IEc

Renewable Generation and Grid Integration: Market Adoption, Social Welfare Benefits, and System-Level Avoided Costs through 2045

Presented by:

Christine Lee Industrial Economics, Inc.

Co-developers:

Daniel Kaufman, Mike Freeman, and Anna Goldstein

November 19, 2020

Overview of EPIC Renewable Generation and Grid Integration Investments

- EPIC Objective: Facilitate growth in capacity and grid integration of renewable energy sources
- 2014-2019: \$127 million invested, 68 grants
- Delphi Panel Grant Selection Criteria:
 - EPIC investments in technology improvement
 - Excluded grants focused on improving renewable energy forecasting or development of energy planning software
 - Limited to grants where a draft or final grant report was available

Overview of EPIC Grants Analyzed

TYPE OF RENEWABLE ENERGY	SUB-GROUPS	NUMBER OF TECHNOLOGIES	NUMBER OF EPIC GRANTS	EPIC FUNDING
Photovoltaic (PV)	Solar tracking	2	2	\$1,999,822
	PV cells	2	2	\$3,429,940
Concentrating Solar Power (CSP)		2	3	\$3,741,760
Bioenergy	MSW and food waste	2	2	\$2,996,383
	Dairy waste	1	3	\$11,000,000
	Forest waste	2	2	\$3,990,071
Geothermal		2	2	\$3,873,387
Wind		1	1	\$810,438
	Total	14	17	\$31,841,801

Overview of Delphi Panel

- Expert Recruiting:
 - Identified over 125 candidates
 - Invitations sent to nearly 100 candidates
 - Screening calls conducted with over 30 candidates
- Expert Selection Criteria:
 - Significant experience in renewable energy, of which at least half must have California-specific RE experience
 - Familiarity and/or experience with:
 - R&D, demonstration and market facilitation policy
 - California Renewable Portfolio Standard Law
 - California Reference System Plan and Integrated Resource Planning process
 - EPIC program

ТҮРЕ	NUMBER OF EXPERTS		
Private	5		
Government	5		
Academia	1		
Total	11		

Charge to the Delphi Panel

- Panelists were asked to project:
 - 1. Installed capacity for each of the 14 EPIC-supported technologies
 - 2. Capacity factors for 8 categories of renewable energy technologies

TECHNOLOGY	2020	2025	2030	2035	2040	2045
Gasification of refuse- derived biomass	_ MW	MW	MW	MW	MW	MW
Food waste co-digestion	MW	MW	MW	MW	MW	MW
Total	MW	MW	MW	MW	MW	MW

Panelist Packet of Information

- Market Overview
 - Current installed capacity and generation
 - Historical growth
 - Key cost metrics
 - Technical potential
 - Challenges and opportunities
- Grant/Technology Information
 - Stage of maturity
 - Target market and market potential
 - Problem statement
 - Grant activities and accomplishments
 - Next steps for the technology

Results: Technology Deployment

Annual estimated energy generated in GWh

*Based on average (mean) estimates of market uptake for 14 EPIC-supported technologies considered by the Delphi Panel

Results: Social Welfare Benefits and System-level Costs

Health Effects: \$6.6 - 53 billion (PV, 3% discount rate)

Expected health outcomes associated with the change in air pollutant emissions (NO_x, SO₂, PM_{2.5})

Social Cost of Carbon: \$3.2 - 10 billion (PV, 3% discount rate) Socioeconomic benefits associated with the GHG emission reduction/mitigation (CO₂, CH₄, N₂O).

Avoided System-Level Costs: \$16 billion (NPV, 7% discount rate)

- Avoided energy procurement (including losses and ancillary services)
- Peak load reduction benefits (including avoided capital costs for new generation capacity, transmission, and distribution)

Daniel Kaufman, <u>dkaufman@indecon.com</u>, 617-354-0074 Christine Lee, <u>clee@indecon.com</u>, 617-354-0074 Mike Freeman, <u>michael.freeman@emeraldenergyconsulting.com</u>, 610-667-1737