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PREFACE 
California’s Climate Change Assessments provide a scientific foundation for understanding 
climate-related vulnerability at the local scale and informing resilience actions. These 
Assessments contribute to the advancement of science-based policies, plans, and programs to 
promote effective climate leadership in California. In 2006, California released its First Climate 
Change Assessment, which shed light on the impacts of climate change on specific sectors in 
California and was instrumental in supporting the passage of the landmark legislation 
Assembly Bill 32 (Núñez, Chapter 488, Statutes of 2006), California’s Global Warming Solutions 
Act. The Second Assessment concluded that adaptation is a crucial complement to reducing 
greenhouse gas emissions (2009), given that some changes to the climate are ongoing and 
inevitable, motivating and informing California’s first Climate Adaptation Strategy released the 
same year. In 2012, California’s Third Climate Change Assessment made substantial progress in 
projecting local impacts of climate change, investigating consequences to human and natural 
systems, and exploring barriers to adaptation.  

Under the leadership of Governor Edmund G. Brown, Jr., a trio of state agencies jointly 
managed and supported California’s Fourth Climate Change Assessment: California’s Natural 
Resources Agency (CNRA), the Governor’s Office of Planning and Research (OPR), and the 
California Energy Commission (Energy Commission). The Climate Action Team Research 
Working Group, through which more than 20 state agencies coordinate climate-related 
research, served as the steering committee, providing input for a multisector call for proposals, 
participating in selection of research teams, and offering technical guidance throughout the 
process. 

California’s Fourth Climate Change Assessment (Fourth Assessment) advances actionable 
science that serves the growing needs of state and local-level decision-makers from a variety of 
sectors. It includes research to develop rigorous, comprehensive climate change scenarios at a 
scale suitable for illuminating regional vulnerabilities and localized adaptation strategies in 
California; datasets and tools that improve integration of observed and projected knowledge 
about climate change into decision-making; and recommendations and information to directly 
inform vulnerability assessments and adaptation strategies for California’s energy sector, water 
resources and management, oceans and coasts, forests, wildfires, agriculture, biodiversity and 
habitat, and public health.  

The Fourth Assessment includes 44 technical reports to advance the scientific foundation for 
understanding climate-related risks and resilience options, nine regional reports plus an oceans 
and coast report to outline climate risks and adaptation options, reports on tribal and 
indigenous issues as well as climate justice, and a comprehensive statewide summary report. 
All research contributing to the Fourth Assessment was peer-reviewed to ensure scientific rigor 
and relevance to practitioners and stakeholders.  

For the full suite of Fourth Assessment research products, please visit 
www.climateassessment.ca.gov. This report contributes to energy sector resilience by 
investigating the vulnerability of Los Angeles County’s electricity grid to projected heat waves 
as well as resilience options to safeguard reliability. 

http://www.climateassessment.ca.gov/
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ABSTRACT 
Grid vulnerabilities to potential future heat waves described by climate change projections were 
assessed throughout Los Angeles County (LAC). Heat waves have posed serious challenges to 
power infrastructure in Southern California, including a major blackout in 2011 and emergency 
curtailment in 2014, and understanding how future temperature change might impact the 
power system is critically important for its continued reliable operation. Potential increases in 
peak demand, resource adequacy requirements, and component over-loadings were forecast for 
ranges of scenarios from 2021-2060. The Intergovernmental Panel on Climate Change's (IPCC) 
Representative Concentration Pathway (RCP) 4.5 and RCP 8.5 scenarios were used to project 
daily maximum temperatures at 2 km2 resolution throughout LAC. The range of average annual 
maximum temperatures across LAC in the historical period (1981-2000) was 35-43 °C (95-110 
°F), and highest average future temperatures across scenarios and periods ranged from 44.6-45.5 
°C (112-114 °F). Peak hour electricity demand was projected to increase in residential and 
commercial sectors by 2060 by 0.2-6.5 GWh (2-51%) depending upon population growth 
(California Department of Finance vs SCAG projections), building efficiency (single-family vs 
multi-family), air conditioning (AC) penetration, AC efficiency, and warming. All grid 
components, except those located near Santa Monica Beach, were projected to experience 2-20% 
capacity loss due to air temperatures exceeding 40 °C (104 °F). Under SCAG high population 
growth projections, it is expected that the higher peak demands could be satisfied in the in-
basin area without infrastructure capacity expansion through the implementation of aggressive 
energy efficiency measures. However, the central LAC region, spanning from West Valley to 
Pomona, was projected to experience increases of approximately 1.5 GWh even with aggressive 
energy efficiency measures, and the northern regions of Lancaster, Palmdale, and Santa Clarita 
were projected to have 300-900 MWh increase in peak hour load. Based on current substation 
load factors, an additional 0.9-1.1 GW of delivery system capacity will be needed by 2060 to 
maintain reliable operations, some of which may be met more cost-effectively via distributed 
energy resources than via new substations and/or transmission lines. 
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HIGHLIGHTS 
• The vulnerability of Los Angeles’s electricity infrastructure to rising air temperatures 

was estimated as a 2-20% loss of rated component capacity by 2060 based on RCPs 4.5 
and 8.5 with average temperature rises of 0.9 to 3.2 °C (1.6 to 5.8 °F), and worst-case 
maximum temperatures of 54.3 °C (129.7 °F). 

• The effects of population growth, building densification, AC penetration, AC efficiency, 
and rising air temperatures were modeled, and peak hour electricity demand was 
projected to increase in residential and commercial sectors by 0.2-6.5 GWh (2-51%) by 
2060. 

• Air temperature was estimated to have a non-linear effect ranging 2-5% per 1°C, which 
could increase to 3-7% by 2060 depending upon change in the other factors modeled. 

• By 2060 the western-facing coast of Santa Monica Bay is projected to be the least 
impacted region of LAC, with inland areas experiencing the greatest vulnerability. 

• Inland regions, specifically the San Gabriel Valley and the Antelope Valley, were 
projected to experience the highest temperatures at up to 54 °C (129 °F). 

• Santa Clarita is the community at the greatest risk of service interruptions due to 
substation overloading (load factor ≥2) by 2060.  

• Depending upon the choice of population growth scenario, California Department of 
Finance or SCAG, an additional 0.9--1.1 GW (8-11% increase from today) of substation 
capacity, DER, or peak load shifting, will be needed throughout Los Angeles county to 
keep substation load factors at or below one during the worst-case heat waves by 2060. 

• The SCAG population growth projections can be satisfied within the in-basin area of the 
county without significantly increasing peak demand by pursuing the development of 
high-efficiency, high density housing. However, the portion of SCE service territory in 
California Building Climate Zone 9, spanning from West Valley to Pomona, would 
require 700 MW additional capacity, DER, or load shifting to avoid overloading local 
substation capacities. 

• Multi-family (shared wall) housing units were estimated to reduce peak demand by up 
to 50% per capita relative to single-family detached housing.  

• While further improvements in air conditioner ratings beyond SEER 16 can be effective 
in reducing total energy consumption, a new “peak performance rating” at or above 
45°C would be useful to adapt air conditioners' performance for extreme heat. 

• Use of projected climate change impacts should continue to be used in the demand 
forecast and related analysis for California to ensure changing conditions are taken into 
account in energy planning. 
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1: Introduction 
This report quantifies potential increases in peak demand and risk of electric power outages in 
Los Angeles County to 2060 with consideration for future record-breaking heat waves. 
Additionally, several policy options to mitigate or adapt to those risks are discussed at the end 
of this report in terms of infrastructure planning and building and appliance standards. Climate 
change assessments have considered various emissions scenarios in the past, but were limited 
in their actionable effectiveness due to a lack of consensus on which future scenarios to plan for, 
uncertainty in the models, and a lack of transparency in the data as to what the scenarios meant 
in terms of stress on the infrastructure [1]. Prior studies have shown how rising temperatures in 
Los Angeles County, coupled with technological changes (e.g., building shell, appliance 
technologies, air conditioning use, etc.), can increase annual electricity demand, as well as the 
efficacy of energy saving strategies [2]. Most past studies considered climate change in terms of 
changes in mean temperatures, and subsequent effects on T90 (a.k.a. 90th percentile, or 1-in-10 
hottest day’s historical summertime temperatures) [3], [4], [5], [6], [7]. While these metrics have 
been useful in planning and preparing for cooling degree days and total volumetric energy 
demand, they are insufficient in evaluating the vulnerabilities of the system that are a risk to 
public health, commerce, and security—namely service outages. In order to consider the 
potential for service outages, the most stressful operating conditions must be studied. In the 
context of extreme heat, those conditions are peak demand (evaluated in this study at an hourly 
timescale) and de-rated component capacities (i.e., heat-related reductions in Wattage of 
electricity generation, substations, or transmission). In short, electric power flow generates heat, 
and all of the system's components can only tolerate so much before protection gear trips or 
physically breaks [8]. Thus, as ambient air temperatures rise, components' ability to cool 
themselves can lower too, and their capacity to support power flow can decrease. 
Understanding the effects of high air temperatures in this context enables estimation of 
vulnerabilities to the County. 

Electricity infrastructure vulnerabilities were evaluated in terms of absolute air temperatures, 
which were extracted from the multiple climate change scenarios projections used per the 
recommendations in the Little Hoover Commission report per [1]. In Chapter 2: Climate 
Modeling for Heat Events, specific 'extreme' temperatures were obtained from data developed 
for Los Angeles County, specifically at 2 km2 resolution [9], [10]. These temperatures were 
projected using the low and high scenarios as standardized by the Intergovernmental Panel on 
Climate Change (IPCC). The most extreme projected air temperature was identified as 54 °C 
(129 °F) in certain desert locations. Because Los Angeles County is such a large and climatically 
diverse region, two temperature measures were developed and used for the vulnerability 
assessment. The first, 'composite' measures were calculated as the daily maximum air 
temperatures experienced in each grid cell for the entire scenario analysis period (historical 
1981-2000, early-century 2021-2040, and mid-century 2041-2060). This metric captures the 
hottest temperatures for each gird cell at any time and was used to analyze all of the potential 
neighborhood-level infrastructure capacity issues. The second metric, the 'hottest day' 
temperatures, were calculated as the temperature at each cell on the projected day with the 
highest average temperature throughout the County. That metric represents the hottest 
conditions for the County at large and was used to consider total resource adequacy 
requirements. The range of uncertainty between climate change scenarios was found to be 
relatively small, 2°C (3.6°F) by 2060, when compared to the range of annual maximum 
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temperatures observed in historical conditions, 8°C (14.4°F) from 1981-2000. In accordance with 
ISO31000:2009 risk management principles [11], this study, and the concepts developed within, 
also serve as a draft to update long-term weather-adjustment planning processes. Instead of 
using coarse maps of 'slightly fuzzy' (i.e. ±1 °C) historical T90 values for different cities, the 
forecasts developed in this study used high-resolution maps of 'slightly fuzzy' projected 
maximum air temperature values. 

In addition to the stress of rising air temperatures, Los Angeles County has other forces driving 
increases in peak demand and stressing the electric infrastructure system. Approximately 41% 
of residential buildings in the County currently have air conditioning [2], [12], which results in 
increases in peak demand of roughly 300-400 MW or 2-5% per 1 °C (1.8°F) from 25-40 °C (77-104 
°F), after which it gradually decreases at higher temperatures due to AC duty cycling saturation 
[13]. Because new development favors installation of central AC, those rates are expected to 
increase in the future, especially in neighborhoods that have very little AC installed [12], [14]. 
Moreover, the county is one of the largest and fastest growing metropolitan regions in the USA 
[15]; population is expected to increase by 1.2—3.2 million people (12—32%) by 2060 (Figure 1) 
with commensurate increases in residential and commercial buildings and energy use [16], [17], 
[18], and much of the infrastructure is already operating at or near capacity [13], [19]. The U.S. 
Geological Survey has projected growth primarily on the fringe and in the northern (and hotter) 
region of the County [16], whereas the Southern California Association of Governments (SCAG) 
has projected both growth in the northern region and growth via further densification of the 
already developed central basin area [17]. While new buildings will be constructed to meet Title 
24 building energy standards—with significant improvements in building attics, walls, water 
heating, and lighting efficiency—percent reductions in peak demand from those standards are 
not nearly as significant as increased in annual energy consumption [20]. Moreover, while high-
density multi-family housing is generally more efficient per capita, a net increase in population 
can still result in a net increase in annual energy consumption and peak demand. The 
projections developed in Chapter 3: Electricity Demand Forecast consider all of these factors at 
the Census Block Group (CBG) scale, enabling both a total resource adequacy assessment for 
the county and a neighborhood-level assessment of delivery system component vulnerability to 
overloading. 
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Figure 1. Historical and Estimated Future Los Angeles County Population Growth.  

Los Angeles County's vulnerability to extreme heat, in the context of the electric power sector, is 
the potential for component outages and service interruptions. Reliable electricity ensures that 
energy will be available as needed for activities that allow for basic provisioning, protect people 
directly against environmental hazards such as extreme heat or cold weather, and drive 
economic activity (i.e., cooking, lighting, heating, ventilation, air conditioning, computing, 
entertainment, etc.). The combination of reliable electricity and affordable AC technologies has 
resulted in cities growing and expanding into regions with temperatures that are otherwise 
very uncomfortable and often pose public health risks, including the very hot northern San 
Fernando and Antelope Valley areas [21], [22], [23]. While this study does not focus on the 
climate change issues of sea-level rise, drought, and wildfire, it is important to note that 
electricity infrastructure in LAC is vulnerable to those climate change factors as well [24], [25], 
[26], [27], [28], [29]. Heat waves specifically can result in service interruptions via a combination 
of high demand, and (i) insufficient cumulative generation resources [24], [26], or (ii) 
insufficient capacity in delivery components (substations and lines) for electric power to flow 
from generators to loads [30], [31], [32], or (iii) widespread cascading failures due to a 
combination of multiple instances of either of the former two [25], [33], [34]. Therefore, Los 
Angeles County's generation and delivery capacities were assessed by type and location in 
Chapter 4: Infrastructure Vulnerability Analysis using the results from the climate modeling 
and peak demand forecasts, as well as generator, transmission line, and substation data 
published by the US Energy Information Agency, Department of Homeland Security, and the 
major investor owned utility, Southern California Edison. 
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Because electric power infrastructure is a critical system [35], long-term investments are in 
many ways a matter of public policy. Between the Zero Net Energy plan [36], building energy 
standards [20], renewable portfolio standards [37], climate action plans [38], and more as cited 
in [39] California, and Los Angeles specifically, have been leaders in developing policies that 
affect the electric power sector, reduce greenhouse gas emissions, and conserve limited natural 
resources. Moreover, according to Senate Bill X1-2 (Simitian, Chapter 1, Statutes of 2011), all 
retail sellers of electricity shall serve 33% of their load with renewable energy by 2020, and 
according to SB 350, 50% by 2030 [40]. California was at 30% renewable energy as of November 
2017, with 57% originating from solar PV [41], and more is planned [42], [43]. Not all of that 
energy has the same value throughout the day however, as California now has so much Solar 
PV surplus during mid-day off-peak hours that it actually pays Arizona to take it [44], [45]. 
Because of these time-of-day usage and reliability issues, a mix of solar PV in conjunction with 
some form of fast-ramping storage, central generation (e.g., natural gas), and or power imports 
must be implemented to meet future California demand as regulated by California policies. 
Based on the analysis of different building types and appliance technologies' effects on peak 
demand, as well as potential size and location of component capacity overloading, various 
specific investment and policy options are discussed in Chapter 5: Conclusions – Mitigation and 
Adaptation as to how to maintain reliable electric power services in light of various trade-offs, 
competing priorities, and geographic constraints.  

  

2: Climate Modeling for Heat Events 
2.1 Summary 
“Downscaled” global climate model data was used from previous work in [9],[10] to produce 2-
km2 resolution projections of historical and future daily maximum air temperature (Tmax) in Los 
Angeles County from 1981 to 2060. This study did not consider changes in wind speed, air 
pressure, humidity, or solar radiation that may also change in the future. Two climate change 
scenarios were considered based on the Intergovernmental Panel on Climate Change (IPCC’s) 
standardized Representative Concentration Pathway scenarios (RCPs) [46]. These scenarios 
describe potential time series of greenhouse gas emissions throughout the 21st century. As 
greenhouse gas concentrations in the atmosphere increase, more outgoing radiation is absorbed 
and re-emitted downwards towards the Earth. This increases the amount of radiation that is 
absorbed by the surface of the earth and has a total net average warming effect. The IPCC has 
defined four standardized RCPs for global climate change models: 2.6, 4.5, 6, and 8.5. 
California's Fourth Climate Change Assessment guidance for adaptation planning purposes 
was to use RCP 4.5 as the best-case “mitigation” scenario and RCP 8.5 as the “worst-case” 
scenario (often referred to as “business-as-usual”) with increased emissions rate. Each scenario 
corresponds to an increase in the amount of radiative forcing in terms of Watts per square meter 
by the year 2100. By comparison, during high noon in summer, solar radiative energy reaching 
the surface of the earth in LAC is approximately 1,000 W/m2. Simulation results showed 
average warming of 0.7 to 2.3 °C (1.3 to 4.1 °F), with less warming near the coast and more 
inland.  
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2.2 Approach 
2.2.1 Global Climate Model Downscaling 
Global climate models (GCMs) are powerful tools for simulating the global climate system and 
projecting future climate under various scenarios of atmospheric forcing due to anthropogenic 
greenhouse gas emissions. However, they are too low in spatial resolution to answer certain 
questions about climate change at the scales on which resource managers and other 
stakeholders make decisions. This is particularly true in topographically complex areas such as 
the LAC region, where coastlines and mountain ranges create microclimates. To perform 
calculations, climate models discretize geographic areas into a grid and output data for each 
grid cell. A typical GCM grid resolution is 100 km by 100 km, far too coarse to capture the 
variations in climate across LAC. To account for these variations, global climate model 
information was “downscaled” in [9] and [10] to a much higher spatial resolution over a 
domain covering LAC and other parts of the greater Los Angeles region as shown in Figure 2. 
The grid cells in these simulations are 2 km2, a spatial scale that is sufficient to resolve important 
local topographical features governing climate in the region. 

 

Figure 2. (a) Model setup with three nested Weather Research and Forecasting (WRF) domains 
(D1, D2, and D3) at resolutions of 18, 6, and 2 km (area sizes 1188 × 1566, 486 × 612, and 276 × 288 

km2), respectively. Topography (m) is shown in color. (b) The innermost domain (D3) of the 
regional simulation, with 2-km resolution. Black dots indicate the locations of 24 stations used for 

surface air temperature validation. 

This resolution was achieved with a novel methodology called “hybrid downscaling.” There are 
two basic categories of downscaling techniques, each with strengths and limitations: 

• Dynamical downscaling involves using a regional climate model, similar to a GCM but 
designed to be run over smaller domains at higher spatial resolution. A strength is 
physical realism, but a limitation is high computational cost. 
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• Statistical downscaling involves using empirical mathematical relationships to go from 
large-scale predictors to fine-scale predictands. A strength is that statistical downscaling 
is computationally cheap, but a significant limitation is that it is not inherently 
physically realistic. 

About three dozen GCMs have been developed at modeling centers around the world, and 
differences in construction from model to model lead to differences in outcomes. When using 
GCMs to create high-resolution projections of regional climate change, it is desirable to 
downscale multiple GCMs in order to account for these differences. This task is not 
computationally tractable if one uses dynamical downscaling alone. On the other hand, if one 
uses existing statistical techniques alone, the projections produced may not be physically 
realistic. 

The hybrid downscaling technique previously developed overcomes these issues by combining 
dynamical and statistical downscaling in a way that capitalizes on their strengths and 
minimizes their limitations. A complete technical description of the methodology is available in 
[9], and a summary is as follows: 

1) The Weather Research and Forecasting [47] (WRF) regional climate model was forced 
with a high-resolution reanalysis data set [48] to create a 2-km simulation of a 1981–2000 
historical period. This simulation provides a “baseline” against which to compare future 
climate. 

2) The accuracy of the 1981–2000 simulation was assessed by comparing it with observed 
historical data.  

a. Detailed statistical analyses of the model are provided in Section 2 "Dynamical 
Downscaling" of Walton et. al. 2015 [9]. In short, the WRF model was most 
accurate, with R2≥0.93, during summer and winter months, wherein modeled 
values were on average 1°C cooler than observed values in the summer. 
Therefore, modeled summertime temperature values used in this report should 
be considered highly accurate, but probably slightly conservative. 

3) A subset of five GCMs from the Coupled Model Intercomparison Project, Phase 5, [49] 
(CMIP5) archive was chosen that samples the archive members’ range of warming 
outcomes. These GCMs are listed in Table 1 below.  

4) Warming signals from these GCMs were used to produce five dynamically downscaled 
future climate projections under RCP 4.5 and RCP 8.5. The initial work included 
simulations for the 2041-2060 and 2081-2100 periods. Model results for the 2021-2040 
period were added for this assessment report. 

5) The dynamically downscaled projections were used to develop a statistical model that 
mimics the WRF model.  

6) This statistical model was used to create future monthly-mean temperature projections 
for the GCMs that had already been dynamically downscaled, and the dynamical and 
statistical model results were compared to assess the physical accuracy of the statistical 
model. Monthly means are produced to maximize computational efficiency, and the 
research team determined that monthly means are adequate to project future changes in 
heat extremes, as explained in further detail in [10]. 
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7) The statistical model was applied to an additional 27 GCMs in the CMIP5 archive to 
produce future climate projections under business-as-usual greenhouse gas 
concentrations.  

Table 1. Global climate models (GCMs) chosen for dynamical downscaling. 

Model Country Institute 

CCSM4 United States National Center for Atmospheric Research 

CNRM-CM5 France Centre National de Recherches Météorologiques 

GFDL-CM3 United States NOAA/Geophysical Fluid Dynamics Laboratory 

MIROC-ESM-
CHEM 

Japan Atmosphere and Ocean Research Institute (University of 
Tokyo), National Institute for Environmental Studies, 
and JAMESTEC 

MPI-ESM-LR Germany Max Planck Institute for Meteorology 

 

2.2.2 Creation of Maximum Temperature Projection Images 
From the 2-km-resolution temperature data, two sets of maximum temperature projection 
images and peak demand forecasts were created to analyze two distinct grid vulnerability 
issues. First, composite images of the highest projected Tmax in each grid cell for each time 
period and RCP were created. Second, hottest day images were created of the Tmax in each grid 
cell on the day that the highest average Tmax occurs across the county for each period and RCP. 
The two issues that these images inform respectively are the highest peak demand in each 
spatial unit, and therefore the capacity requirements for local delivery system components, as 
well as the total resource adequacy requirements for the region as a whole during a possible 
“realistic” record-breaking heat wave. 

The definition of what exactly constitutes the single hottest day across a large and 
geographically diverse region is something that can be subject to debate. In deference to this 
fact, different definitions of the term were evaluated using the methods in Chapter 3: Electricity 
Demand Forecast: the day with the highest single-cell Tmax, the day with highest average Tmax 
across all grid cells, and the day with the most number of grid cells over 35°C (95°F).  

2.3 Results 
2.3.1 Temperature and Extreme Heat Findings 
Increases in both average temperatures and the number of extreme heat days, defined as days 
on which temperatures exceed 35° C (95° F) were analyzed. This threshold is commonly used in 
climate change impact studies and was chosen in part for its relatability to the public and 
stakeholders. Results are summarized below, and more detail is available in [10]. Ensemble-
mean warming, i.e., the average of all of the hybrid-downscaled GCM results, is shown in 
Figure 3 for the different time slices and greenhouse gas pathways. Spatial variations in 
warming are due to 1) generally lower warming over the ocean given its relatively larger 
effective heat capacity and more efficient energy transfer through latent heat fluxes, which 
allows enhanced downward infrared radiation in the warmer climate to be balanced with a 
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smaller surface temperature increase over the ocean compared to land; and 2) the land–sea 
breeze circulation, which introduces a marine influence in the coastal zone, in this case bringing 
the milder warming of the ocean to the coastal zone. The annual-mean warming is highest in 
mountain areas mainly because they experience significant snow albedo (reflectiveness) 
feedback1, which is strongest in the spring months. 

 

                                                      
1 Albedo is a measure of a surface’s ability to reflect solar radiation. Snow is a high-albedo surface that is 
highly reflective of solar radiation. Snow albedo feedback is a phenomenon in which warming causes 
snow cover to retreat, exposing lower-albedo surfaces. These surfaces absorb more solar radiation than 
snow would have, causing greater local warming. This local warming exacerbates snow melt, which 
uncovers more radiation-absorbing surfaces, which causes more local warming, and so on. 
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Figure 3. Ensemble mean of downscaled annual-mean surface warming (°C) for early-, mid-, and 
end of century periods 2021–2040, 2041–2060, and 2081–2100. 

White contours are plotted at 1000-m elevation and county lines are marked in black. 

As shown in Figure 3c & 3d and Figure 4, the emissions scenario has only a relatively small 
influence on the warming at mid-century. The midcentury warming under RCP 4.5 is about 
75% of the warming under RCP 8.5. By the end of century, however, the gap between the 
scenarios grows much larger. Under RCP 4.5, end-of-century warming increases modestly 
beyond mid-century warming, whereas under RCP 8.5, end-of-century warming approximately 
doubles compared with mid-century warming, shown in Figure 3e & 3f and Figure 4. This 
indicates that, although the impact of global measures to reduce greenhouse gas emissions 
would be modest in the near-term, the cumulative effect would be significant by the end of the 
century. 

 
Figure 4. Land-averaged annual-mean surface warming (°C) downscaled from each GCM for early 

century (2021–2040), midcentury (2041–2060), and end-century (2081–2100) under “mitigation” 
(RCP4.5, green dots) and “worst-case” (RCP8.5, red dots) scenarios. Dots represent the ensemble 
mean across all GCMs for each scenario/time slice. The vertical bars represent the full range of GCM 

results.  

In the baseline period, most of the coastal and mountain areas have fewer than 10 extremely hot 
days per year. As shown in Figure 5, in contrast, inland regions such as the Mojave Desert, 
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Coachella Valley, and Central Valley all contain areas exceeding 100 extremely hot days per 
year. While frequent extreme temperatures are mostly limited to inland regions, parts of the 
coastal zone have more than 60 extremely hot days per year. These regions are valleys that are 
somewhat removed from the moderating effects of the sea breeze, despite lying on the coastal 
side of the major mountain complexes. Strong gradients in the number of extremely hot days—
such as those within the coastal zone—are an important reason to perform dynamical 
downscaling to such high resolution. With lower resolution, it could be difficult to distinguish 
important differences in extreme temperature changes between these locations. 

 
Figure 5. (a) The number of extremely hot days per year (Tmax > 35°C, or (95 °F) for the baseline; 
and the change in the number of extremely hot days per year for (b) the early century (2021–2040) 
RCP4.5, (c) early-century RCP8.5, (d) midcentury (2041–2060) RCP 4.5 (e) midcentury RCP 8.5, (f) 

end of century (2081-2100) RCP 4.5, and (g) end of century RCP 8.5. The 1000-m elevation contour is 
shown in white and county lines are shown in black. SGV denotes the San Gabriel Valley. 

The distributions of future daily maximum temperatures were found to be approximately equal 
to the baseline distributions shifted by the change in average temperature. These results are not 
shown, but were applied to create future distributions of daily maximum temperatures by 
shifting the baseline distributions by the temperature changes provided by the statistical model.  

For mid-century under both RCPs, the spatial pattern is similar to RCP8.5 at end-of-century, but 
the increases are smaller. Many land areas may experience increases of roughly 20–40 
additional extremely hot days per year. Downtown Los Angeles is projected to experience a 
dozen or so more extremely hot days, roughly a tripling from baseline conditions, while 
Riverside may experience approximately a 50% increase. Little to no change in extremely hot 
days is projected in the region’s highest elevations and near the coast. 
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By the end of the century, the number of extremely hot days increases most under RCP8.5. With 
the exception of the highest elevations and a narrow swath very near the coast, where the 
increases are confined to a few days, most land locations are projected to experience an 
additional 60–90 extremely hot days per year by the end of the century, as listed in Table 2. 
Thus, most land areas may effectively experience a new season of extreme heat. Downtown Los 
Angeles is projected to experience an increase from 6 to 54 extremely hot days, while at 
Riverside the number of days roughly doubles from 58 to 128.  

 

Table 2. Average number of extremely hot days (daily Tmax > 35 °C, or 95 °F) per year for selected 
sites in the Los Angeles region. 

Location Baseline 
2021-40 
RCP4.5 

2021-40 
RCP8.5 

2041-60 
RCP4.5 

2041-60 
RCP8.5 

2081-2100 
RCP4.5 

2081-2100 
RCP8.5 

Bakersfield 111 124 126 129 134 134 154 
Long Beach 4 9 10 12 16 16 37 
Los Angeles 6 13 14 17 22 22 54 
Mojave Desert 90 106 108 113 119 119 141 
Palm Springs 135 146 148 152 158 158 179 
Palmdale 36 54 57 63 71 71 105 
Riverside 58 79 82 89 98 99 128 
San Gabriel Valley 32 53 57 64 74 76 117 
San Gabriel Mountains 0 0 0 1 1 1 9 
Santa Monica 0 1 1 1 1 1 3 

 

Although areas with more extremely hot days during the baseline period generally also are 
projected to experience larger increases in temperatures, the largest increase actually occurs in 
the San Gabriel Valley, a part of the coastal zone. This phenomenon can be understood by 
examining the baseline and future temperature distributions shown in Figure 6. Within the San 
Gabriel Valley, where the largest increase in extremely hot days occurs, the peak in the baseline 
maximum temperature distribution occurs at about 32.5 °C (90.5 °F). Thus, a warming of 4°C 
(7.2 °F) pushes the peak of the distribution well past the 35 °C (95 °F) threshold, resulting in 
nearly a quadrupling of the number of extremely hot days per year, from 32 in the baseline to 
117 at the end of the century. In contrast, in the Mojave Desert, which is located farther inland, 
the increase is smaller (from 90 to 141), even though the baseline number of extremely hot days 
is larger. Despite the fact that the warming is about 0.7°C (1.3 °F; 17%) larger here than in the 
coastal zone, the increase in extremely hot days is smaller because the baseline distribution is 
broader and its peak already lies above the 35°C (95 °F) threshold. In much cooler coastal 
locations, such as Santa Monica, few baseline days are close to the threshold; therefore, a 
warming of 4°C (7.2 °F) only results in an increase from 0 to 3 extremely hot days per year. 
Another way to conceptualize extreme heat changes is to compare a city’s future extreme heat 
days to another city’s baseline heat days. For example, under RCP 8.5, at the end of the century, 
cities in the San Gabriel Valley become analogous to present-day Bakersfield, and Long Beach 
becomes analogous to present-day Palmdale. 
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Figure 6. Probability Distribution Functions (PDFs) of daily maximum temperature at selected 

sites during warm months (June–October) for baseline period (solid black), end-of-century under 
RCP8.5 (solid red), and baseline shifted by warming (dashed red). Vertical line indicates the 35 °C 

(95 °F) threshold. 

2.3.2 Maximum Temperature Projection Images 
The results of the three hottest day definitions were compared, and the day with highest 
average Tmax across all grid cells was decidedly the hottest. Foreshadowing the results in 
Chapter 3: Electricity Demand Forecast, the results for the residential and commercial sectors 
for the base period using the different definitions of hottest days were: 5.6 and 7.2 GWh for the 
day with highest average Tmax across all grid cells, 4.09 and 6.23 GWh for the highest single-cell 
Tmax, and 4.8 and 6.82 GWh for the day with the most number of grid cells over 35°C (95°F). 
Spatial comparison of the results for “hottest days” are shown in Figure 7, where it is noticeable 
that on the day with the highest average temperature, the region experienced multiple 
concurrent heat waves of lower magnitude, whereas in the days with alternate definitions, the 
northern region of the county experienced more severe heat waves. A summary of all of the 
climate scenario statistics are listed in Table 3. The range of hottest days for lowest, median, and 
highest years are shown in Figure 8, where the range of average Tmax between the lowest and 
highest years’ hottest days was 8°C (15°F). 
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(a) (b)  (c)   

Figure 7. Baseline period hottest days comparison for (a) highest average Tmax (b) highest grid cell 
Tmax  (c) most cells over 95 °F. 

 

Table 3. Summary of climate scenario projection statistics. 

Time 
period RCP Projection 

Average grid 
cell Tmax °C 

(°F) 
Max grid cell  
Tmax °C (°F) 

Date 
(MM/DD/YYYY) 

Historic 
(1981-
2000) 

n/a 

Composite  45.9 (114.6) 52.2 (126.0) n/a 
Hottest day  
(lowest year) 35.2   (95.4) 41.4 (106.5) 08/17/1981 

Hottest day  
(median year) 40.5 (104.9) 48.4 (119.1) 07/01/1997 

Hottest day  
(hottest year) 43.3 (109.9) 50.4 (122.7) 06/03/1985 

Alt. hottest day  
(max cell) 41.7 (107.1) 52.2 (126.0) 07/06/1989 

Alt. hottest day  
(>95°F) 42.7 (108.9) 50.7 (123.3) 08/05/1997 

Early-
century 
(2021-
2040) 

RCP 
4.5 

Composite  47.2 (117.0) 53.4 (128.1) n/a 
Hottest day 44.6 (112.3) 51.6 (124.9) - 

RCP 
8.5 

Composite  47.7 (117.9) 53.9 (129.0) n/a 
Hottest day 44.7 (112.5) 51.7 (125.0) - 

Mid-
century 
(2041-
2060) 

RCP 
4.5 

Composite  47.3 (117.1) 53.5 (128.3) n/a 
Hottest day 45.1 (113.2) 52.1 (125.8) - 

RCP 
8.5 

Composite  48.2 (118.8) 54.3 (129.7) n/a 
Hottest day 45.5 (113.9) 52.5 (126.5) - 
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(a)  (b)  (c)   

Figure 8. Baseline period hottest days for (a) lowest, (b) median, and (c) highest years. 

The maximum temperature projection images are shown in Figure 9 for historical and future 
periods for composite and hottest days. Spatial patterns are similar to those in the projections of 
extremely hot days with cooler parts near the coast and mountains, and hotter parts in the 
valleys and deserts. Tmax ranged in the historical period throughout the region from 
approximately 30-54 °C (86-129 °F) and was projected to increase up to 3.2 °C further by 2060 
under RCP 8.5. In viewing the composite and hottest days images side by side, the reader can 
see how higher magnitude heat waves are capable of impacting different areas of the county, 
but not necessarily all simultaneously on the same day. Several grid cells in the Manhattan 
Beach coastal area had temperatures ~8°C higher than surrounding grid cells in the composite 
images. The anomaly was likely due to a pixilation issue with gradient classification between 
water and non-water land cover types at the shoreline in the underlying Weather Research and 
Forecasting (WRF) model used in [10]. Those few higher temperature value pixels were 
replaced with adjacent values based on [50]. 



15 

 Composite Hottest Day 

 

19
81

 –
 2

00
0 

  

Te
m

pe
ra

tu
re

 
C

ha
ng

e 
 2

02
1-

20
40

  
R

C
P 

4.
5 

  

Te
m

pe
ra

tu
re

 
C

ha
ng

e 
20

21
-2

04
0 

 
R

C
P 

8.
5 

  

 

Te
m

pe
ra

tu
re

 
C

ha
ng

e 
20

41
-2

06
0 

 
R

C
P 

4.
5 

  

Te
m

pe
ra

tu
re

 
C

ha
ng

e 
20

41
-2

06
0 

 
R

C
P 

8.
5 

  
Figure 9. Historical and future maximum temperature projection images. Top images are the 

baseline period, the bottom images are future changes from the baseline period. The actual values of 
temperature increases range from 0.9 to 3.2 °C. Composite images are of the highest projected Tmax in 
each grid cell for each time period and RCP. Hottest day images are of the Tmax in each grid cell on the 

day that the highest average Tmax occurs across the county for each period and RCP. 
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3: Electricity Demand Forecast 
3.1 Summary 
Los Angeles County (LAC) is a large urbanized region which had about 9.7 million residents as 
of 20102, and will require new and retrofitted electricity infrastructure over the next several 
decades. Population forecasts predict LAC will become home to an additional 1.2 – 3.1 million 
residents by 2060, and climate projections predict  air temperatures will increase by 1-4°C in the 
region between RCPs 4.5 and 8.5 (Chapter 2: Climate Modeling for Heat Events). Both of these 
factors are expected to result in higher summertime peak demand due to more buildings, with a 
higher percentage of installed air conditioners, and increased loading on those air conditioners. 
In order to understand potential electricity infrastructure reliability issues due to excessive peak 
demand, a long-term forecast was conducted at census block group resolution, taking into 
consideration those factors. Residential and commercial building energy models calibrated for 
LAC specifically were used to forecast how changes in population, building vintage, building 
density, AC efficiency, AC penetration, and daily high air temperatures are likely to affect peak 
demand by 2040 and 2060. 

LAC’s residential and commercial sectors were estimated to consume approximately 9.5-12.8 
GWh of electricity during the base-period peak demand hour, and forecasted to increase to 12.3-
16.7 GWh (~30%) by 2040 and 13.1-19.2 GWh (~45%) by 2060. While increases in ambient air 
temperature only accounted for 3.9-8.3% of future increases in peak demand for climate change 
scenarios RCP 4.5 and RCP 8.5, the range of hottest day temperatures over 20-year periods 
resulted in a difference of peak demand of 40% to 66% from year to year as temperatures 
fluctuated between 30-45°C. Population growth of at least 1 million persons is anticipated to 
occur mostly in the peripheral cities of Palmdale, Lancaster, and Santa Clarita, bringing an 
additional 0.4-1 GWh of peak demand in those areas. If building and AC efficiency standards 
continue to improve and replace older units, then peak demand will decrease in Climate Zone 
(CZ) 6 and 8 along the coast and in-basin areas. These measures should support the level of 
population increases predicted by SCAG’s highest growth forecasts without corresponding 
increases in peak demand if they are able to be combined with the development of high-
efficiency multi-family dwelling units within those areas.  

3.2 Approach 
In order to estimate potential increases in electricity demand, peak demand was modeled for 
recent historical climate and infrastructure conditions and then projected into the future for a 
number of different scenarios. Specifically, peak demand was modeled within LAC for 
residential dwelling units (DUs) and commercial buildings in terms of kWh for the peak hour at 
a spatial resolution of census block groups (CBGs). Residential sector buildings have relatively 
low electricity use variance in terms of building properties as opposed to commercial sector 
buildings, and lastly the industrial sector, which has higher variance. The industrial sector is 
inclusive of more than buildings, and includes factors such as streetlights and mass transit. The 

                                                      
2 LAC had a population of 10.2 million as of 2017 [51], but 2010 population values were used for the base 
period throughout the as they were available spatially congruent with all of the calibrated infrastructure 
models and base-period building stock. 

      
      



17 

industrial sector was not modeled as the factors that influence that sector‘s demand do not scale 
directly with population and climate. A sample of the image transformation from grid cell to 
CBG resolution (for data processing purposes) is shown in APPENDIX A: Energy Simulation 
Weather Files, where minor differences were incurred with up to a 1°C (1.8°F) effect on 
summary statistics. Technically, the peak demand forecast was conducted in three phases: 
weather file creation (based on the climate modeling in the previous chapter), characterization 
of individual building energy model performance, and spatial allocation of those individual 
buildings’ energy consumption throughout LAC.  

Because building energy simulations were conducted using EIA’s Energy Plus and BEOpt 
software, special “EPW” weather files had to be created to conduct the analysis, which adds an 
additional layer of uncertainty to the analysis. This was done, however, in order to complete the 
analysis in a practical amount of time with the computational power available to the research 
team. EPW files require 8,760 inputs, one set of 12 parameters for each hour of the year, 
including: time, dry bulb temperature, dew point temperature, relative humidity, atmospheric 
pressure, horizontal infrared radiation from sky, direct normal radiation, diffuse horizontal 
radiation, wind direction, wind speed, visibility, and a variable for present weather observation. 
EIA sample historical weather data from a hot day in Los Angeles was modified to simulate a 
range of hourly dry bulb temperatures such that daily Tmax ranged from 20°C to 60°C in order to 
characterize building peak electricity consumption respectively. The complete list of EPW input 
variables and hourly parameter values used are listed in APPENDIX A: Energy Simulation 
Weather Files. The dry bulb temperature was increased by 1°C for each hour each day up to Tmax 
= 60°C, then decreased back to Tmax = 20°C, and so on as shown in the appendix. This artificial 
raising and lowering of the input weather data was repeated four times throughout the 8,760 
EPW file such that multiple simulations output data were created for each Tmax, and error due to 
day of week or holiday usage patterns coded into the building models would be minimized.  

Peak demand values were estimated based on model simulation runs in the software as the 
average of the hourly consumption from noon-6pm per residential peak pricing times in the 
area [52], [53]. Base period results were verified as within a reasonable range as described 
within the Uncertainty and Validation section. The core building models consisted of 15 
commercial buildings types from [54] and 4 residential building types from [2]: single family 
detached (SFD), single family attached (SFA), multifamily small (MFS), and multifamily large 
(MFL), calibrated for Los Angeles County specifically, with several variations for different 
vintages, climate zones, and AC efficiencies. Individual buildings’ peak demands were 
characterized as a function of Tmax and then allocated by respective building counts to each CBG 
based on the scenario factors. The analysis is significantly more detailed for residential 
buildings than commercial buildings as existing residential building models were much better 
calibrated for electricity consumption in LAC than commercial building models. Further 
explanation and detailed performance characterization for residential and commercial buildings 
are included in Appendix B. The climate and urban infrastructure scenarios are summarized in  
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Table 4 and Table 5, and described in detail in the following sub-sections. A sensitivity analysis 
was conducted to understand how significantly each factor contributed to peak demand, and 
what opportunities exist for developments in residential buildings or improved AC efficiencies 
to mitigate potential hazards due to excessively high peak demand during potential future 
record-breaking heat waves. 

 

Table 4. Summary of climate scenarios. 

Time period RCP 

Historic 
(1981-2000) n/a 

Early-century (2021-
2040) 

RCP 4.5 

RCP 8.5 

Mid-century (2041-
2060) 

RCP 4.5 

RCP 8.5 

Time period RCP 

Historic 
(1981-2000) n/a 

Early-century (2021-
2040) 

RCP 4.5 

RCP 8.5 

Mid-century (2041-
2060) 

RCP 4.5 

RCP 8.5 
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Table 5. Summary of urban infrastructure scenarios. 

Case Model parameter(s) affected Low Medium High 

Growth 

Population growth* 
• # of new dwelling units per 

period (3 people per DU) 
• # of additional commercial 

buildings 

1.2 million 
CA 

Department 
of Finance 

/ USGS 
projections 

Average 

3.1 
million 
SCAG 

projection 

Building turnover rate [18] 
(replacement with new buildings) 

0.03% per 
year 

0.3% per 
year 

3% per 
year 

AC penetration  Central AC in all new buildings 
from turnover and population 
growth 

Energy 
Efficiency 

Housing Density** 
Percent allocation of new dwelling 
units by residential building type. 
 
Total ratio of (MF/SF) for new 
DUs 

SFD - 47 
SFA - 08 
MFS - 24 
MFL - 21 
 
(45/55) 

SFD - 28 
SFA - 05 
MFS - 36 
MFL - 31 
 
(67/33) 

SFD - 09 
SFA - 01 
MFS - 45 
MFL - 45 
 
(90/10) 

Residential ACs 
(all DUs, new and pre-existing) SEER 16 SEER 19 SEER 21 

*Acronyms: United States Geological Survey (USGS), Southern California Association of Governments 
(SCAG). single-family detached (SFD), single-family attached (SFA), multi-family small (MFS), multi-family 
large (MFL).  
**Low housing density values are current distribution [2], medium values use SCAG projected 67% MF and 
33% SF [55] with current ratio within sub-categories, high density assumes 90% multifamily & 10% single 
family. 

 

3.2.1 Urban Infrastructure Scenarios 
The key urban infrastructure characteristics that change over time and affect peak demand are 
the numbers of buildings and their operative energy consumption efficiencies. Changes for 
energy efficiency factors included residential building types (density) and AC efficiency, which 
were forecasted for residential and commercial sectors for 2040 and 2060 with low, medium, 
and high ranges. Other changes, including growth factors for population, residential building 
stock turnover, and AC penetration, were also estimated. These factors were chosen because 
they are known to significantly affect peak demand and can be influenced by policy. Factors 
that may affect industrial loads as well as potential new demand-side technologies, such as 
solar photovoltaics, micro-grids, energy storage, and electric vehicles, were not considered.  

Such factors may significantly affect future electricity demand and loads and are the subject of 
other complementary research efforts. Demand and load should be kept distinct in energy 
modeling and forecasting, as demand is what is actually consumed, whereas load is what is 
visible to the grid from the perspective of the meter. Some distributed energy resources may 
have no effect on demand, but may significantly affect loads in the future, and could pose 
unforeseen problems for service reliability if demand and load were not accounted for 
explicitly. 
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Urban infrastructure scenarios were defined relative to base-case models for residential and 
commercial building stock in each CBG. The base residential building stock included 2.3 million 
buildings or 3.2 DUs classified by the 51 archetypes in [2], indexed by 2010 CBGs and 
California’s previous Climate Zones, and based on the 2014 LAC assessor database. The base 
commercial building stock included 55,865 buildings classified by the 45 NREL codes from the 
UCLA Energy Atlas [56] indexed by 2014 CBGs. All new buildings were modeled as having the 
highest efficiency performance levels associated with their corresponding building types in 
compliance with California’s state mandated Title 24 building standards. 

3.2.2 Population Growth 
Population growth can be influenced by land use zoning [57], and two forecasts from two 
different government agencies were found to exist. The low-growth case used the California 
Department of Finance’s county-level population projections (and spatially allocated by the 
USGS) from [16] as described in [58] with total population values for LAC of 9.7 million in 2010, 
10.3 million in 2040, and 10.9 million in 2060. The Department of Finance made three population 
projections (low, central, and high), but they were all the same through 2060 and did not 
diverge until 2061. The high-growth case used the Southern California Association of 
Governments (SCAG) population projections from [17] as described in [55] and [59], with total 
projected population values of 11.4 million in 2040 and 12.8 million in 2060. The medium case 
used the average of the two projections in each CBG. The major differences between the low 
and high cases are that the high case has 10% and 17% more total population in 2040 and 2060, 
and much more growth in already developed urban areas than new areas. The projected 
population increases are shown in Figure 10. In all cases, new residential buildings were added 
in each CBG proportional to population increases from the historic building stock in [2] at a rate 
of 3 persons per DU per current rates from SCAG [55] and the US Census [60]. Commercial 
buildings were assumed to increase proportionally by count in each CBG in the same 
proportion as they exist currently. While SCAG projected slight decreases in population per 
dwelling unit with aging population (2.9 persons per DU), that factor was not considered. The 
technical details of data processing of these forecasts from the sources are in Appendix C.  
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Figure 10. Population projections from 2010 to 2040 and 2060 from CA Department of 
Finance/USGS and SCAG by census block group.  

3.2.3 Residential Building Stock Turnover 
Replacement of older vintage buildings with new buildings is important to consider as new 
buildings must be constructed according to the most recent iteration of Title 24 building 
standards, as were coded in the models developed in [2] based on the 2008 Residential 
Appliance Saturation Survey (RASS). Distribution level solar PV energy production may reduce 
apparent load as viewed from the grid-side of the meter; it would not affect demand, as is the 
focus of this study. Technically, solar panels on building rooftops would reduce incoming solar 
radiation and therefore some demand for AC, but the significance would be proportional to the 
coverage, and modeling this variable is beyond the scope of this study. Turnover was 
considered for residential buildings only. The commercial building models available were not 
sufficient to consider building turnover in that sector due to a lack of calibration for electricity 
consumption by vintage as explained in Appendix B. Previous work classified the current 
residential building stock in LAC (2.3 million buildings, and 3.8 million DUs) by CBG in terms 
of the 51 building archetypes as listed in Table 6. Older buildings were replaced by newer 
construction of the same type unless otherwise specified per the housing density scenario. Low, 
medium, and high turnover rates of 0.03%, 0.3%, and 3% DUs per year per CBG were used 
based on the range identified for LAC in [18]. It was assumed that all older vintage buildings 
without central AC would be replaced by newer construction possessing central AC. Thus, a 
higher turnover rate will result in a larger peak demand, as AC accounts for 60-70% of 
electricity consumption while in use [61]. While newer buildings are generally more energy 



22 

efficient per square foot, newer buildings also tend to be constructed with larger footprints, so 
the net correlation between building vintage alone and energy consumption is not consistent in 
the models [2]. 

 

Table 6. Residential building archetype divisions and names. Note: CZ = climate zone. 

Multifamily Small (MFS), apartment or condo (2-4 units)  Multifamily Large (MFL), apartment or condo (5+units) 

 CZ 6  CZ 8  CZ 9  CZ 14  CZ 16  CZ 6  CZ 8  CZ 9  CZ 14  CZ 16 

<1940 6MFSD-5 8MFSD-4 9MFSD-5 14MFSD-5 16MFSD-4  6MFLD-5 8MFLD-5 9MFLD-5 14MFLD-5 16MFLD-4 

1940-1949 6MFSD-5 8MFSD-5 9MFSD-5 14MFSD-5 16MFSD-4  6MFLD-5 8MFLD-5 9MFLD-5 14MFLD-5 16MFLD-4 

1950-1959 6MFSD-5 8MFSD-5 9MFSD-5 14MFSD-5 16MFSD-4  6MFLD-5 8MFLD-5 9MFLD-6 14MFLD-5 16MFLD-4 

1960-1969 6MFSD-5 8MFSD-5 9MFSD-6 14MFSD-5 16MFSD-4  6MFLD-6 8MFLD-6 9MFLD-6 14MFLD-5 16MFLD-4 

1970-1982 6MFSD-6 8MFSD-6 9MFSD-6 14MFSD-5 16MFSD-6  6MFLD-6 8MFLD-6 9MFLD-6 14MFLD-5 16MFLD-4 

1983-1997 6MFSD-6 8MFSD-6 9MFSD-6 14MFSD-5 16MFSD-6  6MFLD-6 8MFLD-6 9MFLD-6 14MFLD-6 16MFLD-4 

1998-2008 6MFSD-6 8MFSD-6 9MFSD-6 14MFSD-5 16MFSD-6  6MFLD-7 8MFLD-6 9MFLD-7 14MFLD-6 16MFLD-4 

   

Single family detached (SFD)  Single family attached (SFA), townhouse, duplex, etc. 

 CZ 6  CZ 8  CZ 9  CZ 14  CZ 16  CZ 6  CZ 8  CZ 9  CZ 14  CZ 16 

<1940 6SFDD-5C 8SFDD-5C 9SFDD-5C 14SFDD-5C 16SFDD-7  6SFAD-6C 8SFAD-6C 9SFAD-6C 14SFAD-6M 16SFAD-7 

1940-1949 6SFDD-5C 8SFDD-6C 9SFDD-6C 14SFDD-5C 16SFDD-7  6SFAD-6C 8SFAD-6C 9SFAD-6C 14SFAD-6M 16SFAD-7 

1950-1959 6SFDD-5M 8SFDD-6M 9SFDD-6M 14SFDD-5C 16SFDD-7  6SFAD-6C 8SFAD-8M 9SFAD-7M 14SFAD-6M 16SFAD-7 

1960-1969 6SFDD-7M 8SFDD-7M 9SFDD-7M 14SFDD-7M 16SFDD-7  6SFAD-6C 8SFAD-8M 9SFAD-7M 14SFAD-6M 16SFAD-7 

1970-1982 6SFDD-7M 8SFDD-7M 9SFDD-7M 14SFDD-7M 16SFDD-7  6SFAD-7M 8SFAD-7M+ 9SFAD-7M 14SFAD-6M 16SFAD-7 

1983-1997 6SFDD-8M+ 8SFDD-7M+ 9SFDD-7M 14SFDD-7M 16SFDD-7  6SFAD-6M+ 8SFAD-7M+ 9SFAD-7M 14SFAD-6M 16SFAD-7 

1998-2008 6SFDD-8M+ 8SFDD-7M+ 9SFDD-8M+ 14SFDD-8M+ 16SFDD-8  6SFAD-6M+ 8SFAD-7M+ 9SFAD-8M+ 14SFAD-6M 16SFAD-7 
 

3.2.4 AC Penetration 
AC penetration was considered explicitly because, as previously mentioned, AC operation 
accounts for 60-70% of electricity consumption while in use, and a significant portion of homes 
in LAC do not currently have central AC. The base-case AC penetration estimate was obtained 
from [2] at 41% for LAC with allocations in each climate zone as listed in Table 7 as shown in 
Figure 11 [62]. AC penetration was modeled to increase with the addition of new buildings 
either due to population growth or building turnover. Details of AC energy efficiency are 
provided with the following subsection. 
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Table 7. Base-case AC penetration. 

 

  

 

 

  
 

 
Figure 11. Los Angeles Building Climate Zone Areas.  

CZ AC Penetration 
6 0.393 
8 0.418 
9 0.39 

14 0.777 
16 0.605 

Total 0.414 
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3.2.5 Energy Efficiency – Housing Density 
Housing density was considered because single family detached buildings are generally less 
energy efficient per square foot than multifamily attached buildings [18], and zoning policy can 
affect building types in the stock of particular locations [57]. Therefore, housing density was 
forecast in terms of the percent allocation of new dwelling units to the four types of residential 
buildings captured within the models: single family detached (SFD), single family attached 
(SFA), multifamily small (MFS), and multifamily large (MFL). The allocation values used for the 
base case were 47%, 8%, 24%, and 21%, respectively, as are current values per [2], and consistent 
with [55]. According to the Southern California Association of Governments 2016-2040 Regional 
Transportation Plan/Sustainable Communities Strategy, “66 percent of the 1.5 million new 
homes expected to be built in the SCAG region will be multifamily units, reflecting 
demographic shifts and anticipated market demand.” [55]. Accordingly, the mid-case future 
scenario used this allocation of single family to multifamily units. The high case assumed 90% 
MF and 10% SF as an estimation of a potentially more aggressive scenario. For characterization 
of different building types’ peak demands, see Appendix B.  

3.2.6 Energy Efficiency – AC 
Higher efficiency AC units use less electricity to cool the same volume of air to the same 
temperature. As AC energy efficiency standards have risen over time, further increases in AC 
efficiency were modeled in the building stock to consider potential effects of that continued 
trend on peak electricity demand. Seasonal Energy Efficiency Rating (SEER) was used in this 
study as an AC efficiency metric as it is the most common rating and was best available within 
BEOpt software. Note SEER ratings are based on performance over a weighted range of outdoor 
temperatures from 18-40°C (65-104°F) [63], whereas the range of outdoor temperatures in this 
study are up to 54.3°C (130°F). Previous building energy models developed in [2] clustered 20 
different types of ACs; however, for a combination of practical and technical reasons, we further 
clustered residential AC in to three categories as listed in Table 8 based on SEER rating. Room 
air conditioners (RACs) were allocated to half SEER 8 and half SEER 16 per the model results 
and explanation in Appendix B. The low, medium, and high future scenarios used all SEER 16, 
19, and 21 ACs as current standards require at least SEER 13 or EER 11.2 for residential sized 
ACs in California [20], and it is the Energy Commission staff’s projection that these standards 
will rise to at least SEER 16 by 2040. 

Table 8. AC technology categorization. 

AC type Definition Clustering of (Reyna & Chester) Base allocation 
No AC No AC No AC 44% 
Low efficiency SEER 8 All SEER 10 or less + ½ of all RACs 26% 
Medium efficiency SEER 16 All SEER >10 + ½ of all RACs 30% 
High efficiency SEER 21 n/a 0% 

 

3.3 Results 
3.3.1 Countywide 
Total Peak Demand. Peak demand was projected to increase for residential and commercial 
sectors from a base range of 9.5-12.8 GWh in the historical period to 12.3-16.7 GWh (~30%) in 
2040 and 13.1-19.2 GWh (~45%) in 2060 for the scenarios listed in Table 9. Differences between 
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average Tmax in the two RCPs was less than 1°C, and the effect of air temperatures on building 
peak demand ranged between 2% and 5% per 1°C as explained in the following subsection, and 
in Appendix B on an individual building basis. The other hottest day definitions tested included 
most grid cells over 35°C (95°F), and highest single cell Tmax, which resulted in peak demand 
estimates of 4.09, 6.23, 10.32, and 4.8, 6.82, and 11.62 GWh for R, C, R&C sectors respectively in 
the base period.  

Table 9. R&C sectors peak demand projections for hottest day scenarios. 

Scenario 
Ave. Tmax  
°C (°F)* 

Low (GWh) Mid (GWh) High (GWh) 

Sector  R C R&C R C R&C R C R&C 
Base period 34-43 (93-110) 3.5 6.0 9.5 4.2 6.5 10.7 5.6 7.2 12.8 
2040, RCP 4.5 43.7 (110.7) 4.5 7.8 12.3 5.4 7.8 13.1 8.8 7.8 16.6 
2040, RCP 8.5 43.9 (111.0) 4.6 7.8 12.3 5.4 7.8 13.2 8.9 7.8 16.7 
2060, RCP 4.5 44.2 (111.6) 5.1 8.0 13.0 6.6 8.1 14.7 10.7 8.2 18.9 
2060, RCP 8.5 44.6 (112.3) 5.1 8.0 13.1 6.7 8.1 14.9 10.9 8.3 19.2 

*Differences in Tmax from values in Chapter 2 are due to allocation from grid cells to CBGs. 
**Some values may appear the same between RCPs due to rounding 

Spatial differences. Some CBGs must necessarily have significant increases in peak demand 
due to outward expansion of the urban landscape per the population projections in Appendix 
C. However, in most already developed areas, changes in peak demand ranged ±50% 
dependent upon the extent of efficiency improvements. Projections for combined R&C sectors 
are shown in Figure 12 for the composite heat images, which show the maximum potential peak 
demand in any CBG and relative percent change for any coincident heat waves in the scenario 
periods. Climate change was found to be responsible for 2% to 5% increases in peak demand. 
As shown in Figure 9, the areas closer to the ocean, located in climate zones 6 and 8, were 
projected to have fewer temperature increases over time (1-2°C), and climate zones 9, 14, 16, 
located further from the coast, were expected to experience more pronounced temperature 
increases (2-3°C).  

The most electricity demand intensive areas in the base period in the model were in the 
Wilshire corridor, central downtown, east LA, West Glendale, and the Manhattan Beach areas 
due to high concentration of DUs and commercial buildings. Both SCAG and the CA 
Department of Finance projected approximately 1 million (~10%) population growth in the less 
developed and naturally hotter regions of Palmdale, Lancaster, and Santa Clarita; however, 
SCAG projections predict an additional 2 million in population across the western San 
Fernando Valley and LA Basin areas. The results in the high efficiency scenario were that peak 
demand decreased in the developed basin area in the low growth scenario by 2060 by about 
20% overall on average, and as much as 50% in some CBGs, as AC efficiency standards forced 
replacement of older AC models with newer more efficient units in the model.  

The highest increase scenario (19.2 GWh) considered approximately 700,000 new SFDs in the 
LA basin area. Figure 12 shows the lowest peak demand composite image for SCAG’s high 
population growth scenario, which is 15.4 GWh total (hottest day is 14.7 GWh total) and 
arguably more feasible from a land use perspective as 90% of growth in that case is met with 
multifamily DUs that would require significantly less land area. In that case, peak demand 
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remains net constant in the in-basin area, at approximately 4 GWh, although there are certain 
pockets of increased demand in the Torrance and Long Beach areas, as well as by the coast. The 
central CZ 9 region’s (from West Valley to Pomona) peak demand was projected to increase 
from 7.5 GWh in the base period to 9 GWh. The Santa Clarita and San Fernando Valley areas 
were projected to increase in the high efficiency cases from 320 MWh to 900 MWh for 
Department of Finance population growth or 590 MWh for SCAG population growth. Palmdale 
and Lancaster were likewise projected to increase from 560 MWh to 840 MWh and 570 MWh. 
Several CBGs appear green in the northern region in all cases due to little or no population 
growth, per the allocation procedures in Appendix C, and sufficient building turnover and or 
replacement of older ACs with newer ACs to result in a lower peak demand in the model. In all 
figures, CBGs with >50% area classified as protected lands are masked per the 2017 California 
Protected Areas Database [64]. 
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Figure 12. Composite peak demand projections and percent change for base and future period 
low and high scenarios. 
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Figure 13. Composite high growth (SCAG) highest efficiency scenario for 2060.  

Left – absolute value. Right – percent change from 2010. 

 

3.3.2 Factor Contributions 
Air temperature. Effects of simulated heat waves resulted in increases in peak demand of 3-4% 
per 1°C in the base period, and 3-7% per 1°C in future periods relative to the peak at 30°C. As 
previously listed in Table 9, future hottest day average Tmax were projected to increase from 42.7 
°C (108.9 °F) to 44.6 °C (112.3 °C) in RCP 8.5 in 2060, a difference up to 1.9 °C (3.4 °F) from the 
base period when allocated by CBG. The total effect on peak demand, when compared to the 
base period hottest day, was an increase from 12.54 to 13.03 GWh in the 2060 low case, and 
17.71 to 19.18 GWh in the 2060 high case (from 3.9% to 8.3%). Hottest day temperatures affected 
peak demand at higher rates in both low- and high- future cases as shown in Figure 14, due to 
higher AC penetration—65% and 100% respectively compared to the base case with only 45% 
AC penetration. To produce that figure, Tmax was controlled in the model across LAC from 30 to 
60°C for the scenarios as listed. Minor bumps in the graphs are artifacts of technical issues in 
building energy simulation modeling related to allocation of temperatures by day in BEOpt, 
which includes differences in behavioral usage patterns between weekdays, weekends and 
holidays as explained in Appendix B. The general trend was mostly linear however, with minor 
differences depending upon where slope measurements are taken. The slight s-curve pattern at 
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the temperature ends is due to AC duty cycling nearing 0% and 100% as was also predicted in 
[61]. Note: controlling every CBG’s Tmax to be equal to the scenario’s average Tmax produced total 
LAC peak demand results within 3% of using spatially differentiated temperatures for the 
hottest days. 

 
   (a)    (b)    (c)         (d) 

Figure 14. Peak demand sensitivity to Tmax, in scenarios: 
(a) base-case, (b) 2060 low, (c) 2060 high, (d) 2060 SGAG low.  

Per Table 9, the historical county wide average Tmax range is 34-43°C (93-110 °F),  
and the future scenarios’ 43.9-44.6 °C (110.7-112.3 °F). 

Population growth. Without any efficiency improvements or increases in air temperature, peak 
demand increased 25—42% due to the addition of new buildings from population growth. 
Population growth affected peak demand forecast results by 6 -13% within each scenario. 
Figure 15 shows the effects of controlling for population within the low-case and high-case 
scenarios for each period. The effects on peak demand are directly proportional to the higher 
quantities of new buildings including AC penetration.  
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Figure 15. Scenario sensitivity to population growth factor.  
Bars correspond to left axis, points correspond to right axis. Ranges in base period are for low, medium, 

and high historical hottest day images. 

Building stock turnover and AC penetration. The effect of building turnover rate was 27 -30% 
in the model on forecasts of peak demand due primarily to increased AC installations at a rate 
of 0.5—0.6% increase in peak GWh per 1% increase in AC penetration. Differences in building 
efficiencies were inconsistent between newer and older vintage buildings, and improvements in 
building efficiency per square foot were generally negated in the models by larger total floor 
space per DU. As shown in Figure 16, if residential building turnover occurs at the highest 
modeled rate of 3%, then AC penetration would saturate at nearly 100% by 2040, and peak 
demand would be significantly higher than at low and medium turnover rates. Changes in AC 
penetration by climate zone are listed in Table 10 for each scenario. 

 
Figure 16. Scenario sensitivity to building turnover factor and AC penetration.  

Bars correspond to left axis, points correspond to right axis. Ranges in base period are for low, medium, 
and high historical hottest day images. 

Table 10. AC penetration by Climate Zone (CZ) for low and high population growth and turnover 
rates. 

CZ 2010 
2040 
low 

2040 
high 

2060 
low 

2060 
high 

6 0.393 0.413 0.993 0.419 1 
8 0.418 0.429 1 0.435 1 
9 0.390 0.433 0.991 0.45 1 
14 0.777 0.86 1 0.888 1 
16 0.605 0.764 1 0.828 1 
Total 0.414 0.459 0.994 0.476 1 
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Housing density. New residential unit density affected total peak demand for LAC, and peak 
demand per capita, by 1-4% across the scenarios modeled. Figure 17 shows the effects of the 
low, medium, and high housing density factor (55%, 66%, and 90% MF for new building 
allocations) on the low and high future scenarios. The differences in peak demand are primarily 
due to the allocation of single-family detached units. Residential DUs that are attached via 
shared wall space can have up to 50% lower peak demand peak than single family detached 
DUs. For example, at SEER 16 AC units and Tmax = 44°C, peak demand is 3.11, 2.36, 1.52, 1.54 
kWh per DU in SFD, SFA, MFS, and MFL respectively when averaged across the five climate 
zones. The 2040 and 2060 high scenarios have higher peak per capita and greater variation 
therein. This is because the additional population growth and building turnover results in 
higher AC penetration for a larger quantity of buildings in the county.  

 

 
Figure 17. Scenario sensitivity to new housing density.  
Bars correspond to left axis, points correspond to right axis.  

Ranges in base period are for low, medium, and high historical hottest day images. 

AC energy efficiency. Increases in AC SEER ratings from 16 to 21 increased peak demand by 
up to 2%. Future scenarios were modeled with all residential buildings as having either SEER 
16, 19, or 21 central air conditioners. The range of effects on future peak demand is shown in 
Figure 18, where the highest case future scenario with the most SFDs had a 2% difference 
between a SEER 16 and SEER 21 standard. As shown in Appendix B, higher SEER rated AC 
units generally had lower electricity consumption at higher temperatures in the model. 
However, the performance differences saturated at higher SEER ratings, and in some cases 
reversed at very high temperatures. For example, in the highly populated CAZ 9, the newest 
model of SFD units had peak demands for SEER 16 and SEER 21 at Tmax= 30, 38, and 44°C (86, 
100, 111°F) of 1.17 & 1.15, 2.25 & 2.24, and 3.40 & 3.49 kWh respectively in the BE Opt 
simulations. In that specific model archetype, the unit with the SEER 21 AC unit could have 
lower annual energy consumption over course of an entire year, but during a heatwave with 
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temperatures in excess of 38°C (100°F) it would have a higher peak demand. SEER ratings are 
based on a weighted average of cooling energy efficiency for outdoor temperature ranges from 
65-104°F (18-40°C), where it is assumed that 94% of operations occur at temperatures below 
35°C or 95°F. Therefore, higher SEER rated AC units must be optimized for efficient 
performance during environmental conditions that are different from the hottest conditions 
when grid reliability is at risk. Future work should consider tradeoffs between annual energy 
consumption and peak load of AC units in engineering designs, as well as potentially different 
performance ratings other than SEER or EER, and their effects on peak demand—such as a peak 
performance rating. 

 
Figure 18. Scenario sensitivity to AC energy efficiency.  
Bars correspond to left axis, points correspond to right axis.  

Ranges in base period are for low, medium, and high historical hottest day images. 

 

3.4 Uncertainty & Validation 
In order to validate the feasibility of our conclusions, the results of the individual building 
models and total projections were compared to prior studies for the base period. Regarding 
future scenarios, a straight-line increase in peak demand with population growth would be 12% 
or 32% by 2060 for the Department of Finance and SCAG projections respectively. Therefore, 
given the range of building efficiency scenarios considered, and allocation of population to 
mostly warmer climate regions which already have higher AC penetration and demand, we do 
not consider the projected increases of 2-36% in the Department of Finance case, or of 16-51% in 
the SCAG case, to be unreasonable. 

Countywide peak demand. The current base-period peak demand was modeled as 9.5 – 12.8 
GWh for R&C sectors only, and is considered reasonable as the total peak demand for all 
sectors was estimated using the following three different approaches as being between 12.8–17.3 
GWh. R&C sectors account for 64-68% of total electricity consumption per EIA records and 
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UCLA’s Energy Atlas. If the same proportion were true for peak demand, then total peak 
demand would be 15-20 GWh, which significantly overlaps with the range of base period 
estimates, up to 20% higher in the high-cases. These estimates are necessary because sectoral 
data are either unavailable—in that residential, commercial, industrial, and other sector’s 
consumption are not clearly disaggregated—or not reported with sufficient temporal resolution 
(hourly) to obtain a clear understanding of current peak demand. Therefore, as the ability to 
verify base-case model accuracy is limited, several ranges of historical temperature data were 
used to create a range base-case peak demand with which to compare future electricity demand 
forecast scenarios. The current peak demand estimations are as follows. 

First, according to US EIA hourly balancing authority demand data, which are available for 
LADWP, which services almost half of LAC by geography and customer count, peak hourly 
demand for LADWP was 6,870 MWh in 2016 [65]. The peak demand was 2.0 times the average 
demand in that year. LADWP services 1.3 million residential, 89 thousand commercial, and 9.4 
thousand industrial customers. This building stock is occupied by a population of 
approximately Rx3=3.9 million persons [66]. Scaling LADWP’s historical peak demand per 
capita by the current population of LAC (9.8 million) yields a peak demand of 17.3 GWh. 

Second, according the UCLA Energy Atlas, LAC’s annual electricity consumption was 
approximately 20 billion kWh for residential and 16 billion kWh for commercial buildings, and 
20 billion kWh for industrial and other in 2010, or 56 TWh total [56]. The average of the annual 
median electricity consumption for LAC in 2010 over a one year hourly period was 2.3, 1.8, and 
2.3 GWh, or 6.4 GWh total [56]. If peak demand is 2 times the annual average measure, then it 
would be 12.8 GWh. 

Third, peak demand for the entire state of California was 57-64 GW each year from 2005 to 2016 
[67]. The population of LAC is approximately ¼ the state’s population (37.3 million in 2010) 
[60], so a straight population allocation results in a peak demand estimate of 14-17 GW, 
applicable to a wider range of geography and an 11-year range of infrastructure and climate 
conditions. 

CBG specific results. Uncertainty in input parameters and model procedures limit the accuracy 
of the CBG resolution results. For instance, population growth projections were allocated to 
CBGs as described in Appendix C for the three scenarios based on the percentage of spatial 
overlap and building density distribution factors were applied evenly across all CBGs. 
Realistically, this approach does not account for factors such as land areas that may be 
uninhabitable due to zoning regulations or other constraints. Moreover, population growth and 
residential building density are interdependent factors. In other words, some CBG values in the 
high-case may not feasible because higher density SFA, MFS, and MFL buildings must replace 
SFD buildings in some dense urban areas in order for the population to significantly increase 
within those geographies. These details do not affect the overall results or insights of this study, 
but are noteworthy in that they should be further examined by neighborhood specific land use 
studies before specific urban development plans are implemented. 

Individual building electricity demand. While simulations of individual residential buildings 
resulted in average peak demands at 7pm that were approximately 50% larger than peak 
demand at 4pm, the overall model results based on the average of simulated electricity 
consumption from noon-6pm were within a reasonable historical range for total peak demand. 
Total peak demand historically occurs during the noon-6pm period as the additional coincident 
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demand from commercial and industrial sectors has been greater than the additional demand in 
the residential sector that occurs later in the day. While high penetrations of distributed solar 
PV are shifting the load on the grid to relatively lower levels during the daylight hours, that 
does not affect demand for actual electricity consumption, and forecasts in those changes in 
apparent load are beyond the scope of this report. The maximum hourly energy consumption 
values were tested in the model as well, which occurred at 7pm in the building energy 
simulations. Using the highest daily maximum values produced total peak demand results for 
LAC R+C sectors in the base period approximately equal to 60 GW. The task of further 
calibrating building models to hourly load profiles was beyond the scope of this work, but 
should be considered important future work as developing that sector-level hourly 
understanding is critical to addressing distribution-level grid modernization challenges 
associated with large scale solar PV integration, as well as increased energy storage systems and 
electric vehicles deployment. 

The 2010 median annual electricity consumption for individual single family, multi-family, and 
commercial buildings were 6,726 kWh (0.5 Wh/ft2), 9,612 kWh (0.43 Wh/ft2), and 38,599 kWh 
(0.96 Wh/ft2) respectively [56]. The low-end peak demand per DU across LAC in the base 
period was modeled at 1.5, 1.0, 0.7, and 0.7 kWh for the SFD, SFA, MFS, and MFL types, which 
were approximately twice the median values.  

Commercial buildings were modeled as 108 kWh per building using the lowest value from the 
three vintages published. Those values overlapped the range of median values when 
considered over the range of building floor spaces listed in Appendix B. As previously stated, 
the use of the commercial building models exceeded their intended use in this report as they 
were not specifically calibrated for electricity consumption. The high temperature commercial 
peak demand values are likely an underestimation, where as shown in Figure 14 they did not 
significantly increase with air temperature in the model.  

Temperature effects on peak demand. Tmax affected peak demand at a rate of 3-4% per 1°C for 
the current infrastructure, which is consistent with historical observations found in [61] and 
[14]. The net increase in peak demand attributable to air temperature, for current infrastructure 
conditions, was approximately 300 MWh per 1°C, which was consistent with multiple previous 
regression analysis studies of California and LAC specifically in [61] and [3]. Increases in peak 
demand did not appear to decline until Tmax = 53°C, approximately 10°C higher than estimated 
in [61],  due to the method of averaging noon-6pm building consumption as opposed to the 
buildings’ maximum consumption, which occurs later in the day. Again, future building energy 
modeling research should emphasize calibration for peak demand, and disaggregation of 
different customer sector hourly load profiles. 

AC efficiency and power performance. Residential AC technologies were originally clustered 
into 20 types in previous work in developing the building energy models as were available for 
selection in the BEOpt and Energy Plus software. In this study, we further clustered AC 
technologies into three categories based on SEER ratings as were best available. The method of 
allocating room air conditioners into half SEER 8 and half SEER 16 may have resulted in high 
estimates of peak demand at maximum temperatures. Consequently, the percent demand 
reductions from upgrading ACs in high efficiency scenarios should be considered an upper 
estimate. Using only SEER ratings does not account for additional AC specifications that are 
known to affect performance, including compressor motor type [68]. Moreover, SEER ratings 
are based on performance over a weighted range of outdoor temperatures from 18-40°C (65-
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104°F) [63], whereas the range of outdoor temperatures in this study are up to 54°C (129°F). 
Thus, the model results that some SEER 21 rated ACs performed less efficiently than SEER 16 at 
temperatures above 40°C is not implausible. Future work should consider tradeoffs between 
annual energy consumption and peak load of AC units if engineering designs were optimized 
for peak performance at very high outdoor temperatures instead of for current SEER and EER 
metrics. For example, AC units could have a peak performance rating analogous to EER, which 
is for outdoor temperatures of 35°C (95°F), but instead a PPR could be for 50°C (122°F). 

AC penetration. This study used the AC penetration values from [2] for the base case by climate 
zone, which were different than the values as estimated in the Energy Commission's Residential 
Energy Demand Model, based on data from the Energy Commission Residential Appliance 
Saturation Surveys of 0.908, 0.514, 0.595, 0.730, and 0.742 for CZ 6, 8, 9, 14, and 16 respectively.  

Persons per household. This study used a value of 3 persons per household for all scenarios. If 
that value were ranged from 2.7 to 3.3 (±10%) evenly across the county, then it would affect 
results likewise by ±10% as peak demand is directly proportional to building counts in the 
model. 

Other factors. We did not consider peak demand from industrial sectors in this study, nor 
electrification of other technologies such as natural gas ovens, stoves, water heaters, nor 
petroleum-based vehicles. Electrification of household appliances could increase peak demand 
during the peak period. Assessing the impacts of electric vehicle deployment, including the 
possibility of EV batteries being used as a form of energy storage that can provide dispatchable 
local regulation services, should be the focus of its own dedicated study on the topic. Such a 
study should also consider time of use based prices and economic incentives for ratepayers.  

3.5 Conclusions 
Peak demand was projected to increase in LAC by at least 200 MWh by 2060. Peak demand was 
modeled and ranged from 9.5-12.8 GWh in the recent historical period for residential and 
commercial sectors. Increases by 2040 ranged from -0.5 GWh to 3.9 GWh, or a reduction of 4% 
to an increase in 30%, as conservatively estimated from the high range of the base period. By 
2060, the range of increase in peak demand spanned from 0.2-6.5 GWh (+2-51%). The significant 
width of this forecasted range is due to the ways in which changes in climate, population, and 
urban infrastructure could potentially interact to influence demand. 

Peak electricity demand increases significantly with increased air temperatures, and may or 
may not increase more in the future depending upon increases in AC penetration levels. Peak 
demand increases in LAC were found to occur during the base period at a rate of about 300 
MWh or 2-4% per 1°C at 45% AC penetration. The range of the hottest day (average Tmax across 
the county) of the year in the base period was 34-43 °C (93-110 °F) for the 20-year period. The 
modeled differences in peak demand across this 9 °C (17 °F) range was 3.3 GWh or 35% for the 
R+C sectors. By 2060, AC penetration was projected to be between 65%-100%, and the average 
Tmax up to 2.3°C higher in RCP 8.5. The combined difference in peak demand over the range of 
hottest day temperatures in 2060 was 9.3 GWh to 13.0 GWh in the low case, and 11.4 GWh to 
18.9 GWh in the high case, or 40% to 66% for R+C sectors. These results indicate that peak 
demand will probably be more sensitive to variations air temperature from heat waves in the 
future, and therefore the margin of error for underestimation of heat wave severity more critical 
for resource adequacy and delivery system capacity planning as well.  
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In addition to air temperature increases, population growth was found to be the other most 
significant factor driving peak demand within the model. The population forecasts used 
indicated an increase from 9.7 million people in the base period to 10.9-12.2 million by 2060, and 
resulted in a 25—42% increase in modeled peak demand without any efficiency improvements 
or increases in air temperature. Population growth in Palmdale, Lancaster, and Santa Clarita, 
which are less developed and naturally hotter regions, have building peak demands that are 
higher per capita than in the cooler basin areas. Approximately 2 million in population growth 
was projected in the SCAG scenario for estimates for the western San Fernando Valley and 
greater basin areas where current central AC penetration is ~40%. If all new buildings have 
central AC, then population growth could occur at a rate that raises peak demand almost 2x 
higher per capita than current conditions as AC use accounts for 60-70% of peak demand in 
residential buildings.  

The benefits of switching from single family to multi-family housing are reductions of 25-50% in 
peak demand per capita. Therefore, if the current power delivery infrastructure in the LA Basin 
area is operating near its capacity limits, then the area can generally support population growth 
with the most energy efficient buildings, as they are able to outpace increases in AC 
penetration. For the SCAG projected growth of an additional 2 million people in the basin by 
2060, at 90% multifamily dwelling units, the average CBG in the basin area from Central LA and 
south was forecasted to have an average decrease in peak demand of 7%. Torrance, Long Beach, 
and west Inglewood had increases in peak demand, indicating that new population growth 
may not be feasible to occur evenly across CBGs. The area from Pomona to West Valley, 
approximately climate zone 8, had an average increase in peak demand of 25%.  

Implementing higher density residential building types can curb the growth of peak demand. 
Dwelling units with shared wall space, such as apartments, had as much as 50% less peak 
demand per capita in the models. While replacing older buildings with newer buildings 
generally improves thermal efficiency, and therefore energy efficiency as well, anticipated 
increases in building size and AC penetration rates mean that the net effect of building turnover 
will result in an increase in peak demand. Moreover, while significant improvements have been 
made over the last several decades in various building and appliance efficiencies, air 
conditioning is overwhelmingly the most significant factor in determining peak demand. 
Differences in lighting and other appliance efficiencies, while significant for total annual energy 
consumption, accounted for less than a 2% difference in peak demand. In our models, 60-70% of 
peak demand within residential buildings was attributable to AC use, where higher air 
temperature resulted in 3-7% increase in electricity demand per 1°C. If peak demand is going to 
be reduced within the residential sector in the future, then different, or differently optimized, 
AC technologies are necessary.  

While improvements in AC SEER rating are significant for total annual electricity consumption, 
their effects on peak demand saturate, and different metrics are needed to optimize for peak 
performance. Higher AC SEER ratings negatively affected peak demand by up to 2% in the 
models above SEER 16 and high temperatures above 35°C or 95°F. SEER ratings are defined for 
a range of outdoor temperatures from 18-40°C (65-104°F), with the assumption that 94% of 
operations will occur while outdoor temperatures are less than or equal to 35°C [63]. Thus, 
higher SEER rated ACs are optimized to perform below outdoor temperatures of 35°C. Higher 
SEER rated AC units can actually be counter-effective to reduce peak demand during severe 
heat wave conditions (>45°C or 113°F). The other common AC rating, EER, is specifically for 
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35°C or 95°F and is problematic for the same reason. A different energy rating metric and 
optimized AC engineering design(s), is necessary to shave peak demand due to building 
cooling from ACs. A new “peak performance rating” for ACs could be useful to mitigate peak 
load during extreme heat conditions as there would be incentive for ACs to be engineered for 
more efficient performance at 50°C (122°F), for example. 

Other important considerations for managing future grid reliability revolve around the fact that 
new technology implementations are both triggering shifts in demand profiles and creating 
differences between demand and load profiles [69]. Demand is the amount of power or energy 
that is being used behind the meter, whereas load is the amount of power or energy being 
consumed from the perspective of the grid connection. The shift from fossil fuel sources to 
distributed and intermittent renewable power sources has created a phenomenon known as the 
duck curve. The duck curve corresponds to conditions where total peak loads, which have 
historically occurred from noon-6pm, are shifting to slightly lower levels and occurring later in 
the day. This slight reduction in peak load, which occurs because of overlap between 
residential, commercial, and industrial sector demand profiles, is also associated with a very 
steep ramping rate as the output of solar generators decline rapidly in the early evening.  

As a final consideration, electric vehicles are being deployed at an increasing rate. These 
vehicles will require grid charging and could potentially provide load shifting and regulation 
services if they are designed to support the two-way flow of power. In such a case, electric 
vehicles could potentially charge on solar during the day, supplement power to homes in the 
early evening to both reduce the ramp rate as the sun sets and reduce the later peak load, 
recharge in the middle of the night using cheap base-load power, and be fully charged again in 
the mornings. Such activity would decrease net load variance. Developing better understanding 
of the residential sector demand profile is critical to managing the duck curve at both a 
neighborhood circuit-level scale and a balancing authority scale. With a clear understanding of 
daily residential and commercial demand profiles, solar PV and battery storage systems can be 
located and sized in a way that reduces load variance and creates a smoother load profile to 
manage.  

 

4: Infrastructure Vulnerability Analysis  
4.1 Summary 
Infrastructure vulnerabilities were analyzed throughout Los Angeles County for power 
generation plants, transmission lines, and substations for both the direct effects of higher 
ambient air temperatures, as well as the combined effects of increased air temperatures and 
increased future demand. Infrastructure components are vulnerable to rising air temperatures 
because heat generated from electric power flow is inherently dissipated into the ambient air. 
Higher ambient air temperatures mean that components’ safe operating loads must be reduced. 
Vulnerabilities were analyzed to estimate maximum allowable loads on components to prevent 
physical hardware damage under climate change scenarios RCP 4.5 and RCP 8.5 to 2060.  

Power plant derating factors were used based on findings from previous empirical studies of 
sensitivities to air temperature. Natural gas plant and solar PV generation capacities were 
vulnerable up to 6% each, or approximately 2% of total local generation capacity. Therefore, the 
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net heat wave risk is a minimum of 2% and maximum of 20% of delivery capacity depending 
upon location and neighborhood infrastructure constraints within Los Angeles County.  

IEEE standards were used to calculate the steady state thermal ratings of substations and 
transmission lines throughout the systems. Distribution level substations are expected to 
generally be more vulnerable than transmission level substations due to lack of forced air or 
water cooling systems – i.e., lower voltage substations are more likely to rely on convective air 
cooling processes only. Substations in the Santa Clarita and West Valley areas were estimated to 
have the highest risk of failure due to heat waves in the future in the absence of system 
upgrades. About 20% of SCE’s substations are already operating with load factors over 100%, 
and temperatures were projected to reach as high as 53.4 °C (128.1 °F) resulting in up to 20% 
reductions in loadability. Lower voltage transmission lines are generally expected to be more 
vulnerable than higher voltage lines due to higher resistance in conductor strands. The lower 
voltage lines in the basin area were estimated to be vulnerable at up to 20% reduced loadability, 
and while distribution-level lines were not specifically analyzed, their sensitivity to air 
temperature is likely on the high-end of that range.  

The most significant short-term risk from heat waves is overload of distribution-level 
components in already congested areas from Alhambra to Pomona, and in San Fernando and 
Antelope Valleys. Infrastructure in the Santa Monica Bay area, along the western-facing coast 
up to 6 km (3 miles) inland, is not expected to experience air temperatures significantly above 
40 °C (104 °F) at any time in the projected period. Long-term power service reliability is more 
susceptible to population growth and changes in technology that affect peak demands such as 
building and AC efficiency. Additional local generation and/or imported power, plus new 
delivery infrastructure, will be necessary to meet the demand needs of population growth in at 
least the northern half of the county and western valley areas. Under the highest efficiency 
scenario with the California Department of Finance population projections, the infrastructure in 
the in-basin area would realize reduction in peak hour load from 4 to 3.3 GWh (-17%). Under 
the highest efficiency scenario with SCAG’s population forecast, then peak demand will remain 
approximately the same in the in-basin area. 

4.2 Approach 
The vulnerability of electricity infrastructure to rising air temperatures was considered relative 
to three categories of components: generation assets, substations, and transmission lines. Within 
each of these categories vulnerabilities were assessed in two parts. First, was the consideration 
of potential derating—i.e., decreases in percent loadability (MW capacity at generators, kVA 
capacity at substations, and ampacity in transmission lines) due to rising air temperatures only. 
Rising air temperatures were considered in terms of average temperature rise, and absolute 
degrees above 40 °C (104 °F). That temperature value was used based on ANSI/IEEE standards, 
which are also referenced several times as guidelines in LAC’s major service provider’s, 
Southern California Edison’s (SCE), Interconnection Handbook [70]. Second, vulnerabilities 
were assessed for components in terms of total relative future capacity need considering both 
decrease in loadability and increase in future demand. Two sets of peak demand forecasts were 
used; one was based on the CA Department of Finance’s projected population growth and the 
other based on SCAG’s, each with low and high ranges for building types, energy efficiencies, 
and ambient air temperatures for 2040 and 2060 RCPs 4.5 and 8.5 (Table 11). It is important to 
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note that the demand forecasts were for residential and commercial buildings only (Chapter 3: 
Electricity Demand Forecast) and did not consider industrial or other sectors.  

Therefore, the estimates developed should be considered low by 5 GWh, or 50% of listed values 
– depending upon whether the industrial building uncertainty would propagate additively or 
linearly – per Section 3.4 Uncertainty & Validation, especially in areas where significant 
industrial loads may exist now or in the future. Moreover, because demand was allocated to 
components spatially and did not consider specific power flow network topology or the ability 
of grid operators to make power routing decisions, results should be interpreted as more 
regionally insightful than prescriptive for any particular component. Vulnerabilities were 
estimated quantitatively as changes in absolute capacity (MW) of generation capacity, and as 
relative percent changes for substations and transmission lines as was most appropriate with 
the available data. 

 

Table 11. Range of Peak Demand Projections for LAC for Residential and Commercial sectors 
only. 

 LAC Total Peak Demand (GWh) 

Time Period Finance - Low Finance - 
High SCAG - Low SCAG - High 

Hottest Day     
2010   9.5   12.7   -   -  
2040  12.3   15.8   13.1   16.7  
2060  13.0   17.3   14.7   19.2  
Composite     
2010  -   13.5   -   -  
2040  12.9   17.3   13.8   18.4  
2060  13.6   18.8   15.4   20.9  

 

4.2.1 Generation 
Supply vulnerabilities were first assessed as potential derating values for generation capacity 
(MW) due to rising air temperatures in sensitive generation plants. Other factors that may affect 
availability of generation capacity, including availability of cooling water, cooling water 
temperature, and mechanical failures, were not considered. Moreover, LAC relies on energy 
that is imported from generators located in other neighboring regions, whose vulnerabilities 
were not identified in this study but could be significant factors in meeting future peak 
demand. LAC power plant data were obtained from the US EIA online at [71], including plant 
type, capacity, and geospatial location, as shown in Figure 19. In order to locate potential 
hazards, vulnerabilities were mapped for individual generators for worst case scenario 
temperatures in excess of 40°C (104°F) using the composite temperature projection images for 
2060 RCP 8.5 (Chapter2: Climate Modeling for Heat Events). In order to consider potential 
effects on local resource adequacy of the entire County, vulnerabilities were tabulated for the 
total LAC generation fleet for both average temperature rises (up to 3°C or 5°F), and for the 
temperatures in excess of 40°C (104°F) for 2040 and 2060 future projected hottest days under 
RCPs 4.5 and 8.5.  
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Generation plants sensitive to high ambient air temperatures include dry-cooled natural gas 
plants, the dry-cooled portion of combined cycle natural gas plants, and solar PV plants with 
quantities and derating factors as listed in Table 12 [61]. Wet-cooled plants were not modeled to 
have any capacity losses with rising air temperatures per [72]. Total plant capacity values listed 
were assumed to be for ambient air temperatures of 40°C (104°F). The range of derating factors 
for natural gas generation plants was attributable to chiller performance at the air intake of dry 
combustion engines [26], [73], [74], [72]. The range of derating factors for solar PV was 
attributable to internal carrier recombination rates from thermal excitation [75]. While 
hydropower plants are known to be vulnerable to climate change, and the vulnerabilities were 
estimated as 0.4-14% to 2060 in the USA, those estimates were attributable primarily to reduced 
water availability from drought, as opposed to higher air temperatures directly [72], [24], [28]. 
Therefore, because hydropower accounts for only 2% of the generation in LAC, changes in 
those generation capacities due to ambient air temperatures were considered negligible in this 
study.  

    
Figure 19. Map of power plants by type and capacity overlaid to historical hottest day.  
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Table 12. Power Plant Capacities by Type and High Air Temperature Derating Factors. 

  Power Plants Derating factor  
Generation type Count Capacity (MW) (%/1°C-Tmax) 
Hydropower 18 284 - 
Natural Gas (steam) 3 3,406 - 
Natural Gas (combustion) 15 1,044 0.6% ± 0.1% 
Natural Gas (combined cycle)* 23 5,742 0.3% ± 0.1% 
Solar PV** 91 890 0.35% ± 0.25% 
Other*** 24 2,137 - 
Total  174 13,503 0.20% ± 0.06% 

*Includes three “natural gas other” plants with total capacity of 4.4 MW. 
**Includes one 3.2 MW solar thermal plant without storage. 
***Includes by size: pumped storage, biomass, other, and petroleum. 

Vulnerabilities in generation were also quantified in terms of local reserve margin (LRM), which 
is the amount of total generation capacity in excess of total demand for the various forecasts in 
the region. The hottest day climate change scenarios were used for derated generation capacity 
and increased demand. LRM was projected to decrease for two separate and distinct reasons. 
First, plants will have reduced generation capacity under the stress of higher ambient air 
temperatures. Second, there will be higher demand for electric power with higher ambient air 
temperatures—which were evaluated for the range of population growth and technology 
change factors projected in Section 3: Electricity Demand Forecast. Future power plant 
generation capacity was explicitly not forecast and is instead discussed as an adaptation option 
in the concluding section of the report because significant interdependencies exist between 
generation and delivery capacity. For example, LAC is a net importer of electric power with 13.5 
GW of generation capacity, and hottest day peak demand estimated at 15-20 GW. This means 
that transmission line imports are critical to meet demand on the hottest days, as depending 
upon the ambient air temperature (i.e., 1-in-2, 1-in-10, or highest summertime temperature), 
LAC presently operates with a small positive, neutral, or negative local reserve margin (LRM) 
[61]. Moreover, present peak demand was estimated for residential and commercial sectors only 
as between 9.5 and 12.7 GWh. In terms of total peak demand in LAC, the values in Table 11 
should be considered low by 5 GWh or 50% as industrial and other sector processes are 
included. Considerations for future power generation are discussed in the adaptation section of 
this report including the context of vulnerabilities and risks in substations and transmission 
lines as well. 

4.2.2 Substations 
Substation vulnerabilities were first assessed in terms of derated capacity (kVA) of transformers 
due to rising air temperatures. Substation data were obtained from the US Department of 
Homeland Security (DHS) in [76], and included 410 geolocated substations total in LAC: 102  
were labeled as having maximum voltage ratings, as shown in Figure 20, 43 were labeled 66KV 
to 138kV, 59 labeled  230 & 500 kV, and 308 were labeled unknown and assumed to be ≤69 kV. 
Air temperatures were spatially assigned to substations as they intersected temperatures from 
the 2 km2 projections. As stated in IEEE Std C57.91™-2011 (Revision of IEEE Std C57.91-1995) 
Guide for Loading Mineral- Oil-Immersed Transformers and Step-Voltage Regulators [30], 
multiple types and ratings of transformers exist; however, the 65°C top oil temperature rise over 
40°C ambient design has been industry standard since 1977. A short table of conservative 
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capacity derating factors for self-cooled, water-cooled, and forced-air cooled transformers are 
provided and specifically recommended for quick approximations. Those factors were 
considered reasonable to use in this study, as this is a broad spatial assessment of hundreds of 
substations with unknown physical attributes. The derating factors were listed as 1.5% kVA for 
each 1°C of daily 24 hour average temperatures above 30°C for air temperature for self-cooled 
transformers and 25°C for water temperature, and 1% kVA per 1°C for forced-air, oil-, and 
water-cooled transformers. The standard states that the associated maximum temperatures 
should not be more than 10 °C above the average temperatures. Therefore, the derating factors 
were applied to daily maximum temperatures from the climate projections relative to 40°C as 
an approximation consistent with the approach used throughout this report. High voltage 
substations (≥230 kV) were assumed to have some form of forced cooling, therefore rates of 1% 
kVA per 1°C were applied. Lower voltage substations were assumed to be sensitive to air 
temperature at a rate of 1.5% kVA per 1°C.  

 

   
Figure 20. Substations and transmission lines.  

Note: not all components are visibly distinguishable due to close proximity. 
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Vulnerabilities were also assessed by estimating percentage increases in temperature-adjusted 
load at substations. New substation construction was not forecast, but rather considered in 
mitigation and adaptation options. Temperature-adjusted load was defined as the base or 
forecasted load, plus 1-1.5% per 1°C above 40°C per the derating factors previously stated. 
Composite images were used for future demand forecasts to estimate the highest stress at any 
substation. Maps relating demand in CBGs directly to substation service areas were not 
available for the project. Therefore, peak demand, estimated at CBG resolution, was allocated to 
substations using a multi-layered Voronoi Tessellation clustering approach. Two substation 
layers were created to approximate for series and parallel operations of the substations. High 
voltage, >=230kV, and low voltage, <230kV, substations were clustered with like types within 2 
km and 1 km respectively. Substation clusters were assigned to geographic areas such that 
boundaries were equidistant in between the center of the clusters. Details of how these 
procedures were performed are included in Appendix D. This estimation approach was 
considered a reasonable approximation for the purposes of this report as base period 
projections were validated within 15% of a sample of peak demand in SCE’s substations in [77], 
which were representative of 50-70% of LAC’s substations.  

Lastly, risk of component overloading was estimated at SCE's substations for current and future 
conditions. Only SCE substation overloading was estimated, as those were the only substations 
where both load and capacity data were available to estimate load factor or utilization. As 
explained in further detail in Appendix D, the base peak load factors on SCE substations were 
estimated using the SCE Distributed Energy Resource Interconnection Map (DERiM) data [77], 
assuming those values corresponded to 40 °C (104 °F). Derated load factors were then estimated 
for present day circumstances using the composite maximum temperature projection images for 
the recent historical period and derating substations by any amount above 40°C as previously 
described. Future scenario derated load factors were estimated by scaling the load at the 
substations by the corresponding amount relative to the base period in the Voronoi polygons. 
Weather-adjusted load factor ratings were classified as described in Table 13 for the reasons as 
listed.  

Automatic outages occur because the temperature of the oil or air pressure increases within the 
transformer, causing the relay mechanism to trip the transformer from the overloaded circuits. 
The standard calibration specifies that automatic outages occur at a load factor of two. Because 
load factors were estimated for the peak hour only, we were unable to conclude whether any 
conditions with load factors less than 2 would result in automatic outages, but the probability 
will certainly be higher that sub-hourly variability will result in automatic outages on 
substations with higher load factors than not. In the event that an automatic outage occurs, 
power flow is instantaneously redistributed to lines and substations operating in parallel, which 
could cause those components to trip resulting in cascading failures. 
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Table 13. Substation Derated Load Factor Risk Metrics. 
Load Factor Risk Level Reference Description 

n/a Unknown n/a 
Substation(s) exists in this space according to DHS 
database [76], but not SCE DERiM [77], so loading 
data were unavailable. 

0.01-0.5 Very Safe Assumption Negligible thermal wear, probably n-2 reliable if 
in parallel/redundant configuration. 

0.51-0.85 Safe 15% rule Very low thermal wear, probably only n-1 reliable 
if in parallel/redundant configuration. 

0.86-1.00 Caution 15% rule Non-negligible thermal wear, probably not n-1 
reliable. 

1.01-1.20 Warning [70], [8] 

Thermal wear, component overloaded, automatic 
switching may occur in 24 hours to 30 days if 
loading continues at this level, or sooner with sub-
hourly spike, depending upon switch gear 
settings. 

1.21-2.00 Emergency [70], [8] 

Significant thermal wear, component very 
overloaded, automatic switching will occur in 30 
min, or sooner with sub-hourly spike, depending 
upon switch gear settings. 

> 2 Outage [8] 
Extreme thermal wear, switchgear will 
automatically trip to prevent hardware damage 
and failure. 

 

4.2.3 Transmission Lines 
Transmission line vulnerabilities were assessed as potential decreases in loadability factor due 
to rising air temperatures in terms of percentage of ampacity. Geospatial line data were 
obtained from the US Department of Homeland Security [78], and included 192 line segments 
for LAC, with one rated 1,000 kV, 12 rated 500 kV, 119 rated 220-287 kV, 31 rated 100-161 kV, 22 
<100 kV, and 7 unknown. The 7 unknown line segments were removed from the data set; they 
were so short that they were not visible in the images produced in the results. Air temperatures 
were spatially assigned to lines by assigning the highest value of the intersecting temperatures 
from the 2 km2 projections. The steady state balance equations in the IEEE Standard for 
Calculating the Current-Temperature Relationship of Bare Overhead Conductors [32] were 
used to estimate changes in loadability factor. The effects of higher ambient air temperatures on 
underground systems were not considered specifically, but conductive heat transfer in common 
duct banks could result in line sag, instrumentation errors, harmonic distortions, other quality 
issues, and/or shock hazards to field workers. These effects should be further investigated.  

The IEEE standard provides generally accepted approaches for determining maximum 
allowable current on lines to prevent excessive sag or annealing that would occur if the lines 
were too hot. A line’s temperature is a function of its physical attributes, the weather conditions, 
and its electrical load. Per basic physics, the heat gain from electricity conductance and solar 
radiation must equal the heat loss due to convection and radiation. Thus, if the ambient air 
temperature rises, then less energy is dissipated via convective cooling (if all else is held 
constant), the line temperature increases, and therefore the maximum current that a line can 
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carry without exceeding its safe operating temperature decreases. All input and calculated 
parameters used are listed in Table 14, with values and units for the base case. The only 
modification from the approach in the standard was the addition of a conductor electrical 
resistance increase factor, R(%), as an intermediary step for the conductor electrical resistance at 
75°C, R(75°C), which was used for sensitivity analysis to create upper and lower ranges. The 
base case input values and ranges for conductor and weather parameters are summarized with 
explanations in Table 15.  

Table 14. Transmission Line Ampacity Estimation Values. 

Description Parameter Value Units 
Input parameters       
Climate       
Ambient Temp T_a 40 C 
Wind Speed V_w 0.301 m/s 
Angle between wind  1.571 radian 
CDR elevation above sea level H_e 300 m 
CDR latitude in degrees Lat 34 degrees 
Solar hour s_hr 16 # 
Day of year N 172 # 
Conductor       
Conductor surface temperature, maximum allowable T_s 100 C 
conductor diameter D_o 0.03 m 
Coefficient of emissivity ε 0.8 # 
Coefficient of solar absorptivity α 0.8 # 
Conductor electrical resistance at 25°C R(25°C) 0.00007 Ω/m 
Conductor electrical resistance increase factor R(%) 16 % 
Conductor electrical resistance at 75°C R(75°C) 0.0000812 Ω/m 
Calculated Parameters       
Air Properties       
Wind direction factor K_angle 1 # 
film air temperature T_film 70 °C 
Air Density p_f 0.993 kg/m^3 
Dynamic viscosity of air u_f 0.000020 kg/m-s 
Thermal conductivity of air at temperature T_film k_f 0.029 W/m-°C 
Reynolds number N_re 439 # 
Solar Properties       
Solar hour angle ω 60 degrees 
Solar declination δ 23.46 degrees 
Solar altitude H_c 37.08 degrees 
Solar heat flux Q_s 893 w/m^2 
Solar azimuth variable χ -10.800 # 
Solar azimuth constant C 360 degrees 
Solar azimuth angle Z_c 275 degrees 
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Effective angle of incidence θ 143 degrees 
Conductor Properties       
Conductor electrical resistance at T_s R(T_s) 0.000087 Ω/m 
Heat loss rate due to forced convection q_c1 58.10 W/m 
Heat loss rate due to natural convection q_cn 43.72 W/m 
Output Parameters       
Heat gain rate from sun q_s 13.01 W/m 
Heat loss rate due to convection q_c 58.10 W/m 
Heat loss rate due to radiation q_r 41.69 W/m 
Thermal Ampacity Rating I 1,000 A 

 

Table 15. Transmission Line Ampacity Parameter Ranges and Explanations. 

Parameter Low Base High Explanation 

T_a 20 40 60 Same base and range values used throughout this 
study, with base attributable to SCE in [70].  

V_w 0 0.301 0.4 

Per [32] section G.3 Ambient-adjusted ratings, the 
wind speed should be no more than 0.4 m/s for 
temperatures above 43°C. The base value was set 
such that the base line rating would equal 1,000 A 
given the other parameters (0.301 m/s). Note: the 
typical design parameter is also listed as 0.6 m/s. 

V_a 1.57 1.57 1.57 Constant. 

H_e 0 300 3,000 Range of habitable altitude in LAC, 300 is base 
assumption. 

Lat 33.6 34 34.8 Range of Latitude for LAC 

s_hr 12 16 19 
Noon to 7pm. 4pm is assumed current base-case 
peak demand period. 7pm is considered as potential 
future peak demand period. 

N 172 172 273 

Day 172 = June 21, was solved as the day with the 
highest solar radiative force in the model. Day 272 
represents the furthest day from that within the 
summer period of June, July, August, and 
September. 

T_s 85 100 200 

Represents range of standard to emergency 
conditions. Per SCE in [70], standard ratings for 
aluminum and copper conductors are 85 °C and 
emergency ratings of 130 °C. ACSR are 90 °C and 
130 °C. ACSS are 120°C and 200°C. Per IEEE [32], the 
highest value to be used in this approach is 200°C. 

D_o 0.01 0.03 0.045 

Range of values listed in [79] Appendix B Conductor 
Tables. Larger diameters include more conductor 
strands and are for higher kVA ratings. More 
conductor strands would have lower resistance in 
practice, although those parameters are independent 
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in this model. Base value assumed at approximately 
top quartile of strand count classes consistent with 
R(25°C) range: Mallard, Cardinal, Rail, and Condor. 

ε 0.2 0.8 0.9 

Range provided in IEEE [32] Sec 5.4 Conductor 
emissivity and absorptivity, where 0.8 is used by 
convention in the absence of field measurement. 
Value increases with age and pollution. 

α 0.2 0.8 0.9 

Range provided in IEEE [32] Sec 5.4 Conductor 
emissivity and absorptivity, where 0.8 is used by 
convention in the absence of field measurement. 
Value increases with age and pollution. 

R(25°C) 3E-05 7E-05 2E-03 

Range as listed in [80] Table “Electrical Data for 
ACSR Conductors”, Turkey to Bluebird. Base value 
assumed at approximately top quartile of strand 
count classes: Drake, Mallard, Tern, Condor, and 
Rail. 

R(%) 10 16 25 Estimated to be consistent with listed R(25°C) and 
R(75°C) values as listed in [80]. 

 

Changes in ampacities were estimated as a linear percent decrease per 1°C increase in ambient 
air temperature based on sensitivity analysis of the IEEE thermal balance model. Model 
sensitivity to the input parameters is shown in Figure 22, where the most significant factors 
were the conductor resistance at 25°C, maximum allowable temperature, and diameter, all of 
which are associated with higher kVA rated lines. Ambient air temperature was the fourth most 
significant factor, followed by emissivity, solar hour, wind speed, change in resistivity, 
absorptivity, and elevation above sea level with ~5% effect. Latitude was not significant. The 
sensitivity of conductor ampacity to air temperature is shown in Figure 22, where all 
parameters were simultaneously set to the lowest, base, and highest conditions resulting in 
ampacity ratings of 71, 1,000, and 2,757 Amps respectively. Linear approximations of the three 
lines yields slopes of -0.27%, -0.87%, and -2.1% Amps per 1°C respectively with R2>0.98. 
Therefore, all transmission lines above 200 kV were classified to decrease in ampacity at a rate 
of 0.6±0.3% per 1°C, and all transmission lines below 200 kV were classified to decrease in 
ampacity at a rate of 1.5±0.6% per 1°C.  
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Figure 21. Sensitivity of Transmission Line Ampacity Input Parameters. 

 
Figure 22. Sensitivity of Transmission Line Ampacity to Air Temperature. 

 

Transmission line vulnerabilities were also assessed, similar to substations, by estimating 
percentage increases in temperature-adjusted load on the individual lines. Temperature-
adjusted load was defined as the base or forecasted load, plus the derating factors previously 
stated for higher and lower voltage lines. Initial loadings on transmission lines were estimated 
based on the estimated values at high voltage substations. Load was allocated to lines under the 
assumption that the load on all of the lines was equal to the sum of the values at all of the high 
voltage substations. In other words, the assumption is that all of the load flow was collectively 
in one direction from the transmission lines, through the high voltage substations, and further 
into lower voltage delivery infrastructure. Specifically, load was allocated to lines from 
substations by dividing the MWh values in each substation cluster evenly amongst the 
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endpoints of the 185 lines as defined in the NHS database file. The endpoints at the border of 
the county were excluded such that those lines had only one allocation. All other lines had two 
endpoints. Factors such as differences in line impedance, or operator controls for routing, were 
not considered. Because absolute transmission line capacity (MVA) data were unavailable, the 
results of this analysis were only produced in terms of relative percentage changes in loading 
and did not estimate whether any lines would actually be loaded beyond their capacity. New 
line construction was not forecast, but rather considered in mitigation and adaptation options. 

4.3 Results 
4.3.1 Generation 
Of LAC’s 13.5 GW of local power generation, up to 240 MW (1.8%) is vulnerable to rises in air 
temperature. As shown in Figure 23, for worst-case 2060 temperature projections under RCP 
8.5, the majority of the vulnerable generation capacity is the 23 combined cycle and 15 
combustion natural gas plants located in the San Fernando Valley and on the outer basin areas 
away from the ocean. Please note that the figure is shown in units of MW, not percentages, so 
derating values are a function of both temperature change and size of the plant. Heat wave 
temperatures affecting natural gas plants ranged from 40-53 °C (104-127 °F) in that scenario, 
indicating that individual stations could experience 3-9% less capacity than their summertime 
ratings for 40°C (104 °F). Total combined weighted capacity of natural gas plants would be 69-
104 MW less than present ratings. The 90 solar PV generation plants are also vulnerable, most 
significantly in Antelope Valley. Maximum temperatures at solar PV plants ranged from 44-54 
°C (111-129 °F) in the model, and if such extreme temperatures were realized, individual solar 
PV output could be 1-8% lower than rated. The total spatially weighted capacity of solar PV on 
the realistically hottest day would be 8-45 MW less than present ratings. 

   
Figure 23. Map of worst-case losses in plant capacity for composite temperatures in 2060 RCP 8.5. 
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The expected capacity loss on a realistically hot day in the model for 2060 RCP 8.5 was 110 MW, 
or approximately half of the total vulnerable capacity when analyzed in terms of the composite 
thermal image. Total system capacity projections are listed in Table 16 for all generation in LAC 
for average temperature rise and hottest days temperatures in each time period and RCP. 
According to the range of temperatures already observed in the historical period, 75 MW of 
capacity is already vulnerable to temperatures in excess of 40°C given current heat waves. 
Average plant capacity losses are shown in Figure 24, overlaid to the average warming 
projection by 2060 under RCP 8.5, indicating total capacity would be 35 MW lower on average. 
Spatial differences for time periods and RCPs with less severe warming are fairly uniform and 
can be inferred specifically by considering temperature differences shown in Figure 9. 

 

 

 

Figure 24. Map of average loss of plant capacity for average warming by 2060 in RCP 8.5. 
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Table 16. Total Generation Vulnerabilities by time period and RCP for hottest day projections. 

Time 
Period RCP 

Average Tmax  
at all plants °C (°F) 

Average Tmax 
increase at all 
plants °C (°F) 

Total 
capacity 

(MW) 

Loss from 
>40°C 
(MW) 

1981-2000 - 44.3 (111.8) 0 (0)        13,428  75 
2021-2040 4.5 45.5 (113.9) 1.2 (2.1)        13,409  94 
2021-2040 8.5 45.6 (114.1) 1.3 (2.3)        13,407  96 
2041-2060 4.5 46.0 (114.8) 1.7 (3.0)        13,400  103 
2041-2060 8.5 46.4 (115.5) 2.1 (3.8)        13,393  110 

 

Los Angeles County’s current local reserve margin was estimated to be negative by 0.8-5.7 GW 
in the base period, inclusive of other sector peak demand as the lesser of 5 GW or 1/2 (R&C), 
and that shortage could increase up to 15 GW by 2060 without investments in local power 
resources. As listed in Table 17, the minimum increase in peak hour generation capacity needed 
to meet future demand is 3.9 GW by 2040 and 4.6 GWh by 2060 for the low growth, high 
efficiency scenarios under RCP 4.5. The details of the factor contributions are explained in the 
prior sections. While it is possible to invest in generation capacity outside of LAC and long-
distance transmission imports to meet future peak demand, doing so exclusively would result 
in substantially negative LRMs, such that less than half of the county’s power demands would 
be met locally if imports were unavailable for some reason. 

 

Table 17. Estimated Local Reserve Margins for time period, population, and demand scenarios.  

Time 
Period 

Local Reserve Margin GWh (%) 
Department of 
Finance - Low 

Department of 
Finance - High SCAG - Low SCAG - High 

Base -0.8 (-6%) -5.7 (-42%)  -     -    
2021-2040 -3.9 (-29%) -10 (-77%) -4.7 (-35%) -12 (-87%) 
2041-2060 -4.6 (-35%)  -12 (-93%)  -6.3 (-47%)  -15 (-115%)  

*Includes other sector peak demand as the lesser of 5 GW or 1/2 (R&C) 

 

4.3.2 Substations 
Of LAC’s 410 substations, 99% are vulnerable to air temperatures over 40 °C (104 °F), including 
reductions in loadability of up to 20% of their kVA ratings. As shown in Figure 25, for worst-
case temperature projections, 2060 RCP 8.5, 24 unknown substations (presumably low voltage 
convective air cooled) and one 138 kV substation, across Antelope Valley, San Fernando Valley, 
El Monte, and Pomona could experience temperatures up to 51-53 °C (123-127 °F) and be safely 
loadable at 16-20% less than their summertime 40°C kVA ratings. Substations within 5 km of 
the Santa Monica beach were projected to have capacity losses no more than 5% as 
temperatures were not projected to rise above 42 °C (108 °F). As shown in Figure 26, results at 
different time periods and RCPs were fairly uniform with a range of loadability reductions of 
up to 2% kVA. The majority of substations, 70%, were projected to experience average capacity 
losses of 1.5-3% kVA due to average warming, and 60% of substations, were projected to 
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experience capacity losses of 6-12% during heat waves due to temperatures in excess of 40°C 
(104 °F). 

 

  
Figure 25. Map of worst-case losses of substation capacity for composite temperatures in 2060 

RCP 8.5. 
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Figure 26. Empirical Probability Distribution Function of substation vulnerabilities by time period 
and RCP.  

Year 2000 average warming values are all equal to zero and may not be visible. 

Despite population growth, climate change, and warming, results indicate that substations in 
developed areas can still experience lower loads by 2060 if the high energy efficiency scenario is 
realized. As shown in Figure 27, the Voronoi Tessellation process resulted in 36 and 173 cluster 
areas for high- and low-voltage substations respectively, with base-period peak demand 
allocations as shown. The percent change differences in loading on substations are shown in 
Figure 28 and Figure 29. The low demand scenarios resulted in up to 21% reductions on 
substations in the in-basin region, with most increases occurring in the northern Palmdale, 
Lancaster, and San Fernando Valley Areas. The major difference between the Department of 
Finance and SCAG projections was all increases in loadings on substation clusters throughout 
CZ 9 from West Valley to Pomona, which are very clear visually in the low-demand scenarios. 
There were also a few clusters in the southern Torrance and Long Beach areas that had 
projected increases in the SCAG projections as well. Of course, without improvements in 
building and appliance energy efficiency, both population growth scenarios resulted in 
significant increases in loading on substations as shown in the high demand cases.  
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(a)    

  (b)   (c)   

 
Figure 27. Base period model peak demand for composite heat image in (a) CBGs, (b) high-voltage 

substation Voronoi areas, and (c) low-voltage substation Voronoi areas.  
Larger circles indicate higher quantity substations in the cluster. 
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Figure 28. Percent change in high voltage substation loading for 2060 scenarios. 
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Figure 29. Percent change in low voltage substation loading for 2060 scenarios. 

Over half of SCE's substations were identified as being at risk of overloading during the peak 
hour of the summer under current conditions, i.e., this summer 2018. As shown in Figure 30, the 
majority of substation areas throughout LAC, where data were available, were projected to 
have substations operating at a weather-derated load factor of 1 to 1.2 for the hottest historical 
heat wave temperatures. Components are technically overloaded at this point and automatic 
outage switching may occur within 24 hours to 30 days if loading continues at this level, 
depending upon switchgear settings. Due to high operating temperatures, substation mineral 
oil may experience accelerated thermal wear [81], and depending upon system redundancies, 
neighborhoods may not be n-1 reliable in this condition.  
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Figure 30. Map of today’s substation risks. Current substation load factors derated for composite 

historical heat waves. I.e., this is what the peak hour could look like this summer in any spot on the map. 

In all future scenarios, by 2040 and 2060, at least a few substations were projected to exceed 
tolerance for automatic outage trips with a derated load factor in excess of 2. As shown in 
Figure 31, with implementation of high efficiency measures, most substation clusters in the 
central basin area were projected to operate with load factors below one during the worst heat 
wave conditions. As shown in Figure 32, in all 2060 cases, the Santa Clarita and San Fernando 
Valley areas were projected to have several substations exceed automatic outage tolerances. 
Without energy efficiency improvements both population projections result in a majority of 
substations being heavily overloaded. With energy efficiency improvements, the Palmdale and 
Lancaster areas are vulnerable to automatic outages in the Department of Finance population 
projections by 2060, whereas the basin area is vulnerable to automatic outages in SCAG 
population projections. Both result in emergency (load factor >1.2) conditions during the peak 
hour of a heat wave in both locations. 
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Figure 31. Maps of substation risks in 2040. Future substation load factors derated for composite 
worst-case 2040 heat waves. I.e., this is what the peak hour could look like during a heat wave in 2040. 
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Figure 32. Maps of substation risks in 2060. Future substation load factors derated for composite 
worst-case 2060 heat waves. I.e., this is what the peak hour could look like during a heat wave in 2060. 

 

4.3.3 Transmission Lines 
Of LAC’s 185 transmission line segments and 3.5 million meters (2,200 miles) of conductor 
length, 99% of conductor length, and all segments, are vulnerable to air temperatures over 40 °C 
(104°F), including reductions in loadability of up to 20% of ampacity ratings. As shown in 
Figure 33, for worst-case temperature projections, 2060 RCP 8.5, high voltage transmission lines 
(>200 kV) across Antelope and San Fernando Valley could experience ambient air temperatures 
up to 47-54 °C (117-129 °F) and be safely loadable at 4-8%±50% or 2-13% less than their 
summertime 40°C ampacity ratings. The lower voltage transmission lines (< 200 kV) that are 
most vulnerable to heat waves are located around Central and West LA, with projected ambient 
air temperatures up to 47-50 °C (117-122 °F), and corresponding reductions in ampacity of 10-
15%±40% or 6-20%. As shown in the probability distribution function curves in Figure 34, 
results at different time periods and RCPs were fairly uniform with a range of loadability 
reductions of up to 2% of ampacity on any line. Approximately 67% of conductors by length 
were projected to experience average ampacity losses of 0.4-1.2% ±50% or 0.2% to 1.8% due to 
average warming, and 33% were projected to experience average ampacity losses of 1.5-3% 
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±50% or 0.8-4.5%. As much as 25% of conductor length could experience ampacity reductions of 
up to 15% due to some length of the segment experiencing temperatures above 47 °C (120 °F) 
during future heat waves.  

 

 
Figure 33. Map of worst-case losses of transmission line ampacity for composite temperatures in 
2060 RCP 8.5. Percent loss values shown are based on average derating factors. High voltage (≥230 kV) 
lines’ values should be considered ±50%, and low voltage (<230 kV) lines’ ±33%. I.e., 6% refers to 3-9% 

or 4-8% accordingly. Low voltage lines are shown in bold in this figure; see Figure 20 for map of more 
specific line voltage ratings. 
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Figure 34. PDF of transmission line vulnerabilities by time period and RCP. Low voltage (<230 kV) 

and high voltage (≥230 kV) lines are shown together in figure. Uncertainty of ±40% and ±50% are 
applicable respectively. Year 2000 average warming values are all equal to zero and may not be visible.  

Results for long-term forecasts for transmission line loading mirrored results closely as for 
substations. As shown in Figure 35, despite population growth, climate change, and warming, 
transmission lines in the basin can experience up to 21% lower weather-adjusted loads by 2060 
if the Department of Finance population growth projections are realized with high energy 
efficiency gains. In all scenarios, major population growth in the northern region of the county 
equated to increased loading on those lines up to a factor of two.3 

 

 

                                                      
3 Technical note: One line in Pomona had endpoints that were at the edge of the county boundary only, so 
the allocation method resulted in zero values. The lines values were manually updated to be equal to an 
adjacent line’s, as it was the research team’s opinion that that result was due to error in the GIS data. 
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Figure 35. Percent change in transmission line temperature-adjusted loading for 2060 scenarios. 

4.4 Conclusions 
The overall vulnerability of Los Angeles’s electricity infrastructure to rising air temperatures is 
2-20% of rated capacity. The low range 2% vulnerability value is attributable to the reduction in 
local generation resources. Natural gas plants could lose up to 6% of their rated generation 
capacities, or approximately 2% of LRMs. The high range vulnerability value of 20% is 
attributable to reduced safe operating loads on substations and transmission lines. As shown in 
Figure 36, substation cluster areas around El Monte and in the northern half of the county could 
experience the highest temperatures during heat waves, up to 53 °C (127 °F). Based on the 
assessment of SCE’s present substation loadings in Appendix D, there are 6 substations that are 
already operating with load factors over 100% in those areas at immediate risk of a heat wave. 
Dozens more substations are operating at or near capacity throughout the county with the 
potential for 10-15% loadability loss due to high ambient air temperatures in the event of a 
record-breaking heat wave. The only infrastructure in the region that is not at risk of heat waves 
are the components within a few miles of the western-facing coast of Santa Monica Bay.  
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Figure 36. Map of worst-case percent derating in lines and substations from historical heat waves 
overlaid with present substation load factors.  

Long-term loading on infrastructure components is more susceptible to population growth and 
changes in technology that affects peak demands than it is to rising air temperatures. As shown 
in Figure 37, if the Department of Finance's population projections are realized, and significant 
efficiency measures are implemented, then lines and substations throughout the basin could be 
relieved from approximately 4 GWh peak hour demand in the base period to 3.33 GWh by 2060, 
or by as much as 32% in certain clusters, including future temperature rise. Net peak demand in 
the in-basin area remained approximately the same in the SCAG projections. The northern 
regions of Lancaster, Palmdale, and Santa Clarita were projected for 300-900 MWh increase in 
peak hour load (50%-150%), as well as 110 MWh (50%) increase in the far west. The central CZ 9 
region from West Valley to Pomona's peak demand was projected to decrease from 7.5 GWh in 
the base period to 7.2 GWh in the Department of Finance population projection, and increase to 
9 GWh in the SCAG projections. 
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Figure 37. Maps of percent change in substation and transmission line temperature-adjusted 
loading for 2060, overlaid with present substation load factors. 
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5: Conclusions – Mitigation and Adaptation 
Climate change mitigation is defined by the IPCC as activities to reduce greenhouse gas 
emissions or enhance sinks, and adaptation as either making system adjustments in response 
that moderates harm or exploits beneficial opportunities [46]. Mitigation of greenhouse gasses 
in the electric power sector are primarily being achieved through displacement of fossil fuel-
burning as a means of electricity production with renewables or cleaner fossil fuel burning 
systems relative to coal plants such as natural gas plants, or by reducing demand such as by 
increasing energy efficiency in buildings and appliances. Adaptation may occur through 
increased usage and deployment of AC, and thus increase peak demand [39]. Moreover, the 
following may be arguably mitigation or adaptation: improved equipment cooling systems, 
implementation of distributed energy resources to supplement generation for increased peak 
demand, additional building shading, and higher building shell thermal efficiency standards 
[39]. All of these mitigation and adaptation activities further complicate long-term 
infrastructure planning. 
 
There are many ways to maintain reserve margins in Los Angeles County, safe operating loads 
on the components, and reliable electric power services in general. Electricity is necessary to do 
work to run devices. If more work is demanded, then either more electricity must be produced, 
or the ability to do the work with less electricity (energy efficiency) must be improved. Several 
options in both categories, are listed categorically in Figure 38, both relative to electrical systems 
and urban form. The impacts between each of these options on reliability and other factors 
based on [61] are also included. The discussion in this section follows that framing of effects and 
trade-offs, and while several recommendations are provided for LAC specifically based on the 
preceding analyses, this list is not intended to be exhaustive nor advocate any particular option 
as a one-size fits all solution for regions that may have different constraints unique to their 
geographies. The aim of this discussion is to serve LAC, and California in general, to address 
their specific climate change-oriented policy goals and potential future challenges related to 
extreme heat. 
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Electrical systems
Distributed - solar PV without VAR control or storage ↓ ↓ ↓ ↓  - - - -
Distributed - solar PV with smart-inverter & storage ↓ ↓ ↓ ↓ ↑ - - - -
Central - CCNG, nuclear, or other - - -  ↑ -   
Imports, long distance transmission - - -  ↑ - - - 
Appliances: higher energy efficiency ↓ ↓ ↓ ↓ - ↓ - ↓ -
ACs: peak performance metric - ↓ ↓ ↓ - - - - -
ACs: dual-systems with ice thermal storage - ↓ ↓ ↓ - -  - -
ACs: water-based evaporative systems - ↓ ↓ ↓ ↑ ↓  ↓ -

Urban systems
Growth on fringe (single-family or multi-family)     -   - 
Growth in-basin (densification with multi-family units)     -   - -
Improved building albedo and shading ↓ ↓ ↓ ↓ - ↓ - ↓ -
Improved building thermal insulation ↓ ↓ ↓ ↓ - ↓ - ↓ -
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Figure 38. Climate change risk mitigation options and effects. Arrows indicate an increase or 
decrease in the factor. Solid green indicates higher efficiencies and or conservation of limited natural 

resources. Hollow red indicates the opposite. 
 

5.1 Electrical Systems – Resources 

An additional 0.2-6.5 GWh of peak hour demand was projected by 2060, dependent upon 
growth and efficiency factors. If new generation is to meet this demand, the major tradeoffs 
between generation technologies –  distributed solar PV (with storage and quality controls) and 
centralized systems – in meeting demand are: land space requirements, delivery congestion 
relief, water usage, air emissions, and marginal capital costs. Solar PV can be installed on 
building roofs, whereas central systems require their own dedicated land space. When 
implemented at the distribution level, solar PV can power load directly without going through 
delivery components that are necessary for central systems. The net effect is a relative decrease 
in load from the perspective of the grid relative to demand, which will be important to monitor 
for reliability purposes going forward. Currently, the most prominent fast-ramping central 
generation technology is combined cycle natural gas plants, which consume water and emit 
various gasses into the atmosphere. Combustion-only natural gas plants could be implemented, 
which would not use water, but would be more sensitive to rising air temperatures, as well as 
less fuel-efficient and therefore cost more and produce more emissions per kWh. While 
levelized costs of solar PV are now at or below parity with bulk generation plants on a per kWh 
basis, the combined costs of solar PV with storage to provide 24/7 dispatchable energy and 
regulation services are still higher than traditional central generation plants [44]. However, in 
the future it is certainly possible that PV with storage becomes more competitive if EV 
penetration grows and as roof-top solar is deployed.  

Expanding DER in existing buildings can probably be done in a more cost-effective manner in 
already well-developed and constrained areas. Most substations in LAC examined as part of 
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this study were identified as currently operating at or near capacity, and results indicated that 
many will have dangerously high load factors if significant population growth and/or rise in 
AC penetration occurs. While this study was unable to produce specific line load factors, if most 
lines were not constructed with significantly higher capacities than the substations operating in 
series with them, then the capacity expansion requirements of each are close to the other. While 
some substations may be able to be adapted with improved heat sinks, forced air, or water 
cooling systems, overhead power lines will still be vulnerable to overloading and outages.  

If additional centralized generation is needed to meet additional peak demand in LAC in 2060, 
the cost of increasing delivery infrastructure capacity necessary to support more central 
generation, or long-distance imported power into the CZ9 area, could be quite significant at an 
estimated $10-130 million USD per substation and $1-3 million USD per mile of line length 
leading all the way out of the urban center [82], [83]. If SCE's DERiM load factors are correct, if 
the relative projected demand increases were reasonably modeled, and if increasing substation 
and line capacities are not readily feasible in the projected high-risk areas, then implementing 
DER in those areas could meet a broad range of energy policy objectives at the lowest total cost 
to the ratepayers. 

Based on the results of this study, it appears reasonable to implement 0.9-1.1 GW of DER in 
LAC depending upon population growth by 2060 to supplement generation and delivery 
infrastructure capacity. Net peak demand in the in-basin area remained approximately the same 
in the SCAG projections. The northern regions of Lancaster, Palmdale, and Santa Clarita were 
projected to have a 300-900 MWh increase in peak hour load (50%-150%), as well as 110 MWh 
(50%) increase in the far west. The central CZ 9 region from West Valley to Pomona's peak 
demand was projected to decrease from 7.5 GWh in the base period to 7.2 GWh in the 
Department of Finance population projection and increase to 9 GWh in the SCAG projections. 
Implementation of the following DER would allow temperature-derivated load factors on SCE 
substations to be at or below one on the hottest days: 200-900 MW in Santa Clarita, up to 200 
MW between Lancaster and Palmdale, and up to 700 MW in the SCE portion of CZ 9 from West 
Valley to Pomona, and 60 MW between Calabasas and Malibu.  

Identification of specific site locations, total Watt-hours of necessary storage capacity to 
complement solar PV capacity, and considerations for network aggregation in supplying 
ancillary services should be the subject of follow-up implementation studies to ensure reliable 
service during near-peak hours. Circuits with a higher portion of commercial and industrial 
loads may be preferable for installation of DERs, as their load profiles may more closely match 
the PV generation profile (higher mid-day) allowing for more efficiency. Effective 
implementation of energy storage would reduce load variance by charging during off-peak 
hours and discharging during peak hours, resulting in a more consistent load, which is more 
readily manageable by system operators, and therefore has lower operation and maintenance 
costs [84]. This could occur through some kind of automated and networked market incentives 
that are now available for wholesale markets as of February 2018 [85]. 

Landscape-level analysis should continue to be used as part of the process to carefully consider 
environmental concerns, including climate change, as part of consideration of potential large-
scale power plants. The most appropriate mix of centralized and DER resources may change by 
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2060, as new residential construction will be required to include rooftop solar by 2020 and 
California has a goal to require new commercial construction to include rooftop solar by 2030.  

5.2 Electrical Systems – Loads 

More energy efficient appliances reduce use-phase load, load variance, and are therefore 
generally beneficial for reliability. To mitigate risks from heat waves however, focus should be 
directed to improve air conditioner units. While differences in lighting and other appliance 
efficiencies are significant for total annual energy consumption, they accounted for less than a 
2% difference in peak demand in the models. By contrast, AC units generally accounted for 60—
70% of summertime peak demand within residential buildings, and higher air temperatures 
resulted in a 3—7% increase in demand per 1°C (1.8 °F). This is because LAC currently has only 
45% AC penetration in its residential buildings, meaning that peak demand in just over half of 
the current building stock does not increase with air temperature. By 2060, almost all buildings 
in LAC could have AC.  

Policies that would guide new or replacement ACs based on either different performance 
constraints or different technologies would aid in reducing the risk of excessive peak demand 
during extreme heat events. It is possible to design AC units that are more efficient under the 
hottest conditions or that utilize thermal storage to achieve 'flat' efficiency curves that do not 
degrade at the hottest temperatures [86],[87]. Developing a new 'peak performance rating' for 
ACs at 50 °C (122°F) could be useful to mitigate peak load during extreme heat waves. Doing so 
could provide incentive for ACs to be optimally engineered for more efficient performance at or 
near such extreme temperatures. Current standards, SEER and EER [63], are primarily for 
temperatures at or below 35 °C (95 °F). The current SEER standard, SEER 13, is already 
optimized to the point that improvements in SEER ratings in the model up to SEER 21 only 
affected peak demand by a few percent and were slightly counter-effective in some instances 
where temperatures exceeded 45 °C (113 °F) due to tradeoffs in engineering design 
optimization. Water-based evaporative cooling systems are another option that uses much less 
electric power, but requires water to operate, and are often not accepted by users as the sole-
source of air conditioning due to insufficient comfort levels when the weather is both hot and 
humid [88], [89]. Further study may be useful to identify the practicality of hybrid designs. 

5.3 Urban Systems 
Population growth may not necessarily increase peak demand, as energy efficiency 
improvements have the potential to reduce peak demand per capita by up to 50% and the 
number of persons per household could theoretically increase as well. We modeled growth 
based on the assumption that household density will stay the same at 3 persons per household, 
and therefore necessitate an increase in the total number of buildings. If household density 
increased however, then that would mitigate the need for the construction of additional 
residential buildings, and residential sector peak demand would scale proportionately, i.e. 3.3 
persons per household would result in 10% fewer residential buildings than 3 persons per 
household, and so residential sector peak demand would be approximately 10% less, minus 
minor variations for indoor body heat effects on the thermostat and other appliance usage. How 
much population growth occurs, and where, may reflect the management and land markets of 
urban systems.  
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From the 2010 base period, population was projected to increase by 1.2-3.1 million people (12-
32%) by 2060, which is expected to drive construction of new commercial and residential 
buildings. Further research is necessary for significant insights into commercial buildings. 
Commercial buildings were one of the most significant sources of uncertainty in this study, 
including the classification of those building types in the LAC assessor database and the output 
of the nationally standardized commercial building energy models used. Residential building 
data and building energy models were much more precise, and while the original models were 
originally calibrated to annual energy consumption, reasonable adjustments were made in this 
study to calibrate building's peak demand to historical peak demand. Further research would 
be beneficial to specifically develop residential building energy models calibrated for all hours 
of the day as electrification of natural gas appliances, widespread adoption of electric vehicles, 
and rooftop solar PV will have significant effects on residential loads. Nevertheless, if growth 
occurs primarily on undeveloped land in the northern Santa Clarita and Lancaster areas, as the 
California Department of Finance forecasted, then housing demand can be met through either 
single family or multi-family dwelling units. Whereas, if growth occurs as SCAG forecasted, 
more so in the basin, then most of that housing demand must be met through new multi-family 
dwelling units. In either case, population density and total demand increase on a 
neighborhood-level scale, but the benefits of building new multi-family unit residential housing 
can result in as much as a 50% lower peak demand per capita than single-family detached units. 
Those benefits are due to reduced volume and shared walls, which significantly reduce 
exposure to extreme heat.  
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APPENDIX A: Energy Simulation Weather Files 
Two sets of weather file data were created to conduct the building peak electricity demand 
assessment: 

1. Spatial images of Tmax for LAC. These images were of daily maximum air temperatures 
throughout LAC at 2x2 km resolution as described in Chapter 2: Climate Modeling for 
Heat Events. These images were transformed into CBG resolution for data processing 
with minor difference (up to 1°C effect on summary statistics) as shown in Figure A1.  

2. Weather profiles used in building energy simulation software. These weather profiles 
represent the hourly weather conditions at any building throughout a daily, and were 
developed specifically for individual building energy simulation purposes with 
considerations for limitations in software as follows.  

 

(a)  (b)   

Figure A1. Sample image processing from (a) grid cell to (b) CBG resolution  
for base period hottest day. 

Building energy simulations were conducted using EIA’s Energy Plus and BEOpt software, 
which both require “EPW” weather files. These files require 8,760 inputs, one set of 12 
parameters for each hour of the year. EIA sample historical weather data from Los Angeles was 
modified to simulate a range of hourly dry bulb temperatures such that daily Tmax ranged from 
20°C to 60°C in order to characterize building peak electricity consumption respectively. EPW 
input variables are listed in Table A1, and hourly parameter values used are list in Table A2. 
The dry bulb temperature was increased by 1°C for each hour each day up to Tmax = 60°C, then 
decreased back to Tmax = 20°C, and so on as shown in Figure A2 for a sample of 82 days. The 
dew point was recalculated for the same relative humidity and atmospheric pressure as listed in 
the sample. This artificial raising and lowering of the input weather data was repeated four 
times throughout the 8,760 EPW file such that multiple simulations output data were created 
for each Tmax, and error due to day of week or holiday usage patterns coded into the building 
models would be minimized.  
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Table A1. Energy Plus Weather (EWP) file input parameters.  

ID Description Units Function in this study 

N1-
N5 

Year, month, day, hour, minute - Used as index for Tmax 

A1 Uncertainty Flags - N/A 

N6 Dry bulb temperature °C Control variable for 
Tmax 

N7 Dew point temperature °C Constant 

N8 Relative humidity % Constant 

N9 Atmospheric pressure Pa Constant 

N10 Extraterrestrial horizontal radiation Wh/m2 N/A 

N11 Extraterrestrial direct normal 
radiation 

Wh/m2 N/A 

N12 Horizontal infrared radiation from 
sky 

Wh/m2 Constant 

N13 Global horizontal radiation Wh/m2 N/A 

N14 Direct normal radiation Wh/m2 Constant 

N15 Diffuse horizontal radiation Wh/m2 Constant 

N16 Global horizontal illuminance lux N/A 

N17 Direct normal illuminance lux N/A 

N18 Diffuse horizontal illuminance lux N/A 

N19 Zenith luminance Cd/m2 N/A 

N20 Wind direction Degrees Constant 

N21 Wind speed m/s Constant 

N22 Total sky cover Tenths of 
sky 

N/A 

N23 Opaque sky cover Tenths of 
sky 

N/A 

N24 Visibility km Constant 

N25 Ceiling height - N/A 

N26 Present weather observation - Constant 
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N27 Present weather codes - N/A 

N28 Precipitable water mm N/A 

N29 Aerosol optical depth 1/1000 N/A 

N30 Snow depth cm N/A 

N31 Days since last snowfall days N/A 

N32 Albedo % N/A 

N33 Liquid Precipitation Depth m N/A 

N34 Liquid Precipitation Quantity - N/A 

 

Table A2. EPW weather file data for one 24-hour period @Tmax = 20°C.  
The column N4 represents hour of the day. 

N4 N6 N7 N8 N9 N12 N14 N15 N20 N21 N24 N26 

1 10.4 -6.4 16 96900 406 0 0 320 4.1 56.3 9 

2 9.3 -7.5 16 97000 400 0 0 280 3.6 56.3 9 

3 8.8 -8 16 97000 396 0 0 250 4.1 56.3 9 

4 7.1 -8.9 20 97000 390 0 0 100 2.1 56.3 9 

5 6.6 -9 22 97100 389 0 0 80 2.6 80.5 9 

6 6 -9 25 97100 387 49 5 120 3.1 80.5 9 

7 6 -9.2 24 97200 386 439 41 100 2.6 80.5 9 

8 8.8 -6.8 22 97200 402 678 63 0 0 112.7 9 

9 11.6 -5.2 16 97300 414 778 87 10 1 112.7 9 

10 12.7 -4.7 13 97200 426 825 120 290 2.1 112.7 9 

11 14.9 -2.9 11 97200 437 862 148 210 3.1 112.7 9 

12 16.6 -1.4 10 97200 445 895 159 230 3.1 112.7 9 

13 18.2 0.2 10 97100 462 897 180 290 6.7 96.6 9 

14 19.3 1.3 10 97000 470 886 175 280 6.7 96.6 9 

15 20 1.8 9 96900 478 868 168 270 5.7 96.6 9 

16 20 1.8 9 96900 472 838 146 270 5.7 80.5 9 

17 20 2 10 96800 479 769 108 260 6.7 80.5 9 
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18 20 1.8 9 96800 486 508 167 260 6.2 80.5 9 

19 19.3 1.3 10 96800 479 144 114 240 5.7 80.5 9 

20 17.1 -0.7 11 96900 467 10 13 250 4.1 56.3 9 

21 15.4 -2 13 96900 457 0 0 280 2.6 56.3 9 

22 14.3 -2.9 14 97000 455 0 0 270 3.6 56.3 9 

23 14.3 -2.9 14 97000 444 0 0 290 3.6 56.3 9 

24 13.2 -3.4 17 97000 444 0 0 250 1.5 56.3 9 
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Figure A2. Sample BEOpt hourly simulation output for 82 days. 
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APPENDIX B: Building Energy Modeling 
Building peak electricity performance was characterized for commercial and residential 
buildings using the US DOE’s EnergyPlus and BEOpt simulation software. A total of 45 
commercial building models (EnergyPlus files), and 153 residential building models (BEOpt 
files) were used. Peak hour electricity consumption (kWh) was estimated for all building 
models using the weather profile EPW files created. Building peak demand performances were 
characterized over a range of daily Tmax, from 20°C to 60°C, as the average of the noon-6pm 
hourly profiles observed in the simulation results for the respective Tmax.  

B.1 Residential buildings 
Previous work conducted by Reyna and Chester in [2] developed 1,071 residential building 
models (using BEOpt and Energy Plus) calibrated specifically for LAC to estimate change in 
electricity use for various climate and urban infrastructure future scenarios. Those models were 
developed categorically for 4 types of building dwellings: single family detached (SFDD), single 
family attached (SFAD), small multifamily (MFSD), and large multifamily (MFLD); 5 CEC 
climate zones (6, 8, 9, 14, 16); 7 construction time-periods based on the county assessor’s 
database; and 21 appliance configurations for heating, cooling, and lighting efficiency. The 
consolidated 51 “archetypes” of different building shell properties are listed in Table B1. All 
appliance usage patterns were kept at the default settings, including thermostat set point equal 
to 25°C (77°F). The 21 appliance configurations were defined as closely as possible with the 
options available in the software to fit the California Residential Appliance Saturation Survey 
(RASS), and were allocated by climate zone, building type and vintage  [90]. The 51 archetypes 
were then calibrated for LAC specifically by adjusting building shell parameters such that when 
the total 51 x 21 = 1,071 models were run, simulation results were within 10% of total annual 
electricity sales for several recent years – aggregated by building count and or square footage 
for the LADWP service territory.  
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Table B1. Residential Simulation Archetype Divisions and Names. Note: CZ = climate zone. 

Multifamily Small (MFS), apartment or condo (2-4 units)  Multifamily Large (MFL), apartment or condo (5+units) 

 CZ 6  CZ 8  CZ 9  CZ 14  CZ 16  CZ 6  CZ 8  CZ 9  CZ 14  CZ 16 

<1940 6MFSD-5 8MFSD-4 9MFSD-5 14MFSD-5 16MFSD-4  6MFLD-5 8MFLD-5 9MFLD-5 14MFLD-5 16MFLD-4 

1940-1949 6MFSD-5 8MFSD-5 9MFSD-5 14MFSD-5 16MFSD-4  6MFLD-5 8MFLD-5 9MFLD-5 14MFLD-5 16MFLD-4 

1950-1959 6MFSD-5 8MFSD-5 9MFSD-5 14MFSD-5 16MFSD-4  6MFLD-5 8MFLD-5 9MFLD-6 14MFLD-5 16MFLD-4 

1960-1969 6MFSD-5 8MFSD-5 9MFSD-6 14MFSD-5 16MFSD-4  6MFLD-6 8MFLD-6 9MFLD-6 14MFLD-5 16MFLD-4 

1970-1982 6MFSD-6 8MFSD-6 9MFSD-6 14MFSD-5 16MFSD-6  6MFLD-6 8MFLD-6 9MFLD-6 14MFLD-5 16MFLD-4 

1983-1997 6MFSD-6 8MFSD-6 9MFSD-6 14MFSD-5 16MFSD-6  6MFLD-6 8MFLD-6 9MFLD-6 14MFLD-6 16MFLD-4 

1998-2008 6MFSD-6 8MFSD-6 9MFSD-6 14MFSD-5 16MFSD-6  6MFLD-7 8MFLD-6 9MFLD-7 14MFLD-6 16MFLD-4 

Single family detached (SFD)  Single family attached (SFA), townhouse, duplex, etc. 

 CZ 6  CZ 8  CZ 9  CZ 14  CZ 16  CZ 6  CZ 8  CZ 9  CZ 14  CZ 16 

<1940 6SFDD-5C 8SFDD-5C 9SFDD-5C 14SFDD-5C 16SFDD-7  6SFAD-6C 8SFAD-6C 9SFAD-6C 14SFAD-6M 16SFAD-7 

1940-1949 6SFDD-5C 8SFDD-6C 9SFDD-6C 14SFDD-5C 16SFDD-7  6SFAD-6C 8SFAD-6C 9SFAD-6C 14SFAD-6M 16SFAD-7 

1950-1959 6SFDD-5M 8SFDD-6M 9SFDD-6M 14SFDD-5C 16SFDD-7  6SFAD-6C 8SFAD-8M 9SFAD-7M 14SFAD-6M 16SFAD-7 

1960-1969 6SFDD-7M 8SFDD-7M 9SFDD-7M 14SFDD-7M 16SFDD-7  6SFAD-6C 8SFAD-8M 9SFAD-7M 14SFAD-6M 16SFAD-7 

1970-1982 6SFDD-7M 8SFDD-7M 9SFDD-7M 14SFDD-7M 16SFDD-7  6SFAD-7M 8SFAD-7M+ 9SFAD-7M 14SFAD-6M 16SFAD-7 

1983-1997 6SFDD-8M+ 8SFDD-7M+ 9SFDD-7M 14SFDD-7M 16SFDD-7  6SFAD-6M+ 8SFAD-7M+ 9SFAD-7M 14SFAD-6M 16SFAD-7 

1998-2008 6SFDD-8M+ 8SFDD-7M+ 9SFDD-8M+ 14SFDD-8M+ 16SFDD-8  6SFAD-6M+ 8SFAD-7M+ 9SFAD-8M+ 14SFAD-6M 16SFAD-7 
 

This study used the 51 core building archetypes (in BEOpt) with four AC configurations, to 
characterize peak demand. This consolidation was done for both technical reasons to reduce 
computational time, and for practical purposes to define urban infrastructure scenarios. The 
original 21 appliance configurations included 20 different AC types, and no AC. AC unit 
efficiency effects on peak demand were characterized for AC types as shown in Figure B1. The 
AC technology comparison showed approximately 2x energy efficiency gains from SEER 8 to 
SEER 16, and diminishing returns at higher SEER ratings with the most efficient being the 
central AC (CAC) SEER 21. Minor efficiency trade-offs were inconsistent between 2-stage & 
variable-speed motors, as well as CAC to air source heat pump (ASHP). Peak demand from 
room air conditioners (RACs) saturated between Tmax = 30 and 35 °C. AC technologies were 
accordingly labeled as low-, medium-, and high-efficiency (SEER 8, 16, 21) in the residential 
building models for each archetype for a total of 51x3= 153 simulation models. Peak demand for 
the 51 archetypes with no AC was calculated post simulation, with the same peak demand 
value for all Tmax. The AC technology categorization is summarized in Table B2 with high-level 
statistics of the base case allocation for LAC at large.  

Relative differences in AC performance were consistent when tested in other residential 
building types as well, as shown in Figure B2. Note: MFLD buildings include 12 DUs, and 
MFSD and SFAD buildings include 4 DUs. Spikes at low Tmax are due to indoor heating. All 
models assumed 34% CFLs and 66% incandescent lighting, and a thermostat set point of 25°C 
(77°F) in the software. This assumption is maintained as the difference is not significant to peak 
demand. Relative to 34% CFL, BEOpt lists 100% CFL using ~1/3rd less power, and 100% LEDs 
as using another ~1/7th less power. Dwelling units with the base 34% CFL penetration were 
listed at ~1,000 kWh/unit/year, Therefore, ~3kWh/day over ~10 hours, makes for ~0.3kWh 
contribution to peak load, or ~0.1kWh difference in lighting efficiency. For peak demand of 
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approximately 6 to 25kWh per residential dwelling unit, this is ~1% effect on peak demand. 
Therefore, a reduction of 1% for peak demand can be included post processing as a source of 
uncertainty for potential improvements in lighting efficiency. 

    
Figure B1. Comparison of AC technologies on building peak demand performance for 6SFDD-

8M+. Abbreviations: ASHP – air source heat pump, CAC – central air conditioner, RAC – room air 
conditioner. 

 

 
Figure B2. Comparison of AC technology on residential cooling and total peak demand for 4 major 

building types.  
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Table B2. AC technology categorization. 

AC type Definition Clustering of (Reyna & Chester) Base case 
allocation 

No AC No AC No AC 44% 

Low efficiency SEER 8 All SEER 10 or less + ½ of all 
RACs 26% 

Medium efficiency SEER 16 All SEER >10 + ½ of all RACs 30% 

High efficiency SEER 21 n/a 0% 

 

Technical Procedures 

Input files 

1. Building prototypes (x3 for SEER 8, SEER 16, SEER 21) 
a. MFL.BEOpt 
b. MFS.BEOpt 
c. SFA.BEOpt 
d. SFD.BEOpt 

2. Weather files 
a. 2_ResidentialartificialWeatherDiurnal20to60degC.EPW 

Output Files 

1. Results - Residential Building Energy Simulations.xls 
2. Post processed 

a. Residential AC comparison.xlsx 
b. Results Figures - Residential Building Energy Simulations.xls 
c. Results Figures - Residential AC comparison.xls 
d. PeakDemand_Residential.xls 
e. PeakDemand_Residential2.xls 

General procedures 

1. Open a “.BEOpt” file, e.g. SEER 16 SFD.BEOpt 
a. Note: Residential building energy simulations were performed in BEOpt, based 

on four “.BEOpt” files from [2] MFL.BEOpt, MFS.BEOpt, SFA.BEOpt, and 
SFD.BEOpt. These 4 files contain the 51 building shell designs. The building 
attributes (located in the “options screen”) were adjusted in the BEOpt software 
for 3 air conditioner efficiency cases: SEER 8, SEER 16, and SEER 21, and 3 sets of 
BEOpt files exist in corresponding named folders in the same location. 

2. Click on a tab for a building type, e.g. 6SFDD-5C 
3. Load weather file on the “Site Screen” tab under “Building”, “EPW Location.”  

a. Note: Weather data were created as described in the Appendix A. 
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4. Click “Run” 
5. On the Output tab, click “Generate Hourly Output” 
6. Select boxes on right for desired features to display, e.g. Total (kWh), Cooling (kWh), 

Living Space Indoor Temperature (F), Outdoor Drybulb (F) 
7. Right click on graph area, and select copy data to clipboard 
3. Paste data in Excel file, e.g. “Results - Residential Building Energy Simulations.xls” 

a. Note: data will be large (446,760 rows), so one tab for each AC type 
recommended 

b. Note: create additional columns for coding building types and formatting 
8. Repeat 1-8 for all files and building types 

AC comparison 

9. Repeat general procedures, modifying the “Space Conditioning” options on the 
“Options Screen” tab as desired. E.g. None, SEER 8, SEER 14, SEER 16, SEER 21, etc. 

Post Process Summary Tables 

10. Select data from “Results Figures - Residential Building Energy Simulations.xls” and 
create a pivot table to obtain minimum peak demand (kWh) for all building types by 
daily Tmax. 

a. Note: the average of the 6 hourly electricity consumptions from the noon-6 pm 
peak period was used.  

11. Paste pivot tables’ data into a new single tab workbook “PeakDemand_Residential.xls” 
a. Note: follow column header formatting 

12. Copy-paste data from “PeakDemand_Residential.xls” into 
“PeakDemand_Residential2.xls”  

a. Note: numerical column/row header formatting for Matlab 

 

Characterization Results 

In most cases, the building energy simulation results show the newest vintage building 
consumes the most energy for each building type within each CAZ. This is primarily due to the 
increase in square footage of buildings over time, i.e. more efficient per square foot, but more 
square feet, as listed in Table B3.  

 

Table B3. Residential building prototypes square footage. 

Code ft2 Beds Units New 
Single Family Detached       
6SDFDD-5C 1200 3 1 0 
6SFDD-5M 1360 3 1 0 
6SFDD-7M 2065 3 1 0 
6SFDD-8M+ 1940 3 1 1 
8SFDD-5C 1260 2 1 0 
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8SFDD-6C 1300 3 1 0 
8SFDD-6M 1402 3 1 0 
8SFDD-7M 1775 3 1 0 
8SFDD-7M+ 1820 3 1 1 
9SFDD-5C 1694 3 1 0 
9SFDD-6C 1411 3 1 0 
9SFDD-6M 1505 3 1 0 
9SFDD-7M 2135 3 1 0 
9SFDD-8M+ 3010 4 1 1 
14SFDD-5C 1175 3 1 0 
14SFDD-7M 1720 3 1 0 
14SFDD-8M+ 2600 4 1 1 
MtnSFDD-7C 1930 3 1 0 
MtnSFDD-8 3615 4 1 1 
Single Family Attached       
6SFAD-6C 840 2 4 0 
6SFAD-7M 1228 2 4 0 
6SFAD-6M+ 1196 3 4 1 
8SFAD-6C 924 2 4 0 
8SFAD-8M 1200 2 4 0 
8SFAD-7M+ 1200 2 4 1 
9SFAD-6C 1040 3 4 0 
9SFAD-7M 1250 2 4 0 
9SFAD-8M+ 1496 3 4 1 
14FAD-6M 1196 3 4 1 
MtnSFAD-7 1092 4 4 1 
Multi-family small       
6MFSD-5 870 2 4 0 
6MFSD-6 910 2 4 1 
8MFSD-4 840 1 4 0 
8MFSD-5 800 1 4 0 
8MFSD-6 1050 2 4 1 
9MFSD-5 928 1 4 0 
9MFSD-6 918 2 4 1 
14MFSD-5 896 2 4 1 
16MFSD-4 1020 1 4 0 
16MFSD-6 1800 1 4 1 
Multi-family large       
6MFLD-5 625 2 12 0 
6MFLD-6 750 2 12 0 
6MFLD-7 1435 2 12 1 
8MFLD-5 675 1 12 0 
8MFLD-6 840 2 12 1 
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9MFLD-5 725 2 12 0 
9MFLD-6 812 1 12 0 
9MFLD-7 1200 2 12 1 
14MFLD-5 775 2 12 0 
14MFLD-6 775 2 12 1 
16MFLD-4 870 1 12 1 

 

Simulation results are shown below grouped by CAZ and building type for SEER 8 efficiency 
ACs. 

 

CAZ 6 

 

 

 

CAZ 8 
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CAZ 9 

 

 

 

CAZ 14 
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CAZ 16 

 

 

 

Comparing the newest vintage of buildings for SEER 8 and SEER 21, in all cases the SFDD type 
has higher peak demand per dwelling unit than any form of attached unit. In most cases SFAD 
consumes the next most energy per dwelling unit. In some cases, the MFSD consumes the least, 
and in some cases the MFLD consumes the least per dwelling unit. 

SEER 8 
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SEER 21 
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B2. Commercial Buildings 
The commercial building models used in this study were produced by NREL and published by 
DOE [91] for use in Energy Plus. The 15 types of commercial building models used are listed in 
Table B4. DOE has published models with building performance characteristics calibrated for 
several regions. The models calibrated for Los Angeles specifically were used; however, the 
details of those calibrations are not for the purposes of this report. These models were used as 
they were the best-known models available at the time. Moreover, DOE has published three 
versions of these models based on vintage for: pre-1980, post-1980, and post 2004. Thus, a total 
of 45 models (EnergyPlus files) were used. Characterization figures for peak demand in each 
commercial building type are shown in Appendix B.1. No patterns were particularly identified 
other than that electricity demand generally increased with daily maximum temperature. 
Inconsistencies in peak demand between building vintage may be explained by differences in 
appliance technologies and use profiles. To best calibrate the results to the validation data for 
commercial buildings, the lowest peak demand values were used in this assessment for any of 
the 3 vintages of the 15 building types at any temperature. 

As stated in the documentation [54],  

Intended uses 

“The reference building models will be used for DOE commercial buildings research to assess 
new technologies; optimize designs; analyze advanced controls; develop energy codes and 
standards; and to conduct lighting, daylighting, ventilation, and indoor air quality studies.” 

“They also provide a common starting point to measure the progress of DOE energy efficiency 
goals for commercial buildings.” 

Uses not intended 

“These reference building models are not intended to represent energy use in any particular 
building. Rather, they are hypothetical models with ideal operations that meet certain minimum 
requirements.” 

“The reference building model definitions are not intended to act as targets to rate the energy 
performance of single existing or proposed buildings. The models and weighting factors are not 
appropriate for analysis at the state level, as the datasets used to generate the models and the 
weighting factors are too small to form a valid statistical model at this level. Variations of these 
models and weighting factors could be created for such purposes, but that is not the objective of 
this project.” 

Thus, the use of these models in this research, and the decisions made by staff as to how to use 
these models consistently with historical data, is both insightful in terms of the climate change 
assessment, as well as the DOE research community in advancement of the models themselves. 
A detailed audit of the plug and process load characterization in the source models is beyond 
the scope of this work. 
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Table B4. Commercial building types. 

Type Description 
Floor Area 
(ft2) Number of Floors 

1 Large Office 498,588 12 

2 Medium Office 53,628 3 

3 Small Office 5,500 1 

4 Warehouse 52,045 1 

5 Stand-alone Retail 24,962 1 

6 Strip Mall 22,500 1 

7 Primary School 73,960 1 

8 Secondary School 210,887 2 

9 Supermarket 45,000 1 

10 Quick Service Restaurant 2,500 1 

11 Full Service Restaurant 5,500 1 

12 Hospital 241,351 5 

13 Outpatient Health Care 40,946 3 

14 Small Hotel 43,200 4 

15 Large Hotel 122,120 6 

*Midrise Apartment excluded from analysis due to redundancy with residential category large multifamily unit 
(MFL) 

 

Characterization Results 

Commercial building model performance was characterized for a range of daily high 
temperatures from 20°C to 60°C.  

 

Table B5 lists descriptive statistics of the area, stories, and count of building types in the 
historical base period. The following figures show the daily peak electricity consumption for 
building cooling only as well as the entire facility for each building type for New (2004+), Post 
1980, and Pre 1980 models.  

 

 

Table B5. Commercial buildings. 
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Inde
x Building Type 

Area 
(m2) 

Storie
s 

Histori
c 

Count 

Pre 
1980 

Histori
c 

Count 

Post 
1980 

Histori
c 

Count 

Post 
2004 

Histori
c 

Count 
Total 

0 Midrise Apt. (not 
used) 

3,135 4 
528 514 79 1,121 

1 Large Office 46,320 12 2,719 1,350 265 4,334 

2 Medium Office 4,982 3 5,247 1,414 657 7,318 

3 Small Office 511 1 6,553 4,303 1,444 12,300 

4 Warehouse 4,835 1 16,221 2,409 1,332 19,962 

5 Stand-alone Retail 2,294 1 1,415 1,374 392 3,181 

6 Strip Mall 2,090 1 2 2 0 4 

7 Primary School 6,871 1 478 126 42 646 

8 Secondary School 19,592 2 144 175 99 418 

9 Super Market 4,181 1 4,086 759 241 5,086 

10 Quick Service 
Restaurant 

232 1 
363 22 14 399 

11 Full Service Restaurant 511 1 104 12 2 118 

12 Hospital 22,422 5 386 64 8 458 

13 Out Patient 3,804 3 185 162 173 520 

14 Small Hotel 4,014 4 528 514 79 1,121 

15 Large Hotel 11,345 6 2,719 1,350 265 4,334 
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Figure B3. Full Service Restaurant. 
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Figure B4. Hospital. 
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Figure B5. Large Hotel. 
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Figure B6. Large Office. 
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Figure B7. Medium Office. 
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Figure B8. Midrise Apartment. 
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Figure B9. Out Patient. 
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Figure B10. Primary School. 
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Figure B11. Quick Service Restaurant. 
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Figure B12. Secondary School. 
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Figure B13. Small Hotel. 



B-25 

 

 
Figure B14. Small Office. 
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Figure B15. Stand-alone Retail. 
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Figure B16. Strip Mall. 
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Figure B17. Super Market. 
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Figure B18. Warehouse. 
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APPENDIX C: Population Projections 
C.1 Low - Finance / USGS 
We used the Department of Finance population projections (published by the USGS) from [16] 
as described in [92]. All population projections assumed constant population density (people 
per km2) for all pixels by county. This value is equal to 2897.112 persons per km2 for Los 
Angeles. Increase in population is accounted for by additional pixels at 1x1 km2 resolution. 
Those population data were assigned to census block groups weighted by area to create the 
base and future low- scenario population values for each CBG. Note: while there are 10 
“iteration” results of the probabilistic forecast model, the differences are very minor (tested 
within 1% between iteration 1 and 10), and only one iteration was used. Also, the low- med- 
high- scenario population projections are the same out to 2060. 

Inputs 

• Sc1120-It0001-Ts2010-Sa-Population.tif 
• Sc1120-It0001-Ts2040-Sa-Population.tif 
• Sc1120-It0001-Ts2060-Sa-Population.tif 

Process to allocate population to census block groups 
Note: Make sure all maps have areas calculated before combining with other maps 

1. Import the 3 population files into ArcMap 
2. GEOPROCESSING: run raster to point conversion tool 
3. JOIN point files to 2x2km grid of LAC "LAC_GCM_Grid_Cells_mainland" 
4. ADD FIELD for population 
5. CALCULATE FIELD: multiply "Join_Count" by "GRID_CODE" to get population in each 

grid cell 
6. REPEAT 3-5 and into one new shape file with all population projections by grid cell 
7. GEOPRECESSING: UNION the grid cell with population file to a map of LA CBGs 
8. ADD FIELD for area of union 
9. ADD FIELD for BG population 
10. CALCULATE FIELD (BG population):  

= (population in GC) / (Area GC) * (area union)  
Note: if (Area GC==0): pop=0, else .. 

11. GEOPROCESSING: DISSOLVE by CBG GEOID, sum population 
12. MANUALLY correct for error as described below. 

 

 

Outputs 

Shape file, indexed by CBG, with population for 2010, 2040, 2060; population density per land 
mass area; absolute increase in population from 2010; and relative percent increase in 
population from 2010. 
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Descriptive statistics 

• Area = 10,237 km2 
• Population in 2010 = 9.7 million 
• Population in 2040 = 10.3 million 
• Population in 2060 = 10.9 million 
• Largest percent increase in population in any CBG = 460% 

 

 
Figure C1. Input population projections. For Los Angeles County, all pixels represent 2897.112 

persons.  
Colors correspond to years as follows: green = 2010, blue = 2040, and red = 2060.  
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Figure C2. Department of Finance population increase projections from 2010 to 2040 (left) and 

2060 (right) by census block group.  

 

Error  

Total error was not significant: ~0.05% of population was lost 

C.2 High – SCAG 
SCAG population projections were based on the city-level population projections listed from  
[17] as described in [55] and [59], for 88 cities and the unincorporated area. Because those 
projections were only available at the (relatively low-resolution) city-level, the annual growth 
rate for each city was calculated relative to the SCAG base 2012 values, and then applied to the 
corresponding CBG using the same 2010 population values as in the low-case method. The 
resulting total population was 11,435,479 for 2040 (within 1% of SCAG reported projection of 
11,514,800) and 12,814,475 for 2060. The resulting population increase from 2010 to 2040 and 
2060 are shown in Figure C3 below. 

 

 

(a)  (b)  
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Figure C3. Modeled SCAG population projection increases from 2010 to 2040 (a) and 2060 (b) by 
census block group.  

The range of differences in population projections in 2060 from low to high scenarios are shown 
in Figure C4 below. The major difference is that the SCAG projections include more infill in 
already developed central and downtown areas, and less growth in less developed areas. 

 
Figure C4. Difference between low and high population projection increase in 2060 by census 

block group.  
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APPENDIX D: Substation Demand Allocations with 
Voronoi Tessellations 
Instructions are for ArcMap Desktop 10.5. 

Start with EIA / homeland security data set [76], as shown in Figure below. Notice transmission 
lines from [78] are overlaid in the figure. 

• 410 substations total 
• 102 have voltage ratings  

• 66-69 kV, count = 25, all but 9 are listed with connections to one or more lines  
• 115-138 kV, count = 18, all but 7 are listed with connections to one or more lines  
• 230-500 kV, count = 59, all but 5 are listed with connections to one or more lines  

• 308 unknown are assumed to be medium to low voltage, i.e. <=138 kV 

   
Figure D1. LAC substations with transmission line overlay. Note: not all components may be 

visibly identifiable due to close proximity. 
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Separate substations into two layers, high voltage and low voltage per the Preliminary Analysis 
of Substation Loading.  

• High voltage: 230kV and up 
• Medium and low voltage: rest including unknown 

D.1 High Voltage 
1. Use “Integrate” tool on high voltage layer with 2km tolerance, and then “collect” to 

produce new layer as shown in Figure 39. The 59 substations will be consolidated into 36 
clusters. Substations are grouped together in this manner to prevent creation of 
nonsensically small polygon areas in the following step. 

  
Figure 39. Clustered high voltage substations only with transmission line overlay 

2. Use “Create Theissen polygon” to run Voronoi Tessellations and allocate substations to 
land area coverage, and then “clip” to LAC as shown in Figure 40. Add the attribute of 
Area for square meters. 
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Figure 40. Clustered high voltage substations with Voronoi polygons. 

3. Use the “intersect” tool assign the CBG peak demand composite image for the base 
period. Make sure peak demand is available in terms of Wh and that the areas of the 
CBGs are in that shape file. 

4. Create a new column for area of the intersected space in terms of square meters. 
5. Create a new column for the peak demand (Wh) to allocate to the Voronoi polygon. 

Calculate it as the product of peak demand (Wh) in the CBG and the ratio of intersection 
area to CBG area. 

6. “Dissolve” the layer by the FID of the Voronoi polygons, and sum the peak demand 
(Wh). Base case shown in Figure 41 for 13.5 GWh. 

  

(a)   (b)    

 
Figure 41. Sample transform of peak demand from CBGs to high voltage substation Voronoi 

areas. 

Comparison of substation allocations with SCE DERiM data is shown in Figure 42. Total peak 
demand estimated in the model at substations corresponding to the same geographic locations 
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was 10% less than values estimated from the DERiM data, 6,388 MWh versus 7,098 MW. The 
majority of that difference was 250MW at the three clustered substations in the southwest LA 
Fresa (x2) and El Nido substations, and 180MW at the Antelope substation in the north.  

 

(a)   (b)  

Figure 42. Overlay of substation clustering, Voronoi polygons with base period demand allocation 
(Wh/m2), to (a) model estimated peak load, and (b) SCE DERiM peak load estimates. 

 

 

D.2 Medium and Low Voltage 
Repeat steps for high voltage. 

Cluster 351 substations into 173 Voronoi polygons by grouping within 1km proximity, Figure 
43.  
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Figure 43. Clustered low voltage substations with Voronoi polygons. 

Comparison of demand allocation shown in Figure 44. 

 

(a)   (b)    

Figure 44. Sample transform of peak demand from CBGs to high voltage substation Voronoi 
areas. 

Of the 173 substation clusters, 133 overlapped with the SCE DERiM’s distribution substations, 
with a combined model peak demand of 9.94 GWh, 15% higher than the DERiM’s 8.62 GW. 
Comparison of loads on substations and substation clusters is shown in Figure 45. Most of that 
difference was due to Voronoi polygons that included LADWP substations in the clustering. 

 

(a)  (b)

 
Figure 45. Base period loads for (a) model composite demand on substation clusters, and (b) SCE 

DERiM distribution substations and estimated peak load. 
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D.3 Preliminary Analysis of Substation Loading using SCE DERiM 
Data 
This section details how substation load, capacity, and load factor estimations were developed 
for the base period. The EIA / homeland security substation data set, as previously described, 
was used as representative of LAC’s installed components in terms of location and level in the 
delivery system. Components were separated into high voltage and low voltage layers in an 
attempt to represent parallel operations within each layer and series operations across the 
layers. Obviously this is not a perfectly accurate method, but given the data and tools available 
to work with this was considered a reasonable approach, within limits, as follows. The SCE 
DERiM data set [77] was used as a representative sample because data were available to 
estimate load, capacity, and load factor as detailed in the next paragraph. Shown in Figure 46, 
the DERiM’s 21 “sub-transmission” substations were geo-located within 100m of the EIA's 59 
high voltage ≥230kV substations, with matching names in the data. All but three were labeled as 
220/66 kV, two were labeled 66/66 kV, and one as 12/66kV. Of the DERiM’s 245 “distribution” 
substations, 202 were geo-located within 100m of the EIA lower ≤138kV and unknown voltage 
substations, 171 were listed as 66/16 kV or 66/12 kV, 73 as 16/4kV or 12/4kV, and 1 as 16/33 
kV. Obviously, there is some amount of power flow in series amongst those substation layers, 
as there is between 500 kV and 230 kV substations. Again, this approach is an approximation. 
Of the EIA’s 351 lower voltage substations, 37 had “unknown” names, otherwise unique, and 
161 had names that matched to the DERiM’s 245 substations. The DERiM data had 74 
substations listed with the same name and different voltage ratings as the EIA data. Therefore, 
DERiM data were assumed representative of approximately 1/3rd of the high voltage 
substations, and 70% of the low voltage substations in LAC.  

(a)  (b)   

Figure 46. Overlay of EIA and SCE substations for (a) high voltage and (b) low voltage layers. EIA 
substations are shown as black dots, and SCE substations as colored circles. 

Substation load, capacity, and load factor estimates were developed from the published DERiM 
data, and ranges allocated to the remaining substations in the LAC infrastructure. Equations for 
estimated values are listed in Table 18 below. Peak Load was a straightforward estimation per 
the definitions from SCE’s data dictionary [77] quoted in the bullets points below. The formula 

https://hifld-geoplatform.opendata.arcgis.com/datasets/ec5ecb9e8fec448fa0de73d37cbd74c3_0
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for Nameplate Capacity was assumed for a temperature adjusted loadability factor equal to 1 at 
40°C. SCE's interconnection handbook guidelines [70] state 40°C in sections for Ambient 
conditions, and Transformer Emergency Ratings are stated as permissible with 10-20% 
overloading for 1-30 days. These values are consistent with the range of high voltage AC 
switchgear operations described in IEEE Std C37.30.1-2011 [8]. Load Factor is a straightforward 
calculation based on the previous two estimates. Descriptive statistics of results are summarized 
in Table 19, and shown in Figure 46, Figure 47, and Figure 48. Note: 7 substations were 
discarded from sample as Load Factor values were not considered reasonable equal to zero or 
greater than 2. UNIVERSAL 66/12 kV, TAHITI 66/16 kV, REDMAN 66/12 kV, NAVY MOLE 
66/12 kV, GOULD 16/33 kV, GANESHA 66/12 kV, AUTOBODY P.T. 16/4 kV. Of the 238 
remaining substations, the 72 substations labeled 16/4 kV and 12/4 kV had a total peak load of 
509 MW (6% of the sample), capacity of 677 KVA (7% of the sample), and single largest capacity 
of 17 kVA.  

Table 18. Equations used in estimating substation load factors. 

Equation #  Expression Units 
1 Peak Load = Total Generation / Current Penetration Level * 100 MW 
2 Nameplate Capacity =  

Existing Generation + Maximum Remaining Generation 
MW 

3 Load Factor = Peak Load / Nameplate Capacity % 
 

• Total Generation (MW) - “This value represents the sum of both Existing and Queued 
Generation. Total Generation includes all downstream [distributed energy] resources. 
For example, Total Generation at a substation includes all Existing and Queued 
Generation connected to all circuits fed from that substation.”  

• Current Penetration Level (%) - “This value represents the ratio of generating resources 
to peak load, expressed as a percentage. For example, if a circuit has a peak load of 10 
MW, along with 4 MW of Total Generation (this includes existing and queued 
generation), the current penetration level is 40%.” 

• Maximum Remaining Generation (MW) – “This value represents the maximum amount 
of generation that the system may be capable of supporting within existing planning 
guidelines and criteria. The maximum remaining generation capacity often requires 
system upgrades to be fully realized.”  

Table 19. Summary of SCE DERiM substation estimated values. 

Attribute min mean max total 
High voltage (21/59)     
Peak Load (MW) 40 338 759 7,098 
Nameplate Capacity (MW) 215 518 911 10,883 
Load Factor (0-1) 0.188 0.632 0.893 0.652 
Low voltage (245/351)     
Peak Load (MW)*  1   36   143   8,537  
Nameplate Capacity (MW)  1   43   387   10,155  
Load Factor (0-1)  0.145   0.807   1.042   0.841  
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Figure 47. Probability density function of load factors on SCE substations 

 

 
Figure 48. Probability density function of load factors on SCE substations 
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Total values for peak load for SCE at high- and low-voltage levels were considered as within a 
reasonable range to use for approximate verification purposes. Previous work in Task 3 
estimated the range of base period peak demand for LAC as 15-20 GWh. If the total peak 
demand for SCE’s high voltage substations is proportionally representative of the county, then 
total county peak demand on the high voltage layer would be equal to 7.1 GW * 59/21 = 19.9 
GW. If the total peak demand for the low voltage substations is proportionally representative of 
the county, then total county peak demand on the low voltage layer would be equal to 8.5 GW * 
351/245 = 12.2 GW. Possible explanations for the 25% shortfall at the low-voltage level are that 
SCE has about 1-2 GW of installed Solar PV capacity [93],[94] that is skewing the peak load 
lower in SCE substations relative to the rest of LAC, the other distribution substations may have 
disproportionately higher loads, and or the source data may erroneous beyond the 7 outliers 
identified.  
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