Clean Energy and Climate Change Response in California: The Intersection of Policy and RD&D

Presented at
Fifth Annual Westcarb Conference
Seattle, WA
November 28, 2007

Martha Krebs, Ph.D.
Deputy Director for R&D
California Energy Commission

California’s Long Path to Clean Energy 1970-2007

• 1967 – California Air Resources Board established
• 1971 – CARB automotive NOx standards
• 1978 – No new nuclear power without permanent storage
• 1977 – Building and Appliance efficiency standards created with updates every three years
• 1982 – IOU rates of return decoupled from volumes; utility efficiency incentive programs established
• 1991 – CARB establishes specifications and properties of reformulated, low emission gasoline.
• 1996 – PUC recommends electricity deregulation plan.
• 1997 – SB 90 deregulates IOUs and creates Public Interest Energy Research (PIER) program.
• 2003 – Renewables Portfolio Standard enacted.
• 2005 – PUC orders $2.2B, 3 year Efficiency procurement for the IOUs.

An Abbreviated Chronology
Where is California’s Energy Used

- Industry: 23.5%
- Residential: 18.1%
- Commercial: 18%
- Transportation: 40.4%

CALIFORNIA ENERGY CONSUMPTION 2003

California – Electricity Overview

- Population: >34 million, 1.1% per year growth
- Multiple Utility Service Territories
- 2004 Electricity Use: 262,000 GWH
- 2004 Peak Demand: 54,500 MW
- Annual growth:
 - Consumption - 1.4%
 - Peak - 1.65%
Per Capita Electricity Sales (not including self-generation) (kWh/person)

Historical California Electric Energy Resources

(Billion Kilowatt-hours)

Ferguson, CEERT, March 2, 2007 before the CPUC
California Responds to Global Warming
2000 - 2007

- In 1988 GHG impacts review mandated
- In 2000, the California Greenhouse Gas Registry was established
- In 2002 AB1493 (Pavley) mandates 30% reduction GHG emissions in new light duty vehicles by 2016
- In 2005, AB 1007 requires plan to replace gasoline use with low carbon alternatives.
- AB 32 – Global Warming Solutions Act of 2006; aggressive goals for 2020
- SB 1368 – GHG Emissions standards for IOUs and POUs
- AB 2021 – Energy Efficiency for POUs
- AB 1007 – Green Building Acquisition Financing for State Facilities
- SB 107 – Accelerated RPS Goals – 20% by 2010
- SB 1 – Renewables Goals for New and Existing Residential and Commercial Structures
- AB 2778 – Self-Generation Incentive Program for Fuel Cells and Wind
- SB 1250 – PIER and Renewables Incentive Programs Reauthorized
- In 2007, Governor mandates development of Low Carbon Fuel Standard.
- AB 118 (Nunez) establishes incentives for Development and Deployment of new technologies for alternative fuels and vehicles

IPCC Fourth Assessment – Mitigation WG3

- In order to stabilize the concentration of GHGs in the atmosphere, emissions would need to peak and decline thereafter. The lower the stabilization level, the more quickly this peak and decline would need to occur. Mitigation efforts over the next two to three decades will have a large impact on opportunities to achieve lower stabilization levels (high agreement, much evidence).

To Maintain 550ppm Requires that Emissions Peak between 2010 and 2030

The World Would Be Committed to Significant Temperature Increases of ~ 3°C
Per Capita Electricity Use Needs to Decline
Even In California

Per Capita Electricity Sales (not including self-generation)
(kWh/person)

Near-Term Technical Challenges and Opportunities in Efficiency and Fuel Displacement

- Transportation
 - Vehicle Efficiency – Cool colors, auxiliary load
 - Batteries
 - Plug-In Hybrid Vehicles
 - Cellulosic ethanol, biodiesel
 - Regional Transit/Goods Movement Systems
- Efficiency – Buildings/Industry/Agriculture
 - Siting/ Design/ Installation/ Commissioning Protocols/ Monitoring and Evaluation
 - Building Envelopes/Fenestration
 - Lighting
 - Appliances
 - Furnaces/Boilers
 - Pumps
 - Back-up / Non-Uninterruptible Power Supplies
 - Combined Heat and Power
 - Integrated Renewables with Efficiency
- Water Efficiency
Meeting California’s 2020 Emissions Goals in the Electricity Sector Will Present Major Technical and Institutional Challenges

Renewable Electricity – The Challenges

- The Renewable Portfolio Standard (33% by 2020) Means ‘Big’ Solar
 - 4,500 MW of Wind from the Tehachapis
 - 2,000 MW of Geothermal from the Imperial Valley
 - New Transmission Lines to Connect the Power to the North and South
 - Repower Existing Wind Resources
 - Large Solar Thermal Installations
 - Resource Prediction – Reliable Day Ahead
 - Variable Resource Firming
 - Storage
 - Variable Resource Integration with Transmission System
- The California Solar Initiative could provide as much as 3,000 MW from photovoltaics, solar hot water and solar thermal technologies
 - Reduce cost of installation
 - Net Metering
 - Interconnection with the Distribution System
- Biomass
 - 4,000 MW technical resource
 - Interconnection with the Distribution System
 - Resource Collection
 - Conversion Systems
Systems Challenges

<table>
<thead>
<tr>
<th>Future System Complexity</th>
</tr>
</thead>
<tbody>
<tr>
<td>- Distributed, Variable Generation Sources</td>
</tr>
<tr>
<td>- Distributed Loads</td>
</tr>
<tr>
<td>- Congestion and Peak Load Management</td>
</tr>
<tr>
<td>- System Controls & Planning</td>
</tr>
<tr>
<td>- Storage</td>
</tr>
<tr>
<td>- Smart Grid Tools</td>
</tr>
<tr>
<td>- Demand Response</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Climate Driven Impacts</th>
</tr>
</thead>
<tbody>
<tr>
<td>- Hydroelectric resources</td>
</tr>
<tr>
<td>- Wind and Biomass Resources</td>
</tr>
<tr>
<td>- Summer Peak Management</td>
</tr>
<tr>
<td>- Water Supply and Use</td>
</tr>
<tr>
<td>- Risk Assessment, Management, Communication</td>
</tr>
<tr>
<td>- Intergovernmental Coordination</td>
</tr>
<tr>
<td>- Federal-State-Local</td>
</tr>
<tr>
<td>- Intergency Coordination/Cooperation</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Land Use Planning</th>
</tr>
</thead>
<tbody>
<tr>
<td>- Regional</td>
</tr>
<tr>
<td>- Local</td>
</tr>
<tr>
<td>- Energy Efficiency, Distributed Generation, Transportation, Water</td>
</tr>
<tr>
<td>- Consumer Behavior</td>
</tr>
<tr>
<td>- Behavior of Public and Private Organizations</td>
</tr>
<tr>
<td>- Integration of New Technologies</td>
</tr>
</tbody>
</table>

Clean Fossil Electricity – The Challenges

<table>
<thead>
<tr>
<th>Natural Gas Efficiency</th>
</tr>
</thead>
<tbody>
<tr>
<td>- Fuel Cells</td>
</tr>
<tr>
<td>- Packaged Distributed Generation/ CHP Systems to Meet 2007 CARB Standards</td>
</tr>
<tr>
<td>- Self-Generation Incentive Program</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Out-Of- State Coal/Petroleum Coke</th>
</tr>
</thead>
<tbody>
<tr>
<td>- Integrated Gasifier Combined Cycle</td>
</tr>
<tr>
<td>- Oxyfuel Combustion</td>
</tr>
<tr>
<td>- Carbon Sequestration</td>
</tr>
</tbody>
</table>
Assembly Bill 1925 requires a report assessing California’s readiness for commercial geologic sequestration

- Assembly Bill 1925 introduced by Blakeslee and passed unanimously
- Requires the California Energy Commission, with the Dept of Conservation, to prepare a report containing:
 ...recommendations for how the state can develop parameters to accelerate the adoption of cost-effective geologic sequestration strategies for the long-term management of industrial carbon dioxide.
- First report due in 2007 to be followed by a second report in 2010 after WESTCARB Phase II is completed

Goals for the first report were to assess technical readiness and implementation barriers

- Technical readiness:
 - Site characterization
 - Risk assessment
 - Monitoring and verification
 - Mitigation and remediation

- Barriers/uncertainties in:
 - Regulatory frameworks
 - Statutory frameworks
 - Economics

- Make recommendations for further actions prior to 2010 report

Findings:

CCS is technically ready but data from demonstration and early projects are critical to inform policy.

Developing regulatory and statutory frameworks will require integrated agency efforts.

Cost estimates need refining to define best early opportunities in the state and regionally and to set a proxy for long-term value of carbon reduction.
Carbon Dioxide Intensity and Per Capita CO2 Emissions -- 2001
(Fossil Fuel Combustion Only)

United States
Netherlands
Canada
Australia
Belgium
California
Denmark
Austria
Germany
New Zealand
S. Korea
Switzerland
France
Italy
Japan
Mexico

Tons of CO2 per person
Intensity (tons of CO2 per 2000 US Dollar)
California’s Water-Energy Nexus

- 70% of Precipitation in North
- 75% Demand in the South
- Water Demand: 43 maf
 - 9 maf Urban
 - 34 maf Agricultural
- Energy Use:
 - 19% of Electricity
 - 33% of Natural Gas
- Population by 2030:
 - 48 million
- 2030 Water Demand:
 - 43-50 maf

West Coast Regional Carbon Sequestration Partnership Annual Business Meeting Seattle, WA November 28, 2007

<table>
<thead>
<tr>
<th>Supply & Conveyance</th>
<th>150</th>
<th>8,900</th>
</tr>
</thead>
<tbody>
<tr>
<td>Water Treatment</td>
<td>100</td>
<td>100</td>
</tr>
<tr>
<td>Distribution</td>
<td>1,200</td>
<td>1,200</td>
</tr>
<tr>
<td>Wastewater Treatment</td>
<td>2,500</td>
<td>2,500</td>
</tr>
<tr>
<td>Regional Total</td>
<td>3,950</td>
<td>12,700</td>
</tr>
</tbody>
</table>

Global cost curve of GHG abatement opportunities beyond business as usual

- ~27 Gton CO₂e below 40 EUR/ton (~46% vs. BAU)
- ~7 Gton of negative and zero cost opportunities
- Fragmentation of opportunities
California’s Climate Action Plan

Illustrative GHG Reduction Strategies

Cost per ton

- $500

$0

$500

Tons of Reductions (MMT)

Fuel Efficient Replacement Tires
Appliance Efficiency Standards
Building EE Standards
Alternative Fuels: Biodiesel Blends
Light Duty Vehicle Technology Improvements

2020 Emission Reduction Target

Mandatory:</p>