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PREFACE 
California’s Climate Change Assessments provide a scientific foundation for understanding 
climate-related vulnerability at the local scale and informing resilience actions. These 
Assessments contribute to the advancement of science-based policies, plans, and programs to 
promote effective climate leadership in California. In 2006, California released its First Climate 
Change Assessment, which shed light on the impacts of climate change on specific sectors in 
California and was instrumental in supporting the passage of the landmark legislation 
Assembly Bill 32 (Núñez, Chapter 488, Statutes of 2006), California’s Global Warming Solutions 
Act. The Second Assessment concluded that adaptation is a crucial complement to reducing 
greenhouse gas emissions (2009), given that some changes to the climate are ongoing and 
inevitable, motivating and informing California’s first Climate Adaptation Strategy released the 
same year. In 2012, California’s Third Climate Change Assessment made substantial progress in 
projecting local impacts of climate change, investigating consequences to human and natural 
systems, and exploring barriers to adaptation.  

Under the leadership of Governor Edmund G. Brown, Jr., a trio of state agencies jointly 
managed and supported California’s Fourth Climate Change Assessment: California’s Natural 
Resources Agency (CNRA), the Governor’s Office of Planning and Research (OPR), and the 
California Energy Commission (Energy Commission). The Climate Action Team Research 
Working Group, through which more than 20 state agencies coordinate climate-related 
research, served as the steering committee, providing input for a multisector call for proposals, 
participating in selection of research teams, and offering technical guidance throughout the 
process. 

California’s Fourth Climate Change Assessment (Fourth Assessment) advances actionable 
science that serves the growing needs of state and local-level decision-makers from a variety of 
sectors. It includes research to develop rigorous, comprehensive climate change scenarios at a 
scale suitable for illuminating regional vulnerabilities and localized adaptation strategies in 
California; datasets and tools that improve integration of observed and projected knowledge 
about climate change into decision-making; and recommendations and information to directly 
inform vulnerability assessments and adaptation strategies for California’s energy sector, water 
resources and management, oceans and coasts, forests, wildfires, agriculture, biodiversity and 
habitat, and public health.  

The Fourth Assessment includes 44 technical reports to advance the scientific foundation for 
understanding climate-related risks and resilience options, nine regional reports plus an oceans 
and coast report to outline climate risks and adaptation options, reports on tribal and 
indigenous issues as well as climate justice, and a comprehensive statewide summary report. 
All research contributing to the Fourth Assessment was peer-reviewed to ensure scientific rigor 
and relevance to practitioners and stakeholders.  

For the full suite of Fourth Assessment research products, please 
visit www.climateassessment.ca.gov. This report advances the understanding of the cost of 
water supply shortage under a range of future climates and examines possible adaptations to 
operations and infrastructure to help mitigate these impacts. 

 

http://www.climateassessment.ca.gov/
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ABSTRACT 
Long-term shifts in the timing and magnitude of reservoir inflows will affect water supply 
reliability in California. Hydro-economic models can help explore climate change concerns by 
identifying system vulnerabilities and adaptation strategies for statewide water operations. This 
work contributes a new open-source limited foresight implementation of the CALVIN model, a 
hydro-economic model including roughly 90% of California’s urban and agricultural water 
demands. The model includes the ability to determine water allocations on an annual basis 
without knowledge of future availability, and to efficiently evaluate ensembles of streamflow 
projections representing a range of possible future climates. We then assess the vulnerability of 
the statewide system to changes in total annual runoff and the fraction of runoff occurring 
during winter, which primarily depends on temperature. Results are analyzed with a focus on 
adaptation strategies, aided by the economic representation of water demand in the model. 
These strategies include changes to reservoir operating policies, and conveyance and storage 
expansion. As water availability decreases, model results show quadratic increases in shortage 
cost, and corresponding increases in the marginal costs of adaptation strategies and 
environmental flow constraints. Reservoirs adapt to warmer climates by increasing average 
storage levels in winter and routing excess runoff to downstream reservoirs with available 
capacity. Both small and large changes to reservoir operations were observed compared to 
historical hydrology, showing that no single operating strategy achieves optimality for all 
reservoirs. Increasing the fraction of winter flow causes small increases in total shortage cost, 
indicating the ability to manage a changing hydrologic regime with adaptive reservoir 
operations. The results of this project improve estimates of the cost of climate change to 
California’s water system under a range of future conditions and highlight adaptation strategies 
that minimize costs of increased hydrologic variability. 

Keywords: water supply, drought, economic impacts, adaptation 
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HIGHLIGHTS 
• A new open-source implementation of the CALVIN hydro-economic model has been 

developed, which includes limited foresight and more efficient runtime for evaluating 
scenario ensembles. 

• A range of plausible future scenarios are developed by sampling changes in water 
availability, representing changes in annual precipitation, and the fraction of winter 
runoff, which represents increasing temperature. These scenarios are compared to the 
Fourth Assessment streamflow projections to understand possible changes to runoff 
timing and magnitude. 

• Water supply vulnerability is examined by considering shortage costs at the statewide 
and regional level. Water shortage costs are more sensitive to annual water availability 
than runoff timing, particularly reductions of 20-30%. Results also show an increased 
sensitivity to changes in runoff timing in very dry scenarios. 

• Economical adaptation strategies include substantial changes to optimal reservoir 
operations in dry scenarios, particularly for the large reservoirs in Northern California. 
This low-cost adaptation requires little new infrastructure. 

• The marginal value of additional reservoir capacity is generally low compared to the 
value of operational changes. Several conveyance facilities for urban delivery are 
identified where it may be worthwhile to increase capacity to improve robustness to 
scenarios with reduced water availability. 

 

WEB LINKS  

• HOBBES Web Interface: https://hobbes.ucdavis.edu/  
• Open-source CALVIN model: https://github.com/ucd-cws/calvin  

https://hobbes.ucdavis.edu/
https://github.com/ucd-cws/calvin
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1: Introduction 
1.1 Climate Change and California Water Supply 
The projected impacts of climate change, including increases in extreme floods and droughts, 
pose substantial challenges to long-term water security in California [Hayhoe et al., 2004; Maurer, 
2007; Yoon et al., 2015]. Successful adaptation of water resources policy and infrastructure will 
be informed by realistic models of human-hydrological interaction with climate change and 
variability. Hydro-economic optimization models provide a promising means to study 
adaptation capacity, as they allow the future behavior of the water system to be driven by 
economics, subject to regulatory and infrastructure constraints, without the need to determine 
changes to existing operating rules [Hanak and Lund, 2012a]. Prior studies have employed 
optimization models to evaluate the cost of water supply adaptation under climate warming 
[Lund et al., 2003; Tanaka et al., 2006; Medellín-Azuara et al., 2008; Connell-Buck et al., 2011a]; 
however, cost estimates thus far have represented an optimistic lower bound due to modeling 
assumptions of perfect foresight and statewide markets. An opportunity exists to improve 
hydro-economic optimization of California’s water system by relaxing these assumptions to 
better align with realistic allocation practices. The resulting model can then be used to identify 
vulnerable infrastructure components and inform adaptation strategies to improve California’s 
water security. 

Various water resources models have been used to emulate California’s complex water 
management and explore infrastructure and policy alternatives [Draper et al., 2003]. CALSIM 
(California Simulation model), WEAP (Water Evaluation and Planning model), and CALVIN 
(CALifornia Value Integrated Network) are some of the more comprehensive water planning 
models for California, but many local and regional models exist for individual irrigation 
districts and water utilities [e.g., Yates et al., 2009; Lempert and Groves, 2010; Connell-Buck et al., 
2011b; California Department of Water Resources, 2014]. Planning models can also be used to 
explore potential institutional adaptations to climate change, including legal changes to water 
rights, changes to water pricing, implementation or expansion of water banking, water 
transfers, and changes in operation of water infrastructure including dams, reservoirs, 
conveyance infrastructure, and levees [Loomis et al., 2006; Olmstead, 2014]. The California Water 
Plan Update 2013 addresses climate adaptation by predicting water demands in 2050 and 
evaluating the success of adaptation strategies such as recycled municipal water, conjunctive 
management of groundwater, and improved water-use efficiency of urban and agricultural 
users [California Department of Water Resources, 2014]. 

Hydrologic records and climate model projections provide abundant evidence that freshwater 
resources are vulnerable to climate change [IPCC, 2013]. While climate change models generally 
agree on rising temperatures, projections of precipitation remain uncertain. For example, 
various downscaled global circulation models (GCMs) for California predict a range of both 
drier and wetter futures [Vicuna and Dracup, 2007]. Most recently, Allen and Luptowitz [2017] 
project California to receive more precipitation on average in the future due to increase in the El 
Niño phenomenon. Both short-term and long-term changes in water availability due to changes 
in precipitation, temperature, snowpack accumulation, humidity, and other important factors 
have the potential to negatively affect local economies. Higher order effects like prolonged 
drought can depress agricultural production, while intensified storms may impose costly flood 
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damages to infrastructure. Uncertainty is inherent in developing climate change projections, but 
important decisions regarding water infrastructure and operations must be made regardless of 
agreement in model projections [Dettinger, 2005].  

A primary element of studying the effects of climate change is identifying system vulnerabilities 
and measuring system performance under possible projected climates. The IPCC defines 
vulnerability as “a function of the character, magnitude, and rate of climate variation (the 
climate hazard) to which a system is exposed, and of non-climatic characteristics of the system, 
including its sensitivity, and its coping and adaptive capacity” [Intergovernmental Panel on 
Climate Change, 2007]. More specifically for water resources, vulnerability is defined as the 
severity of the likely consequences of system failure [Hashimoto et al., 1982]. Vulnerabilities limit 
a water system’s ability to perform in a variety of operating conditions; identifying such 
vulnerabilities is key to developing successful climate adaptation plans. By subjecting a water 
resources planning model to a range of possible operating conditions, vulnerabilities can be 
identified and plans can be established to better adapt to extreme hydrologic events.  

The prospect of climate vulnerability requires infrastructure and operations to be robust or 
adaptable to a range of possible futures beyond those for which the system was designed. 
Recent efforts in this area are discussed in several review papers [Herman et al., 2015; Maier et al., 
2016]. Such frameworks are useful in climate modeling because of the variety of GCMs and 
emissions scenarios available, and the uncertainty of what future climate will be realized. 
Accounting for the uncertainty in these projections creates more system flexibility to adapt to a 
range of possible parameters. U.S. government agencies at various levels, such as the 
Metropolitan Water District of Southern California, U.S. Bureau of Reclamation, Denver Water, 
and the California Department of Water Resources have used robustness-based approaches in 
their planning processes [Weaver et al., 2013]. The goal of these studies is to identify future 
vulnerable conditions leading to inability to meet water delivery objectives, develop 
computational tools to define a portfolio of management options reflecting different 
management strategies, and to evaluate these portfolios across a range of simulated future 
scenarios to quantify the relative benefits realized in each scenario [Groves et al., 2013].  

This work employs a bottom-up vulnerability assessment using an ensemble of climate 
scenarios to identify climate vulnerabilities and adaptation strategies for California water 
supply management. Here we assess the vulnerability of the statewide system to changes in 
total annual runoff (representing changes in precipitation) and the fraction of runoff occurring 
during the winter months (primarily a function of temperature). An ensemble of scenarios is 
sampled and compared to long-term streamflow projections. This sensitivity analysis technique 
samples a wide range of input parameters and analyzes the optimization results in each 
scenario. These scenarios are evaluated using a new open-source version of the CALVIN model, 
a network flow optimization model encompassing roughly 90% of the urban and agricultural 
water demands in California, which can run scenario ensembles on a parallel computing 
cluster. The economic representation of water demand in the model yields several advantages 
for this type of analysis: optimized reservoir operating policies to minimize shortage cost, and 
the marginal value of adaptation opportunities, defined by shadow prices on infrastructure and 
regulatory constraints. This study contributes an ensemble evaluation of a large-scale network 
model to investigate uncertain climate projections, and an approach to interpret the results of 
economic optimization for long-term adaptation strategies. 
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1.2 Hydroeconomic Modeling 
Hydro-economic optimization models integrating water resources infrastructure, management 
policies, and economic values have aided decision making for decades [Harou et al., 2009]. When 
a water supply system is represented as a network of storage and demand nodes, connected by 
links representing conveyance infrastructure, the least-cost water allocation for the network can 
be determined via optimization. The CALVIN model [Draper et al., 2003] uses the network flow 
optimization approach to minimize the statewide operating and scarcity costs of water supply, 
subject to infrastructure and regulatory constraints. For the purpose of climate change 
assessments, hydro-economic optimization offers several advantages relative to simulation 
modeling: water demands are treated as economic functions rather than fixed requirements, 
and marginal values of promising infrastructure and policy options are identified automatically 
during the model run. This study seeks to improve the realism of the CALVIN hydro-economic 
model for climate impact assessment. 

Building on work from prior California Climate Assessments, hydro-economic optimization is 
used in this study to identify promising adaptation strategies for California’s water system. 
Because the optimization model is formulated as a network flow problem, the shadow prices for 
each constraint are computed automatically. Shadow prices can be interpreted as the benefit of 
relaxing each constraint ($ per acre-foot of water), which in physical terms represents either an 
expansion of storage/conveyance capacity, or a modification of environmental flow 
requirements. This process locates the facilities in the system for which adaptations would 
prove most valuable, depending on the hydrologic inputs chosen. The optimal allocations 
include agricultural and urban supplies, drawn from surface reservoirs and groundwater. In 
previous studies, the agricultural water allocations from CALVIN have been post-processed 
using the SWAP model [Howitt et al., 2012] to estimate cropping patterns under climate change.  

Prior work has addressed the economically-driven adaptation of California’s water system to 
climate change. Tanaka et al. (2006) combine climate change scenarios with population growth 
through the end of the century, with several important findings: (1) agricultural users in the 
Central Valley are most vulnerable to climate warming; (2) on average, the value of expanding 
conveyance capacity is substantially higher than the value of expanding storage; (3) changes to 
the conjunctive use of surface and groundwater will be needed to buffer against climate 
variability; and (4) environmental flow requirements can be met, but those which require water 
to leave the managed system will create high shortage costs for urban and agricultural users 
during drought. Medellín-Azuara et al. (2008) reach similar conclusions for a particularly dry 
climate scenario, with additional recommendations for optimal operating rules under climate 
warming in terms of the amplitude of the reservoir drawdown-refill cycle and the balance of 
storage between reservoirs. Connell-Buck et al. (2011a) disaggregate the impacts of rising 
temperature from decreasing runoff, noting that the latter leads to more pronounced economic 
impacts than warming alone. In these prior studies, it was recognized that the assumption of 
perfect foresight may lead to an optimistic assessment of costs and adaptation strategies. This 
contrasts with simulation studies which neglect integrated, economically-driven adaptation to 
climate and population changes and thus may suggest overly negative outcomes [Medellín-
Azuara et al., 2008]. This study aims to improve estimates between these two extremes.  

1.3 Contributions 
This work furthers four interrelated objectives: 
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• Improve the realism of modeled climate adaptation costs. This study optimizes water 
allocation on an annual timestep, reflecting limited foresight of water availability. It also 
employs a regional representation of water trading, relaxing the assumption of perfect 
statewide markets to align with realistic allocation practices. Restricting allocation to the 
regional scale provides an opportunity to study the geographic distribution of shortage 
costs during future droughts.   

• Improved representation of institutional constraints. This study improves the realism of 
hydro-economic optimization by incorporating institutional constraints represented by 
the enforcement of water rights. 

• Adaptation strategies: This work identifies the most economically promising strategies for 
climate adaptation via sensitivity analysis. A significant advantage of optimization 
models is that sensitivity values are computed automatically during the model run and 
represent the marginal value of relaxing each constraint. Constraints may represent 
infrastructure or policy limitations, as well as water availability; in either case, the dual 
variables resulting from the optimization will identify the most valuable adaptations in 
the system. 

• Robustness analysis: Projections of future water availability in California remain highly 
uncertain, largely due to uncertainty in precipitation. In addition to running the model 
for the assigned hydrologic scenarios, this work considers a range of scenarios with 
more severe dry periods to determine the range of potential adaptation costs, with a 
focus on how optimal adaptation strategies change under increasingly severe scenarios.  

In achieving these scientific objectives, a new open-source version of the CALVIN model is 
created to provide the flexibility to perform these analyses (https://github.com/ucd-
cws/calvin). It is available online for researchers around the world, and in California agencies, 
to study California’s water supply system. 

2: Methods 
2.1 CALVIN Model 
Network flow programming is an apt tool for studying infrastructure systems like 
transportation, energy, and water resources. CALVIN is a hydro-economic optimization model 
of California’s water network with an 82-year hydrologic input dataset. Under baseline 
conditions, this period represents the hydrology from 1922-2003, but it can be modified to 
represent any period of this length. Economics are represented by demand functions developed 
for urban and agricultural areas throughout California, which assign a cost of water shortage to 
a range of delivery volumes. Figure 1 shows the regions of California included in the CALVIN 
model. Areas excluded from the model have comparatively low water consumption. 

The network flow structure in CALVIN is represented by a set of nodes and links subject to 
constraints. A node is defined by a location element and temporal element. A link connects two 
nodes and has the following properties: flow (decision variable), unit cost, amplitude (loss 
factor), lower bound, and upper bound. This structure allows the model to deliver water both 
across the network within a specified time step and to represent storage at reservoirs as links 
between two time steps at a specified location. 
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Figure 1: California regions represented in CALVIN. From Dogan (2015). 

The CALVIN model solves the network flow problem using linear programming to optimize 
flow over all links in the network to minimize the combined cost of water shortage and 
operations. Hydrology-related inputs include surface and groundwater hydrology, 
environmental flow constraints, and wildlife water deliveries. Model results include valuable 
management information about combined operations of surface and groundwater reservoirs, 
environmental flows, and hydropower. Outputs also include economic data, including shortage 
costs in drought years, and marginal values of storage and conveyance capacity.  

CALVIN contains most of California’s water system in a single model. It represents economics 
in a linear programming framework to operate the system in an economically efficient way. 
Hydro-economic models like CALVIN provide an opportunity for water resources modelers to 
analyze potential changes to operations without assuming that current reservoir operating rules 
and conveyance agreements will remain static, suggesting how optimal operations of the 
system might be modified in the future (Olmstead 2014).  

2.1.1 Agricultural and Urban Demands 
Projected urban and agricultural water demands are based on the year 2050 considering 
changes in land use, per capita water use, and population growth. This comprises roughly 90% 
of the water demands in California, divided into an average of 25 MAF/year for agricultural 
demand, and 12 MAF/year for urban demand [Dogan, 2015]. The demand functions, along with 
all hydrologic data, are exported from the HOBBES database [Medellin-Azuara et al., 2013], 
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which is freely available online. The demand functions are piecewise-linear representations of 
quadratic functions, reflecting diminishing returns to water delivery. In the optimization model, 
each piece of the curve is represented by a separate link. 

2.1.2 Limited Foresight 
Prior modeling studies have considered perfect foresight of water availability over a planning 
horizon of several decades, providing an optimistic lower bound of adaptation costs by 
allowing the model to reduce allocations long in advance of severe droughts. In reality, costs 
will be higher due to limited forecasting ability. The theory behind limited foresight modeling 
for California systems was first developed by Draper [2001]. This task will aim to optimize 
statewide water allocations on a more realistic annual timestep. 

In the context of hydro-economic modeling, limited foresight can be introduced in several ways. 
First, end-of-period reservoir storage can be constrained to a static value. Second, a cost could 
be assigned to the carryover storage volume in each reservoir, allowing the optimization 
method to reduce allocations in the current period to avoid potentially larger shortage costs in 
the following period. This results in the optimal carryover storage cost function, along with the 
implied optimal hedging rule for the storage-release curve of a single reservoir [Draper and 
Lund, 2004]. For multiple reservoirs, as in the case of California’s water system, a separate cost 
function would need to be defined for each reservoir. This greatly increases the dimension of 
the parameter search space, resulting in a challenging computational task. Instead, we use 
constant carryover storage constraints for each reservoir, after testing a range of possible 
constraints to identify the one with the minimum statewide cost. Comparison to costs in the 
perfect foresight case will also highlight the value of improved forecasting. 

2.1.3 Water Rights 
Beyond the assumptions of perfect foresight and statewide markets, the realism of hydro-
economic optimization can be improved by incorporating institutional constraints, which may 
prevent the modeled optimal allocation of water but nevertheless must be respected in the real 
system. This task incorporates tools from concurrent work in the key area of water rights. 

The enforcement and curtailment of water rights plays an important role during times of 
shortage, as seen during the 2012-16 drought. While the formulation of the CALVIN model 
follows the economic principles that nominally guide curtailment decisions—for example, 
restricting agricultural deliveries in favor of higher-value urban uses—it does not enforce 
riparian and appropriative rights prior to determining the optimal allocation. To overcome this 
limitation, we draw from ongoing work on the Drought Water Rights Allocation Tool 
(DWRAT), developed in collaboration with the State Water Resources Control Board [Lord et al., 
2018]. DWRAT provides two advantages to improve the realism of hydro-economic modeling: 
first, a database of all water rights in California, and second, an optimization model to enforce 
them, subject to water availability in a particular basin. Specifically, the DWRAT framework 
develops intra-basin estimates of full natural flow using a statistical model, then solves two 
linear programs in sequence to determine curtailments for riparian and appropriative rights 
holders, respectively (Lund et al., 2014). Water allocations and curtailments provided by 
DWRAT will allow basin-scale water rights to be respected prior to solving for the minimum-
cost allocation with CALVIN. Urban water use may also be curtailed to provide benefits 
elsewhere in the system [Ragatz, 2012]. The DWRAT model is employed for the Sacramento 
River Basin, providing an opportunity for a pilot study in one of the largest CALVIN regions. 
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2.2 Climate Scenarios 
The downscaled climate projections include 10 different climate models at 2 emissions levels 
(RCP 4.5 and 8.5), totaling 20 climate scenarios, to analyze how climate change will impact 
California water resources [Pierce et al., 2014]. These precipitation and temperature scenarios are 
downscaled and routed through the Variable Infiltration Capacity (VIC) hydrologic model 
[Liang et al., 1994] to produce streamflow at 58 locations throughout California. Many of these 
correspond directly to CALVIN reservoir inflow sites or can be mapped to them by correlation. 
Because only a comparatively smaller set of the streamflow locations are bias-corrected, we 
propose a strategy to impose hydrologic perturbations on the historical data based on the 
relative ratios of future to historical monthly inflows. 

2.2.1 Rim Inflow Multipliers 
Combining the information provided by the GCM projections with the CALVIN model allows 
modelers to understand how California may adapt to changes in timing and magnitude of 
reservoir inflows. Instead of using the direct streamflow values outputted by the GCM model, a 
perturbation method is used to modify CALVIN’s historical hydrology to reflect the GCM’s 
behavior, following an approach originally developed by California state agencies [Miller et al., 
2001]. The application of perturbation ratios to model climate change in the CALVIN model has 
been implemented in previous studies [Tanaka et al., 2006; Medellín-Azuara et al., 2008; Harou et 
al., 2010; Connell-Buck et al., 2011b]. These ratios are applied to rim inflows, which are the water 
volumes input to the model originating outside the model domain.  

The perturbation method requires two time periods to be identified: a historical period and a 
future period. For the Fourth Assessment scenarios, the historical period is defined as 1950-2000 
and the future period is defined as 2070-2100. This future climate period extends past the 
demand projections (2050) to explore the impacts of potentially more severe climate change on 
the system. A multiplier is calculated by dividing the average streamflow of the study period by 
historical period for every month, yielding 12 multipliers for each location provided. The 
locations provided for the downscaled hydrology projections are matched with CALVIN 
inflows. For example, Figure 2 shows the 12 perturbation ratio multipliers for the inflow to 
Shasta Lake. Some CALVIN inflow locations are not included in the downscaled scenarios, so a 
correlation analysis was performed to determine the most highly correlated rim inflow from 
CALVIN’s historical hydrology data and apply the same multiplier to the missing rim inflows. 
These multipliers are then applied to CALVIN historic hydrology and the model is optimized. 
Multipliers for the inflow at Shasta Lake are shown in Figure 2 with the baseline value (1.0) 
representing historical hydrology. Multipliers greater than 1.0 indicate a wetter monthly 
average compared to the scenario’s historic period; multipliers less than 1.0 represent a smaller 
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monthly average compared to the historic period.

 
Figure 2: Example monthly runoff multipliers for downscaled hydrology projections, inflow to 
Shasta and Oroville Reservoirs. Values greater than 1.0 represent months that are wetter than 

historical on average, regardless of the absolute volume of runoff in that month. 

As shown in Figure 2, these monthly perturbations shift the hydrology of each year according to 
the same pattern. It captures seasonal shifts but does not expand the range of wet and dry 
annual extremes. In future work it may be possible to develop a method to incorporate seasonal 
shifts while also increasing the inter-annual variance of flows. The rim inflow multipliers used 
for this study, along with explanations of correlations between sites, are available in the project 
Github repository (https://github.com/ucd-cws/calvin/tree/master/calvin/data/fourth-
assessment-data).  

2.2.2 Sensitivity Analysis Scenarios 
In addition to the downscaled hydrology projections, this work explores how California water 
operations would be optimally altered with shifts in the magnitude and timing of streamflow. 
In particular, this study focuses on drier scenarios with an increased fraction of runoff arriving 
in the winter months due to rising temperatures. These changes are imposed via a systematic 
sampling approach, creating an ensemble of plausible synthetic scenarios which are not linked 
to any specific time period of future projection. 

To measure the timing and magnitude of inflows, the winter index and water availability 
metrics are used, respectively. The winter index is defined as the fraction of average annual 
inflow volume from November through April for each climate scenario, divided by the 
historical average inflow from November through April. Winter index (WI) values greater than 
1 indicate a larger proportion of inflows arriving in the winter compared to historical, which 
would occur with rising temperatures and reduced snowpack.  

 

https://github.com/ucd-cws/calvin/tree/master/calvin/data/fourth-assessment-data)
https://github.com/ucd-cws/calvin/tree/master/calvin/data/fourth-assessment-data)
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𝑊𝑊𝑊𝑊𝑊𝑊𝑊𝑊𝑊𝑊𝑊𝑊 𝐼𝐼𝑊𝑊𝐼𝐼𝑊𝑊𝐼𝐼 (𝑊𝑊𝐼𝐼) =  

∑𝐴𝐴𝐴𝐴𝑊𝑊𝑊𝑊𝐴𝐴𝐴𝐴𝑊𝑊 𝐼𝐼𝑊𝑊𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼 𝐼𝐼𝑊𝑊𝐼𝐼𝑓𝑓 𝑁𝑁𝐼𝐼𝐴𝐴 𝑊𝑊ℎ𝑊𝑊𝑟𝑟 𝐴𝐴𝐴𝐴𝑊𝑊  (𝑆𝑆𝑆𝑆𝑊𝑊𝑊𝑊𝐴𝐴𝑊𝑊𝑊𝑊𝐼𝐼)
𝐴𝐴𝐴𝐴𝑊𝑊𝑊𝑊𝐴𝐴𝐴𝐴𝑊𝑊 𝑌𝑌𝑊𝑊𝐴𝐴𝑊𝑊𝐼𝐼𝑌𝑌 𝐼𝐼𝑊𝑊𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼 (𝑆𝑆𝑆𝑆𝑊𝑊𝑊𝑊𝐴𝐴𝑊𝑊𝑊𝑊𝐼𝐼)

∑𝐴𝐴𝐴𝐴𝑊𝑊𝑊𝑊𝐴𝐴𝐴𝐴𝑊𝑊 𝐼𝐼𝑊𝑊𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼 𝐼𝐼𝑊𝑊𝐼𝐼𝑓𝑓 𝑁𝑁𝐼𝐼𝐴𝐴 𝑊𝑊ℎ𝑊𝑊𝑟𝑟 𝐴𝐴𝐴𝐴𝑊𝑊  (𝐻𝐻𝑊𝑊𝐼𝐼𝑊𝑊𝐼𝐼𝑊𝑊𝑊𝑊𝑆𝑆𝐴𝐴𝐼𝐼)
𝐴𝐴𝐴𝐴𝑊𝑊𝑊𝑊𝐴𝐴𝐴𝐴𝑊𝑊 𝑌𝑌𝑊𝑊𝐴𝐴𝑊𝑊𝐼𝐼𝑌𝑌 𝐼𝐼𝑊𝑊𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼 (𝐻𝐻𝑊𝑊𝐼𝐼𝑊𝑊𝐼𝐼𝑊𝑊𝑊𝑊𝑆𝑆𝐴𝐴𝐼𝐼)

 

 

This metric represents increasing temperatures statewide, which yield more precipitation 
falling as rain rather than snow compared to current conditions; the snowpack that does 
accumulate also melts faster and earlier than in recent history. 

Water availability (WA) is defined as the sum of all rim inflows, representing all water entering 
the model each year. A drier scenario will see a decrease in average water availability, and a 
change of 0% represents the average water availability of CALVIN’s original hydrology (35.3 
MAF/year statewide). Figure 3 shows the 25 scenarios sampled for this experiment, organized 
into four quadrants: Warm-Dry, Warm-Wet, Cool-Dry, and Cool-Wet. Each axis represents a 
range of the timing and magnitude scenarios and each square point in the plot represents a 
sampled scenario with the indicated average water availability and winter index. Importantly, 
this naming convention and sampling strategy assumes that temperature is the primary 
variable affecting the seasonality of runoff. It would be possible to have higher winter runoff, 
for example, due to changing storm patterns in the future rather than increasing temperatures. 
For this study, we assume that changes in monthly runoff will be primarily driven by 
temperature and precipitation from shifting snow to rain.   
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Figure 3: Scenarios varying water availability and winter index developed for sensitivity analysis 

To alter the statewide winter index, each rim inflow must be altered individually. Figure 4 
below shows the two largest rim inflows by volume (Shasta and Oroville reservoirs) and how 
their average monthly inflows were altered for the winter index permutations. The winter index 
values shown in Figure 3 are relabeled as follows: ‘cold’ scenarios refer to a WI of 0.95, ‘Warm1’ 
refers to a WI of 1.05, ‘Warm2’ refers to a WI of 1.10, and ‘Warm3’ refers to a WI of 1.15. The 
scenarios plotted in Figure 4 have the historical water availability with varying winter indexes. 
The Fourth Assessment scenarios all indicate some amount of warming in the future, but the 
sensitivity analysis sampling conducted here includes a few colder scenarios to build a more 
complete picture of the impact of runoff seasonality on the water supply system. These 
scenarios are not a core focus of the study and are not intended to represent a reduced 
likelihood of warmer scenarios in the future, which all climate models currently indicate. A 
similar logic is followed for sampling scenarios drier than the historical record. While many of 
the current climate projections suggest a wetter future with more extreme storms, this remains 
highly uncertain. We therefore analyze dry scenarios as well. 

To apply the changes in timing and magnitude, multipliers for each month were developed to 
modify the historical hydrology to reflect the changes in timing and water availability for the 
given scenario. This method is similar to the perturbation ratio, but the multiplier is calculated 
based on the degree of change in winter index and water availability. Monthly ratios for each 
rim inflow were developed manually, ensuring that the fraction of winter runoff and the total 
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volume of annual runoff match the intended scenario values. In general, there are many 
possible ways to assign monthly multiplier values to obtain these outcomes, since there are 
multiple winter months.  

 

Figure 4: Modified Inflows for Shasta and Oroville reservoirs, by perturbing the Winter Index. 
These modifications are implemented so that the total annual volume remains the same. 

 

2.3 Computational Experiments 
In this study, the model improvements (Section 2.1) and climate scenario evaluation (Section 
2.2) were pursued as parallel efforts, and their results are analyzed independently in this report. 
The model improvements are now available for future research efforts, including but not 
limited to application to climate change scenarios. 

The CALVIN model contains over 5 million decision variables with the full 82-year hydrology 
and piecewise-linear objective functions. To incorporate climate scenarios, the matrix of links 
needs to be edited from the historical hydrology. Altering the upper and lower bounds of links 
in a heavily constrained network often leads to over-constrained systems and subsequent model 
infeasibilities. The model therefore includes an option for “debug mode” which allows the user 
to reconcile model infeasibilities. Debug mode adds two additional nodes, a source and sink 
node, which are linked to all other nodes in the network. These links have an extreme cost ($2 
million/acre foot) and are included only to add or remove water when the network is otherwise 
infeasible. The magnitude of the debug flows is used to adjust the bounds of links within the 
network to allow model feasibility. The algorithm includes rules that prevent changes to 
bounds on certain links, including reservoir capacity constraints, reservoir carryover storage 
requirements, and conveyance constraints. In addition, a record of reduced links is maintained 
as the algorithm progresses to track which links are reduced for quality control of model results. 
This process increases the runtime considerably due to solving the model several times before 
outputting a result, but eliminates the need for the user to change the bounds manually. Figure 
5 outlines the algorithm for this automatic debugging process.  
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Figure 5: Algorithm to remove infeasibilities in the CALVIN model using a “debug mode”. WA and 

WI refer to the water availability and winter index, respectively, as defined in Section 2.2.2. 

 

The original implementation of CALVIN used the HEC-PRM solver package, requiring roughly 
7 days to solve without an initial solution specified. Advances in computing technology, 
including parallel computing and open-source linear programming solvers, allow the new 
implementation of the model to be solved within 2 hours for the historical hydrology scenario 
without an initial solution. Here we use the Pyomo library, written in the Python programming 
language [Hart et al., 2012], which provides a high-level interface for problem formulation that 
can be linked to different solvers. For this study, 45 CALVIN runs (20 downscaled scenarios, 
plus 25 for the sensitivity analysis) were performed on the UC Davis HPC1 high performance 
computing cluster. The downscaled scenarios represent the current best-known approximation 
of future precipitation and temperature, while the sensitivity analysis scenarios aim to provide 
a more comprehensive sampling of the space of possible futures. Each scenario required an 
average of 9-12 hours to solve. Some model runs that required fewer debug iterations 
completed within 4 hours, while other scenarios took 3 days to reach a feasible solution. Model 
results are then post-processed into comma-separated value (CSV) format including timeseries 
of reservoir storage, dual values, and water supply portfolios. Overall, runtimes are 
significantly improved with the updated model, which for the first time enables an ensemble of 
climate scenarios to be evaluated. 

The results of the CALVIN scenarios are then analyzed for potential adaptation strategies by 
investigating water supply portfolios, reservoir operations, and the marginal values of 
infrastructure capacity expansion. Reservoirs play key roles in managing the state’s water 
resources, so operations of the state’s largest reservoirs are examined to understand operating 
strategies change with water availability and winter index. Changes in operations due to the 
winter index relative to historical hydrology indicate general adaptation strategies for 
accommodating warmer climates. Economic outputs such as shortage cost and marginal value 

Relax constraints by 
debug flow volume 



13 

identify infrastructure vulnerabilities and inform on the economic impact of varying water 
availability and winter index. Finally, conveyance expansion, reservoir expansion, and value of 
environmental flows are also analyzed to understand how their economic value changes with 
the magnitude and timing parameters. 

 

3: Results: Model Improvements 
This section describes results related to model improvements (runtime, limited foresight, and 
water rights), conducted separately in parallel to the application of climate change scenarios 
(Section 4). All results include the perfect foresight assumption except for Section 3.2, which 
develops and tests the limited foresight version of the model. 

3.1 Solver Runtime Comparison 
Several state-of-the-art linear programming solvers are available, and it is useful to see how 
they scale with the number of decision variables for a water allocation problem of this size. 
Moving the model to a new software platform enables the ensemble evaluation of climate 
scenarios, among other applications, and runtime benchmarks are an important part of this. For 
this problem, the number of decision variables can be controlled by the number of years used in 
the optimization. Here we experiment with model runs of 1, 5, 10, 40, and 82 years of 
hydrologic data, and record the solver runtime required in each case in debug mode, excluding 
time for file reading and writing. Four solvers are tested: CBC [Forrest and Lougee-Heimer, 2005], 
Gurobi [Gurobi, 2014], and CPLEX [IBM, 2009], and GLPK [Makhorin, 2008]. Ten trials are 
performed for each combination of solver and model size, for a total of 200 model runs. Tests 
are performed on the UC Davis HPC1 cluster, which contains 60 nodes each with 64 GB of RAM 
and two 8-core dual-threaded CPUs running at 2.4 GHz. The CPLEX, Gurobi, and CBC solvers 
use shared-memory parallelization on 32 threads, while GLPK is run in serial.  
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Figure 6: Solver runtimes with linear trend lines on logarithmic scale. Runtimes do not include 

time for file reading and writing. 

Figure 6 shows solver runtimes with increasing numbers of decision variables. Gurobi requires 
the least amount of time to find a feasible solution for all model sizes. Gurobi requires just over 
1 hour to solve the largest model, with about five million decision variables in debug mode, 
while GLPK (serial) requires roughly 4.5 days. The speedup is partially a function of 
parallelization, but also the use of different techniques used by each solver. As indicated by the 
regression lines, solver solution times show a polynomial relationship with the number of 
decision variables. Runtimes are consistent between trials, with only one outlier for CPLEX with 
the largest model size (a runtime of 1 day in Figure 6). The Gurobi solver is therefore used for 
the remainder of the experiments in this study. These results provide an application-focused 
benchmark for large-scale network optimization problems. 

3.2 Limited Foresight 
In the full 82-year model, the operation of surface and groundwater storage can be optimized 
with perfect foresight of future droughts and wet periods. The limitations of this assumption 
have been long recognized [e.g., Newlin et al., 2002; Tanaka et al., 2006]. Moving to a new 
software platform offers the flexibility to investigate the alternative assumption of limited 
foresight, where sequential annual optimizations apply the end-of-period storage from each 
year as the beginning-of-period inputs for the following year. The key challenge is defining 
optimization constraints or values for the end-of-period (EOP) minimum carryover storage. To 
analyze the effect of these carryover constraints, we vary them as a percentage of available 
surface reservoir capacity above dead pool, from 0% to 50% in steps of 5%. Groundwater 
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storage volumes are constrained to the optimal end-of-year values from the full 82-year run 
with perfect foresight. It is a simplifying assumption that the large surface reservoirs would be 
operated for the same carryover targets as a percentage of their respective capacities; this may 
increase costs relative to individually specified carryover targets. More advanced methods to 
assign economic value to carryover storage at individual reservoirs are presented in [Draper, 
2001; Draper and Lund, 2004].  

 

 
Figure 7: (A) Average statewide annual cost as a function of the end-of-period (EOP) storage 
volume in the 10 largest reservoirs, given in million acre-feet (MAF). (B) Timeseries of annual 

shortage cost with an end-of-period constraint of 10% above dead pool. 

Figure 7a shows that a carryover storage constraint of about 5 million acre-feet (MAF), or 
roughly 10% above dead pool, results in the minimum statewide average annual cost. Notably, 
the average annual shortage cost is approximately three times that in the perfect foresight case. 
Beyond that point, costs will increase because storing too much for future years causes shortage 
in the current year. The timeseries in Figure 7b shows that the limited foresight optimization is 
prone to spikes in annual shortage cost during drought years, whereas the perfect foresight 
model more evenly distributes cost over the period. This reflects a more realistic management 
policy, since accurate forecasts of drought events are not available years in advance. 

The limited foresight version of the model was created as a parallel effort in this study, so the 
application of the model to projected climate change scenarios instead uses the perfect foresight 
version. However, the limited foresight version is now available for future studies. 

3.3 Water Rights 
Water rights locations and diversion volumes were drawn from the Drought Water Rights 
Allocation Tool (DWRAT) [Lord et al., 2018], which is based on a statewide database of water 
rights from the State Water Resources Control Board (SWRCB). In this experiment, only water 
rights in the Sacramento River basin were considered. Figure 8 shows their locations: 

 EOP <= 10% 
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Figure 8: (Left) Location of water rights in the Sacramento River basin from the SWRCB database; 
(Right) the subset of water rights that align with water demands in the CALVIN model, divided by 
urban and agricultural regions. The agricultural regions are defined based on the Central Valley 

Production Model (CVPM). 

Many of the rights shown in Figure 8 have a small diversion volume and do not have a large 
effect on the basin-wide water balance. Therefore, only the larger rights that align with water 
demands in the CALVIN model were considered in this study. Specifically, the experiment 
focuses only on urban water rights to determine their effect on modeled allocations. Each of 
these water rights was assigned to a specific CALVIN demand region (i.e., a node in the 
network). Figure 9 shows the subset of urban water rights that were considered in this study, 
stacked by monthly demand volume. The total water use is dominated by only a few large 
water rights, though the basin-wide total, which peaks at roughly 40 TAF/month in the 
summer, is fairly low relative to agricultural water demands in the Sacramento Valley, and 
small compared to urban demands elsewhere in the state. 

The water rights volumes taken from the DWRAT model reflect the possibility of curtailment 
during dry years. These volumes are then used to fix the lower bounds in the CALVIN network 
optimization during dry years. In other words, we assume that rights holders will divert their 
full allocation in these years, removing the potential for the model to allocate this water to a 
higher-value use as it normally would. The goal is to determine the extent to which this 
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increases the regional water shortage cost, removing the assumption of efficient markets for 
water trading. 

 
Figure 9: Volume of water demand from rights considered in this study (Sacramento basin urban 

water rights). Each water right is identified by its application ID, defined by the SWRCB. 
Appropriative rights begin with “A”, and riparian rights begin with “S”. 

Results from this experiment are shown in Figure 10. The change in shortage volumes when 
urban water rights are assumed fixed rather than tradeable is negligible, given the limited scope 
of water rights included in the experiment. Regional average shortage volumes are within 0.01 
TAF/month of the baseline scenario, suggesting that the volume of water rights considered in 
this experiment is small relative to statewide demands, and that the optimization model is able 
to adjust operations to overcome these small changes in the flow constraints to maintain 
optimal regional shortage costs. 
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Figure 10: Regional agricultural water shortage costs in the modified network with water rights 

constraints, for each of the five CALVIN regions: Southern California (SC), Tulare Basin (TB), San 
Joaquin and South Bay (SJSB), Lower Sacramento Valley and Delta (LSVD), and Upper 

Sacramento Valley (USV). The modified scenario includes water rights, while the baseline 
scenario does not. 

Larger experiments, beyond the scope of this study, would include a more extensive subset of 
water rights that can be mapped to CALVIN demand nodes. With fewer options available for 
trading, shortage costs would be hypothesized to increase. As a proof-of-concept, the ability to 
integrate water rights data into the hydro-economic optimization is a first step toward 
removing the statewide assumption of perfect water markets. 

 

4: Results: Model Application 
4.1 Fourth Assessment Scenarios 
The downscaled climate projections for the Fourth Assessment include 10 different climate 
models (GCMs) at 2 emissions levels (RCP 4.5 and 8.5), totaling 20 climate scenarios. These are 
used to perturb CALVIN hydrology to analyze how climate change will impact water resources 
in California. These projections generally indicate a wetter future, possibly with rainfall arriving 
in more extreme events, increasing the potential for flooding and exacerbating the tradeoff 
between flood risk and water supply. Despite predictions of increased average precipitation at 
certain locations in the state, this does not change the fact that multi-year droughts are a 
permanent feature of California water supply. 
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These downscaled hydrology projections were mapped to CALVIN rim inflows using the 
perturbation ratio method described in Section 2.2.1. Once the multipliers were applied, the 
average water availability and winter index were calculated for each scenario, shown in Table 1. 
Most of the scenarios show a higher average annual water availability than the historical 
scenario, and all of them have a winter index greater than 1.0, indicating an increased fraction of 
annual runoff occurring during November-March. Figure 11 shows a scatter plot of the 
scenarios according to these two variables. 

Table 1: Average annual water availability and winter index for the downscaled hydrology 
scenarios. Winter index refers to the fraction of annual runoff occurring in November-March. 

Scenarios marked in blue have equal or higher average annual water availability compared to the 
historical scenario, while those marked in orange have lower availability. 

 
 
SCENARIO 

AVERAGE ANNUAL 
WATER AVAILABILITY 
(MAF/YR) 

 
 
WINTER INDEX 

HISTORICAL CALVIN 35.3 1 
ACCESS1-0_RCP45 38.0 1.09 
ACCESS1-0_RCP85 33.7 1.14 
CANESM2_RCP45 40.9 1.14 
CANESM2_RCP85 50.5 1.22 
CCSM4_RCP45 39.1 1.13 
CCSM4_RCP85 40.8 1.18 
CESM1-BGC_RCP45 37.2 1.09 
CESM1-BGC_RCP85 39.3 1.18 
CMCC-CMS_RCP45 35.3 1.02 
CMCC-CMS_RCP85 37.0 1.00 
CNRM-CM5_RCP45 47.5 1.17 
CNRM-CM5_RCP85 51.6 1.26 
GFDL-CM3_RCP45 36.7 1.07 
GFDL-CM3_RCP85 35.3 1.11 
HADGEM2-CC_RCP45 38.3 1.06 
HADGEM2-CC_RCP85 38.8 1.06 
HADGEM2-ES_RCP45 33.1 1.03 
HADGEM2-ES_RCP85 37.6 1.07 
MIROC5_RCP45 33.3 1.04 
MIROC5_RCP85 32.8 1.03 
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Figure 11: Downscaled hydrology scenarios plotted according to average annual water availability 

and winter index. 

These scenarios were evaluated in the CALVIN model to assess changes in the optimal water 
supply portfolio throughout the state under different hydrologic conditions, as well as overall 
changes in cost. Table 2 shows the water supply portfolio for the average year of each scenario 
compared to the historical scenario. The average deliveries may not exactly match the average 
annual water availability due to storage and conveyance capacity limitations throughout the 
system. Further, although the reuse and desalination values appear fixed, they are being 
optimized under the same infrastructure constraints. 

  

Fourth Assessment Scenarios 
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Table 2: Average optimal water supply portfolios (statewide, MAF/year) for the downscaled 
hydrology projections. Perfect foresight is assumed for these model runs. Portfolios are 

composed of five sources: groundwater pumping (GWP), surface water deliveries (SWD), non-
potable reuse (NPR), potable reuse (PR), and desalination (DESAL). Agricultural and urban 

conservation are implicitly represented in the difference between delivery and total demand, 
which CALVIN estimates as roughly 36.6 MAF/year (i.e., the total delivery in the wettest scenarios 

shown below). 
 

 

The delivery volumes from each source do not change significantly regardless of the water 
availability in each scenario, some of which are more than 50% greater than historical reservoir 
inflows. This result is due to CALVIN’s optimization structure where there is no economic 
benefit to delivering additional water. The utility of this model lies in learning how to efficiently 
allocate shortage in times of water scarcity and does not include the necessary tools, such as 
optimizing flood pool rules, to study how California might adapt to manage a wetter climate. 

 

4.2 Identifying Vulnerabilities 

Scenario GWP SWD NPR PR DESAL 

Average Water 
Availability 
[MAF/year] 

Average 
Deliveries 
[MAF/year] 

Winter 
Index 

Historical CALVIN 13.3 22.9 0.12 0 0.01 35.3 36.4 1 

ACCESS1-0_rcp45 13.6 22.3 0.12 0 0.01 40.3 36.0 1.09 

ACCESS1-0_rcp85 13.8 21.2 0.15 0 0.01 34.1 35.2 1.14 

CanESM2_rcp45 13.3 23.0 0.12 0 0.01 41.2 36.5 1.14 

CanESM2_rcp85 13.3 23.2 0.12 0 0.01 60.2 36.6 1.22 

CCSM4_rcp45 13.5 22.8 0.12 0 0.01 40.6 36.3 1.13 

CCSM4_rcp85 13.5 22.6 0.12 0 0.01 46.1 36.3 1.18 

CESM1-BGC_rcp45 13.3 23.1 0.12 0 0.01 41.1 36.5 1.09 

CESM1-BGC_rcp85 13.4 23.0 0.12 0 0.01 49.3 36.5 1.18 

CMCC-CMS_rcp45 13.5 22.7 0.12 0 0.01 39.8 36.2 1.02 

CMCC-CMS_rcp85 13.6 22.3 0.12 0 0.01 41.5 36.0 1.00 

CNRM-CM5_rcp45 13.3 23.2 0.12 0 0.01 46.3 36.6 1.17 

CNRM-CM5_rcp85 13.3 23.2 0.12 0 0.01 59.8 36.6 1.26 

GFDL-CM3_rcp45 13.5 22.7 0.12 0 0.01 36.5 36.3 1.07 

GFDL-CM3_rcp85 13.5 22.5 0.12 0 0.01 35.1 36.2 1.11 

HadGEM2-CC_rcp45 13.5 22.6 0.12 0 0.01 39.9 36.2 1.06 

HadGEM2-CC_rcp85 13.5 22.5 0.12 0 0.01 36.7 36.2 1.06 

HadGEM2-ES_rcp45 13.4 22.7 0.12 0 0.01 32.5 36.3 1.03 

HadGEM2-ES_rcp85 13.5 22.7 0.12 0 0.01 41.2 36.3 1.07 

MIROC5_rcp45 13.5 22.3 0.12 0 0.01 27.9 36.0 1.04 

MIROC5_rcp85 13.6 22.1 0.13 0 0.01 35.0 35.8 1.03 
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For the sensitivity analysis component of the study, 25 scenarios were sampled according to 
total water availability (from -30% to +10% of historical) and the fraction of annual runoff in the 
winter, or “winter index” (from -5% to +15% of historical), as described in Section 2.2.2. The 
statewide water shortage costs incurred in these scenarios under the perfect foresight 
assumption are shown in Figure 12.  

 

Figure 12: Total statewide water shortage costs (annual average) in the sensitivity analysis 
scenarios. The point for Historical in the -20% scenario is missing due to a failed model run, as 

explained in Figure 13. 

Shortage costs increase across all scenarios as average water availability decreases, and as the 
winter index (i.e., the fraction of reservoir inflow arriving during the winter) increases. Shortage 
cost for the set of scenarios at 0% and +10% average water availability is roughly $200 million 
per year. The increase in shortage cost appears quadratic with respect to water availability, as 
scarcity cost increases more severely with incremental decreases in average water availability. A 
slight and moderate increase in shortage cost occurs from 0% to -10% and -10% to -20% average 
water availability. Shortage cost approximately doubles as average water availability is lowered 
to -30% of the historical average inflows. This spike in shortage cost is the first indicator of a 
statewide vulnerability to drought occurring between -20% and -30% annual water availability. 
Costs would likely increase more rapidly under the limited foresight assumption. 

For a given water availability, increasing the winter index yields small increases in shortage 
cost. Drier scenarios increase shortage costs between each winter index increment. As water 
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becomes scarcer, the model has less flexibility to modify operations because all water has been 
allocated to a demand (which would incur an additional shortage if deliveries were curtailed) 
or an instream flow requirement, for which curtailments are not permitted in the model. 

Shortage costs can also be explored individually for CALVIN’s five geographic regions: the 
Upper Sacramento Valley (USV), Lower Sacramento Valley & Delta (LSVD), San Joaquin & 
South Bay (SJSB), Tulare Basin (TB), and Southern California (SC). The statewide total of 
shortage costs increases quadratically with decreasing water availability, but this is not 
necessarily the case in each region, as shown in Figure 13. Southern California experiences the 
highest shortage cost out of all regions, even in wetter scenarios. Tulare Basin assumes the 
second-largest shortage cost among the regions but sees a dramatic increase in shortage costs 
from -20% to -30% average water availability. USV, LSVD, and SJSB incur incrementally greater 
shortage with water reductions but on a much smaller scale compared to TB and SC.  

 
Figure 13: Average annual shortage costs by region. The missing value corresponds to a failed 

model run (i.e., where debug mode was not able to identify feasible solutions in a given number of 
iterations). 

Both urban and agricultural demands in CALVIN can incur shortage costs. Figure 14 shows the 
difference in shortage costs between urban and agricultural demands in each region when 
water availability is decreased by 30% on average. Urban shortage costs are overwhelmingly 
incurred in Southern California, with minimal urban shortage costs in the other regions. This is 
due to high willingness-to-pay among urban users in Southern California, as well as limited 
opportunities to replace surface water shortages with other sources. Southern California has 
small agricultural total shortage cost, but Tulare Basin agriculture bears the largest share of 
agricultural shortage costs at -30% water. USV, LSVD, and SJSB also incur significant 
agricultural shortage cost. Total agricultural shortage costs exceed urban shortage costs due to 
urban areas having a greater willingness to pay for water than agricultural regions, so lower-
value agricultural demands are more likely to be shorted. Additionally, agricultural water use is 
several times greater than urban use by volume. 
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Figure 14: Agricultural and urban shortage costs by region at -30% water availability relative to the 

historical scenario 

Figures 15 shows contour plots of changing shortage costs, statewide and in each region, with 
changes in winter index and water availability. This is a graphical approach to determine the 
sensitivity of the system to changes in climate, and to identify future scenarios that may result 
in vulnerable water supplies for the state. The nearly vertical contour lines on each plot indicate 
that shortage costs are primarily determined by changes in water availability (x-axis) with only 
slight influence from changing the winter index (y-axis). In all regions excluding Southern 
California, little to no shortage costs are incurred as water availability decreases to -10%. Even 
with water availability greater than historical, Southern California still incurs shortage costs in 
urban water uses, as seen in Figure 14. As water availability decreases, the gradient of shortage 
costs with winter index increases, reflecting the fact that the system is more sensitive to 
temperature changes in drier scenarios. 

Given the inherent uncertainty in GCM-derived climate scenarios, this type of “bottom-up” 
vulnerability assessment can be valuable to determine key thresholds in the system before 
analyzing the likelihood of specific climate changes [Dessai and Hulme, 2004; Brown et al., 2012]. 
The results in Figure 15 are independent of any ensemble of climate models and emissions 
scenarios, meaning they can serve as a template for evaluating the impact of different climate 
scenarios in the future, provided that they can be mapped onto the same axes of average water 
availability and winter index. Overall, results indicate that the system is robust to small average 
decreases in water availability, but exhibits much larger shortage costs under larger reductions 
of roughly 30%. The x-axis in Figure 15 reflects changes to the average water availability, a 
metric which does not specifically focus on the severity of multi-year drought periods.  
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Figure 15: Contour plots of water shortage cost, regional and statewide, as a function of water 

availability and winter index 

 

 

4.3 Identifying Adaptation Strategies 

Because CALVIN is an optimization model, the model runs included in the sensitivity analysis 
scenarios in Figure 15 have automatically adjusted water supply operations to account for a 
potentially warmer and drier future. Here we explore what optimal changes were made under 
different scenarios to understand what opportunities might exist for changing operations. These 
fall into five categories: water supply portfolios, reservoir operations, environmental flows, 
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reservoir capacity expansion, and conveyance expansion. The latter three are represented in the 
model output by marginal values, indicating the value of changing the required flow or 
infrastructure capacity by one unit. However, these have not been changed in the model runs 
because they are not decision variables in the optimization, only constraints. 

4.3.1 Water Supply Portfolios 
Across the state, five water supply types are represented: groundwater pumping, surface water 
delivery, non-potable reuse, direct potable reuse, and desalination. Each region in CALVIN has 
access to surface and groundwater, but only urban areas have access to reuse and desalination. 
This is a simplification, as agricultural areas also have opportunities for water reuse, including 
groundwater banking. 

Table 3 outlines how the portfolio of the five water supplies changes under different scenarios 
of winter index (WI) and water availability (WA). Surface water deliveries are maintained with 
little scarcity when water availability is reduced by 10%, but significant shortage appears in the 
-20% and -30% scenarios. Groundwater pumping is fairly constant throughout all scenarios due 
to the simplistic representation of groundwater allocation in the CALVIN model. Specifically, 
the unit cost of groundwater pumping does not account for increased energy cost due to 
declining water tables, or more importantly, the costs of drilling deeper wells. Non-potable 
Reuse increases from roughly 120 to 580 TAF/year as scenarios become drier. Surface water 
deliveries remain similar as water availability decreases to -10% in yearly inflows, but deliveries 
are significantly reduced by the 30% decrease scenarios. Delivery volume is negligibly affected 
by the winter index, indicating again that temperatures have less effect than changes in average 
precipitation and runoff. 
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Table 3: Optimal water supply portfolio (statewide) in scenarios defined by changes in water 
availability and winter index 

 

    AVERAGE WATER SUPPLY PORTFOLIO [MAF/YR] 

Water 
Availability Winter Index 

Groundwater 
Pumping 

Surface 
Water 

Delivery 

Non-
Potable 
Reuse 

Direct 
Potable 
Reuse 

Desal-
ination Total 

  

+10% COLD 13.2 23.1 0.12 0 0.0091 36.5   

+10% HISTORICAL 13.2 23.1 0.12 0 0.0091 36.5   
+10% WARM1 13.3 23.1 0.12 0 0.0091 36.5   
+10% WARM2 13.3 23.0 0.12 0 0.0091 36.5   
+10% WARM3 13.3 23.0 0.12 0 0.0091 36.4   
0% COLD 13.3 23.0 0.12 0 0.0091 36.4   
0% HISTORICAL 13.3 22.9 0.12 0 0.0091 36.4   
0% WARM1 13.3 22.9 0.12 0 0.0091 36.4   
0% WARM2 13.3 22.9 0.12 0 0.0091 36.4   
0% WARM3 13.4 22.9 0.12 0 0.0091 36.3   
-10% COLD 13.4 22.6 0.12 0 0.0091 36.1   
-10% HISTORICAL 13.4 22.6 0.12 0 0.0091 36.1   
-10% WARM1 13.4 22.5 0.12 0 0.0091 36.0   
-10% WARM2 13.4 22.4 0.13 0 0.0091 35.9   
-10% WARM3 13.4 22.2 0.13 0 0.0091 35.8   
-20% COLD 13.7 21.0 0.24 0 0.0091 35.0   
-20% WARM1 13.7 20.7 0.41 0 0.0091 34.8   
-20% WARM2 13.7 20.5 0.52 0 0.0091 34.8   
-20% WARM3 13.7 20.3 0.53 0 0.0091 34.6   
-30% COLD 13.5 18.4 0.58 0 0.0091 32.6   
-30% HISTORICAL 13.5 18.3 0.58 0 0.0091 32.4   
-30% WARM1 13.5 18.2 0.58 0 0.0091 32.3   
-30% WARM2 13.5 18.1 0.58 0 0.0091 32.1   
-30% WARM3 13.5 17.9 0.58 0 0.0091 32.0   
 

In all scenarios shown in Table 3, most water supply continues to come from surface and 
groundwater supplies, though the balance shifts depending on surface water shortage. These 
model runs did not test scenarios in which the capacity of reuse and desalination operations 
were expanded, which could be a subject for future work. 

4.3.2 Reservoir Operations 
The model outputs can be analyzed to find optimal changes in reservoir operations, defined by 
monthly storage decisions, in these different climate scenarios. Figure 16 shows the total 
statewide surface reservoir storage across all scenarios. The dashes of the lines represent 
different levels of water availability, and the colors of the lines represent the winter index. The 
0% and -10% water availability scenarios have a similar shape, minimum, and maximum. 
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Within each water availability scenario, the variation in winter index shows a slightly larger 
peak in total storage in May and a moderate decrease in minimum value in October. Overall, 
the effect of the scenarios with higher winter index is more pronounced at the 0 and -10% 
scenarios, whereas the reduction in water availability plays a larger role in the -20% and -30% 
scenarios.  

Figure 16: Statewide monthly average surface reservoir storage in each scenario. Higher values of 
the winter index (colorbar) indicate higher ratios of November-March runoff. 
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Breaking down the statewide aggregate reveals four categories of behavior shown among the 
reservoirs. The four categories are as follows. 

Reservoirs with major operations shift at -30% water availability 

Like the statewide total storage, several reservoirs including Shasta Lake see similar average 
storages in the 0%, -10%, and -20% water availability scenarios where the winter index plays a 
more significant role in determining end of water year storage, due to the changes in reservoir 
inflow timing based on temperature. The winter index shows a much larger influence on 
reservoir operations than it does for overall water shortage costs, suggesting that the reservoir 
operations are being adjusted to compensate for hydrologic changes in a way that maintains 
deliveries as best as possible. In the -30% water availability scenario for these reservoirs, 
average storage levels drop considerably and show up to a 500 TAF difference in monthly 
storage across the various winter index values. Figure 17 shows an example of these changes for 
Shasta Reservoir. 

 

 

Figure 17: Shasta Reservoir average monthly storage in sampled climate scenarios 

 

Gradual decrease in storage with decreasing water availability 



30 

In contrast to Shasta Lake, reservoirs including Lake Oroville, Folsom Lake, and New Bullards 
Bar show no clear definition between scenarios at different water availabilities. Average 
monthly storage values decrease with decreasing water availability, but only gradually in 
comparison to the large shift in operations at Shasta. For Lake Oroville (Figure 18), average 
storage values are closely banded within 200 thousand acre feet (TAF) from March through 
June, and afterwards the band expands through November. As above, higher winter index 
values, associated with warmer scenarios, have decreased the carryover storage values 
compared to lower winter index values, associated with colder scenarios. Due to Oroville’s 
large capacity, the band of storage values in November across scenarios is much wider 
compared to those of smaller reservoirs. 

 

 

Figure 18: Lake Oroville average monthly storage in sampled climate scenarios 

 

Moderate decrease in storage with decreasing water availability 

A third category of reservoirs, grouped by their similar operations, is represented by a 
moderate decrease in average monthly storage as monthly water availability decreases. Trinity 
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Lake (shown in Figure 19) shows similar behavior to Shasta Lake but with larger decreases in 
between the 0% and -20% WA scenarios, suggesting that its operations are changed in scenarios 
that do not deviate as severely from the historical hydrology. A trend is still visible between 
reservoir storage and the winter index of each scenario, indicating that temperature-based 
effects on inflow timing are causing optimal operations to change. The similar operations 
observed for Trinity and Shasta reservoirs makes sense, as they are within close proximity to 
each other and both have a large storage volume. The decreases in optimal storage observed 
with decreases in water availability are in part a function of simply having less water to store, 
but also reflect deliberate choices by the optimization model about how much water is worth 
releasing versus storing for the future in these drier scenarios. 

 

Figure 19: Trinity Lake average monthly storage in sampled climate scenarios 

 

 

Buffering capacity of San Luis Reservoir 

Representing the fourth and final category of reservoir behavior are off-stream reservoirs, such 
as San Luis Reservoir. Off-stream storage facilities can have more flexible operations that are 
less impacted by hydrologic changes, and thus play an important role in statewide operations. 
Among the largest reservoirs in the state, San Luis serves as an off-stream storage facility for 
operating the State Water Project (SWP) and Central Valley Project. Although the reservoir 
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capacity is 2 million acre feet (MAF), reservoir levels are typically far below capacity depending 
on the time of year. This extra reservoir space is utilized in the climate scenarios to capture 
excess streamflow unable to be stored at upstream facilities like Shasta and Oroville, which can 
be pumped out of the Sacramento-San Joaquin Delta. The optimal storage operations for San 
Luis Reservoir are shown in Figure 20. Unlike other large reservoirs, San Luis storage values 
increase considerably during the wet season between the 0% and -10% water availability 
scenarios, showing that in some of these moderately dry scenarios there will be increased 
opportunities for storage south of the Delta. In the -30% water availability scenarios, the 
operations of San Luis have converged and do not change regardless of the temperature 
scenario, with a storage peak in the winter and early spring, followed by a drawdown 
throughout the irrigation season. This shows the reduced sensitivity to hydrologic changes that 
would be expected for off-stream reservoirs, which might be a benefit for off-stream storage 
projects planned for the future. 

 

Figure 20: San Luis Reservoir average monthly storage in sampled climate scenarios 

4.3.3 Environmental Flows 
In the CALVIN model, minimum instream flow requirements (MIF) for environmental 
purposes are represented by fixed constraints, where either the lower bound and upper bound 
are equal for each time step, or with a nonzero lower bound and arbitrarily large upper bound. 
In dry scenarios, the automatic debug flow algorithm will reduce lower bounds to ensure 
feasibility of the solution, possibly reducing MIFs in the process. The linear programming 
model allows the opportunity to assign a marginal opportunity cost to environmental flow 
deliveries, providing information on the economic value of the water being allocated to 
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environmental uses if it were traded to other nodes in the network, which represents an 
adaptation option that might be explored under climate change scenarios.  

Figure 21 shows the monthly average marginal value across scenarios for the Clear Creek MIF, 
one selected example of an environmental flow in the model network. The marginal value of 
this constraint increases significantly as water availability is reduced from -20% to -30%, 
primarily in the winter months. By comparison, the variation in the winter index (i.e., 
temperature) has negligible impact on the marginal value of this environmental flow 
requirement within each water availability scenario. Dual values for this constraint are zero in 
the summer months, representing a non-binding constraint in the model. Reservoir releases for 
agriculture occur primarily during the summer months, so the minimum environmental 
requirement is not binding. 

 

 
Figure 21: Average monthly marginal opportunity costs associated with the Clear Creek minimum 

environmental flow requirement downstream of Whiskeytown Reservoir 

  

Table 4 contains the average yearly maximum marginal opportunity costs for environmental 
flows. All links in the model with marginal value greater than $100/AF / month are included. 
The values reflect the warmest scenario (“Warm3”) at each sampled level of water availability. 
The average yearly maximum was chosen for analysis because the metric captures the variation 
due to the water availability in the month of the year when the water is most valuable. Marginal 
value increases with decreasing water availability, but by varying amounts at different points in 
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the state. Consistent with prior studies, instream flow requirements for Mono Lake and the 
Trinity River show high value in the driest scenarios [Tanaka et al., 2006].  

Table 4: Environmental flow average marginal opportunity costs with different levels of average 
water availability [$/AF/month] 

DESCRIPTION CALVIN LINK +10% 0% -10% -20% -30% 
MONO LAKE SR_GNT-SR_ML 876 894 975 1267 1431 
TRINITY RIVER D94-SINK 49 55 96 229 593 
CLEAR CREEK SR_WHI-D73 12 15 44 154 478 
SACRAMENTO RIVER  
@ KESWICK RESERVOIR D5-D73 10 13 41 150 476 

CALAVERAS RIVER C41-C42 19 24 62 186 452 
SAN JOAQUIN RIVER D616-C42 22 28 68 179 405 
MOKELUMNE RIVER SR_CMN-C38 14 20 50 144 372 
SACRAMENTO RIVER  
@ RIO VISTA D507-D509 6 10 40 145 350 

FEATHER RIVER C25-C31 4 6 30 109 303 
AMERICAN RIVER D9-D85 6 9 26 85 265 
SACRAMENTO RIVER @ 
SACRAMENTO NAVIGATION 
CONTROL POINT 

D61-C301 6 7 16 62 265 

YUBA RIVER SR_ENG-C28 13 63 39 92 214 
STONY CREEK  
@ BLACK BUTTE DAM SR_BLB-C9 14 17 29 56 211 

BEAR RIVER SR_CFW-C33 9 11 24 68 185 
SACRAMENTO RIVER  
@ DELTA CROSS CHANNEL D503-D511 7 9 22 71 181 

COSUMNES RIVER C37-C38 49 51 58 83 136 
STONY CREEK  
@ TEHAMA-COLUSA CANAL C9-C12 18 23 33 51 118 

 

All of the environmental flows in Table 5 apart from Mono Lake show an approximately 
quadratic increase in marginal opportunity cost as water availability decreases. These values are 
shown in Figure 22. The quadratic relationships are to be expected, given the quadratic water 
demand curves for urban and agricultural nodes in the model.  
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Figure 22: Quadratic increase in marginal opportunity costs of environmental flows with 
decreasing water availability 

This analysis is not intended to assign economic value to environmental flows, as valuing 
nonrevenue water like environmental flows is difficult. For example, water delivered to 
national wildlife refuges provides no direct economic benefit but serves an important purpose 
in maintaining critical ecosystems and fostering biodiversity by providing habitat for 
endangered and threatened species. However, the model provides an implied opportunity cost 
for these constraints based on the value of allocating this water to meet human water demands 
elsewhere in the state. These opportunity costs may be useful to inform adaptation strategies 
under climate change—for example, if water rights could be purchased for the environment 
during drought, the costs shown in Table 5 and Figure 22 might serve as a guide for how water 
users might be incentivized to perform these trades. 

These marginal opportunity costs partially depend on the extent to which the environmental 
flow constraints have been reduced to achieve model feasibility. The automatic “debug mode” 
of the model will reduce fixed lower-bound constraints, including minimum instream flow 
requirements, that cause the model to be infeasible. Environmental flow deliveries for the 
warmest scenario (“Warm3”) with changing water availability are shown below in Table 5. This 
table shows increases in most environmental flow deliveries in the wetter scenario (+10% WA) 
and gradual reduction in deliveries with decreased water availability. Links with a gradual 
reduction generally have a linear relationship with water availability, meaning a 30% reduction 
in average water availability statewide resulted in a 30% reduction of the environmental 
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requirement. A few environmental flow locations such as Clear Creek, Trinity River, San 
Joaquin River at Vernalis, and Bear River have no reduction in the requirement even when 
statewide water availability is reduced, indicating that these constraints did not cause 
infeasibility. For the other environmental flows, reductions were needed to make the model 
feasible. These reductions occur prior to any optimization of cost—there is simply not enough 
water in the network in drier scenarios to meet the environmental constraints unless these 
constraints are reduced by the amounts shown in Table 5. 

Table 5: Average environmental flow constraints with changing water availability in the warmest 
scenario [TAF / month] 

DESCRIPTION CALVIN LINK +10% 0% -10% -20% -30% 
Clear Creek  
@ Sacramento River 

SR_WHI-D73 135 122 123 122 122 

Sacramento River  
@ Keswick Reservoir 

D5-D73 7042 6320 5608 4886 4211 

Sacramento River  
@ Red Bluff 

D77-D75 8612 8132 6968 6210 5561 

Sacramento River @ 
Sacramento Navigation 
Control Point 

D61-C301 7498 6883 5608 4762 4303 

Stony Creek  
@ Black Butte Dam 

SR_BLB-C9 456 414 373 331 290 

Stony Creek  
@ Tehama-Colusa Canal 

C9-C12 344 303 275 244 227 

Trinity River D94-SINK 607 607 607 606 606 
Bear River Inflow to Lake 
Combie/Rollins Lake 

C35-
SR_RLL_CMB 

385 391 387 388 387 

Bear River below Lake 
Combie/Rollins Lake 

N201-N202 294 279 257 238 218 

Bear River @ Camp Far West 
Reservoir 

SR_CFW-C33 380 366 343 324 305 

Bear River from DA 68 C33-C308 232 229 252 254 272 
American River @ Sacramento 
River 

D64-C8 2880 2574 2305 2037 1784 

American River  
@ Nimbus Dam 

D9-D85 2918 2639 2371 2109 1869 

Calaveras River  
@ San Joaquin River 

C41-C42 102 103 116 107 101 

Feather River @ Kelly Ridge C23-C25 661 554 568 554 547 
Feather River  
@ Thermalito Afterbay 

C25-C31 4467 4041 3649 3224 2811 

Feather River  
@ Sacramento River 

D42-D43 6522 5885 5368 4812 4256 

Cosumnes River  
@ Dry Creek  

C37-C38 389 361 325 289 253 

Sacramento River @ Hood D503-D511 17888 16446 14138 12445 11160 
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DESCRIPTION CALVIN LINK +10% 0% -10% -20% -30% 
Sacramento River  
@ Rio Vista 

D507-D509 6101 12647 5252 5101 4848 

Yuba River  
@ Englebright Dam 

SR_ENG-C28 1827 1660 1494 1327 1160 

Yuba River from DA 67 C83-C31 1818 1697 1490 1332 1166 
San Joaquin River  
@ Vernalis 

D616-C42 3073 3072 3073 3077 3098 

San Joaquin River @Mendota D609-D608 131 126 119 120 119 
Fresno River  
@ Chowchilla Bypass 

D624-C48 44 30 20 14 2 

Merced River  
@ Lower Merced River 

D645-D646 427 330 242 207 231 

Merced River  
@ San Joaquin River 

D649-D695 397 288 202 177 199 

Stanislaus River @ Ripon D672-D675 703 761 597 551 503 
Stanislaus River  
@ San Joaquin River 

D675-D676 821 879 714 658 597 

Mokelumne River  
@ Camanche Dam 

SR_CMN-C38 616 546 492 422 378 

Tuolumne River  
@ New Don Pedro Dam 

SR_DNP-D662 1575 1438 1277 1102 937 

Tuolumne River  
@ Lagrange Dam 

D662-D663 722 631 520 448 417 

Mono Lake SR_GNT-SR_ML 75 75 74 73 70 
 

4.3.4 Reservoir Expansion 
Expansion of infrastructure, including storage and conveyance capacity, is one possible 
adaptation to climate change. This study considers the marginal value of capacity expansion for 
the surface reservoirs in the CALVIN model. These expansions are explorations of model 
output and are not necessarily tied to specific plans for infrastructure expansion in the state. 
Also, new infrastructure plans that have been discussed, such as Sites Reservoir, are not 
considered here. 

Because reservoir capacities are represented by upper-bound constraints in the CALVIN model, 
their marginal value is computed by model runs in each climate scenario. To evaluate the 
marginal value of reservoir expansion, the maximum dual value for each year was averaged 
over the 82-year dataset. California reservoirs typically only fill once per year, thus only one 
local maximum appears in the yearly time series. Values for each reservoir are reported in Table 
6; higher values indicate reservoirs that would be more valuable to expand in each climate 
scenario. Table 6 includes all reservoirs with a marginal value of expansion greater than $50/AF 
per year from the warmest scenario (“Warm3”). 
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Table 6: Marginal values of reservoir storage capacity expansion with decreasing water 
availability [$/AF/year]. Reservoirs are listed in decreasing order based on the -30% scenario, and 

only the fifteen reservoirs with the highest marginal values are listed. 

DESCRIPTION CALVIN NODE +
1
0
% 

0
% 

-
1
0
% 

-
2
0
% 

-
3
0
% 

BLACK BUTTE LAKE SR_BLB 1
9 

2
3 

4
4 

1
3
4 

3
4
8 

ENGLEBRIGHT LAKE SR_ENG 2 1
9 

2
3 

9
0 

2
3
3 

FOLSOM LAKE SR_FOL 2 2 1
6 

6
9 

1
6
1 

ROLLINS RESERVOIR/COMBIE LAKE SR_RLL_CMB 6 8 1
9 

6
7 

1
6
1 

CAMP FAR WEST RESERVOIR SR_CFW 7 8 1
8 

6
5 

1
5
3 

NEW BULLARDS BAR RESERVOIR SR_BUL 3 2
0 

1
8 

5
8 

1
3
9 

LOS VAQUEROS RESERVOIR SR_LVQ 7 8 1
3 

4
0 

1
2
9 

THERMALITO FORE/AFTERBAY SR_TAB 4 4 9 3
3 

8
0 

CLEAR LAKE/INDIAN VALLEY RESERVOIR SR_CLK_INV 3 3 1
2 

3
4 

7
0 

LAKE OROVILLE SR_ORO 1 1 5 2
5 

6
0 

LOS ANGELES (TOTAL) SR_LA 3
3 

3
3 

3
6 

4
1 

5
4 

LAKE CROWLEY/LONG VALLEY 
RESERVOIR 

SR_CRW 3
7 

3
5 

3
7 

4
1 

5
2 

LAKE KAWEAH SR_TRM 
5
5 

5
7 

4
8 

3
4 

2
3 

LAKE SUCCESS SR_SCC 
5
0 

5
3 

4
7 

3
9 

4
1 

MILLERTON LAKE SR_MIL 
4
0 

4
4 

3
9 

3
5 

3
6 
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Most reservoirs see an increasing marginal value of expansion as the scenarios become drier. 
Reservoirs located in the San Joaquin Valley, such as Lake Success, Millerton Lake, and Kaweah 
Lake, show a decrease in the marginal value of expansion as water availability decreases, 
because these reservoirs reach maximum capacity less frequently than the reservoirs north of 
the Delta. Variation in the winter index is not shown in Table 6 because the marginal values do 
not increase more than 10% from the coldest to warmest scenario when holding water 
availability constant. Because these values are marginal, reflecting the value of one additional 
unit of storage—in this case, 1 TAF— and because they assume perfect foresight, the true 
benefit of reservoir capacity expansion requires deeper analysis. In reality, agencies would 
expand reservoirs by volume increments much larger than 1 TAF, such as the Santa Clara 
Valley Water District proposing to increase the volume of Pacheco Lake by 124 TAF [Rogers, 
2017]. Table 6 suggests some locations in the state where further investigation of expansion 
might be warranted. However, additional storage is a high-cost adaptation option and would 
require more analysis to determine if it is worth the benefit received [Hanak and Lund, 2012b]. 
Additionally, some of the capacity expansions explored in Table 6 may not be economically or 
geographically feasible. 

4.3.5 Conveyance Expansion 
Similar to storage capacity expansion, the CALVIN model output also includes marginal values 
associated with conveyance expansion. The marginal values associated with the upper bound 
constraints of key conveyance links are shown in Table 7. Similar to Table 6, these are not 
necessarily planned infrastructure expansions, and some of them may not be feasible. However, 
the constrained optimization formulation of the model allows us to explore the marginal value 
of increased flow capacity on links.  
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Table 7: Marginal values of conveyance expansion for the warmest scenario (“Warm3”) under 
varying levels of water availability [$/AF/month]. These values are the average of the annual 

maximum dual value output by the model. Conveyance links are listed in decreasing order based 
on the -30% scenario. 

 

As expected, the marginal value of additional conveyance capacity increases as water 
availability decreases. In dry scenarios, the network receives more value from the ability to 
move more water during rare wet months to where it is needed. The monthly marginal values 
in Table 7 are generally much larger (if multiplied by 12) than those for annual storage capacity 
expansion as shown in Table 6. This suggests overall that conveyance expansion might be more 
valuable than storage expansion at key points in the network. The effects of changing 
temperature on the marginal value of conveyance capacity are small. The marginal values 
increased by less than 10% across temperature scenarios with a fixed water availability. Table 7 
shows that the SFPUC-Hayward Intertie retains high marginal value in all scenarios, suggesting 
an adaptation that may yield economic benefit even under conditions similar to historical. In the 
model formulation, this intertie connects the East Bay and San Francisco in both directions, 
delivering water from the Hetch Hetchy system.  

 

DESCRIPTION CALVIN LINK +10% 0% -10% -20% -30% 
LOS VAQUEROS TO 
CONTRA COSTA CANAL 

C310-C70 33 34 51 123 281 

SFPUC-HAYWARD 
INTERTIE 

U209-C78 263 265 264 261 267 

FOLSOM SOUTH CANAL D9-C173 6 8 24 82 254 
MADERA CANAL C72-

HSU306C72 
75 83 98 109 145 

FRESNO SLOUGH C54-D608 8 13 29 59 74 
CHOWCHILLA BYPASS D609-C48 7 12 28 42 57 
CONTRA COSTA CANAL PMP_CC1-C70 52 53 50 47 45 
CORNING CANAL D77-

HSU102D77 
0 0 2 10 37 

DELTA MENDOTA 
CANAL-CALIFORNIA 
AQUEDUCT INTERTIE 

D701-D800 12 12 11 12 13 

LOWER CHERRY CREEK 
AQUEDUCT 

SR_LL_ENR-
C44 

5 5 5 6 8 

DELTA MENDOTA CANAL D722-D723 0.7 0.1 0.1 1.5 2.7 
LA AQUEDUCT C120-SR_LA 0.1 0.1 0.2 0.3 0.5 



41 

5: Conclusions and Future Work 

5.1 Limited Foresight Hydroeconomic Modeling 
Hydro-economic optimization models have long served as decision support tools by integrating 
water resources infrastructure, management policies, and economic values. For climate change 
assessments, hydro-economic optimization offers several advantages: water demands are 
represented by economic functions; marginal values of promising infrastructure and policy 
options are identified automatically; and operating rules can change in the future rather than 
remaining fixed.  

Prior studies have considered perfect foresight of water availability over a decades-long 
planning horizon, providing an optimistic lower bound of adaptation costs by allowing the 
model to reduce allocations in advance of severe droughts. In reality, costs will be higher due to 
limited forecasting ability. This study has created a new open-source version of the CALVIN 
hydro-economic model for California, which allows the flexibility to investigate a limited 
foresight version of the model. In this approach, sequential annual optimizations were 
evaluated using an optimized minimum fixed constraint for carryover reservoir storage 
between years. Results show an average annual shortage cost of approximately three times that 
of the perfect foresight case. The limited foresight optimization is prone to spikes in annual 
shortage cost during drought years, whereas the perfect foresight is able to evenly distribute 
cost over the time period. The limited foresight model reflects a more realistic management 
policy, since accurate forecasts of drought events are not available years in advance. This effort 
was completed concurrently to the climate change analysis, so perfect foresight model 
assumptions were used for the climate scenarios. Therefore, shortage volumes and costs may be 
underestimated in the climate scenarios, as in prior assessments. However, the limited foresight 
capability has been created and tested, and is available in the open source repository for this 
project to be used in future studies. 

5.2 Climate Scenario Uncertainty 
This study evaluates a systematically sampled set of climate scenarios to reflect plausible 
changes to runoff magnitude and timing, representing changes to precipitation and 
temperature, respectively. These scenarios extend beyond the range of the Fourth Assessment 
scenarios derived from downscaled GCMs to create drier conditions. This approach to 
understanding uncertainty in climate scenarios allows vulnerabilities and adaptations to be 
explored without assuming a likelihood of a particular scenario occurring in the future.  

The flexible operations suggested by the CALVIN model would require collaborative planning 
among stakeholders in the statewide water network. The results show no single “best” reservoir 
operating policy for all reservoirs across the state. Under drier climate scenarios, a combination 
of adaptation strategies yielded optimal results: some reservoirs, like Oroville, show minimal 
changes to operations, while reservoirs such as Trinity Lake and New Melones Reservoir 
steadily decreased average monthly storage levels with decreasing water availability.  

With optimal statewide management, results show that a shift in the timing of inflows due to a 
warmer climate would have a small impact compared to shift in water availability, the effect of 
which is far more pronounced. In the warmer scenarios, CALVIN allocates more water to 
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downstream reservoirs in the winter months to account for the additional runoff beyond the 
capacity of the upstream reservoirs. Large reservoirs like Shasta Lake and Lake Oroville 
historically maintain high storage levels in winter (excluding flood pool storage) and the 
additional runoff appearing early in the year cannot be held at these reservoirs. Due to its role 
as an offstream storage reservoir, San Luis has capacity to capture this additional water and 
store it until it can be delivered to meet a demand. San Luis Reservoir also shows increased 
storage levels as the average water availability decreases from historical to -10%. Water supply 
vulnerabilities would be expected to increase more rapidly with decreasing water availability 
under the limited foresight assumption. 

Both the statewide surface water storage and total shortage cost point towards a sharp increase 
in shortage and decrease in reservoir volumes occurring between -20% and -30% water 
availability. Also, significant reductions in reservoir levels exist compared to the difference 
between the other scenarios. Results show reservoir storage decreasing with water availability, 
supporting the fact that reservoir expansion will likely not be the answer to the state’s water 
supply problems under climate change (though increasing capacity may provide additional 
flood protection, which is not considered in this study). Managing the state’s surface storage 
capacity is more promising and less costly than constructing new storage facilities or expanding 
existing ones [Hanak and Lund, 2012a], a fact which is underscored by the relatively low 
marginal values of additional reservoir storage capacity observed in the results of this study. 

5.3 Limitations and Opportunities 
Climate adaptation studies have typically focused on drought and minimizing water shortage 
cost, but recent climate studies suggest increased precipitation and intensity of storms in 
California’s future [Dettinger et al., 2011]. To address this, existing systems models can include 
ways to measure flood potential and design flood management strategies. In particular, the 
CALVIN model’s main utility lies in long-term drought and scarcity cost management based on 
monthly hydrologic input and does not include extensive hydrologic modeling of peak flood 
volume and timing on rim inflows. A model with hourly, daily, or weekly hydrologic input 
data would be more apt than CALVIN to explore optimal flood management. 

Climate adaptation modeling is also constrained by the uncertainty of the ocean-atmospheric 
modeling performed. Historically, climate models have not agreed whether California will 
receive more or less precipitation, with predictions ranging from -11% to +28% from the 
historical average [Connell-Buck et al., 2011b]. Recent work suggests California may receive more 
precipitation as a result of warming in the Pacific Ocean, similar to the El Niño phenomenon 
[Allen and Luptowitz, 2017].  Moreover, the downscaled hydrologic projections used in this study 
generally point to wetter futures on average, though still with multi-year droughts, as has 
always been the case in California. In future work it may be possible to create a two-stage 
optimization model, where the first stage selects optimal infrastructure capacities, and the 
second stage determines optimal operations. 

The approach taken to design a limited foresight model in this study is based only on fixed 
carryover storage constraints at surface reservoirs. Groundwater storage volumes are 
constrained to the optimal end-of-year values from the full 82-year run with perfect foresight. It 
is a simplifying assumption that the large surface reservoirs would be operated for the same 
carryover targets as a percentage of their respective capacities. More advanced methods to 
assign economic value to carryover storage at individual reservoirs are presented in Draper 
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[2001], and Draper and Lund [2004]. Similarly, the approach to include water rights in the 
model focused only on urban water users in the Sacramento basin, but can be extended to the 
statewide water rights dataset. Groundwater representation can also be improved by including 
constraints on overdraft, for example representing the Sustainable Groundwater Management 
Act (SGMA). Initial steps in this direction are being developed in ongoing work. 

Another improvement to the CALVIN model would emulate other California simulation 
models like CALSIM to provide a business-as-usual baseline that would include current 
institutional operating rules to compare to the optimized management strategies. The value of 
this format in CALVIN to emulate current operating procedures would show the economic 
benefit of cooperative management of reservoirs by identifying the reductions in shortage, 
shortage cost, and marginal values across the network. 

While reservoir and conveyance expansion remain costly, and reduction to environmental flows 
faces legal concerns, adaptive operation of reservoirs statewide yields positive results to 
manage a variety of hydrologic scenarios. Reduced climate uncertainty through improved 
model representation would allow specific changes to operating rules to be designed. Flexible 
management of the statewide network of reservoirs controlled by various institutions requires 
collaborative management of water resources within California, which history has shown is a 
difficult task. Through continued efforts to identify vulnerabilities and develop adaptation 
strategies, California can adjust to drier and warmer climates by working towards 
collaboratively managing water at a statewide scale. 

Climate change poses a significant threat to California, and adaptive water resources planning 
and management strategies will be required to respond to future stressors on the water 
network. Modeling plays a critical role in better understanding climate effects, including a 
combination of global circulation models and water resources planning models, to simulate or 
optimize operations. Furthermore, hydro-economic modeling can enlighten optimal strategies 
for adaptation and suggest potential operational improvements to the water supply network.  
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