Program Background

• Senate Bill 110 (SB 110) allocates up to $75 million for school bus replacement grants.
• Under SB 110 all replaced school buses must be scrapped.
• All project expenditures from the Job Creation Fund shall be cost effective: total benefits shall be greater than project costs over time.
• Total benefits may include consideration of non-energy benefits, such as health and safety, in addition to energy benefits.
Program Design

Three complementary funding components:

1. School bus replacement (2 phases)
 - Phase 1: Solicit public school districts, county offices of education, and joint power authorities to establish a ranked list of buses eligible for replacement based on applications received.
 - Phase 2: Solicit manufacturers to design, construct, and deliver the replacement electric buses to applicants awarded in Phase 1. This phase is a separate solicitation which is planned for release in late 2018.

3. Provide workforce training and development opportunities and resources to support electric school bus maintenance, charging, and operations (ARFVTP funding).
Milestone Targets

<table>
<thead>
<tr>
<th>Activity</th>
<th>Date</th>
</tr>
</thead>
<tbody>
<tr>
<td>School District Solicitation Release</td>
<td>May 31, 2018</td>
</tr>
<tr>
<td>Applications Due</td>
<td>September 20, 2018</td>
</tr>
<tr>
<td>Post Electric School Bus Rank List and CNG School Bus Notice of Proposed Awards (NOPA)</td>
<td>November 2018</td>
</tr>
<tr>
<td>Release Bulk Pricing for Electric Buses Solicitation</td>
<td>Q4 2018</td>
</tr>
<tr>
<td>Business Meeting Approval - CNG School Buses</td>
<td>Q1 2019</td>
</tr>
<tr>
<td>Award Manufacturer(s)/Dealer(s)</td>
<td>Q1 2019</td>
</tr>
<tr>
<td>Award Electric School Buses (Final NOPA)</td>
<td>Q1 2019</td>
</tr>
<tr>
<td>Install Infrastructure</td>
<td>April - December 2019</td>
</tr>
<tr>
<td>Begin Delivering Electric School Buses</td>
<td>Q4 2019</td>
</tr>
</tbody>
</table>
GFO-17-607 Scoring Results

Analysis of All Buses Eligible for Electric Vehicle Replacement

<table>
<thead>
<tr>
<th>Regions</th>
<th>Number of Applying Local Education Agencies</th>
<th>Number of Buses 1999 and Older</th>
<th>Total Number of Buses Eligible for Replacement</th>
<th>Percentage of Eligible Buses 1999 and Older</th>
</tr>
</thead>
<tbody>
<tr>
<td>Northern</td>
<td>53</td>
<td>249</td>
<td>444</td>
<td>56%</td>
</tr>
<tr>
<td>Central</td>
<td>99</td>
<td>420</td>
<td>602</td>
<td>70%</td>
</tr>
<tr>
<td>LA County</td>
<td>12</td>
<td>53</td>
<td>86</td>
<td>62%</td>
</tr>
<tr>
<td>Southern</td>
<td>35</td>
<td>256</td>
<td>417</td>
<td>61%</td>
</tr>
<tr>
<td>TOTALS</td>
<td>199</td>
<td>978</td>
<td>1,549</td>
<td>63%</td>
</tr>
</tbody>
</table>
GFO-17-607 Scoring Results

Ranking: Analysis of Top 75 Buses in each Region

<table>
<thead>
<tr>
<th>Regions</th>
<th>Number of Applying Local Education Agencies</th>
<th>Age Range of Buses</th>
<th>Total Score Range</th>
<th>Bus Type A Requests</th>
<th>Bus Type C Requests</th>
<th>Bus Type D Requests</th>
<th>TBD Bus Type Requests</th>
<th>TOTAL</th>
</tr>
</thead>
<tbody>
<tr>
<td>Northern</td>
<td>24</td>
<td>1983 - 1997</td>
<td>81.9 to 98</td>
<td>20</td>
<td>14</td>
<td>41</td>
<td></td>
<td>75</td>
</tr>
<tr>
<td>Central</td>
<td>32</td>
<td>1978 - 1992</td>
<td>87.7 to 99.2</td>
<td>5</td>
<td>5</td>
<td>61</td>
<td>4</td>
<td>75</td>
</tr>
<tr>
<td>LA County</td>
<td>12</td>
<td>1984 - 2004</td>
<td>59.2 to 95</td>
<td>24</td>
<td>17</td>
<td>34</td>
<td></td>
<td>75</td>
</tr>
<tr>
<td>Southern</td>
<td>15</td>
<td>1985 - 1997</td>
<td>82.5 to 95.4</td>
<td>2</td>
<td>11</td>
<td>62</td>
<td></td>
<td>75</td>
</tr>
<tr>
<td>TOTALS</td>
<td>83</td>
<td></td>
<td></td>
<td>51</td>
<td>47</td>
<td>198</td>
<td>4</td>
<td>300</td>
</tr>
</tbody>
</table>
Cost Effectiveness Methodology

• Savings to Investment Ratio: \(\frac{\text{Total Project Benefits}}{\text{Total Project Costs}} \)

• If quotient is greater than or equal to 1, total project benefits exceed total project costs.

• If quotient is less than 1, total project costs exceed total project benefits.

• Our quotient for this project equals 1.15.
Equations Used

• Present value given an annual value:

\[P = A \times \frac{1 - (1 + i)^{-n}}{i} \]

• Present value given a future value:

\[P = F \times \frac{1}{(1 + i)^n} \]
Assumptions and Givens

• Analyzed most expensive type of bus: Type D
• Lifespan = 20 years
• 2% discount rate
• 1 battery replacement at year 12 of operation
• Fuel Efficiency of Diesel Buses: 5.5 mpg*
• Fuel Efficiency of Electric Buses: 19.6 mpgge
• 13,666 vehicle miles traveled annually**

*Fuel Efficiencies provided by Greet’s AFLEET tool
**Annual vehicle miles traveled provided by South Coast AQMD courtesy of California Air Resources Board
Bus Used for Modeling Purposes
Assumed Costs

• Cost of Type D School Bus: Approximately $415,000

• Cost of Electric Vehicle Infrastructure: Up to $60,000

• Combined Cost: $475,000
Defined Benefits

1. Fuel Savings
2. Emissions Reductions
3. Maintenance Savings
4. Health
5. Economic
Potential Other Benefits

• Safety Benefits

• Grid Benefits

• Scrappage

• Job Creation
1. Fuel Savings

- Cost of diesel: $3.71 per gallon*
- Cost of electric: $3.26 per diesel gallon equivalent
- Forecasted price increase for diesel: 3.9% annually
- Forecasted price increase for transportation electricity: 3.1% annually

*Fuel costs and forecasting provided by U.S. Energy Information Administration
Fuel Savings Analysis

Diesel Lifetime Costs:

\[
\frac{13,666 \text{ miles}}{5.5 \frac{\text{miles}}{DGE}} \times \frac{$3.71}{DGE} \times \frac{1-(1+0.02+0.039)^{-20}}{0.02+0.039} = $106,597.34
\]

Electric Lifetime Costs:

\[
\frac{13,666 \text{ miles}}{19.6 \frac{\text{miles}}{DGE}} \times \frac{$3.26}{DGE} \times \frac{1-(1+0.02+0.031)^{-20}}{0.02+0.031} = $28,088.18
\]

Difference: $78,509
2. Emissions Reductions

- Carbon intensity of diesel: 102.01 gCO2e/MJ*
- Carbon intensity of electricity: 105.16 gCO2e/MJ
- Cost of carbon: $15.10/MTCO2e**

*Low Carbon Fuel Standard stated carbon intensities
**Cap and Trade carbon price
Diesel Lifetime Costs:

\[
\frac{13,666 \text{ miles}}{5.5 \text{ miles/DGE}} \times 134.47 \frac{MJ}{DGE} \times \frac{102.01 \frac{gCO_2e}{MJ}}{1,000,000 \frac{gCO_2e}{MTCO_2e}} \times \frac{$15.10}{1 \text{ MTCO}_2e} \times \frac{1 - (1 + 0.02)^{-20}}{0.02} = \$8,415.49
\]

Electric Lifetime Costs:

\[
\frac{13,666 \text{ miles}}{19.6 \text{ miles/DGE}} \times 134.47 \frac{MJ}{DGE} \times \frac{105.16 \frac{gCO_2e}{MJ}}{1,000,000 \frac{gCO_2e}{MTCO_2e}} \times \frac{$15.10}{1 \text{ MTCO}_2e} \times \frac{1 - (1 + 0.02)^{-20}}{0.02} = \$2,434.41
\]

Difference: $5,981
3. Maintenance Savings

- Per mile maintenance cost of diesel: $0.88*
- Per mile maintenance cost of electric: $0.71
- Projected cost of replacement battery: $18,000 in 2030 or $14,193 in 2018 dollars**
- Per mile projected cost of replacement battery: $0.09

*CARB study of transit buses
**2018-2019 IEPR
Maintenance Savings Analysis

Diesel Lifetime Costs:

\[
13,666 \text{ miles} \times \frac{$0.88}{\text{mile}} \times \frac{1-(1+.02)^{-20}}{.02} = \$196,643.65
\]

Electric Lifetime Costs:

\[
13,666 \text{ miles} \times \frac{$0.71}{\text{mile}} \times \frac{1-(1+.02)^{-20}}{.02} = \$158,655.67
\]

Difference: \$37,988
4. Health Benefits

- Diesel Emissions Quantifier (DEQ) used quantify dollar savings due to emissions reductions.*
- Monetary values based on avoided incidences of:
 - Premature mortality
 - Chronic bronchitis
 - Acute bronchitis
 - Upper and lower respiratory symptoms
 - Asthma exacerbation
 - Nonfatal heart attacks
 - Hospital admissions
 - Emergency room visits
 - Work loss days
 - Minor restricted-activity days

*U.S. Environmental Protection Agency
DEQ Outputs and Analysis

County and Region

<table>
<thead>
<tr>
<th>County and Region</th>
<th>Annual Diesel PM2.5 Reduction (Short Tons)</th>
<th>Annual Health Benefits</th>
</tr>
</thead>
<tbody>
<tr>
<td>Modoc, North</td>
<td>0.003</td>
<td>$85*</td>
</tr>
<tr>
<td>Los Angeles, Los Angeles</td>
<td>0.003</td>
<td>$7,800</td>
</tr>
<tr>
<td>Mono, Central</td>
<td>0.003</td>
<td>$190*</td>
</tr>
<tr>
<td>Imperial, South</td>
<td>0.003</td>
<td>$780</td>
</tr>
<tr>
<td>Totals:</td>
<td>0.014</td>
<td>$8,900</td>
</tr>
</tbody>
</table>

Lifetime Benefit Calculation

\[
\text{Lifetime Benefit Calculation: } \$8,900 \times \frac{1-(1+.02)^{-20}}{.02} = \$145,527.76
\]

Indicates no applicants from these counties through GFO-17-607
5. Economic Benefits

- Used Regional Input-Output Modeling System (RIMS II).*
- Multipliers:
 - 1.4516 for construction
 - 1.4105 for motor vehicles, bodies and trailers, and parts manufacturing
 - 1.4467 for out of state industry

*Bureau of Economic Analysis
Economic Multipliers

<table>
<thead>
<tr>
<th>Description</th>
<th>Amount</th>
<th>Multiplier</th>
<th>Product</th>
</tr>
</thead>
<tbody>
<tr>
<td>Construction</td>
<td>$55,000</td>
<td>1.4516</td>
<td>$79,838</td>
</tr>
<tr>
<td>Motor vehicles, bodies and trailers, and parts manufacturing</td>
<td>$108,750</td>
<td>1.4105</td>
<td>$153,392</td>
</tr>
<tr>
<td>Other out-of-state industry</td>
<td>$31,125</td>
<td>1.4467</td>
<td>$45,029</td>
</tr>
<tr>
<td>Totals:</td>
<td>$194,875</td>
<td></td>
<td>$278,258</td>
</tr>
</tbody>
</table>
Results

<table>
<thead>
<tr>
<th>Benefit</th>
<th>Amount</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. Fuel Savings</td>
<td>$78,509</td>
</tr>
<tr>
<td>2. Emissions Reductions</td>
<td>$5,981</td>
</tr>
<tr>
<td>3. Maintenance Savings</td>
<td>$37,988</td>
</tr>
<tr>
<td>4. Health</td>
<td>$145,528</td>
</tr>
<tr>
<td>5. Economic</td>
<td>$278,258</td>
</tr>
</tbody>
</table>

Total Benefits: $546,264
Total Project Benefits exceed Total Project Costs by $71,264.
Thank You!