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PREFACE 
California’s Climate Change Assessments provide a scientific foundation for understanding 
climate-related vulnerability at the local scale and informing resilience actions. These 
assessments contribute to the advancement of science-based policies, plans, and programs to 
promote effective climate leadership in California. In 2006, California released its First Climate 
Change Assessment, which shed light on the impacts of climate change on specific sectors in 
California and was instrumental in supporting the passage of the landmark Assembly Bill 32 
(Núñez, Chapter 488, Statutes of 2006), California’s Global Warming Solutions Act. The Second 
Assessment concluded that adaptation is a crucial complement to reducing greenhouse gas 
emissions (2009), given that some changes to the climate are ongoing and inevitable, motivating 
and informing California’s first Climate Adaptation Strategy released the same year. In 2012, 
California’s Third Climate Change Assessment made substantial progress in projecting local 
impacts of climate change, investigating consequences to human and natural systems, and 
exploring barriers to adaptation.  

Under the leadership of Governor Edmund G. Brown, Jr., a trio of state agencies jointly 
managed and supported California’s Fourth Climate Change Assessment: California’s Natural 
Resources Agency (CNRA), the Governor’s Office of Planning and Research (OPR), and the 
California Energy Commission (Energy Commission). The Climate Action Team Research 
Working Group, through which more than 20 state agencies coordinate climate-related 
research, served as the Steering Committee, providing input for a multi-sector call for 
proposals, participating in selection of research teams, and offering technical guidance 
throughout the process. 

California’s Fourth Climate Change Assessment (Fourth Assessment) advances actionable 
science that serves the growing needs of state and local-level decision-makers from a variety of 
sectors. It includes research to develop rigorous, comprehensive climate change scenarios at a 
scale suitable for illuminating regional vulnerabilities and localized adaptation strategies in 
California; datasets and tools that improve integration of observed and projected knowledge 
about climate change into decision-making; and recommendations and information to directly 
inform vulnerability assessments and adaptation strategies for California’s energy sector, water 
resources and management, oceans and coasts, forests, wildfires, agriculture, biodiversity and 
habitat, and public health.  

The Fourth Assessment includes 44 technical reports to advance the scientific foundation for 
understanding climate-related risks and resilience options, nine regional reports plus an oceans 
and coast report to outline climate risks and adaptation options, reports on tribal and 
indigenous issues as well as climate justice, and a comprehensive statewide summary report. 
All research contributing to the Fourth Assessment was peer-reviewed to ensure scientific rigor 
and relevance to practitioners and stakeholders.  

For the full suite of Fourth Assessment research products, please visit 
www.climateassessment.ca.gov. This report contributes to our understanding of energy sector 
resilience by improving our understanding of subseasonal and seasonal forecasts of climate-
related variables of importance for managing California’s natural gas system. 

http://www.climateassessment.ca.gov/
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ABSTRACT 
Prior research regarding the use of probabilistic seasonal forecasts for the energy system 
suggests the potential to substantially improve management of natural gas supply. For 
example, assessment of peak seasonal natural gas demand could be improved with reliable 
probabilistic forecasts of high summer temperatures, when natural gas is used to help meet 
peak electricity demand, as well as cold winter temperatures, when natural gas is used for space 
heating. This study investigates subseasonal-to-seasonal forecasts of mean surface temperature 
over the California region in the North American Multimodel Ensemble (NMME) at lead times 
from 0 to 6 months. The seasonal forecast skill is assessed using the anomaly correlation 
coefficient (ACC) based on a large number of forecasts (1982-2009) from six NMME models (a 
total of 76 ensemble members). Overall, the NMME forecasts exhibit positive skill superior or 
similar to persistence forecasts (a forecast that the future weather condition will be similar to the 
present condition) over the ocean and interior regions of California. NMME forecasts generally 
have higher skill over the ocean than over the continent. The forecast skill over the land 
adjacent to the California coast is markedly lower than skill of forecasts over the nearby ocean 
and also lower than those over the inland continent, especially during the warm seasons. 
Summer forecast errors are spatially coherent over the coastal region. Similarly, forecast errors 
are spatially coherent in the inland regions. However, the correlation of forecast errors between 
the two regions is very low. Summer atmospheric circulation appears to have a strong influence 
on forecast performance—the time history of forecast errors at two inland locations was 
strongly correlated (-0.7) with the 500 hPa (hectopascal) geopotential height anomaly (height 
above the surface where atmospheric pressure is 500 hPa) over the western U.S. In contrast, 
forecast errors at coastal locations are associated with geopotential anomalies over the tropics 
and subtropical high pressure system (correlation 0.2-0.5). Furthermore, the systematic model 
forecast errors in coastal regions are linked to errors in the simulation of low cloudiness (low-
altitude cloudiness, stratus clouds) over the coastal area. These results suggest that the 
California coastal region presents complicated interacting physical processes that are poorly 
captured by the current generation of seasonal prediction models. More effort is needed to 
improve dynamical forecasts of temperature and other climate variables in this region to 
provide better information regarding energy demand, which is particularly important as 
climate changes.  

Keywords: seasonal forecast, surface temperature, coastal low cloudiness, North American 
Multimodel Ensemble, persistence forecast, California coast 
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Subseasonal to Seasonal Temperature Prediction Skill over the California Region from 
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California Energy Commission. Publication Number: CCCA4-CEC-2018-010. 
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HIGHLIGHTS 
• Reliable forecasts of temperature over a time frame ranging from about one month out 

to several months are of interest to energy, agriculture, and public health considerations 
over the highly-populated California coastal region. For example, a reliable forecast for 
an anomalously warm summer at a lead time of one to a few months will have practical 
applications for natural gas as well as electric utilities because temperature anomalies 
drive energy demand. Skillful temperature forecasts will also elucidate conditions 
related to drought in California since anomalous temperature plays an important role in 
anomalous evaporation and snowpack loss. 

• Prior research suggests that improved adaptation to current levels of climate variability 
improves our ability to respond to a changing climate (including potential increases in 
climate variability). 

• North American Multimodel Ensemble (NMME) is a dynamical climate forecasting 
system using state-of-the-art models from U.S. and Canadian modeling centers. 

• Persistence is a forecast that the future weather condition will be similar as the present 
condition. Persistence forecasts provide a baseline reference to assess the model forecast 
skill; a forecast needs to beat persistence in order to be useful. 

• NMME temperature forecasts at 1 to 6 months, for winter, spring, summer, and fall, 
exhibit positive skill that is superior or similar to persistence forecasts over the ocean 
and interior regions of California. 

• NMME seasonal surface temperature forecast skill over the California coastal region is 
very low, often less than that from persistence forecasts, especially during the warm 
season. 

• NMME forecast error over the inland eastern California is influenced by particular 
patterns of large-scale atmospheric circulation, especially during the warm season. 

• NMME forecast error over the California coastal region is highly correlated to 
anomalous coastal low cloudiness (low-altitude coastal cloudiness) during the warm 
season; periods with dense cloudiness tend to exhibit greatest NMME forecast errors. 

• Better model representation of key processes associated with coastal low cloudiness can 
improve poorly performing seasonal surface temperature forecasts from NMME in the 
coastal region of California, which is densely-populated and has high energy demands. 
More research specific to California is needed to improve the forecast skill over this 
region and provide an improved basis for anticipating energy demand on time scales of 
one month to several months in advance. 
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1: Introduction 
Sub-seasonal and seasonal forecasts are long-term forecasts that predict future weather 
conditions (i.e. temperature and precipitation) 2 weeks to 12 months out. In contrast to weather 
forecasts, which rely mainly on atmospheric behavior predicated from initial atmospheric 
conditions, sub-seasonal to seasonal forecast skill derives only partly from the initial 
atmospheric conditions and partly from the effects of slowly evolving boundary conditions, 
such as the sea surface temperature, sea ice, and soil moisture. Sub-seasonal to seasonal 
forecasts are often cast in probabilistic terms, providing information about the likelihood of 
subsequent anomalous time average weather anomalies. Reliable forecasts at sub-seasonal to 
seasonal scale are urgently needed by decision makers in energy, agriculture, water 
management, public health, and disaster preparedness (White et al. 2017), especially in densely-
populated regions, such as California. 

There are many challenges to sub-seasonal to seasonal forecasting based on dynamical models. 
Some studies demonstrate that dynamical models are less skillful than much simpler statistical 
models, such as the linear inverse models (Winkler et al. 2001; Newman et al. 2003). In some 
recent cases, dynamical models have been found to out-perform linear inverse statistical 
models, specifically when an ensemble prediction methodology is employed (Pegion and 
Sardeshmukh 2011). Recent decades of development of dynamical prediction systems and 
research into seasonal climate predictability offers substantial evidence that sub-seasonal to 
seasonal forecast using dynamical models can be useful to the applications community 
(Kirtman et al. 2014; White et al. 2017). Progress in sub-seasonal to seasonal forecast has been 
enhanced by multi-institutional international collaborations (Kirtman et al. 2014). Primary 
examples of these collaborations include the North American Multimodel Ensemble (NMME; 
Kirtman et al., 2014), and the Sub-seasonal to Seasonal Prediction (S2S) Project proposed by the 
World Weather Research Programme and World Climate Research Programme (Vitart et al. 
2017). The Working Group on Subseasonal to Interdecadal Prediction of the World Climate 
Research Programme aims to develop the numerical framework for predictions on timescales 
from subseasonal to interdecadal. Meanwhile, they also support three research projects 
advancing specific aspects of those forecasts: (1) how well climate forecast models represent 
global influences of tropical rainfall, (2) how snow predictably influences climate, and (3) how 
model drifts and biases develop and affect climate forecasts (Merryfield et al. 2017). 

The North American Multimodel Ensemble (NMME) is a dynamical climate forecasting system 
using state-of-the-art coupled models from U.S. and Canadian modeling centers (Kirtman et al. 
2014). It provides a multimodel framework for assessing the sub-seasonal to seasonal forecast 
skill in dynamical models. This multimodel forecast system demonstrates improved skill 
compared to individual models, such as the NOAA operational CFSv2, in forecasting large-
scale climate features (Kirtman et al. 2014; Becker et al. 2014) since it benefits from a large 
number of ensemble members and model diversity. Many studies have evaluated the forecast 
skills of NMME for sea surface temperature, precipitation, and surface temperature at the global 
scale (Becker et al. 2014; Mo and Lyon 2015; Becker and van den Dool 2016) and over North 
America and the continental U.S. (Wang 2013; Infanti and Kirtman 2014; Chen et al. 2017; Slater 
et al. 2016; Hervieux et al. 2017). These studies showed that NMME forecast skill varies 
significantly from region to region, but only a few studies have focused on the California 
region. Jacox et al. (2017) investigated NMME forecast skill of seasonal sea surface temperature 
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in the California Current System and found that NMME models were relatively skillful for the 
forecasts of February-April. Shukla et al. (2015) found that the NMME forecast skill of land 
surface temperature in California was generally low, with relatively higher correlation confined 
to interior regions in July-September. However, a more comprehensive evaluation of dynamical 
forecasts of seasonal averaged surface temperature over the California region, including both 
offshore ocean and adjacent continental land temperatures, has not been conducted. 
Furthermore, the fundamental physical processes influencing the spatially- and temporally-
varying forecast skill in dynamical models is also unexplored. 

In this study, a detailed evaluation of the performance of seasonal temperature predictions over 
the California region, which is urgently needed by decision makers, is conducted to improve 
our understanding of forecast skill at lead time of one to six months. The forecast skill of 
seasonal mean near-surface (2m) air temperature over the California region in NMME models is 
evaluated seasonally (March-May (MAM), June-August (JJA), September-November (SON), 
and December-February (DJF)), and compared to the persistence forecast skill. We find large 
and interesting differences in forecast skill over the eastern north Pacific Ocean, California 
coastal region, and inland eastern California. Associations between forecast errors and 
atmospheric circulation patterns, in the form of 500 hPa geopotential height anomaly, are 
examined. The influence of local coastal low cloudiness (low-altitude coastal cloudiness) on 
forecast skill, a key feature of the climate in Southern California coastal regions that is typically 
poorly simulated by dynamical models, is also investigated. 

 

2: Data and Methods 
We used ensembles of retrospective seasonal mean surface temperature forecasts (often called 
“hindcasts”) of six models from the NMME phase 2 (Table 1). All the NMME models are 
coupled dynamical models and include key global climate fluctuations that affect California 
weather and climate, such as the El Niño/Southern Oscillation (ENSO) and the Madden-Julian 
Oscillation (MJO), through initial conditions and internal model dynamics. However, it should 
be kept in mind that individual model quality in reproducing these natural climate fluctuations 
or their teleconnections can be poor, and may contribute to low model forecast skill in the 
region of interest. 

All these models provide forecasts for lead times of at least 0-9 months. 28 years of hindcasts 
(i.e., retrospective forecasts over previous years, encompassing the period 1982-2009) are 
available for all models. Four models (CanCM3, CanCM4, CESM1, and GEOS5) have 10 
ensemble members, FLORB01 has 12 members, and CFSv2 has 24 (28) members (only 24 
members are used, 28 being available for November only). Hence a total of 76 ensemble 
members are used in this study. CFSv2 is initialized every fifth day, with four members per day. 
The ensemble members of the other five models are all initialized at 00 UTC on the first day of 
the month. In this study, “lead time 0 month” means a forecast made from initial conditions at 
the beginning of the first month for this season. For example, the forecast for JJA initialized at 
the beginning of June is defined as “lead time 0 month”, and the forecast initialized at the 
beginning of May is defined as “lead time 1 month”. We calculate the seasonal mean near-
surface air temperature from the daily values. Five of the six models provide outputs at 1° 
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latitude by 1° longitude, while FLORB01 provides outputs at 0.5° latitude by ~0.6° longitude. 
All data were interpolated onto a common 1°×1° latitude-longitude grid before analysis. 

The NMME forecasts are compared to temperature observations, including the Climatic 
Research Unit (CRU) TS 3.24 (Harris et al. 2014) daily mean surface temperature over land and 
the Hadley Center Sea Surface Temperature (HadISST) data (Rayner et al. 2003) over the ocean. 
The observational data are interpolated to the same 1°×1° grid as the NMME data. The daily 
land temperature dataset is time averaged to months and seasons for the forecast evaluations 
conducted here. 

Persistence, the simplest forecast possible, is a forecast that persists the anomaly that exists at 
the time of the forecast. Persistence forecasts provide a baseline reference to assess the NMME 
model forecast skill; a forecast must beat persistence in order to be useful. In the persistence 
forecast, the mean temperature anomaly of two months (one month before and one month after 
the model initial time) is used to forecast the seasonal mean temperature anomaly. For example, 
the averaged temperature anomaly of May and June is used as persistence forecast to JJA 
temperature anomaly at lead time 0 month. This provides a stringent test of the dynamical 
models’ skill. 

 

Table.1: The models in the North America Multimodel Ensemble (NMME) used in this study. 

Model Organization Hindcast Period Ensemble Size Reference 
CanCM3 CMC 1981-2012 10 Merryfield et al. 2013 

CanCM4 CMC 1981-2012 10 Merryfield et al. 2013 

CFSv2 NCEP 1982-2009 24(28) Saha et al, 2014 

CESM1 NCAR 1980-2010 10 Lawrence et al. 2012 

FLORB01 GFDL 1980-2014 12 Vecchi et al. 2014 

GEOS5 NASA 1982-2012 10 Vernieres et al. 2012 

 

Monthly mean 500 hPa geopotential height from the Climate Forecast System Reanalysis (CFSR; 
Saha et al. 2010) is used to examine the relationship between atmospheric large-scale circulation 
and NMME forecast errors. 

Coastal low cloudiness (stratus or stratocumulus clouds) data used in this study is derived from 
a new high-resolution (4 km and half-hour) satellite-derived record of low clouds (Clemesha et 
al. 2016) from NASA/NOAA Geostationary Operational Environmental Satellite (GOES-9, 
GOES-10, GOES-11, and GOES-15). The data covers the ocean and west coast of U.S. (25°N to 
50°N, 130°W to 113°W), over the period May-September from 1996 to 2014. The coastal low 
cloudiness data is interpolated to the 1°×1° common grid and aggregated to the monthly mean. 
Only the 14 years of overlap with the NMME forecasts (1996-2009) are used in this study. 

In this study, we focus on dynamical forecasts at monthly to seasonal time leads, made from 
multiple model runs and often cast in probabilistic terms to provide information about the 
likelihood of anomalous seasonal mean temperature anomalies. A number of different methods 
are used to evaluate forecast skill in this work. The anomaly correlation coefficient (ACC) is the 
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correlation between the seasonal anomalies of the model forecast and observations. If the 
variation pattern of the forecast anomalies is perfectly coincident with that of observations (a 
perfect forecast), a maximum ACC value of 1 is obtained; if the forecast pattern is completely 
reversed from observations, a minimum ACC value of -1 is obtained. The ACC is well suited to 
this evaluation because it is a concise measure that captures the models’ skill in forecasting 
departures from mean climatological conditions over many forecast seasons. Additionally, 
contingency (conditional probability) tables are used to display the structure of model errors in 
categories, and so illustrate how frequently model forecasts are substantially different than 
what actually transpired. Finally, performance is also evaluated using correlations and 
composites of the NMME forecast error, expressed as the difference between the forecasted and 
observed seasonal average temperature; these measures allow additional insight into the 
sources of model forecast error. 

 

3: Results 
3.1 NMME Forecasted Temperature Climatology and Biases 
The climatological mean surface temperature from the ensemble mean of NMME is compared 
with the observations for the four seasons in Figure 1. The model’s bias in seasonal mean 
surface temperature varies in different regions and different seasons. Overall, the model bias 
over the Pacific Ocean is much smaller than the bias over the continent (although note that 
seasonal variability over the ocean is smaller than over land areas as well). Most regions in 
California exhibit an NMME ensemble mean warm bias in summer (1 to 6°C) and cold bias (-1 
to -4°C) in spring and winter. Meanwhile, a warm bias over the coastal region from Los Angeles 
to northern Baja California in Mexico is found in all four seasons, with a maximum of 2-6 °C in 
summer and a minimum of 1-3 °C in winter. This warm bias expands offshore and northwards 
in summer and autumn. 
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Figure 1. Bias of climatological mean surface temperature forecasts (model-minus-observations; 
°C) of NMME ensemble mean for the four seasons: (a) MAM (March-April-May), (b) JJA (June-July-
August), (c) SON (September-October-November), and (d) DJF (December-January-February). The 

contours are climatological mean surface temperature (°C) in NMME ensemble mean. 

These are the climatological biases in NMME models comparing to the observation. However, 
the seasonal temperature forecasts are used to identify the seasonal temperature anomalies. 
Hence, the climatological biases are not necessarily indicative of the NMME models’ seasonal 
forecast skill in this study, because the ACC skill score gages the anomalies from the 
climatological mean of the forecasts. In particular, nothing prevents a model with mean biases 
from generating skillful forecasts; conversely, nothing guarantees that a model with small mean 
biases will generate skillful forecasts. However, these results demonstrate that bias correction is 
needed before using these temperature forecasts directly, for example, in a calculation that 
relates electrical load to actual temperatures. In the work performed here, we have 
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circumvented the issue of model bias by focusing on skill measures that are affected little by the 
model biases, such as the ACC and anomaly composites. 

3.2 Skill of Seasonal Mean Temperature Forecasts 
Figure 2 shows the NMME seasonal mean surface temperature forecast skill (ACC) at a lead 
time of 1 month for each season. The colors depict regions where ACC statistical significance is 
equal or exceeds the 90% confidence level. A Bootstrap approach is utilized to conduct the 
statistical confidence level, using 1000 randomized seasonal temperature anomaly samples to 
estimate the probability that a given correlation threshold would be obtained simply by chance. 
Overall, forecast skill over the Pacific Ocean is higher than skill over the continent. Over the 
ocean, the ACC is about 0.3-0.8 and is relatively higher in MAM and DJF than in JJA and SON. 
Over the continent, which we include to put the California results into a wider-scale context, the 
forecast skill varies from 0 to 0.7 for different regions and different seasons. The NMME models 
have very high forecast skills over Washington state in spring (ACC = 0.5-0.7) and over Nevada 
in summer (ACC = 0.6-0.7). Meanwhile, there is little skill over the California coastal region in 
any season, with only modest skill (ACC < 0.4) at most in the northern California coastal region 
in MAM and DJF. In California, the forecast skill changes dramatically from the near-coast 
ocean to the adjacent land and then to the inland continent. This is particularly evident in JJA, 
when the ACCs offshore and over the inland continent are 0.4 and 0.6 respectively, while the 
ACC around the coast is near 0. This low skill exists in all seasons over the southern California 
coastal region, and in JJA and SON the area of low skill extends farther north. 
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Figure 2. NMME ensemble mean surface temperature forecast skill measured by the anomaly 
correlation coefficient (ACC) for lead time 1 month, for (a) MAM, (b) JJA, (c) SON, and (d) DJF. 

Colors depict regions where ACC statistical significance is equal or exceeds the 90% confidence 
level. 

The skill of the persistence forecast is compared with the skill of the NMME ensemble mean in 
Figure 3, for lead times of 0 (upper row) and 1 (lower row) month. Red colors indicate locations 
where the NMME skill significantly exceeds persistence; blue indicates the opposite. The 
persistence forecast has higher skill over the ocean than over the continent in all seasons and at 
different lead times, which is similar to the NMME ensemble mean. However, unlike the 
NMME results, the persistence forecast does not show near-zero skill over the California coastal 
land region. Thus, at both of lead time 0 and 1 month, NMME has lower skill than persistence 
over the California coastal region in JJA and SON, and over the southern part of this region in 
MAM and DJF (Figure 3). At lead time 0 month over most of the other regions, the NMME 
ensemble mean forecasts yield similar forecast skill (ACC difference < 0.1) in MAM, JJA, and 
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DJF. However, at lead time 1 month for these three seasons, NMME forecasts yield greater skill 
than persistence in some inland areas and the relatively higher latitudes. For SON, NMME 0-
month lead forecast skill falls below persistence over almost all of California and northern 
Nevada, and NMME 1-month lead forecast skill is about equal to persistence over interior 
California and Nevada. 

    

    

 

Figure 3. Difference between NMME temperature forecast skill and persistence forecast skill 
(NMME minus persistence, colors), showing differences at or exceeding the 90% significant 

confidence level. Forecast skill is the anomaly correlation coefficient (ACC) for lead time 0 month 
(upper) and lead time 1 month (lower) for (a, e) MAM, (b, f) JJA, (c, g) SON, and (d, h) DJF. 

Persistence forecast skill is shown by contours. 

The previous results indicate that there is a large difference in the NMME forecast skills 
between the coastal and inland regions of California. To examine this further, we selected for 
analysis two locations in the California coastal region, near San Francisco and near San Diego, 
and two locations in the inland eastern California region, near Tahoe City and near Parker Dam 
(stars in Figure 4). Figure 5 shows the NMME ensemble mean forecast skill of seasonal mean 
surface temperature at these four locations for different seasons and lead times. There is no 
significant (at or exceeding the 90% confidence level) forecast skill at the two coastal locations. 
At San Diego, the ACC is close to 0 for all seasons and lead times. Meanwhile, the forecast skill 
at the two inland locations are much higher, especially in summer (~0.7 ACC at lead time 0 
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month), illustrating the difference of NMME forecast skill between the California coastal land 
region and the inland eastern California region. These results show that although there are 
relatively skillful seasonal forecasts for the inland eastern California region, the California 
coastal regions are poorly served by the seasonal temperature forecast. 

 

Figure 4. Four locations (stars) and 38°N transect (black line) for which forecast skill is evaluated 
(Figure 6, 7) in this study. Locations are San Francisco, Tahoe City, San Diego, and Parker Dam. 

Colors depict elevation (m). 
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Figure 5. Forecast skill (ACC) of NMME ensemble mean surface temperature at grid cells near: (a) 
San Francisco, (b) Tahoe City, (c) San Diego, and (d) Parker Dam (locations shown in Figure 4). 
Each season shown on y-axis, and lead time, from 0 to 6 months, shown on x-axis. Black dots 

indicate forecasts whose ACC achieves statistical significance reaches or exceeds 90% 
confidence level. 

To better illustrate the NMME forecasts of seasonal mean temperature for the four specific 
locations, a contingency table analysis is conducted for the four locations, presented in Table 2. 
Temperature anomalies for the 27 individual seasons (1983-2009) from NMME forecasts (1-
month lead time) and the observation are separately categorized into three catalogs: warm (9 
seasons with the warmest temperature anomaly), cold (9 seasons with the coldest temperature 
anomaly), and neutral (9 seasons with the temperature closest to the climatological mean). The 
contingency table shows the number of seasons in each combination of forecast and 
observation. For example, the top right panel in Table 2 shows the contingency table for JJA in 
Tahoe City: for the 9 observed warm JJA, the NMME ensemble mean forecasted 6 of the 9 
correctly, 3 of the 9 as the neutral, and none of the 9 as the cold (opposite). The result of Parker 
Dam is similar. The strongly distinct result is consistent with the highly significant JJA ACC 
feature that includes these two locations in Figure 5, confirming that the NMME is able to 
provide practical implications in terms of informing decision or policy making for the California 
inland locations for summer. In San Francisco (top left panel in Table 2), the NMME forecasted 5 
of the 9 observed cold DJF correctly and 2 of them as the warm (opposite), while the ACC is 
about 0.26. This implies that, even though the ACC is low, the NMME forecasts may have some 
potential implications for some specific locations and seasons, such as the winter in San 
Francisco. 

Table.2 Contingency table for diagnosis of seasonal mean temperature anomaly in observation 
and NMME forecast for DJF in San Francisco (top left), JJA in Tahoe City (top right), DJF in San 

Diego (bottom left), and JJA in Parker Dam (bottom right)

 San Francisco 
(DJF) 

observation 

warm neutral cold 

NMME 

warm 5 2 2 

neutral 2 5 2 

cold 2 2 5 

  

San Diego 
(DJF) 

observation 

warm neutral cold 

NMME 

warm 4 2 3 

neutral 1 5 3 

cold 4 2 3 

 

 

Parker Dam 
(JJA) 

observation 

warm neutral cold 

NMME 

warm 6 3 0 

neutral 3 3 3 

cold 0 3 6 

Tahoe City 
(JJA) 

observation 

warm neutral cold 

NMME 

warm 6 3 0 

neutral 3 3 3 

cold 0 3 6 
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It is also interesting to examine the forecast skill of individual NMME models. Figure 6 shows 
the ACC at grid cells along the 38°N ocean-land transect shown as the heavy line in Figure 4, at 
lead time 1 month. The individual NMME models exhibit a large variety of forecast skills. In 
MAM, the spread of ACC across models is much smaller over the ocean than over the inland 
region. For example, over the continent at about 120°W, the ACC of the CFSv2 model is 0.50 
while the ACC of the CanCM4 model is 0.02. In JJA, the ACC profiles of all six NMME models 
form a “V” shape from the ocean to inland continent, exhibiting high skill over the oceanic 
region, low skill over the immediate coastal land area, and higher skill over the interior land 
region. For example, in JJA from ocean (129°W) to the coastline (123°W) and then to the inland 
continent (119°W), the ACC of NMME ensemble mean changes from 0.51 to 0.08 to 0.73, and the 
ACC of CanCM4 changes from 0.42 to -0.15 to 0.66. In DJF, the NMME ensemble mean forecast 
skill is higher than the individual models over the oceanic region. However, in MAM, JJA, SON, 
and DJF over the continental region, there are some individual models with notably poor skill, 
so the NMME ensemble mean skill is lower than the relatively good individual models. Some of 
those relatively good individual NMME models and the NMME ensemble mean have similar or 
greater forecast skill than persistence in MAM and DJF, while in JJA and SON the models have 
lower skill than persistence over the oceanic and coastal region. For the lower latitudes, forecast 
skills along similar transects exhibit similar results, wherein the “V” shaped ACC profile with 
high skill over the oceanic region, low skill over the coastal land, and high skill over the interior 
land also appears in MAM and SON in the models (not shown). These results indicate that the 
poor forecast skill over the California coastal region is likely caused by some systematic error in 
these models. More research is needed to understand this peculiar reduction in seasonal 
forecast skill over this densely-populated region. 

 The profile of forecast skills along the 38°N transect is also examined at different lead times for 
the NMME ensemble mean and the persistence forecast in Figure 7. The forecast skills at lead 
time 5 months is lower than the skills at lead time 1 month, but still have similar patterns. The 
NMME forecast skills around the coast at different lead times are very low (ACC < 0.2) in JJA 
and SON. The NMME ensemble mean exhibits similar or higher forecast skills than persistence 
at both of lead time 1 month and 5 months in DJF and over the interior land region in all 
seasons. Meanwhile, the NMME has similar or lower forecast skills than persistence over the 
coastal land region in MAM, JJA, and SON at different lead times. 



12 

 

Figure 6. Forecast skill (ACC) of lead 1 month seasonal temperature forecasts along 38°N transect 
(black line in Figure 4) for the persistence, NMME ensemble mean, and the individual models for 

(a) MAM, (b) JJA, (c) SON, and (d) DJF. Vertical gray line is the position of the coast line. 
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Figure 7. Same as Figure 6 but for the NMME ensemble mean (solid lines) and the persistence 

forecast (dotted lines) at lead time 1 (red) and 5 (blue) months. 

 

3.3 Factors related to NMME Forecast Error 
The results in Section 3.2 show that the NMME forecast skill of seasonal mean surface 
temperature is very low over the California coastal land region, in contrast to the higher skill 
exhibited in the west over the coastal ocean and east over the interior. This contrast is especially 
strong in summer months (JJA). In this section, the NMME forecast error and some related 
factors are examined to explore potential impacts of different factors that might affect seasonal 
temperature forecasts, with particular attention paid to providing an understanding of the poor 
forecast skill over the California coastal region. The model forecast error is defined as the 
NMME forecasted seasonal temperature anomaly minus the observational temperature 
anomaly in the overlapping summer seasons (MJJ, JJA, and JAS). These forecast errors vary in 
magnitude and sign (sometimes too warm, sometimes too cool) between years within the 28-
year (1982-2009) time history of NMME forecasts. 

To investigate the spatial coherence of forecast errors, the correlation between the time series of 
NMME forecast error at a specific location and that at all locations on the map at lead time 1 
month are calculated for the two California coastal locations and the two eastern California 
inland locations (Figure 8). Note that a 95% confidence level is used here and in the subsequent 
two figures since they describe climatological connections between different regions, unlike the 
90% confidence level used in previous figures describing forecast still. This is because current 
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GCMs do a better job reproducing the connections between related climate fields (temperature, 
cloudiness, geopotential height) than they do in producing skillful forecasts. 

The forecast error of San Francisco correlates highly (r > 0.6) with forecast errors over the 
California coastal region and the adjacent ocean, but does not correlate significantly with the 
forecast errors over inland California (Figure 8). The pattern of correlations for San Diego is 
similar with that of San Francisco. Meanwhile, forecast errors at the inland Tahoe City and 
Parker Dam correlate highly with errors over a broad swath of the inland region, but do not 
correlate significantly with the errors over the coastal region. These results suggest that a set of 
common drivers may be at play in causing coastal forecast errors, separate from those that 
cause forecast errors over the inland region. 

 
Figure 8. Correlation (contours) of NMME forecast error time series at a specific location and at all 

grid points on the map at lead time 1 month for three summer seasons (MJJ, JJA and JAS). 
Locations are (a) San Francisco, (b) Tahoe City, (c) San Diego, and (d) Parker Dam (star in each 

panel). Colors indicate locations whose correlation is significant at 95% confidence level or 
higher.  
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Figure 9. Correlations (contours) between the 500 hPa geopotential height anomaly time series at 

all grid points and the time series of NMME forecast error at lead time 1 month at (a) San 
Francisco, (b) Tahoe City, (c) San Diego, and (d) Parker Dam (stars in Figure 4) for three summer 

seasons (MJJ, JJA and JAS). Colors designate correlations significant at or above the 95% 
confidence level. 

To investigate the associations of regional forecast error with larger scale atmospheric 
circulation, Figure 9 shows how forecast errors at the four individual locations of Figure 4 
correlate with observed 500 hPa geopotential height anomalies over an extensive region from 
the central North Pacific eastward to the western North Atlantic Ocean. The 500 hPa 
observations during the three months of the forecast are used. The forecast error at Tahoe City 
has a strong negative correlation (r = -0.8) with the 500 hPa geopotential height anomaly over 
the U.S. west coast and a weak positive correlation (r = 0.3) at the upstream region over central 
North Pacific Ocean. That is, negative 500 hPa height anomalies over the West Coast result in 
positive NMME forecast errors (forecast is warmer than observed) and vice versa for positive 
500 hPa height anomalies. A similar pattern of 500 hPa correlation occurs in association with 
forecast errors at Parker Dam, which is not surprising since the forecast errors at the inland 
eastern California region are highly coherent. Meanwhile, the patterns of 500 hPa correlation 
associated with forecast errors at the two California coastal locations are quite different. 
Forecast errors at San Francisco and San Diego correlate positively (r = 0.3-0.5) with the 500hPa 
anomaly at the subtropical/tropical region and the eastern Pacific Ocean. It indicates that a 
strengthened subtropical/tropical high and the eastern Pacific ridge produce positive forecast 
errors along the California coast, wherein positive errors mean that NMME forecasts tend to 
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produce anomalies that are warmer than those of observations, and vice versa for a weakened 
subtropical ridge. 

 
Figure 10. Correlation (colors) between coastal low cloudiness anomalies and the NMME forecast 
errors at lead time 1 month at each grid point in 1996-2009 summer seasons (MJJ, JJA and JAS). 

Black dots indicate correlations that are statistically significant at the 95% confidence level. 

In addition to the associations between forecast performance and the large-scale atmospheric 
circulation, the impact of regional coastal low cloudiness on NMME forecast error is also 
investigated. Figure 10 shows correlations between the field of coastal low cloudiness and the 
NMME forecast error at lead time 1 month for 1996-2009 summer seasons (MJJ, JJA, and JAS), 
when the cloud data is available. Correlations consider the cloudiness over the same 3-month 
period as the 3-month temperature forecast, and are computed independently for each grid cell. 
Significant (95% confidence level) positive correlations (r = 0.3-0.6) occur over most of the 
coastal region. Around San Francisco the correlation is about +0.6, indicating that when it is 
anomalous foggy and/or cloudy around San Francisco, the NMME forecasted temperature 
tends to be warmer than was actually observed in May-September. Conversely, when the skies 
are unusually clear in May-September, NMME forecasts tend to be cooler than observed 
temperatures. Since the coastal low cloudiness can modulate the coastal summer temperature 
by reducing the daytime maximum temperature (Iacobellis and Cayan, 2013), more cloudiness 
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may lower the summer temperature, and vice versa for situations with clear skies. Meanwhile, 
the coarse-resolution dynamical models are known to have significant limitations in resolving 
the low clouds (Randall et al. 2003; Schneider et al. 2017). Together with these previous results, 
our findings suggest that the models’ poor skill in predicting coastal California summer 
temperatures is a direct result of the models’ poor skill in forecasting coastal cloud conditions. 

The temperature anomalies in summer seasons at San Francisco and an adjacent area over the 
ocean (same latitude but 2° west of San Francisco) are extracted to examine the NMME forecast 
errors in more detail. At a lead time of one month, the difference between the temperature 
anomalies in the NMME and observations at San Francisco (land; Figure 11, upper) is much 
larger than the corresponding values over the ocean (Figure 11, lower). About 50% of these 
seasons have NMME anomalies with opposite signs from the observed temperature anomalies. 
Over land, the correlation between the NMME and observed temperature anomalies is only 
about 0.1. Meanwhile, over the adjacent ocean, the correlation between the NMME temperature 
anomalies and those of observations is much higher, about 0.7. 
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Figure 11. Time series of surface temperature anomaly (standard deviation) for (a) San Francisco 
and (b) adjacent location over the ocean, in 1983-2009 summer seasons (MJJ, JJA and JAS) for 

the NMME ensemble mean at lead time 1 month (red) and the observed temperature (blue). 

Based on the forecast errors at San Francisco shown in Figure 11a, the ten seasons with the 
largest positive forecast errors (model forecast too warm) and ten seasons with the lowest 
forecast errors (anomalies in the model and observation very close) were selected for the period 
1996-2009, when the cloudiness data are available. In the ten seasons with the largest positive 
errors, there are large positive cloudiness anomalies (0.5-0.6 standard deviations greater than 
the mean) around San Francisco in the composite cloudiness anomaly (Figure 12b). In 
comparison, for the ten seasons with the lowest errors at San Francisco, the coastal low 
cloudiness is very close to the climatological mean (Figure 12a). The same analysis is also 
conducted for San Diego, with similar results. When the model forecast is too warm around San 
Diego, there are large positive cloudiness anomalies around this region (not shown). This 
indicates that compared to observations, the NMME models overestimate the surface 
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temperature anomalies in May-September around San Francisco and San Diego during 
anomalously foggy/cloudy summers (and vice-versa). 

 
Figure 12. Composite coastal low cloudiness anomaly of the ten summer seasons having (a) the 

lowest forecast error and (b) the largest positive forecast error at lead time 1 month, at San 
Francisco during 1996-2009. Units are standard deviations indicated by colors, and contours in %. 

 

4: Conclusions 
Anticipating weather conditions with lead times of one to several months offers the prospect of 
improving natural gas system management through improved demand forecasts. This study 
investigates the skill of retrospective seasonal forecasts (sometimes termed “hindcasts”) of near-
surface air temperature over the California region using forecasts from six coupled dynamical 
models participating in the North American Multimodel Ensemble (NMME) phase 2 over the 
period 1982-2009. While NMME seasonal forecasts exhibit skill that exceeds persistence in some 
regions for leads of 0 to 6 months, the results demonstrate a consistent pattern of low (near 
zero) forecast skill over California coastal land regions. To explore possible causes of this 
NMME forecast error, associations between NMME forecast errors and other atmospheric fields 
(500 hPa geopotential height and coastal low cloudiness) are examined. The major conclusions 
include: 

1. At short time leads (forecast lead time 0 month) NMME ensemble mean forecast skill of 
seasonal average surface temperature is positive but close to or lower than the skill of 
persistence forecasts over the California region (Figure 3). At lead times 1 month out to 6 
months, the NMME models produced positive skill that exceeds that of persistence. 

2. Over California coastal land regions forecast skill in NMME is poor (ACC < 0.2) at all lead 
times, and markedly lower than the skill over the nearby offshore ocean and inland 
continent (Figures 2, 5, 6, and 7). This low skill area exists in the Southern California region 
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for NMME cool season (MAM and DJF) forecasts. For forecasts of the warm seasons (JJA 
and SON) the low skill over coastal land expands and extends northward along the coast. 
Yearly variations in NMME forecast skill correlate strongly between distant coastal 
locations (San Francisco and San Diego), but do not correlate well with NMME forecast 
skill over inland areas (Figure 8). Forecast skill at two separated California inland 
locations (Tahoe City and Parker Dam) also correlate highly. These results hold up for all 
seasons and lead time 0-6 months, confirming the distinct regimes of forecast performance 
that occurs in coastal vs. inland California land (Figure 5). Consistent with that, the 
contingency table analysis indicates that the NMME models produce skillful seasonal 
anomaly forecasts for some specific seasons and California inland locations that could 
inform practical applications, but there is little value in NMME forecasts over the 
California coastal region. Current NMME models have little improved forecasting ability 
over other methods for the California coastal region. 

3. Forecast errors at two coastal locations are associated with large scale anomalies of 
geopotential height (500 hPa) over the tropics and subtropics from the southwest to the 
southeast of the California region, with modest positive correlations 0.2-0.5 (Figures 10 a 
and c). In contrast, forecast errors at two inland locations exhibit strong negative 
correlations (<- 0.8) with 500hPa anomalies over the western U.S. (Figure 9 b and d). 

4. For summer seasons (MJJ, JJA, and JAS), where NMME seasonal forecasts over the 
California coastal land region are notably poor, the NMME forecast errors correlate 
significantly with variations in stratus clouds along the California coast. Forecast error 
correlates positively (+0.2 to +0.6) with local low cloudiness over the coastal and offshore 
areas during summer seasons (Figure 10). NMME forecasts tend to be warmer than 
observed when coastal low cloudiness has a strong positive anomaly over the California 
coastal region (Figure 12). 

5. All the models available in the NMME ensemble exhibit the dip in forecast skill along the 
coast. All the models’ cloudiness results indicate that the locally poor forecast skill is 
related to errors in simulating low cloudiness. Therefore, we find no evidence that the 
current set of models can be subsetted to eliminate poor quality models while retaining 
high-performing models in this region. 

Although poor forecast performance of seasonal mean surface temperature along the narrow 
California coastal region may be ignored in the studies for the global or North America domain, 
there are important regional consequences, particularly since the population density in 
California is highest near the coast. Having skillful forecasts of temperature within the 
subsequent month out to several months in advance would be very useful for energy, 
agriculture, and public health considerations over the highly-populated California coastal 
region. For example, a reliable forecast for an anomalously warm summer at lead time one to a 
few months will have practical application for natural gas as well as electric utilities because 
temperature anomalies drive energy demand. Skillful temperature forecasts will also elucidate 
conditions related to drought in California since anomalous temperature plays an important 
role in anomalous evaporation and snowpack loss. NMME temperature forecasts are notably 
poor in coastal region, but there are some suggestions that these forecasts can be improved. One 
source for optimism is that NMME forecasts produce substantially higher skill at the nearby 
and offshore oceanic region and the adjacent interior region of California, along with better 
persistence forecasts along the coastal land area. 
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Future studies on temperature forecast skill errors could pursue multiple approaches. These 
include understanding the development of low (or high) forecast skill over the California 
coastal region on shorter time scales (5-day, 15-day, monthly), investigating the influence of 
coastal low cloudiness on the forecast skill during the earlier- and later- than the core summer 
season, and exploring other potential factors impacting sub-seasonal to seasonal temperature 
forecast skill in the California region. 

Our results suggest that poor forecast of coastal low cloudiness is a key local factor contributing 
to poor seasonal temperature forecast skill along the California coast, and is as important as 
other more widely recognized factors in controlling seasonal forecast skill, such as sea surface 
temperature, ENSO, and the Madden-Julian Oscillation. More effort might be made to resolve 
processes associated with stratus clouds in order to improve the sub-seasonal to seasonal 
temperature forecast over the California coastal region. Improved understanding of these 
processes would contribute to improved forecasts of energy demand on times scales of one to 
several months in advance, as well as how those demands will be expected to change in light of 
climate change. 



22 

5: References 
Becker, E., den Dool, H.V. and Zhang, Q., 2014: Predictability and forecast skill in 

NMME. Journal of Climate, 27(15), pp.5891-5906. 

Becker, E. and Van Den Dool, H., 2016: Probabilistic Seasonal forecasts in the North American 
multimodel ensemble: a baseline skill assessment. Journal of Climate, 29(8), pp.3015-3026. 

Clemesha, R.E., Gershunov, A., Iacobellis, S.F., Williams, A.P. and Cayan, D.R., 2016: The 
northward march of summer low cloudiness along the California coast. Geophysical 
Research Letters, 43(3), pp.1287-1295. 

Chen, L.C., Van den Dool, H., Becker, E. and Zhang, Q., 2017: ENSO precipitation and 
temperature forecasts in the North American Multimodel Ensemble: Composite analysis 
and validation. Journal of Climate, 30(3), pp.1103-1125. 

Harris, I.P.D.J., Jones, P.D., Osborn, T.J. and Lister, D.H., 2014: Updated high‐resolution grids of 
monthly climatic observations–the CRU TS3. 10 Dataset. International Journal of 
Climatology, 34(3), pp.623-642. 

Hervieux, G., Alexander, M.A., Stock, C.A., Jacox, M.G., Pegion, K., Becker, E., Castruccio, F. 
and Tommasi, D., 2017: More reliable coastal SST forecasts from the North American 
multimodel ensemble. Climate Dynamics, pp.1-16. 

Iacobellis, S.F. and Cayan, D.R., 2013: The variability of California summertime marine stratus: 
Impacts on surface air temperatures. Journal of Geophysical Research: Atmospheres, 118(16), 
pp.9105-9122. 

Infanti, J.M. and Kirtman, B.P., 2014: Southeastern US rainfall prediction in the North American 
multi-model ensemble. Journal of Hydrometeorology, 15(2), pp.529-550. 

Jacox, M.G., Alexander, M.A., Stock, C.A. and Hervieux, G., 2017: On the skill of seasonal sea 
surface temperature forecasts in the California Current System and its connection to 
ENSO variability. Climate Dynamics, pp.1-15. 

Kirtman, B.P., Min, D., Infanti, J.M., Kinter III, J.L., Paolino, D.A., Zhang, Q., Van Den Dool, H., 
Saha, S., Mendez, M.P., Becker, E. and Peng, P., 2014: The North American multimodel 
ensemble: phase-1 seasonal-to-interannual prediction; phase-2 toward developing 
intraseasonal prediction. Bulletin of the American Meteorological Society, 95(4), pp.585-601. 



23 

Lawrence, D.M., Oleson, K.W., Flanner, M.G., Fletcher, C.G., Lawrence, P.J., Levis, S., Swenson, 
S.C. and Bonan, G.B., 2012: The CCSM4 land simulation, 1850–2005: Assessment of 
surface climate and new capabilities. Journal of Climate, 25(7), pp.2240-2260. 

Merryfield, W.J., Lee, W.S., Boer, G.J., Kharin, V.V., Scinocca, J.F., Flato, G.M., Ajayamohan, 
R.S., Fyfe, J.C., Tang, Y. and Polavarapu, S., 2013: The Canadian seasonal to interannual 
prediction system. Part I: Models and initialization. Monthly weather review, 141(8), 
pp.2910-2945. 

Merryfield, W. J., F. J. Doblas-Reyes, L. Ferranti, J.-H. Jeong, Y. J. Orsolini, R. I. Saurral, A. A. 
Scaife, M. A. Tolstykh, and M. Rixen 2017: Advancing climate forecasting, Eos, 98, 
https://doi.org/10.1029/2017EO086891. Published on 27 November 2017. 

Mo, K.C. and Lyon, B., 2015: Global meteorological drought prediction using the North 
American multi-model ensemble. journal of Hydrometeorology, 16(3), pp.1409-1424. 

Newman, M., Sardeshmukh, P.D., Winkler, C.R. and Whitaker, J.S., 2003: A study of 
subseasonal predictability. Monthly weather review, 131(8). 

Pegion, K. and Sardeshmukh, P.D., 2011: Prospects for improving subseasonal 
predictions. Monthly Weather Review, 139(11), pp.3648-3666. 

Randall, D., Khairoutdinov, M., Arakawa, A. and Grabowski, W., 2003: Breaking the cloud 
parameterization deadlock. Bulletin of the American Meteorological Society, 84(11), pp.1547-
1564. 

Rayner, N.A., Parker, D.E., Horton, E.B., Folland, C.K., Alexander, L.V., Rowell, D.P., Kent, E.C. 
and Kaplan, A., 2003: Global analyses of sea surface temperature, sea ice, and night 
marine air temperature since the late nineteenth century. Journal of Geophysical Research: 
Atmospheres, 108(D14). 

Saha, S., Moorthi, S., Wu, X., Wang, J., Nadiga, S., Tripp, P., Behringer, D., Hou, Y.T., Chuang, 
H.Y., Iredell, M. and Ek, M., 2014: The NCEP climate forecast system version 2. Journal of 
Climate, 27(6), pp.2185-2208. 

Saha, S., Moorthi, S., Pan, H.L., Wu, X., Wang, J., Nadiga, S., Tripp, P., Kistler, R., Woollen, J., 
Behringer, D. and Liu, H., 2010: The NCEP climate forecast system reanalysis. Bulletin of 
the American Meteorological Society, 91(8), pp.1015-1058. 

Schneider, T., Teixeira, J., Bretherton, C.S., Brient, F., Pressel, K.G., Schär, C. and Siebesma, A.P., 
2017: Climate goals and computing the future of clouds. Nature Climate Change, 7(1), p.3. 



24 

Shukla, S., Safeeq, M., AghaKouchak, A., Guan, K. and Funk, C., 2015: Temperature impacts on 
the water year 2014 drought in California. Geophysical Research Letters, 42(11), pp.4384-
4393. 

Slater, L.J., Villarini, G. and Bradley, A.A., 2016: Evaluation of the skill of North-American 
multi-model ensemble (NMME) global climate models in predicting average and 
extreme precipitation and temperature over the continental USA. Climate Dynamics, 
pp.1-16. 

Vecchi, G.A., Delworth, T., Gudgel, R., Kapnick, S., Rosati, A., Wittenberg, A.T., Zeng, F., 
Anderson, W., Balaji, V., Dixon, K. and Jia, L., 2014: On the seasonal forecasting of 
regional tropical cyclone activity. Journal of Climate, 27(21), pp.7994-8016. 

Vernieres, G., M. M. Rienecker, R. Kovach, and C. L. Keppenne, 2012: The GEOS-iODAS: 
Description and evaluation. NASA Tech. Rep. NASA/TM-2012-104606, Vol 30, 61. 

Vitart, F., Ardilouze, C., Bonet, A., Brookshaw, A., Chen, M., Codorean, C., Déqué, M., Ferranti, 
L., Fucile, E., Fuentes, M. and Hendon, H., 2017: The subseasonal to seasonal (S2S) 
prediction project database. Bulletin of the American Meteorological Society, 98(1), pp.163-
173. 

Wang, H., 2014: Evaluation of monthly precipitation forecasting skill of the National Multi‐
Model Ensemble in the summer season. Hydrological processes, 28(15), pp.4472-4486. 

White, C.J., Carlsen, H., Robertson, A.W., Klein, R.J., Lazo, J.K., Kumar, A., Vitart, F., Coughlan 
de Perez, E., Ray, A.J., Murray, V. and Bharwani, S., 2017: Potential applications of 
subseasonal‐to‐seasonal (S2S) predictions. Meteorological Applications. 

Winkler, C.R., Newman, M. and Sardeshmukh, P.D., 2001: A linear model of wintertime low-
frequency variability. Part I: Formulation and forecast skill. Journal of climate, 14(24), 
pp.4474-4494. 


	ACKNOWLEDGEMENTS
	PREFACE
	ABSTRACT
	HIGHLIGHTS
	TABLE OF CONTENTS
	1: Introduction
	2: Data and Methods
	3: Results
	3.1 NMME Forecasted Temperature Climatology and Biases
	3.2 Skill of Seasonal Mean Temperature Forecasts
	3.3 Factors related to NMME Forecast Error

	4: Conclusions
	5: References



