 267

07S/20E-04R01S 33.5839135 -114.8910764 418 Oct-69 151 267

07S/20E-04R01S 33.5839135 -114.8910764 418 Apr-70 151 267

07S/20E-16M01S 33.5591308 -114.9053349 456 1,200 Jun-05 202 254

07S/20E-16M01S 33.5591308 -114.9053349 456 1,200 Sep-90 206 250

07S/20E-16M01S 33.5591308 -114.9053349 456 1,200 Feb-92 207 249

07S/20E-16M01S 33.5591308 -114.9053349 456 1,200 Feb-92 206 250

07S/20E-17C01S 33.56891386 -114.9166326 433 Feb-92 174 259

07S/20E-17G01S 33.5644973 -114.9155269 444 1,200 Dec-87 203 241

07S/20E-17G01S 33.5644973 -114.9155269 444 1,200 Sep-90 189 254

07S/20E-17G01S 33.5644973 -114.9155269 444 1,200 Feb-92 186 257

07S/20E-17G01S 33.5644973 -114.9155269 444 1,200 Feb-92 188 256

07S/20E-17G01S 33.5644973 -114.9155269 444 1,200 Mar-00 199 244

07S/20E-17K01S 33.55918915 -114.9121462 457 1,200 Dec-87 205 252

07S/20E-17K01S 33.55918915 -114.9121462 457 1,200 Feb-92 201 256

07S/20E-17K01S 33.55918915 -114.9121462 457 1,200 Feb-92 199 257

07S/20E-17K01S 33.55918915 -114.9121462 457 1,200 Feb-92 200 257

07S/20E-17L01S 33.55882247 -114.9202159 458 1,200 Oct-92 213 245

07S/20E-18H01S 33.5625251 -114.926355 443 1,139 Apr-61 168 275

07S/20E-18H01S 33.5625251 -114.926355 443 1,139 Apr-70 172 271

07S/20E-18H01S 33.5625251 -114.926355 443 1,139 Jul-79 173 269

07S/20E-18H01S 33.5625251 -114.926355 443 1,139 Jul-80 169 274

07S/20E-18H01S 33.5625251 -114.926355 443 1,139 Jan-81 169 274

07S/20E-18H01S 33.5625251 -114.926355 443 1,139 Sep-81 169 274

07S/20E-18H01S 33.5625251 -114.926355 443 1,139 Mar-82 170 273

07S/20E-18H01S 33.5625251 -114.926355 443 1,139 Jan-83 171 272

07S/20E-18H01S 33.5625251 -114.926355 443 1,139 Jul-84 171 272

07S/20E-18H01S 33.5625251 -114.926355 443 1,139 Feb-85 171 272

07S/20E-18H01S 33.5625251 -114.926355 443 1,139 Jun-85 173 270

07S/20E-18H01S 33.5625251 -114.926355 443 1,139 Feb-92 183 259

07S/20E-18K01S 33.5600363 -114.9319802 449 1,200 Oct-92 193 256

07S/20E-18R01S 33.5573475 -114.9270467 454 1,160 Oct-92 202 252

07S/20E-28C01S 33.53725089 -114.8991372 506 830 Mar-82 248 258
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TABLE J-1
WELLS DATABASE

FOR CHUCKWALLA GROUNDWATER BASIN
SOLAR MILLENIUM, LLC

PALEN SOLAR POWER PROJECT
RIVERSIDE COUNTY, CALIFORNIA

PROJECT BEACON

LATITUDE LONGITUDE
Ground 
Surface 

Elevation

Total 
Depth

Perforation 
Interval(s)

Groundwater
Elevation

Pumping 
Test Date

Pumping 
Rate

Specific 
Capacity

GROUNDWATER LEVELS

Mo/Yr gpmfeet-mslDate feet-bgs

Depth to Groundwater

WELL COMPLETION DATA

NAD 83 NAD 83 feet-msl

WELL DATA1

feet-bgs

STATE WELL NUMBER COMMENTS

gpm/ft

WELL PERFORMANCE DATA2

07S/20E-28C01S 33.53725089 -114.8991372 506 830 Feb-92 232 273

07S/20E-28C01S 33.53725089 -114.8991372 506 830 Mar-00 235 271

07S/20E-28C01S 33.53725089 -114.8991372 506 830 Oct-00 235 271

07S/20E-28C01S 33.53725089 -114.8991372 506 830 Jan-01 235 271

07S/20E-28C01S 33.53725089 -114.8991372 506 830 Feb-01 234 271

07S/20E-28C01S 33.53725089 -114.8991372 506 830 Apr-01 235 271

07S/20E-28C01S 33.53725089 -114.8991372 506 830 Apr-01 235 271

07S/20E-28C01S 33.53725089 -114.8991372 506 830 Jul-01 235 270

07S/20E-28C01S 33.53725089 -114.8991372 506 830 Nov-01 236 270

07S/20E-28C01S 33.53725089 -114.8991372 506 830 Nov-01 236 270

07S/20E-28C01S 33.53725089 -114.8991372 506 830 Apr-02 235 271

07S/20E-28C01S 33.53725089 -114.8991372 506 830 Apr-02 235 271

07S/20E-28C01S 33.53725089 -114.8991372 506 830 Oct-02 236 270

07S/20E-28C01S 33.53725089 -114.8991372 506 830 Oct-02 236 269

07S/20E-28C01S 33.53725089 -114.8991372 506 830 Jun-03 236 270

07S/20E-28C01S 33.53725089 -114.8991372 506 830 Jun-03 236 270

07S/20E-28C01S 33.53725089 -114.8991372 506 830 Nov-03 236 269

07S/20E-28C01S 33.53725089 -114.8991372 506 830 Nov-03 236 269

07S/20E-28C01S 33.53725089 -114.8991372 506 830 Mar-04 236 270

07S/20E-28C01S 33.53725089 -114.8991372 506 830 Mar-04 236 270

07S/20E-28C01S 33.53725089 -114.8991372 506 830 Aug-04 236 270

07S/20E-28C01S 33.53725089 -114.8991372 506 830 Dec-04 236 270

07S/20E-28C01S 33.53725089 -114.8991372 506 830 Apr-05 235 270

07S/20E-28C01S 33.53725089 -114.8991372 506 830 Aug-05 236 270

07S/20E-28C01S 33.53725089 -114.8991372 506 830 Aug-05 236 270

07S/20E-28C01S 33.53725089 -114.8991372 506 830 Feb-06 236 270

07S/20E-28C01S 33.53725089 -114.8991372 506 830 Feb-06 236 270

07S/20E-28C01S 33.53725089 -114.8991372 506 830 May-06 236 269

07S/20E-28C01S 33.53725089 -114.8991372 506 830 May-06 236 269

07S/20E-28C01S 33.53725089 -114.8991372 506 830 Aug-06 237 269

07S/20E-28C01S 33.53725089 -114.8991372 506 830 Aug-06 237 269

07S/20E-28C01S 33.53725089 -114.8991372 506 830 Dec-06 237 269

07S/20E-28C01S 33.53725089 -114.8991372 506 830 Dec-06 237 269

07S/20E-28C01S 33.53725089 -114.8991372 506 830 Feb-07 236 269

07S/20E-28C01S 33.53725089 -114.8991372 506 830 Feb-07 236 269

07S/20E-28C01S 33.53725089 -114.8991372 506 830 May-07 237 269

07S/20E-28C01S 33.53725089 -114.8991372 506 830 May-07 237 269

07S/20E-28C01S 33.53725089 -114.8991372 506 830 Sep-07 237 269

07S/20E-28C01S 33.53725089 -114.8991372 506 830 Sep-07 237 269

07S/20E-28C01S 33.53725089 -114.8991372 506 830 Sep-07 237 269

07S/20E-28C01S 33.53725089 -114.8991372 506 830 Dec-07 237 269

07S/20E-28C01S 33.53725089 -114.8991372 506 830 Dec-07 237 269

07S/20E-28C01S 33.53725089 -114.8991372 506 830 Mar-08 236 270

07S/20E-28C01S 33.53725089 -114.8991372 506 830 Mar-08 236 270

07S/20E-28C01S 33.53725089 -114.8991372 506 830 Mar-08 236 270

07S/20E-28C01S 33.53725089 -114.8991372 506 830 Jun-08 236 270

07S/20E-28C01S 33.53725089 -114.8991372 506 830 Jun-08 236 270

07S/20E-28C01S 33.53725089 -114.8991372 506 830 Sep-08 236 270

07S/20E-28C01S 33.53725089 -114.8991372 506 830 Sep-08 236 270

07S/20E-28C01S 33.53725089 -114.8991372 506 830 Sep-08 236 270

07S/20E-28C01S 33.53725089 -114.8991372 506 830 Jan-09 235 270
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TABLE J-1
WELLS DATABASE

FOR CHUCKWALLA GROUNDWATER BASIN
SOLAR MILLENIUM, LLC

PALEN SOLAR POWER PROJECT
RIVERSIDE COUNTY, CALIFORNIA

PROJECT BEACON

LATITUDE LONGITUDE
Ground 
Surface 

Elevation

Total 
Depth

Perforation 
Interval(s)

Groundwater
Elevation

Pumping 
Test Date

Pumping 
Rate

Specific 
Capacity

GROUNDWATER LEVELS

Mo/Yr gpmfeet-mslDate feet-bgs

Depth to Groundwater

WELL COMPLETION DATA

NAD 83 NAD 83 feet-msl

WELL DATA1

feet-bgs

STATE WELL NUMBER COMMENTS

gpm/ft

WELL PERFORMANCE DATA2

07S/20E-28C01S 33.53725089 -114.8991372 506 830 Jan-09 235 270

07S/20E-28C01S 33.53725089 -114.8991372 506 830 Apr-09 235 270

07S/20E-28C01S 33.53725089 -114.8991372 506 830 Apr-09 235 270

07S/20E-28C02S 33.5372481 -114.8989955 505 1,100 Nov-89 234 271

NOTES

1 Data as provided in the USGS National Water Information System Database - http//:nwis/waterdata.usgs.gov/ and the Department of Water Resources Database  - http://wdl.water.ca.gov/gw/

2 Data obtained by historical documents

DEFINITIONS

NAD-83 North American Datum 1983

feet-msl feet above mean sea level

feet-bgs feet below ground surface

Mo month

gpm gallons per minute

gpm/ft gallons per minute per foot of drawdown

-- data not provided or available in USGS or DWR database.
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TABLE J-2
WATER CHEMISTRY DATA

FOR CHUCKWALLA GROUNDWATER BASIN
SOLAR MILLENIUM, LLC

PALEN SOLAR POWER PROJECT
RIVERSIDE COUNTY, CALIFORNIA

LATITUDE LONGITUDE Sample
Date EC Temperature pH

Total
Dissolved

Solids
(TDS)

Silica Calcium Magnesium Sodium Potassium Sulfate Chloride Fluoride

Nitrate
and

Nitrite
(as N)

Nitrate
(NO3)

Arsenic Boron Iron Manganese Hardness 
(CaCO3)

Bicarbonate Carbonate

mg/L mg/L

03S/18E-11A01 -- -- -- -- -- -- -- Sep-61 22,000 -- 7.2 12300 -- 585 208 6720 86 1480 0 1110 2780 2.9 -- 25 -- 20 -- -- 2300 2, L1

03S/18E-11A01S 003S018E11A001S -- -- -- -- -- -- -- 1965 -- -- -- 12,300 -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- 3

03S/18E-3Q01 -- -- -- -- -- -- -- May-52 1,230 -- 8.1 713 -- 51 8 216 -- 342 -- 66 202 -- -- 1.8 -- 0.3 -- -- 160 2, L1

04S/16E-29R01 33.7902952 -115.3202862 -- -- -- -- -- May-61 1,230 -- 8.3 730 -- -- 1 274 4.3 290 18 165 110 4.4 -- 5.6 -- 1.2 -- -- 3 2, L2

04S/16E-30D01 33.8008503 -115.3347034 -- -- -- -- -- Mar-61 925 -- 8 584 -- 17 1 179 2.7 82 0 219 90 3.6 -- 9.3 -- 0.6 -- -- -- 2, L2

04S/16E-31D01 -- -- -- -- -- -- -- Oct-61 1,060 -- 8 626 -- 16 0 201 2.7 134 0 212 96 9.5 -- 5.6 -- 0.6 -- -- 40 2, L2

04S/16E-32D01 -- -- -- -- -- -- -- Jun-61 925 -- 7.1 925 -- 14 0 176 2 63 0 171 113 7.9 -- 1.2 -- 0.4 -- -- 35 2, L2

04S/17E-6C01 33.85918308 -115.2394237 -- -- -- -- -- Sep-61 6,900 -- 7.4 4,160 -- 393 14 1130 18 49 0 442 2100 2.9 -- 9.3 -- 1.8 -- -- 1040 2, L1

05S/14E-24R01 -- -- -- -- -- -- -- Jan-33 -- -- -- 987 -- -- -- -- -- -- -- -- 398 -- -- -- -- -- -- 82.5 2, L2

05S/15E-12N01 33.7440238 -115.3781377 -- -- -- -- -- May-61 720 -- 7.9 424 -- 14 0 129 2.7 88 0 115 74 8.7 -- 8.7 -- 0.3 -- -- 35 2, L2

05S/15E-13B01 -- -- -- -- -- -- -- May-61 1,560 -- 7.8 865 -- 49 5 251 5.5 67 0 128 351 6.8 -- 6.8 -- 0.6 -- -- 143 2, L2

05S/15E-1L01 -- -- -- -- -- -- -- Mar-60 660 -- 8.7 445 -- 72 10 130 1.6 59 7 112 69 12 -- 1.9 -- 0.5 -- -- 221 2, L2

05S/15E-27H01 -- -- -- -- -- -- -- May-60 2,960 -- -- 2,072 -- 7.3 -- -- -- 76 0 -- 782 4 -- -- -- -- -- -- 455 2, L2

05S/15E-29F01 -- -- -- -- -- -- -- Nov-61 -- -- -- 274 -- 8 12 2 2.3 204 0 9 14 3.9 -- 25 -- 0.3 -- -- 40 2, L2

05S/15E-29F01S 005S015E29F001S -- -- -- -- -- -- -- 1979 -- -- -- 274 -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- 3

05S/16E-10Z01 -- -- -- -- -- -- -- Dec-17 -- -- -- 3,460 -- 399 7.3 699 0 1950 129 286 8.8 -- -- -- -- -- 0.4 -- 1020 2, L2

05S/16E-18M01 -- -- -- -- -- -- -- Jul-61 748 -- 8.6 459 -- 5 0 158 0.8 67 12 122 85 8.8 -- 9.9 -- 0.4 -- -- 13 2, L2

05S/16E-22N01 -- -- -- -- -- -- -- Dec-61 2,410 -- 8 1,310 -- 72 0 409 4.7 21 0 144 645 3.1 -- 5.6 -- 0.9 -- -- 178 2, L2

05S/16E-25F01 -- -- -- -- -- -- -- May-58 1,170 -- 8 648 -- 40 -- 200 -- 92 0 120 238 -- -- 3.7 0.9 -- -- -- 2, L1

05S/16E-32M01 -- -- -- -- -- -- -- Nov-61 88 -- 8.2 532 -- 12 0 16 16 43 0 162 124 7.4 -- 3.7 -- 0.7 -- -- 30 2, L2

05S/16E-36M01 -- -- -- -- -- -- -- Nov-59 808 -- 8.3 524 -- 20 2 159 4.3 116 6 113 131 5.2 -- 6.2 0.7 -- -- 60 2, L1

05S/16E-5B01 -- -- -- -- -- -- -- May-61 865 -- 7.9 516 -- 16 0 161 3.1 107 0 147 94 7 -- 12 -- 0.2 -- -- 40 2, L2

05S/16E-5B02 -- -- -- -- -- -- -- May-61 687 -- 7.5 400 -- 9 0 129 1.6 79 0 108 74 8.7 -- 10 -- 0.4 -- -- 23 2, L2

05S/16E-6N01 -- -- -- -- -- -- -- Sep-61 704 -- -- 390 -- 8.4 0.5 134 0 110 73 82 8.1 10 -- 10 -- 0.5 -- -- 23 2, L2

05S/16E-7M01 33.749171 -115.3573315 -- -- -- -- -- Aug-61 717 -- 8.2 418 -- 12 0 134 2.3 79 0 105 82 6.8 -- 14 -- 0.3 -- -- 30 2, L2

05S/16E-7M02 -- -- -- -- -- -- -- Jul-61 717 -- 8.7 416 -- 6 0 143 1.6 55 12 106 89 6.9 -- 1.9 -- 0.3 -- -- 15 2, L2

05S/16E-7P01 -- -- -- -- -- -- -- May-59 700 -- 7.6 420 -- 8 0.6 141 2.6 88 0 105 78 7.8 -- 12 -- 0.3 -- -- 23 2, L2

05S/16E-8F01 -- -- -- -- -- -- -- May-57 806 -- 8 481 -- 8 2 156 2.1 109 0 140 82 8 -- 3 -- 0.6 -- -- -- 2, L2

05S/17E-20F01 -- -- -- -- -- -- -- Oct-58 1,320 -- 7.4 803 -- 50 6 225 0.7 104 0 241 203 1.8 -- 2.1 -- 0.1 -- -- 150 2, L1

05S/17E-30F01 -- -- -- -- -- -- -- Jan-60 -- -- 8.1 695 -- 30 -- 240 -- 90 0 155 225 -- -- -- -- 0.6 -- -- 75 2, L1

05S/17E-30P01 -- -- -- -- -- -- -- May-57 1,160 -- 8 783 -- 12 2 240 75 420 0 89 150 0.3 -- 2 -- 0.4 -- -- 38 2, L1

06S/17E-3M01 -- -- -- -- -- -- -- Jan-59 -- -- 7.4 -- -- 26 -- -- -- 79 -- -- 131 -- -- -- -- 2.5 -- -- -- 2, L1

06S/19E-33A01S 006S019E33A001S -- -- -- -- -- -- -- 1959 -- -- -- 2,150 -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- 3

06S/20E-33C01S 006S020E33C001S 33.61002387 -114.89968800 -- -- -- -- -- Apr-79 -- -- -- 2,330 38 67 0.6 800 16 -- -- 450 950 6.3 -- -- -- -- -- -- 170 1

Federal Drinking Water 
Standards4 -- -- 6.5 - 8.5S 500S -- -- -- -- -- -- -- 250S 250S 4P 1P 10P 10P -- 300S 50S --

California Drinking 
Water Standards4,5 -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- 45P 50P -- -- -- --

NOTES
--
1 Data as provided in the USGS National Water Information System Database - http//:nwis/waterdata.usgs.gov/ and the Department of Water Resources Database  - http://wdl.water.ca.gov/gw/
2
3
4
5
P
S

8.7

DEFINITIONS
NAD-83 North American Datum 1983

mg/L Miligram per Liter
ug/L Microgram per Liter

LOCATIONS

L1 Palen Valley
L2 Upper Chuckwallah Valley

Bolded values exceed either primary or secondary drinking water standards.

WATER CHEMISTRY

COMMENTS
Alkalinity

Mo/Yr Degrees
Centigrade pH units mg/L mg/L mg/L ug/Lmg/L mg/L mg/L ug/L ug/Lug/Lmg/LNAD 83 NAD 83 ug/LLi

th
ol

og
ic

 L
og

(Y
ES

)

mg/L mg/L mg/L mg/L
(micro-
mohs at 

25 C)

WELL DATA1

STATE WELL NUMBER 
(DWR)

STATE WELL NUMBER 
(USGS)

Well 
Owner

Pu
bl

is
he

d
U

se Year Status
(op)

Data not provided/No published drinking water standard

Primary Drinking Water Standard Maximum Contaminant Level (MCL)
Secondary Drining Water Standard for Odor, Taste, Appearance

Drinking Water Standards from "Drinking Water Standards and Health Advisories Table", USEPA, June 2007

Data provided by DWR Bulletin 91-7 (May 1963)
Data provided by DWR Bulletin 19-24 (August 1979)

California Drinking Water Standards use the Federal Standards unless otherwise noted.

1-Palen Water Quality 052009-cr.xls   8/13/2009
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Hydrographs 



Hydrograph of Well 007S018E14H001S
Chuckwalla Valley Groundwater Basin
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Groundwater Elevation

The depth of the well is 985 feet below land surface



Hydrograph of Well 007S018E14F001S
Chuckwalla Valley Groundwater Basin
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Groundwater Elevation

The depth of the well is 1,000 feet below land surface



Hydrograph of Well 006S020E33C001S
Chuckwalla Valley Groundwater Basin
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Hydrograph of Well 005S017E33N001S
Chuckwalla Valley Groundwater Basin
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Groundwater Elevation

The depth of the well is 758 feet below land surface.



Hydrograph of Well 005S017E17F001S
Chuckwalla Valley Groundwater Basin
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Groundwater Elevation

The depth of the well is 698 feet below land surface.



Hydrograph of  Well 005S015E27B001S
Chuckwalla Valley Groundwater Basin
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Groundwater Elevation

The depth of the well is 644 feet below land surface.



Hydrograph of Well 005S017E19Q001S
Chuckwalla Valley Groundwater Basin
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Groundwater Elevation

The depth of the well is 760 feet below land surface.



Hydrograph of Well 005S015E12N001S
Chuckwalla Valley Groundwater Basin
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Groundwater Elevation

The depth of the well is 746 feet below land surface.



Hydrograph of Well 005S016E07P001S
Chuckwalla Valley Groundwater Basin
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Groundwater Elevation

The depth of the well is 347 feet below land surface.



Hydrograph of Well 005S016E07M001S
Chuckwalla Valley Groundwater Basin
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Groundwater Elevation

The depth of the well is 648 feet below land surface.



Hydrograph of  Well 004S016E32M001S
Chuckwalla Valley Groundwater Basin
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Groundwater Elevation

The depth of the well is 555 feet below land surface.



Hydrograph of Well 004S016E29R001S
Chuckwalla Valley Groundwater Basin
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Groundwater Elevation

The depth of the well is 109.7 feet below land surface.



Hydrograph of Well 004S017E06C001S
Chuckwalla Valley Groundwater Basin
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Groundwater Elevation

The depth of the well is 501 feet below land surface.



Hydrograph of Well 007S020E18H001S
Chuckwalla Valley Groundwater Basin
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Groundwater Elevation

The depth of the well is 1,139 feet below land surface.



Hydrograph of Well 007S021E15A001S
Chuckwalla Valley Groundwater Basin

200

240

280

320

360

400

440

480

520

560

600

1950 1955 1960 1965 1970 1975 1980 1985 1990 1995 2000 2005

Year

G
ro

un
dw

at
er

 E
le

va
tio

n 
(ft

 a
bo

ve
 m

sl
)

Groundwater Elevation

The depth of the well is not available. 
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DWR Drillers Logs of Wells 
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Section 1 Water 

1.1 Introduction 

The Palen Solar Power Project (PSPP) Plan of Development has been prepared to support applications for 
design and development of two 242 MW commercial solar parabolic trough power generating stations. This 
Report presents water demands for the power plants and describes sources, uses, and treatment requirements 
for that water. In order to obtain economies of scale, it is assumed that a single water plant will supply water to 
both generating stations. 

1.2 Water Requirements 

The Palen Solar Power Project requires water for a number of consumptive uses: 

 Domestic potable uses include drinking water, showering, toilets, hand washing, etc. 

 Power cycle makeup water to supply the steam driving the steam turbine generators (This water is 
recycled and does not constitute consumptive use). 

 Mirror wash water to maintain solar collector efficiency 

 Ancillary equipment heat rejection, for cooling generators, pumps, and other equipment. 

 Dust suppression 

 Construction water, which will be required only during the construction period. 

Note that water will not be used for condensing steam in the power generation cycle. This will be a “dry” plant, 
using air-cooled condensers rather than water cooled condensers. 

Table 1 presents anticipated water requirements associated with various uses for each month of the year.  Table 
1 shows both the total water use and the consumptive use (power cycle makeup water is non-consumptive 
because it is recycled). 

Power Cycle Makeup Water and Ancillary Heat Rejection were determined based upon anticipated power 
production rates for each month as provided by the Solar Millennium’s power cycle engineers. 

Mirror Wash Water use was estimated based upon experience at other locations with similar climatic conditions. 

Domestic Potable Use was estimated based upon the number of employees and number of hours expected to be 
worked during the year. An average consumption of 37 gallons per person per day was assumed for each 
employee.   

Dust suppression is required to maintain power production. It is proposed that unpaved roadways will be wetted 
on a regular basis for dust control. In order conserve water supplies, concentrate from the water treatment 
process will be used for this purpose.  

It can be seen from Table 1 that of the 99 million gallon (MG) of water needed annually (74 MG consumptive use) 
the maximum monthly demand is anticipated to be about 12 MG (8.7 MG consumptive use) of water.  Minimum 
monthly demand is anticipated to be about 2.6 MG (2.0 MG consumptive use). 

 
 
 

Solar Millennium 
Palen Water / Wastewater Report 1  



DRAFT 

Solar Millennium 
RSPP Water / Wastewater Report 2 

 

1. Power cycle makeup is recycled and not included in the consumptive use total. 

Table 1 
Anticipated Monthly Water Use 

Palen Solar Power Project 

Month 

Power Cycle 
Makeup 
Water1 

(gallons) 

Mirror Wash 
Water 

(gallons) 

Domestic 
Potable Water   

(gallons) 

Dust 
Suppression 

Water 
(gallons) 

Ancillary 
Equip. Heat 
Rejection 
(gallons) Total 

Consumptive 
Use 

January 575,000 1,060,000 166,000 210,000 609,000 2,621,000 2,046,000 
February 1,396,000 2,120,000 166,000 450,000 1,479,000 5,611,000 4,215,000 
March 2,296,000 2,120,000 166,000 610,000 2,433,000 7,625,000 5,329,000 
April 2,585,000 4,241,000 166,000 846,000 2,739,000 10,576,000 7,991,000 
May 3,128,000 4,241,000 166,000 944,000 3,314,000 11,793,000 8,665,000 
June 3,163,000 4,241,000 166,000 950,000 3,352,000 11,872,000 8,709,000 
July 2,780,000 4,241,000 166,000 882,000 2,945,000 11,013,000 8,233,000 
August 2,778,000 4,241,000 166,000 882,000 2,943,000 11,009,000 8,231,000 
September 2,222,000 4,241,000 166,000 782,000 2,354,000 9,764,000 7,542,000 
October 1,971,000 2,120,000 166,000 552,000 2,088,000 6,898,000 4,927,000 
November 1,293,000 2,120,000 166,000 430,000 1,370,000 5,380,000 4,087,000 
December 920,000 2,120,000 166,000 364,000 975,000 4,545,000 3,625,000 
TOTAL 25,107,000 37,106,000 1,992,000 7,902,000 26,601,000 98,707,000 73,600,000 
AVERAGE 69,000 102,000 5,000 22,000 73,000 270,000 202,000 

MAX DAILY 
       

105,000  
    

141,000              6,000            32,000  
      

112,000  
    

396,000  290,000  
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1.3 Water Quality Requirements 

The PSPP will be classified by the California Department of Public Health (CDPH) as a “non-community, non-
transient” water system. Under this classification, the potable water system must meet the requirements of the 
Federal Safe Drinking Water Act and State Title 22 for potable water for mineral and microbial water quality. 

Power cycle makeup water must meet and exceed the requirements for boiler feed water for boilers operating at 
up to 100 bar (1500 psi) pressure. Table 2 presents quality requirements for boiler feed water. Achieving water of 
the quality required for power cycle makeup will entail use of desalination (reverse osmosis [RO] or electrodialysis 
reversal [EDR]) followed by ion exchange (IX) demineralization. 

In order to minimize scaling on the mirrors, mirror wash water must have low dissolved solids. However, 
demineralized water as needed for power cycle makeup will not be required.  Therefore, water from the primary 
desalination process (RO or EDR) will be used for this purpose. 

While ancillary equipment heat rejection water quality does not need to be as good as power cycle makeup water, 
it will benefit from low dissolved solids and especially from the low scaling tendency of desalinated water.  

There is no specific quality requirement for dust suppression water. It is presently anticipated that concentrate 
from the desalinating processes (RO or EDR) will be used for dust suppression. This water is expected to have 
total dissolved solids (TDS) of less than 13,000 mg/L.  If necessary, water for dust suppression may be 
augmented by water from the well developed to provide construction water. 

1.4 Water Source 

The preferred water source for the PSPP will be groundwater supplied by new wells located within the solar site 
boundary.  It is assumed that two wells will be required for redundancy. 

Water quality from local irrigation wells is not available. However, water quality information for wells serving the 
Chuckawalla and Ironwood State Prisons, located about 15 miles southeast of the PSPP site, show total 
dissolved solids (TDS) of 700 to 2000 mg/L, with the majority of samples below 1500 mg/L. These wells exhibit 
high fluoride concentrations of about 6 to 10 mg/L, which exceed the California Maximum Contaminant Level of 
about 1 mg/L.  No information is available on arsenic concentrations. 

Based upon the information from the prison wells and the fact that the local well water is used for irrigation, it is 
assumed that the water TDS is no more than 1500 mg/L.  
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Table 2 
Boiler Water Quality Requirements 

    Working Pressure (Bar)  

    0 - 15 15 - 25 25 - 35 35 - 45 40 - 60 60 - 75 75 - 100 

Boiler water               

M alkalinity 100 80 60 40 15 10 5 

P alkalinity 

French 
degrees 0.07 M 0.07 M 0.07 M 0.07 M > 0.5 M > 0.5 M > 0.5 M 

SiO2 200 150 90 40 15 10 5 

TDS 4000 3000 2000 1500 500 300 100 

Phosphates 

mg/l 

30 to 100 31 to 100 20 to 80 21 to 80 10 to 60 10 to 40 5 to 20 

pH   10.5 to 12 10 to 11 

Make up water   Softened or softened and carbonate free Demineralized 

   

References 
‘Water treatment handbook’ Vol. 1-2, Degremont, 1991 
‘Industrial water conditioning’, BeltsDearborn, 1991 

UUUUhttp://www.thermidaire.on.ca/boiler-feed.html   

http://www.lenntech.com/pH-and-alkalinity.htm
http://www.lenntech.com/pH-and-alkalinity.htm
http://www.lenntech.com/scientific-books/water-treatment/Degremont-water-treatment-handbook.htm
http://www.lenntech.com/scientific-books/groundwater/industrial-water-conditioning.htm
http://www.thermidaire.on.ca/boiler-feed.html
http://www.thermidaire.on.ca/boiler-feed.html
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1.5 Water Treatment 

As noted above, water used for power cycle makeup, mirror washing, and ancillary equipment heat rejection will 
require treatment for reduction of dissolved solids. This type of treatment process is known as desalination, and 
can be accomplished by either thermal processes (evaporation/condensation) or membrane processes such as 
reverse osmosis (RO) or electrodialysis reversal (EDR). Considering the relatively good quality of the source 
water, it is unlikely that thermal processes would be cost effective.  Accordingly, only membrane processes are 
considered here.  The proposed treatment process for the various water uses is presented schematically in 
Figure 1.  Since RO and EDR produce similar product water quality and waste streams, further discussion will 
reference only RO for simplicity.  Selection of the process to be used at PSPP will be made during the final design 
process. 

Membrane desalination processes split the feed stream into two streams: 1) a product water stream (permeate) 
with reduced salinity and 2) a concentrate stream containing the majority of the salts that were in the feed stream. 
Desalination processes are usually designed to operate with the highest safe recovery (recovery is the fraction of 
feedwater recovered as permeate) in order to minimize water loss, since the concentrate would normally be 
considered a waste stream. In this case, it appears that the highest safe recovery is 92%. 

RO treatment can be expected to provide product water with TDS of 20 mg/L or less and silica concentration of 3 
mg/L or less, which substantially exceeds the requirements for “Boiler Water” given in Table 2.  However, in order 
to provide the demineralized water quality needed for power cycle makeup it will be necessary to provide ion 
exchange demineralization as a final treatment step after RO. Ion exchange demineralization can be done using 
either permanently installed equipment or portable demineralizers.  Permanently installed equipment requires 
regeneration onsite, which requires storage and disposal of significant quantities of sulfuric acid and sodium 
hydroxide (caustic).  Alternatively, portable demineralizers are taken offsite for regeneration at the supplier’s 
warehouse, so no onsite storage of chemicals is required.  Offsite regeneration is recommended for the PSPP. 
This will eliminate the need to store regeneration chemicals on site and minimize on site production of hazardous 
wastes. These demineralizers will be provided as forklift-moveable fiberglass “bottles” that will be traded out when 
exhausted and returned to the supplier for regeneration.  Demineralization systems will be installed at each power 
block to minimize piping and provide the best water quality. 

It is anticipated that all of the power cycle makeup water will be recycled and reused as feed to the RO system. 
This will reduce the salinity of the RO feed and improve the RO recovery. Because of the very low TDS of the 
makeup to the ancillary equipment heat rejection cooling tower, it is expected that blowdown will not be required. 
Rather, drift (windblown mist) will provide the necessary salt removal. If blowdown is required, it will be recycled to 
the RO system. 

It may be more advantageous to recycle the power cycle makeup water to the IX demineralizer rather than to the 
RO. This modification will be evaluated during final design. 

Water from the new wells may require treatment to meet the requirements of the CDPH for domestic potable 
water supplies. Based on the assumed water quality, it is estimated that both TDS and fluoride concentrations 
must be reduced, which indicates the need for a desalination process. Following desalination the water will 
require addition of chlorine to prevent growth of pathogenic organisms. Use of a solid calcium hypochlorite system 
is recommended. Since the source water is groundwater there is no need to meet the requirements of the Surface 
Water Treatment Rule (and its amendments). 

1.6 Conceptual Facilities Sizing 

Figure 2 presents a conceptual layout of the water plant.  From Table 1 it can be seen that the maximum 
anticipated monthly water demand is slightly less than 12 million gallons, which is equivalent to about 400,000 
gallons per day. Sufficient storage will be provided to allow hourly and daily peak demands to be taken from 
storage, so that maximum water treatment capacity will be 400,000 gallons per day. However, considering that 
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the PSPP will only be producing power during daylight hours, it is recommended that the water treatment facilities 
be capable of providing the total 400,000 gallons in 12 hours of operation. This will allow the treatment process to 
be operated using self-generated power, which is expected to be substantially less expensive than power taken 
from the grid.  

In order to provide redundancy it is recommended that the treatment process be provided using two identical 
trains, each capable of providing 400,000 gallons over 24 hours of operation.  By operating both trains during 
normal operation, the maximum daily demand can be provided in 12 hours as discussed in the previous 
paragraph.  In the event that one train is not available, the other train can be operated for the full 24 hours of a 
day to meet the plant demand. 

1.7 Treatment Criteria 

Table 4 summarizes the types of treatment (i.e., RO and IX) required for each of the various water demands at 
the PSPP during the maximum demand month (June).  The quantity of water to be treated on a daily basis has 
been included so that tentative sizing of each treatment process can be identified. 

 

Table 4 
Treatment Capacities 

Use Domestic Power Cycle 
Makeup 

Mirror 
Washing 

Anc. Equipment 
Heat Reject. 

Dust 
Control 

RO X X X X X1 

IX  X    

Daily Capacity,  gallons 6,000 105,000 141,000 112,000 32,000 

Total RO permeate capacity will be the sum of the Domestic, Power Cycle Makeup, Mirror Washing, and Ancillary 
Equipment Heat Rejection capacities, or 364,000 gallons per day (253 gallons per minute). Total IX demineralizer 
capacity will be 105,000 gallons per day (73 gallons per minute).  Therefore, at each of the two demineralizer 
facilities (one at each power block – see Figure 1) the capacity will be approximately 52,500 gallons per day (37 
gallons per minute). 

1.8 Fire Flow Requirements 

The location of the PSPP is such that it will fall under the jurisdiction of the Riverside County Fire Department, 
specifically the Indio Office.  Based on the requirements of Riverside County, the piping system supplying the fire 
hydrants must be sized to convey a potential fireflow of 5,000 gallons per minute (gpm) with an actual fireflow of 
2,500 gpm being available from any two adjacent hydrants for two hours2.  Fire pumps as well as twelve inch 
minimum piping will be needed to convey the required flows.  Maximum hydrant spacing will be 330 feet 
throughout the Power Block area.  Minimum fire water storage volume per power block will be 300,000 gallons. 

                                                      
1 Dust control will use the concentrate from the RO process. 
2 Fireflow requirements per Ordinance No. 787.1 of the County of Riverside. 
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1.9 Storage 

Storage tanks will be provided at each power block for treated water and fire flow requirements.  RO concentrate 
storage will be provided at only one power block.   

Treated water storage at each power block will consist of a 1.0 million gallon (MG) tank (or alternatively two 
500,000 gallon tanks). These tanks will meet the requirements of the CDPH for potable water storage (e.g., NSF 
61 approved lining, screened vents, etc.). Each tank will provide water for domestic use, power cycle makeup, 
mirror wash, ancillary equipment heat rejection, and fire water. Excluding the fire water volume, each tank will 
provide about three days’ storage for these uses. 

Concentrate from the reverse osmosis process will be stored in a concentrate storage tank until used for dust 
control. This tank is recommended to be a 250,000 gallon tank, providing about one weeks’ storage volume. 

1.10 Construction Water 

Construction water requirements for the site will consist of providing water for all construction related activities.  
These activities include: 

 dust control for areas experiencing construction work as well as mobilization and demobilization,  

 dust control for roadways,  

 water for grading activities associated with both cut and fill work,  

 water for soil compaction in the utility and infrastructure trenches,  

 water for soil compaction of the site grading activities,  

 water for stockpile sites,  

 water for the various building pads, and 

 water for concrete uses on site.   

The predominate use of water during construction will be for grading activities which will have a steady rate of 
work each month.  The grading schedule for the site has been spread to cover the total construction period and 
therefore there should be no definable peak but rather a steady state condition of water use.  The average water 
use for this site is estimated to be about 390,000 gallons per working day.  Total construction water use for the 
duration of the project is estimated to be about 295,000,000 gallons.  Construction water is expected to be 
provided by an onsite well that will be drilled for that purpose. Potable water during construction will be brought 
onsite in trucks and held in day tanks. 

Section 2 Wastewater 

2.1 Introduction 

The Palen Solar Power Project (PSPP) Plan of Development has been prepared to support applications for 
design and development of two 242 MW commercial solar parabolic trough power generating stations. This report 
presents anticipated wastewater sources and amounts and proposed methods of wastewater disposal. 

2.2 Wastewater Sources and Quantities 

The Palen Solar Power Project will produce one primary wastewater stream and one temporary stream: 

Solar Millennium  
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 Sanitary wastewater produced from administrative centers and operator stations. 

 Construction related waste. 

Note that the power generation cycle will not produce cooling tower blowdown. This will be a “dry” plant, using air-
cooled condensers rather than water cooled condensers. 

Sanitary wastewater production will not exceed domestic water use. As described in the Water Report, maximum 
domestic water use will be less than 166,000 gallons per month (approximately 5,500 gallons per day).  It is 
anticipated that the wastewater would be consistent with domestic sanitary wastewater and would have 
Biochemical Oxygen Demand (BOD) and Total Suspended Solids (TSS) in the range of 150 to 250 mg/L. 

The construction phase will produce an additional temporary wastewater stream due to onsite employees.   

2.3 Wastewater Treatment 

Sanitary wastes will be collected for treatment in septic tanks and disposed via leach fields located at the power 
block as well as at the admin area and warehouse area. If separate control rooms with restrooms are located at 
the remote power blocks, smaller septic systems will be provided to receive sanitary wastes at those locations.  
Based on the current estimate of 5,500 gallons of sanitary wastewater production per day a total leach field area 
of approximately 11,000 square feet will be required spread out at multiple locations.  It is also recommended that 
an additional 11,000 square feet of land be kept undeveloped for purposes of constructing replacement leach 
fields should that be necessary. 

2.4 Construction Waste Water 

Sanitary wastes produced during construction will be held in chemical toilets and transported offsite for disposal 
by a commercial chemical toilet service. 

Any other wastewater produced during construction will be collected by the contractor in Baker tanks and 
transported offsite for disposal in a DPH approved manner. 
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APPENDIX J 

NUMERICAL GROUNDWATER MODEL 
EVALUTION OF PROPOSED PROJECT PUMPING 

DURING CONSTRUCTION AND OPERATION 
PALEN SOLAR POWER PROJECT 

CHUCKWALLA VALLEY, RIVERSIDE COUNTY 

INTRODUCTION 

A regional model developed by the USGS incorporation with the USBR for evaluation of the 
potential for depletion of the Colorado River from pumping in sub-adjacent groundwater basins 
was selected for the Project (Leake and others 2008).  The regional model is a two-dimensional 
superposition model developed using MODFLOW code (MacDonald and Harbaugh 2000) for the 
Parker-Palo Verde-Cibola area, which includes the Chuckwalla Valley Groundwater Basin and 
the Project site.   The model is a simple two-dimensional model, employing a simple vertical 
geometry and a large grid spacing to evaluate the impacts from groundwater pumping on 
recharge to the Colorado River.  Major features of the model include: 

• Two dimensional and uniform 0.25 mile grid spacing 

• Two statistically derived low and average transmissivity values (6,300 feet squared per 
day [(ft2/d)] and 26,000 ft2/d) for a conservative and an average values 

• A constant storage coefficient or specific yield (0.2) 

• A uniform saturated thickness of the aquifer (500 feet) 

An existing numerical groundwater model developed by the USGS was selected to evaluate the 
impacts from proposed Project pumping because: 

• The model included the PSPP site and was of sufficient detail and complexity to 
adequately evaluate impacts from the modest pumping proposed for the Project. 

• It had undergone review by the USGS and USBR.  As such, the model had undergone 
significant peer review prior to being published. 

The Project is a dry-cooled facility that will use about 300 acre-feet per year (afy) of groundwater 
from two onsite wells for all operational activities, including mirror washing (the largest use, 
accounting for more than one-third of the total).  The peak water usage during the summer 
months is about 396,000 gallons per day (gpd) or about 275 gallons per minute (gpm) under an 
assumption of continuous pumping.  The average water use of the 30-year life of the Project is 
about 200 gpm.  Winter usage will be less owing to the lower ambient temperature, and lesser 
requirements for process water and water for dust suppression.  During construction, the Project 
will use an average of approximately 480 afy over a 39-month period or an average of about 600 
gpm.   

The model was used as a preliminary tool to simulate cone of depression, and how the project 
pumping might impact adjacent water supply wells.   



MODEL SETUP and INPUT PARAMETERS 

The superposition model by Leake, et al (2008) adopts a uniform grid spacing of 0.25 miles or 
1,320 feet.  To better resolve the rapid change in drawdown near the pumping well, the model 
grid spacing was refined as follows (Figure J-1): 

• 30 feet from the pumping well for the first 300 feet 

• 100 feet further out from the well for one mile or 5,280 feet 

• The grid spacing gradually increases from 100 feet to 1,320 feet for the remainder of the 
model domain 

Following licensing of the project, construction activities are expected to take place over a period 
of approximately 39 months.  It is anticipated that water use during this period will be from onsite 
groundwater supplied from well 5/17-33N01 or additional wells as needed to provide an adequate 
water supply for construction and domestic purposes. Following construction, well 5/17-33N01 
and a backup supply well will be used to provide the operation water supply for the Project.  The 
pumping rate is assumed to be 125,134 cubic-feet per day (cfd) (650 gpm) during 3.25 years (39 
months) of construction period and 38,500 cfd (200 gpm) during 30 years operational period. 

The model was used to evaluate Project impacts from proposed pumping for construction and 
operational water supply over a range of Transmissivity and storage coefficients as follows:  

Transmissivity of 

• 6,300 ft2/d 

• 26,000 ft2/d 

• 93,600 ft2/d 

Storage Coefficients of  

• 0.05 

• 0.20 

The predicitive results showing the drawdown at the pumping well and the distance to a 
drawdown of 5 feet and 1 foot are provided on Tables J-1 and J-2. 

MODEL RESULTS 

The drawdown contours showing the cone of depression for the range of transmissivity and 
storage coefficients are shown on Figures J-2 through J-7. As can be seen from Table J-1 and J-
2, the maximum drawdown occurs at the end of construction period.  As would be expected, the 
drawdown at the well and the radius of influence increase with lower transmissivity and decrease 
with higher transmissivity.  

The maximum drawdown and radius of influence at well 5S/17E-33N01 during the operational 
period at a pumping rate of 200 gpm is about 10 and 800 feet, respectively.   The maximum 
drawdown and radius of influence at well 5S/17E-33N01 during the construction period at a 
pumping rate of 650 gpm is about 25 and 3,800 feet, respectively.    



The maximum drawdown is much smaller than the assumed model layer thickness, 500 feet. The 
modeling result of maximum drawdown is consistent with general understanding that 
superpostion model can be applied if the basin-wide drawdown of the unconfined aquifer is 10 
percent or less of saturated thickness (Reilly at al., 1987).  The model results show that no well 
within a one-mile radius of the project site will be impacted by a drawdown of 5 feet or more.  

Model Limitation 

The modeling results presented in this report are based on a simplified groundwater model with 
homogeneous transmissivity and specific yield, which are derived from previous USGS 
superposition model efforts.  Therefore the presented modeling result is considered preliminary. 
The actual cone of depression will vary subject to site specific aquifer properties, the 
heterogeneity of the aquifer and other model constraints at the site. 

At the time of this writing, a plan for site specific aquifer testing is underway.   After the testing is 
conducted, the site specific aquifer data, in combination with previously basin-wide hydrogeologic 
data will be evaluated.  The model may be refined considering heterogeneity of the aquifer 
properties if warranted and the model results will be better representation of impact from 
groundwater pumping.  

The electronic model files used in the simulations are attached.  Additionally, the original USGS 
model report from Leake and others, 2008 is attached for reference. 
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Table J-1 Results of Numerical Groundwater Modeling Storage 
Coefficient of 0.20 



TABLE J-1
RESULTS OF NUMERICAL GROUNDWATER MODELING

PROPOSED CONSTRUCTION AND OPERATIONAL WATER USE
STORAGE COEFFICIENT OF 0.20
PALEN SOLAR POWER PROJECT

CHUCKWALLA VALLEY, RIVERSIDE COUNTY, CALIFORNIA

-- (ft2/day) (ft)
Construction
Average Transmissivity 650 3.25 0.2 26,200 6.14 15 5,220
Low Transmissivity 650 3.25 0.2 6,300 23.20 1,640 8,160
Maximum Transmissivity 650 3.25 0.2 93,600 1.90 -- 390

Operation
Average Transmissivity 200 30 0.2 26,200 2.35 -- 1,617
Low Transmissivity 200 30 0.2 6,300 8.57 240 13,430
Maximum Transmissivity 200 30 0.2 93,600 0.78 -- --

Notes
1 Model results shown on Figure J-2 through J-4 of this technical memorandum.
2 Distance measured from the pumping well to the referenced contour.

Distance to a 
Drawdown of 

1 foot2

Storage 
Coefficient

MODEL SCENARIO1

Maximum Depression in
the Pumping Well 

Pumping Rate
Construction/Operation

(gpm)

Period
Construction/Operation

(years)

Transmissivity Distance to a 
Drawdown of 5 

Feet2
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Table J-2 Results of Numerical Groundwater Modeling Storage 
Coefficient of 0.05 



TABLE J-2
RESULTS OF NUMERICAL GROUNDWATER MODEL

CONSTURCTION AND OPRATIONAL WATER USE
STORAGE COEFFICIENT - 0.05

PALEN SOLAR POWER PROJECT
CHUCKWALLA VALLEY, RIVERSIDE COUNTY, CALIFORNIA

-- (ft2/day) (ft)
Construction
Average Transmissivity 650 3.25 0.05 26,200 6.85 75 11,940
Low Transmissivity 650 3.25 0.05 6,300 25.47 3,780 16,340
Maximum Transmissivity 650 3.25 0.05 93,600 2.16 -- 1,380

Operation
Average Transmissivity 200 30 0.05 26,200 2.84 -- 12,710
Low Transmissivity 200 30 0.05 6,300 9.74 730 35,350
Maximum Transmissivity 200 30 0.05 93,600 1.14 -- 45

Notes
1 Model results shown on Figure J-5 through J-7 of this technical memorandum.
2 Distance measured from the pumping well to the referenced contour.

Distance to a 
Drawdown of 5 

Feet2

Distance to a 
Drawdown of 1 

foot2MODEL SCENARIO1

Pumping Rate
Construction/Operation

(gpm)

Period
Construction/Operation

(years)

Storage 
Coefficient

Transmissivity Maximum 
Depression in the 

Pumping Well 
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Figure J1
Groundwater Superposition Model
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Figure J2
Predicted Drawdown During

Construction Period
(Average Transmissivity)
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Figure J3
Predicted Drawdown During

Construction Period
(Low Transmissivity)
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Figure J4
Predicted Drawdown During

Operation Period
(Low Transmissivity)
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Figure J5
Predicted Drawdown During

Construction Period
(Average Transmissivity)
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Figure J6
Predicted Drawdown During

Construction Period
(Low Transmissivity)
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Figure J7
Predicted Drawdown During

Operation Period
(Low Transmissivity)
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USGS Superposition Model 
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Conversion Factors
Inch/Pound to SI

Multiply By To obtain

Length
foot (ft) 0.3048 meter (m)
mile (mi) 1.609 kilometer (km)

Area
acre 4,047 square meter (m2)
acre 0.4047 hectare (ha)

Volume
gallon (gal)  3.785 liter (L) 
gallon (gal)  0.003785 cubic meter (m3) 
acre-foot (acre-ft)  1,233 cubic meter (m3)

Flow rate
acre-foot per year (acre-ft/yr)  1,233 cubic meter per year (m3/yr)
cubic foot per second (ft3/s)  0.02832 cubic meter per second (m3/s)
cubic foot per day (ft3/d)  0.02832 cubic meter per day (m3/d)
gallon per minute (gal/min)  0.06309 liter per second (L/s)

Hydraulic conductivity
foot per day (ft/d)  0.3048 meter per day (m/d)

Transmissivity*
foot squared per day (ft2/d)  0.09290 meter squared per day (m2/d) 

Leakance
foot per day per foot [(ft/d)/ft]      1 meter per day per meter

Vertical coordinate information is referenced to the National Vertical Geodetic Datum of 1929 (NGVD 29).
Horizontal coordinate information is referenced to the North American Datum of 1927 (NAD 27).
Elevation, as used in this report, refers to distance above the vertical datum.

*Transmissivity: The standard unit for transmissivity is cubic foot per day per square foot times foot of aquifer thickness [(ft3/d)/ft2]. In this 
report, the mathematically reduced form, foot squared per day (ft2/d), is used for convenience.



Use of Superposition Models to Simulate Possible 
Depletion of Colorado River Water by Ground-Water 
Withdrawal

By Stanley A. Leake, William Greer1, Dennis Watt2, and Paul Weghorst3

Abstract 
According to the “Law of the River,” wells that draw 

water from the Colorado River by underground pumping need 
an entitlement for the diversion of water from the Colorado 
River. Consumptive use can occur through direct diversions 
of surface water, as well as through withdrawal of water from 
the river by underground pumping. To develop methods for 
evaluating the need for entitlements for Colorado River water, 
an assessment of possible depletion of water in the Colorado 
River by pumping wells is needed. Possible methods include 
simple analytical models and complex numerical ground-water 
flow models. For this study, an intermediate approach was 
taken that uses numerical superposition models with complex 
horizontal geometry, simple vertical geometry, and constant 
aquifer properties. The six areas modeled include larger extents 
of the previously defined river aquifer from the Lake Mead 
area to the Yuma area. For the modeled areas, a low estimate of 
transmissivity and an average estimate of transmissivity were 
derived from statistical analyses of transmissivity data. Aquifer 
storage coefficient, or specific yield, was selected on the basis 
of results of a previous study in the Yuma area. The USGS pro-
gram MODFLOW-2000 (Harbaugh and others, 2000) was used 
with uniform 0.25-mile grid spacing along rows and columns. 
Calculations of depletion of river water by wells were made 
for a time of 100 years since the onset of pumping. A computer 
program was set up to run the models repeatedly, each time 
with a well in a different location. Maps were constructed for at 
least two transmissivity values for each of the modeled areas. 
The modeling results, based on the selected transmissivities, 
indicate that low values of depletion in 100 years occur mainly 
in parts of side valleys that are more than a few tens of miles 
from the Colorado River. 

Background 
The Consolidated Decree of the United States Supreme 

Court in Arizona v. California, 547 U.S.150 (2006) recognizes 
that consumptive use of water from the Colorado River can 

1Bureau of Reclamation, Yuma, Arizona
2Bureau of Reclamation, Boulder City, Nevada
3Formerly of Bureau of Reclamation, Denver, Colorado

occur by underground pumping. According to the “Law of the 
River,” users within the lower Colorado River Basin States 
can divert tributary inflow before it reaches the Colorado 
River. Once the water reaches the Colorado River, however, 
entitlements are required for diversions. For wells pumping 
in the aquifer connected to the river, determination of a tribu-
tary source of ground water pumped can be difficult. Wilson 
and Owen-Joyce (1994), and Owen-Joyce and others (2000) 
presented the “Accounting-Surface Method.” The accounting 
surface is defined by ground-water levels that would occur if 
the Colorado River were the only source and sink for water in 
the connected aquifer. The theory is that static (non-pumping) 
ground-water levels in the aquifer that are higher than the 
accounting surface indicate the presence of tributary water. The 
accounting-surface method could be used by managers to deter-
mine the need for entitlements for river water for wells pump-
ing in the river aquifer. Wiele and others (2008) presented an 
updated accounting surface based on conditions in 2007–2008.

Wilson and Owen-Joyce (1994) and Owen-Joyce and 
others (2000) defined the “river aquifer” as the saturated 
ground-water system adjacent to the Colorado River, includ-
ing the flood plain sediments, older alluvial sediments, and 
sediments in connected adjacent valleys (fig. 1). The account-
ing surface was defined over the area of the river aquifer 
beyond the Colorado River flood plain. 

The accounting surface includes some parts of the river 
aquifer that are many tens of miles from the Colorado River. 
The States along the lower Colorado River have expressed 
interest in Federal water managers considering the timing 
over which wells at great distance would deplete water in the 
Colorado River. To further understand the temporal effects of 
pumping wells on the Colorado River, Reclamation subse-
quently set up the Non-Contract Use Modeling technical team 
to explore methods of assessing the timing over which wells 
would deplete water in the Colorado River. Team members 
include staff of the Bureau of Reclamation (Reclamation) and 
the U.S. Geological Survey (USGS). This report describes the 
method developed by the technical team and results for larger 
portions of the river aquifer along the lower Colorado River.
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Figure 1. Study area along the lower Colorado River.

Modeling technical team. Jeff Addiego, formerly of Reclama-
tion in Boulder City, Nevada, helped with aspects relating 
to the water-accounting procedures. Carroll Brown, of the 
Reclamation in Yuma, Arizona, contributed advice on aspects 
of geology. Sandra Owen-Joyce, of the USGS in Tucson, 
Arizona, helped with previous work on the accounting-surface 
method, including the river aquifer. Steve Belew, Reclamation 
in Boulder City, and Jim Monical, USGS in Tucson, helped 
with spatial data sets needed to construct models and mapping 
of model results.

Approach
C.V. Theis (1940) provided the first comprehensive 

description of the sources of water to pumped wells. He 
indicated that pumped water initially comes from storage 
in the aquifer. With time, however, cones of depression can 
spread to areas of ground-water recharge and discharge, result-
ing in additional sources of increased inflow to the aquifer 
and decreased outflow from the aquifer. Along the Colorado 
River, the interest is in depletion of surface-water resources 
from ground-water pumping. The depletion can result from 
decreased flow from the aquifer to the river, increased flow 
from the river to the aquifer, or a combination of these two 
conditions. 

An example of the progression of depletion over time 
for a point in a hypothetical aquifer is shown in figure 2. At 
time zero, when pumping starts, the source of all of the water 
pumped by the well is from ground-water storage. With time, 
however, this source decreases and the complementary source, 
depletion of surface water, increases. At the end of 50 years in 
this example, only 5 percent (a fraction of 0.05) of the pump-
ing rate is from ground-water storage, and 95 percent is from 
depletion of surface water. If the well pumping was continued 
indefinitely, a new steady-state condition would be reached 
in which all of the well pumping rate would be depletion of 
surface water, assuming that water available in surface-water 
bodies is sufficient to supply the total rate of well pumping. 

The time over which depletion of river water by under-
ground pumping occurs is dependent on the river and aquifer 
geometry, location of the pumping, and the aquifer hydraulic 
diffusivity, T/S, where T is transmissivity and S is storage coef-
ficient. It is important to note that depletion of surface water 
by pumping ground water is independent of the rates and 
directions of ground-water flow. For example, depletion can 
occur from decreased flow from the aquifer to the river and 
increased flow from the river to the aquifer. For both of these 
cases, the amount of water in the river is reduced and the total 
depletion of the flow in the river is the sum of the two quanti-
ties. If the flow system changed by means such as changing 
recharge amounts or locations and (or) changing river stages, 
the total depletion by a well would be the same as depletion by 
a well at the same location in the unchanged system as long as 
the changes to the system did not affect the aquifer diffusivity 
and the location of the surface-water features.
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Figure 2. Sources of water to a well through time in a river-aquifer system, expressed as a fraction of the pumping rate.

of the decrease in ground-water flow to the river and increase in 
ground-water flow from the river. 

Calibrated ground-water flow models do not exist for 
most parts of the lower Colorado River aquifer, and construc-
tion of such models was beyond the scope of this study. For 
this study, an approach was taken that is intermediate to the 
approaches using analytical solutions and calibrated numerical 
models. The intermediate approach uses numerical models that 
incorporate the complex horizontal geometry of the aquifer 
and river, but incorporate the simplifying principle of super-
position, and the simple vertical geometry and homogeneity 
assumptions that are part of the analytical-solution approach.

Numerical superposition models for evaluating possible 
depletion of water in the Colorado River by ground-water 
pumping in the connected river aquifer were constructed for 
select areas along the lower Colorado River from Lake Mead 
to the Yuma area. The areas modeled include the river aquifer 
as defined by Wilson and Owen-Joyce (1994) and Owen-Joyce 
and others (2000). In a few of the modeled areas, the model 
boundaries extend beyond the defined river aquifer boundary 
where the defined boundary does not represent a physical no-
flow boundary. Some general aspects of the modeling strategy 
are as follows:

Depletion is calculated using numerical superposition or 1. 
change models. In plan view the aquifers are complexly 
shaped, based on the outline of the mapped river aquifer, 
with any mapped no-flow areas removed from the active 
model domain. In cross-sectional view the aquifers are 
simple two-dimensional horizontal slabs.

If the interest is in total depletion, mathematical solution 
can be done using the principle of superposition in an analyti-
cal or numerical method that solves for changes in a system 
that is initially static. In a solution using the superposition 
approach, total depletion from a surface-water boundary from 
ground-water pumping is directly computed, and individual 
components of decreased flow from the aquifer to the river 
and increased flow from the river to the aquifer cannot be 
computed. The simplest approach to calculating depletion 
from ground-water pumping is the analytical solution by 
Glover and Balmer (1954). This approach assumes the river is 
a line source—straight and infinitely long, and fully penetrates 
the thickness of the aquifer, which extends an infinite distance 
away from the river. Using the theory of image wells, deple-
tion in a bounded aquifer can be computed by the analytical 
solution, with a lateral no-flow boundary that is parallel to 
the river. Aquifer properties are assumed to be homogeneous. 
Because of the complex geometry of the Colorado River and 
the river aquifer (fig. 1), the analytical solution by Glover and 
Balmer (1954) is difficult to apply, especially in and around 
side valleys that are a part of the river aquifer.

A more common approach to calculating depletion is to use 
calibrated numerical ground-water flow models. Such models 
approximate the vertical and horizontal geometry of the aquifer, 
as well as flow patterns within the aquifer. The approach gener-
ally includes first running the model without a pumping well of 
interest and saving model-computed rates of ground-water flow 
to and from the river. The next step involves running the model 
again, this time with the pumping center added, again saving 
model-computed rates of ground-water flow to and from the 
river. For the two model runs, depletion is calculated as the sum 
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Models are constructed for the largest of the river-aquifer 2. 
areas from Lake Mead to the Yuma area along the lower 
Colorado River. Smaller areas of the river aquifer are not 
modeled where experience with larger models indicates 
that computed depletion of surface water after 100 years of 
withdrawal for narrow sections is relatively high.

The models do not represent spatial variations of aquifer 3. 
hydraulic properties. The models use a constant storage 
coefficient (specific yield), and two or more statistically 
derived transmissivity values. The transmissivity values are 
selected to simulate aquifer hydraulic diffusivity that repre-
sents (a) a conservative (or low) value that would underesti-
mate depletion, and (b) an average value.

The only surface-water boundaries included in the models 4. 
are the Colorado River, reservoirs along the river, and wet-
lands connected to the river.

Depletion is mapped for 100 years of withdrawal for the 5. 
area of the river aquifer outside of the flood plain. The 
period of 100 years is commonly used as a timeframe in 
water management rules, such as Assured Water Supply cri-
teria of the State of Arizona (http://www.azwater.gov/dwr/
WaterManagement/Content/OAAWS/default.asp, accessed 
October 10, 2008).

 
Further details on implementation of the method are given in 
the following sections.

Areas Simulated

Models were constructed for six areas of the river aqui-
fer. Starting with the most upstream reach, models included 
(1) Detrital-Virgin, (2) Lake Mohave, (3) Mohave Valley,  
(4) Parker-Palo Verde-Cibola, (5) Laguna Dam, and (6) Yuma 
area (fig. 1). The two largest river-aquifer areas not modeled 
are the Grapevine Mesa-Cottonwood Wash area and the Lake 
Havasu Area.

Aquifer Properties

Aquifer hydraulic diffusivity is the aquifer property that 
controls the rate that the depletion curve (fig. 2) progresses 
from zero at the start of pumping, towards 1.0 as pumping 
time continues. Diffusivity is T/S, where T is transmissiv-
ity and S is the storage coefficient. A lower transmissivity 
will result in slower propagation of drawdown and slower 
progression of depletion from zero to 1.0 through pumping 
time and a higher transmissivity will result in faster propaga-
tion of drawdown and progression of depletion through time. 
Conversely, a lower storage coefficient will result in faster 
progression of depletion and a higher storage coefficient will 
result in slower progression of depletion. The distribution 
of diffusivity, or the distributions of both transmissivity and 
storage coefficient over the entire river aquifer is not known, 

so the approach taken here calculates depletion using (a) a 
uniform low (or conservative from the standpoint of effects of 
a pumping well on the river) estimate of diffusivity and (b) a 
uniform average estimate of diffusivity. For this study, low and 
average diffusivities were computed using an estimate of the 
average storage coefficient and estimates of the low and aver-
age transmissivity. Methods and rationales for selecting these 
values are given in the following two sections.

Transmissivity

Although detailed distributions of transmissivities for the 
river aquifer are not known, many estimates of transmissivity 
for sediments in the river aquifer were published by Metzger 
and Loeltz (1973, table 2), Metzger and others, (1973, 
table 5), and Olmstead and others, (1973, table 7). The best of 
these estimates were used to develop log-normal distributions 
of transmissivity for several subreaches of the river aquifer. 
From those log-normal distributions, low and average trans-
missivity values were selected.

The best values of transmissivity were selected from 
Metzger and Loeltz (1973, table 2), Metzger and others, 
(1973, table 5), and Olmstead and others, (1973, table 7) 
using the following two criteria:

Only transmissivity values from tests in the younger and 1. 
older alluvium of the lower Colorado River are used.

Test results are listed in the source reports as being fair, 2. 
good, or excellent, in terms of conformance to theoretical 
values and reliability of the estimate. 

Published values were available for Mohave Valley, Parker-
Palo Verde-Cibola, and Yuma areas. The first two of these 
areas are above Laguna Dam, and the Yuma area is below 
Laguna Dam. Published values of transmissivity that meet the 
criteria are generally higher in the Yuma area than in the areas 
above Laguna Dam. For this reason, separate log-normal 
distributions of transmissivity were developed for reaches 
above and below Laguna Dam. Transmissivity values used 
are given in tables 1 and 2. In some cases, the source docu-
ments listed multiple estimates for an individual well. Where 
these estimates met the criteria for inclusion in the analysis, 
multiple values for the same well were included.

The statistical analyses used 25 estimates of transmis-
sivity upstream of Laguna Dam (table 1) and 58 estimates 
downstream of Laguna Dam (table 2). Best-fit log-normal 
distributions to these data are shown in figures 3A and 3B. 
The low estimate of transmissivity was selected as the value 
for which probability is 0.05 (5 percent) that transmissivity 
is less than or equal to the value. The average estimate of 
transmissivity was selected as the value for which probability 
is 0.5 (50 percent) that transmissivity is less than or equal to 
the value. The low and average estimates of transmissivity for 
areas upstream of Laguna Dam are 6,300 ft2/day (47,000 gal/
day/ft), and 26,200 ft2/day (196,000 gal/day/ft), respectively 
(fig. 3A). The low and average estimates of transmissivity for 

http://www.azwater.gov/dwr/WaterManagement/Content/OAAWS/default.asp
http://www.azwater.gov/dwr/WaterManagement/Content/OAAWS/default.asp
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Table 1. Transmissivity values above Laguna Dam used for statistical analysis. 
[Type of test: D, drawdown; R, recovery; S, specific capacity; numbers in square brackets are range interval tested, in depth below land surface, in feet]

Well Name Other Identifier
Transmissivity, in gallons 

per day per foot
Transmissivity, in feet 

squared per day
Method of analysis

Mohave Valley (Metzger and Loeltz, 1973, table 2)

(B-18-22)15aab D. Hulet 240,000 32,100 R
(B-18-22)27bbc G. McKellip 600,000 80,200 D
(B-18-22)27bbc G. McKellip 900,000 120,300 R
(B-18-22)27bbc G. McKellip 240,000 32,100 S
9N/23E-29F1 City of Needles 600,000 80,200 R
9N/23E-29F1 City of Needles 300,000 40,100 S
9N/23E-32K1 City of Needles 450,000 60,200 R
9N/23E-32K1 City of Needles 70,000 9,400 S
11N/21E-36G2 Soto Brothers 94,000 12,600 R
11N/21E-36G2 Soto Brothers 75,000 10,000 S
11N/21E-36Q1 W. Riddle 160,000 21,400 D
11N/21E-36Q1 W. Riddle 170,000 22,700 R
11N/21E-36Q1 W. Riddle 140,000 18,700 S

Parker Valley (Metzger and others, 1973, table 5)

(B-7-21)14dcd USBIA No.8 460,000 61,500 R
(B-9-20)11dbc USBIA No.2 400,000 53,500 R
(B-9-19)5ddd USGS LCRP-15 300,000 40,100 R [175-199]
(B-7-21)14acd USBIA No.7 75,000 10,000 R
(B-7-21)23acd USBIA No.9 120,000 16,000 D,R
(B-7-21)23dcd USBIA No.10 40,000 5,300 D,R

Palo Verde Valley (Metzger and others, 1973, table 5)

5S/22E-28C2 U.S. Citrus Corp 64,000 8,600 R
6S/22E-11H1 H. M. Neighbor 700,000 93,600 R
6S/22E-15Q1 E. Weeks 290,000 38,800 R
6S/22E-35R2 Southern Counties 

Gas Co
150,000 20,100 R

8S/21E-13A1 USGS LCRP-16 63,000 8,400 D
8S/21E-13A1 USGS LCRP-16 170,000 22,700 R

areas downstream of Laguna Dam are 15,500 ft2/day (116,000 
gal/day/ft) and 45,900 ft2/day (343,000 gal/day/ft), respec-
tively (fig. 3B).

Storage coefficient
In aquifers such as the river aquifer along the lower 

Colorado River, the storage coefficient accounts for processes 
including (a) draining and filling of pore spaces at the water 
table, (b) contraction and expansion of the aquifer skeleton, 
and (c) decompression and compression of water in the pore 
spaces. The property that accounts for the first of these pro-
cesses is designated as the aquifer specific yield. The property 

that accounts for the remaining two of these processes is the 
elastic aquifer storage coefficient. In the river aquifer along 
the lower Colorado River, the specific yield accounts for the 
dominant mechanism of storage change. Specific yield in the 
river aquifer is several orders of magnitude larger than the 
elastic storage coefficient, and therefore is used to define low 
and average diffusivity. The best estimate of specific yield 
in the area is from Loeltz and Leake (1983). They published 
estimates of specific yield from neutron-probe studies along 
both sides of the Colorado River at 18 cross sections, spaced at 
approximate 1-mile intervals. The average specific-yield value 
from these studies was about 0.2, and this value is used in this 
study of depletion along the lower Colorado River.
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Table 2. Transmissivity values below Laguna Dam used for statistical analysis; all transmissivity values are from Olmstead and others 
(1973, table 7). 
[Type of test: D, drawdown; R, recovery; LA, leaky artesian analysis with observation wells; numbers in square brackets are interval tested, in depth below land 
surface, in feet]

Well Name Other Identifier
Transmissivity, in gal-
lons per day per foot

Transmissivity, in feet 
squared per day

Type of test

16S/22E-29Gca2 USGS LCRP-26 570,000 76,200 R
16S/23E-8Ecc USBR CH5 340,000 45,500 D
16S/23E-8Ecc USBR CH5 750,000 100,300 R
16S/23E-22Fdc H. Mitchell 440,000 58,800 R
16S/23E-9Naa M. E. Spencer 300,000 40,100 R
16S/23E-8Ecc USGS LCRP-23 240,000 32,100 R
16S/23E-10Rcc Dover and Webb 420,000 56,100 R
(C-7-22)14bcd USGS LCRP-14 110,000 14,700 R
(C-8-21)19dad F. J. Hartman 230,000 30,700 R
(C-8-21)30cdc F. J. Hartman 1,800,000 240,600 R
(C-8-22)13bdd2 S. Sturges 65,000 8,700 R
(C-8-22)18cbd Powers 610,000 81,600 R
(C-8-22)18ddd Powers 800,000 107,000 R
(C-8-22)19ccc USBR CH702 68,000 9,100 R
(C-8-22)21ddd B. Church 390,000 52,100 R
(C-8-22)22caa B. Church 430,000 57,500 R
(C-8-22)22cda1 B. Church 320,000 42,800 R
(C-8-22)22cda2 B. Church 380,000 50,800 R
(C-8-22)25bad F. J. Hartman 400,000 53,500 R
(C-8-22)26adb S & W 290,000 38,800 R
(C-8-22)28aaa B. Church 350,000 46,800 R
(C-8-22)30cab C. Lord 380,000 50,800 R
(C-8-22)30ddd C. Lord 360,000 48,100 R
(C-8-22)34aaa W. R. Whitman 960,000 128,300 R
(C-9-23)20cdd YCWUA 5 250,000 33,400 D
(C-9-23)29adb Yuma Mesa Fruit Growers 600,000 80,200 D
(C-9-23)30cba2 YCWUA 6 200,000 26,700 D
(C-9-24)13cdd USBR CH3 300,000 40,100 D
(C-9-24)13cdd USBR CH3 300,000 40,100 R
(C-9-24)36aaa McDaniel & Sons, Inc. 160,000 21,400 R
(C-10-23)12aba1 J. F. Nutt 210,000 28,100 D
(C-10-23)12aba1 J. F. Nutt 260,000 34,800 R
(C-10-23)12bda J. F. Nutt 500,000 66,800 R
(C-10-23)15aab J. F. Nutt 270,000 36,100 R
(C-10-23)31bbb1 USGS LCRP-1 280,000 37,400 LA
(C-10-24)12bcc2 YCWUA 8 260,000 34,800 R
(C-10-24)13bbd1 YCWUA 9 540,000 72,200 R
(C-10-25)1bba P. R. Sibley 443,000 59,200 R
(C-10-24)2cda F. Jeffries 460,000 61,500 R
(C-10-24)35cab J. F. Barkley 600,000 80,200 R
(C-11-23)34bbc USGS LCRP-30 1,300,000 173,800 R
(C-11-24)2abd J. F. Nutt 1,100,000 147,100 D and R
(C-11-24)23bcb USGS LCRP 10 740,000 98,900 R
(C-11-25)3dac E. Hughes 730,000 97,600 R
(C-9-23)17abc1 YCWUA 3 230,000 30,700 D
(C-8-22)34add USBR CH750 150,000 20,100 R
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Characteristics of Models

All models were constructed and implemented in the 
same way, with the major differences being the geometry of the 
domain and surface-water features simulated and the transmis-
sivity values tested. Simulations were carried out with the USGS 
model program MODFLOW-2000 (Harbaugh and others, 2000). 
Common characteristics of the models are as follows:

Each model domain represents a major contiguous area of 1. 
saturated alluvium and adjacent saturated older alluvium 
along the lower Colorado River. The lateral boundaries of 
the active model domain were determined by the outermost 
position of (a) the “river aquifer” as mapped by Wilson and 
Owen-Joyce (1994) or (b) the Colorado River alluvium 
upstream and downstream boundaries of each model where 
no adjacent river aquifer was mapped. The areas modeled 
are shown in figure 1. Coordinates for perimeters of the 
active model domains were prepared in the coordinate 
system defined by Universal Transverse Mercator Zone 
11, 1927 North American Datum. In some areas, the model 
perimeters were smoothed to remove unnecessary details in 
the river aquifer boundaries.

Units of length in the models are feet. As discussed in fol-2. 
lowing sections, however, some computations used coordi-
nates in meters to construct model data sets. Units of time in 
the models are days.

Model grids were oriented with rows in an east-west direction 
and columns in a north-south direction. The origin of each 
model is the northwest corner of the domain, so that model 
rows increment in a southerly direction and model columns 
increment in an easterly direction (fig. 4). The lateral grid 
spacing was 0.25 mile (402.3 m) along rows and columns. 

The number of rows in each model, rowN , was computed as 

         

max min( ) 0.49999row
Y YN INT − = + ∆  , 

where 
 
INT  is a function that converts a real number to an integer      
by truncating digits to the right of the decimal place, 
 

maxY is the maximum of all UTM easting coordinates (in 
meters) along the model perimeter, 
 

minY is the minimum of all UTM easting coordinates (in 
meters) along the model perimeter, and 
 
∆ is the grid spacing (402.3 m). 
 
Similarly, the number of columns in each model, colN , was 
computed as 
 
 
                         , 
where 
 

maxX is the maximum of all UTM northing coordinates (in 
meters) along the model perimeter, 
 

minX is the minimum of all UTM northing coordinates (in 
meters) along the model perimeter. 
 
The active part of the model grid was determined in a two-
step process using the model perimeter polygon and poly-
gons denoting areas of no flow within the model perimeter 
(fig. 4). Areas of no flow can occur where low permeability 
rocks are surrounded by the river aquifer. For the first step, 

Well Name Other Identifier
Transmissivity, in gal-
lons per day per foot

Transmissivity, in feet 
squared per day

Type of test

(C-8-22)35caa1 USBR CH704 340,000 45,500 R [435-570]
(C-8-22)35caa1 USBR CH704 1,100,000 147,100 R [99-170]
(C-8-22)35caa2 USBR CH751 190,000 25,400 R
(C-8-22)35cca Az. Western College 230,000 30,700 R
(C-8-22)35cad USBR CH752 200,000 26,700 R
(C-8-23)25acb Gunther and Shirley 260,000 34,800 R
(C-8-23)25dab Gunther and Shirley 300,000 40,100 R
(C-8-23)26bac G. Ogram 180,000 24,100 R
(C-8-23)27ada USBR CH701 330,000 44,100 D
(C-8-23)27ada USBR CH701 230,000 30,700 R
(C-8-23)27ddd1 Carter 120,000 16,000 R
(C-8-24)22ccd McLaren Produce Co. 300,000 40,100 D

Table 2. Transmissivity values below Laguna Dam used for statistical analysis; all transmissivity values are from Olmstead and others 
(1973, table 7)—Continued. 
[Type of test: D, drawdown; R, recovery; LA, leaky artesian analysis with observation wells; numbers in square brackets are interval tested, in depth below land 
surface, in feet]

 



8  Use of Superposition Models to Simulate Possible Depletion of Colorado River Water by Ground-Water Withdrawal

Figure 3. Cumulative distribution functions for best-fit log-normal distributions of transmissivity along the Lower Colorado 
River. A, Distribution function for data north of the Yuma area. B, Distribution function for data in the Yuma area.
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Figure 4. Model grid and features of the Lake Mohave ground-water superposition model.
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Table 3. Characteristics of superposition models constructed for parts of the flood plain and river aquifer adjacent to the lower Colorado River. 
[Transmissivity values run: Yes, depletion analysis was completed for value; No, depletion analysis was not completed for value.]

Model name

UTM Easting 
of west 

edge of grid, 
meters1

UTM North-
ing of north 

edge of grid, 
meters1

Number 
of model 

rows

Number of 
model 

columns

Number 
of active 

model 
cells

Transmissivity values run, feet squared per day 
(gallons per day per foot)

980
(7,300)

6,300
(47,000)

15,500
(116,000)

26,200
(196,000)

45,900
(343,000)

Detrital-Virgin 719593.75 4116963.00 396 148 21,025 Yes Yes No Yes No
Lake Mohave 702348.12 3958695.50 146 64 4,103 No Yes No Yes No
Mohave Valley 706260.69 3897829.00 160 139 8,976 No Yes No Yes No
Parker-Palo 

Verde-Cibola 636450.00 3789000.00 296 388 40,292 No Yes No Yes No

Laguna Dam 730897.38 3672455.25 103 145 6,302 No Yes No Yes No
Yuma 640414.62 3691950.25 374 340 59,6452 No Yes Yes Yes Yes

1Coordinates are UTM Zone 11, North American Datum of 1927. 
2For the model in the Yuma area, depletion was not calculated for active model cells in Mexico and areas in USA west of the area of the accounting surface 

published by Owen-Joyce and others (2000). A total of 16,147 simulations were made for each of four transmissivity values.

all cells that were more than 50 percent within the model 
perimeter were denoted as active, and all cells that were 50 
percent or less within the model perimeter were denoted as 
inactive. Second, all cells that were more than 50 percent 
within any area of no flow were denoted as inactive.

Each model consists of one layer of cells with a bottom 3. 
elevation of –500 ft and an initial head elevation of 0 ft for 
each active cell (fig. 5). This results in a uniform starting 
saturated thickness of 500 ft. The top elevation of the model 
was set at a uniform elevation of 10 ft.

Connected surface-water features were simulated using the 4. 
River Package of MODFLOW-2000. For all models, river 
stages were set to an elevation of zero, thereby allowing 
computation of change in flow to or from surface-water 
features that result from change in head in connected cells. 
In the River Package, the degree of connection between 
the surface water and a connected cell is controlled by the 
riverbed conductance term, rivC , which is defined as 
 
                      /riv rb rbC K A b= , 
where 
 

rbK  is the vertical hydraulic conductivity of the riverbed, 
  
A  is the area of the river in the cell, and 

  
rbb  is the thickness of the riverbed. 

 
Large riverbed conductance values were specified so that 
simulated surface-water features are hydraulically well con-
nected to underlying model cells. This approach approxi-
mates a specified-head boundary at the location of surface-
water feature. For the Parker-Palo Verde-Cibola model the 
River Package data set was constructed using the program 
RIVGRID (Leake and Claar, 1999), using an approxi-

mate river centerline, an assumed river width of 100 ft, an 
assumed rbK of 50 ft/day, and an assumed rbb  of 5 ft. The 
area, A , used to compute the riverbed conductance, rivC  
is computed by program RIVGRID as the product of the 
length of the river traversed in a cell by the centerline and 
the assumed river width. The average value of rivC  for the 
Parker-Palo Verde-Cibola model was 2.3×105 ft2/day. For 
all other models A  was computed as the area of intersec-
tion of a polygon representing the Colorado River and (or) 
reservoirs (fig. 4) and the model cell. The quantity  was set 
at 0.929 day-1, therefore the maximum conductance (for the 
case of a cell entirely within the river/reservoir polygon) is 
about 1.62×106 ft2/day. The average riverbed conductance 
for the Mohave Valley model is 7.3×105 ft2/day. For the 
Lake Mohave model (fig. 4) the average riverbed conduc-
tance was 1.3×106 ft2/day reflecting a wider surface-water 
body than is present in the Mohave Valley model.

The sensitivity of model results to the value of riverbed 
conductance was tested using the Lake Mohave model. Deple-
tion curves were computed by the model for withdrawal at two 
locations. For the first point, labeled “A” on figure 4, deple-
tion can occur when effects of withdrawal propagate about 4.5 
miles northeastward to the edge of Lake Mohave. For the sec-
ond point, labeled “B” on figure 4, depletion can occur when 
effects of withdrawal propagate about 14 miles along a side 
valley and then southwestward to the edge of Lake Mohave. 
Because of the shorter distance to surface water, depletion 
occurs more rapidly from withdrawals at point A than at point 
B. For each location, depletion curves were computed using 
a multiplication factor, F, of 1×10-1, 1×10-2, and 1×10-3, for 
all riverbed conductance values (fig. 6). Curves shown for 
F=1×100 use the original riverbed conductance values. As can 
be seen on figure 6, differences in depletion calculated with 
the original riverbed conductance values and with values that 
are three orders of magnitude lower are relatively minor, with 
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the greatest differences occurring at location A. This observa-
tion along with the fact that thick, low-permeability riverbed 
sediments are not known to occur along the lower Colorado 
River leads to the conclusion that the strategy of using rela-
tively high riverbed conductance values is reasonable.

A summary of characteristics of the six superposition 
models is given in table 3. The Laguna and Yuma models 
included parts of the model domain that extend beyond the 
mapped area of the river aquifer (fig. 1). The Laguna model 
was extended to the east because of uncertainty in where the 
river aquifer ends. An extension of the model domain such as 
this tends to slow down the progression of simulated depletion 
through time in comparison to that simulated in a model that 
includes a no-flow boundary. The Yuma model was extended 
southward and westward into the delta region of the Colorado 
River to reflect the continuous nature of the ground-water flow 
system thought to exist there.

Estimates of depletion in all models were made using the 
low and average transmissivity values from data upstream of 
Laguna Dam, 6,300 ft2/day (47,000 gal/day/ft) and 26,200 ft2/
day (196,000 gal/day/ft), respectively. In addition, for the Yuma 
area, estimates of transmissivity were made using low and 
average transmissivity values derived from data downstream 
from Laguna Dam. Finally, for the Detrital-Virgin model, 
depletion also was calculated using a lower estimate of trans-
missivity, 980 ft2/day (7,300 gal/day/ft). This was done because 
there were no published estimates of transmissivity in this area 
in the sources of data used in the statistical analyses. Transmis-
sivity from one location in the Virgin Valley was inferred to 
be about 980 ft2/day (7,300 gal/day/ft) from hydraulic conduc-
tivity and thickness estimates in a report by Las Vegas Water 
District (1992). 

Procedure for Computing and Displaying Areal 
Representation of Depletion

A computer program was written to run each superposi-
tion model repeatedly to calculate depletion at 100 years for 
every active model grid cell. The program required that most 
MODFLOW data sets for the model be constructed prior to 
running the program. Steps taken by the program to calculate 
depletion for each active cell in the model grid are as follows:

Calculate the northing and easting of the cell center in Uni-1. 
versal Transverse Mercator Zone 11 coordinates.

Construct a MODFLOW-2000 Well Package data set for a 2. 
single well at the row and column location of the cell using 
the flow rate of –1.431×105 ft3/day (a withdrawal of 1,200 
acre-ft/year). The final results are independent of this rate 
because the system responds linearly to withdrawal (Leake 
and Reeves, 2008). The superposition model only considers 
the effects of the well being added, not effects of other wells 
that may exist in the real system.

Run the model.3. 

Open the listing file from the model run and read the 4. 
induced flow from the river in the volumetric mass balance 
for a simulation time of 100 years.

Divide the induced flow rate by the withdrawal rate to 5. 
get the fraction of withdrawal rate that is accounted for as 
depletion at 100 years.

Save information including row and column location, north-6. 
ing and easting, and depletion fraction at 100 years. 

When these steps are completed for each active cell in 
the model grid, the program is terminated. The northing and 
easting coordinates and depletion values then can be mapped 
using a geographic information system or other contouring 
program. The grid spacing of 0.25 mile results in a dense net-
work of points for mapping over the area of the river aquifer.

Note that the method as implemented requires one 
simulation (model run) for each cell in the model grid for 
each transmissivity value used. For example, the Parker-Palo 
Verde model has 40,292 active model cells, requiring a total 
of 80,584 simulations for two uniform values of transmissiv-
ity. For the Yuma model, the active area is much larger than 
the area over which Owen-Joyce and others (2000) mapped 
the accounting surface. The mapped depletion, however, was 
restricted to a subarea of the model domain, requiring a total 
of 64,588 simulations for four uniform transmissivity values.

Results
Distributions of simulated depletion in the six model 

areas are shown on maps in figures 7–17. The maps show the 
simulated depletion at 100 years for one pumping well, as a 
function of the position of that well. Values shown are deple-
tion as a percentage of the well pumping rate, expressed as 
colored areas in ten intervals ranging from 0–10 to 90–100. 
Supplemental contours showing 1 percent and 5 percent deple-
tion are shown where values in this range were computed. 
Depletion percentages are not shown for areas within the 
flood plain of the Colorado River or areas underlying surface 
water. In the following discussions of results for the six areas 
modeled, particular focus is on any areas where depletion is 5 
percent or less in 100 years. 

Detrital-Virgin Area

This area includes Detrital Valley south of Lake Mead and 
the much larger Virgin Valley north of Lake Mead. With the 
lowest transmissivity value tested, 980 ft2/day (7,300 gal/d/ft), 
the 5 percent depletion contour is within 5–10 miles of Lake 
Mead (fig. 7). Results for the two higher transmissivity values 
shown in figures 8 and 9, increased depletion can be seen by 
the increasing distance of the 5 percent contour from Lake 
Mead. For the highest value tested, 26,200 ft2/day (196,000 
gal/d/ft), depletion is greater than 5 percent in all of Detrital 
Valley and in all but the uppermost part of Virgin Valley.
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Lake Mohave Area

This area was the smallest among the six areas modeled. 
For the two transmissivity values tested, 6,300 and 26,200 ft2/
day (47,000 and 196,000 gal/d/ft), no areas of depletion less 
than 10 percent were simulated (fig. 10). The lowest values of 
depletion are in a narrow north-south trending side valley on 
the east side of the river.

Mohave Valley Area

In this area, depletion simulated using the higher trans-
missivity value tested, 26,200 ft2/day (196,000 gal/d/ft), is 
higher than 50 percent over the entire model domain (fig. 11). 
Using the lower value tested, 6,300 ft2/day (47,000 gal/d/ft), a 
small area of depletion less than 5 percent was simulated in a 
side valley in the southeast part of the model domain.

Parker-Palo Verde-Cibola Area

This area is the largest river-aquifer area modeled and is 
the most complex in terms of horizontal geometry. Side val-
leys in the river aquifer include Chuckwalla and Smoketree 
Valleys in the west-central and southwest part of the area, and 
Cactus and La Posa Plains in the northeast part of the area. 
Using the lower transmissivity value tested, 6,300 ft2/day 
(47,000 gal/d/ft), 5 and 1 percent simulated depletion contours 
can be seen in each of these side valleys (fig. 12). With the 
higher transmissivity value tested, 26,200 ft2/day (196,000 
gal/d/ft), only Chuckwalla Valley has simulated depletion 
values less than 10 percent (fig. 13).

Laguna Dam Area

This area includes the part of the river aquifer that is 
immediately above Laguna Dam. Much of this part of the 
river aquifer is east of the river. Using the lower transmissivity 
value tested, 6,300 ft2/day (47,000 gal/d/ft), 5 and 1 percent 
simulated depletion contours can be seen around Castle Dome 
Plain (fig. 14). With the higher transmissivity value tested, 
26,200 ft2/day (196,000 gal/d/ft), simulated depletion is 
greater than 10 percent for the entire area (fig. 15).

Yuma Area

For the Yuma area, depletion was simulated for the area 
of the accounting surface mapped by Owen-Joyce and oth-
ers (2000). For the two transmissivity values used in models 
upstream from Laguna Dam, 6,300 and 26,200 ft2/day (47,000 
and 196,000 gal/d/ft), areas of depletion of 5 percent or less 
were simulated with the lower of these values (fig. 14), but no 
areas of depletion of 10 percent or less were simulated with 
the higher value (fig. 15). Depletion also was simulated using 
two additional transmissivity values, 15,500 and 45,900 ft2/day 

(116,000 and 343,000 gal/d/ft). For the lower transmissivity, 
a small area of depletion less than 10 percent was simulated on 
the west side of the mapped area in southeastern Imperial Valley 
(fig. 16). For the higher transmissivity, simulated depletion is 
greater than 20 percent throughout the model domain (fig. 17).

Summary and Conclusions
The Accounting-Surface Method was developed (Wilson 

and Owen-Joyce, 1994; Owen-Joyce and others, 2000; Wiele 
and others, 2008) to provide water managers with a possible 
tool help evaluate the need for entitlements by wells pump-
ing in the river aquifer. To further understand temporal effects 
of pumping wells on the Colorado River, Reclamation set up 
a technical team to assess timing over which wells at great 
distance would deplete water in the Colorado River. Pos-
sible methods for calculating depletion of surface water from 
ground-water pumping range from simple analytical solutions 
to complex numerical ground-water flow models. For this 
study, an intermediate approach was taken, using numerical 
superposition models with complex horizontal geometry and 
simple vertical geometry. Six areas of the river aquifer along 
the lower Colorado River were modeled. Published transmis-
sivity values were analyzed to determine low and average 
transmissivity values. A value of 0.2 was used for the aquifer 
specific yield (or storage coefficient) in all models. All model 
grids consisted of one layer of cells, with model rows and 
columns oriented in east-west and north-south directions, 
respectively.

Distribution of depletion was simulated using MOD-
FLOW-2000. One simulation was done for each active cell in 
the model grid for each transmissivity value tested. Maps were 
prepared to show the simulated depletion at 100 years for one 
pumping well, as a function of the position of that well.

Areas in which simulated depletion at 100 years was less 
than or equal to 5 percent generally occurred only in side val-
leys with the lower or more conservative transmissivity values 
tested. For the smaller areas modeled, and for the river aquifer 
within the river valley adjacent to the flood plain in all models, 
simulated depletion at 100 years was generally in the range of 
10–100 percent of the pumping rate.
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Figure 7. Percent depletion in 100 years by pumping wells within the Virgin-Detrital model area of the Colorado 
River aquifer assuming a transmissivity rate of 980 feet squared per day (7,300 gallons per day per foot).
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Figure 7.  Percent depletion in 100 years by pumping wells within the Virgin-Detrital model
area of the Colorado River aquifer assuming a transmissivity value of 980 feet squared per day (7,300 gallons
per day per foot).
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Figure 8. Percent depletion in 100 years by pumping wells within the Virgin-Detrital model area of the Colorado 
River aquifer assuming a transmissivity rate of 6,300 feet squared per day (47,000 gallons per day per foot).
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Figure 8.  Percent depletion in 100 years by pumping wells within the Virgin-Detrital model
area of the Colorado River aquifer assuming a transmissivity value of 6,300 feet squared per day (47,000 gallons
per day per foot).
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Figure 9. Percent depletion in 100 years by pumping wells within the Virgin-Detrital model area of the Colorado 
River aquifer assuming a transmissivity rate of 26,200 feet squared per day (196,000 gallons per day per foot).
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Figure 9.  Percent depletion in 100 years by pumping wells within the Virgin-Detrital model
area of the Colorado River aquifer assuming a transmissivity value of 26,200 feet squared per day
(196,000 gallons per day per foot).
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Figure 10. Percent depletion in 100 years by pumping wells within the Lake Mohave model area of the 
Colorado River aquifer assuming a transmissivity rate of 6,300 and 26,200 feet squared per day (47,000 and 
196,000 gallons per day per foot).
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Figure 10.  Percent depletion in 100 years by pumping wells within the Lake Mohave
model area of the Colorado River aquifer assuming transmissivity values of 6,300 and 26,200 feet squared per
day (47,000and 196,000 gallons per day per foot).
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Figure 11. Percent depletion in 100 years by pumping wells within the Mohave Valley model area of the Colorado 
River aquifer assuming a transmissivity rate of 6,300 and 26,200 feet squared per day (47,000 and 196,000 gallons 
per day per foot).
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Figure 11.  Percent depletion in 100 years by pumping wells within the Virgin-Detrital model
area of the Colorado River aquifer assuming transmissivity values of 6,300 and 26,200 feet squared per day
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Figure 12.  Percent depletion in 100 years by pumping wells within the Parker-Palo Verde-Cibola model
area of the Colorado River aquifer assuming a transmissivity value of 6,300 feet squared per day (47,000 gallons per day per foot).
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Figure 12. Percent depletion in 100 years by pumping wells within the Parker-Palo Verde-Cibola model area of the Colorado River aquifer 
assuming a transmissivity rate of 6,300 feet squared per day (47,000 gallons per day per foot).
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Figure 13.  Percent depletion in 100 years by pumping wells within the Parker-Palo Verde-Cibola model
area of the Colorado River aquifer assuming a transmissivity value of 26,200 feet squared per day (196,000 gallons per day per foot).
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Figure 14. Percent depletion in 100 years by pumping wells within the Yuma and Laguna model areas of the 
Colorado River aquifer assuming a transmissivity rate of 6,300 feet squared per day (47,000 gallons per day per foot).
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Figure 14.  Percent depletion in 100 years by pumping wells within the Yuma and Laguna model areas of
the Colorado River aquifer assuming a transmissivity value of 6,300 feet squared per day (47,000 gallons per day per foot).
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Figure 15. Percent depletion in 100 years by pumping wells within the Yuma and Laguna model areas of the Colorado River 
aquifer assuming a transmissivity rate of 26,200 feet squared per day (196,000 gallons per day per foot).
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Figure 15.  Percent depletion in 100 years by pumping wells within the Yuma and Laguna model areas of
the Colorado River aquifer assuming a transmissivity value of 26,200 feet squared per day (196,000 gallons per day per foot).
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Figure 16. Percent depletion in 100 years by pumping wells within the Yuma model area of the Colorado River aquifer 
assuming a transmissivity rate of 15,500 feet squared per day (116,000 gallons per day per foot).
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Figure 16.  Percent depletion in 100 years by pumping wells within the Yuma model area of the Colorado River aquifer assuming
a transmissivity value of 15,500 feet squared per day (116,000 gallons per day per foot).
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Figure 17. Percent depletion in 100 years by pumping wells within the Yuma model area of the Colorado River aquifer 
assuming a transmissivity rate of 45,900 feet squared per day (343,000 gallons per day per foot).
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Figure 17.  Percent depletion in 100 years by pumping wells within the Yuma model area of the Colorado River aquifer assuming
a transmissivity value of 45,900 feet squared per day (343,000 gallons per day per foot).
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