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PREFACE 
California’s Climate Change Assessments provide a scientific foundation for understanding 
climate-related vulnerability at the local scale and informing resilience actions. These 
Assessments contribute to the advancement of science-based policies, plans, and programs to 
promote effective climate leadership in California. In 2006, California released its First Climate 
Change Assessment, which shed light on the impacts of climate change on specific sectors in 
California and was instrumental in supporting the passage of the landmark legislation 
Assembly Bill 32 (Núñez, Chapter 488, Statutes of 2006), California’s Global Warming Solutions 
Act. The Second Assessment concluded that adaptation is a crucial complement to reducing 
greenhouse gas emissions (2009), given that some changes to the climate are ongoing and 
inevitable, motivating and informing California’s first Climate Adaptation Strategy released the 
same year. In 2012, California’s Third Climate Change Assessment made substantial progress in 
projecting local impacts of climate change, investigating consequences to human and natural 
systems, and exploring barriers to adaptation.  

Under the leadership of Governor Edmund G. Brown, Jr., a trio of state agencies jointly 
managed and supported California’s Fourth Climate Change Assessment: California’s Natural 
Resources Agency (CNRA), the Governor’s Office of Planning and Research (OPR), and the 
California Energy Commission (Energy Commission). The Climate Action Team Research 
Working Group, through which more than 20 state agencies coordinate climate-related 
research, served as the steering committee, providing input for a multisector call for proposals, 
participating in selection of research teams, and offering technical guidance throughout the 
process. 

California’s Fourth Climate Change Assessment (Fourth Assessment) advances actionable 
science that serves the growing needs of state and local-level decision-makers from a variety of 
sectors. It includes research to develop rigorous, comprehensive climate change scenarios at a 
scale suitable for illuminating regional vulnerabilities and localized adaptation strategies in 
California; datasets and tools that improve integration of observed and projected knowledge 
about climate change into decision-making; and recommendations and information to directly 
inform vulnerability assessments and adaptation strategies for California’s energy sector, water 
resources and management, oceans and coasts, forests, wildfires, agriculture, biodiversity and 
habitat, and public health.  

The Fourth Assessment includes 44 technical reports to advance the scientific foundation for 
understanding climate-related risks and resilience options, nine regional reports plus an oceans 
and coast report to outline climate risks and adaptation options, reports on tribal and 
indigenous issues as well as climate justice, and a comprehensive statewide summary report. 
All research contributing to the Fourth Assessment was peer-reviewed to ensure scientific rigor 
and relevance to practitioners and stakeholders.  

For the full suite of Fourth Assessment research products, please 
visit www.climateassessment.ca.gov. This report explores new approaches to measure forest 
biomass and develops new methods to quantify the trade-off between biomass storage and 
stability for fire prone forests. 

 

http://www.climateassessment.ca.gov/


 

 

 

 



 

 

ABSTRACT 
California has a pressing need to measure and manage forest carbon. Fusion of satellite-based 
data with plot-level information provides a promising means to measure forest biomass at 
relevant spatial and temporal scales. Key questions remain regarding accuracy and feasibility. 
Over a century of fire suppression complicates managing forest carbon in California's dry 
forests. Live tree biomass is at risk of loss due to wildfire. Here, we evaluated the performance 
of an emerging technology using Landsat imagery, forest inventory data, and gradient nearest 
neighbor imputation (referred to as LT-GNN) to measure annual aboveground live tree biomass 
(AGB) across multiple spatial scales. We also developed a means to quantify the trade-off 
between biomass storage and stability for fire-prone forests. 

We relied on two independent estimates of AGB to evaluate LT-GNN results: local assessments 
calculated from field-data and airborne light detection, and county estimates calculated from 
Forest Inventory and Assessment plot results. We also used repeated measurements conducted 
in Forest Inventory and Analysis plots to quantify the ability of LT-GNN to detect trends in 
AGB. Finally, we extended a field experiment at Blodgett Forest Research Station in 
Georgetown, California to gain insights into biomass dynamics of fire-prone forests.  

LT-GNN is a promising method to monitor live tree biomass. Its success at interpolating 
county-level tree biomass suggests an application-ready means to track annual biomass at a 
policy-relevant scale. However, improvements are needed to track change under stable 
conditions. At finer scales applications must be pursued with more caution. In particular, LT-
GNN did not accurately predict AGB in an old-growth redwood forest. At Blodgett, we 
quantified the trade-off between biomass storage and stability. Fuel treatments did lower the 
overall biomass stored, but more biomass survived fire compared to the untreated forest. 
However, trade-off between biomass storage and stability critically depends on the probability 
of fire occurring in these stands. 

Keywords: aboveground live tree biomass, LandTrendr, Gradient Nearest Neighbor, biomass 
stability, biomass storage, carbon carrying capacity, forest biomass monitoring system 
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HIGHLIGHTS 
• The LandTrendr-Gradient Nearest Neighbor system is a promising means to monitor live 

tree biomass in California's forest.  

• The success of this approach at interpolating county-level tree biomass suggests an 
application-ready means to track annual biomass at a policy-relevant scale. 

• However, improvements need to be made in LT-GNN’s ability to track change under 
stable conditions and to capture AGB in high-biomass forests.  

• We presented a framework for evaluating the trade-off between biomass storage and 
stability in fire-prone forest and applied it to a well-studied Sierran mixed conifer forest. 

• Fuel treatments lowered the overall biomass stored but more of this biomass survived a 
fire compared to the untreated forest.  

• We proposed the term "stable aboveground biomass" to describe the fraction of live tree 
biomass on a site that is capable of surviving a problem wildfire.   
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1: Innovations in Measuring Forest Carbon 
1.1 Introduction  
Remote sensing combined with field inventory data can provide spatially and temporally consistent 
biomass estimates.       Woodall et al. 2015 

 

As noted by the US Forest Service's framework for carbon accounting (Woodall et al. 2015), the 
fusion of remote sensing with field data provides a potential means to improve forest carbon 
monitoring. As one of the few jurisdictions in the world to enact mandatory greenhouse gas 
(GHG) emissions reductions, California has a pressing need to measure its forest carbon (Forest 
Climate Action Team 2018). Yet, measuring forest carbon at the appropriate temporal and 
spatial resolution to inform GHG reduction strategies has proven challenging.  

The forests of California are vast, diverse, and dynamic. There are nearly 130,000 km2 of forest 
that account for 31% of the land area in the state (Christensen et al. 2017). Forests in the state 
represent more than 200 different vegetation classes (Landfire 2010) and include some of the 
most carbon dense ecosystems on earth (Gonzalez et al. 2010). These forests are also rapidly 
changing due to a host of drivers like global warming, urban development, severe wildfire, 
warm droughts, invasive diseases, and insect pests (Forest Climate Action Team 2018). Recent 
revisions in the Forest Inventory and Analysis (FIA) program have greatly improved the 
inventory of forest carbon (Bechtold and Patterson 2005). However, given the design of the 
sampling, methods that rely exclusively on FIA data will be limited to a temporal resolution of 
every 10 years (sensu Woodall et al. 2015) and a spatial resolution at the state and county levels.  

The fusion of satellite-based data with plot-level information provides a means to improve the 
resolution of forest biomass maps (Gonzalez et al. 2015, Kennedy et al. 2018, Appendix A). 
However key questions remain about their accuracy and feasibility. The approach developed by 
Gonzalez et al. (2015) relies on LANDFIRE, an integrated national product   to track change in 
forest carbon (Landfire 2010). Thus, the timing is constrained by the release of LANDFIRE 
updates. Also, as noted by Gonzalez et al. (2015), their method underestimated growth in intact 
mature forests. Kennedy et al. (2018) describe a system that integrates time series signals 
derived from the Landsat Thematic Mapper with FIA inventory data to measure annual 
changes in forest biomass. However, a major concern is feasibility. Their method is 
computationally and analytically expensive (Kennedy et al. 2018). Thus, neither method fully 
satisfies California’s need for a reliable, cost-effective, system for monitoring forest carbon 
(Forest Climate Action Team 2018).  

In this chapter, we evaluated the performance of an emerging technology, the Landsat-based 
Detection of Trends in Disturbance and Recovery (LandTrendr, Kennedy et al. 2010), to 
measure forest carbon in California at yearly intervals across multiple spatial scales. The 
assignment of carbon values relies on results from the FIA plot data and a nearest neighbor 
imputation technique – the gradient nearest neighbor (GNN) method (Ohmann and Gregory 
2002). The combination of LandTrendr segmentation and GNN imputation has proven a 
reliable means to track changes in forest structure (Ohmann et al. 2012), including aboveground 
live biomass (Kennedy et al. 2018). Specifically, we tested the hypothesis that LandTrendr 
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coupled with GNN imputation represents a repeatable, cost-effective approach to measure 
aboveground live biomass in California's forests.  

1.2 Methods 
1.2.1 Overview 
In this chapter, we focused on the measurement of aboveground live tree biomass (AGB). AGB 
is directly tied to carbon storage in that 1 grams of woody biomass (dry) typically contains 0.47 
grams carbon (McGroddy et al. 2004). We recognize that live trees represent only a fraction of 
the forest carbon (Woodall et al. 2015). However, it is a large pool that sequesters CO2 as long as 
the tree remains alive. Given the longevity of live trees, they contribute to mitigation strategies. 
Moreover, the aboveground portion can be reliably measured in the field and linked to signals 
gleaned from remote sensing (Appendix A). Finally, aboveground live tree biomass tends to be 
a good indicator of forest carbon accumulation (Keith et al. 2009).  

Our biomass monitoring scheme builds on the LandTrendr-GNN (LT-GNN) framework 
described in Kennedy et al. (2018). However, the LT-GNN estimates tested here include three 
innovations: a version of the LandTrendr algorithm implemented on the Google Earth Engine 
platform; alternatives for GNN imputation that account for uncertainties in gradient space; and 
the extension of LT-GNN mapping in California from 1990-2016. These innovations are 
described in more detail below. To evaluate the LT-GNN results, we relied on two independent 
estimates of AGB: local assessments calculated from field data and airborne light detection and 
ranging (LiDAR) and county estimates calculated from FIA plot results. We also used the 
repeated measurements conducted in FIA plots to quantify the ability of LT-GNN to detect 
trends in AGB.  

1.2.2 LandTrendr-GNN framework  
LT-GNN provides a valuable approach for translating the multi-decadal Landsat archive into a 
spatially and temporally explicit representation of forest biomass, and thus carbon stock, 
patterns. LT-GNN was developed under a grant from the USDA National Institute for Food and 
Agriculture by the Kennedy lab at Oregon State University and the Landscape Ecology, 
Modeling, Mapping and Analysis (LEMMA) team, a collaborative Oregon State University and 
USDA Forest Service research team currently led by David Bell. LT-GNN involves three phases 
(Figure 1.1): LandTrendr algorithm implementation, integration of LandTrendr and GNN, and 
plot-based analyses and comparisons. The LandTrendr algorithm (Figure 1.1; LandTrendr) uses 
pixel-level temporal segmentation procedures to remove noise from the Landsat image time-
series (LTS) and retains the major trends in the spectral signal through time (described in detail 
in Kennedy et al. 2010). The resulting temporally-smoothed LTS data are then used for biomass 
modeling purposes. Moreover, the introduction of a new Landsat sensor (i.e., Landsat 8) raised 
a concern about temporal consistency of the images -- an important consideration since 
LandTrendr relies on limiting noise in the LTS. Thus, as part of the effort to develop LT-GNN as 
an operational means to monitor forest carbon, we moved the LandTrendr algorithm into 
Google’s Earth Engine platform in a manner that allows incorporation of the evolving Landsat 
sensor suite. See Appendix B for details on the transition. All of the LT-GNN results presented 
here were based on imagery processed using the Google Earth Engine implementation of 
LandTrendr.  

 



 3  

 

 
Figure 1.1: Representation of the LandTrendr-GNN framework 

Once produced, temporally-smoothed LTS imagery is integrated with other geospatial data and 
forest inventory data in the GNN modeling method to produce forest biomass maps (Figure1.1; 
LandTrendr+GNN). GNN is a k nearest neighbor (kNN) imputation methodology designed 
explicitly for landscape vegetation mapping (Ohmann and Gregory 2002). Imputation mapping 
is a method for substituting observed values (i.e., forest inventory data) to replace missing data 
for all pixels in an area, resulting in a map as output. Specifically, a kNN imputation assigns 
those missing values based on some set of observations that are similar to the pixel of interest in 
terms of environmental conditions (i.e., minimizes distance in environmental or gradient space). 
In the case of GNN, the environmental space is defined by a constrained ordination (direct 
gradient analysis) – canonical correspondence analysis (CCA; ter Braak 1986) that relates forest 
attributes from forest inventory plots (i.e., species matrix) to geospatial data extracted at those 
same plot locations (i.e., environment matrix) – for measuring and weighting distances in 
nearest neighbor calculations (Ohmann and Gregory 2002). Past experience indicates that 
climate, topography, and ecoregion best define the environmental matrix (Ohmann et al. 2014). 
Based on the CCA, both forest inventory plots and pixels to which we wish to impute data can 
be placed in gradient space. In this gradient space, kNN imputation then proceeds by allocating 
the (weighted or unweighted) mean of the k nearest neighbors for a given pixel (i.e., minimum 
distances to pixels in gradient space) to each pixel, producing the vegetation maps of interest.  

Central to the performance of LT-GNN is the kNN imputation method. Several methods exist 
for assessing imputation uncertainties, including parametric methods and non-parametric 
methods (McRoberts et al. 2007, McRoberts 2012, Bell et al. 2015). Specifically, we developed LT-
GNN biomass maps using three implementations of GNN: k = 1 (GNNk1), bootstrapping 
approximation (GNNba), and k = 10 (GNNk10). GNNk1 is the traditional GNN implementation, 
where the nearest neighbor to the pixel in gradient space is imputed to that pixel (e.g., Ohmann 
and Gregory 2002). This method results in maps where unrealistic combinations of attributes 
cannot be produced (i.e., each prediction was observed at least once in the field). However, 
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model precision cannot be directly assessed. For larger values of k, estimates of uncertainties 
can be assessed. For GNNba, an approximation of non-parametric bootstrapping can be used to 
assess precision at the scale of pixels for a k = 1 kNN process (Bell et al. 2015). For GNNk10, 
variation in neighbors within and among pixels forms the basis of model-based inference 
(McRoberts et al. 2007), with predictions being the unweighted means of the k nearest 
neighbors. We constructed AGB predictions based on GNNk1, GNNba, and GNNk10 in order to 
access the accuracy for all three predictions and to estimate the uncertainty for results based on 
GNNk10. For details on the GNN modeling see Appendix C. 

Figure 1.2: Map showing location of the study sites in California where the LiDAR-derived maps of 
aboveground live tree biomass were developed with field data. 

 

1.2.3 Evaluating LT-GNN predictions 
1.2.3.1 LiDAR-derived AGB maps  
For the plot-to-landscape scale (900 m2 to >100 km2) assessment of LT-GNN, we developed AGB 
maps for six sites where we had concurrent field inventory and LiDAR data. These study areas 
(Figure 1.2) represent a range of forest conditions found (Table 1.1) in two common and 
biomass-dense forests in California: the Sierran conifer forest and the coast redwood forest 
(Gonzalez et al. 2010, Gonzalez et al. 2015). Such maps based on airborne LiDAR metrics 
combined with reliable concurrent field measurements produce highly reliable estimates of 
forest biomass (Dubayah and Drake 2000, Zolkos et al. 2013). Thus, we considered the LiDAR 
results as high fidelity baselines to evaluate the LT-GNN predictions at the local scale.  

Table 1.1: Summary of information on field plot data collection for the study areas. AGB is the 
aboveground live tree biomass; COV is the plot-level coefficient of variation in AGB. AGB reported 
as megagrams per hectare (Mg ha-1). 
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Site Plot 
number 

Plot size 
(ha) 

Year(s) 

sampled 

AGB median 

(max-min) 

(Mg ha-1) 

COV 

Garcia 28 0.1  2005 290 (68-472) 48 

Mailliard  12 0.1  2005 606 (336-1392) 47 

North Yuba 36 0.1 2005 317 (0-1118) 68 

Last Chance 103 0.05 2013 136 (0-1625) 119 

Blodgett  525 0.04 2013-15 298 (3- 603) 69 

Sugar Pine 121 0.05 2007-08 348 (34-1667) 71 

  

Our goal in the production of the LiDAR-derived AGB maps was to apply proven approaches 
consistently across all six sites (Figure 1.3). Details are available in Appendix D. Briefly we 
calculated plot-level AGB estimates using the same regional allometric equations (FIA 2010) 
included in the LT-GNN models. These plot values were fitted to forest height and cover 
metrics obtained from the LiDAR with Fusion software (McGaughey 2018). We used a machine 
learning algorithm, VSURF (Genuer et al. 2015), to select the LiDAR variables included in the 
regression modeling (sensu Kennedy et al. 2018) that produced the AGB transfer functions. 
These transfer functions were applied to landscape level forest height and cover metrics to 
generate a map of AGB for the entire site (Figure 1.3).  

1.2.3.2 Comparing LiDAR-derived AGB maps to LT-GNN results 
To compare LiDAR-derived AGB map to the LT-GNN map, we used orthogonal regression 
(Carroll and Ruppert 1996) to correct for the effects of error in the predictors (i.e., LiDAR 
estimates). Also, as noted by Smith (2009), a symmetric fit is the appropriate approach to 
measuring the relationship between the two estimates. Legendre and Legendre (2012) 
recommend reduced major axis regression (also known as standard major axis regression) when 
the two variables are strongly correlated. We reported the slope of the regression, the 
correlation coefficient (r), and the bias, calculated as mean error (ME): 

 

𝑀𝑀𝑀𝑀 =  ∑ (𝐺𝐺𝐺𝐺𝐺𝐺𝑖𝑖−𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝑖𝑖)
𝑛𝑛

𝑛𝑛
𝑖𝑖=1        Equation 1.1 

 
where i represents the estimate for a given pixel, n is the total number of estimates, GNNi is the 
GNN estimate of AGB for pixel i, and LiDARi is the LiDAR estimate of AGB for pixel i.  

For comparisons from the plot-to- stand level, we evaluated three implementations of GNN: k = 
1 (GNNk1), bootstrapping approximation (GNNba), k = 10 (GNNk10). For the site level 
comparisons, we relied on GNNk10 results in order to coincide with the county-level analysis 
(see Section 1.2.2.3). We limited our comparisons to forested regions in our study areas. Forests 
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were defined using the most recent vegetation classification system provided by the California 
Fire and Resource Assessment Program (FRAP Vegetation 2015). Life form classifications as 
"CONIFER" and "HARDWOOD" were included in our analysis. On average, forests occupied 
more than 92% of the area within the six study sites.  

 
Figure 1.3: Analytical workflow for production of baseline LiDAR maps of aboveground live tree 

biomass (AGB). 

1.2.3.3 County-level comparisons  
To gain a statewide perspective, we compared county-level estimates of AGB from LT-GNN to 
results from FIA plot measurements. Forests can be found in all counties of California, but the 
total area of forest lands and their dominance varies by county (Figure 1.4). Northwestern 
California and the Sierra Nevada mountains are the areas most dominated by forest landscapes. 
In this study, GNN maps of AGB were most appropriate in forest lands, so inference of AGB 
status were restricted to forest lands based on United States Geological Service (USGS) land 
cover data (Grossmann et al. 2008).  
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Figure 1.4: The distribution of forests in California by county. Map of (a) total forest area (km2) and 

(b) proportion of each county forested. These results were based on forest/non-forest 
classifications from the USGS Gap Analysis Program (Grossman et al. 2008). 

To provide county-level assessments of AGB distributions, we used a model-based estimation 
technique for k-nearest neighbor imputation (McRoberts et al. 2007). In this case, we estimated 
mean and standard deviation for GNNk10 AGB predictions for each county based on results for 
2006. Since FIA plots are measured on a ten-year cycle, we used a single measurement of each 
forested FIA sampling location from 2001-2010 to calculate a mean FIA estimate of AGB for each 
county assuming the FIA plots in the county represented a random sample. As we did for the 
LiDAR AGB results, we quantified the relationship between the two county-level estimates 
using reduced major axis regression. The fit of the regression was quantified with Pearson 
correlation coefficient and the bias with mean error (Equation 1.1).  

Note that this GNN accuracy assessment using FIA plot data is not technically independent 
since FIA plots are used in the GNN interpolation. However, we leveraged a modified leave-

Forest Area (km2) 
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out-out validation technique to mitigate this dependence (Ohmann and Gregory 2002). 
Specifically, for the purposes of accurate assessment, predictions for each plot were generated 
by ignoring the actual plot during imputation (i.e., no plot was self-assigned during validation). 
Thus, while each plot can influence the gradient space defining nearest neighbors, we avoided 
comparing imputed plots to themselves during accuracy assessments. 

1.2.3.4 Change detection  
In addition to comparing biomass stocks, we assessed the performance of LT-GNN in 
predicting plot-level change over time. We examined change at 3,412 FIA plots with at least two 
measurements in time and selected the first and last measurement at each location. We then 
compared predicted versus observed at each location to examine how LT-GNN performed in 
assessing AGB change. For analysis, we took advantage of LandTrendr’s ability to categorize 
the underlying dynamics captured in the repeated plot measurements. Specifically, we divided 
the observed changes into three scenarios: disturbed, recovering, and stable. Disturbed plots 
were those experiencing a LandTrendr disturbance (lasting one to three years) during the 
measurement interval. Recovering plots were those with a LandTrendr disturbance prior to, but 
not including, the measurement interval. Stable plots had no LandTrendr disturbances 
(Kennedy et al. 2010). Again, we relied on regression and bias analysis to quantify the fit, 
precision, and accuracy between observed and predicted AGB.  

1.3 Results 
1.3.1 Local-level Assessment of LT-GNN  
The predictive models of AGB based on LiDAR metrics provided reasonable to excellent 
projections across the six sites (Table 1.2) compared to LiDAR-derived maps. In all but one case, 
cubic transformations were necessary to meet assumptions of linear modeling. Interestingly the 
two sites in the coast redwood forest (Garcia and Mailliard) straddled the range of performance 
in terms of fit (i.e., R2) even though the field sampling and remote sensing data were identical 
(Appendix D). 

Table 1.2: Evaluation of predictive AGB models derived from LiDAR cloudmetric parameters for 
the six study areas in California's conifer forests. RMSE = root mean squared error; rRMSE= 

relative root mean squared error (Equation D-1). 

Site/Date Equation form 
R2 

(adjusted) 

RMSE 

(Mg ha-1) 
rRMSE 

(%) 

Garcia 2005 natural log 0.52 9 4 

Mailliard 2005 cubic 0.81 26 4 

North Yuba 2005 cubic 0.87 53 15 

Last Chance 2012-13 cubic 0.87 36 14 

Blodgett 2014 cubic 0.66 54 16 

Sugar Pine 2007 cubic 0.72 45 11 
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At finer spatial scales (30 meters, 90 meters, and 150 meters), LT-GNN underestimated AGB 
compared to LiDAR results for Mailliard (Figure 1.5A), the most biomass-dense study area 
(Table 1.1). While the fit varied by scale and GNN method (Figure 1.5A), the prediction was 
consistently low (range of mean error, i.e., ME: -316 to -328 Mg ha-1). The match was much 
better at the other five study areas (Figure 1.5B). There was a clear pattern of improving 
correlation with the more complex imputation methods and increasing pixel size (Figure 1.5). In 
terms of GNN method, GNNk10 results had the highest correlation (rmean = 0.61) with LiDAR 
values at all sites while GNNk1 had the least (rmean = 0.49). Interestingly the magnitude of bias, as 
measured by the absolute value of the ME, did not vary by imputation method or scale.  

The results from the reduced major axis regression analysis (RMA) confirmed the tendency for 
LT-GNN to under-predict AGB at fine spatial scales (Figure 1.6). The median slope across all 
sites, scales, and methods (n = 54) with LT- GNN AGB on the y-axis and LiDAR AGB on the x-
axis was 0.81. For three sites (Blodgett, Garcia, and Sugar Pine), there were combinations of 
scale and method that produced slopes where 1 was in included in the 95% confidence 
intervals. For the remaining sites (Mailliard, North Yuba, and Last Chance), the largest slope 
was less than 1 for all combinations. Despite better fits to the RMA regression, GNNk10 results 
were not among the best performing models, defined as the combination of scale and method 
that produced the slope closest to 1. The best models were based on GNNk1 (four sites) and 
GNNba (two sites).  

The discrepancy in performance was driven by the presence of high biomass areas (Figure1. 7). 
The best LT-GNN model for Blodgett (Figure 1.6A) and Sugar Pine (Figure1.6C) matched the 
LiDAR results. These two comparisons had few LiDAR AGB estimates > 1,000 Mg ha-1. In 
contrast, the best LT- models (i.e., RMA slopes closest to 1) for Mailliard (Figure 1.6B) and Last 
Chance (Figure 1.6D) under-predicted LiDAR AGB. The main driver was lower estimates of 
AGB for the more biomass-dense pixels (i.e., LiDAR AGB > 1,000 Mg ha-1).  

This plateau in the LT-GNN AGB estimate occurred across all sites. For example, while the best 
LT-GNN model for Blodgett has a RMA slope close to 1 (Figure 1.6A), there were clearly 
locations at Blodgett where LT-GNN under-predicted AGB relative to LiDAR (Figure1. 7). The 
mismatch at Mailliard (Figure 1.8) was simply magnified by the abundance of high biomass 
areas. 

Three of the study areas were organized into stands defined by consistencies in forest 
composition, topography, and management. These stands provided a meaningful spatial scale 
for evaluation. At the stand scale, the results paralleled the pixel-level findings although the 
differences in fit and slope among the three GNN methods were smaller while ME was larger 
(Figure1.9).  

The stand level analysis highlighted an apparent contradiction in the results for Last Chance 
where the slope of the regression was < 1 but the ME was positive. This difference in the metrics 
was due to a counter balancing in the match between LT-GNN and LiDAR AGB that was 
present in the fine-scale results (e.g., Figure 1.5, Figure1.6D) but can be more clearly seen at the 
stand level (Figure 1.10). The slope of the fit was reduced by the tendency of LT-GNN to 
underestimate AGB in high biomass areas. The relatively fewer points near the high end of the 
range dragged down the overall slope. At the same time, LT-GNN overestimated AGB relative 
to LiDAR in the low biomass areas. Although the LT-GNN underestimate was of smaller 
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magnitude, there were many more stands at lower AGB (Figure 1.10) that, when aggregated, 
resulted in a positive estimation bias at the stand level.  
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Figure 1.5: Summary of the LT-GNN vs LiDAR estimates of AGB as a function of correlation 
coefficient (r), mean error, spatial scale, and method of GNN interpolation. A) Performance for all 

six study areas. B) Results with Mailliard excluded. 
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Figure 1.6: Relationship between LT-GNN and LiDAR estimates for the best performing GNN 
models as defined by the slope of the reduced major axis regression (RMA). The solid red line is 
the RMA line and the black dotted line is the 1:1 fit. A) For Blodgett, scale = 30 m and method = 
GNNba. B) For Mailliard, scale = 30 m and method = GNNk1. C) For Sugar Pine, scale = 150 m and 

method = GNNba.  D) For Last Chance, scale = 30 m and method = GNNk1. 
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Figure 1.7: Comparative maps of LT-GNN and LiDAR AGB estimates for Blodgett. A) LiDAR based 
AGB projections. B) Best performing LT-GNN projection of AGB (scale = 30 m; method = GNNba). 

Note irregular northern boundary due to gaps in the LiDAR datasets. The AGB color scale is 
consistent between the two maps. The arrows depict an area of high biomass. 

 

Figure 1.8: Comparative maps of LT-GNN and LiDAR AGB estimates for Mailliard. A) LiDAR based 
AGB projections. B) Best performing LT-GNN projection of AGB (scale = 30 m and method = 

GNNk1). The AGB color scale is consistent between the two maps.  
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Figure 1.9: Summary of the correlation coefficient (r) and mean error between LT-GNN and LiDAR 
estimates of AGB for three study areas with well-defined stands. The scale of the analysis defined 
the area of the stands. At Blodgett, stands ranged from 1 to 45 ha in area; at Last Chance from 1 
to 73 ha; and at Sugar Pine from 2 to 302 ha. To calculate the LT-GNN AGB, the base pixel size 

(i.e., 30 m) was used. 

 
Figure 1.10: Trends in mean error with LiDAR AGB for Last Chance. LT-GNNk1 at a spatial scale = 
30 m was used to calculate stand-level AGB (same as Figure 1.6D). Dotted red line marks the zero 

line. 
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Table 1.7: Site-level comparisons of AGB between LiDAR and LT-GNN estimates. To calculate 
GNN AGB, GNNk10 method was used at a spatial scale = 30 m. Values in parentheses indicate 

RMSE for LiDAR and standard deviation for LT-GNN. 

Site/Date 
LiDAR 

(Mg ha-1) 

LT-GNN 

(Mg ha-1) 

ME 

(Mg ha-1) 

Garcia 2005 225 (9) 219 (7.9) -6 

Mailliard 2005 596 (24) 273 (20.5) -323 

North Yuba 2005 272 (41) 234 (6.4) -38 

Last Chance 2012-13 194 (27) 173 (9.8) -21 

Blodgett 2014 230 (37) 257 (14.7) 27 

Sugar Pine 2007 269 (30) 267 (7.4) 2 

 

We also compared AGB estimates for the entire study sites (Table 1.7). Overall, LT-GNN 
produced results with greater precision. The coefficient of variation (CV = standard 
deviation/mean) for LT-GNN ranged from 2.8% (Sugar Pine 2007) to 5.7% (Blodgett 2014); the 
relative root mean square error (rRMSE = RMSE/mean) for LiDAR ranged from 4% (Garcia 
2005) to 16% (Blodgett 2014). In terms of accuracy, the mean error between LiDAR and LT-GNN 
was comparable in magnitude to the precision in the LiDAR estimate with the one exception 
being Mailliard 2005.  

1.3.2 County-level Assessment of LT-GNN  
County-level estimates of mean and total AGB reflected forest dominance patterns across the 
study area. Generally speaking, both mean and total AGB were greatest in northwestern CA 
and the Sierra Nevada (Figure 1.11) where the proportion of land classified as forest was also 
greatest (Figure 1.4). This pattern likely reflects the increasing dominance of closed canopy 
coniferous forests composed of large conifers in these regions as opposed to more sparsely 
distributed and shorter stature woodland tree species associated with discontinuous forest 
landscapes. 

The standard deviations in mean AGB estimates were greatest along coastal California, 
especially in the Bay Area (Figure 1.12A). In contrast, the coefficients of variation were not as 
consistently localized (Figure 1.12B) and were negatively related to the forest area within a 
county (Figure 1.13). This correlation between CV and forest area likely reflects small FIA 
sample sizes in counties with little forest area. Note that the CV exceeded 5% in only a handful 
of counties, indicating generally high precision for county-level estimation.  

At the county-level, LT-GNN AGB paralleled FIA values (Table 1.8, Figure 1.13). In fact the 
RMA regression produced a close 1:1 fit (Figure 1.13) with an overall mean error equal to 0.7 
Mg ha-1.  However, the two estimates did diverge in some instances, even for counties with 
extensive forests. For example, LT-GNN underestimated AGB for Madera (2,590 km2 of 
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forestland, ME = - 29.3 Mg ha-1) and overestimated ABG for Shasta (7,549 km2, ME = 24.1 Mg ha-

1).  

 

Figure 1.11: Distribution of AGB in California by county from LT-GNN.  Maps of (A) mean live AGB 
in forests in megagrams per hectare (Mg/ha) and (B) total live AGB in forests in 2016 in teragrams 

(Tg). 
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Figure 1.12: Performance of LT-GNN-based estimates of AGB by county in California. Map of (A) 
standard deviation of AGB in forests in 2006 (Mg ha-1) and (B) coefficient of variation of AGB in 

forests in 2006. 

Figure 1.13: Log-log representation of the relationship between county-level coefficient of 
variation for live forest AGB and the area of the county that is forested. 
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Table 1.8: County-level GNNk10 estimated means (and standard deviations) for AGB, FIA plot-
based estimates, and the mean error. GNNk10 estimates were produced for the year 2006. FIA plot-
based estimates are the mean AGB of forested plots for each county from plots measured 2001-

2010. “NA” refers to counties with no FIA plot measurements. 

County 
GNNk10 

(Mg ha-1) 

FIA 

(Mg ha-1) 

Mean Error 

(Mg ha-1) 

Alameda 86 (2.8) 79 6.6 

Alpine 139 (1.4) 119 19.9 

Amador 117 (1.7) 121 -3.9 

Butte 161 (1.7) 143 17.7 

Calaveras 117 (1.5) 112 5.3 

Colusa 60 (1.5) 48 12.0 

Contra Costa 99 (3.3) 95 3.9 

Del Norte 291 (6.4) 297 -5.8 

El Dorado 163 (1.3) 166 -3.0 

Fresno 129 (0.8) 140 -11.0 

Glenn 95 (1.4) 125 -29.6 

Humboldt 277 (3.0) 275 1.6 

Imperial 5 (0.3) 11 -5.5 

Inyo 28 (0.3) 26 2.5 

Kern 47 (0.7) 45 2.3 

Kings 24 (1.8) NA NA 

Lake 109 (1.3) 105 4.3 

Lassen 76 (0.7) 75 1.2 

Los Angeles 48 (1.0) 42 6.2 

Madera 130 (1.5) 159 -29.3 

Marin 249 (11.3) 256 -7.0 
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Table 1.8 (continued) 

County 
GNNk10 

(Mg ha-1) 

FIA 

(Mg ha-1) 
Mean Error 

Mariposa 120 (1.3) 126 -5.8 

Mendocino 200 (1.5) 201 -1.1 

Merced 39 (1.1) 41 -2.5 

Modoc 61 (0.6) 65 -3.8 

Mono 61 (0.6) 50 11.1 

Monterey 88 (1.6) 71 16.6 

Napa 87 (2.3) 130 -43.2 

Nevada 149 (1.7) 138 11.4 

Orange 49 (2.6) 15 33.6 

Placer 165 (1.4) 164 1.0 

Plumas 165 (1.0) 165 0.5 

Riverside 40 (1.1) 52 -12.3 

Sacramento 72 (2.5) 47 24.7 

San Benito 39 (0.8) 46 -6.7 

San Bernardino 56 (1.2) 68 -11.5 

San Diego 42 (1.1) 37 5.0 

San Francisco 204 (31.7) NA NA 

San Joaquin 66 (2.1) 57 9.5 

San Luis Obispo 77 (1.4) 66 10.9 

San Mateo 323 (13.0) 268 55.0 

Santa Barbara 55 (1.0) 43 11.5 

Santa Clara 94 (1.9) 77 17.3 

Santa Cruz 361 (10.7) 403 -42.0 

Shasta 152 (1.0) 128 24.1 

Sierra 172 (1.5) 171 1.4 
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Table 1.8 (continued) 

County 
GNNk10 

(Mg ha-1) 

FIA 

(Mg ha-1) 
Mean Error 

Siskiyou 159 (0.7) 151 8.2 

Solano 59 (3.0) 81 -22.0 

Sonoma 185 (3.5) 209 -24.3 

Stanislaus 40 (1.0) 47 -6.9 

Sutter 61 (2.2) 62 -1.5 

Tehama 102 (0.8) 99 2.9 

Trinity 210 (0.9) 205 4.5 

Tulare 130 (0.9) 143 -13.0 

Tuolumne 161 (1.2) 160 0.5 

Ventura 52 (1.1) 39 12.6 

Yolo 44 (1.2) 47 -2.9 

Yuba 145 (2.5) 158 -12.9 
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Figure 1.13: Performance of LT-GNN estimates of AGB by county in California compared to FIA 
values. The black dotted line represents the 1:1 line; the solid red line is the slope of the reduced 

major axis regression.   

 
1.3.3 Change-detection Assessment of LT-GNN  
Overall, LT-GNN tended to underestimate plot-level increases in AGB (Figure 1.14). Most 
changes were small (near 0, Figure 1.14) and in this region, LT-GNN slightly over-predicted 
losses and slightly under-predicted gains. These trends were exaggerated at the extremes. LT-
GNN detected losses associated with disturbance the best. Indeed, it measured AGB change 
with no bias (mean error = 0 Mg ha-1) for the disturbed plots (Figure 1.15a). In contrast, LT-
GNN underestimated AGB (mean error = -16 Mg ha-1) in stable plots (Figure 1.15c). 
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Figure 1.14: Predicted (LT-GNN) vs. observed (FIA) changes in AGB change for 3,412 repeat-

measured forest plots. LT-GNN results based on GNNk10 imputation at 30-m scale. The dashed line 
is the 1:1 line. The solid red line is an ordinary least squares regression line between predicted 

and observed. 

  

  
Figure 1.15: Predicted (LT-GNN) vs. observed (FIA) changes in AGB change for three different 

scenarios: (a) disturbed plots (disturbance noted between measurements), (b) recovering plots 
(disturbance before first measurement and after 1985), and (c) stable plots (no disturbance 
observed). For this analysis, only short-term (1-3 year) disturbance events observed with 

LandTrendr were considered. The dashed line is the 1:1 line. The solid red line is an ordinary least 
squares regression line between predicted and observed. LT-GNN results based on GNNk10 

imputation at 30-m scale. 
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1.4 Conclusions and Future Directions 
Woodall et al. (2015) noted the need for annual monitoring of forest carbon at the national level. 
California shares this policy goal of robust monitoring of forest carbon (Forest Climate Action 
Team 2018). Recently Kennedy et al. (2018) developed a method that relies on a mix of field 
data, statistical modeling, and remotely-sensed time-series imagery to track aboveground live 
tree biomass (AGB) at policy-relevant spatial and temporal scales. As part of California's Fourth 
Climate Change Assessment, we continued the development of Kennedy et al.'s (2018) 
approach and tested its performance in California's diverse and extensive forests.  

At finer spatial scales, LT-GNN’s ability to match LiDAR estimates of AGB varied by site, GNN 
method, and scale of analysis. Overall, LT-GNN tended to underestimate LiDAR AGB and most 
combinations of GNN interpolation and spatial scale (i.e., 30 meters, 90 meters, and 150 meters) 
did not result in a 1:1 relationship. Of the 54 possible combinations, only three returned a 1:1 
relationship. Moreover, there were no strong indicators of superior imputation method or 
spatial scale. While all LT-GNN results at the 150-meter scale were more highly correlated, the 
high correlation did not necessarily translate into smaller mean errors (ME) or slopes closer to 1. 
GNNba tended to have the largest absolute ME relative to the other two methods. Kennedy et al. 
(2018) found similar "noisy" results at the pixel scale.  

We extended the analysis to stands. These stands represented an intermediate scale between 
pixels and landscapes. Moreover, the structural consistency inherent in the definition of stands 
minimized the arbitrary variation that occurs when pixels are aggregated systematically. 
However, the larger size and structural consistency provided no obvious improvement in LT-
GNN performance.  

The stand-level analysis did detect an anomaly that suggests a potential area for improvement 
in the LT-GNN framework. At Last Chance, LT-GNN overestimated AGB in stands with low 
biomass density according to LiDAR (Figure 1.10). In plots with low AGB (< 150 Mg ha-1) at 
Last Chance, the median shrub cover was 44% (interquartile range: 21% - 64%). Landsat has 
trouble differentiating tall, dense shrubs from small stands of trees. Shrub fields have 0 AGB by 
definition in the LiDAR map since only trees with DBH ≥ 5cm were included in the biomass 
calculations (Appendix D). Thus, any shrubs that were misclassified as trees by Landsat would 
skew the LT-GNN interpolation toward higher AGB. The LT-GNN overestimate of AGB in low 
biomass areas was most prevalent at Last Chance (Figure 1.6D), a site with an abundance of 
shrubs. In contrast, the problem was much less prevalent at Blodgett (Figure 1.6A) ‒ a managed 
forest where shrub cover is actively suppressed.  

At the landscape scale, LT-GNN results matched the LiDAR projections of AGB except for the 
highest biomass site, the old-growth coast redwood forest at Mailliard Redwood State Natural 
Reserve. In general, LT-GNN struggles to capture extremes. For example, Kennedy et al. (2018) 
noted that LT-GNN estimates tended to saturate at 650 Mg ha-1 when applied to forests in the 
Pacific Northwest. Contributing to the problem is the well-established saturation relationships 
between Landsat multi-spectral data and AGB (e.g., Steininger 2000). Since LT-GNN includes 
Landsat time-series as part of its gradient analysis, it shares this limitation although the 
inclusion of additional predictors (Ohmann et al. 2012) mitigates this problem. In addition, the 
range of possible values in a GNN interpolation routine is constrained by the input data. LT-
GNN AGB relied on FIA plot results. Within California, Mailliard represents an extreme in 
terms of AGB. The mean biomass density at the site was 596 Mg ha-1. At the 30-m scale, 3.6% of 
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the pixels (76 pixels) exceeded 1,000 Mg ha-1. In contrast, only 0.2% (17 plots) of the FIA plots 
inventoried between 2000 and 2016 had more than 1,000 Mg ha-1 (FIA 2017). Faced by the dual 
challenges of a saturated Landsat signal and a sparse sample of extreme values, GNN failed to 
accurately estimate AGB at Mailliard. However, Mailliard is also a spatial isolated in that it is a 
small reserve of old-growth redwoods, one of the most biomass-dense forest types in the world 
(Busing and Fujimori 2005), in a location dominated by less massive second-growth forests.  

We treated LiDAR AGB as the baseline but acknowledge that LiDAR maps of AGB are also an 
interpolation of field values. Any faults in the LiDAR maps would be expressed as error in the 
LT-GNN evaluation. Mitigating these concerns was the fact that despite differences among sites 
(Table 1.2), all six models ranked among the better performing models for LiDAR biomass 
estimates in temperate conifer forests (Zolkos et al. 2013). We were also careful to screen for 
mistakes and outliers in our biomass and LiDAR modeling (Appendix D) improving confidence 
in the LiDAR baseline (sensu Huang et al. 2017).  

At the county-level, LT-GNN estimates of AGB were both precise and accurate compared to 
FIA results. There were no significant differences in the slope of the regression line comparing 
AGB from LT-GNN to AGB from FIA plots. Moreover, these county-level estimates were 
precise. The greatest uncertainty (CV > 5 %) was observed in sparsely forested locales (Figure 
1.13). However, in counties with more than 100 km2 of forest, CV was ≤ 2%. At this scale, GNN 
is acting to weight FIA plot data from in and outside of a county that best represents the 
variation in the Landsat data. Thus, it was not surprising that forest-rich counties were well-
represented. Our current analysis focused on plots with at least 50% forest area (sensu Ohmann 
et al. 2014). If we were to relax this constraint and include all plots with some forest land, as FIA 
does for the purposes of estimation, variability in estimates would likely decline.  

On a county-by-county basis, there were some appreciable differences between LT-GNN and 
FIA results (Table 1.8). One limitation in the current analysis was the handling of the temporal 
differences in the comparison. To obtain a robust AGB for a county required the inclusion of 
FIA samples from multiple years. Thus the FIA value for a county was averaged over 10 years 
while the LT-GNN value was taken at the temporal midpoint. Although impractical for an 
annual monitoring system, more explicit year-to-year matching of predicted to observed data 
would likely improve the individual county performances.   

A major feature of the LT-GNN forest biomass monitoring system is its potential to track annual 
changes in AGB (Kennedy et al. 2018). While LT-GNN results were positively correlated to FIA 
results (Figure 1.14), LT-GNN underestimated AGB increments. Given the average interval 
between FIA re-measurements (8 years), the annualized underestimate was approximately 1.75 
Mg ha-1. Plot-level tests do present the greatest challenge to change detection using LT-GNN. 
For example, the LT-GNN pixel (30-m) does not account for structural heterogeneity in the FIA 
plots, a heterogeneity that decreases accuracy (Ohmann et al 2014). Also, the accuracy of LT-
GNN estimates improved at coarser-scales like landscapes (Table 1.7) and counties (Figure 
1.13). Such spatial averaging would likely limit extreme values where the deviance between 
predicted and observed AGB was greatest and thereby improve the comparison. 

The change-analysis by forest status (Fig 1.15) clearly illustrated the strengths and weaknesses 
of the LT-GNN approach. It detects AGB losses with remarkable fidelity even at the plot-level 
(Figure 1.15a). Given that LT-GNN was designed to track disturbances (Kennedy et al. 2010), its 
success at detecting losses is not surprising. It also does a reasonable job measuring increases in 
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AGB in plots recovering from disturbance (Figure 1.15b). Both scenarios typically provide 
strong spectral signatures of change below the saturation threshold. In contrast, LT-GNN did a 
poor job measuring change in stable forests (Figure 1.15c). Clearly stable scenarios include intact 
and mature forests that saturate the Landsat spectral indices as discussed above. This 
underestimate of growth in mature forests was shared by the Landsat-based system used by 
Gonzalez et al. (2015). Also, changes are small by definition in the stable scenario. In general, 
small changes are more difficult to detect. Yet capturing them is crucial to AGB monitoring 
since incremental changes are the most common occurrence.  

Other projects have created forest biomass maps for the continental United States. Although 
these provide only a snapshot of biomass in a single year, they serve as useful benchmarks for 
performance. Four national-scale biomass maps are in common use; a thorough comparison of 
the four maps showed that they disagree at the fine scale but agree in aggregate (Neeti and 
Kennedy 2016). Of the four national-scale maps, two are of a resolution commensurate with our 
maps: 1) a 100-m resolution map from the NASA Carbon Monitoring System (Hagan et al. 
2016). and 2) a 30-m resolution map from the North American Carbon Program’s National 
Biomass and Carbon Dataset for the year 2000 (NBCD 2000). Thus, we compared the CMS and 
NBCD maps to the LT-GNN maps. For each, we used the LT-GNN map from the nominal year 
of the national map: 2005 for CMS and 2000 for NBCD. All maps were clipped to the same 
footprint, and the 100-m CMS product sampled to 30 meters using a nearest-neighbor 
resampling. For each paired comparison, no-data values in either map were excluded. We 
compared the national maps to our maps using reduced major axis regression. We then 
aggregated the maps to 90x90 meter and 150x150 meter pixels and compared each (Figure 1.16). 

LT-GNN maps were well correlated with national results (r ≥ 0.74) in all cases, but national 
maps saturated at values well below the high AGB observed in California. The relationships 
between LT-GNN and national maps were relatively unbiased up to approximately 800 Mg ha-1. 
Higher values present in California's forests were not captured by the national maps.  
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Figure 1.16: Comparing national scale biomass maps to maps derived from LT-GNN for California. 

a) Density plot of National Biomass and Carbon Dataset (NBCD) vs AGB derived from LT-GNN 
(scale = 30 m, GNNk1). Dashed line represents a 1:1 relationship; solid line the reduced major axis 

regression and associated Pearson’s correlation (r). Only pixels with non-zero biomass were 
compared. (b) and (c) as for (a), but at 90 m and 150 m resolution respectively. (d-f) As for (a-c) but 

for the NASA Carbon Monitoring System (CMS) national biomass product. 

LT-GNN is a promising approach to monitor a large pool of carbon in California, namely 
aboveground live tree biomass. The successful transfer of the LandTrendr algorithm to Google 
Earth Engine (Appendix B) greatly reduces the costs of processing Landsat images. The success 
of LT-GNN in interpolating county-level AGB suggests an application-ready means to track 
annual AGB at a policy-relevant scale. However, key improvements are necessary.  

LT-GNN struggled to accurately represent AGB in California's most biomass-dense forests. It 
also underestimated gains in stable forest. These two weaknesses are related by limitations in 
the Landsat sensors. In terms of detecting biomass-dense forests, a greater concentration of field 
measurements in high biomass sites and/or refinement of the gradient analysis could improve 
the LT-GNN performance in this regard. More plots in extreme cases would provide a larger 
basis for imputation. In terms of gradient analysis, a temporal component could be added to the 
imputation model. Thus, in cases of stable forest pixels where there is no or little change in the 
Landsat indices, the most recently measured FIA plot would be selected. Alternatively, LT-
GNN estimates for stable pixels could be calibrated directly via statistical correction of AGB 
increment or forest growth under stable conditions could be modeled.  

Applications of biomass monitoring at finer scale applications must be pursued with more 
caution. LT-GNN's success in projecting AGB from the plot to the stand level was hit or miss. 
One near-term application suggested by our results was the ability of LT-GNN to detect AGB 
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loss (Figure 1.15a). Given the annual resolution, LT-GNN would provide the means to check for 
large losses in AGB at the project scale.  

Despite progress, barriers to the implementation of a LT-GNN monitoring system include the 
time and expense associated with gradient nearest neighbor analysis (Appendix C). While the 
LandTrendr processing is automated, the gradient analysis, where new FIA inventory results 
are interpolated, still must be done "by hand." Other limitations include its current restriction to 
forest biomes and live vegetation. There is no theoretical reason why the LT-GNN protocol 
could not be applied to shrublands, but the necessary field data do not exist. The value of the 
FIA inventory to forest carbon monitoring in California and the United States cannot be 
overestimated. It provides the essential empirical foundation for all remotely sensed 
applications. The lack of systematic inventory of vegetation biomass in shrublands precludes 
development of precise monitoring in these biomes. The extent of drought-related tree mortality 
in California (USDA Forest Service 2017) prioritizes the need to monitor the fate of the 
estimated 129 million standing dead trees. The LT-GNN framework is well-suited to this task 
but would require a rethinking of the relevant indicators and a revision of the field sampling 
regime. Currently in California, FIA plots are re-measured every decade (PNW-FIADB 2015). 
Given the longevity of standing dead trees, plots would need to be assessed more frequently. 

 

2: Innovations in Managing Forest Carbon 
2.1 Introduction  

The best way to manage forests to store carbon and to mitigate climate change is hotly 
debated.       Bellassen and Luyssaert 2014 

Nowhere is the international debate noted by Bellassen and Luyssaert (2014) more intensely 
contested than in California. Forests are currently substantial contributors to California's efforts 
to reduce its greenhouse gas emissions (Christensen et al. 2017). However, the interaction 
between a warming climate and increased wildfire severity threatens the carbon carrying 
capacity of California's forests (Liang et al. 2017). The California Forest Carbon Plan, in 
recognition of this threat, outlines strategies to sustain the State's forests as reliable carbon sinks 
(Forest Climate Action Team 2018).  

Managing forest carbon is constrained by gaps in our ecological understanding. Even the basic 
tenet that carbon accumulation in mature forests long-free from disturbance should reach a 
carrying capacity (Turner 2010) does not always hold (Luyssaert et al. 2008, Harmon and Pabst 
2015). The global increase in CO2 concentrations combined with the regional deposition of 
atmospheric nitrogen has contributed to increased productivity in some but not all forests. 
Other factors including warming and moisture stress influence productivity responses 
(reviewed in Camerero et al. 2015). The evidence from three old-growth conifer forests in the 
Sierra Nevada reflects this variability: Levine et al. (2016) reported steady increases in 
aboveground live biomass (AGB); van Mantgem and Stephenson (2007) reported stability in 
AGB; Wiechmann et al. (2015) noted recent declines in AGB. The relevance of this 
unpredictability to management is that the baseline, “no-management” trajectory of AGB is 
uncertain.  
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The dynamics of the carbon cycle are further complicated by more than a century of fire 
suppression in California’s dry forests (Stephens and Ruth 2005). Among other changes, fire 
exclusion has led to the loss of large trees, a higher density of shade-tolerant trees, and 
increased fuel loads (Taylor et al. 2014, McIntyre et al. 2015). The magnitude and continuity of 
fuel exacerbate fire hazard (Agee and Skinner 2005) and have contributed to an altered fire 
regime characterized by low frequency but high intensity fires (Miller et al. 2009). To reduce this 
risk, improving resilience by lowering fuel loads, reducing tree density, and increasing 
heterogeneity has been recommended as a management response (e.g., North et al. 2009). While 
there is broad agreement that fuel treatments can reduce fire hazard, the consequences for 
carbon storage continue to be argued (Hurteau and North 2009, Campbell et al. 2012, 
Wiechmann et al. 2015). There clearly is a trade-off between the size of the carbon stock and its 
stability (sensu Hurteau and Brooks 2011) with more carbon literally adding “more fuel to the 
fire.” But as Restaino and Peterson (2013) emphasized, the balance depends critically on the 
likelihood that the landscape experiences a wildfire, the fate of carbon removed during a 
treatment, the amount of carbon emitted during a fire, and the rate of carbon accumulation 
following a disturbance, be it a fire or a fuel treatment. Thus we contend that to manage forest 
carbon, we need to understand the joint trajectory of carbon accumulation and fire hazard 
under different treatment regimes. Recently these trade-offs have been productively explored 
for the Sierra Nevada using landscape modeling to evaluate the carbon consequences of 
simulated management (e.g., Krofcheck et al. 2017). However long-term field experiments that 
measure ecosystem responses to actual fire and fuel treatments are exceedingly rare given the 
complexity and cost of maintaining a measurement and management regime over many years. 
And yet, results from these field experiments are essential. They inform our understanding of 
carbon dynamics in fire-prone forests and provide vital reality checks on simulated projections.  

In this chapter, we developed a means to quantify the carbon storage-carbon stability trade-off 
for fire-prone forests. We extended a long-term experiment at the Blodgett Forest Experiment 
Station in Georgetown, CA designed to evaluate the efficacy of fuel-reduction strategies (McIver   
et al. 2013). We combined carbon trajectories with periodic estimates of fire hazard (P-torch, 
Rebain 2010). With these joint trends, we tested the hypothesis that there is a trade-off between 
carbon storage and carbon stability for a productive, mixed conifer forest.  

 
2.2 Methods 
2.2.1 Overview 
We extended a field experiment to gain insights into biomass dynamics in fire-prone forests. In 
2016, we re-measured sites that were part of the national Fire and Fire Surrogate study in the 
Sierran mixed conifer forests (Stephens and Moghaddas 2005). Treatments, installed in 2001-
2002, include both prescribed fire and mechanical thinning. These repeated field assessments 
were used to build joint trajectories of AGB and fire hazard in order to assess the trade-off 
between carbon stored and risk of loss to wildfire.  

2.2.2 Study Site 
This study was performed at the University of California Blodgett Forest Research Station 
(Blodgett Forest), approximately 20 km east of Georgetown, California. Blodgett Forest is 
located in the mixed conifer zone of the north-central Sierra Nevada at latitude 38° 54′ 45″ N, 
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longitude 120° 39′ 27″ W, between 1100 and 1410 m above sea level and encompasses an area of 
1,780 ha (Figure 1.2). Tree species in this area include sugar pine (Pinus lambertiana), ponderosa 
pine (Pinus ponderosa), white fir (Abies concolor), incense-cedar (Calocedrus decurrens), Douglas-fir 
(Pseudotsuga menziesii), California black oak (Quercus kelloggii), tanoak (Lithocarpus densiflorus), 
bush chinkapin (Chrysolepis sempervirens), and Pacific madrone (Arbutus menziezii). 

Fire was a common ecosystem process in the mixed conifer forests of Blodgett Forest before the 
policy of fire suppression began early in the 20th century. Between 1750 and 1900, median 
composite fire intervals at the 9-15 ha spatial scale were 4.7 years with a fire interval range of 4-
28 years (Stephens and Collins 2004). Forested areas at Blodgett Forest have been repeatedly 
harvested and subjected to fire suppression for the last 100 years reflecting a management 
history common to many forests in California and elsewhere in the Western US. 

2.2.3 Fuel-reduction Treatments 
The primary objective of the treatments was to modify stand structure such that 80% of the 
dominant and co-dominant trees in the post-treatment stand would survive a wildfire modeled 
under 80th percentile weather conditions. To meet this objective, three different treatments: 
mechanical only, mechanical plus fire, and prescribed fire only, as well as untreated control 
were each randomly applied (complete randomized design) to 3 of 12 experimental units that 
varied in size from 14 to 29 ha. Total area for the 12 experimental units was 225 hectares. To 
reduce edge effects from adjoining areas, data collection was restricted to a 10 ha core area in 
the center of each experimental unit (Stephens and Moghaddas, 2005). 

Control units (Control) received no treatment during the study period (2001-2016). Mechanical 
only treatment units (Thin) had a two-stage prescription; in 2001 stands were crown thinned 
followed by thinning from below to maximize crown spacing while retaining 28 to 34 m2ha-1 of 
basal area with the goal to produce an even species mix of residual conifers (Stephens and 
Moghaddas, 2005). Individual trees were cut using a chainsaw and removed with either a 
rubber-tired or track laying skidder. During harvests, some hardwoods, primarily California 
black oak, were coppiced to facilitate their regeneration. All residual trees were well spaced 
with little overlap of live crowns in dominant and co-dominant trees. Following the harvest, 
approximately 90% of understory conifers and hardwoods up to 25 cm DBH were masticated in 
place using an excavator mounted rotary masticator. Mastication shreds and chips standing 
small diameter live and dead trees in place and this material was not removed from the 
experimental units. The remaining un-masticated understory trees were left in scattered clumps 
of 0.04 to 0.20 ha in size. 

Mechanical plus fire experimental units (ThinBurn) underwent the same treatment as 
mechanical only units, but in addition, they were prescribed burned using a backing fire. Fire 
only units (Burn) were burned with no pre-treatment using strip head-fires. All initial 
prescribed burning was conducted during a short period (10/23/2002 to 11/6/2002) with the 
majority of burning being done at night because relative humidity, temperature, wind speed, 
and fuel moistures were within pre-determined levels to produce the desired fire effects (Knapp 
et al. 2004). Prescribed fire prescription parameters for temperature, relative humidity, and 
wind speed were 0-100 C, > 35%, and 0.0-5 km hr-1, respectively. Desired ten-hour fuel stick 
moisture content was 7-10%.  
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The initial treatments were part of the national Fire and Fire Surrogate (FFS) experiment 
designed to evaluate the impact of alternative in dry forest across the United States (McIver et 
al. 2013). We have continued and expanded the effort at Blodgett Forest beyond the original 
design. Not only have we repeatedly measured the plots, but we also extended the application 
of prescribed fire. In October 2009, the Burn units were burned a second time using the same 
prescription parameters as the initial-entry burns. The decision to re-burn these units was based 
on the objective to re-introduce fire at a frequency consistent with the historical range of 
variability (Stephens and Collins 2004). In the ThinBurn units the strong shrub response 
following initial-entry burns limited re-burning opportunities.  

2.2.4 Vegetation Measurements 
Overstory and understory vegetation was measured in twenty 0.04 ha circular plots, installed in 
each of the 12 experimental units (240 plots total) in 2001 (PRE), 2003 (POST-1YR), 2009 (POST-
7YR), and 2016 (POST-14YR). Individual plots were placed on a systematic 60m grid with a 
random starting point. Plot centers were permanently marked with a pipe and by tagging 
witness trees to facilitate plot relocation after treatments. Tree species, DBH (diameter at breast 
height, breast height = 1.37m), total height, height to live crown base, and crown position 
(dominant, co-dominant, intermediate, and suppressed) were recorded for all trees ≥ 11.4 cm 
DBH. Similar information was recorded for all understory trees (trees >1.37 m tall and < 11.4 cm 
DBH) on 0.004 ha subplots nested in each plot. Canopy cover was measured using a 25 point 
grid in each 0.04 ha plot with a site tube. 

 

2.2.5 Fuel Measurements 
Surface and ground fuels were sampled with two random azimuth transects at each of the 240 
plots using the line-intercept method on the same schedule as the vegetation measurements. A 
total of 480 fuel transects were installed and the same azimuths were used here as done in the 
original measurements in 2001 (Stephens and Moghaddas 2005). One-hour (0–0.64 cm) and 10-h 
(0.64– 2.54 cm) fuels were sampled from 0 to 2 m, 100-h (2.54–7.62 cm) fuels from 0–3 m, and 
1000-h (>7.62 cm) and larger fuels from 0 to 11.3 m on each transect. Duff and litter depth in cm 
were measured at 0.3 and 0.9 m on each transect (same points as done previously).  

2.2.6 Biomass and Fuel Load Calculations 
Aboveground live tree biomass (AGB) was calculated from tree inventory data (species, DBH, 
and height) using regional biomass equations (FIA 2010) as described in Appendix D. Only live 
trees ≥ 5 cm DBH were included in the analysis. Surface and ground fuel loads were calculated 
using appropriate equations developed for California forests. Coefficients required to calculate 
all surface and ground fuel loads were arithmetically weighted by plot basal area fraction to 
produce accurate and precise estimates of ground and surface fuel loads (Stephens and 
Moghaddas, 2005). 

2.2.7 Fire Modeling 
We modeled potential fire behavior for each inventory plot, at each time step, with the Fire and 
Fuels Extension (FFE) to the Forest Vegetation Simulator (Reinhardt and Crookston 2003). FFE 
uses established equations to predict fire behavior and crown fire potential based on user-input 
tree lists and fire weather (Rebain 2010). We used the conditions during large spread events in 
two nearby wildfires (2001 Star Fire, 2008 American River Complex) for the weather inputs. By 
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using actual conditions from nearby wildfires that posed substantial fire control problems we 
believe predicted fire behavior may better characterize wildfire potential as opposed to using 
conditions based on fire-weather percentile thresholds.  

We varied surface fuel models by treatment type and time period, assigning a “low” and “high” 
fuel model or each combination. These fuel model assignments were based on measured plot 
fuel loads and woody shrub cover for each treatment/time period, as well as observed fuelbed 
characteristics in the field. We modeled fire behavior for each plot, at each time period 
combination using for both the “low” and “high” surface fuel models. 

Our analysis focused the output torching probability (Ptorch) from FFE. The calculation of 
Ptorch first involves randomly populating 0.01 ha sub-plots from the stand tree list using a 
Monte Carlo simulation. For each sub-plot FFE computes the surface fire flame length that 
would be required to cause torching. Next the program computes the height above the ground 
that the predicted surface fire can ignite crowns based on discussion in Scott and Reinhardt 
(2001, p13). The torching probability is based on whether this predicted height exceeds the 
flame length needed to ignite tree crowns. Rebain (2010) explains that torching probability is the 
proportion of stand area where crowns of larger trees can be ignited by surface fire or flames 
from burning crowns of small trees. Rebain (2010) argues that this index may better characterize 
hazard due to torching compared to the conventionally used torching index (see Scott and 
Reinhardt 2001), due to the lack of dependence on the problematic calculation of canopy base 
height. We reported Ptorch as the mean of the results from the low and high surface fuel 
models.  

2.2.8 Stable Aboveground Live Biomass 
To account for potential losses in AGB due to wildfire, we defined stable aboveground live 
biomass (SAGB) as:  

𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆 = 𝐴𝐴𝐴𝐴𝐴𝐴 ∗ (1 − 𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃ℎ)        Equation 2.1       

In effect, we discounted AGB by the probability of it surviving a problematic fire. For example, 
in a plot with 100 Mg ha-1 of AGB and the probability of torching is 0.3, SAGB equals 70 Mg ha-1.   

To assess the impact of treatment on AGB and SAGB, we applied a longitudinal analysis. This 
approach is justified (Stewart-Oaten and Bence 2011) given the rigorous experimental design of 
the FFS study, namely a randomized and replicated assignment of treatments (including 
control) with both a pre-treatment measurement and repeated post-treatment measurements. 
We used mixed-effects linear modeling with the response being a function of the fixed variables 
of time and treatment. To account for the spatial correlation, plots (i.e., samples) were nested 
within compartment (i.e., block) and included as random variables in the mixed-effects model 
(Bolker et al. 2009). Specifically, we defined six a priori models (Table 2.1) with the response as a 
function of time as the least restrictive case (i.e., the null model). We added a quadratic term 
(Years2) to check for changes in the trajectory and included models with the main treatment 
effects and with treatment-by-time interactions. To stabilize the variance, the response variables 
were square root transformed. Treatment effects were compared to the baseline trends 
measured in the Control plots.  

We evaluated model performance using an information theoretic approach (Burnham and 
Anderson 2002). For each model, we calculated Akaike’s information criterion (AIC), 
differences in AIC values relative to the model with the lowest AIC (ΔAIC), and AIC weights 
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(AICwi). AICwi were calculated to normalize the strength of evidence for a given model and can 
be interpreted as the probability that a given model is the best Kullback–Leibler model for the 
data given the candidate set of models; models < 2∆AIC have substantial empirical support 
(Burnham and Anderson 2002). Analyses were conducted using the R statistical computing 
environment version 3.3.0 (R Core Team 2016).  

 

 

 

 

Table 2.1: Linear models of aboveground live biomass (AGB) and stable aboveground live 
biomass (SAGB). Results from mixed effects linear models include the number of parameters (k) 

and the AIC metrics (see text for definitions). 

A. Aboveground Live Biomass Models  k AIC ∆AIC AICw 

AGB1/2 = f(Years+Years2+Treatment+Treatment:Years) 12 4065.3 0.0 0.71 

AGB1/2  = f(Years+Treatment+Treatment:Years) 11 4067.1 1.8 0.29 

AGB1/2  = f(Years+Treatment) 8 4159.6 94.2 0.00 

AGB1/2  = f(Years+Years2+Treatment) 9 4159.8 94.4 0.00 

AGB1/2  = f(Years) 5 4161.7 96.4 0.00 

AGB1/2  = f(Years+ Years2) 6 4161.9 96.6 0.00 

     

B. Stable Aboveground Live Biomass Models k AIC ∆AIC  AICw 

SAGB1/2 = f(Years+ Years2+Treatment+Treatment:Years) 12 4812.5 0.0 0.81 

SAGB1/2  = f(Years+ Years2+Treatment) 9 4816.1 3.6 0.13 

SAGB1/2  = f(Years+ Years2) 6 4818.8 6.3 0.03 

SAGB1/2  = f(Years+Treatment+Treatment:Years) 11 4820.6 8.1 0.01 

SAGB1/2  = f(Years+ Treatment+Treatment:Years) 8 4823.7 11.2 0.00 

SAGB1/2  = f(Years) 5 4826.4 13.9 0.00 

2.3 Results  
Before the treatment, AGB averaged 321 Mg ha-1 with the most biomass stored in the ThinBurn 
sites (mean = 359 Mg ha-1, se = 20 Mg ha-1) and the least in the Burn sites (mean = 285 Mg ha-1, se 
= 16 Mg ha-1). The imposition of the treatments (PRE to POST-1YR) reduced AGB by 21.5% in 
the ThinBurn and only 1.3% in the Burn (Figure 2.1). Biomass in the Control sites steadily 
accumulated throughout the study so that by POST-14yr, Control stored the most AGB (median 
= 426 Mg ha-1). In contrast, the ThinBurn sites not only lost the most AGB in the treatment but 
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also failed to recover with only a 13% net gain in AGB between POST-1YR and POST-14YR 
(Figure 2.1). 

Figure 2.1: Boxplots describing the trends in aboveground live biomass (AGB) in the Fire and Fire 
Surrogate Study at Blodgett Forest Research Station. The narrow midline indicates the median, 

the edges of the box represent the 25th and 75th quartiles, and the whiskers define 1.5x the 
interquartile range. 

Prescribed fire greatly reduced the probability of torching (Figure 2.2). In both the Burn and 
ThinBurn treatments, the probability of a damaging fire was zero in POST-1YR. Ptorch was 
reduced by about half in the Thin treatment. The reduction in the prescribed fire units was 
sustained throughout the study. However, note that between the POST-7YR and POST-14YR, 
the Burn sites were re-burned. 

Accounting for the risk of torching dramatically reshaped the trajectory of biomass storage 
(Figure 2.2). In terms of SAGB, the prescribed fire increased SAGB in POST-1YR by 96% in the 
Burn sites and 34.8% in the ThinBurn sites. The effects were sustained through the 14 years of 
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the study. For example, at the ThinBurn sites, SAGB was 97% of AGB in POST-14YR. In other 
words, 14 years after the initial treatment almost all the live tree biomass present was a low risk 
of loss due to fire.  

These patterns were supported by the statistical analysis. For both AGB and SAGB, the models 
with the greatest weight of evidence (>0.7 AICw in both cases) included treatment and the 
interaction between treatment and time (Table 2.1). Based on the model predictions, the Control 
sites maintained the most AGB but the least SAGB following treatment (Figure 2.4). In contrast, 
the burned sites (Thin and ThinBurn) supported the least AGB but the most SAGB.  

Figure 2.2: Boxplots describing the trends in the probability of torching (Ptorch) in the Fire and 
Fire Surrogate Study at Blodgett Forest Research Station. The narrow midline indicates the 

median, the edges of the box represent the 25th and 75th quartiles, and the whiskers define 1.5x the 
interquartile range.  
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Figure 2.3: Boxplots describing the trends in the stable aboveground live biomass (SAGB) in the 
Fire and Fire Surrogate Study at Blodgett Forest Research Station. The narrow midline indicates 

the median, the edges of the box represent the 25th and 75th quartiles, and the whiskers define 1.5x 
the interquartile range. 
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Figure 2.4: Predicted treatment effects on trends in aboveground live biomass (A) and stable 

aboveground live biomass (B) in the Fire and Fire Surrogate Study at Blodgett Forest Research 
Station. Results from the best mixed-effects linear model (i.e., greatest AICw, Table 2.1). 
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2.4 Conclusions and Future Directions 
The Sierran mixed conifer forest is a landscape at risk from the combined impact of an altered 
fire regime, past harvesting, and a warming climate. To reduce this risk, improving resilience by 
reducing tree density, lowering fuel loads, and increasing heterogeneity is the recommended 
management response (North et al. 2009, North 2012). A key state condition in the mixed 
conifer forest is the carbon carrying capacity (Kc). We define Kc as the maximum potential mass 
of stored carbon in an ecosystem under prevailing environmental conditions and the prevailing 
disturbance regime (Keith et al. 2010). Collins et al. (2015) reported a 200% increase in live tree 
carbon stored in contemporary mixed conifer forests where fire was excluded compared to the 
carbon stored under pre-settlement conditions. More generally, Earles et al. (2014) showed with 
forest simulation models that Kc is responsive to changes in both fire frequency and drought. 
They also noted that the stability of the carbon stored tends to decrease at greater magnitudes. 
We propose that the difference between Kc and the carbon that can be sustained (Ks) is an index 
of a forest’s resistance to disturbance with smaller differences between Kc and Ks indicative of 
higher resilience (Figure 2.5). We used the results from the Fire and Fire Surrogate Study at 
Blodgett Forest Research Station to quantify this conceptual trade-off between carbon storage 
and stability. We specifically focused on the risk posed by a problem wildfire and relied on 
AGB as an indicator of carbon dynamics.  

 

Figure 2.5: The proposed functional relationship between carbon storage and resistance to 

disturbance in the mixed conifer forest of the Sierra Nevada. Kc denotes the carbon carrying 
capacity; Ks denotes a stable level of carbon storage given the risk posed by wildfire, drought, 

and other disturbances. ∆R is the difference between Kc and Ks. 

 

Over a 14 year period following treatment, the trade-offs between storage and stability were 
striking (Figure 2.4). Absent treatment (i.e., Control), AGB steadily increased in this productive 
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second-growth forest thereby maximizing AGB stocks. The burned treatments (i.e., Burn and 
ThinBurn) stored the least AGB. When loss due to fire was included, the results flipped. The 
burn treatments had the largest store of stable AGB (SAGB) and the controls the least.  

These results were strongly grounded in measured responses over time in a fully replicated and 
robustly sampled field experiment. Calculations of SAGB did depend on fire mortality 
prediction from Ptorch, but the Ptorch model was parameterized with forest and fuel data. 
Moreover, the fire weather scenarios were extracted from problematic wildfires that occurred in 
the region during the period of study (2000-2016).  

The pattern of increasing AGB in absence of fire (Figure 2.1, Control) fits observations for an 
old-growth mixed conifer forest in the northern Sierra Nevada (Levine et al. 2016). This mesic 
site has been free of fire and has been adding AGB for the last 50+ years. As of 2013, it stored 
512 Mg ha-1 of AGB. In 2016, the mean AGB in the Blodgett Control was 441 Mg ha-1, suggesting 
that under prevailing conditions, it still has not reached it carbon carrying capacity (Kc in 
Figure2.5). For 2016, our analysis predicted that only 289 Mg ha-1 (66%) of the AGB in the 
untreated forest would survive a wildfire. In contrast, 324 Mg ha-1 of SAGB in the burned plots 
(Burn and ThinBurn, Figure 2.3) would remain after a wildfire (Ks in Figure 2.5).  

The trade-off between AGB storage and stability critically depends on the probability of fire 
occurring in these stands (Restaino and Peterson 2013). Moreover, the efficacy of the fuel 
treatments decline as the forest grows (e.g., Collins et al. 2011). In addition, our calculation of 
SAGB did not evaluate the risk posed by megafires (Stephens et al. 2014) or any other 
uncharacteristically severe disturbance (sensu Millar and Stephenson 2015). Nevertheless, we 
have demonstrated a quantitative framework for accessing the capacity of Sierran forests to 
store AGB that incorporates one major threat to its longevity.  
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APPENDIX A: Comparison of Carbon Storage 
Estimates 
A.1 Introduction 
California has a pressing need to measure and manage its forest carbon as part of its effort to 
reduce greenhouse gas emissions (ARB 2015). However, measuring forest carbon at the 
required spatial (entire state) and temporal resolution (annual) is a challenge. The measurement 
includes two main sources of uncertainty: 1) the allometric models used to estimate tree-level 
biomass; and 2) the method used to scale tree-level carbon estimates to the landscape (Zhao et 
al. 2012, Duncanson et al. 2017). In order to guide our development of a robust means to track 
annual changes in forest carbon stocks in California, we first review existing approaches and 
then compare the performance in three forest landscapes. 

A.2 Review: Allometric Modeling of Tree Biomass 
At their core, all estimates of forest carbon rely on the allometric property of vascular plants: 

 

M α D8/3 (Equation A-1) 

 

where M is tree mass and D is stem diameter (Enquist and Niklas 2001). Note that 
approximately 50% of the (bio)mass of tree is composed of carbon. However, the measurement 
of M requires that trees be harvested and all parts carefully measured, typically using 
dimensional analysis (Whittaker and Woodwell 1968). With direct measures of M and D, 
allometric models are statistically fit using the equation (Whittaker et al. 1974):  

 

𝑀𝑀 = 𝑎𝑎𝐷𝐷𝑏𝑏 (Equation A-2) 

 

where M represents the biomass of the tree, D the diameter of the stem (usually measured at 
breast height, 1.37 m) and a, b are estimated parameters. Often to simplify the analysis, equation 
2 is transformed to its linear form:  

 

𝑀𝑀 = 𝑎𝑎 + 𝑏𝑏 ∗ 𝑙𝑙𝑙𝑙(𝐷𝐷) (Equation A-3) 

 

While the theory based on biomechanical principles predicts no variance in the allometric 
relationship, in practice the scaling coefficient (b) can deviate from the expected 8/3rd power. 
For example, in Jenkins et al.’s (2003) national synthesis, the scaling coefficient never reached 
8/3 (2.67) and ranged from a low of 2.26 to a high of 2.48 for tree species groups (e.g., pine trees, 
mixed hardwoods). The variance is due to site and species differences in tree height and wood 
density. Thus, the predictive ability of the allometric models can be improved by including tree 
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height and developing species-specific equations. Alternatively, specific wood gravity can be 
used instead of species to account for differences in wood properties (Chave et al. 2005, 
Chojnacky et al. 2014, Temesgen et al. 2015).  

As a result of efforts to accommodate variation in tree allometry, existing equations take 
different forms. For common species with large ranges, there are multiple allometric equations 
developed from different data sets and fit to different model forms. The decision on which 
equation to apply can lead to large differences in tree mass estimates for the same diameter 
(Melson et al. 2011). This “model uncertainty” translates to important differences in carbon 
stock estimates for forested landscapes (Zhao et al. 2012, Ducanson et al. 2017). At the same 
time, the uncertainty can be controlled if a consistent set of models are developed and applied 
over time. Indeed, developing such a consistent set of models is a priority task of the US Forest 
Service Forest Inventory and Assessment (FIA) Program (Weiskittel et al. 2015a).  

Several problems confront the FIA effort to develop a nationally consistent approach to predict 
tree biomass (Weiskittel et al. 2015b). One is that the performance of models varies depending 
on the scope of the application. Locally derived models tend to perform better in terms of 
accuracy and precision when they are applied locally in comparison to regional or national 
models. At the same time, national models are more efficient at summarizing national trends in 
tree biomass but this efficiency comes at the cost of resolution at the local and regional level 
(Zhou and Hemstrom 2009, Westfall 2012, Weiskettel et al. 2015). Another challenge for FIA is 
that data on tree mass are limited at the national level. Often individual studies only sampled 
part of the size range for well-sampled species. Other species were not well-sampled or even 
measured at all. Thus, pseudo data were generated to fit equations for the entire size range of 
well-sampled species, and sparsely-sampled species were lumped into larger taxonomic groups 
(Jenkins et al. 2003). A third challenge is that in the western forests (including California), there 
exists an effective regional approach for estimating wood biomass from volume equations and 
wood density (FIA 2010). This regional approach was built on an extensive legacy dataset 
collected to inform timber management. Given the commercial imperative to accurately 
estimate wood volume, the performance of these equations was well-vetted. However, the 
regional equations focus on the merchantable part of the stem. They do not include the tops and 
limbs of the tree. In an effort to resolve differences between the national “Jenkins” equations 
and the regional equations, the FIA developed the Component Ratio Method (CRM, Woodall et 
al. 2011) where aspects of both approaches are combined to refine the estimate of whole-tree 
biomass. Currently CRM is the national standard for estimating tree biomass, but FIA reports 
alternative estimates of tree biomass using regional equations and many forestry/ecosystem 
studies use Jenkins equations. Not surprisingly, the plethora of choices permeates forest carbon 
estimates in California (Huang et al. 2017). Moreover, the efforts to refine tree biomass 
predictions that are both nationally consistent and regionally accurate continue (e.g., Weiskittel 
et al. 2015a).  

A.3 Review: Scaling of Tree-Level Biomass Estimates 
Forest carbon estimates over large landscapes are often calculated as the product of surface 
areas of vegetation types, classified by satellite remote sensing (Table A-1), and the carbon 
densities, derived from field measurements of trees and allometric equations, summed over all 
vegetation types (e.g. Achard et al. 2004, DeFries et al. 2007, Harris et al. 2012). The number of 
vegetation types that satellites with moderate spectral or spatial resolutions can accurately 
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discriminate, generally five to twenty classes (e.g. Bartholomé and Belward 2005, Loveland et al. 
2000), can limit the possible carbon density assignments to a few discrete values. 

In contrast, other methods use Light Detection and Ranging (LiDAR) or high-resolution 
satellites such as QuickBird, Ikonos, or WorldView (Table A-1) to sense the physical dimensions 
of trees to which aboveground biomass directly correlates (e.g., Gonzalez et al. 2010, Saatchi et 
al. 2011, Huang et al. 2017). With these systems, forest carbon content equals the product of the 
area and the carbon density of each pixel, where carbon density is calculated by applying 
allometric equations to field measurements of individual trees and correlated to canopy height 
metrics estimated by LiDAR or tree crown diameter estimated by high-resolution satellite data. 
This method generates raster coverage of the spatial distribution of forest carbon density with 
continuous values. 

A recent meta-analysis of the performance of remote sensors in estimating aboveground forest 
biomass/carbon density (Zolkos et al. 2013) concluded that the active sensors were more 
accurate than the passive sensors (Table A-1). In addition, various implementations of LiDAR 
were better than any satellite-based active sensing platform. In general, the greater detail with 
which the tree form was resolved (e.g., height, crown width), the better the performance. 
However, as Zolkos et al. (2013) note, the accuracy of the estimate also depended on the field 
measurements of tree biomass/carbon. Despite the promise of airborne LiDAR, the current 
costs of its acquisition make it impractical for state-level monitoring of forest carbon.  

Table A-1: Summary of major remote sensing technologies used for assessing carbon stocks. 

Sensor Scale Platform Mode Detection Access 

MODIS 250 m Satellite Passive 36 spectral bands Public 

Landsat 30 m Satellite Passive 9 spectral bands Public 

QuickBird 1m Satellite Passive 5 spectral band Commercial 

GLAS 1 km Satellite Active Light returns Public 

PALSAR 10 m Satellite Active Microwave returns Public 

LiDAR <1 m Aircraft Active Light returns Commercial 

Aerial 
photos 50 m Aircraft Passive Visible spectrum Public 

(NAIP) 

MODIS = Moderate Resolution Imaging Spectroradiometer; GLAS = Geoscience Laser 
Altimeter System; PALSAR = Phased Array type L-band Synthetic Aperture Radar; LiDAR = 
Light Detection and Ranging; NAIP = National Agriculture Imagery Program. 

 

The Landsat sensor provides a workable alternative to scale tree-level estimates of biomass 
(Gonzalez et al. 2014, Pflugmacher et al. 2014). Two applications of Landsat to forest carbon 
mapping have been realized to date: LandfireC (Gonzalez et al. 2014) and LandTrendr 
(Pflugmacher et al. 2014). LandfireC relies on vegetation type, cover, and height assignments 
from LANDFIRE. LANDFIRE combines data from several sources but primarily Landsat 
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images to produce fine-grained spatial units (Rollins 2009) over which field data can be applied. 
LandTrendr uses the same sensor (i.e., Landsat) but directly links tree biomass estimates to 
changes in the spectral signature via gradient nearest neighbor analysis (GNN; Ohmann and 
Gregory 2002, Ohmann et al. 2012).  

A.4 Comparison of Approaches 
To inform our current mapping efforts, we developed multiple estimates of carbon density for 
three forest landscapes in California (Table A-2). We choose three sites where the specific goal 
was to use LiDAR and robust field sampling in order to accurately access carbon stores. All 
three sites span a diverse and relatively large forest landscape. LiDAR for all sites was acquired 
using an Optech ALTM 2050 system on an airplane flying at an altitude of ~800 m and average 
velocity of 260 km per hour. The ALTM 2050 acquired up to three returns per pulse at a pulse 
frequency of 50 kHz, scan frequency of 38 Hz, and a maximum scan angle of 15°, creating a 
swath width of ~580 m. The point density is about 2–4 returns per square meter. Optech, Inc. 
rates the RMSE precision of individual point locations surveyed by the ALTM 2050 as ±15 cm 
vertical and ±50 cm horizontal. Flights were flown during the growing season of 2005 (Gonzalez 
et al. 2010, Chen et al. 2012).  

 
Two sites are in the Sierra Nevada, North Yuba and Sagehen. The North Yuba carbon area in 
located north of Downieville, California in the Tahoe National Forest. The area encompasses 
57.5 km2 within the North Yuba Old Forest Emphasis Area, an area managed to maintain and 
restore pre-European settlement forest conditions. The area was harvested during the mid-
1800’s and has an existing network of roads and trails in addition to disturbance from mining 
activities. Sagehen refers to the Sagehen Creek Experimental Forest near Truckee, CA in the 
Tahoe National Forest. Sagehen contains a more structurally diverse landscape (35 km2) that 
spans from mature mixed conifer forest to young pine plantations. Garcia/Mailliard refers to 
the Garcia River Forest (GRF) located south of Boonville, California. The carbon area 
encompasses 58 km2 on the eastern side of the GRF. Before The Conservation Fund acquired the 
land, private industry timber companies had extensively harvested the area. In addition to the 
GRF carbon area, a nearby state reserve was also sampled to represent larger and older trees 
than are currently present in the GRF. The Mailliard Redwood State Natural Reserve is a 200-
hectare area of old forest dominated by coast redwood, located due east of the Garcia River 
Forest.  

Table A-2: Comparison of forest carbon density estimates for three forest landscapes in 
California. Superscripts refer to the source of the estimate: 1Gonzalez et al. 2010; 2Battles et al. 

2014; 3This study, see Chapter 1; 4Chen et al. 2012. 
Landscape  

(forest type, area) 

Carbon 
density 

95% CI Year RME Allometric 
equation source 

  (Mg ha
-1
) (Mg ha

-1
) 

North Yuba 

 (mixed conifer, 58 km2) 

   
   

 LiDAR1 140 1 2005  Researcher (local) 
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 LandfireC2 120 70 2008 -0.14 FIA regional  

 LT-GNNCRM
3 112 -- 2005 -0.20 FIA CRM 

 LT-GNNJenkins
3 152 -- 2005 0.09 Jenkins 

Garcia/Mailliard 

 (coast redwood, 59 km2) 

   
   

 LiDAR1 82 1 2005  Researcher (local) 

 LandfireC2 120 80 2008 0.46 FIA regional  

 LT-GNNCRM
3 95 -- 2005 0.16 FIA CRM 

 LT-GNNJenkins
3 111 -- 2005 0.35 Jenkins 

Sagehen 

 (mixed conifer, 35 km2)  

   
   

 LiDAR4 74 -- 2005  Researcher (local) 

 LandfireC2 73 32 2008 -0.01 FIA regional  

 LT-GNNCRM
3 53 -- 2005 -0.28 FIA CRM  

 LT-GNNJenkins
3 84 -- 2005 0.14 Jenkins 

𝑅𝑅𝑅𝑅𝑅𝑅𝑖𝑖 = 𝑋𝑋𝑖𝑖−𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝑖𝑖
𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝑖𝑖

  where RMEi is the relative mean error of carbon estimate for landscape i; Xi is the 
carbon density estimate i; LiDARi is the LiDAR based estimate of carbon density for landscape i. 

Allometric equations for each site were chosen from the best available published equations. 
Criteria for selection included species, the size range of tree sampled for biomass, and the forest 
habitat where tree biomass data were collected. The expectation was that these local equations 
would produce the most accurate estimate of forest carbon density for the site. Given the 
consistency in the remote sensing input, field sampling methodology, and data analysis, we set 
the LiDAR estimates of carbon density as the benchmark for comparison. We then obtained 
LandfireC (Battles et al. 2014) and LandTrendr-GNN (LT-GNN; Kennedy et al. unpublished) 
estimates for the same footprint at each site. The FIA regional biomass equations were used to 
parameterize LandFireC while two realizations of LT-GNN were developed using either the 
FIA CRM or the Jenkins equations. Both LandfireC and LT-GNN used forest inventory data 
from the FIA plots (Bechtold and Patterson 2005) to build the models.  

LandfireC and LT-GNNCRM matched the LiDAR estimates with similar overall accuracy but 
LandfireC overestimated carbon density (mean RME = 0.10) while LT-GNNCRM tended to 
underestimate carbon (mean RME = -0.11). Of the two, the LT-GNNCRM estimates were more 
consistently close to the LiDAR value while for LandFireC, the three estimates varied from very 
close to very far from the LiDAR benchmark (Table A-2). LT-GNNJenkins was the least accurate 
and most biased. It overestimated carbon density in all three cases with an average relative 
mean error of 0.19.  
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A.5 Conclusions and Future Directions 
The performance of LandfireC and LT-GNN builds confidence in the prospects for a robust 
method for monitoring forest carbon in California using resources (i.e., Landsat, FIA) in the 
public domain. Both efforts were built independently, yet they converged toward the LiDAR-
based benchmark with a mean relative error of approximately 10%. On the other hand, the 
choice of allometric equations clearly matters. The consistent bias in the LT-GNNJenkins matches 
the difference between Jenkins and CRM results (Domke et al. 2012). In their comparison for 
trees in the Pacific Northwest, Zhou and Hemstrom (2009) showed that the Jenkins estimate 
was 17.3% larger than the estimate from the CRM method and 14.4% larger than the FIA 
regional (Table A-3). The difference between the CRM and FIA regional equations was much 
smaller (Table A-3).  
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Table A-3: Differences among allometric model estimates of aboveground live tree carbon density 
for a western conifer forest. Percent difference (%Diff) calculated from results in Zhou and 

Hemstrom 2009. 

%Diff = (COL-ROW)/COL FIA Regional FIA CRM Jenkins 

FIA Regional ‒ -3.5% +14.4% 

FIA CRM +3.4% ‒ +17.3% 

Jenkins -16.8% -21.0% ‒ 

 

An obvious conclusion is that the use of a consistent set of allometric equations would improve 
the precision of forest carbon monitoring in California as well as for the United States. And yet, 
a common practice is to maintain multiple approaches. Jenkins is by far the easiest to calculate 
and requires the least amount of field data (diameter, species group). Both the FIA regional and 
CRM methods require tree diameter as well as tree height measurements. Also, the volume 
equations in the FIA regional are complex. For example, the volume equation for quaking aspen 
has 18 fitted coefficients applied in a series of complicated linear equations (Woodall et al. 2011, 
p. 10). The CRM method inherits this complexity and extends it with several extra steps.  

These problems are not limited to California. Weiskittel et al. (2015b) outline a national effort to 
improve tree biomass estimates. Preliminary results from a new method, referred to as 
“CRM2,” shows promise (Weiskittel et al. 2015a). However, based on recent discussions with 
our federal colleagues, the decision to revise the FIA methodology is 18 to 24 months away.  

We shared the insights from this review with our agency partners. Clearly a consistent set of 
tree biomass equations is essential to evaluation of forest carbon monitoring methods. Among 
the available approaches, the FIA regional equations were preferred. The regional FIA office 
considers these equations more appropriate and accurate for forests in California than the 
national standard (PNW-FIADB 2015). Moreover, there is a legacy of their use in California 
forest assessments. Therefore, all of the analyses and evaluations in this project use consistent 
applications of the regional tree biomass equations maintained by the Pacific Northwest FIA 
program.  
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APPENDIX B: Description of Development of GEE 
Capable Version of the LandTrendr Algorithm 
B.1 Introduction 
A central goal of our project is testing the hypothesis that a Landsat-based approach to mapping 
carbon represents a repeatable, cost-effective approach to measure forest carbon stocks in 
California. In our review (Appendix A), we found that the carbon density map developed using 
an existing version of our Landsat-based approach compared favorably to finer-resolution 
estimates from LiDAR. Those existing Landsat-based carbon density maps were produced for a 
different project, and only extended to the year 2012 because of reliance on a particular set of 
sensors. To move forward, we must move our entire Landsat-based approach into an 
operational mode. The Landsat-based approach involves two broad efforts: LandTrendr 
(Landsat-based detections of trends in disturbance and recovery, (Kennedy et al. 2010)) 
algorithms to extract a signal from the time-series of Landsat data, and the GNN (Gradient 
Nearest Neighbor; (Ohmann and Gregory 2002)) algorithms to estimate carbon density by 
linking the LandTrendr signal with forest plot data. This report focuses on the first effort, 
detailing how we have moved the computationally expensive and resource-intensive 
LandTrendr algorithms into Google’s Earth Engine platform in a manner that allows 
incorporation of the evolving Landsat sensor suite. 

B.2 Background 
The LandTrendr algorithms distill a simplified, coherent signal from large Landsat time-series 
datasets. The algorithms are computationally intensive, running many different statistical tests 
and fitting routines on each 30 by 30m pixel in large Landsat image time-series. They also 
require large archives of Landsat imagery to be accessible to the algorithms.  In the past, Co-
Investigator Kennedy’s lab has utilized expert remote sensing and data management 
professionals to shepherd vast Landsat archives through the algorithm to create maps. This is 
not tenable in an operational context for a state agency.   

Google’s Earth Engine (GEE) platform has substantial promise to overcome this challenge, but 
comes with challenges of its own.  GEE already stores the entire Landsat archive on its cloud-
based data servers, eliminating much of the need to store large datasets locally. Additionally, its 
image processing system distributes large computing loads across Google’s cloud-based 
architecture, eliminating the need for powerful distributed local computing resources.  
Implementing new algorithms on this platform is not trivial, however. For algorithms that do 
not already exist in the core GEE library, developers must work directly with Google to 
translate existing code into the code of the GEE library, and then must pass a vetting process 
and testing process to ensure compatibility with the GEE platform.  

Even if the algorithms can be ported to GEE, we must extend the functionality to seamlessly 
incorporate new satellite data. Our existing biomass maps relied heavily on two satellites, one 
of which no longer functions. A replacement sensor now exists, but integration must ensure that 
the new sensor faithfully links to the temporal record established by its predecessors.   

Thus, at least two steps are needed to ensure that the LandTrendr core algorithms can be 
reliably run in an operational mode from here forward. First, the software that runs the 
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LandTrendr algorithms must be transferred faithfully to the programming languages 
underlying GEE. At the time of project onset, Kennedy and collaborator Yang had been 
working extensively with the GEE developers to convert the core LandTrendr algorithms into 
GEE environment, but further development was required, as well as testing to ensure that the 
translation was successful. Second, we must bring recent Landsat data into the same time-series 
environment to allow extension of our prior maps, which heretofore had only existed up to the 
year 2012. This required a new set of tests and development.  

B.3 Translation of LandTrendr Algorithms to GEE 
The core of LandTrendr is temporal segmentation, where each pixel’s spectral time series is 
simplified into straightline segments separated by vertices or breakpoints (Figure B-1). Such 
simplification serves the dual purpose of distilling a large dataset into a few key parameters as 
well as reducing year-to-year noise. When the spectral index being treated relates to vegetation 
density, segments can be labeled as capturing vegetative growth, loss, or stability. Segments 
that show abrupt (short-duration) loss of vegetation are typically related to disturbance, such as 
clearing of forest for urban development or harvest. 

 

 
Figure B-1: Temporal segmentation of the Landsat archive. From a stack of cleaned yearly 

Landsat Thematic Mapper ™ images (a), algorithms fits straight line segments (black lines) to 
each pixel’s spectral trajectory (colored symbols). The segments capture the salient differences 

among land surface processes. 

 

The algorithms to conduct temporal segmentation were originally written in the programming 
language IDL (Interactive Data Language). Noel Gorelick, one of the original developers of 
GEE, worked with Zhiqiang Yang, a collaborator of Kennedy, to translate the code into core 
library functions of GEE. This process had already begun when the current project was 
proposed, but required further debugging and subsequent testing. Through iterative testing 
and improvement, the algorithm was successfully run over large test areas in early 2016, 
leading to the phase of testing conducted under this project.  
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To test the implementation of LandTrendr in GEE, we compared the LT-GEE algorithm’s 
temporal segmentation to expert interpretation of time-series done at more than 5,000 sample 
sites nationally. The expert dataset was developed previously for a separate project by Dr. 
Warren Cohen of the USDA Forest Service. To collect validation points, Cohen utilized the 
TimeSync interpretation interface that he and our collaborator Yang developed specifically to 
validate temporal segmentation outputs from LandTrendr (Cohen et al. 2010). TimeSync 
interpretation follows a standard protocol. Interpreting time series of spectral data for 
individual Landsat pixels (30m by 30m in size), the TimeSync analyst manually defines the 
breakpoints that bound straight-line segments. Because these segments conceptually match the 
straight-line segments of the LandTrendr algorithm, the comparison is one of testing whether 
breakpoints found by the algorithm match those found by the analyst.  

For these 5000+ nationally-distributed points, we evaluated agreement in several ways. First, 
we assigned the label disturbance, stable, or growth to every single year of every interpreted 
TimeSync plot and similarly to each plot’s corresponding LT-GEE temporal segmentation score 
(resulting in 96,606 comparisons, Table B-1). Because of the potential for slight geographic mis-
registration between the TimeSync plot and the LT-GEE data, we used the mean value of a 
three-by-three pixel window centered on TimeSync-interpreted plot location for the LT-GEE 
data. 

 

Table B-1: Accuracy assessment of TimeSync plots and Landtrendr-GEE temporal segmentation 
score. 

 

Some caution is needed in interpreting these results.  The TimeSync interpretation process 
brings substantially more information to bear on labeling, including high resolution aerial 
photographs, as well as spatial context and the natural human ability to infer pattern from 
subtle spatial cues. Thus, the analyst can label temporal segments for very subtle phenomena, 
and can even use expert knowledge to label a segment in a somewhat counterintuitive manner:  
a temporal drop in a vegetation index may still be labeled recovery or stable, for example, 
because of a larger signal inferred by the analyst. The time-series algorithm, on the other hand, 
only works with the numeric values of a single spectral time series and can take none of the 
context into account. Thus, these comparisons with TimeSync data represent the highest bar of 
accuracy standard possible. In a similar comparison of 10 different change detection algorithms 
(including but not limited to LandTrendr) conducted for the project under which Cohen 
originally interpreted the TimeSync plots, agreement scores such as these were the norm, if not 
at the higher end of accuracy.  
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Because of these issues, it is important to further parse the comparison results. First, we split the 
TimeSync disturbance and recovery categories into their constituent process types, and 
compared those with the magnitude of spectral change recorded by LandTrendr-GEE (Table B-
2). Several key patterns emerge: 1) Where LandTrendr-GEE overestimates disturbance, it is 
primarily for low-magnitude processes; 2) Where LandTrendr-GEE underestimates disturbance, 
it is similarly for low-magnitude processes; and 3) Stability and recovery dominate the dataset, 
and disturbance processes are an extreme minority of observations. This latter fact obscures the 
ability of the algorithm to detect disturbance.  Moreover, the strict year-by-year comparison 
adds a potential double penalty to the algorithm in cases where noise or haze mask the 
algorithm’s ability to match disturbance event timing perfectly. Off by one year, the algorithm 
would receive double penalties of false negative in one year and false positive in the next.   

Thus, we conducted a final parsing of the dataset. Here, we focused only on traditional 
disturbance events labeled by the TimeSync analyst, such as fire, harvest, mechanical clearing, 
and wind. We then evaluated whether the LandTrendr-GEE algorithm captured the event 
within one year of the analyst’s call. Of the 1895 such individual TimeSync derived events, the 
algorithm correctly captured 1364 (or 72%) of them.   

In sum, our evaluation showed that the GEE implementation of the LandTrendr algorithm 
appeared to be functioning in a manner consistent with the existing published version of the 
code. 
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Table B-2: Parsing of LandTrendr-GEE and Timesync agreement by category and magnitude. 
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B.4 Integration of Landsat 8 Reflectance Data 
Landsat 8 is the most recent version of the Landsat sensor family, and will be critical for 
ongoing monitoring of forest condition. Launched in 2013, the Landsat 8 OLI (Operational Land 
Imager) spectral sensor was designed to carry on the legacy of the sensors that had been carried 
on Landsats 5 and 7. Those latter sensors were the data on which the prior LandTrendr-derived 
biomass maps had been produced. While Landsat 7 still records image data, Landsat 5 ceased 
functioning in November 2011. To ensure continuity of measurement, we need to ensure that 
Landsat 8 OLI data could be seamlessly included in the time series of the prior image archive.   

Because the design characteristics of the Landsat 8 OLI sensor are slightly different from those 
of Landsat 7, a data transformation is needed. We explored two possible approaches to 
transform Landsat 8 spectral data to match with Landsat 7 spectral data. The first approach was 
to utilize transformation coefficients cited in Roy et al. (2016), developed as regressions using 
more than 59 million individual pixels in near-coincident Landsat 7 and Landsat 8 images over 
the continental United States. Recognizing that the differences in spectral bands between the 
sensors may cause vegetation-specific changes, we chose to test whether a more localized 
correction approach may be more effective. -This second method was developed in the 
Kennedy lab by Dr. Joseph Hughes, a postdoc working on this project. Approximately 4000 
small regions (0.1 x 0.1 degrees) were selected across the globe in areas where Landsats 7 and 8 
overlapped (on scene margins), and biome type noted. Surface reflectance values were obtained 
for each sensor for near-coincident observations (defined as being within 5 days of each other). 
We omitted cloud and shadows, as well pixels that were water or snow in one image but not the 
other, both as determined by the cloud/shadow algorithm CFMask (the standard used by the 
USGS). Large changes in spectral value (greater than 0.3 reflectance units) were also omitted, 
assuming they corresponded to either real change on the ground or to inadequate cloud 
screening. Regressions between L8 and L7 bands were calculated for each global biome type, 
and coefficients stored for correction at the biome level.    

We then tested the impact of these two transformation approaches on the temporal 
segmentation process. Two 1° x 1° locations were examined between 1985 and 2016: 1. A region 
in the western Willamette Valley of Oregon, with strong disturbance signals from forest harvest 
in the coastal range; and 2. An area around the Great Smoky Mountains, a protected area with 
low disturbance. We chose these areas to test a range of forest types and to ensure that our 
analysts could interpret the potential change patterns in each study area. Both locations are a 
mix of forest, agriculture, and urban; all analyses are limited to forested areas (pixels with 
median NBR [normalized burn ratio spectral index] over the timeseries > 0.6). For all pixels (30 
by 30m cell size) in each study area, we ran the LT-GEE temporal segmentation on time-series 
of surface reflectance data from the appropriate sensor, and noted the vertex years found by the 
algorithm. We documented vertex values for fitting with no correction, with the Roy et al. 
transformations, and with our biome-specific transformation (noted below as the “mjh” 
transformation). For each of those conditions, we tested two conditions within the Landsat 8 
era: where all possible images are allowed from either Landsat 7 or Landsat 8 sensors, and 
where only Landsat 8 images are allowed after Landsat 8 data became available. If the 
correction of the L8 data were incorrect, we would expect to see a step function (and hence, 
more vertices found by the GEE-LandTrendr algorithm) in the 2012 and 2013 time period.   
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In both study areas, we found evidence to suggest that the generic coefficients reported by Roy 
et al. (2016) are sufficient to bring Landsat 8 data into agreement with Landsat 7 data. In the 
Willamette Valley study area (Figure B-2), the Roy et al. coefficients resulted in the fewest 
vertices in 2012, suggesting a better correction of Landsat 8 data.   

 

 
Figure B-2: Vertex counts from GEE-LandTrendr fitting in the Willamette Valley study area. Vertex 
counts in the year 2012 and 2013 are lowest for the Roy et al. (2016) transformation coefficients, 

suggesting they introduce the least artifacts into the time-series fitting. 

 

In the Smokey Mountains study area, neither transformation was appreciably different from 
applying no transformation at all (Figure B-3). 
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Figure B-3: Vertex counts from GEE-LandTrendr fitting in the Smokey Mountains study area. No 

appreciable effect of the Landsat 8 transition is seen in the 2012-2013 era for any of the 
approaches, suggesting that any of the transformation (including no transformation) would be 

appropriate. 

 

From these tests, we concluded that best practices argued for the use of the Roy et al. (2016) 
coefficients to integrate Landsat 8 data into our GEE-LandTrendr temporal segmentation. In the 
case where little correction was needed (the Smokey Mountains example), the Roy coefficients 
caused no harm. In the case where disturbance was common (the Willamette Valley example), 
the Roy coefficients appeared to be the most reliable. Moreover, the methodology of the Roy 
transformations is public and well-documented.   

Thus, from this point forward, we applied the Roy et al. (2016) coefficients Landsat 8 OLI data 
for our time-series analysis.  

B.5 Extension of Segmentation Results to Other Indices 
Temporal segmentation is the core of the LandTrendr process, but only operates on a single 
spectral index at a time. When chosen carefully, that single index may reasonably capture the 
timing of a diverse range of events. However, no single spectral index can adequately 
characterize the depth of information needed to model biomass. Therefore, an essential next 
step is to extend the segmentation information from the original index to additional spectral 
indices. Described in (Kennedy et al. 2015), the process involves forcing the target indices into a 
temporal segmentation (temporal fitting) that matches the timing of the segmentation 
determined by the original index (temporal congruence). Temporal fitting and temporal 
congruence each play an important role. The former removes the noise from the target indices, 
while the latter ensures that no unrealistic combinations of indices occur. We call the process 
“fitting to vertices”, or FTV, and like the original segmentation, this project required that we 
move the code into the core GEE code libraries.  
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Through the late summer and early fall of 2016, collaborator Yang worked with the GEE team to 
test and debug these FTV routines. For our test case, we used an area of the Sierra Nevada 
Mountains. Our goal was to create images of the indices in the tasseled-cap transformation 
(Kauth and Thomas 1976): the tasseled-cap Brightness (TCB), Greenness (TCG), and Wetness 
(TCW) indices. The three indices mathematically capture most of the variability in the original 
Landsat spectral signal, but far more efficiently. They form the foundation of the biomass-
estimation process we developed for our prior forest-biomass mapping project with the USDA.  

 
Figure B-4: GEE-LandTrendr-derived FTV-fitted tasseled-cap imagery for the year 2010 or the state 

of California. Blue tones indicate forest, red tones indicate barren, and purples indicate urban. 
Similar images were generated for every year from 1986 to 2016. 

 

The resultant images met the goals of the FTV process. Images for the entire state of California 
(Figure B-4) were generated from 1986 to 2016, using source imagery from Landsats 5, 7, and 8. 
The images showed minimal to no residual impacts of cloud or cloud shadow, and no 
systematic bias at the Landsat 7/8 transition.  
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More importantly, the FTV images appropriately capture temporal evolution of spectral signal. 
As an example, we examined the spectral properties of the forests near Sequoia and Kings 
Canyon National Parks in the southern Sierras from 2010 to 2015. These forests are among those 
that have experienced stress and mortality from the California drought. As expected, the 
spectral properties of the FTV images show spatial patterns of change in indices related to 
vegetation and canopy structure (Figure B-5). 

 
Figure B-5: Utilizing fitted imagery to track forest change concurrent with drought in the southern 
Sierras. Tasseled-cap Brightness (B), Greenness (G), and Wetness (W) displayed in the red, green, 
and blue colors, respectively, for the year (a) 2010 and (b) 2015, for the area (c) including parts of 
Sequoia National Park and Kings Canyon National Park. Broad swaths of loss in TCW (shown in 

purple tones in (d)) are typically associated with loss in vigor or in mortality amount conifer 
dominated forests. 

 

As key deliverable from the effort, we handed the FTV images off to our collaborators at the 
USDA Forest Service (Dr. David Bell) and at Oregon State University (Matt Gregory and 
Heather Roberts). They will develop statistical approaches to link these data with USDA Forest 
Service Forest Inventory and Analysis (FIA) plot data to generate yearly maps of aboveground 
forest biomass.  
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APPENDIX C: Detailed Methods: LandTrendr and GNN 
Imputation to Produce California Map of Aboveground 
Live Biomass  
C.1 Introduction 
Assessment and monitoring of biomass and carbon patterns and dynamics across forest 
landscapes is needed to support management and decision making processes, highlighting the 
need for spatially complete (e.g., all forest lands in California) and temporally deep (e.g., 1990 
baseline to present) vegetation mapping products. This research project aims to continue 
development of a repeatable, cost-effective, Landsat-based approach to forest carbon stock 
mapping in California. We have compared existing moderate-resolution Landsat-based and 
finer-resolution LiDAR based carbon density maps representing annual forest conditions from 
1990-2012 (Appendix A). We have also developed a new framework for assimilating the full 
Landsat 5, 7, and 8 archives (1984-2016) into the Landsat-based detections of trends in 
disturbance and recovery algorithm (LandTrendr; Kennedy et al. 2010) using the Google Earth 
Engine (GEE) platform to distribute computational demands within a cloud-computing 
environment (Appendix B). LandTrendr not only helps to identify disturbance patches, but also 
extracts the signal (i.e., reduces sensor noise) from the Landsat time series (LTS), improving the 
spatial and temporal consistency of vegetation, and thus forest carbon stock, and mapping 
produced using statistical algorithms, such as the gradient nearest neighbor approach (GNN; 
Ohmann and Gregory 2002, Ohmann et al. 2012). This report describes the integration of 
LandTrendr from GEE into the GNN framework to produce new disturbance and biomass 
maps from 1990-2016, along with associated measures of uncertainty. 

C.2 Background 
The LandTrendr-GNN framework provides a valuable approach for translating the multi-
decadal Landsat archive into a spatially and temporally explicit representation of forest 
biomass, and thus carbon stock, patterns. The LandTrendr-GNN framework was developed by 
the Landscape Ecology, Modeling, Mapping and Analysis (LEMMA) team, a collaborative 
Oregon State University and USDA Forest Service research team currently led by Co-
Investigator Bell. The LandTrendr-GNN framework involves three phases (Figure C-1): 
LandTrendr algorithm implementation, integration of LandTrendr and GNN, and plot-based 
analyses and comparisons. The LandTrendr algorithm (Figure C-1; LandTrendr) uses pixel-level 
temporal segmentation procedures to remove noise from the LTS and retains the major trends 
in the spectral signal through time (described in detail in Kennedy et al. 2010). The resulting 
temporally-smoothed LTS data can then be used for biomass modeling purposes. 
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Figure C-1: Representation of the LandTrendr-GNN framework 

 

Temporally-smoothed LTS imagery can be integrated with other geospatial data and forest 
inventory data in the GNN modeling method to produce forest biomass maps (Figure C-1; 
LandTrendr+GNN). GNN is a k nearest neighbor (kNN) imputation methodology designed 
explicitly for landscape mapping (Ohmann and Gregory 2002). Imputation mapping is a 
method for substituting observed values (i.e., forest inventory data) to replace missing data for 
all pixels in an area, resulting in a map as output. Specifically, a kNN imputation assigns those 
missing values based on some set of observations that are similar to the pixel of interest in terms 
of environmental conditions (i.e., minimizes distance in environmental or gradient space). In 
the case of GNN, the environmental space is defined by a constrained ordination (direct 
gradient analysis) – canonical correspondence analysis (CCA; ter Braak 1986) that relates forest 
attributes from forest inventory plots (i.e., species matrix) to geospatial data extracted at those 
same plot locations (i.e., environment matrix) – for measuring and weighting distances in 
nearest neighbor calculations (Ohmann and Gregory 2002). The selection of variables to include 
in the species and environment matrices represent the modelers’ underlying assumptions and 
will impact the eventual maps. Past experience indicates that, depending on the physiographic 
region being modeled and mapped (hereafter modeling region, or MR), the relationship 
between LTS data and forest structure depends on other environmental variables, such as 
climate, topography, and location (Ohmann et al. 2014).  
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C.3 Forest Attribute Data 
The forest attributes impact the GNN imputation mapping in two ways. First, they enter the 
CCA as the species matrix and help to define the gradient space with which neighbors are 
identified and assigned during imputation. The species matrix contains tree basal area grouped 
by species and tree size class to represent both compositional and structural variation in forest 
ecosystems (Ohmann et al. 2012). Second, a broader suite of forest attributes can be imputed to 
individual pixels either from the nearest neighbor directly (i.e., k = 1) or the mean of a set of 
neighbors (i.e., k > 1). In this case, we are interested in aboveground live forest biomass which is 
calculated based on individual tree data for each plot. Three modifications to existing forest 
attribute data were undertaken for the current project to improve model performance and meet 
the needs of the end-users: refined plot selection, plot screening to remove outliers, and revised 
biomass equations. 

C.3.1 Plot Selection 
In the past, vegetation maps produced using GNN have relied on a mix of forest inventory plots 
representing an approximate 1-ha footprint, but plot designs still differed (Ohmann and 
Gregory 2002; Ohmann et al. 2012). For example, U.S. Forest Service Region 6 Current 
Vegetation Survey (CVS) and U.S. Forest Service Forest Inventory and Analysis (FIA) plots used 
different numbers of subplots (5 vs. 4), used different diameter thresholds for nested plots, and 
were measured during different periods of time (1994-2007 vs. 2001-present; Max et al. 1996, 
Bechtold and Patterson 2005). These differences in design result in differing sampling 
intensities, and thus differing probability of including certain trees. As a result, including 
multiple sampling designs can introduce artifacts into vegetation maps.  

As part of the current project, we assessed whether changes in sampling design substantially 
impacted annual time-series of biomass mapping products produced using the LandTrendr-
GNN framework. From summer 2016 to fall 2016, Matt Gregory, Heather Roberts, and David 
Bell examined temporal trends in existing LandTrendr-GNN biomass maps and compared them 
with maps produced using only FIA annual plots in a subset of modeling regions (MRs 223-227; 
Figure C-2). These modeling regions were selected because the large number of non-FIA annual 
plot design plots (i.e., Region 6 CVS plots) present in these modeling regions would result in the 
most extreme manifestation of mapping artifacts. For the purposes of this exercise, previous 
modeling workflows and imagery were used, only allowing the forest inventory plots entering 
the modeling to vary. We found that artifacts caused by changing plot designs were common, 
especially for threshold-based forest attributes. For example, CVS plots examine a larger 
footprint for the largest trees, meaning that a shift from CVS to FIA plots occurring in the mid-
2000s tended to be associated with erratic inter-annual fluctuations in biomass predictions and 
an eventual decline in forest biomass predictions for which no clear mechanism was observed 
(i.e., large disturbance or mortality event). To avoid this erratic behavior, the LEMMA team 
decided to use FIA annual plots alone for modeling and mapping in the current project. 
Focusing on a single plot design was not previously possible as a full cycle of FIA annual plot 
measurements was not completed until 2011. 
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Figure C-2: Map of modeling regions (MRs) used in this project 

 

C.3.2 Plot Screening 
To improve model fitting and eventual forest biomass maps, Bell screened >2,000 FIA plots 
identified as potential outliers from August 2016 to January 2017. In part, the large number of 
outliers was due to the addition of 7487 plot measurements that had not previously been 
incorporated into vegetation mapping for the study area. Of the new plot measurements, 3404 
occurred between 2012 and 2015 on the FIA national grid, and 4083 occurred between 2001 and 
2015 on R6 CVS locations outside of the FIA national grid. All of the new plots were measured 
by FIA field crews using FIA’s annual sampling protocol. Outliers were identified based on 
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several criteria, including, but not limited to, inaccurate vegetation predictions and overly 
variable predictions within the plot footprint. For each outlier, Bell examined tassel-capped 
brightness, greenness, and wetness from LandTrendr along with color images from the 
National Agriculture Imagery Program (NAIP) at the plot location. Plots encompassing (1) 
more than one vegetation condition (e.g., straddling the boundary between a plantation and an 
old-growth forest), (2) human structures and modifications to the landscape (e.g., roads), and 
(3) waterways were excluded from modeling. Plots where a disturbance occurred between plot 
measurement and Landsat imagery dates, or vice versa, were excluded. Finally, plots where the 
tree data did not appear to be representative of the Landsat or NAIP imagery, potentially 
indicating inaccurate plot coordinates or missing tree data, were excluded. After all outlier plots 
were examined, models were run again and new outlier plots were assessed iteratively. When 
no new outliers were identified, the plot screening was considered complete. This plot 
screening resulted in an additional 5978 FIA annual plots available for modeling. 

C.3.3 Biomass Equations 
Biomass equations were updated to reflect regional biomass functions, as used for LandFire 
(Appendix A). LEMMA already uses both CRM (Heath et al. 2009) and Jenkins (Jenkins et al. 
2003) biomass algorithms for aboveground live biomass estimation. From November 2016 to 
February 2017, Heather Roberts (LEMMA database manager) implemented regional biomass 
equations (FIA 2010) within our database structure. All biomass equations are applied at the 
individual tree level and expanded aboveground live tree biomass to the scale of plots (kg ha-1) 
by multiplying individual tree biomass (kg) by expansion factors (i.e., trees ha-1 represented by 
each tree). As noted in Appendix A, regional biomass equations are associated with 
merchantable volumes, while CRM and Jenkins methods are associated with total volumes. 

Although the source of LEMMA’s data is FIA’s National Inventory Management System 
(NIMS), which contains tree-level regional biomass values, updates made to both databases 
after LEMMA loaded the data prevented us from importing biomass directly from NIMS for 
older plots. As part of LEMMA’s QA/QC process, we compared our regional biomass values 
with those in NIMS for plots for which we were confident that no database updates had 
occurred. When we found some differences in regional biomass between LEMMA and NIMS, 
we contacted FIA and discovered that they had updated some of their volume equations in 
2014. We decided to stick with the FIA volume equations documented in 2010 to be consistent 
with the methods used to calculate volume on the LiDAR plots. After excluding species whose 
volume equations had changed, LEMMA’s regional biomass values matched FIA’s values. In a 
few cases, bark equations and branch equations return negative biomass values for trees with 
small diameters and heights. LEMMA followed FIA’s lead and zeroed out all negative bark and 
branch components.  

Due to difficulties in differentiating certain fir species (genus Abies) in the field, LEMMA has 
created some species codes that represent multiple species. ABCO (white fir) and ABGR (grand 
fir) are assigned to ABGRC, and ABMA (California red fir), ABPR (noble fir) and ABSH (Shasta 
red fir) are assigned to ABPRSH. Since we assign the new codes before we calculate volume, we 
use the same specific gravity value and volume equation for all species assigned to a 
combination code. We used the specific gravity and volume equation for the most commonly 
occurring species in the group. Since we retain the original species codes, we have the option of 
calculating volume based on the original species codes in future versions of the GNN models. 
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C.4 Geospatial Data 
GNN imputation is, at its heart, a mapping approach that provides a wall-to-wall 
representation of forest vegetation. As a result, spatially and temporally complete geospatial 
data are needed as inputs to GNN in order to produce mapped predictions for all pixels and 
years. These geospatial data (i.e., rasters) enter GNN in two ways. First, both LTS imagery (in 
this case from LandTrendr) and environmental data (Table 1) for each forest inventory plot 
included in the species matrix are used to construct the environment matrix as an input into the 
CCA. Second, the same environmental variables are used to calculate the plot and pixel 
locations in gradient space, given the results of the CCA. As a consequence, plots can be 
attributed to pixels as the basis of the kNN imputation within GNN. As part of the current 
project, we examined a new method for selecting candidate Landsat TM images based on a 
mediod method and explored new combinations of geospatial predictors contained in the 
environment matrix. In particular, new geospatial data included change metrics for LTS data 
and soils information (Miller and White 1998), whereas previous GNN mapping has generally 
included LTS, climate, location, and topographic data (Ohmann et al. 2002, 2012, 2014; Bell et al. 
2015). 
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Table C-1: Geospatial data used in LandTrendr-GNN Framework 

Subset Code Description 

Landsat TC1 Brightness (i.e., axis 1 of the tassel cap transformation) 

 TC2 Greenness (i.e., axis 2 of the tassel cap transformation) 

 TC3 Wetness (i.e., axis 3 of the tassel cap transformation) 

 NBR Normalized burn ratio  (unitless) 

Change ∆TC1 Mean change in TC1 during previous 6 years 

 ∆TC2 Mean change in TC2 during previous 6 years 

 ∆TC3 Mean change in TC3 during previous 6 years 

 ∆NBR Mean change in NBR during previous 6 years 

Climate ANNPRE Mean annual precipitation (ln[mm]) 

 ANNTMP Mean annual temperature (°C) 

 AUGMAXT Mean maximum temperature of August (°C) 

 DECMINT Mean minimum temperature of December (°C) 

 SMRTP Ratio of mean temperature (°C) to precipitation (ln[mm]) of May-Sept. 

Location COASTPROX Distance to the Pacific Ocean (km) 

 LAT Latitude (°) 

 LON Longitude (°) 

Topography ASPTR Cosine transformation of aspect 

 DEM Elevation from a digital elevation map (m) 

 PRR Potential relative radiation (unitless) 

 SLPPCT Slope (%) 

 TPI450 Topographic position index, difference between elevation and mean 
elevation within a 450-m radius window 

Soils ROCKDEPTH Rock depth (cm) 

 BD_30 Bulk density of soils 0 cm – 30 cm (g cm-3) 

 PERM_30 Permeability of soils 0 cm – 30 cm (m2) 

 PH_30 Mean pH of soils 0 cm – 30 cm 

 RVOL_30 Rock volume of soils 0 cm – 30 cm (cm3) 
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C.4.1 Mediod image mosaics 
In Fall 2016, new LandTrendr-based spectral data were extracted from GEE using the methods 
described in Appendix B, including normalized burn ratio (NBR) and three tassel cap indices 
(brightness, greenness, and wetness) for each year and 30m pixel in the modeling area (Figure 
C-2). During December 2016/January 2017, Co-Investigators Bell and Kennedy and 
Collaborators Gregory and Yang discovered LTS imagery quality issues (e.g., clouds) arising 
from the method for selecting candidate images used in the construction of yearly mosaics that 
feed into the LandTrendr algorithm. While there are algorithms designed to maintain high 
quality data of surface reflectance data (e.g., cloud masking using Fmask; Zhu et al. 2015), 
anomalous observations were still quite common within individual images. Since the Landsat 
images for LandTrendr were selected based on a target date (i.e., the observation for a given 
pixel is the clear image with the closest acquisition date to the target date), anomalous 
observations were often retained and impacted the LandTrendr segmentation, and thus the 
temporally smoothed imagery used by GNN. In January 2017, Collaborators Gregory and Yang 
developed a mediod method for image selection which avoids these anomalous observations. 
The mediod method takes a window of time around the target date, July 1 to August 31 in this 
case, calculates the median of each pixel for six spectral variables (TM bands 1-5, 7), and then 
identifies the image with the most similar set of observations for that pixel. As a result, extreme 
values are avoided and the quality of the imagery entering and exiting LandTrendr are much 
improved (Figure C-3). 

 
Figure C-3: An example landscape (aerial photo; left) with the associated false color Landsat 

composite based on images closest to the target date (center) and the mediod method of image 
selection (right). 

C.4.2 Geospatial Predictor Assessment 
In November and December 2016, Collaborator Gregory prepared all relevant geospatial data 
for modeling (Table C-1). These data can be broadly categorized into one of six subsets: 
Landsat, Change, Climate, Location, Topography, and Soils. Collaborators Gregory and Roberts 
ran several permutations of GNN with differing combinations of these geospatial data subsets 
in MR224 (Western Cascade Mountains; Figure C-2). At the time of this analysis, LTS data from 
LandTrendr acquired using the mediod method (see Section C.4.1) were only available for 
MR224. Still, MR224 is a good candidate for the current comparison as it includes diverse 
vegetation landscapes ranging across vegetation types (moist vs. dry forests and warm vs. cool 
forests) and stand ages (recently harvested to old-growth). Specifically, we compared the 
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following eight models: a saturated model with all variables, models with a single subset of 
variables removed (i.e., no soils, no change, no Landsat, no location, no topography, or no 
climate data), and a model with both soils and change data removed. The final model is similar 
to the model used to generate previous GNN maps of forest carbon used in Appendix A. Once 
models had been generated, we performed a modified leave-one-out validation protocol 
(Ohmann and Gregory 2002) to examine each models performance (Pearson correlation and 
root mean square error, in this case) for a suite of 37 forest attributes representing live and dead 
forest density, forest biomass, and species composition. We then calculated the difference 
between the performance metrics for the saturated models and all other models to assess the 
impact of excluding certain subsets of geospatial data on GNN predictions.  

Our results indicated that Landsat imagery followed by topography were the most important 
subset of geospatial data while the removal of other subsets exhibited similar impacts on GNN 
predictive performance (Figure C-4). Removing Landsat variables increased RMSE and 
decreased correlations by an average of 26% and 39%, respectively. Removing topographic 
variables increased RMSE and decreased correlations by an average of 5% and 8%, respectively. 
GNN performance when removing other geospatial data subsets changed by less than 2%. 
Previous studies have shown that in some regions, location and climate data can greatly 
improve predictions, such as coastal environments where fog plays a key role in the distribution 
of some tree species or transitions from moist to dry landscapes where structure and 
composition are impacted by biogeographic constraints (Ohmann and Gregory 2002). The lack 
of an effect of removing soil data (one of the geospatial subsets not previously examined) from 
modeling may reflect the relatively coarse resolution of the source data (1 km; Miller and White 
1998) compared to natural variation in soil properties that may manifest at the scale of meters. 
Additionally, in some areas soils information impacted predictions substantially, creating 
unrealistic transitions in vegetation characteristics. Surprisingly, Landsat change metrics were 
not particularly useful, despite previous evidence that disturbance records can greatly improve 
biomass predictions such that Landsat-based models perform on par with LIDAR based models 
(Pflugmacher et al. 2012).  
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Figure C-4: Percent change in Pearson correlation coefficients and root mean squared error 

(RMSE) for GNN predictions when removing certain geospatial data subsets, summarized with 
box-and-whisker diagrams for a set of 37 key forest structural predictions. 

 

To further examine the differences between GNN modeling with and without change metrics, 
we mapped biomass based on these initial GNN results for MRs 224 and 232 and highlighted 
areas of divergence. These results indicated that including 6-year change metrics introduced 
significant artifacts into maps associated with post-disturbance forest recovery. Specifically, 
seven years after disturbance, biomass increased substantially in a completely unrealistic 
fashion (Figure C-5). While previous work has indicated that multi-decadal records of forest 
disturbance and change information can greatly improve forest biomass stock predictions 
(Pflugmacher et al. 2012), a 6-year average of change in the spectral signals appears to be too 
short a period of time to effectively incorporate into GNN. Future research should focus on how 
long a record of disturbance is actually needed to inform modeling. For the purposes of this 
project, we concluded that the models incorporating climate, location, Landsat data, and 
topography were most appropriate and the remaining sections focus on this model alone. 
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Figure C-5: Within (a) a managed forest landscape (2014 orthophoto), we present a comparison of 
live aboveground forest biomass maps based on GNN maps (b-c) without Landsat change metrics 
and (d-e) with Landsat change metrics for (b, d) 2013 and (c, e) 2014. Note that aboveground live 

biomass predictions within harvests tended to be greater, more spatially heterogeneous, and 
exhibit more rapid change with GN models incorporated change metrics compared to models 

without change metrics, all of which are inconsistent with our understanding of early seral 
forests. 

 

C.5 Forest Biomass and Uncertainty Mapping 
Following alterations to forest attribute data and geospatial data, we used the LandTrendr-
GNN framework to produce annual aboveground live biomass maps for all modeling regions 
(Figure C-2) using three implementations of GNN: k = 1 (GNNk1), bootstrapping approximation 
(GNNba), k = 10 (GNNk10). GNNk1 is the traditional GNN implementation, where the nearest 
neighbor to the pixel in gradient space is imputed to that pixel (e.g., Ohmann and Gregory 
2002). This method results in maps where unrealistic combinations of attributes cannot be 
produced (i.e., each prediction was observed at least once in the field). However, model 
precision cannot be directly assessed. For larger values of k estimates of uncertainties can be 
assessed. For GNNba, an approximation of non-parametric bootstrapping can be used to assess 
precision at the scale of pixels for a k = 1 kNN process (Bell et al. 2015). For GNNk10, variation in 
neighbors within and among pixels forms the basis of model-based inference (McRoberts et al. 
2007), with predictions being the unweighted means of the k nearest neighbors. Because GNNba 
and GNNk10 rely on weighted or unweighted means of the k nearest neighbors, they 
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underestimate the prevalence of rare features (e.g., uncommon forest structural conditions) or 
produce unrealistic combinations of structures or species. GNNba weights nearest neighbors 
based on their neighborhood rank (i.e., probability of inclusion of neighbor j and exclusion of all 
nearer neighbors in a given bootstrap sample), such that GNNba represents a compromise 
between GNNk1 and GNNk10. Note that GNNk10 can be used as the basis of small area estimation 
using model-based inference (e.g., McRoberts et al. 2007), either GNNba or GNNk10 can be used 
in a model-assisted framework (e.g., McRoberts et al. 2016), and all three products might be the 
basis of an error-adjusted area estimation procedure for areal estimates of forest biomass 
categories (Olofsson et al. 2013).  

For the current task, LEMMA (Bell, Gregory, and Roberts) constructed predictions based on 
GNNk1, GNNba, and GNNk10 so that methods appropriate for uncertainty assessment (GNNba 
and GNNk10) could be compared with the legacy methods for which direct estimation of 
precision in estimates was not possible (GNNk1). Maps of mean aboveground live biomass 
(GNNk1, GNNba, and GNNk10) and associated standard deviations (GNNba and GNNk10) were 
generally similar among methods, though standard deviations for GNNk10 were greater than 
standard deviations for GNNba. GNN maps indicated that live tree biomass was greatest in the 
higher elevations of the Sierra Nevada Mountains and in the North Coast of California (Figure 
C-6). Standard deviations in aboveground live biomass predictions tended to increase with 
mean predictions, consistent with GNN precision in western Oregon (Bell et al. 2015). 
Coefficients of determination (i.e., standard deviations divided by means) tend to be highest in 
recently disturbed forests (data not shown). 
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Figure C-6: Maps of (left) mean and (right) standard deviation for aboveground live biomass based 

on GNNk10. 

 

C.6 Accuracy Assessments 
In February 2017, we assessed accuracy of each model implementation (GNNk1, GNNba, and 
GNNk10) based on normalized root mean square error (NRMSE) and coefficient of determination 
(R2) using a modified leave-one-out procedure. The modified leave-one-out cross-validation 
compares observations to the nearest neighbor that is not itself, thus avoiding self-imputation 
that might exaggerate model performance statistics. This method has been shown to perform 
similarly to traditional leave-one-out cross-validation while greatly reducing the computational 
intensity of accuracy assessment (Ohmann and Gregory 2002). Accuracy statistics (NRMSE and 
R2) were calculated for aboveground live biomass. We found that in all modeling regions but 
one, the GNNk10 implementation exhibited the minimum NRMSE and maximum R2 (Table C-2). 
The single exception was MR 231 (California Central Valley; Figure C-2) where GNNba 
exhibited the most accurate estimates, though differences from GNNk10 in terms of accuracy 
statistics were miniscule.  
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Table C-2: Accuracy assessment for each of the three GNN implementations for each MR (see 
Figure C-2) for aboveground live biomass for 2014. 

  NRMSE R2 

Modeling Region # Plots GNNk1 GNNba GNNk10 GNNk1 GNNba GNNk10 

223 1454 0.517 0.492 0.479* 0.534 0.577 0.600* 

224 4026 0.565 0.536 0.503* 0.550 0.594 0.642* 

225 2704 0.721 0.701 0.682* 0.367 0.401 0.434* 

226 850 0.945 0.871 0.796* 0.254 0.366 0.471* 

227 3427 0.660 0.626 0.597* 0.474 0.527 0.569* 

231 774 0.794 0.769* 0.770 0.530 0.559* 0.558 

232 3935 0.719 0.690 0.653* 0.518 0.557 0.603* 

233 797 1.048 1.009 0.951* 0.535 0.569 0.617* 

234 241 0.915 0.876 0.808* 0.384 0.436 0.520* 

MEAN  0.765 0.730 0.693* 0.461 0.509 0.557* 
* indicates the model implementation with the (1) minimum NRMSE or (2) maximum R2 

We also examined scatterplots of predicted vs. observed values to understand how predictive 
capacity varied as a function of aboveground live forest biomass (Figure C-7). Generally, 
residual magnitudes increased with aboveground live forest biomass. At low aboveground 
biomass levels (<500 Mg ha-1; 97% of plots), all three model implementations performed 
similarly. At high levels (>500 Mg ha-1; 3% of plots), all models, but especially GNNk10, exhibited 
under-predictions consistent with the widely recognized biomass saturation in biomass 
modeling based on Landsat data (Steininger 2000). For example, aboveground live biomass 
observations in MR232 (Sierra Nevada Mountains; Figure C-2) ranged up to 1971 Mg ha-1, but 
maximum predictions at plot locations were 994, 909, and 716 Mg ha-1 for GNNk1, GNNba, and 
GNNk10, respectively. However, plots with aboveground live biomass exceeding 1000 Mg ha-1 
were rare, ranging from 0.0% to 1.4% of plots across modeling regions with only one modeling 
region having more than 0.5% of plots exceeding 1000 Mg ha-1. 

The accuracy assessment results (Table C-2 and Figure C-7) indicated that overall accuracy of 
GNNk10 was superior to the other products and that biases for high live aboveground biomass 
sites represented a small portion of the landscape. Given the more flexible solutions for small 
area estimation in a model-based approach using GNNk10 (see Section C-5), the high 
performance of GNNk10 was a favorable result given the focus of later parts of the project 
focusing on estimation. Still, given the generally favorable behavior of GNNba, both GNNba and 
GNNk10 will be shared with collaborators for the remainder of the project. Therefore, we have 
made annual aboveground live biomass mean and standard deviation maps available to all 
collaborators via an FTP service. 
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Figure C-7: Scatterplots (upper panels) and heat maps (lower panels) showing observed vs. 

predicted aboveground live forest biomass for GNNk1, GNNba, and GNNk10. For heat maps, white 
areas indicate no data, with red to yellow areas indicating low to high density of plots. 
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APPENDIX D: Detailed Methods: LiDAR-based Maps of 
Aboveground Live Tree Biomass 
D.1 Data 
D.1.1 Site Descriptions 
We compiled results from six study areas (Figure D-1) that represent a range of forest 
conditions found (Table D-1) in two common and biomass-dense forests in California: the 
Sierran conifer forest and the coast redwood forest (Gonzalez et al. 2010, Gonzalez et al. 2015). 
For both forest types, sites included examples of active forest management under state (Garcia 
and Blodgett) and federal (Last Chance and Sugar Pine) jurisdiction. In addition, two sites are 
managed as preserves (Mailliard and North Yuba). For detailed descriptions of the study area 
see Gonzalez et al. (2010) for Garcia, Mailliard, and North Yuba; Hopkinson and Battles (2015) 
for Last Chance and Sugar Pine; and Olson and Helms (1996) for Blodgett. 

D.1.2 Data Descriptions 
For these six sites, we have concurrent field inventory and LiDAR data (Table D-2, Table D-3). 
Circular field plots were stratified by management class at Garcia, slope-position at Mailliard, 
and forest type at North Yuba (Gonzalez et al. 2010). Grid sampling with a random start was 
used at the other sites (Hopkinson and Battles 2015, Olson and Helms 1996). Basic field 
inventory data included species, diameter at breast height (1.37m, DBH) and height of live trees 
≥ 5 cm DBH. Height was measured on a subsample of trees at Garcia, Mailliard, and North 
Yuba. Thus, we developed species and site specific equations using likelihood-based methods 
(Buckland et al. 1997) to quantify the strength of evidence for alternative models of the 
relationship between DBH and height. We considered four candidate models in three general 
functional forms: linear, power, and saturating. We selected the model with the lowest Akaike’s 
information criterion (AIC). For the dominant conifer species, fits (R2) for the best DBH-height 
model were greater than 0.81.  

Plot centers at all but one site were located with ± 1m. The exception was Blodgett where plot 
centers have ± 3 m location accuracy. LiDAR was acquired by two well-established contractors: 
Sanborn Map Company (http://www.sanborn.com/aerial-lidar/) and the National Center for 
Airborne Laser Mapping (NCALM, http://ncalm.cive.uh.edu/).  
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Figure D-1: Map showing location of the study sites in California where we developed LiDAR-

derived maps of aboveground live biomass. 

 

Table D-1: Description of the local-scale study areas used in this study. Area refers to the LiDAR 
footprint in the study area. 

Site Plot 
number 

Plot size 
(ha) 

Year(s) 

sampled 

AGB median 

(max-min) 

(Mg ha-1) 

COV 

Garcia 28 0.1  2005 290 (68-472) 48 

Mailliard  12 0.1  2005 606 (336-1392) 47 

North Yuba 36 0.1 2005 317 (0-1118) 68 

Last Chance 103 0.05 2013 136 (0-1625) 119 

Blodgett  525 0.04 2013-15 298 (3- 603) 69 

Sugar Pine 121 0.05 2007-08 348 (34-1667) 71 
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Table D-2: Description of the local-scale study areas used in this study. Area refers to the LiDAR 
footprint in the study area. 

Site/owner Forest type and management regime Area 
(km2) 

Garcia River 
Preserve/The 
Conservation Fund 

Coast redwood forest managed for sustainable timber 
production. 

58.7 

 

Mailliard Redwood 
State Natural 
Reserve/California 

Old growth coast redwood forest that is maintained as a 
preserve with no active forest management.  

2.1 

 

Last Chance, Tahoe 
National Forest/US 
Forest Service 

Sierran mixed conifer with management priorities of 
modifying fire behavior and improving forest health. 

135.0 

 

Blodgett Forest 
Research 
Station/University of 
California 

Sierran mixed conifer forest that encompasses a range 
of management regimes from even-aged harvests to 
old-growth reserves. 

9.2 

 

Sugar Pine, Sierra 
National Forest/US 
Forest Service 

Sierran mixed conifer with management priorities of 
modifying fire behavior and improving forest health.  

142.5 
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Table D-3: Attributes of LiDAR acquisitions used in this study as reported by the contractors. 

Attributes 

Garcia 

Mailliard 

North Yuba 

Last Chance Sugar Pine Blodgett 

Survey date Sep 2005 Nov 2012, Aug 2013 Sep 2007  Sep 2014 

Contractor Sanborn NCALM* NCALM NCALM 

Instrument Optech ALTM 
2050 Optech GEMINI Optech GEMINI  Optech GEMINI 

Mean pulse 
density m2 2-4 10 10 11 

Scan angle (°) ±15 ±12 to 14 ±12 to 14 ±18 

Survey altitude 
(m) 800 600-800 600-800 600-800 

Horz. accuracy 
(RMSE, cm) <50 10 10 <30 

Vert. accuracy 
(RMSE, cm) <15 5-35 5-35 9-100 

*National Center for Airborne Laser Mapping 

 
D.2 Biomass Modeling 
D.2.1 Field Inventory 
Aboveground live tree biomass (AGB) was calculated from tree inventory data that included 
species, DBH, and tree height using regional biomass equations (FIA 2010). These equations 
predict biomass of the entire tree stem from estimates of cubic volume and species-specific 
wood density. Separate allometric equations were used to calculate the biomass in bark and 
branches. AGB is the sum of the stem, bark, and branch mass. For western states, the Pacific 
Northwest Forest Inventory and Analysis program considers estimates of tree biomass using 
the regional equations to be more accurate than the national analysis (PNW-FIADB 2015). Only 
live trees ≥ 5 cm DBH were included in the analysis. Plot-level AGB is the sum of the individual 
tree biomass scaled by plot size and is expressed in megagrams  of biomass per hectare (Mg ha-

1).  

To ensure consistency in the application of the biomass equations (FIA 2010) between the GNN 
estimates and the LiDAR estimates, we compared results for a test set of trees that included 
small (DBH = 10.2 cm) and large (DBH = 50.8) examples of all the species in our six study areas. 
The largest discrepancy was 0.087% with most less than 0.002%. These differences were tracked 
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to an error in a branch equation and minor differences in the processing of rare cases. These 
inconsistencies were corrected in the final results.  

To ensure quality across multiple datasets, both data (i.e., species, DBH, and height) and results 
(i.e., tree-level and plot-level AGB) were screened for unusual values. We used DBH-height 
relationships to identify outliers where outliers were defined as observed heights > ± 100% of 
predicted values. Original records of the suspect data were inspected, and if necessary, 
interpolated height values were used in the rare cases (<1 in 1,000) where there was no 
explanation for the outlier. For example, if there was a note in the records that the top was 
broken, the shorter than expected tree would be retained, and if not, the predicted value was 
used. We also evaluated AGB estimates. From the 2016 FIA California database (FIADB v 6.1), 
we calculated the distribution of tree-level AGB by species and plot-level AGB by forest type 
(California Mixed Conifer and Redwood). Results less than the 1st percentile or greater than 
99th percentile were checked.  

D.2.2 LiDAR Processing  
We used the USDA Forest Service's FUSION software (version 3.7, McGaughey 2018) to 
calculate forest height and cover metrics from the LiDAR data (Table D-4). We took the location 
of the plot center to create a polygon that replicated plot size and then extracted plot-level 
metrics for the plot-polygons with the FUSION cloudmetrics tool. All structural analyses were 
normalized to local bare-earth estimates of the height above ground.  
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Table D-4: Metrics computed by the FUSION LiDAR processing software and tested for inclusion 
in models in this study. Details on the calculation of these metrics are available in McGaughey 

(2018). 

 

Height metrics 

(Returns <2 m height were not used in the 
calculation of the height metrics.) 

 

Cover and intensity metrics  

(Cover metrics defined as the ratio of returns 
above a height break.) 

Maximum, Minimum, Mode 
 

Total all returns 

Variance 
 

Total first returns 

Standard deviation 
 

All returns > 2 m 

Coefficient of Variation 
 

First returns > 2 m 

Interquartile distance 
 

All returns > mean 

Kurtosis 
 

First returns > mean 

Skewness 
 

All returns > mode 

L-moments (L1, L2, L3, L4) 
 

First returns > mode 

L-moment skewness 
 

Percentage all returns > 2m 

L-moment kurtosis 
 

Percentage first returns > 2 m 

AAD (Average Absolute Deviation) 
 

Percentage all returns > mean 

MADMedian (Median of the absolute 
deviations from the overall median) 

 

Percentage first returns > mean 

MADMode (Median of the absolute 
deviations from the overall mode) 

 
Percentage all returns > mode 

Cubic mean, quadratic mean 
 

Percentage first returns > mode 

Percentile values (1st, 5th, 10th , 20th, 
25th, 30th, 40th, 50th, 60th, 70th, 75th, 
80th, 90th, 95th, 99th percentiles) 

 

Percentage all returns > 2/ total first returns 

Canopy relief ratio 
 

Percentage all returns above mean/ total 
first returns 

 
 

Percentage all returns above mode/ total 
first returns 
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We relied on machine learning techniques to select the best LiDAR predictors of AGB. 
Specifically, we used a variable selection method based on random forests -- VSURF (Genuer et 
al. 2015). A critical feature of VSURF is the permutation-based approach to variable importance 
that is designed to reduce redundancy in the selection of predictor variables. For each site, we 
used VSURF to identify the best predictors for AGB and three transformed variants: square-
root, cubic-root, and natural logarithm of AGB. We initially evaluated the effect of the 
transformations by computing simple random forest analysis (Breiman 2001) for the 
transformed AGB and the full set of LiDAR variables and then comparing the overall fit of the 
models. We used the fit, measured by the coefficient of variation (R2), to prioritize the 
subsequent linear modeling of predictor variables.  

With the VSURF results, we specified a global linear model of AGB that included main effects 
and all two-way interactions of the predictor variables. We adopted a streamlined information-
theoretic approach to compute and then rank all possible subsets of the global model (Barton 
2018). Specifically, we used the function "dredge" in the MuMin R package (Barton 2018). Model 
rank was based on Akaike’s information criterion (AIC) with the best models defined as the 
model with the lowest AIC and all other models where the differences in AIC values relative to 
the model with the lowest AIC (ΔAIC) was < 2. Burnham and Anderson (2002) regard all 
candidate models with ΔAIC < 2 to have substantial empirical support.  

The top ranked model was evaluated for lack of fit, non-linearity in the relationship between 
predictor(s) and response, and for heteroscedasticity in the regression residuals (sensu Kennedy 
et al. 2018). Specifically, fit was assessed with the Rainbow test (Utts 1982); non-linearity with 
the Ramsey Regression Specification Error Test (Ramsey 1969); and heteroscedasticity with the 
Breusch-Pagan test (Breusch and Pagan 1979). A candidate was eliminated from consideration if 
it failed any of the three tests with failure defined as P< 0.1. In the infrequent cases where the 
top model (i.e., ΔAIC = 0) failed a test, we evaluated the remaining models in order based on 
ΔAIC. We never considered models with ΔAIC ≥ 2.  

The performance of the best conforming model was quantified with two criteria: adjusted R2 
and root mean squared error (RMSE) based on a 10-fold cross validation analysis (Zhao et al. 
2012). For the three sites with < 100 plots (Garcia, Mailliard, and North Yuba), RMSE was 
calculated with leave-one-out cross validation. We also report relative RMSE (rRMSE): 

 

rRMSE =  RMSE

∑ AGBi
n

n
i=1

        Equation D-1 

where i represents plots, n is the total number of plots, and AGBi is the LiDAR based estimate 
for plot i.  

 

 

D.2.3 LiDAR Biomass Map 
For each site, we applied the selected model to produce a map of AGB. Specifically, we used the 
large area processor in the FUSION gridmetrics tool to create a wall-to-wall estimate of AGB. 
Given the variation in the LiDAR datasets (e.g., differences in sensor and point density, Table 
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D-3) and complex mountain terrain, we considered a range of grid cell areas to project the 
gridmetrics. A 25 m2 grid cell provided the most consistent responses across the sites. We 
screened the AGB projection for outliers using upper bounds of 2,000 Mg ha-1 for study areas in 
the Sierran conifer forests (i.e., North Yuba, Blodgett, Last Chance, and Blodgett) and 4,000 Mg 
ha-1 in the coast redwoods (i.e., Garcia and Mailliard). Negative values were set to 0 Mg ha-1. 
Trimmed values were rare (< 1 in 1,000).  
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