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PREFACE 
California’s Climate Change Assessments provide a scientific foundation for understanding 
climate-related vulnerability at the local scale and informing resilience actions. These 
Assessments contribute to the advancement of science-based policies, plans, and programs to 
promote effective climate leadership in California. In 2006, California released its First Climate 
Change Assessment, which shed light on the impacts of climate change on specific sectors in 
California and was instrumental in supporting the passage of the landmark legislation 
Assembly Bill 32 (Núñez, Chapter 488, Statutes of 2006), California’s Global Warming Solutions 
Act. The Second Assessment concluded that adaptation is a crucial complement to reducing 
greenhouse gas emissions (2009), given that some changes to the climate are ongoing and 
inevitable, motivating and informing California’s first Climate Adaptation Strategy released the 
same year. In 2012, California’s Third Climate Change Assessment made substantial progress in 
projecting local impacts of climate change, investigating consequences to human and natural 
systems, and exploring barriers to adaptation.  

Under the leadership of Governor Edmund G. Brown, Jr., a trio of state agencies jointly 
managed and supported California’s Fourth Climate Change Assessment: California’s Natural 
Resources Agency (CNRA), the Governor’s Office of Planning and Research (OPR), and the 
California Energy Commission (Energy Commission). The Climate Action Team Research 
Working Group, through which more than 20 state agencies coordinate climate-related 
research, served as the steering committee, providing input for a multisector call for proposals, 
participating in selection of research teams, and offering technical guidance throughout the 
process. 

California’s Fourth Climate Change Assessment (Fourth Assessment) advances actionable 
science that serves the growing needs of state and local-level decision-makers from a variety of 
sectors. It includes research to develop rigorous, comprehensive climate change scenarios at a 
scale suitable for illuminating regional vulnerabilities and localized adaptation strategies in 
California; datasets and tools that improve integration of observed and projected knowledge 
about climate change into decision-making; and recommendations and information to directly 
inform vulnerability assessments and adaptation strategies for California’s energy sector, water 
resources and management, oceans and coasts, forests, wildfires, agriculture, biodiversity and 
habitat, and public health.  

The Fourth Assessment includes 44 technical reports to advance the scientific foundation for 
understanding climate-related risks and resilience options, nine regional reports plus an oceans 
and coast report to outline climate risks and adaptation options, reports on tribal and 
indigenous issues as well as climate justice, and a comprehensive statewide summary report. 
All research contributing to the Fourth Assessment was peer-reviewed to ensure scientific rigor 
and relevance to practitioners and stakeholders.  

For the full suite of Fourth Assessment research products, please visit 
www.climateassessment.ca.gov. This report contributes to energy sector resilience by 
improving our understanding of factors that contribute to urban heat islands, which exacerbate 
peak energy demand, and by providing a basis for assessing the performance efforts to address 
urban heat islands. 

http://www.climateassessment.ca.gov/
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ABSTRACT 
To understand spatial air-temperature variations in local urban heat islands (UHIs) and urban 
cool islands (UCIs), and their relationship to land-use and land-cover (LULC) properties in the 
Los Angeles Basin, we sought to (a) use fine-resolution climate models to identify UHI / UCI 
areas, (b) relate observed intra-urban temperature variations (from mobile transects and 
stationary monitors) to LULC and surface physical properties, and (c) calibrate/validate the 
fine-resolution meso-urban climate models that were used in identifying the UHI / UCI. We 
conducted a multi-dimensional assessment of urban temperature variations based on numerical 
modeling and several types of observations, including mobile transects, dense networks of 
personal weather stations, and sparse but more accurate research-grade stationary weather 
monitors. To identify the causative factors of the UHI / UCI at the neighborhood scale, we 
collected detailed LULC datasets, such as 1-m (3.3 ft) resolution roof albedo and tree canopy 
cover, as inputs for the meteorological modeling and analysis. The fine-scale meteorological 
model was used to design mobile-transect routes and to site the stationary monitors based on 
the definition of UHI / UCI areas.  

This study provides the first observational evidence from analysis of high spatial density 
weather stations that increases in roof albedo at neighborhood scale are associated with 
reductions in near-surface air temperature. This was corroborated with the analysis from mobile 
transect measurements and correlation of observed air temperature with neighborhood-scale 
albedo and vegetation canopy cover, which revealed a cooling effect from area-wide increase in 
albedo and/or canopy cover.  

The calibrated meteorological model was able to accurately identify the localized UHIs / UCIs 
observed in this study. Interested stakeholders/researchers can use the same models and 
calibration / validation methodology to characterize the intra-urban microclimate variations 
elsewhere in California, and can apply them to analyze the benefits from deploying UHI 
countermeasures. 

 

Keywords: Urban heat islands, urban cool islands, land-use and land-cover, intra-urban 
temperature variability, mobile transects, personal weather stations, stationary weather 
monitor, fine-scale meteorological model 
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Neighborhood-Scale Heat Islands and Inform Effective Countermeasures in Los Angeles. 
California’s Fourth Climate Change Assessment, California Energy Commission. 
Publication Number: CCCA4-CEC-2018-007 
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HIGHLIGHTS 
• Urban heat islands in California exacerbate peak energy demand and compromise 

public health in California. These impacts are intensified by climate change. Quantifying 
the factors that contribute to urban heat islands in California as well as the effectiveness 
of strategies to reduce the urban heat island effect contributes to climate resilience for 
the electricity sector and helps safeguard public health. 

• In this study we carry out a multi-dimensional assessment of urban temperature 
variations in the Los Angeles Basin based on state-of-the-science numerical modeling 
and several types of observations, including mobile transects, dense networks of 
personal weather stations, and sparse but more accurate research-grade stationary 
weather monitors.  

• Analysis of high spatial density weather stations provides, to our knowledge, the first 
observational evidence that increases in albedo (fraction of sunlight reflected) of roofs at 
neighborhood scale are associated with reductions in near-surface air temperature.  

• Analysis of observed air temperature from mobile transects and their correlations with 
neighborhood-scale albedo and vegetation canopy cover shows a cooling effect from 
area-wide increase in albedo and/or canopy cover.  

• In the San Fernando Valley study area, the largest localized heat islands were associated 
with lowest vegetation canopy cover; near downtown Los Angeles, areas with lower 
albedo caused the largest local heat islands. 

• The calibrated meteorological model was found to reproduce accurately the intra-urban 
heat and cool islands observed in this study. Future projects will be able to use the same 
models and calibration / validation methodology to characterize the intra-urban 
microclimate variations elsewhere in California. The validated models will also enable 
the State to analyze urban heat island mitigation benefits in future efforts.  

• A methodology was developed in this project to apply fine-scale meteorological 
modeling in siting weather stations and designing mobile-observation routes to monitor 
urban heat islands. The methodology was validated by comparing simulation results to 
observational micrometeorological data. 

• The modeling developed here was used to determine ideal sites for new research-grade 
stationary weather monitors in the San Fernando Valley. Newly installed monitors can 
be used in assessments of urban heat islands and for tracking future temperatures. 
Monitor data can be accessed for free via Weather Underground: 

o Monitor_1: https://www.wunderground.com/personal-weather-
station/dashboard?ID=KCACHATS19 

o Monitor_2: https://www.wunderground.com/personal-weather-
station/dashboard?ID=KCAWINNE11 

o Monitor_3: https://www.wunderground.com/personal-weather-
station/dashboard?ID=KCARESED8    

https://www.wunderground.com/personal-weather-station/dashboard?ID=KCACHATS19
https://www.wunderground.com/personal-weather-station/dashboard?ID=KCACHATS19
https://www.wunderground.com/personal-weather-station/dashboard?ID=KCAWINNE11
https://www.wunderground.com/personal-weather-station/dashboard?ID=KCAWINNE11
https://www.wunderground.com/personal-weather-station/dashboard?ID=KCARESED8
https://www.wunderground.com/personal-weather-station/dashboard?ID=KCARESED8
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1: Introduction 
Urban heat islands (UHIs) are categorized as either (a) skin-surface UHIs or (b) air-temperature 
UHIs. Air-temperature UHIs are relevant to building energy use, thermal comfort, public 
health, precursor emissions, air pollutant formation, and climate, and as such are the focus of 
this study. UHIs result in part from the transformation of urban land cover from trees and 
vegetation to buildings and other heat-absorbing urban infrastructure (Taha 1997; Pomerantz et 
al. 2000; Taha 2017). 

Future climate change scenarios project that the annual number of extreme heat days in 
California’s urban areas will increase. In the San Fernando Valley in the Los Angeles (LA) Basin, 
the number of extreme heat days (those with maximum air temperatures exceeding 39.7 °C 
[103.4 °F], based on the 98th percentile of daily maximum temperatures recorded April - October 
1961 - 1990), are estimated to increase on average to 12 days per year from four by mid-century 
(Cal-Adapt 2018). Temperature increases induced by climate change would exacerbate existing 
heat islands, threatening human and non-human health and straining energy resources. While 
warming from climate change requires global action to mitigate, UHIs are city-specific 
phenomena with solutions a city can implement locally. UHI countermeasures, such as cool 
roofs and tree canopy cover, have been found in modeling studies to reduce urban 
temperatures when implemented at scale in cities (Santamouris 2014; Taha 2015; Taha 2008a-c).  

To design and implement appropriate countermeasures, cities need to characterize urban heat 
and its causes (Taha 2013; Sailor et al. 2016). This project seeks to understand spatial variations 
in local heat and cool islands and their relationship to land-use and land-cover (LULC) 
properties, providing guidance for future mitigation via control measures such as higher albedo 
(solar reflectance) and more vegetation. The objective was to establish the causative factors of 
the local heat and cool islands at the neighborhood scale (Oke 1981; Grimmond 2006; Taha 1997) 
in the study areas, based on site-specific and upwind (a) micrometeorological dynamics (e.g., 
local generation of heat and transport of heat from upwind sources), (b) LULC properties, and 
(c) surface physical properties. We sought to (a) use fine-resolution climate models to identify 
UHI / Urban Cool Island (UCI) areas, (b) relate observed intra-urban temperature variations 
(from mobile transects and fixed weather stations) to LULC and surface physical properties, 
and (c) calibrate/validate the fine-resolution meso-urban climate models that were used in 
identifying the UHI / UCI. By understanding the variations in local heat and cool islands and 
their interaction with LULC properties, cities can implement policies to mitigate UHIs now and 
build resiliency to future urban warming from climate change.  

To characterize the meteorological variables in the study areas, we collected data from existing 
weather networks; conducted detailed, fine resolution meteorological modeling; installed 
research-grade stationary weather monitors; and performed mobile transects. We partnered 
with the City of Los Angeles, County of Los Angeles, and Los Angeles Unified School District 
(LAUSD) to help us identify and host stationary monitors in two study areas that we identified: 
(1) “SFV5”, an area that is part of the San Fernando Valley (SFV); and (2) “LA1”, a region that 
includes and extends to the southeast of downtown Los Angeles. We completed installation of 
three research-grade stationary monitors in the SFV5 study area. We also installed a research-
grade monitor at the University of Southern California campus west of downtown Los Angeles. 
To supplement the data collected from these stationary monitors, we designed and executed 
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multiple mobile transects. To identify the causative factors of the local heat and cool islands at 
the neighborhood scale, we collected detailed LULC datasets for the LA Basin, such as 1-m (3.3 
ft) resolution roof albedo and tree canopy cover, as inputs for the meteorological modeling and 
analysis. The fine-scale meteorological model was used to (a) design mobile-transect routes and 
(b) site the stationary weather monitors based on the definition of UHI / UCI areas. 

 

2: Literature Review 
2.1 Modeling the Urban Heat Island Effect 
Various approaches have been developed recently to represent the effects of urban areas in 
atmospheric models. Many of these parameterizations have been implemented in such models 
as the Town Energy Balance (TEB) of Masson (2000), the microclimate model ENVI_MET 
(ENVI_MET 2018; Bruse and Fleer 1998), and the urban Weather and Research Forecasting 
(WRF) Model (Chen et al. 2010). 

Three main urban modules are available in the WRF Model. The first approach is based on the 
urban canopy model of Kusaka et al. (2001), which is a single-layer model representing an 
urban canyon. The second and third approaches are based on the multi-level urban canopy 
models Building Environment Parameterization (BEP) and the Building Environment 
Parameterization–Building Energy Model (BEP-BEM) (Martilli et al. 2002; Chen et al. 2010). 

2.2 Measurement of Urban Heat Islands 
UHIs can be measured through different methods, including remote sensing, stationary 
monitors, and mobile measurements. Remotely sensed satellite data can be used to measure 
surface-temperature UHIs. However, remote sensing is limited to measurement of surface- 
UHIs because the satellite imagery represents the surface temperature, and the relationship 
between surface temperature and air temperature is not one-to-one. The difference between 
surface and air temperatures is influenced by many parameters such as height above ground, 
solar radiation, wind speed, wind direction, humidity, and surface roughness (Weng 2009). 
Another limitation to remote sensing is the coarse image resolution (10 – 100 m) which yields 
homogenous input characteristics for small neighborhoods (Voogt and Oke 1998). Stationary 
measurements of air temperatures can be used to detect signals in locations across a city, but 
this type of measurement can be limited by availability of existing research-grade monitors 
and/or sites willing to host new such monitors. Mobile measurements are easy to tailor and 
control but provide less temporal coverage than continuously operated stationary monitors.  

2.3 Effect of Land Use / Land Cover on Urban Heat Islands 
Characterization of urban heat and its causative factors, such as land-surface properties, is an 
important first step towards designing countermeasures (Taha 2013; Sailor et al. 2016). Relating 
the urban heat to variations in land-cover and physical properties in urban areas is also critical 
in understanding how future changes in land use can affect heat islands, and, hence, the efficacy 
of mitigation measures.  
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At the fine intra-urban scales—e.g., less than or equal to 1 km (0.62 mi.)—three factors may 
affect microclimate and heat. These are (1) urban surface albedo; (2) vegetation cover and 
related shading, soil moisture, and evapotranspiration effects; and (3) urban morphology and 
related parameters such as sky-view factor and surface roughness (Taha 2008; Jin et al. 2018).  

Several studies have used mobile platforms to measure urban microclimate parameters, 
especially air temperature. For example, Qiu et al. (2017) carried out automobile observations to 
quantify the effects of green (vegetated) spaces on the UHI in Shenzhen, China. The study 
focused on ability of evapotranspiration to reduce air temperatures and found that green spaces 
are the coolest elements of the urban environment, with diurnal-average air temperatures up to 
~1.6 °C (2.9 °F) lower than observed for other land uses. 

Tsin et al. (2016) compared on-foot mobile transect air temperature measurements in 
Vancouver, Canada to temperature readings from stationary monitors and to Landsat land-
surface temperature. They found that the temperatures measured via transects varied more 
than those observed at stationary monitoring stations. This was because the mobile 
measurements were carried out in streets and urban canyons, and thus were more influenced 
by microclimate anomalies. Jonsson (2004) used mobile measurements to show that the intra-
urban variability in air temperature resulting from changes in vegetation cover is of the same 
magnitude as the urban-rural temperature difference. In this case, evapotranspirative cooling 
created a summer midday urban oasis of 2 °C (3.6 °F) relative to rural surroundings in 
Gaborone, Botswana. Herbel et al. (2016) used mobile measurements to measure air 
temperatures 2 m above ground level (AGL) in Cluj-Napoca, Romania. They found urban areas 
with high-rise buildings experienced summer evening air temperatures up to 2 °C (3.6 °F) 
warmer than in surrounding vegetated areas, while air temperatures in low-rise, low-density 
urban areas were not detectably different from those in vegetated areas. 

Some workers—e.g., Sun et al. (2009)—have used mobile observations and stationary 
monitoring to characterize winter UHIs in Phoenix, AZ. They found that LULC is an important 
factor in intra-urban UHI magnitude. They also showed that vegetated areas are the coolest 
regions within the urban areas both day and night.  

Ellis et al. (2015) deployed 10 stationary weather stations in different land-use types across 
Knoxville, TN, for summertime observations of the UHI. The sensors were 2.25 m above ground 
level. They found that vegetation cover had a significant cooling effect, lowering maximum 
daytime temperature by up to ~1.2 °C (2.2 °F), but with smaller reductions at night. 

 

3: Methodology 
3.1 Acquisition of External Weather Measurements 
To help inform placement of our stationary monitors and to provide observations to compare to 
modeled temperatures, we created a database of accessible historic weather data available for 
the LA Basin.  
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3.1.1 Criteria 
Observations from different sources can vary in temporal resolution, spatial coverage, spatial 
density, and accuracy. We created a database of weather observations including all sources that 
had at least 10 stations available in the LA Basin. 

3.1.2 Process 
We collected data from existing stationary weather station networks, including the California 
Irrigation Management Information System (CIMIS), WeatherBug, and Weather Underground 
(Table 1).  

Table 1. Selected weather station networks and their features 

Source of data Number of 
stations  

Temporal 
coverage Price 

CIMIS 240 in 
California 2005-2014 Free to 

public 

WeatherBug 
424 in 
Southern 
California 

2005-2015 Free 
(donated) 

Weather 
Underground 

>9000 
stations in 
California 

Varies by 
station 

Varies by 
the type 
of access 
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Figure 1 shows a map of all the existing weather stations we included in the database. Data 
from CIMIS were free, data from WeatherBug were donated, and data from the Weather 
Underground were purchased. We had limited access to the Weather Underground network 
API (Weather Underground 2016), so we focused primarily on obtaining data for the areas of 
interest (presented in Section 0). We also downloaded data from other areas in the LA Basin for 
possible use in future research studies. Most monitors in the WeatherBug and Weather 
Underground networks are personal weather stations (PWSes). These networks have higher 
spatial density (i.e. more stations in the LA basin) compared to many government-operated 
weather station networks such as CIMIS. While PWSes have better spatial coverage than 
government stations, the raw data from these networks are not preprocessed. Other drawbacks 
include (1) PWS equipment is typically less accurate (though also less expensive) than that 
found in research grade stationary monitors; (2) air temperature sensors in a PWS may be 
inadequately shielded from the sun; and (3) there are no rules guiding where a PWS may be 
installed, so measurement variations between stations may result from nearby surrounding 
objects. 
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Figure 1. Points on the map locate existing weather stations. The cross-hatched black polygons 

outline our initial study areas of interest. The red, blue, and black points identify Weather 
Underground, WeatherBug, and CIMIS weather stations, respectively. 

The collected data was stored in a MySQL (open-source relational database management 
system) database. The database included two sections. The first section details each station, 
including name, location, elevation, and temporal coverage. The second section lists all the 
historic meteorological observations collected from all the stations. 

3.1.3 Quality Review 
Data downloaded from the existing weather station sources was post-processed to remove 
outliers. This was an important step for the development of the database, since the outliers 
could make it difficult to detect UHI / UCI. 

The cleaning process was completed in three steps. In the first step, we removed null data, 
which typically represent faulty measurements; these are usually reported as out-of-range 
values, such as “-999”. Unit transformations can make it tricky to identify null values in PWS 
data. For example, a PWS network that converts ft/s to m/s might transform a null wind speed 
value of -999 (ft/s) to -304 (m/s). In the second step, we removed the values that were outside 
the historical range of maximum and minimum observations reported by NOAA weather 
stations across the LA Basin. In the third step, we removed stations sited in atypical urban 
settings, such as neighborhoods near golf courses or water reservoirs.  
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3.1.4 Datasets Selected 
We included data from Weather Underground, WeatherBug, and CIMIS in our database of 
historical observations. Table 1 shows the selected datasets and their features. However, for 
simplicity and to avoid temperature differences that might result from variations in 
measurement techniques between networks, our analysis of PWS data only included monitors 
from the Weather Underground network. The analysis focused on the summer of 2015. 

3.2 Study Area Identification 
3.2.1 Characterization of Land Use / Land Cover (LULC) 
LULC analysis was the first step in identifying urban areas with delineations or transitions of 
interest—i.e., changes in physical properties. Depending on the region of interest, various 
sources of LULC information may exist that can be used to characterize the surface properties in 
a geographical domain. For the LA Basin, these can include: (1) 30-m (98-ft) horizontal 
resolution National Land Cover Data (NLCD) (MRLC 2014); (2) 30-m horizontal resolution 
USGS Level-II classification LULC (Anderson et al. 2001); (3) area-specific LULC, such as data 
developed by the City of Los Angeles; (4) area-specific LULC and building outlines / footprints, 
such as data developed by the County of Los Angeles (LARIAC 2008); (5) Google Earth 
morphological and land-cover data for the region; (6) satellite-derived building-specific roof 
albedo from a Berkeley Lab study of the City of Los Angeles that was performed for the 
California Air Resource Board (Ban-Weiss et al. 2014); (7) 1-m horizontal resolution area-specific 
urban morphological and geometrical data from the National Urban Datasets and Portal Tool 
(NUDAPT) (Burian et al. 2003) for a few areas in the region; (8) fine-scale USGS Level-IV LULC 
(SCAG 2012) for the County of Los Angeles that include about 100 different classes of land use; 
and (9) 1-m horizontal resolution EarthDefine / CALFIRE urban tree canopy cover (Bjorkman et 
al. 2015) for the region. 

The study area was then characterized using these data sources. Gridded parameters for surface 
characterization were developed including albedo; soil moisture; roughness length; drag 
coefficient; thermal emissivity; plan-, top-, and frontal-area densities for building and 
vegetation canopy; floor-to-plan ratio; height-to-width ratio; shade factor; sky-view factor; and 
leaf-area index. 

The LULC characterization was performed to (1) derive surface inputs to the meteorological 
model, and (2) to provide a basis for relating observed air temperature to LULC properties at 
stationary monitor sites or along mobile-transect routes. Crosswalks (correlations) among the 
different datasets were also developed so that each grid cell of the modeling domain could be 
characterized based on several sources of information. Figure 2 and Figure 3 depict examples of 
LULC characterization in two study areas selected in this project. This was one basis for the 
initial selection of study areas for further fine-scale modeling and monitoring.  

Based on these LULC characterizations, four study areas were identified initially. These are 
shown in Figure 4. Subsequent fine-scale climate modeling and analysis led to the selection of 
“LA1” and “SFV5” as the two study areas for conducting the project’s mobile transects and 
detailed meteorological modeling, as discussed in this report. The area identified as “SFV5” in 
this analysis is actually one of several areas we identified in the San Fernando Valley and “LA1” 
contains downtown Los Angeles in its northwestern tip. For lack of a better geographical 
description, LA1 is also referred to as “downtown area” in some of the following sections. 
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Figure 2. Sample detail from the LULC analysis showing an area including downtown Los Angeles 
(area LA1). There are about 50 LULC classes represented in this figure; the USGS Level-IV system 

includes more than 100 classifications. The darker areas are residential land uses and the ones 
color-coded blue, dark green, and red in the middle are industrial and commercial land functions. 

Bright green represents open and/or vegetated areas (Data source: SCAG 2012). 

 
Figure 3. Sample detail from LULC analysis showing the San Fernando Valley and area SFV5 in 
the upper-left part of the figure, selected for modeling and observational analysis. The darker 
areas are residential land uses and the ones color-coded blue, dark green, red, and yellow are 
industrial, commercial, and academic land functions. Bright green are open and/or vegetated 
areas. Magenta is transportation (in this case, Van Nuys airport). (Data source: SCAG 2012) 
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Figure 4. Boundaries of initial study areas LA1, LA2, LA3, and SFV5 (solid white lines) considered 
for meteorological modeling, installation of new stationary monitors, and mobile transects; LA1 
and SFV5 were selected. Also shown are the boundaries of study areas Central LA and SFV_R 

(solid gold lines) used in analysis of personal weather station data, and the boundaries of the San 
Fernando Valley (SFV) and Downtown LA (dotted white lines). 

The grid-cell-level albedo is computed by accounting for LULC components including (1) roofs, 
(2) pavements, (3) vegetation, (4) water surfaces, and (5) other cell-specific land functions that 
were derived from the LULC data sources discussed above. 

Roof albedo is computed based on remote-sensed values from LBNL dataset (Ban-Weiss et al. 
2014) and is thus highly building- and cell-specific. Pavement albedo is computed based on past 
research of California (Akbari et al. 1999; Rose et al. 2003) and the USGS Level-II classifications 
system (Taha 2007). Vegetation and water were assigned constant values of albedo based on 
field measurements and literature review (Taha et al. 2015). 

Tree canopy cover characterization was based on 1-m horizontal resolution data from Earth 
Define / CALFIRE (Bjorkman et al. 2015). The 1-m data is binary – each pixel is set to 1 if a tree 
canopy is present, or to 0 otherwise. This was then up-scaled to 500 m (1640 ft) resolution. While 
the EarthDefine / CALFIRE data are categorized into low, medium, and high tree-canopy 
cover, this study calculates tree-canopy cover with a range from 0 – 100% based on the up-
scaling of the pixel values. 

Characterization of cell-specific building geometrical / morphological parameters in this study 
(e.g., plan- frontal-, and top-area densities; mean height; and sky-view factor) relies primarily 
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on calculations performed using detailed buildings footprints and geometry information, and 
secondarily on NUDAPT and prior Google Earth Pro analysis of Californian urban areas (Taha 
2008a-c).  

To compute the building-specific site area, the calculations subtract vegetation cover and 
building plan area from the total cell area, then divide the remainder by the number of 
buildings to determine an average open-space area per building that is then used to compute 
the building plan-area density. In the vertical direction, calculations were repeated at 5-m (16.4-
ft) intervals to compute the percentage of total building plan area (in a grid cell) that exists 
within each specified height interval. 

The vegetation roughness length parameter and building roughness length parameter were 
characterized for each grid cell based on the approach of MacDonald et al. (1998). To calculate 
roughness length in this manner, several morphological variables were derived for every grid 
cell as discussed above. These include (1) frontal area densities of roughness elements 
(buildings and vegetation), (2) plan-area densities, and (3) heights. In addition, empirical 
coefficients and correction factors were assigned per Macdonald et al. (1998) and Grimmond 
and Oke (1999).  

3.2.2 Climate Modeling Results and Suggestions for Study Areas 
The detailed meteorological modeling performed in this study helped us site stationary weather 
monitors and plan mobile-monitoring routes. The modeling results also provided a basis for 
correlating micrometeorology at each site with the surrounding LULC characteristics affecting 
temperature, i.e., local heat or cool islands (UHI or UCI). 

The Weather Research and Forecasting – Advanced Research WRF (WRF-ARW) meteorological 
modeling system (Skamarock et al. 2008) was selected for use in this study. Several urban 
parameterizations were applied and inter-compared. Meteorological input for the summers of 
2013 and 2006 was prepared as in a prior modeling effort for a Cal/EPA project (Taha and 
Freed 2015). These periods represent typical summer and heat-wave conditions in California 
and are used in this project for the sake of compatibility with the Cal/EPA California Urban 
Heat Island Index (UHII) modeling work (Taha 2017). The UHII was developed in response to 
California AB 296 to characterize both the extent and severity of the urban heat island effect in 
California’s cities. 

The two study areas identified (LA1 and SFV5) were modeled to assess the potential UHI 
and/or UCI signals that stationary monitors and mobile transects in this area would capture. 
The meteorological modeling domain was configured such that the finest grids (500-m 
resolution) encompass these two areas of interest. 

Four periods were first simulated to evaluate whether the near-surface air temperature field 
and UHI and/or UCI patterns are significantly altered in different summer conditions. These 
periods are (1) May 30 through June 16, 2013, representing relatively typical summer conditions 
in California; (2) June 29 through July 16, 2013, representing warmer conditions; (3) June 30 
through July 16, 2006, representing windier conditions; and (4) July 14 through August 1, 2006, 
representing the California heat wave of 2006 (Gershunov et al. 2009). 

The simulations were done with model customizations that begin by overriding default, 
lookup-value model input with domain-specific surface characterizations that are defined for 
each grid cell in a bottom-up approach (Taha 2017). This approach improves the area-specificity 
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of surface inputs to the meteorological model, including surface albedo, vegetation cover, 
roughness length, soil moisture, shade factor, and other parameters discussed above. This was 
then refined in the study by modifying the urban canopy model of Kusaka et al. (2001) as 
discussed in Taha (2017). 

The simulated temperature field was then characterized for each grid point in the modeling 
domain using two diagnostics. The first diagnostic is 2-m (6.6-ft) air temperature (Tair) 
calculated from interpolation between surface and first atmospheric level. The second 
diagnostic is 2-m air temperature based on surface temperature and heat transfer calculations, 
typically referred to as “T2” in the modeling environment. Thus, Tair is more representative of 
the prognostic (predicted) temperature field within and above the urban canopy layer (UCL), 
including advective effects, whereas T2 is more of a diagnostic air temperature that is 
representative of localized in-UCL air temperatures. 

Based on results from this analysis, several points in the LA1 and SFV5 domains were identified 
as localized UHI or UCI areas; examples are shown in Figure 6 and Figure 7. The modeled 
temperature was converted into degree-hour (DH) metrics to capture cumulative rather than 
instantaneous properties of the temperature field. (Degree-hours are computed as the time 
integral of temperature). The goal was to evaluate whether the general temperature pattern was 
consistent across the different summer conditions considered in this study. The spatial pattern 
of the temperature field was found to be similar (repeatable) for intervals modeled in this study. 
Therefore, the spatial characteristics can be used as basis for development of siting criteria. 

Additional details on the approach used in the current study can be found in Taha et al. (2018).  

3.2.3 Preliminary Mobile Transects to Select Areas  
To quantitatively evaluate the model prediction of temperature tendency and spatial gradients 
in temperature in the modeled areas, preliminary mobile-transect measurements of temperature 
were devised for initial feedback and preparation for more rigorous model performance 
evaluation. The transect was conducted in LA1 during April 2016. The observations confirmed 
the findings from the model, allowing us to use the modeled results to identify the study areas 
of interest. These aspects are discussed in detail in the project report (Levinson et al. 2018). 

3.2.4 Study Areas Selected 
Based on the initial results discussed in Section 3.2.2, we decided to install monitors in the San 
Fernando Valley area SFV5 and in area LA1 to capture the interactions between LULC and 
microclimates in (1) inland regions (the San Fernando Valley) and (2) areas influenced by the 
sea breeze flow and climate archipelago effects (the semi-coastal region that includes area LA1). 
(An archipelago is group of islands, or a body of water containing a group of islands; we use the 
term “climate archipelago” to refer to the complex climate effects of a very large, continuous 
urban area since upwind portions can affect downwind portions.) Monitoring two different 
areas can help us understand the role of local surface-properties and impacts on temperature in 
different climate regimes—here, inland valleys and quasi-coastal areas. 

3.2.4.1 Criteria 
The horizontal (geographical) siting of monitors depends on LULC analysis and meteorological-
modeling results as discussed in Section 3.2.2. Choosing the height at which to install stationary 
monitors relies on flow theory, as discussed below. However, there are non-technical 
limitations on siting, including availability, site accessibility, and jurisdiction by project partners 



12 

in the region. In some cases, the final selection of monitor sites could be decided solely by these 
non-technical limitations. 

To understand spatial variations in UHI and their interactions with land-use and land-cover 
properties, and to develop mitigation measures, the scale of interest is about 500 m – 1500 m (0.3 
mi – 0.9 mi).  

Thus, an appropriate height needs to be determined for placing monitors above the ground 
surface or above roof level to capture land-cover effects within an upwind distance of 500 m – 
1500 m. Ideally, air temperature sensors should be sufficiently removed from ground, wall, or 
roof surfaces to avoid measuring a temperature that is affected directly and solely by these 
surfaces (grey bar in Figure 5), but not so high above ground or roof surfaces such that the 
temperature readings become regional in nature and unrelated to the 500 m – 1500 m fetch of 
interest. Thus, it is desirable to place the sensors vertically within the range indicated with the 
blue bar in Figure 5. Flow theory can provide some general guidance in this respect (Cheng and 
Castro 2002; Arya 1988; Panofsky and Dutton 1984).  

A transition in roughness or surface properties, in this case a change in LULC physical 
properties, induces an internal boundary layer (IBL) that grows downwind of the transition 
area. In this project, it is desirable to place the sensors within the internal boundary layer 
corresponding to the land-cover being characterized. If the sensors are placed above the IBL, 
then the temperature readings will be those of the background flow, unrelated to the fetch 
(LULC) of interest. Based on approximations by WMO (2006), and assuming a blending height 
(Zr) (see Figure 5) that is 1.2 - 1.5 times the building height (in dense and/or homogeneous 
urban areas), the calculations suggest that placing the sensors at a height of ~2 m above ground 
surface or above roof level would be suitable for the length scales of interest in this study.  

Several monitors installed during this project, as well as existing network monitors in the 
region, are all at ~ 2 m above roof level, which corresponds to the elevation at or slightly above 
the blending height shown in the figure. This is the desirable height for measuring the surface 
effects over a 0.5 – 1 km upwind fetch. For the same reason, mobile-transect measurements were 
carried out at 2 m above ground level to capture effects of surroundings at that scale. It is 
possible to relate the mobile measurements to fixed, above-roof measurements by taking the 
average of many mobile observations that correspond to the area “seen” by the fixed monitors. 
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Figure 5. Parameter definitions in relation to vertical placement of weather monitors (temperature, 

wind direction and speed, and solar radiation). Figure is not to scale. The urban canopy layer is 
defined as a layer below roof level; the roughness sub-layer is in the order of 1.5 times the roof 
height; and the planetary boundary layer is on order of hundreds of meters at night and up to 

several kilometers during the day. 

3.2.4.2 Coordination with project partners  
Several points in the LA1 and SFV5 study areas were identified as localized UHI or UCI areas 
based on model and initial mobile-transect results. We shared these points and study areas with 
project partners—including the City of Los Angeles, County of Los Angeles, and LAUSD—and 
collectively developed a list of their facilities that could serve as potential sites for the stationary 
monitors.  

3.2.4.3 Identification of potential sites for stationary monitors 
The suggested sites were evaluated based on technical criteria and location relative to model-
predicted UHI / UCI points. A summary listing and evaluation of all potential sites (30 possible 
locations) is provided in the project report (Levinson et al. 2018). Upon further evaluation of 
these sites via examination of three-dimensional imagery (e.g., Google Earth Pro) and location 
visits, certain sites were assigned a lower priority because of such factors as (1) unavailability of 
flat roofs (sloped roofs can be an issue for installing weather stations), (2) lack of secure sites in 
open areas (at ground level), and (3) physical characteristics of the site. This resulted in a top 
tier of ten potential sites. Some of these sites in LA1 and SFV5 are shown in Figure 6 and Figure 
7.  

While we developed a list of the top ten potential sites, we struggled to get local approval and 
find suitable locations at each of the sites for the installation of the monitors. We had high-level 
support from our partners. However, many layers of approval were required, especially as we 
honed in on specific sites and locations. For instance, we had support from City of LA Fire 
Department management to install monitors, but we ran into a barrier with the labor union 
representing the firefighters, which did not want a rooftop monitor on their fire station 
transmitting data via a cellular modem.  
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Figure 6. Prospective monitoring sites selected in the San Fernando Valley (red markers circled in 

yellow) with a sample mobile-transect route. 
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Figure 7. Monitoring sites (red markers circled in yellow) selected in the downtown Los Angeles 
area (LA1) with a sample mobile-transect route. 

3.3 Stationary Weather Measurement  
3.3.1 Criteria  
We desired the following characteristics for each monitor. 

1. The monitor should accurately and continuously measure the primary signal, dry-bulb 
air temperature; secondary signals, including wind speed, wind direction, solar 
irradiance, and relative humidity, useful for interpreting variations in air temperature; 
and monitor diagnostics, such as radiation-shield fan speed, needed to verify that the 
sensors are operating as designed. 

2. To facilitate initial installation and subsequent maintenance, the monitor should be easy 
to assemble and program. 

3. The monitor should be readily installed on an elevated surface, such as that of a low-
slope roof, to measure air temperature at some fixed height above ground. 

4. The monitor should communicate over the internet or by cellular modem for convenient 
data collection and (if necessary) reprogramming. 

5. The monitor should be durable, ideally with a service life approaching a decade. 

The monitor should cost less than $5K, in accordance with our proposed budget.  

3.3.2 Monitor Design 
A monitor typically comprises multiple weather sensors, a logger, and a support structure. The 
monitor will run off a battery charged by local AC power or a photovoltaic (PV) panel. If the 
monitor is to be accessed remotely, it will also have an internet connection, landline modem, or 
cellular modem. 

Dry-bulb air temperature can be measured with several types of sensors, including but not 
limited to thermistor (ceramic resistance thermometer), resistance temperature detector (RTD; 
metal resistance thermometer), or thermocouple. Sensor choice depends on measurement range, 
speed, and accuracy, as well as instrument cost and durability. While each technology has 
merit, a precision thermistor is a low-cost, high accuracy option with sufficient range. 

When air temperature is measured outdoors, the sensor should be shielded and aspirated 
(ventilated) to reduce errors induced by short-wave (solar) and long-wave (thermal infrared) 
radiation. This can be accomplished by installing the sensor in a commercial or custom 
aspirated radiation shield. A commercial unit will typically output a signal indicating its fan 
speed, which can be monitored to verify that the sensor is being aspirated. 

Wind speed can be measured with several types of sensor, including but not limited to three-
cup anemometer, vane anemometer, hot-wire anemometer, ultrasonic anemometer, or pressure 
anemometer. Wind direction is usually measured with a wind vane. Weather stations will 
usually employ a three-cup anemometer to measure speed and a wind vane to measure 
direction, or a vane anemometer that determines both speed and direction. 
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Downwelling solar irradiance can be measured with a thermopile pyranometer or a 
semiconductor pyranometer. If solar irradiance is a secondary parameter, a less expensive 
semiconductor pyranometer will suffice. Note that if one needs to measure upwelling 
sunlight—say, to determine solar reflectance of a ground or roof surface—downwelling and 
upwelling solar radiation should each be measured with a thermopile pyranometer. 

Relative humidity (RH) can be measured with several types of sensor, including but not 
limited to resistive hygrometer or capacitive hygrometer. A resistive hygrometer bases its RH 
determination on both the resistance and temperature of a sensing element, and therefore is 
integrated into a device that reports both RH and temperature. 

A logger (also known as a data logger) typically integrates a programmable microprocessor, 
analog/digital inputs, analog/digital outputs, non-volatile memory, telecommunication 
hardware, and battery into a standalone unit that operates the sensors, locally stores their 
output, and may intermittently transmit recorded measurements to a remote computer or cloud 
data server.  

We reviewed the specifications and prices of two loggers, six wind speed/direction sensor kits, 
two silicon pyranometers, two temperature sensors, one RH sensor, and four aspirated 
radiation shields. We also factored in our positive and negative experiences with some of these 
instruments in past projects. 

After considering all these inputs, we specified and purchased a system from Onset 
Corporation that connects to a logger (RX3000) plug-and-play digital-output sensors that 
measure wind speed (S-WSB-M003 three-cup anenometer), wind direction (S-WDA-M003 wind 
vane), solar irradiance (LIB-M003 silicon pyranometer), and temperature/RH (S-THB-M002 
temperature/RH). The logger also has a four-channel analog module (RXMOD-A1) that can 
excite and measure analog signals, such as the output of a thermistor circuit (air temperature) 
and a pulse-counting circuit (fan speed). The logger can upload its measurements to a cloud 
data server via cellular modem. All components can be mounted on a tripod structure, which in 
turn can be installed on a roof. 

Relevant specifications of the Onset sensors and logger are summarized by Levinson et al. 
(2018). 

We acquired evaluation units of two aspirated radiation shields—the RM Young (RMY) 43502, 
and the Apogee Instruments (AI) TS-100 (Table 6)—and an Onset U23 Pro v2 external 
temperature/relative humidity (T/RH) data logger (U23-002), which is a standalone version of 
the T/RH smart sensor (THB-M002) used in the monitor. We also purchased two models of 
precision thermistors: the US Sensor KS103G2, and the Apogee Instruments ST-110. 

Following extensive testing (Levinson et al. 2018), we determined that the AI and RMY shields 
were each suitable for our purpose. We selected the AI shield because (a) it draws much less 
power, which may prove helpful if a monitor’s battery must be charged with a PV panel; and 
(b) it is easier to mount a thermistor (though not a T/RH sensor) in the center of the air flow. 
While we were impressed with the high accuracy and low cost of the KS103G2 thermistor, it 
does not include the cabling or the voltage divider circuit needed to use it as a temperature 
sensor. Since our experience is that is more economical to buy a complete product than to 
purchase and assemble components, we selected the AI ST-110 thermistor, which is more 
expensive but is ready to connect to the logger’s analog input module. 
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3.3.3 Monitor Calibration 
We had final partner approvals to install four monitors. The four monitors were calibrated at 
the University of Southern California (USC) before three of them were installed at the selected 
locations. During a four-day period (July 21, 2017 - July 24, 2017), the four monitors were 
installed at a USC campus parking lot. Monitor_0 was the reference station installed at USC (see 
Section 0 for more details). Measurements from the other monitors were compared to this 
reference monitor. During this calibration period, we moved the monitors around the site and 
switched the location of the sensors and other equipment on the monitor (e.g., fans) that could 
affect our measurements. We did this to investigate and compare the potential biases caused by 
station location and sensor placement. Negligible differences were observed from the slight 
differences of location of monitors (e.g. distance from near objects, containers). The overall 
results of the calibration did not show any significant difference between the sensors from the 
different monitors. 

3.3.4 Stationary Monitor Installation  
Four stationary monitors (Monitor_0 - Monitor_3) were installed between Oct 2016 to Apr 2018. 
We installed three in SFV5, and one near the USC campus, which served as the reference 
monitor (Monitor_0) (Figure 8). The process of negotiation to find sites, suitable locations at 
sites, and acquiring the needed approvals to host the monitors took much longer than expected. 
The first monitor (Monitor_0) was installed on USC’s campus inside a gated area in a parking 
lot. This location was easily accessible for the research team, and thus served as the permanent 
location for our reference monitor (Monitor_0) and the location for calibrating the other 
monitors. Monitor_0 was installed on October 26, 2016. The sensors were installed 2 m above 
ground level and the monitor was stabilized with ballasts. Monitor_1 was installed at the City 
of Los Angeles’ Bureau of Street Services Facility Yard in Topanga Canyon on July 25, 2017. The 
monitor was installed 2 m above the roof surface on a structure that provides shade to a parking 
lot. It was also secured with ballasts. Monitor_2 was installed at LAUSD’s Sunny Brae 
Elementary School on January 11, 2018. The monitor was installed on the roof 2 m above the 
roof surface on a school building and secured to an existing pole. Monitor_3 was installed at 
LAUSD’s Melvin Elementary School on April 13, 2018. The monitor was installed 2 m above the 
roof surface on a school building and secured to an existing roof antenna pole. For both 
Monitor_2 and Monitor_3, staff from LAUSD assisted with the installation to guarantee that 
safety procedures were followed.  
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Figure 8. Location of the four installed monitors on the map on Los Angeles. 

3.3.5 Monitor Operation 
Data collection began as soon as each monitor was installed. The observations are collected at 
10-second intervals, and the average for each minute is recorded. The data is transmitted from 
each monitor to the service provider (HOBOLink) using a cellular modem; we can access the 
data, visualize, export, and order frequent delivery via email to our servers or accounts. We also 
have set up a publicly available feed on the Weather Underground website from our monitors 
installed on schools, since the LAUSD and the schools themselves were interested in exploring 
the gathered data.  

Unfortunately, the selection and negotiation for the locations of the monitors took longer than 
predicted; by the time we installed the last station (April 13, 2018), we were getting to the end of 
the project. Thus, we could not incorporate them in the analysis presented here. The data will be 
available for future projects and analyses. 

3.4 Mobile Observation Path Selection 
Mobile-observation transects were carried out to measure microclimate variations along the 
routes. Of particular interest is air temperature variation, as the LULC and surface properties 
change along each route segment. The goal was to develop correlations that quantify the 
responses in temperature to changes in albedo and vegetation canopy. 

Points of interest (e.g., UHI and UCI) were identified in both the SFV5 and LA1 domains based 
on their modeled temperature-field characteristics.  

The selected mobile-observation routes were designed such that they cut across the LULC 
boundaries and transitions, e.g., to capture the possible effects of changes in LULC from one 
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neighborhood to another. The routes also were designed to yield small changes in elevation and 
to keep the duration of each transect sub-segment under 20 minutes (to minimize variations in 
air temperature that result from change in time of day). 

In all, 15 transects were carried out in summers of 2016 and 2017 in both SFV5 and LA1 (as will 
be discussed in Sections 3.7 and 4.2.2). Figure 9 shows a composite of all transects that were 
carried out, as well as a random example detail of one transect sub-segment. Some transect 
routes are duplicates (superimposed on each other) and hence appear as one. While all transects 
shown in LA1 were considered in the analysis, only the parts of the transects within the red box 
were considered in the analysis for SFV5. 

 

 
Figure 9. Superimposed routes of 15 transects. While all transects shown in area “LA1” were 

considered in the analysis, only the parts of the transects within the red box were considered in 
the analysis for SFV5. Inset: example detail. 

3.5 Mobile Monitor Design and Operation  
3.5.1 Design 
Horizontal variations in air temperature near the ground (say, 2 m above ground level) can be 
mapped by attaching a thermometer to roof of a vehicle, such as a car, then logging 
temperature, position, and time during a transect. To ensure that the thermometer accurately 
measures air temperature, its sensor should be aspirated by the motion of the vehicle, shielded 
from the sun, and radiatively isolated from its shield. The sensor should also respond quickly to 
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air temperature changes to minimize spatial inaccuracies, or blurring, in the air temperature 
map induced by the motion of the vehicle.  

Our mobile transect apparatus (hereafter, the apparatus) contains five elements: (1) a shielded 
temperature sensor aspirated by vehicle motion; (2) a quick-install mount to attach the shielded 
sensor to the roof of a vehicle; (3) a portable data logger to record the temperature time series; 
(4) a global positioning system (GPS) to record the position time series; and (5) a dash camera 
(dash-cam) to record time-stamped video of the transect from the perspective of the driver. 

Shielded temperature sensor. To minimize sensor response time and blurring of the 
temperature map, we selected a small negative temperature coefficient thermistor (US Sensor 
model KS103G2, diameter 2.5 mm (0.098 in), electrical resistance 10 kΩ @ 25 °C [77 °F]; US$5) 
shown in Figure 10 as the temperature sensor. The manufacturer-reported time constant of this 
bead thermistor is not more than 10 s in still air, and should be substantially less in moving air. 
Note that a 5 s delay in response will yield a 50 m (164 ft) error in temperature measurement 
location if the apparatus is traveling at 10 m/s (22 mph). Since, in the analysis, air temperature 
at each observation point along the transect was related to surface properties within radii of 
influence of 500 m to 1 km, the potential implication of this error is insignificant. 

The nominal accuracy of this thermistor is ±0.1 °C [0.18 °F] from 0 to 70 °C [32 to 158 °F], with 
an operating range of -80 to 135 °C [-112 to 275 °F].  

To minimize the sensor’s solar heat gain, we installed it at the center of a 25” length of size 6, 
schedule 40 white PVC pipe (length 63.5 cm, outer diameter 16.8 cm, inner diameter 15.4-cm, 
wall thickness 0.71 cm), as shown in Figure 10. If the pipe is horizontal and faces the sun, it 
shields the sensor from all beam sunlight when the solar elevation angle is 14° or greater. 

We selected a wide pipe to facilitate air flow through the pipe and around the sensor when the 
length of the shield is parallel to the motion of the vehicle. This enhances convective heat 
transfer between air and sensor. We estimate that the convective heat transfer coefficient of the 
sensor is about 80 W/m²·K at an air speed of 1 m/s (2.2 mph), rising to 170 W/m²·K at 5 m/s 
(11 mph), 240 W/m²·K at 10 m/s (22 mph), and 340 W/m²·K at 20 m/s (45 mph). 

To minimize radiative heat transfer between the sensor and the inner surface of the shield, we 
wrapped the sensor in aluminum foil. (Since the sensor is essentially enclosed by the much 
larger shield, there is little benefit to foil-lining the inner surface of the shield, which will act as 
a black body cavity regardless of its thermal emittance.) The foil has an initial (clean) thermal 
emittance of about 0.03. If soiling by dust in the air increases the foil’s thermal emittance to 0.10, 
the radiative heat transfer coefficient between the foil-wrapped sensor and the shield will be 
about 0.6 W/m²·K. This is about 400 times smaller than the convective heat transfer coefficient 
when the sensor is in a 10 m/s air stream. Note that even if the foil were to vanish, the radiative 
heat transfer coefficient from the bare sensor (thermal emittance about 0.90) to the shield would 
be about 5.5 W/m²·K. This remains about 40 times smaller than the sensor’s convective heat 
transfer coefficient in a 10 m/s (22 mph) air stream. 

Quick-install mount. We built a quick-install mount for the shielded sensor that places the 
bead about 48 cm [19 in] above the roof of the vehicle, or about 2 m (6.6 ft) above ground level 
when installed on 1.5 m [4.9 ft] tall passenger car. Vertical risers support the shield over pair of 
removable aluminum mounting bars (Proline Racks model CB-602 universal roof rack; US$40) 
with straps that hook to the vehicle’s frame, while crossbeams horizontally stabilize the 
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mounting bars. The risers, crossbeams, and assorted fittings are all made of PVC. Each 
mounting bar rests on wide plastic feet with rubber soles that protect the roof (Figure 11).  

The shield is permanently affixed to the mount, but the mount itself can be attached to a vehicle 
roof (Figure 11) in about 10 minutes. 

Portable data logger. A handheld, battery-powered data logger with LCD screen (Lascar 
Electronics model EL-USB-TP-LCD; US$100) records temperatures measured with the 
thermistor. The logger can store a time-stamped series of up to 32,000 values with a resolution 
of 0.1 °C [0.18 °F] and a frequency of up to 1 measurement per second. We detached the 
thermistor probe supplied with the data logger because the probe encapsulates its thermistor in 
a 75 mm long, stainless steel tube expected to respond slowly to changes in air temperature 
(Figure 12). We substituted the US Sensor bead thermistor described above, which was chosen 
to match exactly the resistance versus temperature curve of the thermistor in the original probe. 
The bead thermistor was soldered to the end of a 4 m [13 ft] cable that plugs into the logger, 
which in turn is placed inside the car. The cable is snaked through a slightly open window. 

Temperature measurements are recorded at 1 Hz, at which frequency the logger can store 
nearly 9 hours of data. The logger must communicate with a computer to start logging and to 
download results, but can record data by itself, and does not require external power. The 
logger’s clock is set to network time when connected to the computer. 

Global positioning system. A smartphone app (MapMyTracks, iOS/Android; free) uses GPS 
and/or cellular tower data to record a time-stamped series of locations (latitude, longitude) at a 
frequency of one measurement every two to three seconds. The location time series is stored in 
the cloud, and later downloaded. The phone must be externally powered while recording 
position to avoid draining its battery. 

Note that while both the smartphone clock and the temperature logger clock are synced to 
network time, the logger records temperatures more frequently than the location app records 
positions. Therefore, the combination of logger and app yields spatially located temperature 
measurements at the frequency of the location app (~ 0.3 to 0.5 Hz).  

Dashboard camera. A dashboard camera (KDLINKS model X1; US$170) records high-
definition, time-stamped video through the vehicle’s windshield, storing up to 88 min of 1920 
by 1280 pixel, 30 frame/sec imagery on a 32 GB memory card (generic; US$15). The camera 
must be externally powered while recording video to avoid draining its battery. 

The camera is manually synced to network time to ensure that the times and dates displayed on 
the video match those recorded by the temperature logger and location app. While the use of a 
camera is optional, it provides a visual record of the transect for later reference. 

 

 

 



22 

 
Figure 10. Bead thermistor wrapped in aluminum foil, then secured with clip in center of shield. 
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Figure 11. Shield on quick-install mount, strapped to the roof of a car, including white PVC-pipe 

shield, gray PVC-pipe vertical risers, aluminum tube roof mounting on plastic and rubber feet, and 
white PVC-pipe crossbeams. Straps with hooks (not shown) secure the bars to the vehicle frame.  

 
Figure 12. Temperature logger shown with stock thermistor probe. The detachable probe was 

replaced by a 4 m extension cable leading to the foil-wrapped bead thermistor shown in Figure 10. 
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3.5.2 Calibration  
We did not calibrate the temperature sensor to an ice bath or other reference because (a) its 
function is to map variations in air temperature, rather than absolute air temperature; (b) the 
nominal accuracy of the sensor is high (±0.1 °C from 0 to 70 °C); and (c) the major potential 
source of error is radiative heating via absorption of sunlight or exchange of long-wave 
radiation with the shield (pipe). As noted in Section 0, we took three steps to minimize such 
error. First, if the pipe is horizontal and faces the sun, it shields the sensor from all beam 
sunlight when the solar elevation angle is 14° or greater. Hence, the sensor will never be in 
direct sun unless the apparatus is used near sunrise or sunset. Second, we wrapped the sensor 
in aluminum foil, making the coefficient for long-wave radiative heat transfer between wrapped 
sensor and pipe 400 times smaller than that for convective heat transfer between the wrapped 
sensor and a 10 m/s air stream. Third, even if the foil were to come off, the coefficient for long-
wave radiative heat transfer between bare sensor and pipe would still be 40 times smaller than 
that for convective heat transfer between the bare sensor and 10 m/s air stream.  

3.5.3 Operation 
We completed fifteen transects in total during 2016 and 2017 in the two study areas—SFV5 and 
LA1. Figure 9 shows the transect routes in the two study areas. Table 2 details the date, time, 
and the study area of each transect. 

The first transects were conducted in personal vehicles, with two researchers in each vehicle—
one to drive, and the other to make measurements. We soon switched to ride-sharing services, 
hiring Uber drivers to install the apparatus on their car and drive along our transect paths with 
a researcher in the car to manage the equipment. This proved to be a time- and cost-efficient 
improvement because (1) it was cheaper to hire Uber than to reimburse researchers for personal 
vehicle use and (2) only one researcher was needed in the car.  

The design of the apparatus also withstood the wear and tear from being installed, uninstalled, 
and stored over the project duration. Hurdles to carrying out the mobile transects included time 
wasted being stuck in traffic traveling to and from study areas, the need to modify initial 
transect routes on the fly because of unexpected road construction and closures, and crime 
safety concerns (that went unmerited) of driving through certain locations at night (20:00-22:00 
LDT1).  

3.6 Calibration of climate model to observations 
For the summer periods (May, June, July, and August) in years 2006 - 2013, the model produces 
generally similar (repeatable) spatial patterns of air temperature in each region and relatively 
consistent geographical locations of UHI and UCI. Figure 13 and Figure 14 depict the modeled 
2-m air temperature field (shown as degree-hours) for May 30 - June 16 (2013) in the two 500-m 
domains containing LA1 and SFV5. The purpose of the top graph in each figure is to give an 
idea where certain temperature patterns occur relative to the urban and geographical features in 
the area, and how the model captures the cooling and heating effects of certain land covers such 
as parks, large roof areas, and roadways. In the bottom graphs, the corresponding domains are 
shown again but without the background, for easier visualization and assessment of the 

                                                      

1 Los Angeles is in the Pacific time zone, where local daylight time is UTC/GMT -7 hours. 
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temperature field characteristics. The contours are color-coded ranging from low to high 
degree-hours (blue to red); the figure captions provide additional information. 

In LA1 (Figure 13), the modeled air-temperature field captures the on-shore warming tendency 
and also the consistently warmer commercial and industrial areas southeast of the Arts District, 
including the cities of Vernon, Maywood, and Commerce. In the northeastern parts of this 
domain, the model shows warmer urban areas in the region between the cities of Monterey 
Park and Alhambra and also between Lincoln Heights and South Glendale. The temperature 
field also captures many areas of localized cool islands, mostly associated with open and/or 
green spaces and some areas with higher urban albedo. It can be seen in Figure 13 that the 
effects of on-shore warming are significant and that the localized UHI / UCI effects are 
superimposed on this signal (Taha 2017). 

In the San Fernando Valley domain (Figure 14), sea-breeze effects are negligible and 
temperature is influenced mainly by topography and variations in land use and surface 
properties. The model predicts higher temperatures in the industrial and commercial areas from 
near Chatsworth in the north, to Canoga Park, and Woodland Hills in the south. Higher model 
temperatures are also seen along the major roadways, including, for example, Sherman Way 
and Parthenia Street (running west to east) and Reseda Boulevard (running north to south), 
among others. Cool islands in this domain are associated with areas of higher vegetation cover. 

The temperature field in these figures clarifies the locations of the localized heat and cool 
islands in the area. 

Model performance evaluation was carried out against fine-scale observations from mobile 
transects. For transect-specific modeling (500-m resolution), modeled air temperature was 
compared to observations from transects at the coincident time (sub-hourly intervals). The goal 
was to ascertain successful model capture of the micrometeorological variations in the urban 
areas and to validate the modified WRF model against the mobile observations. Both modeled 
and observed air temperatures from mobile transects were assessed at 2 m AGL. 

While the transect-specific WRF model (TSM) runs were initiated a week ahead of the actual 
transect time and were continued for 2 days past that, performance evaluation for TSM runs 
was carried out only and specifically at the transect time. The statistics reported in Table 2 
compare along-transect observations with along-transect WRF-model temperature and 
demonstrate a very satisfactory performance for the approach adopted in this study. Table 2 
reports both mean absolute error (MAE) and root mean square error (RSME) in temperature. 
Both the MAE and RMSE in temperature are significantly better than the recommended 
performance benchmarks of MAE ≤ 2°C [3.6 °F] and RMSE ≤ 2°C [3.6 °F] (Tesche et al. 2001). 
The results in the table demonstrate good agreement between along-transect roadway 
observations and area-averaged model results. 
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Figure 13. Total degree-hours (DH) for interval May 30 – June 16 (2013) in downtown LA 500-m 

domain (LA1). The derived average temperature (computed as DH/hour), blue to red, is 17.2–20.6 
°C (62.9 – 69.1 °F) for this period. Color bar is total DH, range: 7,007 – 8,390. 
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Figure 14. Total degree-hours (DH) for interval May 30 – June 16 (2013) in the San Fernando Valley 

500-m domain (SFV5 is in the western part of this domain). The derived average temperature 
(computed as DH/hour), blue to red, is 17.7–22.9 °C (63.9 – 73.2 °F) for this period. Color bar is 

total DH, range: 7,228 – 9,364. 
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Table 2. Model performance metrics against observational mobile-transect temperature. The date, 
time, and location (either SFV5 or LA1) of each transect is listed. Note that transect TR14 is 

omitted from this analysis because  
of missing data. 

TRANSECT Mean Absolute 
Error in 
Temperature 
(°C) [°F] 

Root Mean Square 
Error in Temperature  
(°C) [°F] 

 

2016_04_22 (LA1) 1.15 [2.07] 1.33 [2.39] 

2017_06_14 Part 1 (LA1) 0.88 [1.58] 1.00 [1.80] 

2017_06_14 Part 2 (LA1) 0.61 [1.09] 0.76 [1.36] 

2017_06_14 Part 3 (LA1) 0.80 [1.44] 0.94 [1.69] 

2017_06_14 Part 4 (LA1) 0.70 [1.26] 0.86 [1.54] 

2017_06_21 (SFV5) 1.73 [3.11] 2.00 [3.60] 

2017_07_27 day Part 1 
(SFV5) 

0.97 [1.74] 1.20 [2.16] 

2017_07_27 day Part 2 
(SFV5) 

0.92 [1.66] 1.10 [1.98] 

2017_07_27 night Part 1 
(SFV5) 

0.55 [0.99] 0.68 [1.22] 

2017_07_27 night Part 2 
(SFV5) 

0.85 [1.53] 1.00 [1.80] 

2017_08_28 day Part 1 (LA1) 0.48 [0.86] 0.60 [1.08] 

2017_08_28 day Part 2 (LA1) 0.71 [1.27] 0.94 [1.69] 

2017_08_28 night Part 1 
(LA1) 

1.00 [1.80] 1.10 [1.98] 

2017_08_28 night Part 2 
(LA1) 

0.82 [1.47] 0.92 [1.65] 

3.6.1 Description and Data Sources for Land Use Land Cover Properties Used in 
Personal Weather Station Analysis 
For the analysis of personal weather stations, we have chosen two study areas (“regions”) of 
interest within the Los Angeles Basin. Each region was chosen to fulfill two requirements: (1) it 
should be sufficiently small such that distance from the coast does not dominate temperature 
variations; and (2) there should be sufficient variation in land cover properties of interest (e.g., 
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roof albedo) to enable discerning effects of land cover on measured air temperatures. The first 
region encompasses an area of roughly 500 km2 and includes downtown Los Angeles; we refer 
to this region as Central Los Angeles. (Note that Central Los Angeles contains all of LA1.) The 
second region encompasses roughly 160 km2 and is located within the San Fernando Valley; we 
refer to this region as SFV_R.  

We used somewhat different datasets describing land use land cover properties (referred to as 
“LULC” from this point on) for the analysis of personal weather stations. LULC properties were 
computed using data from multiple sources for each neighborhood as described below. 

Roof fraction (𝒇𝒇roof) represents the ratio of building roof area (i.e., assumed to be equivalent to 
building footprint area) to neighborhood area. Roof fraction is computed using the Los Angeles 
Region Imagery Acquisition Consortium (LARIAC) dataset shapefiles for building footprints 
(LARIAC 2008). 

Tree fraction (𝒇𝒇tree) is computed using a tree dataset from LARIAC with spatial resolution of 4 
feet (1.2 m). This dataset is binary, indicating whether or not each pixel has tree cover. 
Analogous to roof fraction, the tree fraction represents the ratio of tree covered area to 
neighborhood area.  

Pavement fraction (𝒇𝒇pavement) represents the area fraction of pavements per neighborhood, with 
pavement area contributions from parking lots and paved road. Parking lot area is computed 
using parking lot boundaries given by LARIAC dataset shapefiles. Paved road area is derived 
using a street centerline dataset (CAMS 2011). The total road length is computed by summing 
roadway length per neighborhood, and road area is then calculated by multiplying by an 
assumed road width of 12.8 m. Note that this road width represents the average street plus 
sidewalk width for Los Angeles, calculated using the weighted mean road width per building 
type (CARB 2017), where the weighting factor is determined using the relative quantify of 
different building types in LA.  

Reflected solar power from roofs (𝑷𝑷roof) represents the average daily solar power (W) reflected 
from roofs within the neighborhood. This is computed as  

 

 𝑃𝑃roof = 𝐼𝐼 ×  𝛼𝛼roof ×  𝑓𝑓roof × 𝐴𝐴      (1) 

 

𝑤𝑤here 𝐼𝐼 is the average daily incoming solar power (W m-2), 𝛼𝛼roof is the weighted average roof 
albedo in the neighborhood, and 𝐴𝐴 is the neighborhood area (π × 500 m2 = 7.85×105 m2) (see the 
next section for more information on the neighborhood areas). The average daily solar power of 
the day includes all 24 hours, not just sunlit hours. The area-weighted mean roof albedo (𝛼𝛼roof) 
is determined using a dataset for seven California cities that reports building-specific roof 
albedos using remote sensing data (Ban-Weiss et al. 2015); the mean roof albedo is computed for 
each neighborhood using the roof’s area as the weighting factor. Overall, the metric 𝑃𝑃roof is 
used to account for the influence of cool roofs, considering (a) the mean roof albedo of the 
neighborhood, (b) the spatial coverage of roofs in the neighborhood, and (c) the daily solar 
irradiance. This avoids biases that could occur when, for example, the mean roof albedo of a 
neighborhood may be high, but spatial coverage of roofs is low.  
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Reflected solar power from neighborhood (𝑷𝑷neighborhood) represents the average daily solar 
power (W) reflected from the entire neighborhood. This parameter is estimated as 

 𝑃𝑃neighborhood = 𝐼𝐼 ×  𝛼𝛼neighborhood × 𝐴𝐴      (2) 

 

where 𝛼𝛼neighborhood is the average albedo of the neighborhood. The average neighborhood albedo 
is estimated using Eq. (3), assuming that the neighborhood is comprised of roofs, pavements, 
and trees:  

 

 𝛼𝛼neighborhood =
𝛼𝛼roof ∗ 𝑓𝑓roof + 𝛼𝛼pavement ∗ 𝑓𝑓pavement + 𝛼𝛼tree ∗ 𝑓𝑓tree

𝑓𝑓roof + 𝑓𝑓tree + 𝑓𝑓pavement
     (3) 

 

Since spatial datasets describing pavement and tree albedos do not exist, we assume values of 
0.10 and 0.15, respectively. Due to potential inaccuracies in the GIS datasets, and because 
neighborhoods can consist of surface types other than roofs, pavements, and trees, 𝑓𝑓roof +
𝑓𝑓tree + 𝑓𝑓pavement generally does not equal 100%. Thus, the denominator of Eq. (3) ensures that 
neighborhood-to-neighborhood variability in 𝑓𝑓roof + 𝑓𝑓tree + 𝑓𝑓pavement does not lead to variability 
in neighborhood albedo. While this calculation provides a relatively crude estimate of reflected 
solar power from the neighborhood, it is sufficient for the purposes of our study since this 
metric is used only for supporting analysis. 

Reflected solar power from non-roof surfaces (𝑃𝑃non-roof) represents the average daily solar power 
(W) reflected from surfaces other than roofs in the neighborhood. This parameter is computed 
as 𝑃𝑃neighborhood minus 𝑃𝑃roof. 

4: Results and Discussion 
4.1 Stationary Temperature Measurements  
4.1.1 Deriving Sensitivities of Measured Air Temperature to LULC Properties 
We compute sensitivity as the linear regression of temperature to LULC properties within a 
region (i.e. SFV_R or Central Los Angeles) for each hour of every day during July 2015. Thus, 
each regression looks at temperature versus land cover variability from station to station within 
a given region. After a multi-step outlier removal process, the sensitivity of temperature to the 
LULC property is calculated. We perform these regressions for each hour of the day and thus 
acquire hourly sensitivities for the entire month of July 2015. Investigating sensitivities for each 
hour of the day can help hypothesize physical processes that are driving the observed 
correlations. We only compute these regressions for sunny days, defined as those with daily 
maximum solar irradiance > 700 W m-2. 

To ensure that regression results are not dominated by a small number of weather stations, we 
take the following steps to remove outlier data points: 
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1. We first detect and remove outlier weather stations for each hour. This is carried out 
by first performing a standard least squares regression. The influence of each point in 
determining the regression slope is then computed using leverage and residuals. 
Based on the distribution of influences for each hour and region, data points that have 
influence that is beyond 1.5 times the inner quartile range are removed. This 
effectively removes points that have too much influence in determining the final 
regression statistics. After these points are removed, another regression is carried out. 
This time, we use a robust regression with a Huber-T objective function [Huber, 1981]. 
Regression using the Huber objective function gives higher weights to points with 
lower residuals, whereas standard regression using least-squares gives equal weights 
to each observation. The combination of outlier removal and robust regression 
minimizes the role of observations with both high leverage and residual. We estimate 
the sensitivity of temperature to the LULC parameter as the slope of the final 
regression. 

2. Next, we determine whether the computed spatial sensitivity is statistically 
distinguishable from zero. We do so by computing the probability (“p”) value of the 
aforementioned robust regression. We deem the hourly sensitivity significant if the p-
value is less than 0.1.  

3. Lastly, for each hour of the day, we compute the number of days in July with 
statistically distinguishable sensitivities for each land cover attribute. Those with more 
than 10 such days are deemed as having significant relationships for that hour of day. 
Those with 10 or fewer such days are deemed insignificant.  

 

4.1.2 Spatial and Temporal Profiles 
While some of the Weather Underground stations dated back to 2005, we selected year 2015 
when there were more station observations to analyze across the LA Basin. Again, we focused 
on summer months to investigate urban air temperatures during the warm months. 

Figure 15 shows the highest summer temperature in 2015 from selected stations across the LA 
Basin. Figure 16 shows the diurnal range of temperature measurements across LA for different 
stations during summer after outlier removal. 
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Figure 15. Spatial distribution of Weather Underground stations used in the analysis. Colors 

indicate each station’s peak summer 2015 temperature (°C). 

 
Figure 16. Diurnal range of measured hourly averaged temperature for different stations across 

the basin. The black line represents the median station, the red range shows the values for 
stations above the median, and the blue color shows the values for stations below the median, 

after outlier stations were removed. 
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4.1.3 Relation to LULC  
4.1.3.1 Sensitivity of temperature to solar power reflected from roofs 
Panels a and b in Figure 17 present sensitivities of temperature to daily average solar power 
reflected by roofs for Central Los Angeles and SFV_R, respectively. (Note that sensitivities for 
the early morning hours, i.e., between midnight and sunrise, use the average solar power of the 
previous day in calculating the sensitivities, since the previous day’s solar power is more 
relevant in determining temperature of the neighborhood than the average solar power of the 
upcoming day.) Each box and whisker plot shows the distribution of values for sensitivity per 
hour over all sunny days (daily maximum solar irradiance > 700 W m-2) in July 2015.  

Median hourly sensitivities for Central Los Angeles (Figure 17a) are negative throughout the 
day, and most of these sensitivities are statistically significant. The largest negative sensitivity 
occurs at 15:00 LDT, which is roughly consistent with the hottest time of day (i.e., 14:00 LDT in 
this domain). This matches our expectation based on the underlying physical processes 
involved since cooling occurs via increased reflected solar radiation. While reflected solar 
radiation peaks at 13:00 LDT, there is an apparent lag between maximum cooling and 
maximum radiation. As the sun goes down in the evening, sensitivities trend toward zero, and 
reach the lowest (negative) sensitivity right before sun rise. This again matches our expectation 
based on physical mechanisms since the apparent temperature reductions induced by reflected 
solar radiation from roofs are expected to diminish after the sun goes down. The observed lag 
between peak temperature reduction and peak solar irradiance, and the non-zero sensitivities at 
night, are likely caused by thermal inertia of roofs. Note that in Los Angeles, the peak 
temperature occurs earlier (15:00 LDT) than in many other cities that do not experience an 
afternoon sea breeze. 

Sensitivities of temperature to daily average solar power reflected by roofs for SFV_R (Figure 
17b) show a similar diurnal shape as that of Central Los Angeles. However, most hours of the 
day have sensitivity values that are not statistically significant in SFV_R. Sensitivities at 14:00 
and 15:00 LDT are significant, however. While sensitivities for some hours of night are positive, 
indicating counterintuitively that temperatures are positively correlated with increased daily 
reflected solar power, these values are not statistically significant.  

4.1.3.2 Sensitivity of temperature to tree fraction 
Figure 17c and d present sensitivities of temperature to tree fraction for Central Los Angeles 
and SFV_R, respectively.  

In Central Los Angeles, these sensitivities are positive for most sunlit hours of the day and 
negative at night. The maximum positive sensitivity is observed in the early afternoon (14:00 
LDT). The apparent positive sensitivities during daytime are counter to expectation based on 
the underlying physical mechanisms since increased tree cover should be associated with 
temperature reductions through increased evaporative cooling and shading of surfaces.  

We suggest that these positive daytime sensitivities are actually driven by co-variations 
between temperature, tree fraction, and daily average reflected power from roofs. To investigate 
this hypothesis, we present daily average solar power reflected from roofs versus tree fraction 
for each neighborhood (Figure 18). Solar power reflected from roofs is anti-correlated 
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(correlation with negative slope) to tree fraction with a coefficient of determination of 0.36. This 
is consistent with our assertion that solar power reflected from roofs is driving temperature 
reductions (and apparent positive sensitivities between temperature and tree fraction) since (1) 
neighborhoods with lower tree fraction are associated with higher solar power reflected from 
roofs and lower temperatures; and (2) the underlying physical mechanisms suggest that 
increases in solar power reflected from roofs should lead to temperature reductions, while 
increases in tree fraction should not lead to temperature increases.  

Additional evidence for this assertion is that the diurnal cycles for sensitivity of temperature to 
(1) daily average solar power reflected from roofs (Figure 17a) versus (2) tree fraction (Figure 
17d), nearly mirror each other. The largest negative and positive sensitivity values occur in the 
early afternoon in panels a and b of Figure 17, respectively. To summarize, we assert that daily 
average solar power reflected from roofs is likely driving both observed temperature reductions 
and the apparent positive association between tree fraction and temperature in this region.  

For SFV_R, sensitivities of temperature to tree fraction are mostly statistically insignificant, 
though some values are significant during nighttime. These significant nighttime values are 
negative, suggesting that increased tree fraction is associated with temperature reductions, as 
expected based on the underlying physical mechanisms. We do not observe significant positive 
sensitivity during the day in SFV_R as was observed for Central Los Angeles. We suggest that 
this is because less of the variance in solar power reflected by roofs is explained through 
variations in tree fraction in SFV_R (R2 = 0.09) relative to Central Los Angeles (R2 = 0.36). The 
reduced coefficient of determination (R²) would lead to less co-variation among temperature, 
solar power reflected from roofs, and tree fraction.  

We note that the sensitivities reported above are likely specific to the region under 
investigation. Other regions with different baseline (a) tree coverage, (b) tree physical 
properties, (c) soil moisture, and (d) meteorology, among others, are likely to show different 
relationships between air temperature and tree fraction.  

4.1.3.3 Roof versus non-roof surfaces as contributors to variability in solar power reflected from 
neighborhoods 
In this section we aim to rule out the possibility that apparent temperature reductions 
associated with increases in solar power reflected by roofs are driven by co-variations in solar 
power reflected by non-roof surfaces (e.g., vegetation and pavements). To do so, we first 
present daily average solar power reflected from roofs versus solar power reflected from the 
neighborhood (Figure 19a). In this analysis, each point represents a different neighborhood. 
High values of coefficient of determination (R2 = 0.80 for SFV_R and 0.65 for Central Los 
Angeles) indicate that a large proportion of the variance in solar power reflected from the 
neighborhood is explainable through variations in solar power reflected from roofs. In Figure 
19b, we present daily average reflected solar power from non-roof surfaces versus reflected 
solar power reflected from the neighborhood. In this case, coefficients of determination are 
much lower (R2 = 0.07 and 0.10 for SFV_R and Central Los Angeles, respectively). This suggests 
that variations in daily average solar power reflected from the neighborhood are dominated by 
variations in solar power reflected by roofs rather than non-roof surfaces. This provides 
additional evidence that observed temperature reductions are being driven by increases in solar 
power reflected by roofs in these regions.
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b) 

d) 

a) 

c) 

 

    

      
Figure 17. Boxplot for diurnal cycle of sensitivity of temperature to (a,b) daily average solar power reflected by roofs, and (c,d) tree 
fraction. Panels (a) and (c) are for Central Los Angeles and panels (b) and (d) are for SFV_R. Each box contains the sensitivities per 

hour for the entire month (July 2015). The hours with statistically insignificant sensitivities have red hatching. Boxes show the inner-
quartile range, whiskers show the boundary of 1.5 interquartile range distance from first and third quartile, and the black line within the 

box represents the median. Hour of day 1 = 00:00 to 01:00 LDT. 



36 

 

 
Figure 18. Daily average solar power reflected by roofs vs. tree fraction for each region. Each point represents a different neighborhood. 
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(a) 

 

(b) 

 
Figure 19. Comparison of daily average solar power reflected of (a) roofs and (b) non-roof surfaces to daily average solar power 

reflected from neighborhood. Least squares linear regressions are also shown separately for the two areas (i.e., SFV_R and Central Los 
Angeles). The higher coefficients of determination (R2) in panel (a) versus (b) suggests that variations in roof albedo are responsible for 

the majority of variations in neighborhood albedo. 
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4.1.4 Utility of PWS Measurements 
The PWS networks provided wider coverage of the LA Basin than other private or government 
operated networks. However, the data required extensive cleaning before it could be analyzed. 
Preprocessing the data was very time consuming but now we have clear steps to prepare other 
PWS data for future analysis.  

4.2 Mobile Temperature Measurements 
In this study, 15 different mobile-observation transects were carried out in 2016 and 2017 (Table 
2). The mobile observations focused on the LA1 and SFV5 domains and were conducted on 
cloudless summer days and nights to capture the effects of LULC variations on temperature in 
urban areas. 

4.2.1 Relation to LULC 
Following model performance evaluation, correlations between observed temperature and 
surface physical properties were evaluated. In this case, two surface properties of interest were 
examined: (1) neighborhood-scale albedo and (2) vegetation canopy cover (500-m scale). We 
examined these two properties because they have been shown in many studies to have 
significant influence on the urban air temperature, and also because they are easy to control and 
deploy as mitigation measures. The relationships between observed air temperature 
(predictand) and either albedo and/or canopy cover (predictors) were examined in three 
manners: (1) simple linear regression, (2) multiple regression, and (3) CART analysis for further 
detail. Examples of each analysis are given in this discussion. 

4.2.1.1 Simple linear regression 
In the downtown Los Angeles (LA1) domain, observed air temperature from mobile transects 
was correlated to grid-level albedo and canopy cover. For the San Fernando Valley study area, 
the observed temperature was correlated only with canopy cover (as predictor) since albedo has 
a smaller variability in this domain (Figure 20). In this area, the roof albedos are generally 
higher than in other areas but there is smaller variability in albedo, from one roof to another, in 
this area compared to variability in other parts of the study domains.  

 



 39 

 
Figure 20. Detail from the San Fernando Valley study domain showing 30-m tree cover (yellow: < 

10%, light green: 10 – 20%, black: > 20% cover), building-specific roof albedo (red: 0.05 – 0.25, 
orange: 0.25 – 0.50, light orange: 0.50 – 0.90), and a sample mobile transect segment (white dots). 

 

The analysis summarized in Table 3 provides, for each transect segment, the temperature 
response to changes in albedo and/or canopy cover. These responses are computed as 
temperature change per 0.1 increase in albedo or canopy cover written symbolically as “∆T / 
(∆a0.1)” and “∆T / (∆η0.1)”, respectively, along with the corresponding p-values (probability 
values). In this analysis, a significance level of 0.05 is selected and, as such, a p-value < 0.05 
represents a statistically significant correlation between observed temperature (from the 
transect) and surface properties such as grid-level albedo and canopy cover (that were 
computed as input to the urbanized WRF model). 

The results in Table 3 are based on a Cressman-weighting scheme (inverse distance) and a 
radius of influence of 1 km (from a mobile observation point to surrounding model grids), so 
that grid points within 500 m get the most weight and the ones at 1-km get a smaller weight. 
Transects TR01 – TR08, and TR13 are for LA1 and TR09-TR12, and TR15 are for the SFV5 study 
area. 

Except for two entries in Table 3 (contribution of canopy cover to air temperature in transect 
TR01 and contribution of albedo to air temperature in transect TR02), all entries are statistically 
significant. For these two exception transects, the p-values suggest that in TR01, albedo is the 
main driver of air temperature and in TR02, canopy cover is the main driver. 
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In addition, all correlations are negative (i.e., when albedo and/or canopy cover increase, 
temperature decreases) except for transects TR02 (for canopy cover) and TR03 (for albedo). As 
discussed in the paper by Taha et al. (project paper), these two transects were among those 
carried out during periods of higher wind speeds which can weaken the correlations. In 
transects TR04 and TR05, the large temperature responses to albedo are likely because the 
transect temperature was measured on freeways and in an area with very extensive roof and 
pavement cover (> 95%), such that changes in albedo would have significant impacts. 

Table 3. Summary of observed transect temperature response (°C) [°F] to changes in albedo 
and/or canopy cover (0.1 increase in albedo or canopy cover). Note that transects TR09 – TR15 
have no entries in columns 3 and 4 because only canopy cover was considered in establishing 

correlations with air temperature. 

Transect Date / period 
∆T / (∆a0.1) 

(°C) [°F] 
p-value 

∆T / 
(∆η0.1) 

(°C) [°F] 
p-value 

 

TR01 2017-06-14 day Part 1 -3.65 
[-6.57] 

< 0.0001 -0.10 
[-0.18] 

0.5300 

TR02 2017-06-14 day Part 2 -1.04 
[-1.87] 

0.0817 0.65 
[1.17] 

0.0057 

TR03 2017-06-14 day Part 3 1.00 
[1.80] 

0.0001 -0.40 
[-0.72] 

0.0074 

TR04 2017-06-14 day Part 4 -14.70 
[-26.46] 

< 0.0001 -0.89 
[-1.60] 

0.0061 

TR05 2017-08-28 day Part 1 -9.24 
[-16.63] 

< 0.0001 -2.20 
[-3.96] 

< 0.0001 

TR06 2017-08-28 day Part 2 -1.10 
[-1.98] 

< 0.0001 -0.40 
[-0.72] 

< 0.0001 

TR07 2017-08-28 night Part 1 -4.00 
[-7.20] 

< 0.0001 -1.61 
[-2.89] 

< 0.0001 

TR08 2017-08-28 night Part 2 -3.40 
[-6.12] 

< 0.0001 -1.81 
[-3.25] 

< 0.0001 

TR13 2016-04-22 day -4.89 
[-8.80] 

< 0.0001 -0.22 
[-0.39] 

< 0.0001 

TR09 2017-07-27 day Part 1  -0.40 
[-0.72] 

< 0.0001 

TR10 2017-07-27 day Part 2 -0.11 
[-0.19] 

0.0105 

TR11 2017-07-27 night Part 1 -0.20 
[-0.36] 

< 0.0001 

TR12 2017-07-27 night Part 2 -1.06 
[-1.91] 

< 0.0001 

TR15 2017-06-21 day -0.53 
[-0.95] 

< 0.0001 
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4.2.1.2 Multiple regressions 
Multiple regression was carried out for albedo and canopy cover as predictors to observed air 
temperature from the transects. This analysis applies only to the downtown area, LA1, since the 
San Fernando Valley analysis involved only variations in one predictor (canopy cover), because 
the variability in albedo is small.  

The form of the correlation is given by Eq. (4) where a is albedo and η is canopy cover. The 
coefficients (C1, C2, C3) and corresponding p-values (p1, p2, p3) are given in Table 4. C1, C2, 
and C3 are in degrees C, and the “0.1” denominator simply indicates that the changes in 
temperature (C2 and C3) correspond to a 0.1 increase in surface albedo or a 0.1 increase in 
canopy cover. 

 𝑇𝑇air  =  𝐶𝐶1 +  
𝐶𝐶2
0.1

 𝑎𝑎 +  
𝐶𝐶3
0.1

 𝜂𝜂       (4) 

 

Table 4 summarizes the analysis at 1-km radii of influence using Cressman-type weighting. The 
results show that the correlations are overwhelmingly negative (as albedo and canopy cover 
increase, temperature decreases) and statistically significant except for three situations. These 
are in transect TR01, where the role of canopy cover is insignificant, and in transects TR02 and 
TR03, where the role of albedo is insignificant (as was discussed above). 

Table 4. Eq. (4) applied to 1-km Cressman-type analysis of air temperature correlation to albedo 
and canopy cover. 

Transect C1  
(°C) [°F] 

p1 C2  
(°C) [°F] 

p2 C3  
(°C) [°F] 

p3 

       

TR01 33.25 
[91.85] 

< 0.0001 -3.70 
[-6.66] 

< 0.0001 -0.15 
[-0.27] 

0.3350 

TR02 31.65 
[88.97] 

< 0.0001 -1.81 
[-3.25] 

0.1204 -1.08 
[-1.94] 

0.0154 

TR03 29.42 
[84.95] 

< 0.0001 -0.15 
[-0.27] 

0.935 -0.75 
[-1.35] 

0.0086 

TR04 47.18 
[116.92] 

< 0.0001 -13.95 
[-25.11] 

< 0.0001 -0.71 
[-1.28] 

0.0052 

TR05 43.17 
[109.70] 

< 0.0001 -8.17 
[-14.70] 

< 0.0001 -1.97 
[-3.54] 

< 0.0001 

TR06 33.25 
[91.85] 

< 0.0001 -0.78 
[-1.40] 

< 0.0001 -0.36 
[-0.65] 

< 0.0001 

TR07 27.83 
[50.09] 

< 0.0001 -2.42 
[-4.35] 

< 0.0001 -1.47 
[-2.64] 

< 0.0001 

TR08 30.04 
[54.07] 

< 0.0001 -3.71 
[-6.67] 

< 0.0001 -1.85 
[-3.33] 

< 0.0001 

TR13 28.52 
[51.33] 

< 0.0001 -4.63 
[-8.33] 

< 0.0001 -0.10 
[-0.18] 

0.0500 

  



 42 

4.2.1.3 Classification and regression tree 
A classification and regression tree (CART) analysis was undertaken to assess the multiple 
interactions among predictors of mobile-observed air temperature. This additional analysis, 
discussed by Taha et al. (2018), was carried out for each transect—here, one example is 
presented. Essentially, this is an extension to the multiple regression analysis above and 
provides additional information. In the CART analysis, the roughness length parameter was 
introduced as an additional predictor to evaluate its role, if any, relative to that of albedo and 
canopy cover. 

A CART is interpreted in the following manner: the variable above each node (circle) is a 
“splitting” variable, i.e., the criterion used in the correlation. The top splitting variable (i.e., the 
most important) is given above the top node. The yellow nodes are “terminal” nodes that show 
the final results (regression or classification) in which we are interested. At each node, there is a 
logical criterion: for values smaller than the criterion, follow the path to the left of the node. For 
values larger than the criterion, follow the path to the right. Each node is numbered (inside the 
circle). The number in italics below each node is the number of observational samples, and the 
number below that is the predicted value (in this case, air temperature) at the end of each path 
leading to a terminal node. 

The example discussed here is for transect TR13 which is a daytime (13:00 LDT) transect in the 
downtown area (LA1) carried out on April 22, 2016. This transect segment consists of 798 
temperature observations. The following can be deduced from this CART analysis (Figure 21): 

In this transect segment, the most influential variable (top splitting node) is albedo.  

Transect temperature readings are lower where albedo is larger. For grid-level albedo greater 
than 0.125, the temperatures are lowest, e.g., compare terminal nodes 6 and 7 (temperatures of 
22.34 and 21.97 °C [72.21 and 71.54 °F]) with nodes 5, 9, 16, 34, and 35 (with higher temperatures 
of 22.90, 23.05, 23.17, 22.20, and 23.17 °C [73.22, 73.49, 73.70, 71.96, and 73.71 °F], respectively). 

Calculating the weighted temperature differences for nodes with albedo higher then 0.125 (6 
and 7) versus lower than 0.125 (nodes 5, 9, 16, 34, and 35), shows that the contribution of higher 
albedo in this transect is to lower air temperature by 0.81 °C (1.45 °F), which is significant. 

Furthermore, within each subtree, the effects of increased albedo are also evident. For example, 
comparing terminal nodes 6 and 7 shows that readings where albedo is larger than 0.145 are 
0.37 °C (0.66 °F) cooler than where albedo is lower than 0.145. 

In this transect, where albedo is lower than 0.125, canopy cover also has a significant impact. 
Comparing node 5 (where canopy cover is greater than 0.195) and nodes 9, 16, 34, and 35 
(where cover is lower than 0.195), the contribution of canopy cover is to cool the air by 0.12 °C 
(0.22 °F). This effect is relatively smaller than the effects of albedo in this transect. 

Finally, the effects of roughness length are secondary and different from one subtree to another. 
For instance, whereas increased roughness length in node 35 relative to node 34 does show 
increased temperature, comparing the increased roughness in nodes 34 and 35 relative to node 
16 shows the opposite effect.  
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Figure 21. CART for transect TR13 

 

4.3 Detection of Intra-urban Heat and Cool Islands 
Because the Los Angeles region is one large urban-climate archipelago (a built-up area 
stretching from ocean to mountains), there is no rural reference against which the urban 
temperature is compared as in a “conventional” urban heat island definition. As such, our task 
was to identify intra-urban variations in heat and/or cool islands as a function of LULC (as an 
embedded signal) and correlate the temperature variations to changes in LULC and surface 
physical properties. As discussed above, our LULC analysis coupled with the fine-scale 
meteorological modeling result allowed us to identify such signals in the study areas as 
depicted in Figure 14. 

The model performance evaluation in this study demonstrated that the WRF model and the 
modifications to its urban modules performed in this project can reproduce reasonably well the 
observations in the temperature, including the locations of UHI and UCI spots. As such, the 
model can be reliably applied to other urban areas and regions in California as well as for other 
applications such as in designing community- or neighborhood-scale UHI mitigation strategies 

4.4 Performance and Utility of Mobile Monitors  
The use of mobile transects was a very helpful component for our project. We were able to 
construct an affordable apparatus that could be installed on ride-share cars, which made the 
transects easy to conduct. The transect paths were designed to collect data in areas where there 
was no to minimal coverage by weather station networks. The mobile observations were very 
useful in validating the meteorological model performance.  
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5: Policy Implications and Lessons Learned 
5.1 Lessons Learned  
We envisioned installing 10+ stationary research-grade monitors in select locations to detect 
differences in air temperature from variations in LULC. However, the installation of stationary 
monitors proved more challenging than planned, while the mobile transects were easier than 
expected. Therefore, we installed fewer stationary monitors (four installed) than originally 
planned but completed 15 mobile transects to provide the observational data needed for our 
analysis.  

We had strong institutional partners for this project in the LA Basin. Our plan was to use their 
facilities across the basin to site the stationary monitors. Since they were governmental 
organizations, we expected they would be able to make a long-term (5+ years) commitment to 
hosting the monitors and ensuring their security over time. However, we struggled to secure 
the many layers of approval needed to place monitors at facilities. We spent 18 months 
negotiating agreements, sites, and installation with partners. For future work, we would 
suggest allowing more time to negotiate all the approvals and/or include some financial 
agreement to ensure participation from individual facilities.  

There were some beneficial changes we made from our project plan which aided 
implementation. For the mobile transects, we completed the first few transects using personal 
vehicles as planned. However, switching to the Uber ride-sharing service saved time and 
money by reducing both vehicle and staff costs. For future work, using ride-sharing services to 
help conduct mobile transects and measurements could be a good collaboration to take 
advantage of their large network of drivers and broad service area. Some of the ride-sharing 
fleet could be equipped with specialized sensors that track location and air temperatures across 
the city while the vehicles are in service. 

5.2 Policy Implications  
We found empirical evidence that there is intra-urban temperature variability correlated to 
LULC properties. The albedo and vegetation coverage values in our analysis are existing 
conditions in neighborhoods in LA where there has not been a concerted effort to mitigate 
UHIs. This suggests that there are opportunities for community cooling using existing 
technologies and practices to increase urban albedo and canopy cover. Knowing that these are 
effective cooling measures, cities can also accelerate the implementation of these UHI 
countermeasures in heat-vulnerable neighborhoods. Mitigating UHIs help locally offset future 
warming in cities from climate change. This will help the city build resiliency to future extreme 
heat events. 

Local and state government policy makers can conduct similar modeling to identify local UHI 
areas to target policies to increase roof albedo and canopy cover. They can also review their 
city/community LULC datasets to identify areas where there is potential to increase roof albedo 
and vegetation cover. This will help them develop targeted strategies to implement UHI 
countermeasures. In turn, this can conserve city resources, program budgets, and staff, while 
also improving climate resiliency in the most heat-vulnerable communities. For example, the 
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City of Los Angeles’ Department of Water and Power runs a residential cool roof rebate 
program. They can direct communication efforts to residential areas identified as local UHIs 
following the methodology of modeling used for this study. The installation of cool roofs in 
these UHI areas provide the neighborhood cooling benefit and building energy savings, while 
conserving program funds from city-wide outreach and implementation.  

The California Natural Resources Agency also offers urban greening grants to cities, counties, 
and non-profits. Again, local or state agencies can review LULC datasets to target areas of low 
canopy coverage within disadvantaged communities for project implementation. If planted 
appropriately, trees could achieve the program objectives as well as providing the cooling 
benefit in heat-vulnerable communities.  

 

6: Conclusions and Future Directions 
6.1 Recommendations for Future Research 
In this project, we found empirical evidence linking LULC to intra-urban air temperature 
variability. It leads us to several future research recommendations to validate our findings and 
to build upon these findings to help cities implement effective local UHI countermeasures:  

• Repeat the personal weather station (PWS) analysis over the next few years as land 
cover properties evolve (e.g., increasing prevalence of cool roofs) and more PWS are 
added to networks. 

• Repeat the PWS analysis using WeatherBug network data and measurements from the 
project’s newly installed stationary monitors. 

• Carry out additional transects, modeling, and analysis of PWS in other parts of Los 
Angeles Basin. 

• Design a specialized air temperature sensor that piggybacks on ride-sharing vehicles to 
provide detailed time-and-space map of urban air temperature. 

• Repeat the study for other areas in California.  
• Complete related modeling and analysis for future-climate scenarios. 
• Enhance analysis (observations, modeling, etc.) by including year-round conditions. 
• Guide the implementation of cool-community measures by determining the minimum 

changes in albedo and vegetation cover (in heat-vulnerable communities) that are 
required to achieve cooling benefit. 

• Establish a pilot community vulnerable to extreme heat to target the implementation of 
UHI countermeasures that will be modeled and monitored over time to measure their 
effectiveness in reducing community air temperatures.  

6.2 Conclusions 
Because California’s urban heat islands are exacerbated by climate change in a manner that can 
compromise electricity sector resilience as well as public health, it is important to understand 
the factors that contribute to UHI as well as how UHI can be mitigated. In this study we carried 
out a multi-dimensional assessment of urban temperature variations based on state-of-the-
science numerical modeling and several types of observations, including mobile transects and 
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personal weather stations. We sought to understand spatial air-temperature variations in local 
heat and cool islands and their relationship to land-use and land-cover properties in the Los  
Angeles Basin. 
 
We collected detailed LULC datasets for the LA Basin that were used as inputs for the 
meteorological modeling and analysis. We also developed a database of historic 
micrometeorological information from existing weather station networks. 

We partnered with the City of Los Angeles, County of Los Angeles, and Los Angeles Unified 
School District to help us find sites and hosts for stationary monitors in two study areas that we 
identified, San Fernando Valley and downtown Los Angeles (LA1). We used fine-resolution 
climate models to assess the potential UHI and/or UCI signals in these two areas. The results of 
the modeling informed the design of mobile-transect routes and siting of the stationary 
monitors. We designed a highly accurate and affordable stationary monitor that was installed in 
three locations in the SFV5 study area and at the University of Southern California campus west 
of downtown Los Angeles. To supplement the data collected from the stationary monitors, we 
completed 15 mobile transects. We designed and constructed an apparatus that is easily 
mounted on the roof of a car to measure air temperature along the transect routes.  

We assessed data from PWS in the Weather Underground network to relate observed intra-
urban temperature variations to LULC and surface physical properties. We also analyzed 
observational micrometeorological data from mobile transects and correlated it with 
neighborhood-scale albedo and vegetation canopy cover. 

We found the first observational evidence from analysis of high spatial density weather stations 
that increases in roof albedo at neighborhood scale are associated with reductions in near-
surface air temperature. This was corroborated with the analysis from mobile transect 
measurements, which revealed a cooling effect from area-wide increase in albedo and/or 
canopy cover. The albedo and canopy cover values in our analysis are existing conditions in 
neighborhoods in LA where there has not been a concerted effort to mitigate UHIs. This 
suggests that there are opportunities for community cooling using existing technologies and 
practices to increase urban albedo and canopy cover. Knowing that these are effective cooling 
measures, cities can also accelerate the implementation of these UHI countermeasures in heat-
vulnerable neighborhoods. 

In addition, the calibrated meteorological model was able to accurately identify the localized 
urban heat islands and urban cool islands observed in this study. Therefore, it can be applied by 
stakeholders, including city and state government, to characterize the intra-urban microclimate 
variations elsewhere in California, and they can also apply the model to analyze the benefits 
from deploying UHI countermeasures.  
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