IEc

Air Quality Health Benefits Calculator

Presented by: Industrial Economics, Inc. Stefani Penn, PhD

November 19, 2020

Presentation Outline

- What is the Air Quality Health Benefits Calculator?
- When should the Commission use this tool?
- AQ Health Benefits Calculator details
- Tool example
- Questions?

2

What is the Air Quality Health Benefits Calculator?

- A reduced-form Excel-based tool to evaluate the human health benefits
 of EPIC projects that reduce or mitigate air pollutant emissions, either
 at an individual project level or across a project portfolio.
- Designed for use by CEC staff to estimate the human health benefits of avoided emissions:
 - Changes in morbidity and mortality risk and
 - Associated social welfare value of these changes.

٤

When should the Commission use this tool?

Environmental Defense Fund

- Emissions change data associated with a project (or portfolio) are available:
 - Fine particulate matter (PM_{2.5})
 - Nitrogen oxides (NOx)
 - Sulfur dioxide (SO₂)
- These emissions change data are not geographically specific.
- Demographic details about the exposed population are not known.
- This tool is designed to be simple and flexible for regular use; based on sound science.

Input Data

Changes in PM_{2.5}, NOx, and SO₂ emissions by year and sector.

Emissions changes are calculated by either:

- EPIC Emissions Calculator
 - Emissions Species: CO₂, CH₄, N₂O, NOx, SO₂, PM_{2.5}
 - Data: U.S. EPA's Emissions & Generation Resource Integrated Database (eGRID) and Continuous Emission Monitoring System (CEMS)
- U.S. EPA's AVERT Tool
 - Emissions Species: CO₂, NOx, SO₂, PM_{2.5}
 - Large-scale or portfolio level changes in demand
- Or are provided by the EPIC grant applicant/recipient.

Tool Structure: Inputs

Agreement#	EPC-14-005				
Solicitation#	PON-13-303				
Solicitation	Advancing Utility-Scale Clean Energy Generation				
Company	The Regents of the University of California, San Diego				
Project Title	Solar Forecast Based Optimization of Distributed				
	Energy Resources in the LA Basin and UC San Diego				
	Microgrid				
Project	This project aims to integrate high-accuracy solar				
Description	forecasting to optimize the operation of distributed				
	energy resources, and utilize the value of solar				
	forecasting in utility Grid-Operations to improve grid				
	reliability, reduce ratepayer costs and increase				
	safety. The objectives are to apply forecasts to				
	inform control and scheduling decisions for				
	distributed energy resources with emphasis on				
	energy storage and electric vehicle charging control				
	at warehouse photovoltaic clusters in the LA-Orange-				
	Riverside-San Bernardino-San Diego Counties as well				
	as the UCSD microgrid.	COASUES/OLOGERO	11 1 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	COURT OF STREET	EUU - 207 UNMUR
F	maps, j madstrarecommes.snarepoint.com, s	.,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	1000101101101		70701710
				Quantity	
		_		Associated with	
Benefit(s)		Demo/Prototype	Maximum Potential in CA		Benefit
Description	Measurement Units	Quantity	IOU territory	Noted Above	Accrues to
NOx Reductions	Metric tons/year	0.00313	3.13	0.0313	N/A
NOx Reductions	Short tons/year	0.00345	3.45023	0.03450	N/A
FGII Avoided Em	issions Inputs (short tons)				
Year	PM 2.5	NOx	SO2	Source	
2018	FINES	IIOX	302	Applicant/grante	
2019				Applicant/grante	
2020		3,45023		Applicant/grante	
2021		3.45023		Applicant/grante	
2021		3.43023		Applicant/grante	E

Tool Structure: Benefit Per Ton Value Data

Source: United States Environmental Protection	Agency Office of Air and F	Radiation. Estimati	ng the Benefit per	Ton of Reducing Pl	M2.5 Precursors fro	m 17 Sectors. Febr	uary 2018. Tables	7 - 12.
Lower = Krewski et al. (2009); Upper = Lepeule	et al. (2012)							
Summary of the total dollar value (mortality a								
Year	2020	2020	2020	2020	2020	2020	2020	<u> </u>
Discount Rate	3%	3%	3%	3%	3%	3%	7%	
Source	Lower Estimate	Lower Estimate	Lower Estimate	Upper Estimate	Upper Estimate	Upper Estimate	Lower Estimate	Lowe
Sector	PM 2.5	SO2	NOx	PM 2.5	SO2	NOx	PM 2.5	
Aircraft, locomotives andmarine vessels	\$302,044	\$103,558	\$8,738	\$668,812	\$237,321	\$19,417	\$269,682	
Area sources	\$399,130	\$60,409	\$9,709	\$906,133	\$140,235	\$21,575	\$366,768	
Cement kilns	\$453,066	\$53,936	\$7,012	\$1,024,793	\$118,660	\$16,181	\$409,917	
Coke ovens	\$560,939	\$64,724	\$12,945	\$1,294,476	\$151,022	\$30,204	\$507,003	
Electric arc furnaces	\$539,365	\$100,322	\$11,866	\$1,186,603	\$226,533	\$28,047	\$485,428	
Electricity generating units	\$161,809	\$45,307	\$6,688	\$377,555	\$103,558	\$15,102	\$151,022	
Ferroalloy facilities	\$355,981	\$56,094	\$5,609	\$809,047	\$129,448	\$12,945	\$323,619	
Industrial point sources	\$604,089	\$107,873	\$17,260	\$1,402,349	\$248,108	\$38,834	\$539,365	
Integrated iron and steel	\$625,663	\$507,003	\$20,496	\$1,402,349	\$1,186,603	\$46,385	\$560,939	
Iron and steel facilities	\$388,343	\$55,015	\$8,414	\$873,771	\$129,448	\$19,417	\$345,193	
Non-road mobile sources	\$334,406	\$50,700	\$7,875	\$755,111	\$118,660	\$18,338	\$302,044	
Ocean-going vessels	\$56,094	\$15,102	\$2,265	\$129,448	\$33,441	\$5,070	\$50,700	
On-road mobile sources	\$453,066	\$24,811	\$9,385	\$1,024,793	\$56,094	\$21,575	\$409,917	
Pulp and paper facilities	\$194,171	\$57,173	\$4,746	\$431,492	\$129,448	\$10,679	\$172,597	
Refineries	\$388,343	\$83,062	\$8,306	\$895,346	\$194,171	\$18,338	\$355,981	
Residential wood combustion	\$453,066	\$118,660	\$16,181	\$1,035,580	\$280,470	\$37,756	\$409,917	
Taconite mines	\$106,794	\$43,149	\$7,767	\$248,108	\$97,086	\$17,260	\$96,007	
Intro User Guide Inputs	Human Health Benefits	Results Be	enefit Per Ton	Value Data	Morbidity and	Mortality Effects	Deflators	

Tool Structure: Outputs

- Discounted present dollar value of public health benefits over time.
- Annualized dollar value of health benefits.
- Incidence of avoided mortalities/morbidities.

PRESENT VALUE AND ANNUALIZED BENEFITS

PV AND ANNUALIZED BENEFITS (ALL POLLUTANTS & SECTORS)					
	Lower Estimate	Upper Estimate			
Present Value	\$483,006	\$1,077,616			
Annualized	\$26,232	\$58,524			

TOTAL BENEFITS (ALL SECTORS)
Return to Top

DISCOUNTED VALUE OF HEALTH BENEFITS BY YEAR (NET PRESENT VALUE)								
	Lower Estimate			Upper Estimate			wer Estimate	per Estimate
Year	PM 2.5	NOx	502	PM 2.5	NOx	502	l Pollutants	l Pollutants
2018								
2019								
2020		\$23,487			\$53,035		\$23,487	\$53,035
2021		\$22,803			\$51,490		\$22,803	\$51,490
2022		\$22,139			\$49,990		\$22,139	\$49,990
2023		\$23,227			\$52,001		\$23,227	\$52,001
2024		\$22,551			\$50,486		\$22,551	\$50,486
2025		\$21,894			\$49,016		\$21,894	\$49,016
2026		\$21,256			\$47,588		\$21,256	\$47,588
2027		\$20,637			\$46,202		\$20,637	\$46,202
2028		\$21,531			\$47,847		\$21,531	\$47,847
2029		\$20,904			\$46,453		\$20,904	\$46,453
2030		\$20,295			\$45,100		\$20,295	\$45,100
2031		\$19,704			\$43,787		\$19,704	\$43,787
2032		\$19,130			\$42,511		\$19,130	\$42,511
2033		\$18,573			\$41,273		\$18,573	\$41,273

IEc

Questions?

Stefani Penn SPenn@indecon.com Maura Flight MFlight@indecon.com