

# Pleasant Grove Wastewater Treatment Plant Expansion and Energy Recovery Project

Addendum to the CEQA-Plus Initial Study/Mitigated Negative Declaration

June 2018



## Addendum to the CEQA-Plus Initial Study/Mitigated Negative Declaration

for the

## **PGWWTP Expansion and Energy Recovery Project**

PREPARED FOR

#### City of Roseville

311 Vernon Street Roseville, California 95678 Contact: Mark Morse

#### PREPARED BY

#### Ascent Environmental, Inc. 455 Capitol Mall, Suite 300 Sacramento, California 95814 Contact: Stephanie Rasmussen

June 2018

## **TABLE OF CONTENTS**

| Sectio                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | n     |                                                   | Page |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------|---------------------------------------------------|------|
| Section         ACRONYMS AND ABBREVIATIONS         1       INTRODUCTION         1.1       Background and Actions Triggering the Addendum         1.2       CEQA Guidelines Regarding an Addendum to an MND         2       DESCRIPTION OF PROPOSED PROJECT CHANGES         2.1       Relocation of PG&E Gas Pipeline         2.2       Relocation of Construction Staging Areas         2.3       Solid Waste Trucks Available for Fueling with CNG         3       ENVIRONMENTAL CONSEQUENCES OF THE PROPOSED CHANGES         3.1       Issues Scoped Out of the Impact Evaluation         3.2       Impact Analysis         3.3       Conclusions | II    |                                                   |      |
| 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | INTRO | ODUCTION                                          | 1-1  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 1.1   | Background and Actions Triggering the Addendum    |      |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 1.2   | CEQA Guidelines Regarding an Addendum to an MND   | 1-1  |
| 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | DESC  | CRIPTION OF PROPOSED PROJECT CHANGES              | 2-1  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |       |                                                   |      |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 2.2   | Relocation of Construction Staging Areas          |      |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 2.3   | Solid Waste Trucks Available for Fueling with CNG | 2-1  |
| 3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | ENVI  | RONMENTAL CONSEQUENCES OF THE PROPOSED CHANGES    |      |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |       | Issues Scoped Out of the Impact Evaluation        |      |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 3.2   | Impact Analysis                                   |      |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 3.3   | Conclusions                                       |      |
| 4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | REFE  | RENCES                                            | 4-1  |

#### Appendices

| Air Quality and Greenhouse Gas Modeling Data |
|----------------------------------------------|
|----------------------------------------------|

B Revised Mitigation Monitoring and Reporting Program

#### Exhibits

| Exhibit 2-1 | Energy Recovery Project PG&E Pipeline Location Proposed in 2017 IS/MND | 2-3 |
|-------------|------------------------------------------------------------------------|-----|
| Exhibit 2-2 | Energy Recovery Project Revised PG&E Pipeline Location                 | 2-4 |
| Exhibit 2-3 | Staging Areas Proposed in 2017 IS/MND                                  | 2-5 |
| Exhibit 2-4 | Revised Staging Locations                                              |     |

#### Tables

| Table 3-1 | Comparison of Modeled Maximum Daily Emissions of Criteria Air Pollutants and<br>Precursors Associated with Energy Recovery Project Operation between Modified<br>Project and 2017 IS/MND <sup>1</sup> | 3-3 |
|-----------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|
| Table 3-2 | Summary of Modeled GHG Emissions Associated with Operation of the Energy Recovery Project at 2020 Startup with Project Modifications <sup>1</sup>                                                     | 3-6 |
| Table 3-3 | Summary of Modeled GHG Emissions Associated with Operation of the Energy Recovery Project at 2040 Buildout with Project Modifications <sup>1</sup>                                                    | 3-7 |

## ACRONYMS AND ABBREVIATIONS

| CH4              | methane                                      |
|------------------|----------------------------------------------|
| City             | City of Roseville                            |
| CNG              | compressed natural gas                       |
| DGE              | diesel gallon equivalents                    |
| GHG              | greenhouse gas                               |
| IS               | Initial Study                                |
| IS/MND           | Initial Study/Mitigated Negative Declaration |
| mgd              | million gallons per day                      |
| MND              | Mitigated Negative Declaration               |
| N <sub>2</sub> O | nitrous oxide                                |
| NO <sub>X</sub>  | nitrogen oxides                              |
| PG&E             | Pacific Gas & Electric                       |
| PGWWTP           | Pleasant Grove Wastewater Treatment Plant    |
| PM               | particulate matter                           |
| rCNG             | renewable compressed natural gas             |
| VOC              | volatile organic compounds                   |
| WAS              | waste activated sludge                       |

## **1** INTRODUCTION

#### 1.1 BACKGROUND AND ACTIONS TRIGGERING THE ADDENDUM

In April 2017, the Roseville City Council adopted the Initial Study/Mitigated Negative Declaration (IS/MND) (State Clearinghouse No. 2016122040) for the Pleasant Grove Wastewater Treatment Plant (PGWWTP) Expansion (Expansion Project) and Energy Recovery Project (herein referred to as the 2017 IS/MND). The 2017 IS/MND analyzed a proposed project that included expansion and increased treatment capacity of the existing PGWWTP so that it can meet its original 12 million gallons per day (mgd) design capacity, and construction of the related but separate Energy Recovery Project that would beneficially utilize the digester gas produced by anaerobic digestion that is included in the Expansion Project.

The City of Roseville (City) is currently proposing minor modifications to the previously approved project. These modifications include: 1) relocation of the proposed Pacific Gas & Electric (PG&E) compressed natural gas (CNG) pipeline, 2) relocation of proposed construction staging areas, 3) changes in the phasing of solid waste trucks that would be available for fueling with CNG, and 4) delays in the anticipated start date of construction. Refer to Section 2, "Description of Proposed Project Changes," of this Addendum for a more detailed description of proposed project modifications. The project objectives identified in Section 2.3, page 2-2, of the 2017 IS/MND remain unchanged.

The purpose of this proposed Addendum is to consider whether these modifications to the project would result in the need for additional analysis under CEQA (Public Resources Code, Section 21166; CEQA Guidelines, Sections 15162, 15164).

As demonstrated in Section 3, "Environmental Consequences of Proposed Project Changes" below, the project modifications do not meet any of the criteria listed in Section 15162 of the CEQA Guidelines requiring supplemental environmental review (as described in Section 1.2, "CEQA Guidelines Regarding an Addendum to an MND," below) and an addendum is, therefore, appropriate. This means the modifications would (1) not result in any new significant environmental effects or a substantial increase in severity of previously evaluated significant effects that result from either a substantial change to the project or changes to the project circumstances, and (2) there is no new information of substantial importance since certification of the 2017 IS/MND that shows the modifications would have new significant effects or more severe previously evaluated effects. Therefore, pursuant to Section 15164 of the CEQA Guidelines, the differences between the approved project described in the 2017 IS/MND and the refined elements of the project as they are currently proposed are considered minor technical changes.

This document concludes that the proposed project modifications would not alter any of the conclusions of the adopted MND. No new significant environmental effects or a substantial increase in the severity of previously identified significant effects would result. The additions also would not affect the feasibility of any mitigation measures. As mentioned above, none of the conditions listed in Section 15162 of the CEQA Guidelines exist for the project modification described herein. Therefore, pursuant to Section 15164 of the CEQA Guidelines, the differences between the approved project described in the adopted MND and the modification of the project as currently proposed and described in this Addendum are minor, and this Addendum provides sufficient environmental documentation.

#### 1.2 CEQA GUIDELINES REGARDING AN ADDENDUM TO AN MND

Section 15162(a) of the CEQA Guidelines provides that when an MND has been certified for a project, no subsequent MND shall be prepared for that project unless the lead agency determines, on the basis of substantial evidence in light of the whole record, that one or more of the following conditions is met:

- substantial changes are proposed in the project which will require major revisions of the previous MND due to the involvement of new significant environmental effects or a substantial increase in the severity of previously identified significant effects;
- (2) substantial changes occur with respect to the circumstances under which the project is undertaken which will require major revisions of the previous MND due to the involvement of new significant environmental effects or a substantial increase in the severity of previously identified significant effects; or
- (3) new information of substantial importance, which was not known and could not have been known with the exercise of reasonable diligence at the time the previous MND was certified as complete, shows any of the following:
  - (A) the project will have one or more significant effects not discussed in the previous MND; and
  - (B) significant effects previously examined will be substantially more severe than shown in the previous MND;

In the event one of these conditions would occur, either a supplement or subsequent MND would be required or, if significant impact may occur after mitigation, an EIR would be required. Section 15164 of the CEQA Guidelines states that a lead agency or a responsible agency shall prepare an addendum to a previously certified MND if some changes or additions are necessary, but none of the conditions described above in Section 15162(a), calling for preparation of a subsequent CEQA document, have occurred.

Note that CEQA Section 15162(a)(3) also includes the following conditions with respect to the need to prepare a supplemental CEQA document; however, these conditions only apply to the preparation of an EIR because (a) alternatives are not required in MNDs and (b) feasible mitigation to reduce significant effects is required to be included in MNDs:

- (C) mitigation measures or alternatives previously found not to be feasible would in fact be feasible, and would substantially reduce one or more significant effects of the project, but the project proponents decline to adopt the mitigation measures or alternatives; or
- (D) mitigation measures or alternatives which are considerably different from those analyzed in the previous MND would substantially reduce one or more significant effects on the environment, but the project proponents decline to adopt the mitigation measures or alternatives.

CEQA allows lead and those responsible agencies issuing additional discretionary approvals for a project to restrict their review of modifications to a previously approved project to the incremental effects associated with the proposed modifications, compared against the anticipated effects of the previously approved project at buildout. In other words, if the project under review constitutes a modification of a previously approved project that was subject to prior final environmental review, the "baseline" for purposes of CEQA is adjusted such that the originally approved project is assumed to exist.

The City is proposing minor modifications to the approved project; these changes are described in Section 2 of this Addendum. As demonstrated in detail below, the project modifications do not meet any of the relevant criteria listed in Section 15162 that would lead to preparation of a supplemental or subsequent MND or EIR. First, the modifications would not result in any new significant environmental effects or a substantial increase in severity of previously evaluated significant effects that result from either a substantial change to the project or changes to the project circumstances. Second, there is no new information of substantial importance since adoption of the 2017 IS/MND that shows the modifications would have new significant effects or more severe previously evaluated effects. The project modifications would reduce the amount of GHG emissions offset by Mitigation Measure 3.7-1; however, this mitigation measure would continue to reduce the project's impacts to a less-than-significant level. Therefore, pursuant to Section 15164 of the CEQA Guidelines, the differences between the approved project described in the 2017 IS/MND and the refined elements of the project as they are currently proposed are considered minor technical changes. Furthermore, the approved IS/MND and associated mitigation monitoring and reporting program remain valid for mitigating the identified significant impacts that would result from implementation

of the project, including the proposed modifications. For these reasons, an addendum to the adopted MND is the appropriate mechanism to address modifications to the project.

## 2 DESCRIPTION OF PROPOSED PROJECT CHANGES

The City's proposed changes to the approved IS/MND include: 1) relocation of the proposed PG&E gas pipeline, 2) relocation of proposed construction staging areas, 3) changes in the phasing of solid waste trucks that would be available for fueling with CNG, and 4) delays in the anticipated start date of construction. The following provides a description of each proposed modification to the previously adopted 2017 IS/MND.

### 2.1 RELOCATION OF PG&E GAS PIPELINE

The 2017 IS/MND assumed a 4-inch CNG pipeline would be constructed from the PG&E main along Westpark Drive to serve the Energy Recovery Project. The pipeline was previously described as being located south of the southern boundary of the existing PGWWTP within the Southern Expansion Area. The proposed pipeline extended east to connect the Energy Recovery Project area to the existing PG&E main along Westpark Drive (Exhibit 2-1). The proposed pipeline location has been revised to extend from the Energy Recovery Project area to the existing PG&E gas main located along the western fenceline of the City's property (Exhibit 2-2) (approximately 40 feet of pipeline). The relocated pipeline would still be 4-inch in diameter; however, the length of pipeline would be less than the pipeline previously analyzed in the 2017 IS/MND.

The relocation of the PG&E pipeline as a modification to the adopted MND would require disturbance of undeveloped land to the west of the project area evaluated in the 2017 IS/MND. Potential effects to the expanded footprint are addressed in Section 3.2, "Impact Analysis," below.

#### 2.2 RELOCATION OF CONSTRUCTION STAGING AREAS

The 2017 IS/MND assumed up to four staging areas would be used for construction of the Expansion Project and one staging area for the Energy Recovery Project (Exhibit 2-3). Through refinement of the design, it was determined that not all of the staging areas identified previously are feasible locations for construction staging. The proposed locations of the staging areas have been revised as shown in Exhibit 2-4 including moving the proposed Energy Recovery Project staging area to a disturbed area within the PGWWTP boundary. In addition to the staging areas identified, other previously disturbed areas within the PGWWTP boundary could be made available for construction staging as approved by the City. However, all staging areas would be within the fenceline of the existing PGWWTP and would either be paved or previously disturbed. Any disturbance or treatment facility development occurring within the PGWWTP fenceline was already evaluated and approved consistent within the *Roseville Regional Wastewater Treatment Service Area Master Plan EIR* (City of Roseville 1996).

## 2.3 SOLID WASTE TRUCKS AVAILABLE FOR FUELING WITH CNG

The 2017 IS/MND assumed a fueling station would be constructed as part of the Energy Recovery Project that would dispense renewable compressed natural gas (rCNG), which is produced from digester gas. Digester gas would be generated from the digesters that would be constructed as part of the Expansion Project. This rCNG would be used as vehicle fuel for the City's solid waste truck fleet, which would be converted from diesel to CNG over time as a separate project. The related 2017 IS/MND air quality and greenhouse gas (GHG) analysis assumed that 2,500 diesel gallon equivalents (DGE) of rCNG would be produced per day at project startup and used as fuel for the 55 truck solid waste collection truck fleet. The analysis further assumed that approximately half of the 55 truck solid waste fleet would be converted to CNG by project startup and therefore available to utilize the CNG generated. The DGE demand is calculated based on the number trucks available for fueling and the fuel consumption for each truck.

Since the adoption of the 2017 IS/MND, the estimated DGE of vehicle fuel demand has been revised from 2,500 DGE per day to 1,000 DGE per day. In addition, the number of solid waste trucks expected to be available for fueling with rCNG has been revised to be 10 trucks at project startup and 34 at project buildout (estimated to be 2040).

#### 2.4 CONSTRUCTION SCHEDULE

The 2017 IS/MND noted that construction of the Expansion Project would last approximately 24 months and was anticipated to begin in fall of 2017, and construction of the Energy Recovery Facilities would last approximately 18 months and would begin in late 2017 or early 2018. The start of project construction for the Expansion Project and Energy Recovery Project has shifted to spring of 2019. There are no changes to the length of construction identified in the 2017 IS/MND.



#### Exhibit 2-1 Energy Recovery Project PG&E Pipeline Location Proposed in 2017 IS/MND

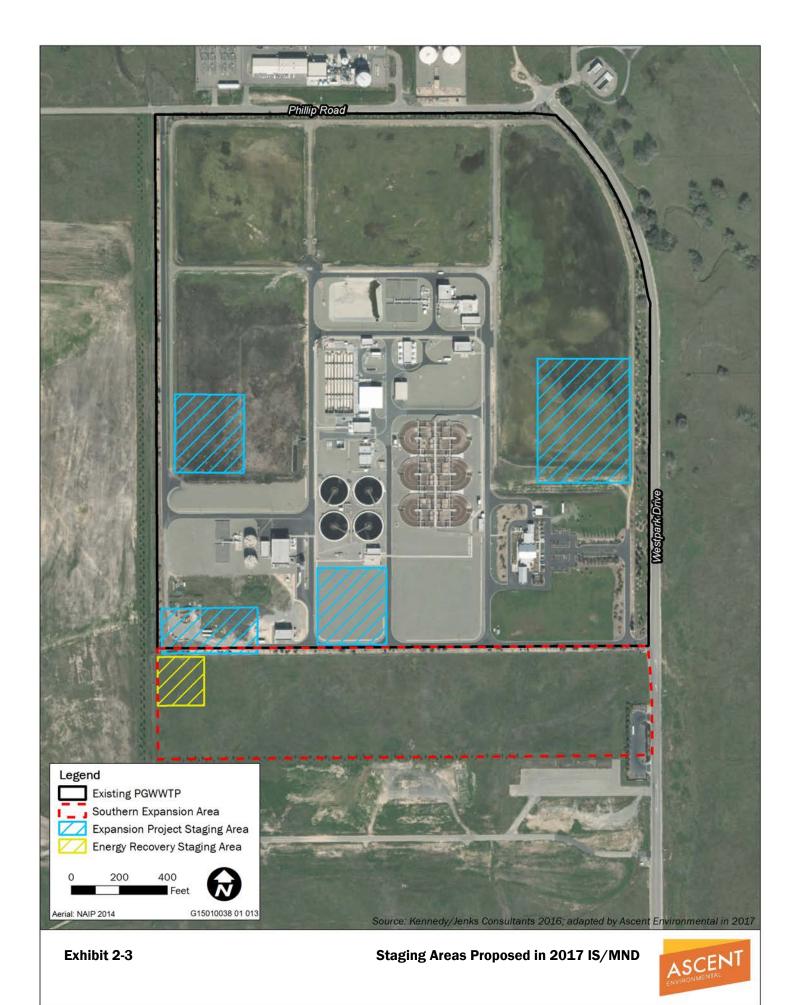





Exhibit 2-2

Energy Recovery Project Revised PG&E Pipeline Location





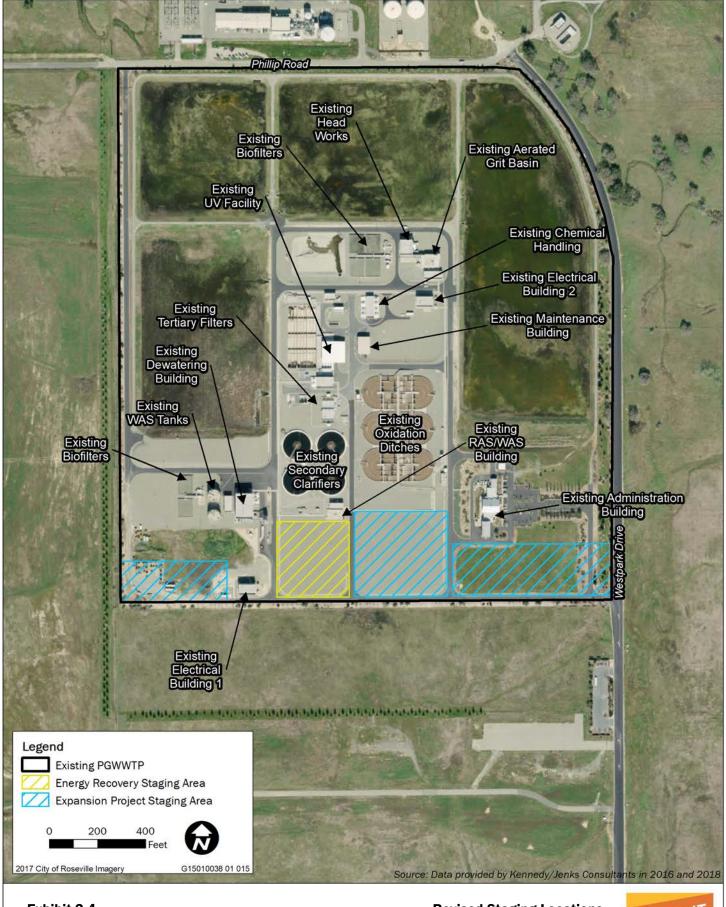



Exhibit 2-4

**Revised Staging Locations** 



## **3 ENVIRONMENTAL CONSEQUENCES OF THE PROPOSED CHANGES**

The purpose of the discussion below is to evaluate the environmental issue areas in terms of any "changed condition" (i.e., changed circumstances, project changes, or new information of substantial importance) resulting from the proposed project changes that may result in a different environmental impact significance conclusion from the adopted MND. These resource issue areas are addressed below.

#### 3.1 ISSUES SCOPED OUT OF THE IMPACT EVALUATION

Since the proposed project changes would not result in changes to construction activity or operation of the project, the proposed changes would not affect the analysis of environmental impacts associated with the following issue areas in the 2017 IS/MND, including:

- ▲ Aesthetics,
- ▲ Agriculture and Forest Resources,
- ▲ Geology and Soils,
- Hazards and Hazardous Materials,
- Hydrology and Water Quality,
- ▲ Land Use/Planning,
- Mineral Resources,
- Noise,
- ▲ Transportation/Traffic,
- ▲ Tribal Cultural Resources,
- ▲ Utilities and Energy Conservation, and
- Compliance with Federal Regulations (CEQA-Plus compliance).

Also, because the proposed changes would not increase the number of employees beyond the staffing number evaluated in the 2017 IS/MND, the modifications would not affect the analysis of any environmental impacts associated with increased population and subsequent effects associated with housing and services that support those populations in the 2017 IS/MND, including:

- Population and Housing,
- Public Services, and
- Recreation.

Since the proposed changes would not affect the analysis in the 2017 IS/MND for these issue areas, they are not discussed further in this Addendum. This Addendum focuses on those environmental issue areas for which the project changes would result in minor changes in the analysis in the 2017 IS/MND.

#### 3.2 IMPACT ANALYSIS

#### 3.2.1 Air Quality

The 2017 IS/MND identified less than significant impacts related to increases in construction- and operation-related emissions, exposure of sensitive receptors to substantial pollutant concentrations, and odors relative to existing conditions. As indicated in the 2017 IS/MND, construction- and operation-related emissions did not exceed Placer County Air Pollution Control District (PCAPCD) thresholds for air quality. Thus, project impacts for these thresholds were determined to be less than significant.

Construction activities would include grading, trenching, building construction, paving, and architectural coating similar to those described in the 2017 IS/MND. However, the proposed project modifications would result in less ground disturbance because the proposed fueling site would be smaller than previously anticipated. Also, the start of project construction has shifted from fall 2017 to spring of 2019. The modifications would not change the duration of project construction. However, the shift in the project construction schedule to a later year would reduce emissions, compared to emissions estimated in the 2017 IS/MND, because of increasingly stringent criteria air pollutant emissions standards for new diesel construction equipment, resulting in an overall reduction in construction fleet emission rates as older equipment retire (EPA 2016). As such, the proposed modifications would result is slightly less construction-related air quality impacts relative to those evaluated in the 2017 IS/MND.

With respect to operational air quality impacts, the Energy Recovery Project would slightly increase the emissions of criteria pollutants and precursors relative to existing conditions. As discussed in the 2017 IS/MND, the Expansion Project would produce digester gas that would be converted to rCNG and tail gas (which is a byproduct of the rCNG conversion process). The rCNG would be used for fueling solid waste trucks and the tail gas would be used in proposed on-site microturbines to generate electricity for facility operations. The rCNG fuel would offset non-renewable CNG fuel use. As discussed above in Section 2.3, the number of solid waste trucks available for fueling with rCNG has been revised, as well as the anticipated vehicle fuel demand. Relative to the 2017 IS/MND, the proposed project modifications would reduce the number of solid waste trucks anticipated to be fueled at the facility from 55 to 34 trucks per day at project buildout. In addition, the modified project would provide 100-percent rCNG, rather than a blend of rCNG and CNG, as previously anticipated as a result of the reduced fuel demand for the solid waste trucks. The proposed project modifications also reduce the estimate of the daily fuel usage in the solid waste trucks by reducing the anticipated fuel usage from 45 to 27 DGE per truck per day. These changes lower the total amount of rCNG provided to vehicles by about 20 percent from 1,136 to 918 DGE per day.

Because the proposed project modifications would not change the overall amount of digester gas anticipated to be generated by the project, the reduction in rCNG for vehicle fuel would result in an increase in the amount of digester gas sent to the proposed microturbines. All digester gas not used for vehicle fuel would be conditioned and used as fuel for the microturbines. Either tail gas from the upgrading process blended with natural gas or conditioned digester gas would be used as fuel for the microturbines. Digester gas and tail gas have an average methane content of 60 and 28 percent, respectively, while natural gas has an average methane content of 75 percent. Thus, the additional fuel available for the microturbines would also result in additional natural gas demand to blend with the tail gas to meet a minimum of a 50 percent methane content required for combustion in the microturbines (City of Roseville 2016). This would result in an increase in natural gas demand from the microturbines at the 2040 build-out scenario from 624 therms per day, anticipated in the 2017 IS/MND, to maximum of 1,650 therms per day, a 260 percent increase. This assumes the worst-case scenario for natural gas demand where the only available companion fuel to natural gas for the microturbines is tail gas.

The emission factors for nitrogen oxides (NO<sub>x</sub>) and volatile organic compounds (VOC) used to quantify emissions from microturbine exhaust were also revised. The 2017 IS/MND used U.S Environmental Protection Agency's (EPA) AP-42 emission factors for uncontrolled gas turbines. For this analysis, NO<sub>x</sub> and VOC emission factors were taken from emissions ratings published by Capstone Turbine Corporation, the manufacturer for the 200-kW CR200 microturbines proposed for the Energy Recovery Project, and thus are more precise estimates. NO<sub>x</sub> emission factors for CR200 model microturbines are approximately 87 percent less than the NO<sub>x</sub> emission factors for an uncontrolled gas turbine in AP-42 (Capstone 2008, EPA 2000). The Capstone CR200 microturbines include NO<sub>x</sub> emission control technologies not applied in uncontrolled turbines. Capstone's VOC emission factors are slightly higher than AP-42 emission factors, but better represent the equipment used for the project. This emission factor revision improves the accuracy of the emissions estimates by reflecting the equipment emissions standards and equipment choices under the proposed project. The Capstone Turbine Corporation did not include particulate matter (PM) emission factors. Thus, PM emission factors are still based on AP-42 factors.

The proposed project modifications would not change the proposed wastewater treatment methods or anticipated treatment volume; thus, the modifications would not result in new or substantially worse impacts than identified in the 2017 IS/MND associated with exposure of sensitive receptors to substantial pollutant concentrations or odors.

Based on the changes described, operational emissions from the proposed project modifications were estimated for both the 2020 startup scenario and 2040 build-out scenario. Emissions from operation of the proposed project facilities for 2020 were scaled from 2040 estimates by the difference in the volume of wastewater that would be treated per day (8.07 mgd at startup and 12 mgd at buildout). Table 3-1 summarizes the modeled operational emissions of criteria air pollutants and criteria air pollutant precursors for the proposed project under the 2020 startup scenario. Table 3-1 also compares the emissions results for the 2040 build-out scenario between the 2017 IS/MND and the proposed project with modifications. The 2017 IS/MND did not analyze the 2020 startup scenario, and thus the 2020 startup emissions associated with the 2017 IS/MND assumptions were not included. Refer to Appendix A for detailed modeling input parameters and results.

| Emissions Source                             | ROG (lb/day) | NOx(lb/day) | PM <sub>10</sub> (lb/day) | PM <sub>2.5</sub> (lb/day) |
|----------------------------------------------|--------------|-------------|---------------------------|----------------------------|
| 2020 Startup                                 | ·            |             |                           | ·                          |
| Mobile Sources <sup>2</sup>                  | 0.5          | 0.9         | 2.5                       | 0.2                        |
| WWTP Processes <sup>3</sup>                  | 2.3          | 0.4         | -0.2                      | 0.0                        |
| Microturbines <sup>4</sup>                   | 1.6          | 6.4         | 1.0                       | 0.2                        |
| TOTAL                                        | 4.4          | 7.6         | 3.4                       | 0.4                        |
| PCAPCD Thresholds of Significance            | 55           | 55          | 82                        | NA                         |
| Exceeds Thresholds?                          | No           | No          | No                        | NA                         |
| 2040 Buildout as analyzed in the 2017 IS/MND |              |             |                           |                            |
| Mobile Sources <sup>2</sup>                  | 2.1          | 1.4         | 0.3                       | 0.3                        |
| WWTP Processes <sup>5</sup>                  | 11.4         | 2.1         | 0.0                       | 0.0                        |
| Microturbines <sup>4</sup>                   | 0.2          | 22.9        | 0.5                       | 0.1                        |
| TOTAL                                        | 13.8         | 26.4        | 0.8                       | 0.4                        |
| PCAPCD Thresholds of Significance            | 55           | 55          | 82                        | NA                         |
| Exceeds Thresholds?                          | No           | No          | No                        | NA                         |
| 2040 Buildout with Proposed Modifications    |              |             |                           |                            |
| Mobile Sources <sup>2</sup>                  | 1.7          | 1.2         | 0.6                       | 0.2                        |
| WWTP Processes <sup>5</sup>                  | 11.4         | 2.1         | -0.2                      | 0.0                        |
| Microturbines <sup>4</sup>                   | 2.4          | 9.5         | 1.3                       | 0.3                        |
| TOTAL                                        | 15.5         | 12.8        | 1.7                       | 0.6                        |
| PCAPCD Thresholds of Significance            | 55           | 55          | 82                        | NA                         |
| Exceeds Thresholds?                          | No           | No          | No                        | NA                         |
| Difference from 2017 IS/MND at Buildout      |              |             |                           |                            |
| Mobile Sources <sup>2</sup>                  | -0.4         | -0.1        | 0.3                       | -0.1                       |
| WWTP Processes <sup>5</sup>                  | 0.0          | 0.0         | -0.2                      | 0.0                        |
| Microturbines <sup>4</sup>                   | 2.1          | -13.5       | 0.7                       | 0.2                        |
| TOTAL                                        | 1.7          | -13.6       | 0.8                       | 0.1                        |

## Table 3-1 Comparison of Modeled Maximum Daily Emissions of Criteria Air Pollutants and Precursors Associated with Energy Recovery Project Operation between Modified Project and 2017 IS/MND<sup>1</sup>

Notes: Emissions are shown as the difference from existing conditions. Amounts may not sum to totals due to rounding. See Appendix A for more details. <sup>1</sup> Includes operation of proposed Expansion Project. 2 Accounts for changes in employee commute, elimination of WAS hauling, increases in biosolids hauling, increased hauling of high strength waste, increased chemical hauling, and replacing CNG with a rCNG blend in solid waste collection vehicles. Emissions estimated using emission factors from EMFAC2014. 3 The increase in emissions from the expanded WWTP is based on 2014 facility-level emissions report from CARB (CARB 2016) and scaled by the anticipated change in wastewater volume (7.1 to 8.07 mgd). 4 PM emissions estimated using emission factors from EPA's AP-42 guidance documentation for an uncontrolled natural gas turbine (EPA 2000). ROG and NOx emissions estimated using emission factors from Capstone Turbine Corporation for the C200 model microturbines (Capstone 2008). 5 The increase in emissions from the expanded WWTP is based on 2014 facility-level emissions report from CARB (CARB 2016) and scaled by the anticipated change in wastewater volume (7.1 to 12 mgd). WWTP = wastewater treatment plant lb/day = pounds per dayWAS = waste activated sludge ROG = reactive organic gases NA = not available NO<sup>x</sup> = oxides of nitrogen CNG = compressed natural gas PM<sup>10</sup> = respirable particulate matter with an aerodynamic diameter of 10 micrometers or less mgd = million gallons per day PM<sup>2.5</sup> = respirable particulate matter with an aerodynamic diameter of 2.5 micrometers or less CARB = California Air Resources Board

Source: CARB 2016, EPA 2000, PCAPCD 2017, Capstone 2008, modeling conducted by Ascent Environmental in 2018.

As shown in Table 3-1, the proposed project modifications would increase daily criteria air pollutant and precursor emissions from existing conditions at both the 2020 startup and 2040 build-out conditions. With the corrected emission factors ROG and PM emissions are slightly higher than what was anticipated under the 2017 IS/MND. This is due to the corrected VOC emissions factor for microturbines and the increased natural gas usage. However, NO<sub>X</sub> emissions would be approximately half of what was analyzed in the 2017 IS/MND. Thus, the emissions of criteria pollutants and precursors would not exceed PCAPCD thresholds at the 2020 startup or the 2040 buildout.

Therefore, the impacts associated PM and VOCs with the proposed project modifications would be higher than those evaluated in the 2017 IS/MND; and impacts associated with NO<sub>X</sub> would be lower than those evaluated in the 2017 IS/MND. However, overall, no new impacts to air quality would result from implementation of the proposed project modifications evaluated in this addendum.

#### 3.2.2 Greenhouse Gas Emissions

The 2017 IS/MND found that the Energy Recovery Project would result in a less-than-significant impact associated with generation of GHG emissions. As indicated in the 2017 IS/MND, construction- and operation-related emissions did not exceed PCAPCD thresholds for GHG emissions. Thus, project impacts were determined to be less than significant. Further, the Energy Recovery Project was anticipated to reduce overall operational GHG emissions by offsetting energy demand for CNG fuel in solid waste vehicles and electricity for the PGWWTP and Energy Recovery facilities.

PCAPCD finalized their GHG thresholds in November 2017 which occurred after the completion of the 2017 IS/MND, though the 2017 IS/MND used a draft version of the thresholds. As with the discussion in the 2017 IS/MND, the November 2017 thresholds include an upper bright-line threshold, a lower bright-line threshold, and a consideration of a project's GHG efficiency, which looks at a project's annual GHG emissions on a perunit basis (e.g., emissions per resident or per square foot), depending on the type of project. In this latest revision, PCAPCD adopted the following GHG thresholds for determining whether a project's GHG emissions would be cumulatively considerable.

▲ A "de minimis level" mass emission threshold of 1,100 MT CO<sub>2</sub>e/year, which, if not exceeded, means the project's GHGs would be less than cumulatively considerable (regardless of the project's GHG efficiency);

- ▲ A "bright-line cap" mass emission threshold of 10,000 MT CO<sub>2</sub>e/year, which, if exceeded, means the project's GHGs would be cumulatively considerable regardless of the project's GHG efficiency; and
- GHG efficiency-based thresholds for land use development projects, depending on whether the project is rural or urban and residential or non-residential (e.g., 5.5 MTCO<sub>2</sub>e/year per capita and 27.3 MTCO<sub>2</sub>e/year/1,000 square feet for residential and non-residential land uses in rural areas, respectively; and 4.5 MT CO<sub>2</sub>e/year per capita and 26.5 MTCO<sub>2</sub>e/year/1,000 square feet for residential and nonresidential land uses in urban areas, respectively) (PCAPCD 2017).

This means that a project with emissions that exceed the "de minimis level" threshold would not necessarily result in cumulatively considerable amount of GHG emissions if it can demonstrate that its emissions would be below PCAPCD's GHG efficiency-based thresholds.

Construction of the proposed project modifications would not increase construction-related emissions relative to those evaluated in the 2017 IS/MND, and the proposed modifications would not result in new or increased construction-related GHG emissions beyond those evaluated in the 2017 IS/MND.

With respect to operational air quality impacts, the Energy Recovery Project would slightly increase the emissions of criteria pollutants and precursors relative to existing conditions. As discussed in the 2017 IS/MND, the Expansion Project would produce digester gas that would be converted to rCNG for solid waste trucks and tail gas, which is a byproduct of the rCNG conversion process, would be used in proposed on-site microturbines to generate electricity for facility operations. The rCNG fuel would offset non-renewable CNG fuel use. As discussed above in Section 2.3, the number of solid waste trucks available for fueling with rCNG has been revised, as well as the anticipated vehicle fuel demand.

Because the proposed project modifications would not change the overall amount of digester gas anticipated to be generated by the project, the reduction in rCNG for vehicle fuel would result in an increase in the amount of digester gas sent to the proposed microturbines. As discussed above, the tail gas and any additional digester gas available for the microturbines would also result in additional natural gas demand to meet a minimum of a 50 percent methane content required for combustion in the microturbines. This would result in an increase in natural gas demand from the microturbines at the 2040 build-out scenario from 624 therms per day anticipated in the previous analysis to maximum of 1,650 therms per day, a 260 percent increase. However, with more overall fuel available, the microturbines would also generate more electricity, offsetting additional electricity-related emissions. The microturbines under proposed project modifications would generate 5,260 MWh per year. These modifications do not change the electricity demand of the wastewater treatment processes at buildout (23,182 MWh/year) and the small load from the Energy Recovery Project (1,370 MWh/year). Thus, the increased electricity generation reduces the electricity demand of a electricity demand relative to existing conditions (i.e., electricity demand under the modified project minus electricity demand at 7.1 mgd) to 5,580 MWh/year under the 2040 build-out scenario.

To be consistent with the emission factor corrections made for the criteria air pollutant calculations, the  $CO_2$  microturbine emission factors were revised from EPA's AP-42 emission factors for uncontrolled gas turbines to emission factors published by Capstone Turbine Corporation, the manufacturer of the 200-kW microturbines planned for the Energy Recovery Project (Capstone 2008, EPA 2000). This analysis uses the Capstone emission factors that reflect the combined heat and power configurations proposed for the project, which are 53 percent lower than the emission factors for turbines without combined heat and power. Turbines with combined heat and power capture and reuse the heat generated from the turbines during fuel combustion, allowing the turbines to be more efficient than those without combined heat and power configurations. The Capstone Turbine Corporation did not report emission factors for methane (CH<sub>4</sub>) or nitrous oxide (N<sub>2</sub>O). Thus, CH<sub>4</sub> and N<sub>2</sub>O emission factors are still based on AP-42 factors.

Based on the changes described, operational emissions from the proposed project modifications were estimated to include both the 2020 startup scenario and 2040 build-out scenario. Emissions from operation of the proposed project facilities for 2020 were scaled from 2040 estimates by the difference in the volume of wastewater that would be treated per day (8.07 mgd at startup and 12 mgd at buildout). Table 3-2

summarizes the modeled operational GHG emissions for the proposed project under the 2020 startup scenario relative to existing conditions (7.1 mgd). Table 3-3 compares the emissions results for the 2040 build-out scenario between the 2017 IS/MND and the proposed project with modifications. Both tables show that project emissions would be less than PCAPCD's "de minimis level" mass emissions threshold of 1,100 MTCO<sub>2</sub>e/year, thus other efficiency-based thresholds would not need to be applied. The 2017 IS/MND did not analyze the 2020 startup scenario, and thus the 2020 startup emissions associated with the 2017 IS/MND assumptions were not included.

| Table 3-2 | Summary of Modeled GHG Emissions Associated with Operation of the Energy Recovery Project at 2020 |
|-----------|---------------------------------------------------------------------------------------------------|
|           | Startup with Project Modifications <sup>1</sup>                                                   |

| Emissions Source                                 | Existing<br>(MT CO2e/year) | Energy Recovery<br>with Project Modifications<br>(MT CO2e/year) | Net Change from Existing<br>(MT CO2e/year) |
|--------------------------------------------------|----------------------------|-----------------------------------------------------------------|--------------------------------------------|
| Employee Commute <sup>2</sup>                    | 0                          | 7                                                               | 7                                          |
| Hauling: HSW                                     | 12                         | 4                                                               | -8                                         |
| Hauling: WAS/Biosolids                           | 17                         | 96                                                              | 79                                         |
| Hauling: Chemicals                               | 1                          | 1                                                               | 0                                          |
| CNG Solid Waste Collection Vehicles <sup>3</sup> | 2,093                      | 1,683                                                           | -410                                       |
| Wastewater Treatment Processes <sup>4</sup>      | 1,364                      | 1,528                                                           | 164                                        |
| Microturbines                                    | 0                          | 833                                                             | 833                                        |
| Net Electricity Consumption                      | 2,380                      | 2,252                                                           | -128                                       |
| Landfilled WAS at WRSL <sup>5</sup>              | 1,615                      | 0                                                               | -1,615                                     |
| Total                                            | 7,483                      | 6,403                                                           | -1,079                                     |
| Amortized Construction Emissions <sup>6</sup>    | 0                          | 34                                                              | 34                                         |
| Total with Amortized Construction Emissions      | 7,483                      | 6,437                                                           | -1,045                                     |
|                                                  | PCAPCD "De Minimi          | s Level" GHG Emission Threshold                                 | 1,100                                      |
|                                                  | No                         |                                                                 |                                            |

Notes: Totals may not equal sum due to rounding.

<sup>1</sup> See Appendix B of the 2017 IS/MND and Appendix A of this document for detail on model inputs, assumptions, and project-specific modeling parameters.

<sup>2</sup> Only the additional employee commute emissions were quantified.

<sup>3</sup> The existing conditions related to CNG solid waste collection vehicles are different than those assumed under the 2017 IS/MND because the intention of this specific analysis is to estimate the emissions offsets associated with the maximum number of displaced vehicles. are predicated on the maximum number of vehicles being fueled by

<sup>4</sup> Includes N<sub>2</sub>O emissions from nitrification/denitrification and effluent discharge to rivers.

<sup>5</sup> Net emissions from landfilling WAS at WRSL, which captures landfill gas and generates electricity with the gas. Assumes a 75 percent collection efficiency, a 99 percent destruction efficiency, and a 36.4 percent efficient generator, based on the operation of CAT 3516 engines (WPWMA 2015, CAT 2016, CARB 2010).

<sup>6</sup> Refer Table 3.7-4 in the 2016 IS for a summary of construction-related emissions.

| GHG = greenhouse gas                                                          | CNG = compressed natural gas                          |
|-------------------------------------------------------------------------------|-------------------------------------------------------|
| MT CO <sub>2</sub> e/year = metric tons of carbon dioxide equivalent per year | NA = not applicable                                   |
| HWS = high strength waste                                                     | PCAPCD = Placer County Air Pollution Control District |
| WAS = waste activated sludge                                                  | WRSL = Western Regional Sanitary Landfill             |
|                                                                               |                                                       |

Source: PCAPCD 2017, Modeling conducted by Ascent Environmental in 2018.

|                                                     | Net Change in Emissions from Existing Conditions       |                                                                 |                                                              |  |  |
|-----------------------------------------------------|--------------------------------------------------------|-----------------------------------------------------------------|--------------------------------------------------------------|--|--|
| Emissions Source                                    | Energy Recovery under 2017<br>IS/MND<br>(MT CO2e/year) | Energy Recovery with Project<br>Modifications<br>(MT CO2e/year) | Change from Previous Analysis<br>(MT CO <sub>2</sub> e/year) |  |  |
| Employee Commute <sup>2</sup>                       | 7                                                      | 7                                                               | 0                                                            |  |  |
| Hauling: HSW                                        | -8                                                     | -8                                                              | 0                                                            |  |  |
| Hauling: WAS/Biosolids                              | 126                                                    | 126                                                             | 0                                                            |  |  |
| Hauling: Chemicals                                  | 1                                                      | 1                                                               | 0                                                            |  |  |
| CNG Solid Waste Collection Vehicles                 | -1,565                                                 | -1,394                                                          | 171                                                          |  |  |
| Wastewater Treatment Processes <sup>3</sup>         | 880                                                    | 880                                                             | 0                                                            |  |  |
| Microturbines                                       | 1,186                                                  | 1,309                                                           | 124                                                          |  |  |
| Net Electricity Consumption                         | 882                                                    | 968                                                             | 86                                                           |  |  |
| Landfilled WAS at WRSL <sup>4</sup>                 | -1,615                                                 | -1,615                                                          | 0                                                            |  |  |
| Total                                               | -108                                                   | 273                                                             | 381                                                          |  |  |
| Amortized Construction Emissions <sup>5</sup>       | 34                                                     | 34                                                              | 0                                                            |  |  |
| Total with Amortized Construction Emissions         | -74                                                    | 307                                                             | 381                                                          |  |  |
| PCAPCD "De Minimis Level" GHG Emission<br>Threshold | 1,100                                                  | 1,100                                                           | NA                                                           |  |  |
| Exceeds Threshold?                                  | No                                                     | No                                                              | NA                                                           |  |  |

## Table 3-3 Summary of Modeled GHG Emissions Associated with Operation of the Energy Recovery Project at 2040 Buildout with Project Modifications<sup>1</sup>

Notes: Totals may not equal sum due to rounding.

<sup>1</sup> See Appendix B of the 2017 IS/MND and Appendix A of this document for detail on model inputs, assumptions, and Project-specific modeling parameters.

<sup>2</sup> Only the additional employee commute emissions were quantified.

<sup>3</sup> Includes N<sub>2</sub>O emissions from nitrification/denitrification and effluent discharge to rivers.

<sup>4</sup> Net emissions from landfilling WAS at WRSL, which captures landfill gas and generates electricity with the gas. Assumes a 75 percent collection efficiency, a 99 percent destruction efficiency, and a 36.4 percent efficient generator, based on the operation of CAT 3516 engines (WPWMA 2015, CAT 2016, CARB 2010).

<sup>5</sup> Refer Table 3.7-4 in the 2017 IS/MND for a summary of construction-related emissions.

GHG = greenhouse gas MT CO<sub>2</sub>e/year = metric tons of carbon dioxide equivalent per year

HWS = high strength waste

WAS = waste activated sludge

CNG = compressed natural gas NA = not applicable PCAPCD = Placer County Air Pollution Control District WRSL = Western Regional Sanitary Landfill

Source: PCAPCD 2017, Modeling conducted by Ascent Environmental in 2018.

As shown in Tables 3-2 and 3-3, the proposed project modifications would decrease GHG emissions relative to existing conditions at the 2020 startup and increase GHG emissions relative to existing conditions at the 2040 buildout. At startup, the proposed project would have less digester gas available for both vehicles and the microturbines, but the amount of emissions offset by providing rCNG fuel and avoiding the CH<sub>4</sub> emissions from landfilling waste activated sludge (WAS) would result in a net reduction of 1,045 MTCO<sub>2</sub>e compared to existing conditions. At buildout, WAS would still be offset and more rCNG would be available for vehicles compared to startup, but the proposed project would also send more digester gas as tail gas to the microturbines, increasing the demand for natural gas in microturbines. The increased natural gas demand is needed to meet the methane concentration requirements for the natural gas and tail gas fuel mix that is used in the microturbines. Under the proposed project modifications and with the CO<sub>2</sub> emission factor corrections, this analysis would change the results of the 2017 IS/MND from a net reduction in emissions to a net increase of 307 MTCO<sub>2</sub>e. Nevertheless, annual GHG emissions for both the 2020 startup and 2040 build-out scenarios would be below PCAPCD's "de minimis level" mass emissions threshold of 1,100 MTCO<sub>2</sub>e.

Therefore, the impacts associated with the proposed project modifications would be the same as those evaluated in the 2017 IS/MND. No new impacts of GHG emissions would result from implementation of the proposed project modifications evaluated in this addendum. In addition, Mitigation Measure 3.7-1 in the 2017 IS/MND would continue to be applicable to the project and would reduce GHG impacts to a less-than-significant level. With the project modifications, Mitigation Measure 3.7-1 would reduce GHG emissions from the Expansion Project by 25 percent rather than the 103 percent below existing conditions as described in the 2017 IS/MND. Although the project modifications would reduce the amount of GHG emissions offset by this mitigation measure, the project's GHG emissions would continue to be less than significant and below PCAPCD's "de minimis level" mass emissions threshold of 1,100 MTCO<sub>2</sub>e. The mitigation measure 3.7-1 (Appendix B).

#### 3.2.3 Biological Resources

The 2017 IS/MND identified potentially significant impacts related to loss of 2.5 acres of foraging habitat for Swainson's hawk and white-tailed kite, and potential loss of foraging and nesting habitat for burrowing owl within the Southern Expansion Area as a result of project construction. The Southern Expansion Area is within the planning area for the *West Roseville Specific Plan* and all wetland and grassland impacts, including loss of Swainson's hawk and white-tailed kite foraging habitat, have been evaluated and mitigated for in the environmental impact report (EIR) for the *West Roseville Specific Plan* (City of Roseville 2004). Potentially significant impacts to burrowing owl would be reduced to a less-than-significant impact with implementation of Mitigation Measure 3.4-1 (Implement *West Roseville Specific Plan* EIR Mitigation Measure 4.7-6 Avoid Nesting Sites) from the 2017 IS/MND.

The 2017 IS/MND identified no impacts associated with project construction on special-status plant species, sensitive natural communities, federally-protected wetlands, or interference with wildlife movement and no impact related to conflicts with local policies, ordinances, or an approved habitat conservation plan.

The project modifications would require relocation of the proposed PG&E pipeline to an undeveloped area west of the Energy Recovery Project area that was identified in the 2017 IS/MND. The new pipeline would affect approximately 400 square feet (10 feet by 40 feet). This area was not previously covered by the 2017 IS/MND or the biological resource surveys conducted for the 2017 IS/MND. Therefore, a reconnaissance-level survey for biological resources was conducted on March 14, 2018, for the area not previously covered in the 2017 IS/MND. The revised pipeline area is comprised entirely of annual grassland. No new or sensitive biological resources were identified during the 2018 survey within the revised pipeline area.

Construction of the relocated PG&E pipeline could result in temporary loss of less than 0.01-acre (400 square feet) of annual grassland, which could provide foraging and nesting habitat for borrowing owl. However, the 2017 IS/MND assumed approximately 2.5 acres would be disturbed for construction of the Energy Recovery Project, which included a much longer PG&E pipeline extending to Westpark Drive. Therefore, the 0.01-acre of grassland that would be affected by relocation of the pipeline would reduce the overall acreage of disturbance compared to that analyzed in the 2017 IS/MND. Implementation of Mitigation Measure 3.4-1 (Implement *West Roseville Specific Plan* EIR Mitigation Measure 4.7-6 Avoid Nesting Sites) from the 2017 IS/MND would continue to be implemented to reduce impacts to burrowing owl to a less-than-significant level.

Therefore, the impacts associated with the proposed project modifications would be less than those evaluated in the 2017 IS/MND, and implementation of Mitigation Measures 3.4-1 would continue to reduce any impacts to burrowing owl to a less-than-significant level. Potential impacts to Swainson's hawk and white-tailed kite foraging habitat would continue to be mitigated for in the EIR for the *West Roseville Specific Plan*. No new impacts to biological resources would result from implementation of the proposed project modifications evaluated in this Addendum.

### 3.2.4 Cultural Resources

Construction-related impacts on presently undocumented cultural resources and human remains were identified as potentially significant in the 2017 IS/MND. These impacts would be reduced to a less-than-significant impact with implementation of Mitigation Measures 3.5-1 and 3.5-2. The 2017 IS/MND identified no impacts associated with construction on documented significant archaeological and historical resources and a less-than-significant impact on previously undocumented paleontological resources.

As described above, the project modifications would require relocation of the PG&E pipeline to an undeveloped area west of the Energy Recovery Project area that was evaluated as part of the 2017 IS/MND. Therefore, an intensive-level pedestrian survey was conducted on March 14, 2018 for the area not previously covered by the 2017 IS/MND. Survey transects were spaced at intervals no greater than 15 meters. During the survey, all visible ground surface within the survey area was carefully examined for cultural material (e.g., flaked stone tools, tool-making debris, stone milling tools, or fire-affected rock), soil discoloration that might indicate the presence of a cultural midden, soil depressions and features indicative of the former presence of structures or buildings (e.g., postholes, foundations), or historic-era debris (e.g., metal, glass, ceramics). Ground disturbances (e.g., animal burrows) were visually inspected. No prehistoric or historic-era archaeological, ethnographic, or historic-era built environment resources were identified during the survey within the survey area.

Therefore, no new cultural or paleontological resources not evaluated in the 2017 IS/MND would be affected by the project modifications. In addition, implementation of Mitigation Measures 3.5-1 and 3.5-2 identified in the 2017 IS/MND would continue to mitigate potential impacts to unknown resources to a less-than-significant level. No new impacts to cultural resources would result from implementation of the project modifications.

## 3.3 CONCLUSIONS

The project modifications as described above would not alter the conclusions of the 2017 IS/MND. No new significant environmental effects or a substantial increase in the severity of previously identified significant effects would result. Although the project modifications would reduce the amount of GHG emissions offset by Mitigation Measure 3.7-1, as discussed above, the additions would not affect the feasibility of implementing any of the mitigation measures proposed in the 2017 IS/MND. As mentioned above, none of the conditions listed in Section 15162 of the CEQA Guidelines exist for the project modification described herein. Therefore, pursuant to Section 15164 of the CEQA Guidelines, the differences between the approved project described in the 2017 IS/MND and the modifications of the project as currently proposed and described in this Addendum are minor and this Addendum provides sufficient environmental documentation of the environmental effects associated with the project modifications.

This page intentionally left blank.

## 4 **REFERENCES**

- California Air Resources Board. 2010 (May). *Local Government Operations Protocol.* Version 1.1 Available: https://www.arb.ca.gov/cc/protocols/localgov/localgov.htm. Accessed September 30, 2016.
- ———. 2016. Facility Detail Risk Selection. Available: https://www.arb.ca.gov/app/emsinv/facinfo/ facdet.php?co\_=31&ab\_=SV&facid\_=1740&dis\_=PLA&dbyr=2014&dd=. Accessed: September 1, 2016.

Capstone. See Capstone Turbine Corporation.

Capstone Turbine Corporation. 2008. Technical Reference. Capstone MicroTurbine™ Systems Emissions.

CARB. See California Air Resources Board.

CAT. See Caterpillar.

- Caterpillar. 2016. New Electric Power Generation G3516A. Available: http://www.cat.com/en\_US/products/new/power-systems/electric-power-generation/gas-generatorsets/18486985.html. Accessed December 5, 2016.
- City of Roseville. 1996. Roseville Regional Wastewater Treatment Service Area Master Plan Draft Environmental Impact Report. Prepared by Environmental Science Associates. Sacramento, CA.
- ———. 2004 (January 9). Final Environmental Impact Report for West Roseville Specific Plan and Sphere of Influence. State Clearinghouse No. 2002082057. Prepared by EIP Associates. Roseville, CA. Available: http://www.roseville.ca.us/gov/development\_services/\_planning/ specific\_plans\_n\_planning\_areas/west\_roseville\_specific\_plan.asp.
- ———. 2016 (November 2). Pleasant Grove Wastewater Treatment Plant Energy Recovery Project Basis of Design Report. Prepared by Brown and Caldwell. Rancho Cordova, CA.
- EPA. See. U.S. Environmental Protection Agency.
- PCAPCD. See Placer County Air Pollution Control District.
- Placer County Air Pollution Control District. 2017 (November). CEQA Air Quality Handbook. Available: http://www.placerair.org/landuseandceqa/ceqaairqualityhandbook. Accessed March 30, 2018.
- WPWMA. See Western Placer Waste Management Authority.
- Western Placer Waste Management Authority. 2015. About WPWMA. Available: http://www.wpwma.com/about-wpwma/. Accessed December 5, 2016.
- U.S. Environmental Protection Agency. 2000. Emission Factor Documentation for AP-42 Section 3.1 Stationary Gas Turbines. Prepared by Alpha-Gamma Technologies, Inc. Raleigh, NC. Prepared for Office of Air Quality Planning and Standards. U.S. Environmental Protection Agency. Research Triangle Park, NC. Available: https://www3.epa.gov/ttnchie1/ap42/ch03/bgdocs/b03s01.pdf. Accessed April 5, 2018.
- ------. 2016 (March). Nonroad Compression-Ignition Engines: Exhaust Emission Standards. Available: https://nepis.epa.gov/Exe/ZyPDF.cgi?Dockey=P1000A05.pdf. Accessed March 28, 2018.

This page intentionally left blank.

# **Appendix A**

## Air Quality and Greenhouse Gas

**Modeling Data** 

#### Construction

#### **Project Facilities**

| From project description        |
|---------------------------------|
| From data request               |
| Based on best guess             |
| From separate technical studies |
| Calculated                      |

|                                                        |                   | Arch Coating  |                    |               |                       |                                      |                          |
|--------------------------------------------------------|-------------------|---------------|--------------------|---------------|-----------------------|--------------------------------------|--------------------------|
|                                                        |                   | (Interior or  | Indoors or Outdoor |               |                       |                                      |                          |
| Expansion                                              | New Construction? | Exterior)     | Processes          | Building SQFT | Area Disturbed (sqft) | CalEEMod Land Use Construction Match | Notes                    |
| Four primary clarifiers with odor control facilities   | Yes               | Exterior Only | Indoors            | 9,000         | 9,000                 | Industrial General Heavy Industry    |                          |
| Electrical Building                                    | Yes               | Both          | Indoors            | 540           | 540                   | Industrial General Heavy Industry    |                          |
| Solids thickening building                             | Yes               | Exterior Only | Indoors            | 5,100         | 5,100                 | Industrial General Heavy Industry    |                          |
|                                                        |                   |               |                    |               |                       |                                      | Approximated from google |
| Sludge pumping system (2 pumps)                        | Yes               | Exterior Only | Outdoor            | 200           | 200                   | Industrial General Heavy Industry    | image search.            |
| Two anaerobic digesters                                | Yes               | Exterior Only | Indoors            | 12,723        | 12,723                | unrefrigerated warehouse - no rail   |                          |
| Waste gas burner                                       | Yes               | None          | Outdoor            | Small         | -                     | Industrial General Heavy Industry    |                          |
| Conversion of a WAS holding tank to a centrate storage |                   |               |                    |               |                       |                                      |                          |
| tank                                                   | No                | None          | Indoors            | NA            | NA                    |                                      |                          |
| Conversion of a WAS holding tank to a digester sludge  |                   |               |                    |               |                       |                                      |                          |
| holding tank/secondary digester                        | No                | None          | Indoors            | NA            | NA                    |                                      |                          |
| Digester control building                              | Yes               | Both          | Indoors            | 6,500         | 7,062                 | Industrial General Heavy Industry    |                          |
| Ancillary facilities - Electrical                      | Yes               | None          | Outdoor            | NA            | NA                    |                                      |                          |
| Ancillary facilities - Lighting                        | Yes               | None          | Outdoor            | NA            | NA                    |                                      |                          |

|                                      |                             |        | Notes                                                                        |                                                  |  |  |
|--------------------------------------|-----------------------------|--------|------------------------------------------------------------------------------|--------------------------------------------------|--|--|
|                                      | TOTAL Building SQFT         | 34,063 |                                                                              |                                                  |  |  |
| TO                                   | TAL Area Disturbed (acres)  | 6.1    |                                                                              |                                                  |  |  |
| TOTAL Interior SQFT for Arch Coating |                             | 10,560 | See Section 4.7 in Appendix A and Section 7 in Appendix E of the CalEEMod Us |                                                  |  |  |
| TOTAL Exte                           | erior SQFT for Arch Coating | 17,032 | See Section 4.7 In Appendix A and Sect                                       | ion 7 in Appendix E of the caleEmod Oser's Guide |  |  |
| Тс                                   | otal Imported Material (CY) | 34,000 |                                                                              |                                                  |  |  |
| Т                                    | otal Exported Material (CY) | 6,000  |                                                                              |                                                  |  |  |

|                                        |                   | Arch Coating  |                    |                      |                       |                                      |                                                                                                                                                                                     |
|----------------------------------------|-------------------|---------------|--------------------|----------------------|-----------------------|--------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|                                        |                   | (Interior or  | Indoors or Outdoor |                      |                       |                                      |                                                                                                                                                                                     |
| Energy Recovery Facility               | New Construction? | Exterior)     | Processes          | Building SQFT        | Area Disturbed (sqft) | CalEEMod Land Use Construction Match | Notes                                                                                                                                                                               |
| Three microturbines                    | Yes               | None          | Indoors            | 800                  | 800                   | Industrial General Heavy Industry    |                                                                                                                                                                                     |
| High strength waste receiving facility | Yes               | Exterior Only | Indoors            | 2,500                | 3,000                 | Industrial General Heavy Industry    |                                                                                                                                                                                     |
| Food waste pre-processing facility     | Yes               | Exterior Only | Indoors            | 4,000                | 4,000                 | Industrial General Heavy Industry    |                                                                                                                                                                                     |
| Digester gas conditioning system       | Yes               | Exterior Only | Indoors            | 2,500                | 2,500                 | Industrial General Heavy Industry    |                                                                                                                                                                                     |
| Digester gas upgrading system          | Yes               | Exterior Only | Indoors            | NA (mounted on skid) |                       | NA                                   |                                                                                                                                                                                     |
| Slow Fill Station                      | Yes               | None          | Outdoors           | 45 Pumps             | 7,500                 |                                      | CalEEMod units are in "pumps". Does not include parking<br>spaces. Based on previous EIR assumptions. Will not be changed<br>to reflect smaller station size under addendum because |
| Fast Fill Station                      | Yes               | None          | Outdoors           | 10 Pumps             | 600                   | Gas Station                          | construction emissions are already LTS                                                                                                                                              |
| Piping Trench                          | Yes               | None          | Outdoors           | 500 linear feet      |                       |                                      |                                                                                                                                                                                     |
| Ductbank                               | Yes               | None          | Outdoors           | 500 linear feet      |                       |                                      |                                                                                                                                                                                     |
| Parking Area                           |                   | Exterior Only |                    | 117,500              | 117,500               | Surface Parking Lot                  |                                                                                                                                                                                     |

Notes

|    |                            |         | Hotes                                  |                                                  |
|----|----------------------------|---------|----------------------------------------|--------------------------------------------------|
|    | TOTAL Building SQFT        | 9,800   |                                        |                                                  |
|    | TOTAL Parking area         | 117,500 |                                        |                                                  |
| TO | TAL Area Disturbed (acres) | 2.5     |                                        |                                                  |
|    | TOTAL Interior SQFT for    |         |                                        |                                                  |
|    | Arch Coating               | -       |                                        |                                                  |
|    | TOTAL Exterior SQFT for    |         | See Section 4.7 in Appendix A and Sect | ion 7 in Appendix E of the CalEEMod User's Guide |
|    | Arch Coating (non-         | 4,900   |                                        |                                                  |
|    | parking)                   |         |                                        |                                                  |

#### Model Inputs and Assumptions Operation

#### Expansion Facilities

| Expansion Facilities                                 |                          |
|------------------------------------------------------|--------------------------|
| Four primary clarifiers with odor control facilities |                          |
| Electrical Building                                  |                          |
| Solids thickening building                           |                          |
| Sludge pumping system                                |                          |
| Two anaerobic digesters                              |                          |
| Waste gas burner                                     |                          |
| Digester sludge holding tank/secondary digester      |                          |
| Digester control building                            |                          |
| Ancillary facilities - Electrical                    |                          |
| Ancillary facilities - Lighting                      | Source                   |
| Existing Electricity Use (kWh)                       | 13,716,000 Kennedy/Jenks |
|                                                      |                          |

#### Energy Recovery Facility

| Electricity Generation                                   |           | Source                                                                                           |
|----------------------------------------------------------|-----------|--------------------------------------------------------------------------------------------------|
| New Electricity Generation (kWh)                         | 5,256,000 | Brown and Caldwell. 3-200 kW microturbines at full load. Email to Stephanie Rasmussen on 4/11/18 |
| New Electricity Load (kWh)                               | 1,370,000 | Brown and Caldwell email to Stephanie Rasmussen on 2/26/18                                       |
| Net Electricity Generation (kWh)                         | 3,886,000 |                                                                                                  |
| Collection of FOG traps                                  |           | Would not result in new activity since a third party is currently doing this collection.         |
| Number of round trips associated with FOG collection per |           |                                                                                                  |
| day                                                      | 1         |                                                                                                  |
| Miles per trip with existing FOG collection vendor       | 20.5      | From Clean World in Fruitridge to Roseville, CA (Google Maps)                                    |
| Miles per trip with City as FOG collection vendor        | 7         | From PGWWTP to Roseville, CA (Google Maps)                                                       |
| New Employees                                            | 1         |                                                                                                  |
| Miles per trip per employee                              | 15        |                                                                                                  |
| Trips per day                                            | 2         |                                                                                                  |

FOG = Fats Oils and Grease

Distance between PGWWTP and the Western Regional Sanitary Landfill (mi)

5.6

|                          |                   |            | Constructio<br>Maximum Dai |          |       | •            |       |           |              |               |               |       |
|--------------------------|-------------------|------------|----------------------------|----------|-------|--------------|-------|-----------|--------------|---------------|---------------|-------|
| Approximate Cor          | nstruction Schedu | le         |                            | .,       |       | <u> </u>     |       | Max Daily | Emissions    |               |               |       |
| PGWWTP Expansion         |                   |            |                            |          |       | otal<br>/day |       |           | aust<br>/day | Ŭ             | Fugitive Dust |       |
| Phase Name               | Start Date        | End Date   | Num Days Week              | Num Days | ROG   | NOX          | PM10  | PM2.5     | PM10         | PM2.5         | PM10          | PM2.5 |
| 01_Demolition            | 10/1/2017         | 10/5/2017  | 5                          | 4        | 0.63  | 6.71         | 0.84  | 0.34      | 0.273        | 0.251         | 0.572         | 0.094 |
| 02_Grading               | 10/6/2017         | 12/27/2017 | 5                          | 59       | 6.12  | 64.53        | 14.72 | 9.01      | 2.927        | 2.699         | 11.797        | 6.315 |
| 03_Trenching             | 10/15/2017        | 1/16/2018  | 5                          | 67       | 0.58  | 4.81         | 0.46  | 0.36      | 0.362        | 0.333         | 0.102         | 0.027 |
| 04_Building Construction | 1/17/2018         | 7/17/2019  | 5                          | 391      | 0.79  | 6.18         | 0.51  | 0.33      | 0.285        | 0.268         | 0.228         | 0.061 |
| 05_Paving                | 2/1/2019          | 2/1/2019   | 5                          | 1        | 0.73  | 7.05         | 0.52  | 0.41      | 0.415        | 0.382         | 0.102         | 0.027 |
| 06_Architectural Coating | 2/2/2019          | 10/11/2019 | 5                          | 180      | 0.91  | 1.24         | 0.12  | 0.10      | 0.086        | 0.086         | 0.038         | 0.010 |
| PGWWTP Energy Re         | ecovery Facility  |            |                            | •        | Total |              |       | Exhaust   |              | Fugitive Dust |               |       |
| 57<br>DI NI              |                   |            |                            |          |       | -            | /day  |           |              | /day          |               | /day  |
| Phase Name               | Start Date        | End Date   | Num Days Week              | Num Days | ROG   | NOX          | PM10  | PM2.5     | PM10         | PM2.5         | PM10          | PM2.5 |
| 01_Slab On Grade         | 2/1/2018          | 4/15/2019  | 5                          | 313      | 2.218 | 22.135       | 2.617 | 1.293     | 0.927        | 0.857         | 1.690         | 0.437 |
| 02_Bollards              | 4/16/2019         | 4/17/2019  | 5                          | 2        | 0.597 | 4.708        | 0.987 | 0.356     | 0.137        | 0.127         | 0.850         | 0.229 |
| 03_Paving                | 4/18/2019         | 7/4/2019   | 5                          | 56       | 4.469 | 46.679       | 2.881 | 1.977     | 1.844        | 1.697         | 1.038         | 0.279 |
| 04_Fencing               | 7/5/2019          | 7/9/2019   | 5                          | 3        | 1.833 | 18.200       | 0.919 | 0.864     | 0.919        | 0.864         | 0.000         | 0.000 |
| 05_Trench for Utilities  | 7/10/2019         | 7/19/2019  | 5                          | 8        | 1.108 | 10.229       | 0.706 | 0.499     | 0.476        | 0.438         | 0.230         | 0.061 |
| 06_Architectural Coating | 7/20/2019         | 8/14/2019  | 5                          | 18       | 3.674 | 3.720        | 0.399 | 0.296     | 0.258        | 0.258         | 0.141         | 0.037 |

#### Construction Emissions Modeling Results

#### **Annual Emissions**

#### **Annual Construction Emissions**

**PGWWTP Expansion** 

| POWWIPEXpansion                 |       |       |        |       |       |       |           |       |       |          |
|---------------------------------|-------|-------|--------|-------|-------|-------|-----------|-------|-------|----------|
|                                 | ROG   | NOX   | СО     | SOX   | PM10  | PM2.5 | Total CO2 | CH4   | N2O   | CO2e     |
| Year                            |       |       | tons/y | ear   |       |       | MT/year   | I     |       |          |
| 2017                            | 0.197 | 2.049 | 1.049  | 0.002 | 0.448 | 0.276 | 202.985   | 0.058 | 0.000 | 204.437  |
| 2018                            | 0.087 | 0.712 | 0.447  | 0.001 | 0.060 | 0.038 | 92.626    | 0.016 | 0.000 | 93.031   |
| 2019                            | 0.124 | 0.470 | 0.351  | 0.001 | 0.042 | 0.027 | 69.096    | 0.010 | 0.000 | 69.348   |
| Total                           | 0.409 | 3.231 | 1.847  | 0.004 | 0.550 | 0.341 | 364.706   | 0.084 | 0.000 | 366.816  |
| PGWWTP Energy Recovery Facility |       |       | •      | •     |       | •     |           |       | •     |          |
|                                 | ROG   | NOX   | CO     | SOX   | PM10  | PM2.5 | Total CO2 | CH4   | N2O   | CO2e     |
| Year                            |       |       | tons/y | ear   |       |       | MT/year   |       |       |          |
| 2017                            | 0.000 | 0.000 | 0.000  | 0.000 | 0.000 | 0.000 | 0.000     | 0.000 | 0.000 | 0.000    |
| 2018                            | 0.227 | 2.322 | 1.367  | 0.004 | 0.202 | 0.116 | 322.123   | 0.050 | 0.000 | 323.366  |
| 2019                            | 0.231 | 2.087 | 1.394  | 0.004 | 0.156 | 0.097 | 323.293   | 0.063 | 0.000 | 324.875  |
| Total                           | 0.458 | 4.408 | 2.761  | 0.007 | 0.357 | 0.213 | 645.416   | 0.113 | 0.000 | 648.241  |
| Combined                        | •     | •     |        |       | •     |       |           |       |       |          |
|                                 | ROG   | NOX   | CO     | SOX   | PM10  | PM2.5 | Total CO2 | CH4   | N2O   | CO2e     |
| Year                            |       |       | tons/y | ear   |       | •     | MT/year   |       | •     |          |
| 2017                            | 0.197 | 2.049 | 1.049  | 0.002 | 0.448 | 0.276 | 202.985   | 0.058 | 0.000 | 204.437  |
| 2018                            | 0.3   | 3.0   | 1.8    | 0.0   | 0.3   | 0.2   | 414.749   | 0.066 | 0.000 | 416.397  |
| 2019                            | 0.355 | 2.557 | 1.745  | 0.004 | 0.197 | 0.124 | 392.388   | 0.073 | 0.000 | 394.223  |
| Total                           | 0.866 | 7.639 | 4.608  | 0.011 | 0.907 | 0.554 | 1010.122  | 0.197 | 0.000 | 1015.057 |

|                                 | Amortized co | nstruction en | nissions (MT) |        |
|---------------------------------|--------------|---------------|---------------|--------|
|                                 | Total CO2    | CH4           | N2O           | CO2e   |
| PGWWTP Expansion                | 12.157       | 0.003         | 0.000         | 12.227 |
| PGWWTP Energy Recovery Facility | 21.514       | 0.004         | 0.000         | 21.608 |
| Combined                        | 33.671       | 0.007         | 0.000         | 33.835 |

Lifetime (yr) 30

1

|                          |                          |                           | Constructi      | on Emissior   | ns Mode     | ling Resul  | ts     |           |                        |         |         |         |
|--------------------------|--------------------------|---------------------------|-----------------|---------------|-------------|-------------|--------|-----------|------------------------|---------|---------|---------|
|                          |                          |                           | Maximum         | Daily Emissio | ons for Ent | ire Project |        |           |                        |         |         |         |
|                          |                          |                           |                 |               |             |             |        | Max Daily | <sup>,</sup> Emissions |         |         |         |
|                          | Combined and             | <b>Overlapping Phases</b> |                 |               |             | To          | otal   |           | Exh                    | aust    | Fugitiv | /e Dust |
|                          |                          | -                         | -               |               |             | lbs         | /day   |           | lbs/day                | lbs/day | lbs/day | lbs/day |
| First Expansion Phase    | Second Expansion Phase   | Energy Recovery Phase     | Start Date      | End Date      | ROG         | NOX         | PM10   | PM2.5     | PM10                   | PM2.5   | PM10    | PM2.5   |
| 01_Demolition            | None                     | None                      | 10/01/17        | 10/05/17      | 0.632       | 6.709       | 0.845  | 0.345     | 0.273                  | 0.251   | 0.572   | 0.094   |
| 02_Grading               | None                     | None                      | 10/06/17        | 10/14/17      | 6.120       | 64.532      | 14.724 | 9.014     | 2.927                  | 2.699   | 11.797  | 6.315   |
| 02_Grading               | 03_Trenching             | None                      | 10/15/17        | 12/27/17      | 6.705       | 69.343      | 15.188 | 9.374     | 3.289                  | 3.032   | 11.899  | 6.342   |
| 03_Trenching             | None                     | None                      | 12/28/17        | 01/16/18      | 0.585       | 4.811       | 0.464  | 0.360     | 0.362                  | 0.333   | 0.102   | 0.027   |
| 04_Building Construction | None                     | None                      | 01/17/18        | 01/31/18      | 0.786       | 6.184       | 0.513  | 0.329     | 0.285                  | 0.268   | 0.228   | 0.061   |
| 04_Building Construction | None                     | 01_Slab On Grade          | 02/01/18        | 01/31/19      | 3.004       | 28.319      | 3.131  | 1.623     | 1.212                  | 1.124   | 1.919   | 0.498   |
| 04_Building Construction | 05_Paving                | 01_Slab On Grade          | 02/01/19        | 02/01/19      | 3.735       | 35.373      | 3.648  | 2.031     | 1.627                  | 1.506   | 2.021   | 0.525   |
| 04_Building Construction | 06_Architectural Coating | 02_Bollards               | 02/02/19        | 04/17/19      | 2.288       | 12.129      | 1.625  | 0.781     | 0.508                  | 0.481   | 1.117   | 0.300   |
| 04_Building Construction | 06_Architectural Coating | 03_Paving                 | 04/18/19        | 07/17/19      | 6.161       | 54.101      | 3.519  | 2.402     | 2.214                  | 2.051   | 1.304   | 0.351   |
| 06_Architectural Coating | None                     | 03_Paving                 | 07/18/19        | 07/04/19      | 5.375       | 47.916      | 3.005  | 2.073     | 1.930                  | 1.783   | 1.076   | 0.290   |
| 06_Architectural Coating | None                     | 04_Fencing                | 07/05/19        | 07/09/19      | 2.739       | 19.437      | 1.044  | 0.960     | 1.005                  | 0.950   | 0.038   | 0.010   |
| 06_Architectural Coating | None                     | 05_Trench for Utilities   | 07/10/19        | 07/19/19      | 2.014       | 11.466      | 0.831  | 0.596     | 0.562                  | 0.524   | 0.268   | 0.071   |
| 06_Architectural Coating | None                     | 06_Architectural Coating  | 07/20/19        | 10/11/19      | 4.580       | 4.957       | 0.523  | 0.392     | 0.344                  | 0.344   | 0.179   | 0.048   |
| None                     | None                     | 06_Architectural Coating  | 10/12/19        | 08/14/19      | 3.674       | 3.720       | 0.399  | 0.296     | 0.258                  | 0.258   | 0.141   | 0.037   |
|                          |                          |                           | <u>.</u>        |               |             | lbs         | /day   |           |                        |         |         |         |
|                          |                          | Year                      |                 |               | ROG         | NOX         | PM10   | PM2.5     |                        |         |         |         |
|                          |                          | 2017                      |                 |               | 6.7         | 69.3        | 15.2   | 9.4       |                        |         |         |         |
|                          |                          | 2018                      |                 |               | 3.0         | 28.3        | 3.1    | 1.6       |                        |         |         |         |
|                          |                          | 2019                      |                 |               | 6.2         | 54.1        | 3.6    | 2.4       |                        |         |         |         |
|                          |                          | PCA                       | PCD Constructio | on Threhsolds | 82          | 82          | 82     | NA        |                        |         |         |         |
|                          |                          |                           |                 |               |             |             |        |           |                        |         |         |         |

Exceed thresholds? No

No

No

#### Existing Emissions from Landfilling of Waste Activated Sludge

| Methane Production from Landfilled WAS                   |                                       |        |               |  |  |  |  |
|----------------------------------------------------------|---------------------------------------|--------|---------------|--|--|--|--|
|                                                          | Units                                 | Amount | Source        |  |  |  |  |
| Daily WAS trucked to Western Regional Sanitary Landfill  | lb dry weight/day                     | 12,306 | Kennedy/Jenks |  |  |  |  |
| Trucking days per week                                   | days                                  | 5      | Kennedy/Jenks |  |  |  |  |
| Annual WAS trucked to Western Regional Sanitary Landfill | MT dry weight/year                    | 1,451  | Calculated    |  |  |  |  |
| IPCC methane emissions factor for landfilled raw sludge  | kg CH4/MT dry weight of raw<br>sludge | 195    | IPCC          |  |  |  |  |
| Annual Methane Emissions from WAS                        | MT CH4/year                           | 283    | Calculated    |  |  |  |  |
| Annual Methane Emissions from WAS                        | MTCO2e/year                           |        | Calculated    |  |  |  |  |

| Fugitive Methane Emissions    |               |          |                                                 |  |  |  |  |  |
|-------------------------------|---------------|----------|-------------------------------------------------|--|--|--|--|--|
|                               |               |          |                                                 |  |  |  |  |  |
| Default Collection Efficiency | from Landfill | 75%      | ARB 2010 (Local Government Operations Protocol) |  |  |  |  |  |
| Fugitive Methane Emissions    | MTCH4/year    | 71       | Calculated                                      |  |  |  |  |  |
| Fugitive Methane Emissions    | MTCO2e/year   | 1,768.77 | Calculated                                      |  |  |  |  |  |

| Unburned Methane Emissions from Electricity Generation |                        |        |                                                 |  |  |  |  |
|--------------------------------------------------------|------------------------|--------|-------------------------------------------------|--|--|--|--|
| Methane sent to generator                              | MTCH4/year             | 212.25 | Calculated                                      |  |  |  |  |
|                                                        | Percent of Methane     |        |                                                 |  |  |  |  |
|                                                        | Successfully Burned in |        |                                                 |  |  |  |  |
| Default Destruction Efficiency                         | Generators             | 99%    | ARB 2010 (Local Government Operations Protocol) |  |  |  |  |
| Annual emissions from unburned methane                 | MTCH4/year             | 2.12   | Calculated                                      |  |  |  |  |
| Annual emissions from unburned methane                 | MTCO2e/year            | 53.06  | Calculated                                      |  |  |  |  |

| Emissio                                      | ons Credits from Electricity Production f | rom Captured WAS Me | ethane                                            |  |  |  |  |  |
|----------------------------------------------|-------------------------------------------|---------------------|---------------------------------------------------|--|--|--|--|--|
|                                              | Units                                     | Amount              | Source                                            |  |  |  |  |  |
|                                              |                                           |                     | http://people.hofstra.edu/geotrans/eng/ch8en/conc |  |  |  |  |  |
| Heat of Combustion of Methane                | MJ/kg CH4                                 | 55.50               | 8en/energycontent.html                            |  |  |  |  |  |
| Conversion                                   | MJ/kWh                                    | 3.6                 | unit conversion                                   |  |  |  |  |  |
| Energy content in burned methane             | kWh/year                                  | 3,272,218.96        | Calculated                                        |  |  |  |  |  |
|                                              |                                           |                     | http://www.cat.com/en_US/products/new/power-      |  |  |  |  |  |
|                                              |                                           |                     | systems/electric-power-generation/gas-generator-  |  |  |  |  |  |
|                                              |                                           |                     | sets/18486985.html,                               |  |  |  |  |  |
| CAT G3561A Efficiency                        | output energy/input energy                | 36.4%               | http://www.wpwma.com/about-wpwma/                 |  |  |  |  |  |
| Annual Electricity produced by WAS methane   | MWh/year                                  | 1,191.09            | Calculated                                        |  |  |  |  |  |
| Utility Electricity Emission Factor in 2015  | MTCO2/MWh                                 | 0.173               | PGE Emission Factor for 2014                      |  |  |  |  |  |
| Utility Electricity Emission Factor in 2015  | MTCH4/MWh                                 | 1.15E-05            | PGE Emission Factor for 2014                      |  |  |  |  |  |
| Utility Electricity Emission Factor in 2015  | MTN2O/MWh                                 | 2.10E-06            | PGE Emission Factor for 2014                      |  |  |  |  |  |
| Emissions offset from Electricity Production | MTCO2/year                                | -205.60             | Calculated                                        |  |  |  |  |  |
| Emissions offset from Electricity Production | MTCH4/year                                | -0.01               | Calculated                                        |  |  |  |  |  |
| Emissions offset from Electricity Production | MTN2O/year                                | -0.002              | Calculated                                        |  |  |  |  |  |
| Emissions offset from Electricity Production | MTCO2e/year                               | -206.69             | Calculated                                        |  |  |  |  |  |

| Total 2015 Emissions from WAS Landfilled at Western Regional Sanitary Landfill with LFG Capture and Electricity Conversion |             |          |            |  |  |  |  |  |  |  |
|----------------------------------------------------------------------------------------------------------------------------|-------------|----------|------------|--|--|--|--|--|--|--|
| Source                                                                                                                     | Units       | Amount   | Source     |  |  |  |  |  |  |  |
| Fugitive Methane Emissions                                                                                                 | MTCO2e/year | 1,769    | Calculated |  |  |  |  |  |  |  |
|                                                                                                                            |             |          |            |  |  |  |  |  |  |  |
| Unburned Methane Emissions from Electricity Generation                                                                     | MTCO2e/year | 53.06    | Calculated |  |  |  |  |  |  |  |
| Emissions Credits from Electricity Production from Captured                                                                |             |          |            |  |  |  |  |  |  |  |
| WAS Methane                                                                                                                | MTCO2e/year | -206.69  | Calculated |  |  |  |  |  |  |  |
| Total                                                                                                                      | MTCO2e/year | 1,615.14 | Calculated |  |  |  |  |  |  |  |

|                                          |         |            | Operati       | onal Emissi | ons Model        | ing Results | Summary (            | Unmitigate    | ed)            |               |               |                |                |           |
|------------------------------------------|---------|------------|---------------|-------------|------------------|-------------|----------------------|---------------|----------------|---------------|---------------|----------------|----------------|-----------|
|                                          |         | Maximum Da | aily Emission | S           | Annual Emissions |             |                      |               |                |               |               |                |                |           |
| Sources                                  | lbs/day |            |               |             | tons/ year       |             |                      |               |                |               | MT/Year       |                |                |           |
|                                          | ROG     | NOX        | PM10          | PM2.5       | ROG              | NOX         | CO                   | SOX           | PM10           | PM2.5         | CO2           | CH4            | N2O            | CO2e      |
|                                          |         |            |               |             | E                | xisting     |                      |               |                |               |               |                |                |           |
| Mobile Sources                           | 0.274   | 3.996      | 0.182         | 0.162       | 0.050            | 0.744       | 21.274               | 0.000         | 0.033          | 0.029         | 1,926.276     | 7.819          | 0.005          | 2,123.09  |
| Electricity Use                          | 0.000   | 0.000      | 0.000         | 0.000       | 0.000            | 0.000       | 0.000                | 0.000         | 0.000          | 0.000         | 2,367.613     | 0.158          | 0.029          | 2,380.12  |
| Wastewater Treatment Processes           | 16.548  | 3.014      | 0.219         | 0.033       | 3.022            | 0.550       | 0.040                | 0.000         | 0.006          | 0.006         | 0.000         | 0.000          | 4.578          | 1,364.22  |
| Landfilled WAS at WRSL                   | 0.000   | 0.000      | 0.000         | 0.000       | 0.000            | 0.000       | 0.000                | 0.000         | 0.000          | 0.000         | -205.602      | 72.859         | -0.002         | 1,615.14  |
| Emissions Total                          | 16.822  | 7.010      | 0.401         | 0.195       | 3.072            | 1.295       | 21.314               | 0.000         | 0.039          | 0.035         | 4,088.287     | 80.836         | 4.609          | 7,482.57  |
|                                          |         |            |               |             | Ехра             | nsion Only  |                      |               |                |               |               |                |                |           |
| Existing Facilities + Proposed Project   |         |            |               |             |                  |             |                      |               |                |               |               |                |                |           |
| Mobile Sources                           | 0.309   | 4.841      | 0.372         | 0.172       | 0.063            | 1.116       | 21.317               | 0.002         | 0.043          | 0.034         | 2,055.852     | 7.819          | 0.005          | 2,252.68  |
| Electricity Use                          | 0.000   | 0.000      | 0.000         | 0.000       | 0.000            | 0.000       | 0.000                | 0.000         | 0.000          | 0.000         | 4,001.599     | 0.267          | 0.049          | 4,022.74  |
| Wastewater Treatment Processes           | 27.968  | 5.094      | 0.056         | 0.055       | 5.108            | 0.930       | 0.068                | 0.000         | 0.010          | 0.010         | 0.000         | 0.000          | 7.530          | 2,243.83  |
| Flaring Digester Gas/Natural Gas Boilers | 10.876  | 19.843     | 0.491         | 0.164       | 1.986            | 3.624       | 12.478               | 0.000         | 0.090          | 0.030         | 1,712.793     | 2.139          | 0.031          | 1,775.62  |
| Emissions Total                          | 39.153  | 29.777     | 0.919         | 0.391       | 7.157            | 5.670       | 33.863               | 0.002         | 0.142          | 0.074         | 7,770.244     | 10.225         | 7.614          | 10,294.89 |
| Difference from Existing                 |         |            |               |             |                  |             |                      |               |                |               |               |                |                |           |
| Mobile Sources                           | 0.034   | 0.844      | 0.190         | 0.010       | 0.013            | 0.372       | 0.043                | 0.001         | 0.010          | 0.005         | 129.576       | 0.001          | 0.000          | 129.592   |
| Electricity Use                          | 0.000   | 0.000      | 0.000         | 0.000       | 0.000            | 0.000       | 0.000                | 0.000         | 0.000          | 0.000         | 1,633.986     | 0.109          | 0.020          | 1,642.62  |
| Wastewater Treatment Processes           | 11.420  | 2.080      | -0.164        | 0.022       | 2.086            | 0.380       | 0.028                | 0.000         | 0.004          | 0.004         | 0.000         | 0.000          | 2.952          | 879.616   |
| Flaring Digester Gas/Natural Gas Boilers | 10.876  | 19.843     | 0.491         | 0.164       | 1.986            | 3.624       | 12.478               | 0.000         | 0.090          | 0.030         | 1,918.395     | -70.720        | 0.034          | 160.487   |
| Emissions Total                          | 22.330  | 22.767     | 0.517         | 0.196       | 4.085            | 4.376       | 12.549               | 0.001         | 0.103          | 0.039         | 3,681.957     | -70.611        | 3.005          | 2,812.31  |
|                                          |         |            |               |             |                  |             |                      | Amort         | ized Construct | ion Emissions | 12.157        | 0.003          | 0.000          | 12.227    |
|                                          |         |            |               |             |                  |             | <b>Emissions Tot</b> | al with Amort | ized Construct | ion Emissions | 3,694.114     | -70.608        | 3.005          | 2,824.54  |
|                                          |         |            |               |             |                  |             |                      |               |                |               |               | Total emission | •              |           |
| PCAPCD Thresholds                        | 55      | 55         | 82            |             |                  |             |                      |               |                | PCAPCD G      | HG Efficiency | Threshold (MT  |                |           |
| Exceeds Thresholds?                      | No      | Νο         | Νο            |             |                  |             |                      |               |                |               |               | Exceed         | ls Thresholds? | Yes       |

| 2020 Startup: Expansion + Energy Recovery |        |        |       |       |       |       |        |       |                |       |           |         |        |            |
|-------------------------------------------|--------|--------|-------|-------|-------|-------|--------|-------|----------------|-------|-----------|---------|--------|------------|
| Existing Facilities + Proposed Project    |        |        |       |       |       |       |        |       |                |       |           |         |        |            |
| Mobile Sources                            | 0.806  | 4.853  | 0.597 | 0.234 | 0.150 | 0.990 | 21.739 | 0.030 | 0.051          | 0.044 | 1,529.687 | 10.387  | 0.005  | 1,790.733  |
| Electricity Use                           | 0.000  | 0.000  | 0.000 | 0.000 | 0.000 | 0.000 | 0.000  | 0.000 | 0.000          | 0.000 | 2,239.970 | 0.149   | 0.027  | 2,251.807  |
| Wastewater Treatment Processes            | 18.809 | 3.425  | 0.037 | 0.037 | 5.108 | 0.930 | 0.068  | 0.000 | 0.010          | 0.010 | 0.000     | 0.000   | 5.128  | 1,528.114  |
| Gas Turbine                               | 0.968  | 3.874  | 1.019 | 0.211 | 0.263 | 1.052 | 4.178  | 0.000 | 0.230          | 0.057 | 729.662   | 3.223   | 0.076  | 832.819    |
| Emissions Total                           | 20.583 | 12.152 | 1.653 | 0.482 | 5.521 | 2.972 | 25.985 | 0.030 | 0.290          | 0.112 | 4,499.318 | 13.760  | 5.235  | 6,403.473  |
| Difference from Existing                  |        |        |       |       |       |       |        |       |                |       |           |         |        |            |
| Mobile Sources                            | 0.5    | 0.9    | 0.4   | 0.1   | 0.100 | 0.246 | 0.464  | 0.030 | 0.018          | 0.015 | -396.590  | 2.569   | 0.000  | -332.357   |
| Electricity Use                           | 0.0    | 0.0    | 0.0   | 0.0   | 0.000 | 0.000 | 0.000  | 0.000 | 0.000          | 0.000 | -127.643  | -0.009  | -0.002 | -128.318   |
| Wastewater Treatment Processes            | 2.3    | 0.4    | -0.2  | 0.0   | 2.086 | 0.380 | 0.028  | 0.000 | 0.004          | 0.004 | 0.000     | 0.000   | 0.550  | 163.890    |
| Gas Turbine                               | 1.0    | 3.9    | 1.0   | 0.2   | 0.263 | 1.052 | 4.178  | 0.000 | 0.230          | 0.057 | 935.264   | -69.636 | 0.078  | -782.322   |
| Emissions Total                           | 3.8    | 5.1    | 1.3   | 0.3   | 2.449 | 1.678 | 4.670  | 0.030 | 0.251          | 0.076 | 411.031   | -67.076 | 0.627  | -1,079.106 |
| Amortized Construction Emission           |        |        |       |       |       |       |        |       | tion Emissions | 0.000 | 0.000     | 0.000   | 0.000  |            |

Additional Reductions Needed to Meet Target 1,895

| <b>Emissions Total with Amortized Construction Emissions</b> | 411.031        | -67.076        | 0.627           | -1,079.106 |
|--------------------------------------------------------------|----------------|----------------|-----------------|------------|
|                                                              |                | Total emission | is per 1,000 sf | -24.6      |
| PCAPCD GI                                                    | HG Efficiency  | Threshold (MT  | CO2e/1000sf)    | 27.3       |
|                                                              |                | Exceed         | s Thresholds?   | No         |
| Addi                                                         | itional Reduct | ions Needed to | o Meet Target   | 0          |

|                                        |        |        |       | 2040 Bu | ildout: Expa | nsion + En | ergy Recov    | ery           |                |               |            |         |       |            |
|----------------------------------------|--------|--------|-------|---------|--------------|------------|---------------|---------------|----------------|---------------|------------|---------|-------|------------|
| Existing Facilities + Proposed Project |        |        |       |         |              |            |               |               |                |               |            |         |       |            |
| Mobile Sources                         | 2.001  | 5.244  | 0.759 | 0.396   | 0.373        | 1.199      | 22.694        | 0.101         | 0.084          | 0.075         | 438.518    | 16.551  | 0.005 | 853.703    |
| Electricity Use                        | 0.000  | 0.000  | 0.000 | 0.000   | 0.000        | 0.000      | 0.000         | 0.000         | 0.000          | 0.000         | 3,330.810  | 0.222   | 0.040 | 3,348.412  |
| Wastewater Treatment Processes         | 27.968 | 5.094  | 0.056 | 0.055   | 5.108        | 0.930      | 0.068         | 0.000         | 0.010          | 0.010         | 0.000      | 0.000   | 7.530 | 2,243.839  |
| Gas Turbine                            | 1.440  | 5.760  | 1.257 | 0.314   | 0.263        | 1.052      | 4.178         | 0.000         | 0.230          | 0.057         | 1,198.692  | 3.203   | 0.102 | 1,309.145  |
| Emissions Total                        | 31.409 | 16.098 | 2.072 | 0.765   | 5.743        | 3.181      | 26.940        | 0.101         | 0.323          | 0.143         | 4,968.020  | 19.976  | 7.677 | 7,755.100  |
| Difference from Existing               |        |        |       |         |              |            |               |               |                |               |            |         |       |            |
| Mobile Sources                         | 1.7    | 1.2    | 0.6   | 0.2     | 0.322        | 0.454      | 1.420         | 0.101         | 0.051          | 0.046         | -1,487.758 | 8.732   | 0.000 | -1,269.386 |
| Electricity Use                        | 0.0    | 0.0    | 0.0   | 0.0     | 0.000        | 0.000      | 0.000         | 0.000         | 0.000          | 0.000         | 963.197    | 0.064   | 0.012 | 968.287    |
| Wastewater Treatment Processes         | 11.4   | 2.1    | -0.2  | 0.0     | 2.086        | 0.380      | 0.028         | 0.000         | 0.004          | 0.004         | 0.000      | 0.000   | 2.952 | 879.616    |
| Gas Turbine                            | 1.4    | 5.8    | 1.3   | 0.3     | 0.263        | 1.052      | 4.178         | 0.000         | 0.230          | 0.057         | 1,404.294  | -69.657 | 0.104 | -305.997   |
| Emissions Total                        | 14.6   | 9.1    | 1.7   | 0.6     | 2.671        | 1.886      | 5.626         | 0.101         | 0.284          | 0.107         | 879.733    | -60.860 | 3.068 | 272.520    |
|                                        |        |        |       |         |              |            |               | Amort         | ized Construct | ion Emissions | 33.671     | 0.007   | 0.000 | 33.835     |
|                                        |        |        |       |         |              |            | Emissions Tot | al with Amort | ized Construct | ion Emissions | 913.403    | -60.854 | 3.068 | 306.356    |

#### **Mobile Emissions Calculations**

|                                            | Existing Conditions<br>(with CNG SWCV) | Permitted Current<br>(with CNG SWCV) | Permitted Future -<br>Expansion only (with<br>CNG SWCV) - 2020<br>Startup | Permitted Future -<br>Energy Recovery Only<br>- 2020 Startup | Permitted Future -<br>2020 Startup with<br>Energy Recovery<br>(with rCNG SWCV) | Permitted Future -<br>Expansion only (with<br>CNG SWCV) - 2040<br>Full Buildout | Permitted Future -<br>Energy Recovery Only<br>- 2040 Full Buildout | Permitted Future -<br>Energy Recovery<br>(with rCNG SWCV) -<br>2040 Full Buildout | Notes                                                                                                                                                                                        |
|--------------------------------------------|----------------------------------------|--------------------------------------|---------------------------------------------------------------------------|--------------------------------------------------------------|--------------------------------------------------------------------------------|---------------------------------------------------------------------------------|--------------------------------------------------------------------|-----------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Employee Commute                           |                                        |                                      |                                                                           |                                                              |                                                                                |                                                                                 |                                                                    |                                                                                   |                                                                                                                                                                                              |
| Number of new employees                    | 0                                      | 0                                    | 1                                                                         | 1                                                            | 2                                                                              | 1                                                                               | 1                                                                  | 2                                                                                 | Only the number of NEW employees were given                                                                                                                                                  |
| Working days per year                      | 365.25                                 | 365.25                               | 365.25                                                                    | 365.25                                                       | 365.25                                                                         | 365.25                                                                          | 365.25                                                             | 365.25                                                                            |                                                                                                                                                                                              |
| Trips per day                              | 2                                      | 2                                    | 2                                                                         | 2                                                            | 2                                                                              | 2                                                                               | 2                                                                  | 2                                                                                 | Assumption                                                                                                                                                                                   |
| Miles per trip per employee (assumption)   | 15                                     | 15                                   | 15                                                                        | 15                                                           | 15                                                                             | 15                                                                              | 15                                                                 | 15                                                                                | Assumption                                                                                                                                                                                   |
| Employee VMT per year                      | 0                                      | 0                                    | 10,957.50                                                                 | 10,957.50                                                    | 21,915.00                                                                      | 10,957.50                                                                       | 10,957.50                                                          | 21,915.00                                                                         | Calculated                                                                                                                                                                                   |
| Vehicle Type                               |                                        |                                      |                                                                           | LDA/LD                                                       | T1/LDT2                                                                        |                                                                                 |                                                                    |                                                                                   | EMFAC2007 categories                                                                                                                                                                         |
| Hauling Trips: Collection of HSW/FOG traps |                                        |                                      |                                                                           |                                                              |                                                                                |                                                                                 |                                                                    |                                                                                   |                                                                                                                                                                                              |
| Number of trips per day                    | 2                                      | 2                                    | 2                                                                         | 2                                                            | 2                                                                              | 2                                                                               | 2                                                                  | 2                                                                                 | HSW/FOG collection would not have been diverted to the PGWWTP<br>without the energy recovery facility. HSW/FOG provides more<br>organics to produce 40% additional methane for vehicle fuel. |
| Collection Days per year                   | 250                                    | 250                                  | 250                                                                       | 250                                                          | 250                                                                            | 250                                                                             | 250                                                                | 250                                                                               | Assumption                                                                                                                                                                                   |
| Miles per hauling trip                     | 21                                     | 21                                   | 21                                                                        | 7                                                            | 7                                                                              | 21                                                                              | 7                                                                  | 7                                                                                 | Existing HSW/FOG trips are from Clean World in Fruitridge to Roseville<br>city center. Proposed trips would be from PGWWTP to Roseville city<br>center.                                      |
| VMT per year                               | 10,250                                 | 10,250                               | 10,250                                                                    | 3,500                                                        | 3,500                                                                          | 10,250                                                                          | 3,500                                                              | 3,500                                                                             |                                                                                                                                                                                              |
| Vehicle Type                               |                                        |                                      |                                                                           | MM                                                           | 1DT                                                                            |                                                                                 |                                                                    |                                                                                   | EMFAC2007 categories                                                                                                                                                                         |
| Hauling Trips: Biosolids/WAS               | WAS                                    | WAS                                  | Biosolids                                                                 | Biosolids                                                    | Biosolids                                                                      | Biosolids                                                                       | Biosolids                                                          | Biosolids                                                                         |                                                                                                                                                                                              |
| Trucks per day                             | 3.23                                   | 5.4                                  | 2.29                                                                      | 2.29                                                         | 2.29                                                                           | 3.41                                                                            | 3.41                                                               | 3.41                                                                              | From email from KJ to Ascent on 11/18/2016.                                                                                                                                                  |
| Number of trips per week                   | 32                                     | 54                                   | 23                                                                        | 23                                                           | 23                                                                             | 34                                                                              | 34                                                                 | 34                                                                                | Calculated assuming 2 trips per day, 5 days per week.                                                                                                                                        |
| Weeks per year                             | 52                                     | 52                                   | 52                                                                        | 52                                                           | 52                                                                             | 52                                                                              | 52                                                                 | 52                                                                                | Assumption                                                                                                                                                                                   |
| Miles per trip                             | 5.6                                    | 5.6                                  | 45.0                                                                      | 45.0                                                         | 45.0                                                                           | 45.0                                                                            | 45.0                                                               | 45.0                                                                              | Driving distance to Western Regional Sanitary Landfill. Location of<br>WAS/biosolids disposal not assumed to change.                                                                         |
| VMT per year                               | 9,406                                  | 15,725                               | 53,661                                                                    | 53,661                                                       | 53,661                                                                         | 79,794                                                                          | 79,794                                                             | 79,794                                                                            | Calculated                                                                                                                                                                                   |
| Vehicle Type                               |                                        |                                      |                                                                           | НН                                                           | DT                                                                             |                                                                                 |                                                                    |                                                                                   | EMFAC2007 categories                                                                                                                                                                         |
| Hauling Trips: Chemicals                   |                                        |                                      |                                                                           |                                                              |                                                                                |                                                                                 |                                                                    |                                                                                   |                                                                                                                                                                                              |
| Number of trips per week                   | 2                                      | 2.7                                  | 2.27                                                                      | 2.27                                                         | 2.27                                                                           | 3.38                                                                            | 3.38                                                               | 3.38                                                                              | From data request. Scaled by capacity increase.                                                                                                                                              |
| Weeks per year                             | 52                                     | 52                                   | 52                                                                        | 52                                                           | 52                                                                             | 52                                                                              | 52                                                                 | 52                                                                                | Assumption                                                                                                                                                                                   |
| Miles per trip                             | 6.6                                    | 6.6                                  | 6.6                                                                       | 6.6                                                          | 6.6                                                                            | 6.6                                                                             | 6.6                                                                | 6.6                                                                               | Default vendor distance in CalEEMod                                                                                                                                                          |
| VMT per year                               | 686                                    | 918                                  | 780                                                                       | 686                                                          | 780                                                                            | 1,160                                                                           | 1,160                                                              | 1,160                                                                             | Calculated                                                                                                                                                                                   |
| Vehicle Type                               |                                        |                                      |                                                                           | MM                                                           | 1DT                                                                            |                                                                                 |                                                                    |                                                                                   | EMFAC2007 categories                                                                                                                                                                         |

#### Mobile Emissions Calculations (Continued)

| auling Trips: Waste Collection Vehicles       | Existing Conditions<br>(with CNG SWCV) | Permitted Current<br>(with CNG SWCV) | Permitted Future -<br>Expansion only (with<br>CNG SWCV) - 2020<br>Startup | Permitted Future -<br>Energy Recovery Only<br>- 2020 Startup | Permitted Future -<br>2020 Startup with<br>Energy Recovery<br>(with rCNG SWCV) | Permitted Future -<br>Expansion only (with<br>CNG SWCV) - 2040<br>Full Buildout | Permitted Future -<br>Energy Recovery Only<br>- 2040 Full Buildout | Permitted Future -<br>Energy Recovery<br>(with rCNG SWCV) -<br>2040 Full Buildout | Notes                                                                                                                                                                                                                                                                                                                   |
|-----------------------------------------------|----------------------------------------|--------------------------------------|---------------------------------------------------------------------------|--------------------------------------------------------------|--------------------------------------------------------------------------------|---------------------------------------------------------------------------------|--------------------------------------------------------------------|-----------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Number of vehicles                            | 34                                     | 34                                   | 34                                                                        | 34                                                           | 34                                                                             | 34                                                                              | 34                                                                 | 34                                                                                | Numbers based on maximum fueling capacity at build out, not actua<br>number of waste collection vehicles that would operate. Number of<br>vehicles assumed to be the same between existing and project<br>conditions to allow the project to only account for the change in<br>vehicle fuels and not the change in VWT. |
| Hauling Days per year                         | 365.25                                 | 365.25                               | 365.25                                                                    | 365.25                                                       | 365.25                                                                         | 365.25                                                                          | 365.25                                                             | 365.25                                                                            | Assumes all gas produced by the facility would be combusted.                                                                                                                                                                                                                                                            |
| Number of rCNG Vehicles Supported             | 0                                      | 0                                    | 0                                                                         | 0                                                            | 10                                                                             | 0                                                                               | 0                                                                  | 34                                                                                | From Stephanie's email on 2/15/18                                                                                                                                                                                                                                                                                       |
| DGE used per day per vehicle                  | 27                                     | 27                                   | 27                                                                        | 27                                                           | 27                                                                             | 27                                                                              | 27                                                                 | 27                                                                                | From Stephanie's email on 2/15/18                                                                                                                                                                                                                                                                                       |
| DGE used per day (rCNG)                       | 0                                      | 0                                    | 0                                                                         | 0                                                            | 270                                                                            | 0                                                                               | 0                                                                  | 918                                                                               | rCNG vehicles times DGE per day per vehicle                                                                                                                                                                                                                                                                             |
| DGE used per day (CNG)                        | 918                                    | 918                                  | 918                                                                       | 918                                                          | 648                                                                            | 918                                                                             | 918                                                                | 0                                                                                 | Total DGE/day minus rCNG DGE/day                                                                                                                                                                                                                                                                                        |
| Total DGE used per day                        | 918                                    | 918                                  | 918                                                                       | 918                                                          | 918                                                                            | 918                                                                             | 918                                                                | 918                                                                               | Calculated based on max number of vehicles per day and DGE per vehicle per day                                                                                                                                                                                                                                          |
| Diesel gallon equivalents (DGE) used per year | 335,300                                | 335,300                              | 335,300                                                                   | 335,300                                                      | 335,300                                                                        | 335,300                                                                         | 335,300                                                            | 335,300                                                                           | Multiplied by number of days per year. This assumes all vehicle fuel<br>produced by the Energy Recovery Facility in a year would be<br>combusted.                                                                                                                                                                       |
| Miles per diesel gallons equivalent           | 2.5                                    | 2.5                                  | 2.5                                                                       | 2.5                                                          | 2.5                                                                            | 2.5                                                                             | 2.5                                                                | 2.5                                                                               | Assumption                                                                                                                                                                                                                                                                                                              |
| VMT per day per vehicle                       | 68                                     | 68                                   | 68                                                                        | 68                                                           | 68                                                                             | 68                                                                              | 68                                                                 | 68                                                                                | For rCNG vehicles, adds difference in miles assuming only one round<br>trip to the fueling station per day per vehicle.                                                                                                                                                                                                 |
| VMT per year                                  | 838,249                                | 838,249                              | 838,249                                                                   | 838,249                                                      | 838,249                                                                        | 838,249                                                                         | 838,249                                                            | 838,249                                                                           | Calculated                                                                                                                                                                                                                                                                                                              |
| MMBTU used per year (rCNG)                    | 0                                      | 0                                    | 0                                                                         | 0                                                            | 13,708                                                                         | 0                                                                               | 0                                                                  | 46,607                                                                            | Calculated from rCNG DGE per day                                                                                                                                                                                                                                                                                        |
| MMBTU used per year (CNG)                     | 46,607                                 | 46,607                               | 46,607                                                                    | 46,607                                                       | 32,899                                                                         | 46,607                                                                          | 46,607                                                             | 0                                                                                 | Calculated from CNG DGE per day                                                                                                                                                                                                                                                                                         |
| Total MMBTU per year                          | 46,607                                 | 46,607                               | 46,607                                                                    | 46,607                                                       | 46,607                                                                         | 46,607                                                                          | 46,607                                                             | 46,607                                                                            | Calculated                                                                                                                                                                                                                                                                                                              |
| Vehicle Type                                  | T7 SWCV                                |                                      |                                                                           |                                                              |                                                                                |                                                                                 |                                                                    |                                                                                   | Solid Waste Collection vehicle under EMFAC2011 Categories                                                                                                                                                                                                                                                               |

#### Vehicle Activity Summary

| Тгір Туре                                                | Existing Conditions<br>(with CNG SWCV) | Permitted Current<br>(with CNG SWCV) | Permitted Future -<br>Expansion only (with<br>CNG SWCV) - 2020<br>Startup | Permitted Future -<br>Energy Recovery Only<br>- 2020 Startup | Permitted Future -<br>2020 Startup with<br>Energy Recovery<br>(with rCNG SWCV) | Permitted Future -<br>Expansion only (with<br>CNG SWCV) - 2040<br>Full Buildout | Permitted Future -<br>Energy Recovery Only<br>- 2040 Full Buildout | (with rCNG SWCV) - | Vehicle Type                                                                        |
|----------------------------------------------------------|----------------------------------------|--------------------------------------|---------------------------------------------------------------------------|--------------------------------------------------------------|--------------------------------------------------------------------------------|---------------------------------------------------------------------------------|--------------------------------------------------------------------|--------------------|-------------------------------------------------------------------------------------|
| Employee Commute (VMT/year)                              | 0                                      | 0                                    | 10,958                                                                    | 10,958                                                       | 21,915                                                                         | 10,958                                                                          | 10,958                                                             | 21,915             | LDA/LDT/LDT2                                                                        |
| Hauling Trips: Collection of HSW/FOG traps<br>(VMT/year) | 10,250                                 | 10,250                               | 10,250                                                                    | 3,500                                                        | 3,500                                                                          | 10,250                                                                          | 3,500                                                              | 3,500              | мнот                                                                                |
| Hauling Trips: Biosolids/WAS (VMT/year)                  | 9,406                                  | 15,725                               | 53,661                                                                    | 53,661                                                       | 53,661                                                                         | 79,794                                                                          | 79,794                                                             | 79,794             | HHDT                                                                                |
| Hauling Trips: Chemicals (VMT/year)                      | 686                                    | 918                                  | 780                                                                       | 686                                                          | 780                                                                            | 1,160                                                                           | 1,160                                                              | 1,160              | MHDT                                                                                |
| Hauling Trips: Waste Collection Vehicles                 |                                        |                                      |                                                                           | 838,249                                                      |                                                                                |                                                                                 | 838,249                                                            |                    |                                                                                     |
| rCNG (VMT/year)                                          | 0                                      | 0                                    | 0                                                                         | 0                                                            | 246,544                                                                        | 0                                                                               | 0                                                                  | 838,249            |                                                                                     |
| CNG (VMT/year)                                           | 838,249                                | 838,249                              | 838,249                                                                   | 838,249                                                      | 591,705                                                                        | 838,249                                                                         | 838,249                                                            | 0                  | Non-Renewable CNG for all scenarios except with Energy Recovery whi<br>rCNG-CNG Mix |

#### **EMFAC and CA-GREET Emission Factors**

| Vehicle Type               | Source       | ROG   | NOx   | CO     | SOx   | PM <sub>10</sub> | PM <sub>2.5</sub> | CO2       | CH₄     | N2O   | Fuel Type |
|----------------------------|--------------|-------|-------|--------|-------|------------------|-------------------|-----------|---------|-------|-----------|
| Tailpipe Emissions in 2020 | 0 (g/mi)     |       |       |        |       |                  |                   |           |         |       |           |
| LDA/LDT1/LDT2              | EMFAC2014    | 0.126 | 0.087 | 2.552  | 0.003 | 0.047            | 0.020             | 309.741   | 0.007   | 0.000 | Mix       |
| HHDT                       | EMFAC2014    | 0.146 | 4.768 | 0.150  | 0.017 | 0.116            | 0.055             | 1,784.492 | 0.008   | 0.000 | Mix       |
| MHDT                       | EMFAC2014    | 0.132 | 2.445 | 0.180  | 0.012 | 0.181            | 0.096             | 1,213.274 | 0.008   | 0.000 | Mix       |
| Renewable CNG              | GREET 2015   | 0.051 | 0.720 | 23.020 | 0.000 | 0.032            | 0.030             | 0.000     | 8.060   | 0.001 | CNG       |
| Non-Renewable CNG          | GREET 2015   | 0.051 | 0.720 | 23.020 | 0.000 | 0.032            | 0.030             | 1,830.000 | 8.060   | 0.001 | CNG       |
| Upstream Emissions (g/M    | IMBTU)       |       |       |        |       |                  |                   |           |         |       |           |
| Renewable CNG              | CA-GREET 2.0 | 6.015 | 1.932 | 26.237 | 1.932 | 0.815            | 0.815             | 5,521.844 | 177.180 | 0.083 | CNG       |
| Non-Renewable CNG          | CA-GREET 2.0 | 0.000 | 0.000 | 0.000  | 0.000 | 0.000            | 0.000             | 3,995.782 | 7.220   | 0.079 | CNG       |

Source: EMFAC2014, CA-GREET 2.0, GREET 2015

\*Criteria air pollutant factors only include pumping VOC emissions and exclude emissions emitted outside the air district). However, GHG emissions from all upstream categories are included.

#### Upstream Emissions from Diesel, rCNG, and CNG

|                                        | VOC               | CO                      | NOx             | PM10  | PM2.5 | SOx   | CO2        | CH4    | CH4: leakage | Total CH4 | N2O   |
|----------------------------------------|-------------------|-------------------------|-----------------|-------|-------|-------|------------|--------|--------------|-----------|-------|
| California Ultra Low-Sulfur Die        | sel upstream prod | luction (g/MMBTU)       |                 |       |       |       |            |        |              |           |       |
| Refining                               | These emissions a | are not generated in th | e air district. |       |       |       | 15,299.704 | 28.267 | 0.000        | 28.267    | 0.270 |
| Transportation Distribution            |                   |                         |                 |       |       |       | 567.758    | 0.000  | 0.000        | 0.761     | 0.011 |
| Refueling Station and Bulk<br>Terminal | 1.087             | 0.000                   | 0.000           | 0.000 | 0.000 | 0.000 | 0.000      | 0.000  | 0.000        | 0.000     | 0.000 |
| Total                                  | 1.087             | 0.000                   | 0.000           | 0.000 | 0.000 | 0.000 | 15,867.463 | 28.267 | 0.000        | 29.028    | 0.281 |
| Wastewater Sludge to CNG pro           | oduction (On-Site | Refueling) (g/MMBTU)    |                 |       |       |       |            |        |              |           |       |
| rCNG Production                        | 3.948             | 17.222                  | 1.268           | 0.535 | 0.535 | 0.017 | 1,897.160  | 28.082 | 134.399      | 162.482   | 0.055 |
| On-Site Compression                    | 2.067             | 9.014                   | 0.664           | 0.280 | 0.280 | 0.009 | 3,624.684  | 14.698 | 0.000        | 14.698    | 0.029 |
| Total                                  | 6.015             | 26.237                  | 1.932           | 0.815 | 0.815 | 0.026 | 5,521.844  | 42.781 | 134.399      | 177.180   | 0.083 |
| Conventional Compressed Nat            | ural Gas upstream | n production (g/MMBT    | U)              |       |       |       |            |        |              |           |       |
| NG Compression                         | These emissions a | are not generated in th | e air district. |       |       |       | 3,995.782  | 7.220  | 0.000        | 7.220     | 0.079 |
| Total                                  | 0.000             | 0.000                   | 0.000           | 0.000 | 0.000 | 0.000 | 3,995.782  | 7.220  | 0.000        | 7.220     | 0.079 |

Source: CA-GREET 2.0

Notes: Anaerobic digestion emissions and electricity offsets not included here because they are already accounted for under the Process Emissions analysis. Heating energy needs for digestion would be available from the heat given off by the digester gas-powered microturbine. rCNG = Renewable CNG

#### Mobile Emissions Calculations (Continued)

Mobile-Source Emissions Summary

| ·                                                                        | N     | Aaximum Dai | ily Emissions |       |       |       |        |       | Ar    | nual Emissio | ons       |        |       |           |
|--------------------------------------------------------------------------|-------|-------------|---------------|-------|-------|-------|--------|-------|-------|--------------|-----------|--------|-------|-----------|
|                                                                          |       | lbs/o       | day           |       |       |       | tons/  | year  |       |              |           | MT/    | Year  |           |
| Existing Conditions (with CNG SWCV)                                      | ROG   | NOX         | PM10          | PM2.5 | ROG   | NOX   | CO     | SOX   | PM10  | PM2.5        | CO2       | CH₄    | N₂O C | CO₂e      |
| Employee Commute                                                         | 0.000 | 0.000       | 0.000         | 0.000 | 0.000 | 0.000 | 0.000  | 0.000 | 0.000 | 0.000        | 0.000     | 0.000  | 0.000 | 0.000     |
| Hauling Trips: Collection of HSW/FOG traps                               | 0.012 | 0.221       | 0.016         | 0.009 | 0.001 | 0.028 | 0.002  | 0.000 | 0.002 | 0.001        | 12.436    | 0.000  | 0.000 | 12.438    |
| Hauling Trips: Biosolids/WAS                                             | 0.004 | 0.118       | 0.003         | 0.001 | 0.002 | 0.049 | 0.002  | 0.000 | 0.001 | 0.001        | 16.785    | 0.000  | 0.000 | 16.786    |
| Hauling Trips: Chemicals                                                 | 0.001 | 0.015       | 0.001         | 0.001 | 0.000 | 0.002 | 0.000  | 0.000 | 0.000 | 0.000        | 0.833     | 0.000  | 0.000 | 0.833     |
| Hauling Trips: Waste Collection Vehicles                                 | 0.258 | 3.643       | 0.162         | 0.152 | 0.047 | 0.665 | 21.271 | 0.000 | 0.030 | 0.028        | 1,896.223 | 7.818  | 0.005 | 2,093.032 |
| Permitted Current (with CNG SWCV)                                        |       |             |               |       |       |       |        |       |       |              |           |        |       |           |
| Employee Commute                                                         | 0.000 | 0.000       | 0.000         | 0.000 | 0.000 | 0.000 | 0.000  | 0.000 | 0.000 | 0.000        | 0.000     | 0.000  | 0.000 | 0.000     |
| Hauling Trips: Collection of HSW/FOG traps                               | 0.012 | 0.221       | 0.016         | 0.009 | 0.001 | 0.028 | 0.002  | 0.000 | 0.002 | 0.001        | 12.436    | 0.000  | 0.000 | 12.438    |
| Hauling Trips: Biosolids/WAS                                             | 0.004 | 0.118       | 0.003         | 0.001 | 0.003 | 0.083 | 0.003  | 0.000 | 0.002 | 0.001        | 28.061    |        | 0.000 | 28.064    |
| Hauling Trips: Chemicals                                                 | 0.001 | 0.020       | 0.001         | 0.001 | 0.000 | 0.002 | 0.000  | 0.000 | 0.000 | 0.000        | 1.114     | 0.000  | 0.000 | 1.114     |
| Hauling Trips: Waste Collection Vehicles                                 | 0.258 | 3.643       | 0.162         | 0.152 | 0.047 | 0.665 | 21.271 | 0.000 | 0.030 | 0.028        | 1,896.223 | 7.818  | 0.005 | 2,093.032 |
| Permitted Future - Expansion only (with CNG SWCV) - 2020 Startup         |       |             |               |       |       |       |        |       |       |              |           |        |       |           |
| Employee Commute                                                         | 0.008 | 0.006       | 0.169         | 0.000 | 0.002 | 0.001 | 0.031  | 0.000 | 0.001 | 0.000        | 3.394     | 0.000  | 0.000 | 3.396     |
| Hauling Trips: Collection of HSW/FOG traps                               | 0.012 | 0.221       | 0.016         | 0.009 | 0.001 | 0.028 | 0.002  | 0.000 | 0.002 | 0.001        | 12.436    | 0.000  | 0.000 | 12.438    |
| Hauling Trips: Biosolids/WAS                                             | 0.029 | 0.946       | 0.023         | 0.011 | 0.009 | 0.282 | 0.009  | 0.001 | 0.007 | 0.003        | 95.758    | 0.000  | 0.000 | 95.769    |
| Hauling Trips: Chemicals                                                 | 0.001 | 0.017       | 0.001         | 0.001 | 0.000 | 0.002 | 0.000  | 0.000 | 0.000 | 0.000        | 0.947     | 0.000  | 0.000 | 0.947     |
| Hauling Trips: Waste Collection Vehicles                                 | 0.258 | 3.643       | 0.162         | 0.152 | 0.047 | 0.665 | 21.271 | 0.000 | 0.030 | 0.028        | 1,896.223 | 7.818  | 0.005 | 2,093.032 |
| Permitted Future - 2020 Startup with Energy Recovery (with rCNG SWCV)    |       |             |               |       |       |       |        |       |       |              |           |        |       |           |
| Employee Commute                                                         | 0.017 | 0.012       | 0.338         | 0.000 | 0.003 | 0.002 | 0.062  | 0.000 | 0.001 | 0.000        | 6.788     | 0.000  | 0.000 | 6.792     |
| Hauling Trips: Collection of HSW/FOG traps                               | 0.004 | 0.075       | 0.006         | 0.003 | 0.001 | 0.009 | 0.001  | 0.000 | 0.001 | 0.000        | 4.246     | 0.000  | 0.000 | 4.247     |
| Hauling Trips: Biosolids/WAS                                             | 0.029 | 0.946       | 0.023         | 0.011 | 0.009 | 0.282 | 0.009  | 0.001 | 0.007 | 0.003        | 95.758    | 0.000  | 0.000 | 95.769    |
| Hauling Trips: Chemicals                                                 | 0.001 | 0.017       | 0.001         | 0.001 | 0.000 | 0.002 | 0.000  | 0.000 | 0.000 | 0.000        | 0.947     | 0.000  | 0.000 | 0.947     |
| Hauling Trips: Waste Collection Vehicles                                 | 0.756 | 3.803       | 0.229         | 0.219 | 0.138 | 0.694 | 21.667 | 0.029 | 0.042 | 0.040        | 1,421.947 | 10.387 | 0.005 | 1,682.979 |
| Permitted Future - Expansion only (with CNG SWCV) - 2040 Full Buildout   |       |             |               |       |       | •     |        |       |       |              |           |        |       |           |
| Employee Commute                                                         | 0.008 | 0.006       | 0.169         | 0.000 | 0.002 | 0.001 | 0.031  | 0.000 | 0.001 | 0.000        | 3.394     | 0.000  | 0.000 | 3.396     |
| Hauling Trips: Collection of HSW/FOG traps                               | 0.012 | 0.221       | 0.016         | 0.009 | 0.001 | 0.028 | 0.002  | 0.000 | 0.002 | 0.001        | 12.436    | 0.000  | 0.000 | 12.438    |
| Hauling Trips: Biosolids/WAS                                             | 0.029 | 0.946       | 0.023         | 0.011 | 0.013 | 0.419 | 0.013  | 0.001 | 0.010 | 0.005        | 142.392   | 0.001  | 0.000 | 142.407   |
| Hauling Trips: Chemicals                                                 | 0.001 | 0.025       | 0.002         | 0.001 | 0.000 | 0.003 | 0.000  | 0.000 | 0.000 | 0.000        | 1.408     | 0.000  | 0.000 | 1.408     |
| Hauling Trips: Waste Collection Vehicles                                 | 0.258 | 3.643       | 0.162         | 0.152 | 0.047 | 0.665 | 21.271 | 0.000 | 0.030 | 0.028        | 1,896.223 | 7.818  | 0.005 | 2,093.032 |
| Permitted Future - Energy Recovery (with rCNG SWCV) - 2040 Full Buildout |       |             |               |       |       |       |        |       |       |              |           |        |       |           |
| Employee Commute                                                         | 0.017 | 0.012       | 0.338         | 0.000 | 0.003 | 0.002 | 0.062  | 0.000 | 0.001 | 0.000        | 6.788     | 0.000  | 0.000 | 6.792     |
| Hauling Trips: Collection of HSW/FOG traps                               | 0.004 | 0.075       | 0.006         | 0.003 | 0.001 | 0.009 | 0.001  | 0.000 | 0.001 | 0.000        | 4.246     | 0.000  | 0.000 | 4.247     |
| Hauling Trips: Biosolids/WAS                                             | 0.029 | 0.946       | 0.023         | 0.011 | 0.013 | 0.419 | 0.013  | 0.001 | 0.010 | 0.005        | 142.392   | 0.001  | 0.000 | 142.407   |
| Hauling Trips: Chemicals                                                 | 0.001 | 0.025       | 0.002         | 0.001 | 0.000 | 0.003 | 0.000  | 0.000 | 0.000 | 0.000        | 1.408     | 0.000  | 0.000 | 1.408     |
| Hauling Trips: Waste Collection Vehicles                                 | 1.950 | 4.186       | 0.391         | 0.381 | 0.356 | 0.765 | 22.619 | 0.099 | 0.071 | 0.070        | 283.685   | 16.550 | 0.005 | 698.850   |

#### Mobile Emissions Calculations (Continued)

#### Mobile-Source Emissions Summary

#### Difference from Existing

|                                                                          |        | Maximum Dai | ily Emissions |        |        |        |        |       | An     | nual Emissio | ns         |       |         |            |
|--------------------------------------------------------------------------|--------|-------------|---------------|--------|--------|--------|--------|-------|--------|--------------|------------|-------|---------|------------|
|                                                                          |        | lbs/c       | day           |        |        |        | tons/  | year  |        |              |            | MT/   | /Year   |            |
| Permitted Current (with CNG SWCV)                                        | ROG    | NOX         | PM10          | PM2.5  | ROG    | NOX    | со     | SOX   | PM10   | PM2.5        | CO2        | CH₄   | N₂O     | CO2e       |
| Employee Commute                                                         | 0.000  | 0.000       | 0.000         | 0.000  | 0.000  | 0.000  | 0.000  | 0.000 | 0.000  | 0.000        | 0.000      | 0.000 | 0.000   | 0.000      |
| Hauling Trips: Collection of HSW/FOG traps                               | 0.000  | 0.000       | 0.000         | 0.000  | 0.000  | 0.000  | 0.000  | 0.000 | 0.000  | 0.000        | 0.000      | 0.000 | 0.000   | 0.000      |
| Hauling Trips: Biosolids/WAS                                             | 0.000  | 0.000       | 0.000         | 0.000  | 0.001  | 0.033  | 0.001  | 0.000 | 0.001  | 0.000        | 11.276     | 0.000 | 0.000   | 11.278     |
| Hauling Trips: Chemicals                                                 | 0.000  | 0.005       | 0.000         | 0.000  | 0.000  | 0.001  | 0.000  | 0.000 | 0.000  | 0.000        | 0.282      | 0.000 | 0.000   | 0.282      |
| Hauling Trips: Waste Collection Vehicles                                 | 0.000  | 0.000       | 0.000         | 0.000  | 0.000  | 0.000  | 0.000  | 0.000 | 0.000  | 0.000        | 0.000      | 0.000 | 0.000   | 0.000      |
| Total Mobile Sources                                                     | 0.000  | 0.005       | 0.000         | 0.000  | 0.001  | 0.034  | 0.001  | 0.000 | 0.001  | 0.000        | 11.558     | 0.000 | 0.000   | 11.559     |
| Permitted Future - Expansion only (with CNG SWCV) - 2020 Startup         |        |             |               |        |        |        |        |       |        |              |            |       |         |            |
| Employee Commute                                                         | 0.008  | 0.006       | 0.169         | 0.000  | 0.002  | 0.001  | 0.031  | 0.000 | 0.001  | 0.000        | 3.394      | 0.000 | 0.000   | 3.396      |
| Hauling Trips: Collection of HSW/FOG traps                               | 0.000  | 0.000       | 0.000         | 0.000  | 0.000  | 0.000  | 0.000  | 0.000 | 0.000  | 0.000        | 0.000      | 0.000 | 0.000   | 0.000      |
| Hauling Trips: Biosolids/WAS                                             | 0.025  | 0.828       | 0.020         | 0.009  | 0.007  | 0.233  | 0.007  | 0.001 | 0.006  | 0.003        | 78.974     | 0.000 | 0.000   | 78.983     |
| Hauling Trips: Chemicals                                                 | 0.000  | 0.002       | 0.000         | 0.000  | 0.000  | 0.000  | 0.000  | 0.000 | 0.000  | 0.000        | 0.114      | 0.000 | 0.000   | 0.114      |
| Hauling Trips: Waste Collection Vehicles                                 | 0.000  | 0.000       | 0.000         | 0.000  | 0.000  | 0.000  | 0.000  | 0.000 | 0.000  | 0.000        | 0.000      | 0.000 | 0.000   | 0.000      |
| Total Mobile Sources                                                     | 0.034  | 0.836       | 0.189         | 0.010  | 0.009  | 0.234  | 0.038  | 0.001 | 0.006  | 0.003        | 82.482     | 0.000 | 0.000   | 82.492     |
| Permitted Future - 2020 Startup with Energy Recovery (with rCNG SWCV)    |        |             |               |        |        |        |        |       |        |              |            |       |         |            |
| Employee Commute                                                         | 0.017  | 0.012       | 0.338         | 0.000  | 0.003  | 0.002  | 0.062  | 0.000 | 0.001  | 0.000        | 6.788      | 0.000 | 0.000   | 6.792      |
| Hauling Trips: Collection of HSW/FOG traps                               | -0.008 | -0.146      | -0.011        | -0.006 | -0.001 | -0.018 | -0.001 | 0.000 | -0.001 | -0.001       | -8.190     | 0.000 | 0.000   | -8.191     |
| Hauling Trips: Biosolids/WAS                                             | 0.025  | 0.828       | 0.020         | 0.009  | 0.007  | 0.233  | 0.007  | 0.001 | 0.006  | 0.003        | 78.974     | 0.000 | 0.000   | 78.983     |
| Hauling Trips: Chemicals                                                 | 0.000  | 0.002       | 0.000         | 0.000  | 0.000  | 0.000  | 0.000  | 0.000 | 0.000  | 0.000        | 0.114      | 0.000 | 0.000   | 0.114      |
| Hauling Trips: Waste Collection Vehicles                                 | 0.498  | 0.160       | 0.067         | 0.067  | 0.091  | 0.029  | 0.396  | 0.029 | 0.012  | 0.012        | -474.276   | 2.568 | 0.000   | -410.054   |
| Total Mobile Sources                                                     | 0.532  | 0.856       | 0.414         | 0.072  | 0.100  | 0.246  | 0.464  | 0.030 | 0.018  | 0.015        | -396.590   | 2.569 | 0.000   | -332.357   |
| Permitted Future - Expansion only (with CNG SWCV) - 2040 Full Buildout   |        |             |               |        |        |        |        |       |        |              |            |       |         |            |
| Employee Commute                                                         | 0.008  | 0.006       | 0.169         | 0.000  | 0.002  | 0.001  | 0.031  | 0.000 | 0.001  | 0.000        | 3.394      | 0.000 | 0.000   | 3.396      |
| Hauling Trips: Collection of HSW/FOG traps                               | 0.000  | 0.000       | 0.000         | 0.000  | 0.000  | 0.000  | 0.000  | 0.000 | 0.000  | 0.000        | 0.000      | 0.000 | 0.000   | 0.000      |
| Hauling Trips: Biosolids/WAS                                             | 0.025  | 0.828       | 0.020         | 0.009  | 0.011  | 0.370  | 0.012  | 0.001 | 0.009  | 0.004        | 125.607    | 0.001 | . 0.000 | 125.621    |
| Hauling Trips: Chemicals                                                 | 0.001  | 0.010       | 0.001         | 0.000  | 0.000  | 0.001  | 0.000  | 0.000 | 0.000  | 0.000        | 0.575      | 0.000 | 0.000   | 0.575      |
| Hauling Trips: Waste Collection Vehicles                                 | 0.000  | 0.000       | 0.000         | 0.000  | 0.000  | 0.000  | 0.000  | 0.000 | 0.000  | 0.000        | 0.000      | 0.000 | 0.000   | 0.000      |
| Total Mobile Sources                                                     | 0.034  | 0.844       | 0.190         | 0.010  | 0.013  | 0.372  | 0.043  | 0.001 | 0.010  | 0.005        | 129.576    | 0.001 | 0.000   | 129.592    |
| Permitted Future - Energy Recovery (with rCNG SWCV) - 2040 Full Buildout |        |             |               |        |        |        |        |       |        |              |            |       |         |            |
| Employee Commute                                                         | 0.017  | 0.012       | 0.338         | 0.000  | 0.003  | 0.002  | 0.062  | 0.000 | 0.001  | 0.000        | 6.788      | 0.000 | 0.000   | 6.792      |
| Hauling Trips: Collection of HSW/FOG traps                               | -0.008 | -0.146      | -0.011        | -0.006 | -0.001 | -0.018 | -0.001 | 0.000 | -0.001 | -0.001       | -8.190     | 0.000 | 0.000   | -8.191     |
| Hauling Trips: Biosolids/WAS                                             | 0.025  | 0.828       | 0.020         | 0.009  | 0.011  | 0.370  | 0.012  | 0.001 | 0.009  | 0.004        | 125.607    | 0.001 | . 0.000 | 125.621    |
| Hauling Trips: Chemicals                                                 | 0.001  | 0.010       | 0.001         | 0.000  | 0.000  | 0.001  | 0.000  | 0.000 | 0.000  | 0.000        | 0.575      | 0.000 | 0.000   | 0.575      |
| Hauling Trips: Waste Collection Vehicles                                 | 1.692  | 0.543       | 0.229         | 0.229  | 0.309  | 0.099  | 1.348  | 0.099 | 0.042  | 0.042        | -1,612.538 | 8.732 | 0.000   | -1,394.183 |
| Total Mobile Sources                                                     | 1.727  | 1.248       | 0.577         | 0.234  | 0.322  | 0.454  | 1.420  | 0.101 | 0.051  | 0.046        | -1,487.758 | 8.732 | 0.000   | -1,269.386 |

#### WWTP Process Emissions Calculations (continued)

#### WWTP Process Emissions Equations from ARB's Local Government Protocol

| Equation 10.1                                                      | Stationary CH <sub>4</sub> from Incomplete Combustion of Digester Gas<br>(site-specific digester gas data) |  |  |  |  |  |
|--------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------|--|--|--|--|--|
| Annual CH <sub>4</sub> emissions (metric tons CO <sub>2</sub> e) = |                                                                                                            |  |  |  |  |  |
| (Digester Gas x F <sub>c</sub>                                     | <sub>2H4</sub> x ρ(CH <sub>4</sub> ) x (1-DE) x 0.0283 x 365.25 x 10 <sup>-6</sup> ) x GWP                 |  |  |  |  |  |

#### Where:

| Term             |   | Description                                                                          | Value            |
|------------------|---|--------------------------------------------------------------------------------------|------------------|
| Digester Gas     | = | measured standard cubic feet of digester gas produced per day [ft3/day]              | user input       |
| F CH₄            | = | measured fraction of CH <sub>4</sub> in biogas                                       | user input       |
| p(CH₄)           | = | density of methane at standard conditions [g/m <sup>3</sup> ]                        | 662.00           |
| DE               | = | CH₄ Destruction Efficiency                                                           | .99              |
| 0.0283           | = | conversion from ft <sup>3</sup> to m <sup>3</sup> [m <sup>3</sup> /ft <sup>3</sup> ] | 0.0283           |
| 365.25           | = | conversion factor [day/year]                                                         | 365.25           |
| 10 <sup>-6</sup> | = | conversion from g to metric ton [metric ton/g]                                       | 10 <sup>-6</sup> |
| GWP              | = | Global Warming Potential                                                             | 21               |

#### 10.3.2.1 Process Emissions from WWTP with Nitrification/Denitrification

| Equation 10.7                                 | Process N <sub>2</sub> O Emissions from WWTP with Nitrification/Denitrification |
|-----------------------------------------------|---------------------------------------------------------------------------------|
| Annual N <sub>2</sub> O emi                   | ssions (metric tons CO <sub>2</sub> e) =                                        |
| ((P <sub>total</sub> x F <sub>ind-com</sub> ) | x EF nit/denit x 10 <sup>-6</sup> ) x GWP                                       |

Where:

|   | Description                                                                                                          | Value                                                                                                                                                                                                                                                                                                                                                                                                  |
|---|----------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| = | total population that is served by the centralized WWTP adjusted for<br>industrial discharge, if applicable [person] | user input                                                                                                                                                                                                                                                                                                                                                                                             |
| = | factor for industrial and commercial co-discharge waste into the sewer<br>system                                     | 1.25                                                                                                                                                                                                                                                                                                                                                                                                   |
| = |                                                                                                                      | 7                                                                                                                                                                                                                                                                                                                                                                                                      |
| = |                                                                                                                      | 10 <sup>-6</sup>                                                                                                                                                                                                                                                                                                                                                                                       |
| = | N <sub>2</sub> O Global Warming Potential                                                                            | 310                                                                                                                                                                                                                                                                                                                                                                                                    |
|   | =<br>=<br>=                                                                                                          | <ul> <li>total population that is served by the centralized WWTP adjusted for<br/>industrial discharge, if applicable [person]</li> <li>factor for industrial and commercial co-discharge waste into the sewer<br/>system</li> <li>emission factor for a WWTP with nitrification/denitrification<br/>[g N<sub>2</sub>O/person/year]</li> <li>conversion from g to metric ton [metric ton/g]</li> </ul> |

#### WWTP Process Emissions Calculations (continued)

#### WWTP Process Emissions Equations from ARB's Local Government Protocol (Continued)

 Equation 10.10
 Process N<sub>2</sub>O Emissions from Effluent Discharge (default N load data)

 Annual N<sub>2</sub>O emissions (metric tons CO<sub>2</sub>e) =

(( $P_{total} x F_{ind-com}$ ) x (Total N Load - N uptake x BOD<sub>5</sub> load) x EF effluent x 44/28 x (1 - F plant nit/denit) x 365.25 x 10<sup>-3</sup>) x GWP

Where:

| Term                       |      | Description                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Value              |
|----------------------------|------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------|
| P <sub>total</sub>         | =    | population served [person]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | user input         |
| Find-com                   | =    | factor for industrial and commercial co-discharge waste into the<br>sewer system                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 1.25               |
| Total N Load <sup>27</sup> | =    | total nitrogen load [kg N/person/day]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 0.026              |
| N uptake <sup>28</sup>     | =    | nitrogen uptake for cell growth in aerobic system (kg N/kg BOD5)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 0.05 <sup>1</sup>  |
|                            | =    | nitrogen uptake for cell growth in anaerobic system (e.g., lagoon)<br>(kg N/kg BOD₅)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 0.005 <sup>1</sup> |
| BOD <sub>5</sub> load      | =    | amount of BOD <sub>5</sub> produced per person per day [kg BOD <sub>5</sub> /person/day]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 0.090              |
| EF effluent                | =    | emission factor [kg N <sub>2</sub> O-N/kg sewage-N produced]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 0.005              |
| 44/28                      | =    | molecular weight ratio of N <sub>2</sub> O to N <sub>2</sub>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 1.57               |
| F plant nit/denit          | =    | fraction of nitrogen removed for the centralized WWTP with<br>nitrification/denitrification                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 0.7 <sup>1</sup>   |
|                            | =    | fraction of nitrogen removed for the centralized WWTP w/o<br>nitrification/denitrification                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 0.0 <sup>1</sup>   |
| 365.25                     | =    | conversion factor [day/year]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 365.25             |
| 10 <sup>-3</sup>           | =    | conversion from kg to metric ton [metric ton/kg]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 10 <sup>-3</sup>   |
| GWP                        | =    | Global Warming Potential                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 310                |
|                            | Jr., | r of US Greenhouse Gas Emissions and Sinks: 1990-2007, Chapter 8, 8-13 (20)<br>G. T. Daigger, and H. C. Lim, Biological Wastewater Treatment, p. 108-<br>000 PM (2007) 100 PM |                    |

#### **AP-42** Emission Factors

| AP-42 Gas Turbine Emission Factors for Digester Gas Turbines<br>(Ib/MMBTU) |        |  |  |  |  |
|----------------------------------------------------------------------------|--------|--|--|--|--|
| VOC                                                                        | 0.006  |  |  |  |  |
| NOx                                                                        | 0.160  |  |  |  |  |
| PM10                                                                       | 0.012  |  |  |  |  |
| со                                                                         | 0.017  |  |  |  |  |
| CO2                                                                        | 27.000 |  |  |  |  |
| Source: EPA AP-42 Emission Factors                                         |        |  |  |  |  |

#### WWTP Process Emissions Calculations (Continued)

#### **Process Emissions Summary**

| Maximum Daily Emissions |         |         |         |         | Annual Emissions |         |            |            |            |            |            |            |         |         |         |           |
|-------------------------|---------|---------|---------|---------|------------------|---------|------------|------------|------------|------------|------------|------------|---------|---------|---------|-----------|
|                         | lbs/day | lbs/day | lbs/day | lbs/day | lbs/day          | lbs/day | tons/ year | MT/Year | MT/Year | MT/Year | MT/Year   |
| Scenario                | ROG     | NOX     | со      | PM10    | PM2.5            | TAC     | ROG        | NOX        | со         | PM10       | PM2.5      | TAC        | CO2     | CH4     | N2O     | CO2e      |
| Existing Conditions     | 16.548  | 3.014   | 0.219   | 0.033   | 0.033            | 0.000   | 3.022      | 0.550      | 0.040      | 0.006      | 0.006      | 0.000      | 0.000   | 0.000   | 4.578   | 1,213.151 |
| Wastewater Treatment    |         |         |         |         |                  |         |            |            |            |            |            |            |         |         |         |           |
| Processes/Digester Gas  | 16.548  | 3.014   | 0.219   | 0.033   | 0.033            | 0.000   | 3.022      | 0.550      | 0.040      | 0.006      | 0.006      | 0.000      | 0.000   | 0.000   | 4.578   | 1,213.151 |
| Production              |         |         |         |         |                  |         |            |            |            |            |            |            |         |         |         |           |
| Gas Turbine             | 0.000   | 0.000   | 0.000   | 0.000   | 0.000            | 0.000   | 0.000      | 0.000      | 0.000      | 0.000      | 0.000      | 0.000      | 0.000   | 0.000   | 0.000   | 0.000     |
| Permitted Current       | 22.142  | 4.032   | 0.293   | 0.044   | 0.044            | 0.000   | 4.044      | 0.736      | 0.054      | 0.008      | 0.008      | 0.000      | 0.000   | 0.000   | 6.125   | 1,623.231 |
| Wastewater Treatment    |         |         |         |         |                  |         |            |            |            |            |            |            |         |         |         |           |
| Processes/Digester Gas  | 22.142  | 4.032   | 0.293   | 0.044   | 0.044            | 0.000   | 4.044      | 0.736      | 0.054      | 0.008      | 0.008      | 0.000      | 0.000   | 0.000   | 6.125   | 1,623.231 |
| Production              |         |         |         |         |                  |         |            |            |            |            |            |            |         |         |         |           |
| Gas Turbine             | 0.000   | 0.000   | 0.000   | 0.000   | 0.000            | 0.000   | 0.000      | 0.000      | 0.000      | 0.000      | 0.000      | 0.000      | 0.000   | 0.000   | 0.000   | 0.000     |
| Permitted Future        | 28.200  | 11.453  | 1.046   | 0.532   | 0.055            | 0.018   | 5.150      | 2.092      | 0.191      | 0.097      | 0.010      | 0.003      | 177.783 | 2.628   | 7.530   | 2,246.718 |
| Wastewater Treatment    |         |         |         |         |                  |         |            |            |            |            |            |            |         |         |         |           |
| Processes/Digester Gas  | 27.968  | 5.094   | 0.370   | 0.056   | 0.055            | 0.000   | 5.108      | 0.930      | 0.068      | 0.010      | 0.010      | 0.000      | 0.000   | 0.000   | 7.530   | 1,995.360 |
| Production              |         |         |         |         |                  |         |            |            |            |            |            |            |         |         |         |           |
| Gas Turbine             | 0.231   | 6.359   | 0.676   | 0.477   | 0.000            | 0.018   | 0.042      | 1.161      | 0.123      | 0.087      | 0.000      | 0.003      | 177.783 | 2.628   | 0.000   | 251.357   |

#### Process Emissions Summary - Difference from Existing

| Maximum Daily Emissions                                      |                       |                |                      |                 | Annual Emissions |                |                   |                          |       |                           |                            |       |                |                |                |                        |
|--------------------------------------------------------------|-----------------------|----------------|----------------------|-----------------|------------------|----------------|-------------------|--------------------------|-------|---------------------------|----------------------------|-------|----------------|----------------|----------------|------------------------|
| Scenario                                                     | lbs/day<br><b>ROG</b> | lbs/day<br>NOX | lbs/day<br><b>CO</b> | lbs/day<br>PM10 | lbs/day<br>PM2.5 | lbs/day<br>TAC | tons/ year<br>ROG | tons/ year<br><b>NOX</b> |       | tons/ year<br><b>PM10</b> | tons/ year<br><b>PM2.5</b> |       | MT/Year<br>CO2 | MT/Year<br>CH4 | MT/Year<br>N2O | MT/Year<br><b>CO2e</b> |
| Permitted Current                                            | 5.594                 | 1.019          | 0.074                | 0.011           | -                |                |                   | -                        | 0.014 | -                         |                            | 0.000 | 0.000          |                |                |                        |
| Wastewater Treatment<br>Processes/Digester Gas<br>Production | 5.594                 | 1.019          | 0.074                | 0.011           |                  |                |                   |                          | 0.014 |                           |                            | 0.000 | 0.000          | 0.000          |                |                        |
| Gas Turbine                                                  | 0.000                 | 0.000          | 0.000                | 0.000           | 0.000            | 0.000          | 0.000             | 0.000                    | 0.000 | 0.000                     | 0.000                      | 0.000 | 0.000          | 0.000          | 0.000          | 0.000                  |
| Permitted Future                                             | 11.652                | 8.439          | 0.827                | 0.500           | 0.022            | 0.018          | 2.128             | 1.541                    | 0.151 | 0.091                     | 0.004                      | 0.003 | 177.783        | 2.628          | 2.952          | 1,033.566              |
| Wastewater Treatment<br>Processes/Digester Gas<br>Production | 11.420                | 2.080          | 0.151                | 0.023           | 0.022            | 0.000          | 2.086             | 0.380                    | 0.028 | 0.004                     | 0.004                      | 0.000 | 0.000          | 0.000          | 2.952          | 782.209                |
| Gas Turbine                                                  | 0.231                 | 6.359          | 0.676                | 0.477           | 0.000            | 0.018          | 0.042             | 1.161                    | 0.123 | 0.087                     | 0.000                      | 0.003 | 177.783        | 2.628          | 0.000          | 251.357                |

#### Assumptions

| Value       | Notes                                                                                                                                                                                                                                                                                                                            | Source                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
|-------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|             |                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| 453.592     |                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| 1000000     |                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| 907185      |                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| 2204.622622 |                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| 1000        |                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| 1000        |                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| 1000        |                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| 100000      |                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| 0.1         |                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| 1.344086022 |                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| 1.572327044 |                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| 7.194244604 |                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
|             |                                                                                                                                                                                                                                                                                                                                  | http://www.engineeringtoolbox.com/heating-values-fuel-                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| 621         | for digester gas only.                                                                                                                                                                                                                                                                                                           | gases-d_823.html                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| 0.000621    |                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| 7.480519481 |                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| 3.785411784 |                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| 325851.429  |                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
|             |                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| 1           |                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| 28          | 100 year lifespan.                                                                                                                                                                                                                                                                                                               | IPCC Fifth Assessment Report - Chapter 8. Table 8.7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| 265         | 100 year lifespan.                                                                                                                                                                                                                                                                                                               | IPCC Fifth Assessment Report - Chapter 8. Table 8.7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| Value       | Notes                                                                                                                                                                                                                                                                                                                            | Source                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| 434.92      | Electricity (2014 PGE EF)                                                                                                                                                                                                                                                                                                        | The Climate Registry 2016                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| 0.197       | Electricity (2014 PGE EF)                                                                                                                                                                                                                                                                                                        | Calculated                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| 0.253       | Electricity (2014 PGE EF)                                                                                                                                                                                                                                                                                                        | Calculated                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| 31.12       | Electricity (22,7% renewable)                                                                                                                                                                                                                                                                                                    | eGrid 2012 (Updated October 2015)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| 01111       |                                                                                                                                                                                                                                                                                                                                  | https://www.epa.gov/energy/egrid-faq/                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| 5.67        | Electricity (22.7% renewable)                                                                                                                                                                                                                                                                                                    | State-wide RPS percent from CPUC 2016 for 2013.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| 0.197       | Electricity - 2014 (28% renewable)                                                                                                                                                                                                                                                                                               | CPUC 2016 http://www.cpuc.ca.gov/RPS_Homepage/                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| 0.173       | Electricity - 2020 (37% renewable)                                                                                                                                                                                                                                                                                               | CPUC 2016 (PGE is under a 37% RPS contract by 2020)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| 1.15E-05    | Electricity (37% renewable)                                                                                                                                                                                                                                                                                                      | Calculated from eGrid 2012 assuming eGrid factors are                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| 2.10E-06    | Electricity (37% renewable)                                                                                                                                                                                                                                                                                                      | represented by 22.7% renewables                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| 434.92      | Electricity - 2014 (28% renewable)                                                                                                                                                                                                                                                                                               | Calculated                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| 380.56      | Electricity - 2020 (37% renewable)                                                                                                                                                                                                                                                                                               | Calculated                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| 000100      |                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| 0.027       | Electricity (37% renewable)                                                                                                                                                                                                                                                                                                      | Calculated                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
|             | 453.592<br>1000000<br>907185<br>2204.622622<br>1000<br>1000<br>1000<br>10000<br>0.1<br>1.344086022<br>1.572327044<br>7.194244604<br>621<br>0.000621<br>7.480519481<br>3.785411784<br>325851.429<br>1<br>1<br>28<br>265<br>Value<br>434.92<br>0.197<br>0.253<br>31.12<br>5.67<br>0.197<br>0.173<br>1.15E-05<br>2.10E-06<br>434.92 | 453.592           1000000           907185           2204.622622           1000           1000           1000           1000           1000           1000           1000           1000           1000           1000           1000           1000           1000           1000           1           1,344086022           1.572327044           7.194244604           621           for digester gas only.           0.000621           7.480519481           3.785411784           325851.429           1           28           100 year lifespan.           265         100 year lifespan. <t< td=""></t<> |

# **Appendix B**

# Revised Mitigation Monitoring and Reporting Program

# MITIGATION MONITORING AND REPORTING PROGRAM

# **INTRODUCTION**

In accordance with the California Environmental Quality Act (CEQA) Public Resources Code Section 21000 et seq.), the City of Roseville (City) prepared an Initial Study/Mitigated Negative Declaration (IS/MND) that identified adverse environmental impacts related to construction and operation of the Pleasant Grove Wastewater Treatment Plant (PGWWTP) Expansion and Energy Recovery Project (Project). The IS/MND also identifies mitigation measures that would reduce the identified impacts to a less-than-significant level, or that would eliminate these impacts all together.

CEQA Guidelines require public agencies "to adopt a reporting and monitoring program for changes to the project which it has adopted or made a condition of project approval in order to mitigate or avoid significant effects on the environment." A Mitigation Monitoring and Reporting Program (MMRP) is required for the Project because the IS/MND identifies potential significant adverse impacts related to the Project implementation, and mitigation measures have been identified to reduce those impacts. Adoption of the MMRP would occur along with approval of the Project.

# PURPOSE OF MITIGATION MONITORING AND REPORTING PROGRAM

This MMRP has been prepared to ensure that all required mitigation measures are implemented and completed in a satisfactory manner before and during Project construction and operation. The MMRP may be modified by the City during Project implementation, as necessary, in response to changing conditions or other refinements. The attached table has been prepared to assist the responsible parties in implementing the mitigation measures. The table identifies individual mitigation measures, monitoring/mitigation timing, person/agency responsible for implementing each measure, monitoring and reporting procedures, and provides space to confirm implementation of the mitigation measures. The numbering of mitigation measures follows the numbering sequence found in the IS/MND.

# **ROLES AND RESPONSIBILITIES**

Unless otherwise specified herein, the City is responsible for taking all actions necessary to implement the mitigation measures under its jurisdiction according to the specifications provided for each measure and for demonstrating that the action has been successfully completed. The City, at its discretion, may delegate implementation responsibility or portions thereof to a licensed contractor or other designated agent.

The City would be responsible for overall administration of the MMRP and for verifying that City staff members and/or the construction contractor has completed the necessary actions for each measure. The City would designate a project manager to oversee implementation of the MMRP. Duties of the project manager include the following:

- Ensure routine inspections of the construction site are conducted by appropriate City staff; check plans, reports, and other documents required by the MMRP; and conduct report activities.
- Serve as a liaison between the City and the contractor or project applicant regarding mitigation monitoring issues.
- ▲ Complete forms and maintain reports and other records and documents generated for the MMRP.

▲ Coordinate and ensure that corrective actions or enforcement measures are taken, if necessary.

The responsible party for implementation of each item would identify the staff members responsible for coordinating with the City on the MMRP.

### MITIGATION MONITORING AND REPORTING PLAN TABLE

The categories identified in Table 1 are described below.

- Mitigation Measure This column provides the text of the mitigation measures identified in the approved IS/MND.
- ▲ Applicable Project This column indicates whether the mitigation measure listed would be required for implementation of the Expansion Project, Energy Recovery Project, or both.
- Responsible Party/Monitor this column identifies the party responsible for enforcing compliance with the requirements of the mitigation measure and monitoring that compliance.
- ▲ Timing this column identifies the time frame in which the mitigation will be implemented.

| Table 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | PGWWTP Expansion and Energy Recovery Project Mitigation                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Monitoring and R           |                           |                                        |                            |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------|---------------------------|----------------------------------------|----------------------------|
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Mitigation Measure                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Applicable Project         | Responsible Party/Monitor | Timing/Phase                           | Verification of Compliance |
| 3.4 Biological F                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Resources                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | •                          | •                         |                                        |                            |
| Avoid Nesting Si<br>Nesting Sites. The<br>raptor species. The<br>Recovery Project<br>4.7-6 that are not<br>(b) Prior to the bind<br>during the perior<br>within 350 feet<br>burrows by a quit<br>break in construct<br>conducted prior<br>the site is within<br>or burrow(s) at a<br>prevent construct<br>unless directly not<br>(c) No construct<br>unless directly not<br>(d) In the event for<br>nestlings are still<br>recovery and ha<br>(f) The City, in con-<br>the project site to<br>qualified biologies<br>conducted not<br>Should construct<br>get up from a bin<br>such that activiti<br>buffer will remain<br>biologist.<br>If the above sum<br>mitigation would<br>the following me<br>(g) The City shall<br>construction during<br>nest burrows and | <b>sure 3.4-1 (Implement West Roseville Specific Plan EIR Mitigation Measure 4.7-6</b><br><b>ittes</b> ): The West Roseville Specific Plan EIR includes Mitigation Measure 4.7-6 Avoid<br>his mitigation measure addresses potential impacts to fully protected bird and<br>The only protected bird species that has the potential to be affected by the Energy<br>at is burrowing owl. Therefore, those requirements listed under Mitigation Measure<br>ot applicable to the Project have been omitted below:<br>beginning of mass grading, including grading for major infrastructure improvements,<br>ad between February 15 and August 30, all trees and potential burrowing owl habitat<br>of grading or earthmoving activity shall be surveyed for active raptor nests or<br>ualified biologist no more than 3 days prior to disturbance. In addition, if there is a<br>uction activity lasting longer than 2 weeks, new nesting bird surveys must be<br>to resuming construction activities. If active raptor nests or burrows are found, and<br>350 feet of potential construction activity, a fence shall be erected around the tree<br>a distance of 350 feet, depending on the species, from the edge of the canopy to<br>iction disturbance and intrusions on the nest area. The appropriate buffer shall be<br>the City in consultation with CDFW.<br>ion vehicles shall be permitted within restricted areas (i.e., raptor protection zones),<br>elated to the management or protection of the legally protected species.<br>that a nest is abandoned, despite efforts to minimize disturbance, and if the<br>ill alive, the City shall contact CDFW and, subject to CDFW approval, fund the<br>acking (controlled release of captive reared young) of the nestling(s).<br>ponsultation with CDFW, shall conduct a pre-construction survey within the phases of<br>that are scheduled for construction activities. The survey shall be<br>nore than three weeks prior to grading of the project site. The survey shall be<br>nore than three weeks prior to grading of the project site.<br>to activities cause the nesting bird to vocalize, make defensive flights at intruders,<br>rooding position, o | Energy Recovery<br>Project | City of Roseville         | Prior to and<br>during<br>construction |                            |

#### Tabla 1 . . -- -• • . -1 D ... . .... \_

| Table 1 PGWWTP Expansion and Energy Recovery Project Mitigation                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | <u> </u>                                          |                              | Timing /Dhoos          | Varification of Compliance |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------|------------------------------|------------------------|----------------------------|
| Mitigation Measure                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Applicable Project                                | Responsible Party/Monitor    | Timing/Phase           | Verification of Compliance |
| The buffer zone shall be delineated by highly visible temporary construction fencing. Disturbance of<br>iny occupied burrows shall only occur outside of the breeding season (August 30 through February<br>.5).<br>h) Based on approval by CDFW, preconstruction and nonbreeding season exclusion measures may<br>be implemented to preclude burrowing owl occupation of the project site prior to project-related<br>listurbance (such as grading). Burrowing owls may be passively excluded from burrows in the<br>construction area by placing one-way doors in the burrows according to current CDFW protocol. The<br>one-way doors must be in place for a minimum of three days. All burrows that may be occupied by<br>purrowing owls, regardless of whether they exhibit signs of occupation, must be cleared. Burrows<br>hat have been cleared through the use of one-way doors shall then be closed or backfilled to<br>prevent owls from entering the burrow. The one-way doors shall not be used more than two weeks<br>before construction to ensure that owls do not recolonize the area of construction.                                                                                                                                                                     |                                                   |                              |                        |                            |
| 5.5 Cultural Resources                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                   | <u> </u>                     |                        | <u> </u>                   |
| •                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Expansion Project &<br>Energy Recovery<br>Project | City of Roseville/Contractor | During<br>construction |                            |
| <b>Mitigation Measure 3.5-2:</b> If human remains are discovered during any construction activities,<br>potentially damaging ground-disturbing activities in the area of the remains will be halted<br>mmediately, and the City will notify the Placer County coroner and the NAHC immediately, according<br>to Section 5097.98 of the State Public Resources Code and Section 7050.5 of California's Health<br>and Safety Code. If the remains are determined by the NAHC to be Native American, the guidelines<br>of the NAHC will be adhered to in the treatment and disposition of the remains. The City will also<br>retain a professional archaeologist with Native American burial experience to conduct a field<br>nvestigation of the specific site and consult with the Most Likely Descendant (MLD), if any,<br>dentified by the NAHC. Following the coroner's and NAHC's findings, the archaeologist, and the<br>NAHC-designated MLD will determine the ultimate treatment and disposition of the remains and<br>ake appropriate steps to ensure that additional human interments are not disturbed. The<br>responsibilities for acting upon notification of a discovery of Native American human remains are<br>dentified in California Public Resources Code Section 5097.94. | Expansion Project &<br>Energy Recovery<br>Project | City of Roseville/Contractor | During<br>construction |                            |

| Table 1         PGWWTP Expansion and Energy Recovery Project Mitigation Monitoring and Reporting Program                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                   |                              |                           |                            |  |  |  |  |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------|------------------------------|---------------------------|----------------------------|--|--|--|--|
| Mitigation Measure                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Applicable Project                                | Responsible Party/Monitor    | Timing/Phase              | Verification of Compliance |  |  |  |  |
| 3.7 Greenhouse Gas Emissions                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | -                                                 |                              |                           |                            |  |  |  |  |
| <ul> <li>Mitigation Measure 3.7-1: To reduce GHG emissions from the Expansion Project, the City may choose any combination of the following measures, to achieve a net reduction of 1,725 MT CO<sub>2</sub>e/year (equivalent to reducing the use of 194,104 gallons of gasoline or generating 9,941 MWh/year of electricity from renewable energy):</li> <li> <ul> <li>improve energy efficiency and provide renewable vehicle fuels through the construction and implementation of the Energy Recovery Project which would reduce additional operational emissions from the Expansion Project by 25 percent;</li> <li>purchase electricity from a higher percentage of renewable sources; or</li> <li>purchase GHG offsets.</li> </ul> </li> <li>Implementation of Mitigation Measure 3.7-1 would ensure that GHG emissions would be reduced below recommended thresholds of significance. The cogeneration capabilities of the Energy Recovery Project would prevent methane-containing digester gas from being flared at the PGWWTP, would combine the conditioned and upgraded digester gas with natural gas to create renewable fuel blend for CNG vehicles, and use the waste tail gas, from digester gas upgrade process (blended with natural gas) for the generation of electricity and heat for digesters. This cogeneration capability would relieve electrical load from local utilities by providing a direct and renewable source of electricity for the PGWWTP.</li> </ul> | Expansion Project                                 | City of Roseville            | Following<br>construction |                            |  |  |  |  |
| 3.12 Noise                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                   |                              |                           |                            |  |  |  |  |
| <ul> <li>Mitigation Measure 3.12-1: Noise curtains shall be used during any nighttime construction activity (i.e., occurring between 10:00 p.m. and 7:00 a.m.) involving the operation of heavy equipment or haul trucks on the west side of the Project site (i.e., where there are sensitive receptors closer than 1,600 feet). The temporary noise curtains shall meet the following criteria:</li> <li>The temporary noise curtains shall achieve at a minimum 3 dB noise reduction;</li> <li>The temporary noise curtains shall be located or as close as possible to the area where heavy construction equipment would be operated; and</li> <li>Temporary noise curtains shall consist of durable, flexible composite material featuring a noise barrier layer bounded to sound-absorptive material on one side. The noise barrier layer shall consist of rugged, impervious, material with a surface weight of at least one pound per square foot, and shall be designed to block the line-of sight between construction activities and affected receptors.</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                             | Expansion Project &<br>Energy Recovery<br>Project | Contractor/City of Roseville | During<br>construction    |                            |  |  |  |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                   |                              |                           |                            |  |  |  |  |

#### Table 1 PGWWTP Expansion and Energy Recovery Project Mitigation Monitoring and Reporting Program

| Mitigation Measure Applicable Project Responsible Party/Monitor Timing/Phase Verification of Compliance                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                   |                              |                                        |                           |  |  |  |  |  |  |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------|------------------------------|----------------------------------------|---------------------------|--|--|--|--|--|--|
| 5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Applicable Pioject                                | Responsible Faity/ Monitor   | nining/ Flidse                         | venilcation of compliance |  |  |  |  |  |  |
| 3.16 Transportation/Traffic                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                   | -                            |                                        |                           |  |  |  |  |  |  |
| <ul> <li>Mitigation Measure 3.16-1: The City will require the construction contractor to implement a traffic management plan before construction activities begin. The traffic management plan will include measures to ensure local traffic, including bicycle traffic, is accommodated during construction. This plan would identify general methods by which construction activities will be managed to minimize substantial hazards related to large trucks.</li> <li>These methods may include (but are not limited to): <ul> <li>appropriately sequencing activities (e.g., segment phasing, timing of grading, hours of construction) to minimize conflicts with traffic on affected roadways,</li> <li>maintaining traffic flow in the project area to the extent possible,</li> <li>maintaining bicycle and pedestrian access, and</li> <li>use of flaggers to direct traffic, as needed for ingress or egress of large trucks.</li> </ul> </li> </ul> | Expansion Project &<br>Energy Recovery<br>Project | Contractor/City of Roseville | Prior to and<br>during<br>construction |                           |  |  |  |  |  |  |

#### Table 1 PGWWTP Expansion and Energy Recovery Project Mitigation Monitoring and Reporting Program