Cool Roofs:
From Cool Cities to a Cooler World

Haagen-Smit Symposium
June 3, 2009

Arthur H. Rosenfeld, Commissioner
California Energy Commission
(916) 654–4930
ARosenfe@Energy.State.CA.US

http://www.energy.ca.gov/commissioners/rosenfeld.html
or just Google “Art Rosenfeld”
Santorini, Greece
White is ‘cool’ in Bermuda
and in Hyderabad, India

...and widely in the State of Gujarat, India
Reflective roofs have lower temperatures in sunlight

![Graph showing temperature rise vs. solar absorptance for various materials.](image)
Global Cooling: Increasing World-wide Urban Albedos to Offset CO₂

Hashem Akbari and Surabi Menon
Lawrence Berkeley National Laboratory

Arthur Rosenfeld
California Energy Commission

A first step in geo-engineering which saves money and has known positive environmental consequences
Solar Reflective Surfaces Also Cool the Globe

Source: IPCC
Methodology

• Changing albedo of urban surfaces and changing atmospheric CO$_2$ concentrations both result in a change in radiative forcing.

• Comparing these two radiative forcings relates changes in solar reflectance of urban surfaces to the changes in atmospheric CO$_2$ content.
Caveats

• Time dependence of physical effects (e.g., sequestration in land or ocean) and economics are ignored.
• We account for the effect of multiple scattering and absorption of radiation within the atmosphere.
• Calculations are performed for the entire globe
Radiation Forcing of 2XCO$_2$

- Hansen et al (2005) estimate a 2XCO$_2$ radiation forcing (RF) on the top of the atmosphere of 3.95±0.11 W/m2, yielding a RF of 0.93±0.03 kW/tonne of atmospheric CO$_2$
- IPPC [based on Myhre (1998) formula] estimate a RF of 3.71 W/m2, yielding a RF of 0.88-0.91 kW/tonne of atmospheric CO$_2$
- Matthews and Caldeira (2008) found a 0.175 K temperature increase for every 100 GtC emitted, yielding a 0.47 kW/tonne of atmospheric CO$_2$
- We use a RF of 0.91 kW/tonne of atmospheric CO$_2$
Radiation Forcing of Cool Surfaces

- Hansen et al. (1997) estimate a RF of -3.70 Wm\(^{-2}\) for increasing the albedo of 'Tropicana' by 0.2. We estimate that Tropicana is 22% of the land area or about 1/16\(^{th}\) of the global surface. For the reflected surfaces, the RF per 0.01 increase in albedo is -2.92 W per m\(^2\) of Tropicana land.

- Using Kiehl and Trenberth (1997) and Hatzianastassiou et al. (2005), we calculate a RF of -1.27 W/m\(^2\) per 0.01 increase in albedo of modified surfaces.

- Note that our calculations apply for the average cloud cover over the earth; we estimate higher RF for CA
CO$_2$-Equalence of Reflective Surfaces

- RF of increasing atmospheric CO$_2$ = 0.91 kW/tonne = 0.91 W/kg
- RF of increasing solar reflectance of a surface by 0.01 = -1.27 W/m2
- Atmospheric CO$_2$-equalence of increasing solar reflectance of a surface by 0.01 = -1.27 [W/m2]/0.91 [W/kg] = -1.40 kg/m2
- IPCC (2007) estimates that only 55% of the emitted CO$_2$ stays in the atmosphere
- Emitted CO$_2$-equalence of increasing solar reflectance of a surface by 0.01 = -1.40 [kg/m2]/0.55 = -2.5 kg CO$_2$ per m2
CO₂ Offset of Cool Roofs and Cool Pavements

- Δ albedo for aged white roofs = 0.40
- Emitted CO₂ offset for white roofs
 \[= \frac{0.40}{0.01} \times [-2.5 \text{ kg CO}_2/\text{m}^2] = -100 \text{ kg CO}_2/\text{m}^2 \]
- It takes about 10 m² of roof with albedo increase of 0.40 to offset 1 T CO₂ emitted
- Δ albedo for typical residential and non-residential cool roofs = 0.25
- Emitted CO₂ offset for cool roofs
 \[= \frac{0.25}{0.01} \times [-2.5 \text{ kg CO}_2/\text{m}^2] = -63 \text{ kg CO}_2/\text{m}^2 \]
- Δ albedo for cool pavement = 0.15
- Emitted CO₂ offset for cool pavements = -38 kg CO₂/m²
Dense Urban Areas are 1% of Land

- Area of the Earth = 508×10^{12} m2
- Land Area (29%) = 147×10^{12} m2 [3]
- Area of the 100 largest cities = 0.38×10^{12} m2 = 0.26% of Land Area for 670 M people
- Assuming 3B live in urban area, urban areas = $[3000/670] \times 0.26\% = 1.2\%$ of land
- But smaller cities have lower population density, hence, urban areas = 2% of land = 3×10^{12} m2 [4]
- Dense, developed urban areas only 1% of land = 1.5×10^{12} m2 [5]
CO₂ Equivalency of Cool Roofs and Pavements

• Typical urban area is 25% roof and 35% paved surfaces
• Roof area = 0.25*1.5x10^{12} m² = 3.8x10^{11} m²
• Emitted CO₂ offset for cool roofs
 = 63 kg CO₂/m² * 3.8x10^{11} m² = 24 GT CO₂

• Paved area = 0.35 *1.5x10^{12} m² = 5.3x10^{11} m²
• Emitted CO₂ offset for cool pavements
 = 38 kg CO₂/m² *5.3x10^{11} m² = 20 GT CO₂
• Total emitted CO₂ offset for cool roofs and cool pavements = 44 GT CO₂
CO$_2$ Equivalency of Cool Roofs and Pavements (cntd.)

- 44 GT CO$_2$ is over one year of the world 2025 emission of 37 GT CO$_2$
- At a growth rate of 1.5% in the world’s CO$_2$ -equivalent emission rate, 44 GT CO$_2$ would offset the effect of the growth in CO$_2$- equivalent emissions for 11 years
CO₂ Equivalency of Cool Roofs World-wide
(Tropics + Temperate)

• Cool roofs alone could offset a total of
 24 billion tons (Gt) CO₂ = world emissions this year !!!!
• Worth > €240 billion (pre-recession was €600B)
• To convert 24 Gt CO₂ one-time into a rate:
 – Assume 20 year roof service life, thus 1.2 Gt CO₂/year
 – Average world car emits 4 t CO₂/year

 equivalent to 300 million cars
 off the road for 20 years

(600 million passenger cars in the world today)
100m2 (~1000 ft2) of a white roof, replacing a dark roof, offset the emission of 10 tonnes of CO$_2$
How to Relate to 10 Tons of CO$_2$

- First – This is **10 tons ONCE**, not 10 tons/year;
- But familiar measures are usually in terms of **tons/year**;
- So we will look at how many **years of emissions** 10 tons will offset

<table>
<thead>
<tr>
<th></th>
<th>Tons CO$_2$/Yr</th>
<th>Years Equivalent to 10 Tons</th>
</tr>
</thead>
<tbody>
<tr>
<td>Average US House Emits</td>
<td>10</td>
<td>1</td>
</tr>
<tr>
<td>Average US Car Emits</td>
<td>5</td>
<td>2</td>
</tr>
<tr>
<td>Average Global Car Emits</td>
<td>4</td>
<td>2.5</td>
</tr>
<tr>
<td>Average CFL Saves</td>
<td>.05=1/20</td>
<td>200</td>
</tr>
</tbody>
</table>
Effect of Solar Reflective Roofs and Pavements in Cooling the Globe
(Source: Akbari, Menon, Rosenfeld. *Climatic Change*, 2009)

<table>
<thead>
<tr>
<th></th>
<th>Δ Solar Reflectivity</th>
<th>CO₂ Offset by 100 m²</th>
<th>CO₂ Offset Globally</th>
</tr>
</thead>
<tbody>
<tr>
<td>White Roof</td>
<td>0.40</td>
<td>10 tons**</td>
<td></td>
</tr>
<tr>
<td>Average Roof</td>
<td>0.25</td>
<td>6.3 tons</td>
<td>24 Gt ***</td>
</tr>
<tr>
<td>Cool Pavement</td>
<td>0.15</td>
<td>4 tons</td>
<td>20 Gt</td>
</tr>
<tr>
<td>Total Potential</td>
<td></td>
<td></td>
<td>44 Gt</td>
</tr>
</tbody>
</table>

Value of 44 Gt CO₂ at $25/t ~ $1 Trillion

*White Roof will be “diluted” by cool colored roofs of lower reflectivity, and roofs that can not be changed, because they are long-lived tile, or perhaps they are already white.

** Compare 10 tons with a family car, which emits ~4 tons/year.

*** 24 Gt CO₂ Offsets Global CO₂ emissions in 2009
• Comparison of CO2 offset directly by albedo vs. CO2 reduced by AB 32

• Albedo reduction based on a plausible 15-year program for white and cool roofs (Title 24 for new buildings and major retrofits) and a yet to be developed program for cool pavements
Cool Roof Technologies

Old

- flat, white
- pitched, white

New

- pitched, cool & colored
Cool Colors Reflect Invisible Near-Infrared Sunlight

Solar Energy Distribution

- 5% ultraviolet (300-400 nm)
- 43% visible (400-700 nm)
- 52% near-infrared (700-2500 nm)
Cool and Standard Brown Metal Roofing Panels

- Solar reflectance ~ 0.2 higher
- Afternoon surface temperature ~ 10°C lower
Cool is cool: From cool color roofs to cool color cars and jackets

Toyota experiment (surface temperature 10K cooler)
Ford is also working on the technology

Courtesy: BMW (http://www.ips-innovations.com/solar_reflective_clothing.htm)
Many cool colors to choose

- **Cool clay tile**
 - R ≥ 0.40
 - Courtesy MCA Clay Tile

- **Cool metal**
 - R ≥ 0.30
 - Courtesy BASF Industrial Coatings

- **Cool concrete tile**
 - R = 0.41
 - Standard concrete tile (same color)
 - Courtesy American Rooftile Coatings

- **Cool fiberglass asphalt shingle**
 - R ≥ 0.25
 - Courtesy Elk Corporation

Solar reflectance gain:

- cool clay tile: +0.37
- cool metal: +0.26
- cool concrete tile: +0.23
- standard concrete tile: +0.15
- cool fiberglass asphalt shingle: +0.29
Pavements can also be cool