FORM B: CALCULATION OF INDUSTRIAL WASTEWATER DISCHARGE FLOW RATE

COMPANY NAME: CITY OF VERNON

Calculation of flow rate is based on:
(Choose one)
----- Adjusted metered water supply (Company must complete the calculations below)
----- Direct measurement through a Districts' approved effluent flow measurement system *
----- Estimate for a facility not yet in operation **

ADJUSTED METERED WATER SUPPLY CALCULATIONS (Round all figures to two decimals)

I Incoming Water

 Use most recent 12 consecutive months and attach copies of water bills.
 \[1.80 \text{ MGY} \]

2. Reclaim Water Supply from Company Well. (forecast estimate).
 Attach meter or water master data for most recent 12 consecutive months.
 \[464.53 \text{ MGY} \]

3. Water Received in Raw Materials, or by other means.
 Explain in attachments.
 \[0.00 \text{ MGY} \]

4. Rainwater/Groundwater Discharged to the Sewerage System.
 Explain in attachments.
 \[0.00 \text{ MGY} \]

5. Total Incoming Water.
 (Add lines 1 to 4)
 \[466.33 \text{ MGY} \]

II Water Losses

6. Wastewater Discharged to Stormwater Drainage System
 Explain in attachments. (NPDES Permit No.____________)
 \[0.00 \text{ MGY} \]

7. Water Lost Through Evaporation and Irrigation.
 (add lines a + b + c + d on back the of this form)
 \[336.39 \text{ MGY} \]

8. Water Lost in Products.
 Explain in attachments.
 \[0.0 \text{ MGY} \]

9. Sanitary Flow Deduction
 (from line "e" on the back of this form)
 \[0.72 \text{ MGY} \]

10. Total Water Losses
 (add lines 6 to 9)
 \[337.11 \text{ MGY} \]

III Industrial Wastewater Discharged

11. Calculated Industrial Wastewater Discharged to the public sewer
 (subtract line 10 from line 5)
 \[129.22 \text{ MGY} \]

12. Any Proposed increase (+) or decrease (-) in industrial waste-water discharge to the public sewer? (explain in attachments)
 \[0.00 \text{ MGY} \]

13. Total proposed yearly industrial wastewater discharge
 (add lines 11 and 12)
 \[129.22 \text{ MGY} \]

14. Average industrial waste water flow
 (use line 13 to calculate below)
 \[\text{Million Gallons per Year} \times \frac{1,000,000}{\text{Number of Discharge Days per Year}} = \text{Gallons per Day} \]
 \[
 \begin{array}{c|c|c|c}
 \text{Million Gallons per Year} & \times & 1,000,000 & + \\
 \hline
 129.22 & \times & 1,000,000 & = \\
 \hline
 & & 365 & = \text{354,000} \text{gpd} \end{array}
 \]

\[\text{300,000 gallons per day (gpd) will be proposed for the permit application and connection fee. See Section 3.b.3 of the text for an explanation of this basis for calculation.} \]
This is the average daily flow rate that must be used on the application for industrial wastewater discharge. (It may be rounded to two significant figures.)

Note: The applicant must also complete the calculations on the back of this page.

* If your company currently has an approved effluent wastewater flow measurement system, please submit effluent totalizer readings for the last twelve months. Your company does not have to complete the rest of this form.

** The company must submit detailed information that substantiates how the flow rate was estimated.
WATER LOSSES

a. COOLING TOWER LOSSES

<table>
<thead>
<tr>
<th>Tonnage</th>
<th>X</th>
<th>Hours of Operation per Year</th>
<th>X</th>
<th>Load(^1)</th>
<th>X</th>
<th>1.38(^2)</th>
<th>÷ 1,000,000</th>
<th>= Mil.Gal. per Year</th>
</tr>
</thead>
<tbody>
<tr>
<td>35,000</td>
<td>X</td>
<td>8,760</td>
<td>X</td>
<td>0.79</td>
<td>X</td>
<td>1.38</td>
<td>÷ 1,000,000</td>
<td>= 334.26</td>
</tr>
<tr>
<td>5000</td>
<td>X</td>
<td>200</td>
<td>X</td>
<td>0.79</td>
<td>X</td>
<td>1.38</td>
<td>÷ 1,000,000</td>
<td>= 1.09</td>
</tr>
</tbody>
</table>

\(^1\) Load = 0.5 to 0.8
\(^2\) 1.38 = Gallons evaporated per hour per ton

b. BOILER LOSSES

<table>
<thead>
<tr>
<th>Horsepower</th>
<th>X</th>
<th>Hours of Operation per Year</th>
<th>X</th>
<th>Load(^3)</th>
<th>X</th>
<th>%Evaporation(^4)</th>
<th>X</th>
<th>3.82(^5)</th>
<th>÷ 1,000,000</th>
<th>= Mil.Gal. per Year</th>
</tr>
</thead>
<tbody>
<tr>
<td>175</td>
<td>X</td>
<td>8,760</td>
<td>X</td>
<td>0.77</td>
<td>X</td>
<td>21%</td>
<td>X</td>
<td>3.82</td>
<td>÷ 1,000,000</td>
<td>= 0.95</td>
</tr>
<tr>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>3.82</td>
<td>÷ 1,000,000</td>
<td>=</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

\(^3\) Load = 0.50 to 0.80
\(^4\) %Evaporation = (100 - % condensate returned)/100
\(^5\) 3.82 = Gallons evaporated per hour per horsepower

c. OTHER EVAPORATIVE LOSSES

(explain in attachments - See Section 3.b.2)

Million Gallons per Year

<table>
<thead>
<tr>
<th>Million Gallons per Year</th>
<th>3.94</th>
</tr>
</thead>
</table>

d. IRRIGATION LOSSES

<table>
<thead>
<tr>
<th>Square Feet of Land Irrigated</th>
<th>X</th>
<th>18.7(^6)</th>
<th>÷ 1,000,000</th>
<th>= Mil.Gal. per Year</th>
</tr>
</thead>
<tbody>
<tr>
<td>5,000</td>
<td>X</td>
<td>18.7</td>
<td>÷ 1,000,000</td>
<td>= 0.09</td>
</tr>
</tbody>
</table>

\(^6\) 18.7 = Gallons irrigated per square foot per year

e. SANITARY FLOW DEDUCTION

<table>
<thead>
<tr>
<th>No. Employees</th>
<th>X</th>
<th>Work Days per Year</th>
<th>X</th>
<th>Gallons per Employee per Day</th>
<th>÷ 1,000,000</th>
<th>= Mil.Gal. per Year</th>
</tr>
</thead>
<tbody>
<tr>
<td>32</td>
<td>X</td>
<td>365</td>
<td>X</td>
<td>50</td>
<td>÷ 1,000,000</td>
<td>= 0.58</td>
</tr>
<tr>
<td>11</td>
<td>X</td>
<td>260</td>
<td>X</td>
<td>50</td>
<td>÷ 1,000,000</td>
<td>= 0.14</td>
</tr>
</tbody>
</table>

= 0.72

e.

INCOMING WATER METERS

Please list all the accounts (or other identification) for all the meters that measure the water supplied to the facility.

<table>
<thead>
<tr>
<th>Meter #</th>
<th>Location</th>
<th>Account #</th>
</tr>
</thead>
<tbody>
<tr>
<td>Wtr1</td>
<td>2715 E. 50th St.</td>
<td>081-2194-01-1</td>
</tr>
<tr>
<td>Reclaim Water</td>
<td>4950 Seville St.</td>
<td>To be established</td>
</tr>
</tbody>
</table>

Abbreviations and Conversion Factors

MGY = million gallons per year
1 cubic foot = 7.48 gallons
1 acre foot = 325,900 gallons
1 acre = 43,560 square feet
1 CCF = 748 gallons