2008 Title 24
Nonresidential CASE
Insulation Proposal

PG&E Codes & Standards Program
CEC Staff Workshop May 18, 2006
Overview of proposal

- Update the 2008 envelope criteria using Life-Cycle Cost Methodology
- Move to a U-factor approach
- Create a separate category for retail
- Climate zone groupings
Changes from Previous Insulation CASE Report

- Updated 2008 TDV Curves with updated present value
- Updated RS Means Cost Values
 - Standing seam roofs have an added second metal deck costs for rigid insulation
 - Screw down roof cost of $1.74 and standing seam roof cost of $2.82.
 - Cost for R-19 cavity insulation from $0.48 to $0.46. The regression analysis for extrapolated values recomputed.
- Construction Assemblies
 - Mass walls from exterior insulation to interior insulation
 - Wood-framed and other roofs use 24 in. O.C. with insulation underneath rather than 16 in. O.C. attic insulation
- Floor insulation levels now included
Description of simulation models

- **Geometry**
 - A 5-zone model
 - Four exterior zones (100 ft X 15 ft)
 - One interior zone (100 ft X 100 ft) Space height 13 ft

- **Fenestration:** The fenestration is set to 30% for daytime and 24-hour occupancy and 10% for retail occupancy.

- **HVAC systems**
 - One packaged single zone (PSZ) system for each zone. Ducted return.
 - Cooling EER 9.5 (COOLING-EIR = 0.2846), fan power at 0.35 W/cfm
 - Integrated air-side economizer
 - Outside air 0.15 cfm/ft²
 - Gas heating
Life-cycle Cost Analysis

- TDV = C0 + C1 \times U\text{-factor}
- LCC = \text{Initial}_\text{Cost (incremental)} + PV_{TDV} \times TDV

- Cost data from R.S. Means 2005
- 30\% operating and profit markup
- 1.088 California adjustment factor
- Regression analysis for missing values
Roofs – Wood-framed walls LCC for CZ3

<table>
<thead>
<tr>
<th>Cavity R</th>
<th>Sheathing R</th>
<th>U-value</th>
<th>Incremental Cost</th>
<th>TDV total</th>
<th>TDV cost</th>
<th>LCC</th>
<th>Rank</th>
</tr>
</thead>
<tbody>
<tr>
<td>R-15</td>
<td>None</td>
<td>0.095</td>
<td>0.764377</td>
<td>189.0305</td>
<td>27.59316</td>
<td>28.35754</td>
<td>1</td>
</tr>
<tr>
<td>R-11</td>
<td>None</td>
<td>0.11</td>
<td>0.622825</td>
<td>190.2289</td>
<td>27.76809</td>
<td>28.39091</td>
<td>2</td>
</tr>
<tr>
<td>R-13</td>
<td>None</td>
<td>0.102</td>
<td>0.721911</td>
<td>189.5897</td>
<td>27.67479</td>
<td>28.39671</td>
<td>3</td>
</tr>
<tr>
<td>None</td>
<td>R-8</td>
<td>0.091</td>
<td>1.005014</td>
<td>188.711</td>
<td>27.54652</td>
<td>28.55153</td>
<td>4</td>
</tr>
<tr>
<td>None</td>
<td>R-10</td>
<td>0.077</td>
<td>1.18903</td>
<td>187.5925</td>
<td>27.38325</td>
<td>28.57228</td>
<td>5</td>
</tr>
<tr>
<td>None</td>
<td>R-7</td>
<td>0.1</td>
<td>0.934238</td>
<td>189.43</td>
<td>27.65147</td>
<td>28.58571</td>
<td>6</td>
</tr>
<tr>
<td>None</td>
<td>R-14</td>
<td>0.059</td>
<td>1.443823</td>
<td>186.1545</td>
<td>27.17334</td>
<td>28.61716</td>
<td>7</td>
</tr>
<tr>
<td>R-21</td>
<td>None</td>
<td>0.069</td>
<td>1.343321</td>
<td>186.9534</td>
<td>27.28996</td>
<td>28.63328</td>
<td>8</td>
</tr>
<tr>
<td>None</td>
<td>R-6</td>
<td>0.111</td>
<td>0.877618</td>
<td>190.3088</td>
<td>27.77975</td>
<td>28.65737</td>
<td>9</td>
</tr>
<tr>
<td>R-11</td>
<td>R-4</td>
<td>0.073</td>
<td>1.358892</td>
<td>187.2729</td>
<td>27.33661</td>
<td>28.6955</td>
<td>10</td>
</tr>
</tbody>
</table>
Roofs – Wood-framed walls LCC for CZ3
Figure 1 – Metal Building Roof (Daytime)

Statewide Energy Impacts (ft2-yr): TDV=0.222, kWh=0.010, therm=0.000
Metal building roof

Figure 1 – Metal Building Roof (24-hour)
Statewide Energy Impacts (ft²-yr): TDV=3.761, kWh=0.112, therm=0.016
Metal building roof

Figure 1 – Metal Building Roof Coefficients (cool roofs)
Metal building roof

Figure 1 – Daytime Roof Insulation Cool Roof Sensitivity Analysis for Metal Buildings
Metal building roof

Figure 1 – Economizer Insulation Sensitivity Analysis for Metal Building Roof
Wood-framed and other roofs

Figure 1 – Wood-framed and Other Roof (Daytime)
Statewide Energy Impacts (ft²-yr): TDV=0.838, kWh=0.027, therm=0.002
Wood-framed and other roofs

Figure 1 – Wood-framed and Other Roof (24-hour) Statewide Energy Impacts (ft²-yr): TDV=5.802, kWh=0.168, therm=0.024
Wood-framed and other roofs

Figure 1 – Wood-framed and Other Roof Coefficients
Metal building wall

Figure 1 – Metal Building Wall (Daytime)
Statewide Energy Impacts (ft²-yr): TDV=5.554, kWh=0.262, therm=0.013
Metal building wall

Figure 1 – Metal Building Wall (24-hour)
Statewide Energy Impacts (ft²-yr): TDV=11.138, kWh=0.586, therm=0.040
Metal-framed wall

Figure 1 – Metal-framed Wall (Daytime)
Statewide Energy Impacts (ft\(^2\)-yr): TDV=17.505, kWh=0.821, therm=0.044
Metal-framed wall

Figure 1 – Metal-framed Wall (24-hour)
Statewide Energy Impacts (ft²-yr): TDV=28.985, kWh=1.524, therm=0.103
Mass (7.0 ≤ HC < 15.0) wall

Figure 1 – Mass (7.0 ≤ HC < 15.0) Wall (Daytime)
Statewide Energy Impacts (ft² - yr): TDV=4.311, kWh=0.066, therm=0.016
Mass (7.0 ≤ HC < 15.0) wall

Figure 1 – Mass (7.0 ≤ HC < 15.0) Wall (Retail)

Statewide Energy Impacts (ft²·yr): TDV=12.603, kWh=0.507, therm=0.040
Mass (7.0≤HC<15.0) wall

Figure 1 – Mass (7.0≤HC<15.0) Wall (24-hour)
Statewide Energy Impacts (ft²·yr): TDV=23.344, kWh=0.500, therm=0.118
Mass (15.0≤HC) Wall

Figure 1 – Mass (15.0≤HC) Wall (Daytime)
Statewide Energy Impacts (ft²·yr): TDV=5.286, kWh=0.062, therm=0.022
Figure 1 – Mass (15.0≤HC) Wall (Retail)
Statewide Energy Impacts (ft²-yr): TDV=10.520, kWh=0.365, therm=0.038
Mass (15.0≤HC) Wall

Figure 1 – Mass (15.0≤HC) Wall (24-hour)
Statewide Energy Impacts (ft²·yr): TDV=8.626, kWh=0.198, therm=0.038
Wood-framed and Other Wall

Figure 1 – Wood-framed and Other Wall (Daytime)
Statewide Energy Impacts (ft²·yr): TDV=3.428, kWh=0.159, therm=0.006
Wood-framed and Other Wall

Figure 1 – Wood-framed and Other Wall (24-hour)
Statewide Energy Impacts (\text{ft}^2\text{-yr}): TDV=7.644, kWh=0.394, therm=0.027
Mass Floor

Figure 1 – Mass Floor (Daytime)
Statewide Energy Impacts (ft²·yr): TDV=0.407, kWh=0.260, therm=-0.029
Figure 1 – Mass Floor (Retail)
Statewide Energy Impacts (ft^2·yr): TDV=6.200, kWh=0.472, therm=-0.026
Mass Floor

Figure 1 – Mass Floor (24-hour)
Statewide Energy Impacts (ft²-yr): TDV=7.655, kWh=-0.010, therm=0.050
Mass Floor

Figure 1 – Mass Floor Coefficients
Other Floor

Figure 1 – Other Floor (Daytime)
Statewide Energy Impacts (ft²·yr): TDV=0.218, kWh=0.036, therm=-0.003
Figure 1 – Other Floor (Retail)
Statewide Energy Impacts (ft²-yr): TDV=2.218, kWh=0.151, therm=-0.012
Figure 1 – Other Floor (24-hour)
Statewide Energy Impacts (ft^2-yr): TDV=5.188, kWh=0.058, therm=0.029
Other Floor

Figure 1 – Other Floor Coefficients
More Information

Acknowledgements

- Sponsored by California Ratepayers through The Pacific Gas and Electric Company Codes & Standards program
 - Steve Blanc, Project Manager SLB4@pge.com

- Project management, Heschong Mahone Group
 - Jon McHugh mchugh@h-m-g.com

- Proposal development, Architectural Energy Corp
 - Charlie Yu cyu@archenergy.com