California Energy Commission

STAFF REPORT


California Building Energy Code Compliance (CBECC-Res) Public Domain Software

Computer Performance Compliance with the 2019 Building Energy Efficiency Standards

California Energy Commission
Gavin Newsom, Governor

SEPTEMBER 2020
ACKNOWLEDGMENTS

The Building Energy Efficiency Standards (Standards) were first adopted and in effect in 1978 and periodically updated in the intervening years. The Standards are a unique California asset and have benefitted from the conscientious involvement and enduring commitment to the public good of many persons and organizations along the way. The 2019 Standards development and adoption process continued that long-standing practice of maintaining the Standards with technical rigor, challenging but achievable design and construction practices, public engagement, and full consideration of the views of stakeholders.

The revisions in the 2019 Standards were conceptualized, evaluated, and justified through the excellent work of California Energy Commission (CEC) staff and consultants. This user manual was created with the assistance of CEC staff including Todd Ferris, Larry Froess, PE, and Dee Anne Ross. Other key technical staff contributors included Payam Bozorgchami, Jeff Miller, PE, Bill Pennington, Michael Shewmaker, Alexis Markstrum, Maziar Shirakh, PE, Peter Strait, Danny Tam, RJ Wichert, and the CEC’s Web Team. Management from the Building Standards Office and Michael Sokol, Deputy Director of the Efficiency Division, provided policy guidance to the Staff.

Special thanks to our key consultants, including Scott Criswell, Ken Nittler, PE, Robert Scott, Traci Meyer-Jones, and Bruce Wilcox.
ABSTRACT

The 2019 Building Energy Efficiency Standards for Low-Rise Residential Buildings allow compliance by either a prescriptive or performance method. Performance compliance uses computer modeling software to trade off efficiency measures. For example, to allow more windows, the designer will specify more efficient windows, or to allow more west-facing windows they will install a more efficient cooling system. Computer performance compliance is typically the most popular compliance method because of the flexibility it provides in the building design.

The Warren-Alquist Act requires that the CEC provide a public domain compliance program. The California Building Energy Code Compliance (CBECC-Res) software is the public domain software. It is certified by the CEC to conform to the Residential Alternative Calculation Method (ACM) Approval Manual, which contains the process for approving compliance software. CBECC-Res must also comply with the modeling requirements of the Residential Alternative Calculation Method (ACM) Reference Manual, which establishes the rules for the how the proposed design (energy use) is defined, how the standard design (energy budget) is established, and what is reported on the Certificate of Compliance (CF1R).

CBECC-Res 2019 Compliance Manager is the simulation and compliance rule implementation software. CBECC-Res is used to model all components that affect the energy performance of the building, as required for complying with the 2019 Building Energy Efficiency Standards. A CF1R, signed by a documentation author and a responsible party (either the building owner or designer), reports all energy features for verification by the building enforcement agency.

Keywords: ACM, Alternative Calculation Method, Building Energy Efficiency Standards, California Energy Commission, California Building Energy Code Compliance, CBECC, CBECC-Res, Certificate of Compliance, CF1R, compliance manager, computer compliance, energy budget, energy standards, energy use, performance compliance, proposed design, public domain, standard design, Title 24, Title 24 compliance software.

# TABLE OF CONTENTS

## Chapter 1  Overview ............................................................................................................... 1-1

1.1 Approved for 2019 Compliance.......................................................................................... 1-1
1.2 Resources for the User ....................................................................................................... 1-1
1.3 What’s New and Different in CBECC-Res 2019 .............................................................. 1-2
1.4 Transitioning to CBECC-Res 2019 ....................................................................................... 1-7
1.5 Background ...................................................................................................................... 1-8
1.6 Program Updates ............................................................................................................... 1-8
1.7 Watermarks ...................................................................................................................... 1-9
1.8 Special Features and Modeling Assumptions ................................................................. 1-11
1.9 HERS Third-Party Verification ........................................................................................ 1-11
1.10 Fixed and Restricted Inputs ............................................................................................. 1-11
1.11 Preparing Basic Input ..................................................................................................... 1-11
1.12 Checklist for Compliance Submittal ............................................................................... 1-12
1.13 Resources and Publications ........................................................................................... 1-12
1.14 Terminology ................................................................................................................... 1-13

## Chapter 2  Program Operation ......................................................................................... 2-1

2.1 Installing CBECC-Res ................................................................................................. 2-1
2.2 Example Files .................................................................................................................. 2-1
2.3 Menu Bar ...................................................................................................................... 2-4
2.4 Tool Bar ........................................................................................................................ 2-6
2.5 Main Screen ................................................................................................................. 2-7
<table>
<thead>
<tr>
<th>Section</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>4.11</td>
<td>IAQ</td>
<td>4-20</td>
</tr>
<tr>
<td>4.12</td>
<td>Cooling Ventilation (Whole House Fan)</td>
<td>4-21</td>
</tr>
<tr>
<td>4.13</td>
<td>CSE Simulation Reports</td>
<td>4-22</td>
</tr>
<tr>
<td>5.1</td>
<td>Conditioned Zones</td>
<td>5-24</td>
</tr>
<tr>
<td>5.2</td>
<td>Multifamily Dwelling Unit Zone</td>
<td>5-27</td>
</tr>
<tr>
<td>5.3</td>
<td>Dwelling Unit Types (for multifamily buildings only)</td>
<td>5-29</td>
</tr>
<tr>
<td>5.4</td>
<td>Attic</td>
<td>5-32</td>
</tr>
<tr>
<td>5.5</td>
<td>Crawl Space</td>
<td>5-38</td>
</tr>
<tr>
<td>5.6</td>
<td>Garage</td>
<td>5-39</td>
</tr>
<tr>
<td>6.1</td>
<td>Metal Frame Construction Workaround</td>
<td>6-2</td>
</tr>
<tr>
<td>6.2</td>
<td>Cavity R-Value</td>
<td>6-4</td>
</tr>
<tr>
<td>6.3</td>
<td>Assembly Types</td>
<td>6-5</td>
</tr>
<tr>
<td>6.4</td>
<td>Mandatory Envelope Requirements</td>
<td>6-6</td>
</tr>
<tr>
<td>6.5</td>
<td>Spray Foam Insulation (SPF)</td>
<td>6-6</td>
</tr>
<tr>
<td>6.6</td>
<td>Advanced Wall Framing</td>
<td>6-7</td>
</tr>
<tr>
<td>6.7</td>
<td>Attic Roof Terminology</td>
<td>6-8</td>
</tr>
<tr>
<td>6.8</td>
<td>Attic Construction</td>
<td>6-10</td>
</tr>
<tr>
<td>6.9</td>
<td>Ceiling Below Attic and Interior Ceilings</td>
<td>6-13</td>
</tr>
<tr>
<td>6.10</td>
<td>Cathedral Ceiling</td>
<td>6-15</td>
</tr>
<tr>
<td>6.11</td>
<td>Walls</td>
<td>6-17</td>
</tr>
<tr>
<td>6.12</td>
<td>Floors</td>
<td>6-22</td>
</tr>
</tbody>
</table>
Chapter 7  Building Envelope ................................................................. 7-1
  7.1  Surface Orientation ................................................................. 7-1
  7.2  Opaque Surfaces ................................................................. 7-2
  7.3  Raised Floor ................................................................. 7-11
  7.4  Slab Floor ................................................................. 7-14
  7.5  Below Grade Slab/Underground Floor ........................................ 7-16
  7.6  Windows ................................................................. 7-17
  7.7  Skylights ................................................................. 7-22

Chapter 8  Mechanical Systems ................................................................. 8-1
  8.1  Overview ................................................................. 8-1
  8.2  HVAC System Data ................................................................. 8-4
  8.3  Heating Systems ................................................................. 8-7
  8.4  Heat Pumps ................................................................. 8-10
  8.5  Cooling Systems ................................................................. 8-22
  8.6  Distribution System Data ................................................................. 8-29
  8.7  HVAC Fan System ................................................................. 8-36
  8.8  Indoor Air Quality (IAQ) Fans ................................................................. 8-37
  8.9  Whole House Fans/Cooling Ventilation ................................................................. 8-39

Chapter 9  Domestic Hot Water (DHW) ......................................................... 9-1
  9.1  Multiple water heaters ................................................................. 9-1
  9.2  Efficiency Information ................................................................. 9-2
  9.3  Water Heater and Tank Types ................................................................. 9-3
9.4 Distribution ........................................................................................................................ 9-4
9.5 Water Heating System Data ................................................................................................ 9-8
9.6 Water Heater Data (Gas and Electric Resistance) ............................................................. 9-10
9.7 Individual Heat Pump Water Heater Data ....................................................................... 9-21
9.8 Central Water Heater/Heat Pump Water Heater ............................................................. 9-22
9.9 Solar Water Heating Data .................................................................................................. 9-27
9.10 Drain Water Heat Recovery .............................................................................................. 9-30
9.11 Recirculation Loops for a Central DHW System .............................................................. 9-32
9.12 Combined Hydronic ......................................................................................................... 9-32
9.13 Ground Source Heat Pump and Air to Water Heat Pump .................................................. 9-32

Chapter 10 Additions and Alterations .................................................................................... 10-1
10.1 Overview ......................................................................................................................... 10-1
10.2 Accessory Dwelling Units .............................................................................................. 10-3
10.3 Addition Alone ............................................................................................................... 10-4
10.4 Existing + Addition ......................................................................................................... 10-5
10.5 Existing Building ............................................................................................................ 10-6
10.6 Status Fields .................................................................................................................. 10-7
10.7 Exceptions to Continuous Wall Insulation ..................................................................... 10-9
10.8 Standard Design (Energy Budget) ................................................................................ 10-11
10.9 Addition .......................................................................................................................... 10-12
10.10 Alterations ..................................................................................................................... 10-13
INDEX ........................................................................................................................................ i
Chapter 1  Overview

1.1  Approved for 2019 Compliance


Approved on May 15, 2019, CBECC-Res 2019 is for complying with the performance compliance approach for low-rise residential standards. The low-rise standards include single-family dwellings, duplexes, and townhomes (all R-3 occupancies), as well as multifamily buildings (R-1 or R-2) with up to three stories. CBECC-Res cannot be used for compliance for projects that are hotels and motels (regardless of number of stories) or multifamily buildings with four or more stories. These project types are subject to the nonresidential Energy Code.

The 2019 compliance manager is the simulation and compliance rule implementation software specified by the CEC. The compliance manager, called CBECC-Res, models features that affect the energy performance of the building. The Energy Code prohibits trading off mandatory requirements. For example, a metal framed wall must comply with the mandatory maximum U-factor of 0.102 for 2x4 or 0.071 for 2x6 framing (Section 150.0(c)). It is the user’s responsibility to know and comply with the Energy Code. Mandatory requirements are found in Sections 110.0 through 110.12 and 150.0. Also, Section 130.0 includes outdoor lighting requirements that may also apply (Reference: Energy Code, Table 100.0-A).

1.2  Resources for the User

A basic knowledge of the Energy Code is necessary to successfully prepare a compliance report using CBECC-Res. If this knowledge is lacking, it can result in costly construction mistakes. User should have available the Energy Code and all Energy Code-related documents, including the 2019 Residential Compliance Manual, 2019 Reference Appendices, and the 2019 Residential ACM Reference Manual (Section 1.14 includes how to obtain these documents). The Certificate of Compliance (CF1R) produced by CBECC-Res and registered with a HERS provider (see Sections 1.7 and 1.8) is submitted to the enforcement agency as proof of compliance with Title 24, Part 6. Your signature as the documentation author affirms the accuracy and completeness of the CF1R.

This user manual is a guide to the program’s use. It includes information about the information required for the input file, references to other documents for additional information, how an input may interact with another input. Where possible, useful resources are included. For example, efficiency ratings of windows and skylights come from the National Fenestration Rating Council,
2019 CBECC-Res User Manual Overview

Appliance efficiency databases are included in the appropriate sections, and cool roof directories for roof ratings. A hyperlink is included allowing you to press control+click from the user manual to open the website.

Sections are bookmarked if you are using Adobe Acrobat (see left panel) for easy navigation. The most used links are prominently displayed to help you find information to register a project, find errors (if you need help, send your *.ribd19 file to cbecc.res@energy.ca.gov).

1.3 What’s New and Different in CBECC-Res 2019

While some of the changes to the 2019 Building Energy Efficiency Standards are mentioned in this document (because of the connection to performance compliance), it is highly recommended that you download the Residential Compliance Manual (see Section 1.14) which has a “new for 2019” section at the beginning of almost every chapter.

On May 15, 2019, the CEC approved the 2019 Building Energy Efficiency Standards. Below are highlights of the biggest changes affecting compliance as well as new features of CBECC-Res 2019.1.3:

1.3.1 New Features of Version 2019.1.3:

- Added the ability to model a radiant barrier in a cathedral roof assembly (reminder that an air space is required as noted in Residential Compliance Manual, Appendix D).
- New exterior finish identified as “all other siding” added for exterior walls.
- Updated tile roof selections to differentiate whether a tile roof has an air gap, Section 6.8.
- Many new HVAC equipment types are added, including packaged furnaces, packaged terminal, single package vertical, ducted minisplit, and ducted multisplit (air conditioning and heat pump), Chapter 8.
- Also, do not forget to check out the new variable capacity heat pump compliance option (the “minisplit compliance option”), Section 8.4.3.
- Corrected reporting for (1) cathedral roof orientation, (2) ADU square feet/bedrooms updates as needed, (3) average window U-factor, (4) interior surfaces all shown on the CF1R, (5) underground floors, and (6) PV array type “fixed (open wrack)” no longer specifies “roof mount.”
- Updated and expanded list (including Tier 4 models) of Northwest Energy Efficiency Alliance (NEEA) heat pump water heaters, Section 9.7.
- Corrected errors in the calculation for altered water heaters.
- Solar thermal water heating for OG-100 (single or multifamily) or OG-300 (single family only) system types can be modeled, Section 9.9.
• Central heat pump water heaters for multifamily buildings now include small integrated package and large single pass primary types with loop tank options, Section 9.8.
• For multifamily buildings, solar thermal PV offset credit, which is an option to apply a portion of the PV generation as a credit toward energy efficiency.
• Community solar is available as a compliance option for projects in Sacramento Municipal Utility District (SMUD) service territory (climate zones 11 and 12), Section 4.4.1.1.
• Access to battery storage charge and discharge rates.
• User tips are added to this user manual. Information gathered from support emails and training is added. Acknowledging that it is not possible to read and absorb all the complex topics of energy compliance, or to know all short-cuts and useful information, look for these tips.

1.3.2 Other Recent Changes
• Variable capacity heat pump compliance option
• Ability to model an altered roof surface in zones with roof deck insulation in the standard design (a big improvement – pick altered roof surface), Section 10.6.2.
• CFI-2 is a new option for California Flexible Installation (generic roof orientation for the PV system), Section 4.4.1.10.
• Shading from permanent obstructions that reduce the effectiveness of photovoltaic (PV) systems (excluding horizon shading) can be specified, Section 4.4.1.9.
• PV exception for declared emergency zones (AB 178), Section 4.4.1.3.

1.3.3 General 2019 Changes
• The new email address for support is cbecc.res@energy.ca.gov.
• The name for the file to upload to a HERS providers is (*.CF1RPRF01E-BEES.xml).
• In climate zones with no requirement (NR) for the Solar Heat Gain Coefficient (SHGC) of fenestration, the value assumed by compliance software for those zones becomes 0.35 (previously 0.50).
• Climate Zone 16 joins Climate Zones 1, 3, and 5 as a zone with NR or 0.35 SHGC in the standard design for fenestration.
• Because a kitchen may not be included in all newly constructed buildings, the checkbox under the run scope (analysis tab) is no longer limited to additions and alterations. If the project has no kitchen, or the project construction does not include the kitchen, uncheck this box. (A future edition of CBECC-Res will allow greater control of the appliances included in the project.)
• The natural gas availability checkbox is no longer relevant. If the project uses propane, select propane from the menu, otherwise leave this as natural gas. In the 2019 standards, if your proposed water heating is electric, the standard design is a heat pump water heater (for a full list of the criteria, see Section 150.1(c)8Aiv). If the proposed space conditioning system is a heat pump, the standard design continues to be a heat pump. NOTE: For a complete electric building, on the appliances tab, change dryer and cooking to electric (Section 4.7.1.10).

1.3.4 2019 Code Compliance Overview

• Compliance is based on two parts of the energy design rating (EDR) for newly constructed buildings (Section 1.3.9). The concept is the closer to zero, the better.
• Once you calculate the performance for a project, if it does not comply (or you want to see the details of the heating, cooling, and water heating compliance because that is what you are used to seeing), click on the “energy use details” tab (Section 2.10.3) to see where it might benefit from specific improvements. EDR focuses more on heating, but the energy use might be of use.
• Solar electric generation will be required to achieve compliance on newly constructed buildings (not additions/alterations).
• Quality insulation installation (QII) is included in the energy budget (although not mandatory) for most newly constructed buildings and in large additions. The exceptions are:
  o Existing+addition compliance for an addition that is less than 700 ft²,
  o Multifamily buildings in Climate Zone 7.
• Additions and alterations continue to use kTDV rather than EDR used for newly constructed building compliance.
• If your project is an accessory dwelling unit (ADU) complying as an addition look for new inputs on the analysis and building tabs and a new ADU tab (Chapter 4). Chapter 10 includes past interpretations to help determine which compliance approach to use for an ADU—addition or new construction—and the application of exceptions to the continuous insulation requirement on exterior walls.

1.3.5 Water Heating

• New construction uses consumer instantaneous/UEF-rated water heaters as the standard design. Only existing water heaters can use the previous types such as small storage.
• A new compliance option for a compact design (Section 9.4.1) of the water heating system requires the distance (plan view) to the kitchen, master bath, and the farthest point other than kitchen/master bath. There is a basic option (no HERS requirement), and an enhanced option (HERS verification required).
• Drain water heat recovery (Section 9.10) is a new water heating option (HERS verification required).

1.3.6 **IAQ (particularly applicable to ADUs)**

• New inputs are required to determine compliance with Section 150.0(o). Most are on the **IAQ** tab:
  o A rarely used check box to indicate that your input file is for one dwelling unit of a duplex or townhome.
  o Maximum vertical distance, which is the highest point of the ceiling (it defaults to the value input for ceiling height on the zone tab).

• ADUs are a new dwelling unit and must comply with IAQ requirements regardless of size. The ADU tab is for ADUs that are complying as either an addition alone, as part of an existing plus addition, or if both the main dwelling unit and the ADU are complying together as new construction.

• If compliance is only for the ADU and based on Section 10.2.1 the ADU must comply as a newly constructed building, it is **not** identified using the ADU option or ADU tab. The identification of a building as an ADU on the Building tab is only for additions (Section 4.7.1.8).

1.3.7 **Mechanical**

• Whole house fans previously needed an attic in order to include it in your proposed design. This resulted in a penalty in some climate zones if the project had no attic. It is now possible to model a whole house fan vented to the outside. This option is on the **cool vent** tab.

• Whole house fans with a default size (1.5 CFM/ft²) can be modeled with or without HERS verification. With HERS verification, the fan receives full credit based on its capacity. If the HERS verification is unchecked, the capacity/effectiveness is reduced by 30 percent.

• Whole house fans other than default capacity (you pick “specify” and define the characteristics) require HERS verification (Section 8.4.2).

• Buried ducts or verified duct design now includes more advanced modeling (Section 8.4.4).

1.3.8 **Complying with Energy Design Rating**

Complying with the 2019 Energy Code is a completely different world. Check Section 1.14 for available resources to help you prepare for this new world. In the past, changes were relatively minor, but that is not so for the 2019 Code. The Code is extremely tight, and the options previously used to rescue a project may not work. Continuous wall insulation, roof deck insulation, whole house fans, heat pump water heaters (if gas is undesirable), quality insulation installation (QII) are now
common. You cannot trade them all away. Photovoltaics are not going to rescue the project and often do not contribute to achieving compliance (Section 4.4.

CBECC-Res 2019 uses an EDR metric to demonstrate compliance with the standards for newly constructed buildings. The software calculates the proposed design energy use, standard design energy budget, and reference design energy use. There may be additional internal calculations to establish the standard design PV requirement. Compliance requires meeting two criteria:

1. Efficiency EDR (proposed) must be equal or less than standard efficiency EDR, and
2. Total EDR (includes PV and battery storage) must be equal or less than standard total EDR.

For efficiency calculations, the energy use includes space heating, space cooling, ventilation, and water heating. It can also include a portion of the battery storage (if specified) energy savings when the self-utilization credit is checked. The total energy includes PV generation and any flexibility measures or battery storage.

**USER TIP:** EDR can be difficult to understand. The signals you may be used to getting from improvements, may not be obvious. For a complete description of EDR calculations, PV, and demand flexibility see Sections 1.5-1.7, 2.1, and 3 in the 2019 ACM Reference Manual. It is not lengthy, but it is dense.

PV and battery requirements are a complex topic. To learn more about these requirements, consider reviewing the Reference Appendices, Joint Appendix 11 (Qualification Requirements for Photovoltaic Systems) and 12 (Qualification Requirements for Battery Storage System). Also, consider providing your client with a copy of the installation requirements found on the Certificate of Installation forms CF2R-PVB-01-E – PV Systems and CF2R-PVB-02-E – Battery Storage, available from https://www.energy.ca.gov/programs-and-topics/programs/building-energy-efficiency-standards/2019-building-energy-efficiency (for informational use only).
1.3.9 **Compliance Summary**

The compliance summary (Figure 1-1) is available in CBECC-Res following an analysis. It compares the efficiency and final EDRs and shows whether the project complies. Both compliance margins must be 0 or greater. Footnotes 1-3 describe details about the ratings, followed by PV system details. Greater detail is included under the Energy Design Rating and Energy Use Details tabs.

### 1.4 Transitioning to CBECC-Res 2019

As you begin using the 2019 software, you can distinguish between 2016 and 2019 files by the input file extension. Files with the extension *.ribd19 are 2019 files, and *.ribd16 are 2016 files. Files with no date (*.ribd) are CBECC-Res 2013 files. Because all CBECC icons look the same, during installation do not remove the date. While using the program, you can verify the correct version from the lower border of the screen, which displays the software version (Figure 1-2).

**NOTE:** The version number (such as 2019.1.2) is the only number relevant to the typical software user. The Compliance Manager version only appears after an input file is opened. Numbers in parenthesis are important to internal processes, or for troubleshooting by programming staff.
1.4.1 Converting files

While it is strongly recommended to use the newest example files that come with each program (Section 2.2), existing files can be converted to 2019 files:

1. Copy the file from the 2016 (or older) project folder and paste it in the 2019 folder (this makes it easier to find).
2. Open CBECC-Res and choose open an existing file. Change the file type from the default Res Project Files (*.ribd19) to the appropriate option for the file you are converting, as shown in Figure 1-3.

![Figure 1-3: Opening *.ribd* files](image)

3. Open the file.
4. Acknowledge the warning that you are opening a file that used a previous ruleset by clicking okay to change the ruleset to 2019.
5. Rename the file. Even if you keep the same name, the extension will be ribd19.

1.5 Background

The standards allow compliance using either a prescriptive or performance compliance method. The prescriptive method is found in the Residential Compliance Manual (see Section 1.14, Related Publications). Performance compliance is an alternative calculation method (ACM) that uses building modeling software to demonstrate compliance with the standards. CBECC-Res is the public domain software produced by the CEC.

1.6 Program Updates


**USER TIP:** Support questions can be sent to cbecc.res@energy.ca.gov. Include your *ribd file or any problem file. There are also tips in Section 2.11 for finding errors yourself.

### 1.7 Watermarks

The only document produced by CBECC-Res is a Certificate of Compliance (CF1R). To obtain a CF1R requires an internet connection and checking the PDF option on the Analysis tab (accessible by double-clicking on project/top row).

The CF1R will have a watermark “This Certificate of Compliance is not yet registered” if HERS measures are required. The only way to remove the watermark is to register the project. For information about the registration process, see Section 1.8 (the fields on the signature page are completed during the registration process). If a different watermark appears, see below.

If no HERS measures are required, such as on some addition or alteration projects, there is no watermark on the CF1R. This is confirmed by a note on page 1 of the CF1R that the building includes no HERS verified measures. To complete the documentation author and responsible person fields on the last page of the CF1R, use Adobe Acrobat® (e.g., fill and sign).

#### 1.7.1 Not Useable Watermark

If a watermark shows “Not useable for compliance”, there are potentially four reasons. The CF1R was generated:

1. For a project that does not comply,
2. Following a “Quick” simulation instead of “Compliance” (option on the Analysis tab),
3. Using the tools menu option “Generate Draft T-24 Compliance Report” instead of checking the box on the analysis tab, or
4. By software that is not valid for compliance. This is a security feature. For a full explanation of security features see the Frequently Asked Questions.

#### 1.7.2 Mandatory Measures

The mandatory measures summary document (https://www.energy.ca.gov/media/3457) is a 4-page summary of all 2019 mandatory requirements.

CBECC-Res does not include space conditioning equipment load calculations, which are required by Section 150.0(h). Mechanical contractors are expected to prepare these and other calculations as part of their responsibilities.
1.7.3 Forms

In some cases, prescriptive compliance is a better fit, particularly for an addition or alteration. Interactive versions (meaning with fill-in fields) of the prescriptive forms for projects that do not require HERS verification are available from the Energy Code Ace website https://energycodeace.com/residentialforms. If HERS measures are required, the forms must be completed at a HERS provider website (https://www.energy.ca.gov/programs-and-topics/programs/building-energy-efficiency-standards/online-resource-center/home).

Documents and forms are also available from the CEC https://www.energy.ca.gov/programs-and-topics/programs/building-energy-efficiency-standards/2019-building-energy-efficiency. Registering the CF1R.

NOTE: Every newly constructed building requires HERS verification. Indoor air quality (Section 150.0(o)) is a HERS verified mandatory requirement. Duct leakage testing is also a mandatory requirement. HERS verified requirements are summarized on page 2 or 3 of the CF1R (after the energy use and special features listings).

1.7.4 HERS Upload XML File

The file needed to upload a project to a HERS provider is created only when you check the box labeled “Full (XML)” on the Analysis tab (see also Section 4.3.1.5) before performing the compliance analysis.

The file is stored in the projects folder (CBECC-Res 2019 Projects). Select the larger xml file named:

<input file name> - CF1RPRF01E-BEES.xml

1.7.5 Registering the CF1R

When HERS verification is required for a project, the watermark is only removed when the CF1R has completed the registration process at a HERS provider’s web site, which includes the documentation being electronically signed by the author and the person authorized by the Business and Professions Code to take responsibility for the building design.

For more information on registering a CF1R, find a HERS provider and visit their website for assistance in that process. Find an approved HERS provider at the CEC’s website (https://www.energy.ca.gov/programs-and-topics/programs/building-energy-efficiency-standards/online-resource-center/home).

As construction progresses, follow-up documentation (certificates of installation (CF2R) and certificates of verification (CF3R)) is required to confirm that the required measures are installed.
1.8 Special Features and Modeling Assumptions

The 2019 Reference Manual, Appendix A, identifies those features that are a special feature on the CF1R.

1.9 HERS Third-Party Verification

The 2019 Reference Manual, Appendix A, identifies the measures that require HERS rater verification or diagnostic testing. The CF1R identifies any measures included in the building input file that require testing or verification by a HERS rater.

1.10 Fixed and Restricted Inputs

When the specified analysis type is compliance, there are fixed and restricted inputs that cannot be changed by the user. Because example files may include assumptions that are not standard in a given climate zone, to determine the standard assumption for a given input, consult either standards, Section 150.1, Table 150.1-A (single family) or 150.1-B (multifamily), or the ACM Reference Manual.

1.11 Preparing Basic Input

The software includes several example files, and the user manual provides a tutorial as well as a guide through program inputs. Required inputs include:

1. Building address, climate zone, front orientation, fuel type, and PV system details,
2. Conditioned floor area and average ceiling height,
3. Attic/roof details, roof pitch, roofing material, solar reflectance, and emittance,
4. Ceilings below attic and vaulted ceiling R-values,
5. Wall areas, orientation, and construction details,
6. Door areas and orientation,
7. Slab or raised floor area and construction details,
8. Window and skylight areas, orientation, U-factor, Solar Heat Gain Coefficient,
9. Building overhang and side fin shading,
10. Mechanical heating and cooling equipment type and efficiency,
11. Distribution system location and construction details,
12. Method for providing mechanical ventilation, and
13. Domestic water heating system details, including type of water heating equipment, fuel type, efficiency, distribution system details.
1.12 Checklist for Compliance Submittal

The form needed for a compliance submittal includes a CF1R which is registered with a HERS provider if HERS verification is required (Section 1.7). Mandatory measures can either be included as notes on the plans or the 2019 Low-Rise Residential Mandatory Measures Summary may be included with the documentation (Section 1.7.2).

Additional supporting documentation that may be required includes:

- NFRC certified U-factor and Solar Heat Gain Coefficient for windows and skylights,
- AHRI certified efficiency of cooling, heating and/or water heating equipment,
- Roofing material rating from the Cool Roof Rating Council,
- Solar water heating documentation to support a modeled solar fraction, or
- Any supporting documentation requested by the building department to verify modeled features.

1.13 Resources and Publications

There are many resources available if you know how to access them:

- Sign up for the Blueprint newsletter, a very useful publication for compliance related topics https://www.energy.ca.gov/newsroom/blueprint-newsletter.
- Compliance forms can be found at either the CEC website, or from Energy Code Ace, https://energycodeace.com/residentialforms.
- The CEC has an on-line resource center for training, videos and other tools https://www.energy.ca.gov/programs-and-topics/programs/building-energy-efficiency-standards/online-resource-center.

In addition to this manual, users of the software need to have several documents as a resource during the compliance process.

- 2019 Residential Compliance Manual (CEC-400-2018-017) is the interpretive manual for complying with the standards (also contains sample compliance forms).
- Reference Appendices for the 2019 Building Energy Efficiency Standards (CEC-400-2018-021) is the source document for climate zones, HERS protocols for measures requiring verification by a HERS rater, as well as eligibility and installation criteria for energy efficiency measures.
• 2019 Residential Alternative Calculation Method (ACM) Reference Manual (CEC-400-2019-005) contains the rules that the software follows to establish the standard and proposed designs for a proposed building.

Publications may be downloaded from the CEC website, https://www.energy.ca.gov/programs-and-topics/programs/building-energy-efficiency-standards/2019-building-energy-efficiency, or purchased (one copy of standards is available at no charge) from:

California Energy Commission
Publications Office
1516 9th Street
Sacramento, CA 95814
(916) 654-5200

1.14 Terminology

1.14.1 Battery storage
Excess capacity from a PV system may provide credit toward meeting the Total EDR by including battery storage. Battery capacity and controls affect the amount of credit.

1.14.2 Climate Zone
California has 16 climate zones that determine the measures included in the standard design. There are several ways for finding a climate zone for a building. The resources are listed at https://www.energy.ca.gov/programs-and-topics/programs/building-energy-efficiency-standards/climate-zone-tool-maps-and. The representative city for each of the 16 zones is listed in the Reference Appendices, Joint Appendix JA2.

1.14.3 Compliance Manager
The compliance manager is the simulation and compliance rule implementation software specified by the CEC, also known as the public domain compliance software. The compliance manager is called CBECC-Res and models the features of the building as specified in the standards to establish the energy budget for the building. Details are included in the 2019 Residential ACM Reference Manual.

1.14.4 Demand Response
Demand response is a feature of the building that is automated to respond to fluctuations in utility time of use rates. Controls typically must meet criteria from Section 110.12. Included are batteries, precooling, and some heat pump water heaters.
1.14.5 **Energy Design Rating (EDR), Efficiency EDR and Total EDR**

The EDR is a score from 0 to 100, where 0 represents a building that has zero net energy consumption and 100 represents a building that is minimally compliance with the 2006 International Energy Conservation Code.

Compliance requires meeting an efficiency EDR) and a total EDR. Total EDR includes credit for solar and batteries. See also Section 1.3.8.

1.14.6 **HERS Verification**

Some mandatory or optional compliance features require a Home Energy Rating Systems (HERS) rater to perform diagnostic testing or verify installation. HERS raters are trained and certified by a HERS provider. HERS raters perform verification and testing requirements as specified in the Reference Appendices, Residential Appendices RA1 – RA3. For a list of currently approved HERS providers see https://www.energy.ca.gov/programs-and-topics/programs/home-energy-rating-system-hers-program/home-energy-rating-system.

1.14.7 **Mandatory Requirements**

Mandatory requirements are included in Sections 100.0 through 110.12 and 150.0 of the standards. Any requirement that is mandatory (some are modeled, some are not) cannot be removed from the building. For example, while a whole house fan is a feature of Section 150.1, Table 150.1-A for Climate Zone 10, if a building complies without modeling a whole house fan, it would not be required. However, duct leakage testing (Section 150.0(m)) is mandatory.

1.14.8 **Prescriptive Tables (formerly Package A)**

The prescriptive tables can help understand compliance results of a building that is not complying. These tables in Section 150.1, Table 150.1-A or 150.1-B, include the features used to establish the standard design for your building.

Determining how your building compares to the characteristics or these tables will help in understanding the compliance results. Is your building equal, better, or worse for glazing percent, window efficiencies, wall construction, or attic roof deck insulation construction?

1.14.9 **Proposed Design**

The user-defined proposed building modeled in CBECC-Res is called the proposed design. The proposed design is part of the calculation to determine if the building complies with the standards (see ACM Reference Manual Section 3).
The building is defined through entries for floors, walls, roofs and ceilings, windows, and doors. The areas and characteristics (insulation R-values, U-factors, SHGC) are defined by the program user. The entries for all building elements must be consistent with the actual building plans.

1.14.10 Reference design

This term and how the reference design is established are described in the ACM Reference Manual, Section 2.1.4.

1.14.11 Registered CF1R

When HERS verification is required, the CF1R will include a watermark telling the user that registration is required. See Section 1.8 for more information.

1.14.12 Report Manager

The report manager is a web-based application used to generate the Certificate of Compliance (CF1R). Although Tools feature of CBECC contains a feature to check if the report generator access, most problems have their source in the user’s internet connection. Using wi-fi connections can result in timing errors because the CF1R can take several seconds to generate.

1.14.13 Self-utilization credit

When a PV system is coupled with battery storage system, the software allows a portion of the PV plus storage EDR to be traded against the efficiency EDR. This modest credit can be used for tradeoffs against building envelope and efficiencies of the equipment installed in the building. A checkbox in provided in the software to enable this credit.

1.14.14 Standard Design

CBECC-Res creates a version of the proposed building that has the features of Section 150.1(c), Table 150.1-A (single family) or 150.1-B (multifamily) in the specified climate zone to establish the standard design (also known as the energy budget). The standard design is part of the calculation to determine if the building complies with the standards (see ACM Reference Manual Section 3).
Chapter 2  Program Operation

2.1  Installing CBECC-Res

Click on the hyperlink for CBECC-Res.exe or copy the link into your browser’s address box. Follow the prompts and read/accept the license agreement. You can direct the software to a different drive, but do not change the names of the file folders. The software will create a desktop shortcut (if selected).

Figure 2-1: Setup Screen

2.1.1  File locations

CBECC requires a file installation structure that has three locations – (1) executable, (2) data, and (3) projects folders. The default locations are:

Executable:  c:\Program Files\CBECC-Res 2019
Data:  c:\Documents and Settings\user\CBECC-Res 2019 Data
Projects:  c:\Documents and Settings\user\CBECC-Res 2019 Projects

CBECC-Res cannot be installed on a network (for example, “\" is part of the path name). It must be installed on a local or mapped drive. Input files are stored in the projects folder (the data folder contains program files).

If the program will not run, consider uninstalling to reestablish the path names and reinstall following the guidelines provided here.

2.2  Example Files

The first time you use CBECC-Res it is highly recommended that you spend a few minutes going through the tutorial in Chapter 3.
Following that introduction, the example files demonstrate how to model specific features. They are tailored to a specific climate zone so they may include measures that are not appropriate for your project. For example, features beneficial in the San Joaquin Valley may not be appropriate in mild Bay Area climate. Review the CF1R thoroughly and tailor the file for the climate zone or zones in which you work.

All new construction files include PV sized to meet standard design requirements, 5 kWh battery storage, QII, and a high performance attic, meaning R-19 below deck insulation, because it is included in the standard design in most climate zones.

The following example files are included in the projects directory.

1. **1StoryExample3.ribd19**. Based on the CEC’s 2100 ft² single floor prototype in climate zone 12 with slab-on-grade floors, a tile high performance attic, cool roof, an attached garage, window dimension inputs, and overhangs.

2. **1StoryExample3BelowGrade.ribd19**. Based on the CEC’s 2100 ft² single floor prototype with a crawl space, and a separate 750 ft² basement. The basement zone has its own HVAC system which is a wall furnace and no cooling system.

3. **1StoryExample3BuriedDuct.ribd19**. Building with verified duct design with buried ducts.

4. **1StoryExample3Cathedral.ribd19**. Same building as above with cathedral ceiling.

5. **1StoryExample3CathedralWHF.ribd19**. Same building as above with cathedral ceiling and a whole house fan (ducted to outside).

6. **1StoryExample3CompactDist.ribd19**. Same as above with compact distribution (basic credit) for the water heating system.

7. **1StoryExample3Crawl.ribd19**. Same as above with a crawl space.

8. **1StoryExample3DrainWtrRecov.ribd19**. Same as Example3 above a drain water heat recovery system.

9. **1StoryExample3Duplex.ribd19**. One-half of a duplex.

10. **1StoryExample3EvapCond.ribd19**. Same as above with an evaporatively cooled condenser.

11. **1StoryExample3HPWH.ribd19**. An all-electric 2100ft² prototype with a NEEA certified heat pump water heater.

12. **1StoryExample3HVAC.ribd19**. Same as above with ductless heat pump, ground source, and air to water heat pumps defined in the mechanical system library from which to pick.

13. **1StoryExample3Mild.ribd19**. Based on the CEC’s 2100 ft² single floor prototype in climate zone 3 with slab-on-grade floors, a tile attic, radiant barrier, an attached garage, and windows with appropriate SHGC values for a mild climate.
14. **1StoryExample3Multi.ribd19**. Same as above with multiple orientations. CF1R reports compliance results for the four cardinal (north, east, south, west) orientations.

15. **1StoryExample3Unvented.ribd19**. Same as 1StoryExample3 with R-0 ceiling insulation, spray foam insulation in the roof (not the ceiling), and ducts in an unvented attic.

16. **2Story2ZoneExample3.ribd19**. Based on the 2700 ft² two-story prototype, zoned 1st and 2nd story separately, each with its own HVAC system.

17. **2StoryExample3.ribd19**. Based on the 2700 ft² two-story prototype, set in climate zone 9, with a tile roof, and a whole house fan.

18. **2Story Example3CombHydNoCool.ribd19**. Based on the 2700 ft² two-story prototype, set in climate zone 3, with PV, a combined hydronic system with a boiler as the source of heating/water heating, and no cooling.

19. **2StoryZonalExample3.ribd19**. Same building type as above with a zonally controlled heating credit (living and sleeping zones).

20. **AAExample3.ribd19**. An addition alone input file with existing equipment in climate zone 9.

21. **ADUExample3AdditionAlone.ribd19**. Using addition alone compliance, this is a 400 ft² accessory dwelling unit in Climate Zone 12.

22. **EAAExample3.ribd19**. An existing plus addition input file with an existing HVAC system and an altered water heating system in Climate Zone 9.

23. **EAAExample3ADU.ribd19**. An existing building with an attached ADU in Climate Zone 12.

24. **EAAExample3LrgAddADU.ribd19**. An existing building with both an addition and an attached ADU in Climate Zone 12.

25. **EAAExample3wGarage.ribd19**. An existing house, with a garage, plus addition with an existing HVAC system and an altered water heating system in Climate Zone 9.

26. **MFExample3.ribd19**. An eight-unit two-story multifamily 6960 ft² two-story building with each story as a separate zone with four dwelling units in each zone, served by individual water heaters, with compact distribution, set in climate zone 8.

27. **MFExample3CentralHPWH.ribd19**. Same as above, served by split heat pumps and central heat pump water heater.

28. **MFExample3CentralSolarDHW.ribd19**. Same as above, served by central water heating with 35 percent solar contribution.

29. **MFExample3CompactDesign.ribd19**. Same as MFExample3, with compact design water heating.
2.3 Menu Bar

The menu bar at the top of the screen allows you to access many of the program’s features.

USER TIP: If your icons or menu bar are very small, try adjusting the properties settings. Right-click on the icon that starts the program, select properties, select the compatibility tab, check the box to disable display scaling on high DPI settings, and click apply.

2.3.1 File

The file menu contains the standard functions for file management, opening and saving files, save as (to rename a file), and exiting the program.

2.3.2 Edit

Most users will use the right-click options to edit, rename, create and delete components (Section 2.6).

In addition to the standard cut, copy, and paste commands, the edit menu contains several commands for editing building descriptions. They are:

- Edit component
- Create component
- Delete component

USER TIP 1: Be careful when using “delete component.” You could easily delete your entire project.

USER TIP 2: To access the Analysis tab or Building tab (with address, orientation, etc.), put the cursor on the Project field (top row) and double click.

2.3.3 Ruleset

The average user of CBECC will not need to know about rulesets. CBECC-Res is designed to support multiple rulesets that implement the requirements of different codes. The ruleset menu allows switching to a different compliance ruleset. Typically, changing to a different code requires changes to inputs. Users will need to pay special attention to instructions for performing accurate analysis under different rulesets.
2.3.4 View

The view menu (rarely used) enables you to toggle on and off the display of the tool bar at the top of the screen and the status bar at the bottom of the screen.

2.3.5 Tools

The tools menu contains many useful options:

- Program and Analysis Options / *Change settings such as enable research mode*
- Proxy Server Settings / Allows specifying proxy server settings
- Show Model Grid / *opens the inputs in a grid format*
- View T-24 Compliance Report [same as short-cut key] / *opens the CF1R if available*
- View Project Folder / *opens the folder that contains the project files*
- View Project Log File / *contains file history, error messages*
- Delete Project Log File / *(more useful than it sounds) this file contains the entire history of an input file, by deleting it, you start fresh with only the latest error*
- View CSE Simulation Errors File / *opens an error file containing more details*
- View CSE Simulation Reports File / *contains warnings and errors*
- Check Building Database / *checks for major errors (not useful to the average user)*
- Check Report Generator Access / *checks for internet access to the report generator*
- Building Summary Report (input model) / *opens a .csv file in Excel*
- Building Summary Report (proposed/standard) / *opens two .csv files in Excel (one standard and one proposed)*
- Perform Analysis [same as short-cut key] / *runs file to determine if it passes or fails compliance*
- Review Analysis Results [same as short-cut key] / *displays compliance results, if available*
- Generate Draft T-24 Compliance Report [same as short-cut key] / *creates a draft CF1R which will have a watermark with “not useable for compliance” (for a “not registered” watermark see Section 1.6)*
- Generate CAHP/CMFNH Report / [inactive] *generates a CAHP Incentive Report (C1R)*
- Batch Processing / *enables running multiple runs without user interaction (Section 2.12)*
2.3.6 Help

- Help Topics (*not enabled*)
- Quick Start Guide (opens an overview of the software and frequently asked questions)
- User Manual (opens this user manual document)
- Mandatory Requirements / [inactive] requirements from standards section 150.0; for example, a steel framed wall with no rigid insulation does not comply with the minimum requirements (alternative, see Section 6.4)
- About . . . (to determine the version of CBECC-Res)

2.4 Tool Bar

This section explains the program features accessed by clicking the toolbar shortcuts (Figure 2-2).

**New File**

This button closes the current file (if one is open) and opens a new file.

**Open File**

This button launches the open dialog box to enable opening an existing file. If another file is open, a prompt to save that file before proceeding will appear.

**Save**

This button saves the file under its current name or launches the *save as* dialog to enable a new file name.

**Cut**

Not enabled (right-click and pick delete instead).

**Copy**

Copy the item (and any child components). If the *copy* button is not available from within program dialogs, use the keyboard shortcut Ctrl+C (to paste, use Ctrl-V).

**Paste**

Paste copied components. Typically, the paste location is at the bottom, but can be moved up using the right-click/move up in list function. If the paste button is not available, use the keyboard shortcut, Ctrl+V.

**Print**

*NOT USED.* The CF1R is printed in Adobe® Acrobat.
Perform Analysis
This button enables launching a compliance analysis using the currently loaded building description. You must save the current building description before performing the analysis.

View Analysis Results
Displays the previous compliance results (from the last time analysis was run).

Compliance Reports
Accesses a previously generated CF1R or will generate a draft CF1R (with “not usable for compliance” watermark).

About CBECC-Res 2019
View program license and version information.

2.5 Main Screen
The main screen (Figure 2-3) is used for editing building descriptions. There are two tabs at the top of the main screen—Envelope and Mechanical. These tabs provide different views of the building description and provide access to two different subsets of building description data.

![Figure 2-3: Main Screen (no file open)](image)

When editing an existing file, the project tab (Figure 2-4) is activated by double-clicking on the project name.

![Figure 2-4: Project Tab](image)

2.6 Tool Tips/Automated Features
- **Right-Click.** The tools on the right-click menu are described in Section 2.6.
- **Tool Tips.** Some fields have tool tips, activated by hovering over the field.
• **File Save.** You are prompted to save a file before performing the analysis (if it was not previously saved). If you select the default save, the file is saved over the existing file. If you intended to create a new version of the file, be sure to pick <cancel> and select <file> and <save as> from the file menu.

• **Window Types.** This field is most flexible and useful if only the window U-factor and SHGC fields are completed (be sure to enter the values even if the default values are desired). The flexibility occurs in this way - if there is a change in efficiencies after a project is entered, changing the window type values updates any windows that use that type. (Detailed instructions in Section 6.13).

• **EER verified.** For typical central HVAC equipment, any EER greater than 11.7 requires HERS verification. When equipment is rated only with an EER or has a lower minimum EER standard, refer to Section 8.3.

• **Automated Defaults Based on Climate Zone.** When a field such as duct R-value, window U-factor or SHGC is blue rather than red the value is set to the automatic default and will update based on the climate zone.

• **Restore Default.** When a field is red and you wish to enable the automated feature, swipe the cursor across the field, right-click and select “Restore Default.” The field will change from red to blue to indicate that it will change if a climate zone with a different standard design assumption is selected. To prevent unintended changes on window efficiencies, see also Window Types in Chapter 7.

### 2.7 Right-Click Menu Options

CBECC-Res makes extensive use of menus accessible by right-clicking the mouse button (keyboard navigation options are shown in Section 2.7). The functions available through these menus depend on whether you are on the main screen or in an input dialog window.

**Main Screen—Right-Click Menu.** When clicked over a building component, the following choices are available:

- **Edit** – Opens the input dialog window for the selected component
- **Rename** – Enables renaming the selected component
- **Delete** – Deletes the selected component
- **Copy** – Copies the selected component with all of its associated (“children”) components
- **Paste** – Adds copied components and children to the selected component
- **Move Up in list** – Moves a component up in the list of the same component type
- **Move Down in list** – Moves a component down in the list of the same component type
• **Expand/Contract** – Expands or contracts the list of children components (shortcut key is to use the + or – signs)

• **Create** – Enables you to create new child components for the selected component

**Input Dialog—Right Mouse Menu.** When clicked over an input value in the window, the following choices are available:

• **Item Help** – (not available)

• **Topic Help** – (not available)

• **Restore Default** – Returns the value of the field to its default value (if applicable)

• **Critical Default Comment** – (not available)

### 2.7.1 Analysis Types

**Proposed Only:** Simulates the proposed building’s energy use using the 2019 compliance rules without establishing the standard design.

**Proposed and Standard:** In addition to simulating the proposed design, simulates the standard design building (one that complies with the 2019 prescriptive standards) to establish the energy budget for compliance.

### 2.7.2 Building Tree Controls (Parent/Child Relationships)

To analyze a building’s energy use, CBECC-Res tracks relationships among building components. CBECC-Res displays these relationships using the familiar tree control found in Windows™ Explorer and many other applications. For example, under the envelope tab, exterior walls are shown as parents to windows. Windows are connected to exterior walls and appear under walls as children to spaces. The tree controls vary in the components they display.

### 2.7.3 Rapid Editing

The tree control can be used to move and copy components or groups of components. To move a component, drag and drop. If an association is not allowed, the program will prevent the move. To copy a component, place the cursor on the component, right click/copy, move to the destination and right-click/paste. Rename to maintain consistency. When parent components are moved, copied, or deleted, child components are included.

Components shown on the tree can be moved using a drag-and-drop technique provided it results in a compatible parent-child relationship.

Right-click edit commands are described in Section 2.6. Double-clicking opens the input dialog window.
2.8 Keyboard Navigation Without the Mouse

The following alternative procedures for getting from one field to another or to access the right-click tools menu:

1. Up/down arrow - moves up/down the tree
2. <Alt> Enter - opens data for object highlighted / then tab to the field
3. <Alt>F1 – opens the right mouse quick menu. Once open:
   a. Up/down arrows to highlight a selection and <enter> or type the letter, such as “E” to edit, “R” to rename
   b. When the bottommost "Create" item is selected - right/left arrow keys to open/close submenu of children to create
   c. <esc> key to close right mouse menu
4. Left/right arrows - when on an object with children (i.e., a wall with windows), left arrow contract and right arrow expands (to show/hide the child objects).

2.9 Defining New Components

From the main program screen or at any point you would like to create a component under (a child to the parent component):

- Right-click on the component to which you want to add the new component.
- Select Create, and the type of object you want to create. Only applicable component types will appear on the list. The components available will depend on where the cursor is placed (for example, a skylight can only be created under a cathedral roof).
- Accept the defaults or edit the name, parent, and existing component from which to copy, and click OK.
- Edit the input fields with white backgrounds to describe the new component and click OK.

2.10 Analysis Results

Once an input file is created and the analysis performed (tools, perform analysis or ) the results can be viewed in several formats as shown below.

2.10.1 Compliance Summary

This displays the 2019 compliance results. To view the individual heating, cooling, and water heating results, pick the energy use details tab.
Figure 2-5: Summary Results

<table>
<thead>
<tr>
<th>Compliance Summary</th>
<th>CO2 Emissions</th>
<th>Energy Design Rating</th>
<th>Energy Use Details</th>
<th>CO2 Details</th>
</tr>
</thead>
<tbody>
<tr>
<td>Energy Design Ratings:</td>
<td>Compliance Margins:</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Efficiency¹ (EDR)</td>
<td>Total² (EDR)</td>
<td>Efficiency¹ (EDR)</td>
<td>Total² (EDR)</td>
<td></td>
</tr>
<tr>
<td>Standard Design</td>
<td>45.2</td>
<td>25.5</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Proposed Design</td>
<td>42.8</td>
<td>22.8</td>
<td>2.4</td>
<td>2.7</td>
</tr>
</tbody>
</table>

Result: **COMPLIES**

¹ Efficiency measures include improvements like a better building envelope and more efficient equipment
² Total EDR includes efficiency, photovoltaics and batteries
³ Building complies when all efficiency and total margins are greater than or equal to zero

Standard Design PV Capacity: 2.69 kW

2.10.2 Energy Design Rating

To view compliance results in greater detail view the energy design rating tab (Figure 2-6). These results include a comparison of the reference design to proposed design. For greater details about the how the reference design is calculated (it is not the same as the standard design) see ACM Reference Manual, Section 2.1.4.
Figure 2-6: Energy Design Rating Results

<table>
<thead>
<tr>
<th>Compliance Summary</th>
<th>CO2 Emissions</th>
<th>Energy Design Rating</th>
<th>Energy Use Details</th>
<th>CO2 Details</th>
</tr>
</thead>
<tbody>
<tr>
<td>EDR of Standard Efficiency: 45.2 - EDR of Standard Design PV: 19.7 = Total Std Design EDR: 25.5</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>EDR of Proposed Efficiency: 42.8 - EDR of Prop PV + Flexibility: 20.0 = Total Proposed EDR: 22.8</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>End Use</th>
<th>Reference Design Site (kWh)</th>
<th>Reference Design Site (therms)</th>
<th>Reference Design Site (kTDV/ft²-yr)</th>
<th>Proposed Design Site (kWh)</th>
<th>Proposed Design Site (therms)</th>
<th>Proposed Design Site (kTDV/ft²-yr)</th>
<th>Design Rating Margin (kTDV/ft²-yr)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Space Heating</td>
<td>467</td>
<td>388.7</td>
<td>48.97</td>
<td>143</td>
<td>210.9</td>
<td>23.76</td>
<td>25.21</td>
</tr>
<tr>
<td>Space Cooling</td>
<td>1,166</td>
<td>54.30</td>
<td>54.30</td>
<td>162</td>
<td>11.14</td>
<td>43.16</td>
<td>0.00</td>
</tr>
<tr>
<td>IAQ Ventilation</td>
<td>198</td>
<td>2.61</td>
<td>2.61</td>
<td>198</td>
<td>2.61</td>
<td>0.00</td>
<td>0.00</td>
</tr>
<tr>
<td>Water Heating</td>
<td>167.5</td>
<td>38.83</td>
<td>38.83</td>
<td>85</td>
<td>114.4</td>
<td>12.05</td>
<td>26.78</td>
</tr>
<tr>
<td>Self Utilization Credit</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Photovoltaics</td>
<td>-3.139</td>
<td>-37.53</td>
<td>37.53</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Battery</td>
<td>125</td>
<td>-10.54</td>
<td>10.54</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Flexibility</td>
<td></td>
<td>0.00</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Inside Lighting</td>
<td>2,135</td>
<td>31.93</td>
<td>31.93</td>
<td>506</td>
<td>7.37</td>
<td>24.65</td>
<td></td>
</tr>
<tr>
<td>Appl. &amp; Cooking</td>
<td>930</td>
<td>65.4</td>
<td>23.21</td>
<td>930</td>
<td>42.8</td>
<td>16.87</td>
<td>5.34</td>
</tr>
<tr>
<td>Plug Loads</td>
<td>2,638</td>
<td>36.39</td>
<td>2.06</td>
<td>2,026</td>
<td>27.51</td>
<td>8.88</td>
<td></td>
</tr>
<tr>
<td>Externor</td>
<td>298</td>
<td>4.13</td>
<td>1.20</td>
<td>1.64</td>
<td>2.49</td>
<td></td>
<td></td>
</tr>
<tr>
<td>TOTAL</td>
<td>7,831</td>
<td>621.6</td>
<td>240.37</td>
<td>1,155</td>
<td>368.1</td>
<td>54.88</td>
<td>185.49</td>
</tr>
</tbody>
</table>


2.10.3 Energy Use Details

This screen provides more useful details when analyzing if a building is not complying. It provides the standard design and proposed design values in kTDV values (reported on the CF1R after the compliance summary) as well as site energy.

Figure 2-7: Energy Use Detail Results

<table>
<thead>
<tr>
<th>Compliance Summary</th>
<th>CO2 Emissions</th>
<th>Energy Design Rating</th>
<th>Energy Use Details</th>
<th>CO2 Details</th>
</tr>
</thead>
<tbody>
<tr>
<td>End Use</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Standard Design</td>
<td>Standard Design</td>
<td>Proposed Design</td>
<td>Proposed Design</td>
</tr>
<tr>
<td></td>
<td>Site (kWh)</td>
<td>Site (therms)</td>
<td>Site (kWh)</td>
<td>Site (therms)</td>
</tr>
<tr>
<td>Space Heating</td>
<td>140</td>
<td>207.1</td>
<td>143</td>
<td>210.9</td>
</tr>
<tr>
<td>Space Cooling</td>
<td>216</td>
<td>17.02</td>
<td>162</td>
<td>11.14</td>
</tr>
<tr>
<td>IAQ Ventilation</td>
<td>198</td>
<td>2.61</td>
<td>198</td>
<td>2.61</td>
</tr>
<tr>
<td>Water Heating</td>
<td>85</td>
<td>114.4</td>
<td>85</td>
<td>114.4</td>
</tr>
<tr>
<td>Self Utilization Credit</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Compliance Total</td>
<td>56.08</td>
<td></td>
<td>49.56</td>
<td></td>
</tr>
<tr>
<td>Photovoltaics</td>
<td>-4,227</td>
<td>-47.20</td>
<td>-3,139</td>
<td>-37.53</td>
</tr>
<tr>
<td>Battery</td>
<td>125</td>
<td></td>
<td>125</td>
<td>-10.54</td>
</tr>
<tr>
<td>Flexibility</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Insid Lighting</td>
<td>506</td>
<td>7.37</td>
<td>506</td>
<td>7.37</td>
</tr>
<tr>
<td>Appl. &amp; Cooking</td>
<td>937</td>
<td>42.8</td>
<td>930</td>
<td>42.8</td>
</tr>
<tr>
<td>Plug Loads</td>
<td>2,026</td>
<td>27.51</td>
<td>2,026</td>
<td>27.51</td>
</tr>
<tr>
<td>Exterior</td>
<td>120</td>
<td>1.54</td>
<td>120</td>
<td>1.54</td>
</tr>
<tr>
<td>TOTAL</td>
<td>0</td>
<td>364.3</td>
<td>1,155</td>
<td>368.1</td>
</tr>
</tbody>
</table>

Generation Coincident Peak Demand (kW): Standard Design 1.26 Proposed Design 0.16 Reduction 1.10

2.10.4 CO2 Emissions and Details

Figure 2-8: CO2 Emissions

<table>
<thead>
<tr>
<th>Compliance Summary</th>
<th>CO2 Emissions</th>
<th>Energy Design Rating</th>
<th>Energy Use Details</th>
<th>CO2 Details</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Total CO2 Potential:</td>
<td>CO2 Saved by Solar Electricity:</td>
<td>CO2 Generated:</td>
<td></td>
</tr>
<tr>
<td></td>
<td>(excl. Solar &amp; Flexibility)</td>
<td>(metric tons/yr)</td>
<td>(metric tons/yr)</td>
<td>(metric tons/yr)</td>
</tr>
<tr>
<td></td>
<td>(metric tons/yr)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Standard Design</td>
<td>2.80</td>
<td>0.25</td>
<td>0.40</td>
<td>2.16</td>
</tr>
<tr>
<td>Proposed Design</td>
<td>2.81</td>
<td>0.51</td>
<td>0.07</td>
<td>2.23</td>
</tr>
</tbody>
</table>
2.11 Errors & Technical Support

If the program will not run (not an error, but a functional problem), see Section 2.1.1 to determine if you need to reinstall the program.

Information helpful in determining the location of an error is found in two places – the log file, or one of the error files.

**USER TIP:** If you cannot find an error, send your *.ribd19 file (found in the CBEC-Res 2019 Projects folder) and identify which version you are using (e.g., 2019.1.2, or 2019.1.3). Send your question/request to cbecc.res@energy.ca.gov.

The border at the bottom of your screen identifies the version. For the quickest response, send your request to the general email (not individual staff members).

2.11.1 Log File

Select tools and pick the option “view project log file.” (NOTE: this file is cumulative. If it contains errors already corrected, you can pick “delete project log file,” run the file again, and then it contains only the most recent error.) This file provides clues as to what is wrong.

Look for the word “error” and look for a word that offers a clue to where the error is located:
2020-08-19 09:26:20 - Project Saved
2020-08-19 09:26:21 - **Error:** All compliance projects must include DHW equipment and assignments to zones/dwelling units. . .
2020-08-19 09:26:21 - **Error:** The model includes one or more Zones with a DHW status of 'Existing' but **no Existing DHWSys object to assign to the Zone(s)**. . . . Ensure that there are valid (new/alt/ex) DHWSys objects to assign to any Zones or DwellUnitTypes lacking DHWSys assignments
2020-08-19 09:26:21 - **ERROR:** Error encountered evaluating rulelist 'ProposedModelCodeCheck'

This identifies a problem with the water heating system.

### 2.11.2 CSE Errors

In some cases, a California Simulation Engine (CSE) error results in an option to view a CSE error file. Otherwise, pick **Tools, View Project Folder.** Find another folder with the same name as the input file. Inside are two files identified as file type “err.” The files open in Notepad or Text pad and can offer clues to the error.

If you cannot solve your error, send your *.ribd19 file (located in CBECC-Res 2019 Projects folder) to [cbecc.res@energy.ca.gov](mailto:cbecc.res@energy.ca.gov). Identify which version of CBECC you are using.

### 2.11.3 Potential Errors

Following is a list of potential error messages. They are very high level errors, so it is not likely to help. Most user errors are caused by a unique set of conditions in your file:

1 : pszCSEEPath doesn't exist
2 : pszCSEWeatherPath doesn't exist
3 : pszDHWDLLPath doesn't exist
4 : One or more missing files (CSE, ASHWAT or T24*(DH/W/ASMI/TEV/UNZIP/WTHR) DLLs)
5 : pszBEMBasePathFile doesn't exist
6 : pszRulesetPathFile doesn't exist
7 : Error initializing BEMProc (database & rules processor module)
8 : Error initializing compliance ruleset
9 : Invalid project log file name (too long)
10 : Error writing to project log file
11 : Building model input/project file not found
12 : Error reading/initializing model input/project file
13 : Error evaluating ProposedInput rules
14 : Error retrieving CSE weather file name (from Proj:WeatherFileName)
15 : Energy (CSE) simulation weather file not found
16 : Error retrieving DHW weather file name (from Proj:DHWThrFileName)
17 : DHW simulation weather file not found
18 : Error retrieving required data: Proj:RunID and/or Proj:RunAbbrev
19 : Analysis processing path too long
20 : Error evaluating ProposedInput rules
21 : Error evaluating PostProposedInput rules
22 : Error evaluating BudgetConversion rules
23 : Error evaluating CSE_SimulationPrep rules
24 : Unable to create or access analysis processing directory (Section 2.1)
25 : Unable to open/delete/write simulation output file (.csv or .rep)
26 : Unable to open/delete/write simulation weather file
27 : Error copying simulation weather file to processing directory
28 : Unable to open/delete/write simulation input (.cse) file
29 : Error writing simulation input (.cse) file
30 : CSE simulation not successful - error code returned
31 : DHW simulation not successful
32 : Error encountered loading CSE DLL(s)
33 : Error evaluating ProposedModelCodeCheck rules
34 : Error evaluating ProposedModelSimulationCheck rules
35 : Error evaluating ProposedModelCodeAdditions rules
36 : User aborted analysis via progress dialog 'Cancel' button
37 : Error evaluating ProposedInput rules
38 : Error performing range and/or error checks on building model
39 : Error evaluating CSE_SimulationCleanUp rules
40 : Analysis aborted by calling application (via analysis callback function)
41 : Error evaluating ProcessResults rules
42 : Error evaluating ProposedCompliance rules
43 : Error(s) encountered reading building model (project) file
44 : Error(s) encountered evaluating rules required analysis to abort
45 : Invalid results object types encountered when copying results between models
46 : Error copying results objects from a previous model
47 : Error setting up check of weather file hash
48 : Input model contains one or more objects with the same name
49 : Missing Zone CSE include file
50 : Error evaluating OneTimeAnalysisPrep rules
51 : Invalid results object types encountered when copying final results to user model
52: Error copying results objects from the final run into the user model
53: Unable to open/delete/write CSE include file
54: Error copying CSE include file to processing directory
200: Error generating model report
201: Unable to write compliance report file (.pdf or .xml)
202: Error(s) encountered generating compliance report file (.pdf or .xml)
203: Error evaluating CheckFileHash rules
204: Weather file hash failed consistency check
205: Attempt to save project inputs (including results) following analysis failed

2.12 Batch Processing

An option (tools menu) called batch processing allows you to run a group of files for comparison. Possible scenarios are adding one feature at a time to achieve compliance, comparing options for achieving compliance, or comparing different groups of features. This is a powerful and time-saving tool to run a group of files without any interaction from you.

Good planning tips are to make sure your first input file runs without any errors. Either put the files in their own folder or provide a unique input file name. Use the run title field (analysis tab) to identify the variables you’re testing (the information displays at the top of the CF1R).

Naming suggestions are Job 09623 for Main Street project:

1. 09623.Main.1.ribd19 / run title “Base”
2. 09623.Main.2.ribd19 / run title “high efficiency DHW”
3. 09623.Main.3.ribd19 / run title “2 + high eff HVAC”
4. 09623.Main.4.ribd19 / run title “base + battery”
Once everything is set up,

- Select File, New (to start with a blank project),
- Select Tools and Batch processing (last option on list),
- Location of projects (default location is the folder you were last in or browse (...)),
- Project filenames is the unique part of the names, with an asterisk as the wild card (Figure 2-10),
- Addition inputs includes an option to run the file in all 16 climate zones
- Select process.

At this point you can select any of these options. Most likely responses are view results CSV (pens an Excel spreadsheet with compliance results) or continue (which ends the process). If you had the CF1R option turned on, the CF1Rs are in the projects folder.
IMPORTANT: As you move on, it will ask if you want to save the current file. The correct response is no. You could inadvertently save the results/project details of a different file.

2.13 File Clean Up


Find the project files, which are typically stored at C:\Documents and Settings\user\CBECC-Res 2019 Projects. As long as you keep the *.ribd19 file, other files can be recreated. Even being conservative and keeping the XML file and the CF1R, you may want to:

1. Delete folders named with the filename (lots of unnecessary files are stored in these folders).
2. Sort files by type.
5. Keep the CF1 PDF file / Adobe Acrobat Document.
6. Delete other files.

Keeping only the input file and the XML file for uploading retains your files in the most efficient manner. Other files can be re-created when an analysis is performed.

2.14 Background Colors

The following background color convention is used in displaying data on the dialogs:

- White background = available for user input
- Gray background = not user editable

2.15 Status Bar

The status bar at the bottom of the screen provides useful information about each input field. There are three panes on the status bar with context-sensitive information. The same information is displayed in the tool tips if you allow the mouse to linger over an input field.

*Input Description Pane* – Concise descriptions of the selected input field are displayed at the far left of the status bar.

*Input Classification Pane* – The next pane to the right on the status bar displays a set of labels that indicates whether an input is required, optional, or unavailable for input (Table 2-1).
Data Source Pane – The pane at the far right of the status bar displays a set of labels that identify the source of the information (if any) contained in the field. This distinguishes between information that is dictated by the compliance checking process and the information entered, for which you are responsible. The data source labels are explained in Table 2-2.

<table>
<thead>
<tr>
<th>TEXT DISPLAYED</th>
<th>EXPLANATION</th>
</tr>
</thead>
<tbody>
<tr>
<td>No field selected</td>
<td>No building data field is currently selected.</td>
</tr>
<tr>
<td>Input is compulsory</td>
<td>Data is required; the program cannot perform a compliance analysis without this input.</td>
</tr>
<tr>
<td>Input is required</td>
<td>Data is required if the field is applicable to your project.</td>
</tr>
<tr>
<td>Input is optional</td>
<td>If applicable to your project, you may enter a value; a default value is always acceptable.</td>
</tr>
<tr>
<td>Input is Critical Default</td>
<td>You may overwrite the data with a more appropriate entry. You must be prepared to provide documentation substantiating the input value.</td>
</tr>
<tr>
<td>Field is not editable</td>
<td>The data in this field cannot be edited either because it is defined by the compliance ruleset, is not applicable to the selected compliance ruleset, or is an intermediate calculated parameter (meaning it is only referenced in this location and must be edited at the source of the input).</td>
</tr>
<tr>
<td>Navigation input</td>
<td>The purpose of the selected field is to enable you to select a component for editing without having to exit the current component and choose the next component from the tree.</td>
</tr>
</tbody>
</table>
### Table 2-2: Data Source Explanations

<table>
<thead>
<tr>
<th>TEXT DISPLAYED</th>
<th>EXPLANATION</th>
</tr>
</thead>
<tbody>
<tr>
<td>No field selected</td>
<td>No building data field is currently selected.</td>
</tr>
<tr>
<td>Value from user</td>
<td>The data shown is defined by the user either by direct input or through a wizard selection.</td>
</tr>
<tr>
<td>Value from simulation</td>
<td>The data shown is defined by an energy simulation.</td>
</tr>
<tr>
<td>Value undefined</td>
<td>No data is defined for the field.</td>
</tr>
<tr>
<td>Value from program</td>
<td>The data in this field is defined by the program either to implement requirements and procedures specified in the standards or to conform to building energy modeling conventions.</td>
</tr>
</tbody>
</table>

Chapter 3   Tutorial

Note: This tutorial is specific to CBECC-Res 2019.

This tutorial takes about an hour, but is time well spent.

USER TIP: A basic knowledge of the standards is assumed as a foundation for using CBECC-Res. You should know how compliance is determined (Section 1.3). Operating the program is only a small part of a successful building simulation. As the documentation author, you are responsible for the content of the compliance report produced by CBECC-Res and submitted to the enforcement agency as compliance with Title 24, Part 6. If errors are discovered late in the construction process, the effects can be costly. The program will not prevent you from violating the standards (e.g., an R-0 exterior wall may run, but is not legal in new construction).

This is a step-by-step tutorial for modeling a simple single-family residence in CBECC-Res 2019.1.3. The tutorial will help you become familiar with how components are created.

The tutorial begins with a blank project. It is the only way to learn how the program works, where items are located, and how connections are made (window types and the window entries). You will likely never start with a blank project again. The example files included with the program are listed in Section 2.2 and included in the CBECC-Res “Projects” directory. They can be used to either see how to model complicated features or be used as an example of the correct way to model an existing plus addition project. You can also use as your starting point.

Not every input is discussed in this tutorial, but the user manual includes information about every input. To find things in this manual, you can use control-F to search, the table of contents, or the index. Additional information is also included in the 2019 ACM Reference Manual, which describes how the standard design is determined. These descriptions may provide insight to your compliance results.

USER TIP: As you progress through the tutorial, look around the screens and fields to get an idea of where features are located and how connections are made.

3.1   Simple House Example

The house pictured in Figure 3-1 has a 30 ft by 20 ft living area, 8-ft ceilings with an attic above, and a slab-on-grade floor.
On the front is a single 3'-0" x 6'-8" front opaque door. The left has two 6'0" x 4'0" windows. Back has two 3'0" 3'0" windows and a 6'0" 6'8" sliding glass door. Right has a 4'0" 5'0" window.

3.1.1 **Tutorial, Project Data**

1. Download and install the CBECC-Res program. (The program can be downloaded from the [CEC’s approved programs website](https://www.energy.ca.gov/programs-and-topics/programs/building-energy-efficiency-standards/2019-building-energy-efficiency-2).

2. Start the program and choose “Start with a Blank Project” and click <OK>. See Figure 3-2.

3. Right click on the line with “Press Alt+F to open...,” choose create, and pick project. Change Project 1 to “Simple House” and click <OK>. (This is your input file name, and you should give thought to how you will name your projects. Sources have told me that making a unique folder for each client is not a workable solution.)
4. Select climate zone 10 (Riverside). (You can select any climate zone you like; however, program defaults and your results may be different.)

5. You are now seeing the **Project** tab of the building model data. The name “Simple House” is in project name and is the default name for your input file. This would normally be a client’s name/job number. Enter the address by tabbing (if you accidentally click OK, see the user tip below #6):

   5100 Wilson St.
   Riverside, CA
   92509

   It displays CZ10 (Riverside) Representative city for zone 10

6. Click the **Analysis** tab to enter a run title. The run title appears on the CF1R in a prominent place and can be used for general information or a compliance variable (e.g., w/ high efficiency HVAC). We will enter “T24 Compliance.”

   **USER TIP:** To get back to the screens with Project, Analysis, Cool Vent tabs, because you clicked okay and are now here:

   Double click on the top row (Project: ‘Simple House’ for this file) to get back to here:

7. Check the boxes to Generate Report(s) ✔ PDF and ✔ Full (XML). This will generate both a CF1R and the file that will get uploaded to the HERS provider. The remaining inputs are kept as defaults.

8. At the bottom is the run scope, which we will keep as newly constructed.
USER TIP: If simulation speed is set to “quick” you will not get a valid CF1R or file for uploading. Results use compressed time periods which can be used in early simulations to get a high-level view of compliance results.

9. Click on the Energy Design Rating/Photovoltaics (EDR/PV) tab. In the DC system size, enter 2 (and tab). This reveals several additional inputs. For now, we will leave them all as defaults.

10. Set PV Scaling to Standard Design PV. Once the standard design PV size is known, and as you bring the building into compliance, you can set the scaling to allow you to enter a slightly different size. Another feature on this screen is Reduced PV Requirement. This reveals the various PV exceptions. Section 4.4 has information about these inputs.

11. Skip the next two tabs (Battery and Notes). Read more in Section 4.5 about batteries. Notes appear on the CF1R before the signature page.

12. Pick Building and either leave the description blank or enter a brief description such as “Single Family Residence.” Leave air leakage status and rate as defaults.

13. Quality insulation installation (QII) is defaulted to “No.” Although not a mandatory requirement the standard design for all single-family new construction includes QII.

USER TIP: Help your clients learn about QII if you set this to yes, or it will become your problem. If the project fails one of the multiple HERS inspections, and you must remove it, how will you get it to comply?

14. Enter a front orientation as “180” (based on the barely visible north arrow in Figure 3-1). If this house was in a subdivision, you would check perform multiple orientation analysis.

15. This is a single-family project; there is no accessory dwelling unit (keep the default no); and enter 2 bedrooms.

16. We will be using natural gas. Do not check “has attached garage.” NOTE: For an existing input file with a garage you need to remove, uncheck this box, then you can delete the garage zone.

17. On the Appliances/DHW tab, when the building is more defined, you can specify if the washer and dryer are in the house, or you can uncheck them if outside or in a garage zone.

18. Just to point it out, if a compact water heating distribution system is being modeled, this is where that feature is set. See Chapter 9 for the inputs.

19. We will skip the ADU tab because there is no ADU.
20. On the IAQ tab, we will leave it as default. Once we enter the conditioned zone it will determine the maximum vertical distance from the height of our zone.

21. Cool Vent is where we model the whole house fan, but this cannot be set until the building is more fully defined. Climate zones 8-14 include a whole house fan in the standard design and not including this feature can have a big negative effect on cooling. Click <OK> to continue.

22. So that we do not lose our work, click on the save button (default name is Simple House.ribd19) and pick save. The file is automatically saved in the projects folder. If you select <File>, <Save As> you can name it something different or save it somewhere different. Now that is named, saving is a one-step process of pressing save on the tool bar.

**USER TIP:** A word of caution about putting in a different location – people have been known to lose files. If you put it somewhere secret, I cannot help you find it.

### 3.1.2 Tips for Getting Around

This is a good point to cover some general information.

**NOTE:** At some point you are encouraged to read (not every word, but skim them) Chapter 1 if you are new to compliance, Chapter 2 for using this program effectively, and Chapter 4 for more on fundamentals such as project scope, PV, indoor air quality, and whole house fans. After that, as you use the program you will want to search for and read the user manual for guidance on inputs, there are helpful tips, websites, and resources for finding equipment efficiencies or cool roof products. For the complex topic of additions, Chapter 10 covers the topic thoroughly.

- The project is named Simple House (the default name for the input file). This name appears at the head of the project tree of the main CBECC-Res screen.

- To add components, on the parent component, right-click and choose <create>.

- To edit an existing component, either double click on the contents of the field to change the information, or right click and pick <edit> or <rename>.

- If you need to edit or check a project component (address, climate zone, front orientation) double click on “project” to bring up the project tabs screen.
• Items in Construction Assemblies and Window Types are not part of your building. Do not define your windows using either one. These are libraries from which you will construct your conditioned zone. At this point the folders are empty but will be populated by the time the input file is fully created.

• Dwelling unit types are used only for multifamily buildings.

### 3.1.3 Tutorial, Zone Data

Back to the tutorial . . .

1. With the cursor on **Project: Simple House**, right-click. From the drop-down menu hover on <create> and choose <zone>. Change the name Zone 1 to “House” and click <OK>.

2. At the next dialog box, the **zone type** is already set to “Conditioned”. Enter “600” for the floor area and “8” for the average ceiling height. Click <OK>.

3. On this screen (**Zone Data**), the number of stories in the zone is 1. “Bottom” is defining the floor level above grade. Enter 0.67 for slab (a floor over a crawl space is at least 2).

   **USER TIP**: Zone data (number of stories and zone bottom) for a multistory building is explained in Sections 5.1.1.5 and 5.1.1.8.

4. Next, we will add an HVAC system which currently shows – none -.
   a. Click the drop-down menu arrow at the **HVAC System** box and choose to <Create new HVAC System>. Accept the default name by clicking <OK>.
   b. At the **HVAC System Type**, pick from the drop-down menu “Other Heating and Cooling System” and click <OK>. Or you could pick heat pump. RARELY used is Variable Outdoor Air . . .” is ONLY for a CENTRAL FAN INTEGRATED VENTILATION COOLING SYSTEM, Variable Speed.
   c. When the **HVAC System Data** screen opens, define the system, starting with the **Heating Unit**.
   d. On **Heating Unit** pick from the down arrow <create new heating system>. Keep the default name and click <OK>. The first one listed is a central furnace. So that you know what is here, click on the down arrow to see all types available. We will pick “CntrlFurnace” and click <OK>. We will keep 80% AFUE and click <OK>.
   e. On **Cooling Unit** follow the same process – pick <create new cooling system>, keep the default name (normally you will want to use a descriptive name such as Split 14, or No Cooling). For the type, as with heating, there are many options (no cooling is at the very
top of the list). For now, we will select SplitAirCond and <OK>. The efficiencies are minimum and the AC charge (refrigerant charge) is set to default based on the climate zone. Because other HERS tests are already required, we will keep the AC charge, and for the SEER we will keep it as 14.

f. The EER field has default values based on the SEER. If the equipment has a higher EER, check the “ Use this EER in compliance analysis” and enter a higher number. Neither 14 SEER, nor 11.7 EER, require HERS verification. Values higher than 14 SEER and 11.7 EER require HERS verification.

**NOTE:** At another time, read about multi-speed and zonally controlled equipment in Section 8.3.3. There are some situations where it is advisable to model less than 350 CFM/ton (it incurs an energy penalty, but the exception is there for a reason).

g. In the **Distribution** field follow the same procedure—keep the default name, select ducts located in attic and uncheck “keep the default values” (default values based on the climate zone). Change the R-value to R-6. Click <OK>.

**USER TIP:** If the “use defaults” is unchecked other fields become available. For example, specifying where the supply and return ducts are located, or low leakage air handler allows specifying a lower leakage target than the default 5% duct leakage.

h. Next create the **Fan** data. Pick the only option available, which is a single speed fan and click <OK>. The program defaults to the required W/CFM cooling value of “0.45.” If we had specified a heat pump it would be 0.58. Click <OK>.

i. You are now back at the **HVAC System Data** tab. Beneath Heating unit, it shows the central furnace with 80 AFUE, the Cooling shows 14 SEER, 11.7 EER. If there were two identical systems, you could change the count to 2. Click <OK> to return to the **Zone Data**.

**USER TIP:** Although we will not edit the HVAC system, to do so click on the **Mechanical** tab at the CBECC-Res main screen. The **Mechanical** tab is where the libraries of HVAC, DHW, IAQ, cool vent equipment resides.
5. Next, we will define the domestic water heating (*DHW System*) by selecting “create new DHW System.” Keep the default system name and click <OK>.

a. We likely could meet compact distribution criteria (Section 9.3.1) if we had a floor plan. For now, we will keep the dwelling unit distribution as “standard”.

b. For *Water Heater(s)* pick “create/import new Water Heater”. Keep the default name. Keep the heater type as gas, select tank type “consumer instantaneous (UEF)”. You may have seen the Uniform Energy Factor (UEF) change to the default 0.81, which we will keep for now. We will not check that there is a mini tank given the size of this house. Click <OK>. Keep the count as 1 and click <OK> again.

c. Back on the zone data tab, everything needed is complete. DHW System 2 can remain as none. Click <OK>.

**NOTE**: It is time to develop a good habit of creating short descriptive names.

3.1.4 **Tutorial, Surfaces**

1. Add components from the top of the house down beginning with a 600 square foot ceiling. With your cursor on House, right click and choose <create> and then “Ceiling (below attic)” about 1/3 of the way down (the list is not alphabetical).

2. Change the name to “Ceiling” and click <OK>.

3. Follow the prompts – the area is 600 square foot. Pick create a new construction assembly. Change the name to “Ceiling R38” and click <OK>.

4. Ceiling R38 has the construction type of wood framed ceiling. In the Cavity Path column of Cavity / Frame pick R38. Because this is ceiling insulation, we do not need to pick one of the compressed values. For the Frame Path pick 2x4 @ 24 in. O.C. The checkboxes for non-standard spray foam or raised heel truss are not applicable.

5. Watch the screens as you click <OK> three times so you see the connection of the construction assembly, to the ceiling, to the zone. Now you are back to the main screen.

6. When we created the ceiling, the program created an attic zone with 600 square feet. Double click on the attic zone. Change the roof rise from 5 to 3 to match the plans. Keep the conditioning as ventilated. **NOTE**: The area of the zone is derived from the ceiling area.

7. The construction is a default asphalt shingle roof. We need to change this. Climate Zone 10 includes below roof deck insulation in the standard design, if we do not change to a better construction the project will not comply (see **User Tip** in Section 5.4.1 for more about the importance of roof deck insulation). Pick create new object. We will try R13 (it is less than the
standard design but still very beneficial). Name it “Roof R13 below deck.” Copy data from “Asphalt...” and click <OK>.

8. Change the details to include R13 in the Cavity/Frame row. Do not check radiant barrier (RB). **NOTE:** While RB affects compliance, the location of the roof deck insulation makes it much less effective. Change the roof to tile with an air gap by changing Roofing Type to “steep slope...” and pick 10 PSF (RoofTileAirGap). Click <OK>.

9. A cool roof is “standard” for this zone. Change Solar Reflectance from 0.1 to 0.2. Keep the IR Emittance as 0.85 (these two values, 0.2/0.85, are the defaults for cool roof) and click <OK>.

10. To create exterior walls, move the cursor to House (600 SqFt).
   a. Right-click and choose <create> and then pick <exterior wall>. Change the Exterior Wall Name to “Front” and click <OK>.
   b. Enter a gross area of 240 square feet of wall area, and for the construction assembly create a new construction. Call it R19 + R5 Wall and click <OK>. For Cavity, pick R-19 in 5-1/2 in cavity, and for framing change it to 2x6 @ 16 in. O.C., select sheathing insulation of R-5 and an exterior finish of synthetic stucco (this is the appropriate method for modeling 1-coat stucco). **NOTE about sheathing:** Either whole R-values are selected, or you can “specify R-value” and to enter a value such as 4.8. Before proceeding, notice that the U-factor is 0.051 (standard design walls have a 0.048 U-factor) meaning there will be is a slight energy penalty for the walls. Click <OK> twice.
   c. Leave the wall Tilt as 90 (this is not orientation; walls are 90 degrees unless they are not vertical).
   d. Change the Orientation to front. This value is the plan orientation. Resist the urge to use numbers for the plan orientation for anything other than angle walls. Read Section 7.1 for more on plan azimuth versus orientation. Click <OK>.
   e. Move to the House row and repeat steps a. through d. three more times for a “Left,” “Back” and “Right” wall with the gross wall area of 160 for left and right walls, 240 for back wall) and orientation (<Left>, <Back> or <Right>).

   **USER TIP:** When creating anything, the program has a <Copy Data From> feature. It is a time saver. For the right wall, copy the left wall and the only thing you need to change is orientation. For the back wall copy the front wall and change the orientation.

11. Before creating any windows, first set up the Window Types library. Move to window types row, right-click and pick create and window type. Name the window “Oper” (for your use only, it does not appear on the CF1R) and click <OK>.
Leave everything as is or blank except for U-factor and Solar Heat Gain Coefficient (SHGC).
Our client wants to see if 0.32 U-factor and 0.25 SHGC windows (2016 standards values) will work. Type in the values (for future reference, do this even if accepting the default values) 0.32 U-factor and 0.25 SHGC.

**USER TIP:** The process for using window types is described in Section 6.13. It allows updating all window efficiencies in 2-3 steps rather than editing every window entry. Typing in the values for U-factor and SHGC changes them from blue to rust, which confirms it is done correctly. The window type name is for your use only, it does not appear on the CF1R.

12. Move the cursor to **Window Types**, right-click and create a window type naming it “Door” (for sliding glass or French doors). Click <OK> and enter 0.31 and 0.25 for U-factor and SHGC values.

13. Move up to the “House” zone and enter the building’s doors, windows, and doors with glass.
   Move the cursor to the front wall. Right click on the **Front**, choose <create> and then click on <InputDoor> for opaque doors (doors with glass are windows).
   Follow the prompts, naming it Entry, it has 20 square feet, and we will keep the new default U-factor which is 0.20. Click <OK> to return to the main screen.

14. Now move to **Left**, right-click, <create> a window.
   a. Name it L1 and click <OK>.
   b. The next dialog box asks you to choose between window dimensions and overall window area. Choose window dimension so an overhang can be modeled and click <OK>.
   c. Select the window type “Oper” we created. Move down to width and enter 6. For height enter 4 (the area is calculated). Change the multiplier to 2. It captured the U-factor and SHGC are from the window type. NOTE: The total is for one window, the CF1R will reflect 48 ft² total.
   d. To add an overhang, click on the **Window Overhang** tab at the top of the screen. You will see an illustration of the inputs. Enter a **Depth** of 2.5 feet, a **Dist Up** of 1 foot, and an **Extends Left** and **Extends Right** of 3 feet each. Leave the **Flap Height** as 0. Complete the overhang by clicking <OK>.
   **USER TIP:** Save space on the CF1R by unchecking the model fins when there are no overhangs. Otherwise, when checked, an entire row with 0s shows on the form.

15. Right click on **Back** to <create> a window.
   a. Name it B1, pick copy data from L1, and click <OK>.
b. Change the window width to 3 and height 3 and keep the multiplier of 2 because we will model identical overhangs for the two windows. Click on the overhang tab and change *Extends Left* and *Extends Right* values to 4 feet. If the overhangs were different, you would enter the windows individually.

c. Put the cursor on the back wall, right-click to create another window, naming it B2 SGD, copy window B1. Change window type to “Door” from library (notice that it picked up the 0.31 and 0.25 efficiencies). Change the width to 6 and a height of 6.67. Change the multiplier to 1. Click on the *overhang tab* and change the overhang to a left distance of 3 and a right distance of 10.

16. Finally, right-click on *Right* wall using the same method to create a window. Name it R1. Copy data from the B1, changing the window width to 4 feet and height to 5 feet and a multiplier of 1. On the *overhang tab* change *Extends Left* and *Extends Right* values to 5 feet each. All other data remain the same. Click <OK>.

17. Next move the cursor back up to “House (600 SqFt).” Right-click and choose <create> and then pick <Slab on Grade>, keeping the default name. Enter an area of 600 square feet, a floor elevation of 0.67 (the level of the surface of the floor above grade) and a perimeter of 100 (length of the four sides exposed to the exterior). (If there was a garage, the edge includes only the lengths adjacent to the exterior.) Keep the surface set to default 80% covered, 20% exposed. Click <OK>.

### 3.1.5 Tutorial, Running Analysis

1. To perform an analysis, save your input file using the *Save* shortcut key, and the *Perform Analysis* shortcut key. Confirm that our PV size is “standard design.” CBECC will perform the simulation of the current model, which takes 2 minutes or less.

2. When the analysis is complete, you can either “view the compliance report” (CF1R), or press continue to see only the compliance summary. These are the results with the new EDR information.
Figure 3-3: Compliance Summary

<table>
<thead>
<tr>
<th>Compliance Summary</th>
<th>CO2 Emissions</th>
<th>Energy Design Rating</th>
<th>Energy Use Details</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th></th>
<th>Efficiency (EDR)</th>
<th>Total (EDR)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Standard Design</td>
<td>55.1</td>
<td>26.3</td>
</tr>
<tr>
<td>Proposed Design</td>
<td>55.4</td>
<td>26.7</td>
</tr>
</tbody>
</table>

**USER TIP:** Energy use details provide useful information for determining why the project does not comply. Although with EDR compliance required it does tell the whole picture. What it does show is standard design values. Where is it most out of compliance? Which is the biggest contributor to the energy use of the building? Use that to figure out where there are opportunities for improvement.

3. Cooling is the largest contributor to the energy use with water heating second with +32. What does that mean? With only a 0.80 margin for cooling and 0.00 for water heating, those are good candidates for improvements.

Figure 3-4: Energy Use Details

<table>
<thead>
<tr>
<th>End Use</th>
<th>Standard Design Site (kWh)</th>
<th>Standard Design Site (therms)</th>
<th>Standard Design Site (kTDV/R²·yr)</th>
<th>Proposed Design Site (kWh)</th>
<th>Proposed Design Site (therms)</th>
<th>Proposed Design Site (kTDV/R²·yr)</th>
<th>Compliance Margin (kTDV/R²·yr)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Space Heating</td>
<td>4</td>
<td>6.5</td>
<td>2.56</td>
<td>8</td>
<td>12.5</td>
<td>4.89</td>
<td>-2.33</td>
</tr>
<tr>
<td>Space Cooling</td>
<td>439</td>
<td>50.62</td>
<td>0.25</td>
<td>401</td>
<td>49.72</td>
<td>0.80</td>
<td>0.00</td>
</tr>
<tr>
<td>IAQ Ventilation</td>
<td>88</td>
<td>3.91</td>
<td>88</td>
<td>88</td>
<td>3.91</td>
<td>0.00</td>
<td>0.00</td>
</tr>
<tr>
<td>Water Heating</td>
<td>77</td>
<td>87.5</td>
<td>32.73</td>
<td>77</td>
<td>87.5</td>
<td>32.73</td>
<td>0.00</td>
</tr>
<tr>
<td>Self Util/Flex. Credit</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
</tr>
<tr>
<td>Compliance Total</td>
<td>89.72</td>
<td>91.26</td>
<td>-1.53</td>
<td>1.26</td>
<td>0.00</td>
<td>0.00</td>
<td>-1.53</td>
</tr>
</tbody>
</table>

4. But to make this tutorial as useful as possible, we will try trading off some simple features.

5. Click on the **Mechanical** tab and double click on the Heating or Cooling System to change the efficiencies. Change the heating system AFUE to 92 (not 0.92).

**USER TIP:** We did not change anything but the efficiency, so that is all there is to it. If the heating system was named Furnace 80, we would also need to change the name, but HVAC System 1 is already assigned to the house on the zone data tab, so we do not need to do anything else.
6. Click on the envelope tab and we will change the windows to model the new minimum efficiencies. This will let you see how this feature works when set up properly.

7. Click on window types, double click on “Oper” and change the U-factor to 0.30 and SHGC to 0.23. Click <OK>. Make the same change to “Door” (0.30 and 0.23).

8. To verify they were entered correctly, double-click on widow L1, and make sure the windows show 0.30 U-factor and 0.23 SHGC. That is how you can change window efficiencies in an entire house in 2-3 steps. Click <OK>.

9. Click on the Cool Vent tab to add a whole house fan. From the Cooling Ventilation selection, pick “default prescriptive whole house fan.” We will check HERS Cool Vent Verification to get full credit for the fan.

10. Click on the analysis tool, first it will ask us to confirm the PV option is standard design, next it will tell us that it needs to save the file before running. Click <OK>. NOTE: We could have saved the file first, so it is your choice if you view this as a time-saver or not. As long as we did not intend to change the file name, it saves a step.

11. While waiting for the file to run, a tip. Have you ever been stuck at 84% and wondered what is holding things up? When the CF1R is open, your file will not complete until you close the PDF and pick “retry”:

12. The results show that the project complies and need 1.97 kWdc of PV:
13. Your CF1R likely tells you (via watermark) that the project needs to be registered. Every new construction project requires HERS verification and thus registration with a HERS provider. Chapter 1, Sections 1.7.4 and 1.7.5, cover how to find the generate and find the file. Beyond that you need to pick a HERS provider and learn their process.

14. If the watermark shows something else, such as not useable for compliance, see Section 1.7.

3.1.6 Tutorial, Conclusion

1. Although this tutorial started with a blank project, most people use the example files that come with the program. Section 2.2 has the list of files that are in your project folder. Many demonstrate how to model a specific feature. They also serve the function of providing a skeleton for a house or addition.

2. Help with error messages is documented in Section 2.11.

3. Registering projects is documented in Section 1.8.1.
4. Please read Section 7.1 to know how to enter angled surfaces. If 8060 is “back” what is the wall orientation for the 2060 windows? Hint you do not need a site plan to correctly enter these walls and windows.
Chapter 4  Project

4.1 General Information

It is often best to start with an existing input file for a similar project, which will have the structure of the building set up (example files included are listed in Section 2.2). Be sure to note the climate zone because the sample file may have features that are not appropriate for a mild or cold climate. Because new sample files are made when program improvements are made or errors corrected, use the newest files available. Other alternatives available to you are to start with a blank project as demonstrated during the tutorial, or to use an existing input file.

NOTE: To access information on the Analysis or Building tabs (address, front orientation, or number of bedrooms), double-click on the top row (“Project: . . .”) from either the Envelope or Mechanical tab.

4.2 Project Information

Double click on the project row to access the tabs illustrated in Figure 4-1.

Figure 4-1: Project Information

4.2.1 Project Names and Descriptions

NOTE: To assist with wrapping when columns are narrow, use short names and include spaces (for windows, walls, HVAC systems names).

In addition to the project name, there is one additional field available for unique information about the project on the CF1R. Figure 4-2 identifies these inputs and where they appear on the CF1R:
4.2.1.1 **Project Name**
The project name is a user-defined field that appears as the first piece of general information on the CF1R.

4.2.1.2 **Building Address**
Enter a building address, APN, or legal description to identify the location of the proposed building project.

4.2.1.3 **City, State**
Enter the city or town in which the proposed building is located.

4.2.1.4 **Zip Code**
The zip code used to establish the correct climate zone.

4.2.1.5 **Climate Zone**
Use [online resources](#) to find the climate zone for the project zip code.

4.3 **Analysis**
The inputs for this screen will vary slightly if the project scope is any type of addition.
4.3.1.1 Run Title
Run title is a user-defined field for useful project information that appears in a prominent location on the CF1R.

4.3.1.2 Analysis Type
The two types of analysis are proposed and standard design (typical for compliance) and proposed only.

4.3.1.3 Standards Version
Default Compliance 2020.

4.3.1.4 Generate Report PDF (the CF1R)
To generate a PDF of the Certificate of Compliance (CF1R) at the end of the analysis, check the PDF box. The PDF automatically generated when this box is checked will have a watermark identifying that the CF1R is not registered (if an addition does not require any HERS verified measures, there is no watermark). The watermark changes to the HERS provider’s watermark once the project is registered (Section 1.8).

Once the CF1R has a registration number and a HERS provider watermark it can be printed and submitted to the building department to obtain a building permit.

**NOTE:** If the CF1R has a watermark stating that it is not useable for compliance, this is an indication of one of several situations:

1. The project does not comply,
2. The compliance was run using the quick simulation speed option,
3. The CF1R was generated via the tools option “Generate Draft T-24 Compliance Report” rather than as part of the compliance run (as explained in the frequently asked questions, this is a security feature),

4. Your project includes a feature that is not yet approved for compliance (this may require technical support help to identify because it means we made a mistake - send ribd file to cbecc.res@energy.ca.gov), or

5. The software is out of date.

If the CF1R does not open at the end of a compliance run, the PDF file can be found in the CBECC-Res 2019 projects folder with the same name as the input file.

4.3.1.5 Full (XML) (the HERS Upload File)
Check this box to produce the XML file that gets uploaded to a HERS provider. The file is generated during the simulation. The file is located in the CBECC-Res 2019 Projects folder named:

    <input file name> - CF1RPrf01E.xml

Although XML files are easily modified, the HERS providers have in place security measures to reject files that are modified. You can read more about this in the frequently asked question.

4.3.1.6 Simulation Speed Option
Options include Compliance and Quick. Quick allows results approximately 40 percent faster. Results are typically within 5% of the more detailed and lengthy Compliance simulation. To obtain a CF1R that can be registered, results must be from a simulation run in Compliance mode.

4.3.1.7 CAHP Program - (not currently available)
Options currently include CAHP Single Family only. Additional details are specified on the CAHP tab.

4.3.1.8 Analysis Report
The default report type is Building Summary (csv).

4.3.1.9 Run Scope
The two types of projects are Newly Constructed (which includes an addition alone) and Addition and/or Alteration. Select addition and/or alteration only if modeling the existing building. Otherwise select Newly Constructed and check Addition Alone.

NOTE: If you have determined (based on information in Chapter 10 or other documentation), that an accessory dwelling unit (ADU) must comply as newly constructed rather than as an addition, do not identify it as an ADU on the building tab. The ADU options were designed to address the unique IAQ requirements for additions that are classified as a “dwelling unit.”
You must also provide information that affects mandatory indoor air quality requirements (Figure 4-4). The requirement to specify the existing and new floor areas affects internal gains and (if an addition exceeds 1,000 ft²) indoor air quality requirements.

Figure 4-4: Run Scope, Addition Alone

Addition/Alteration

4.3.1.10 Project Includes kitchen
This checkbox is available for all projects. It triggers the new HERS requirement for kitchen range hoods to meet mandatory requirements for airflow and sound (§150.0(o)2B).

For addition/alteration projects, if there is no kitchen in the scope of the project, leave this box unchecked.

4.3.1.11 Existing Area
This is the conditioned floor area of the existing building. This area is used primarily for determining the correct indoor air quality requirements if any apply.

4.3.1.12 Addition Area
This is the conditioned floor area of the addition used to determine if indoor air quality requirements apply. (NOTE: If the zone data for the addition zone is defined, you can right-click and pick restore default.)

4.4 Energy Design Rating and PV System Credit
Newly constructed buildings must comply with two EDR scores. For background information on this credit (installation criteria resources, Certificates of Installation) see Section 1.3.8.

USER TIP: To move through the fields on this screen, tab rather than selecting enter.
NOTES on PV/battery: Until a solar professional is providing input on the PV system designed for the construction project, most of the assumptions used for compliance are going to be guesses. Your best choice for PV scaling is “standard design.” (Once you know what that value is you can tweak it up or down.)

**USER TIP:** Until you specify a battery and check “self-utilization credit” (not a recommendation, just a fact to know) the PV has no effect on the efficiency EDR. Only the total EDR score improves with additional PV capacity. If your efficiency EDR is negative, and there is no self-utilization credit, you need to keep improving the building.

Exceptions/reduced PV requirement can be tricky. If the 2- or 3-story building only has enough room for 2.4 kWdc of PV, that becomes your standard design.

![Figure 4-5: EDR/PV](image)

The PV credit uses calculations based on PVWatts. If information beyond that found here or in the Reference Manual is needed, consult PVWatts technical documentation.

### 4.4.1 EDR/PV Inputs

#### 4.4.1.1 Use Community Solar

The CEC approved the community solar projected for the Sacramento Municipal Utility District (SMUD) service territory. This project is the Neighborhood SolarShares (NSS) program. By checking this option, and confirming it is in an appropriate climate zone, the required PV is automatically calculated using the NSS program’s site PV characteristics to size the required PV system for the building.
Until other community solar programs are approved, the option to use community solar is not available.

4.4.1.2 Specify Target Energy Design Rating

You can specify a target EDR score, which requires multiple runs and lengthens the analysis time (as indicated on the screen). Valid numbers are 0 and above. Not available if selecting one of the PV system exceptions.

4.4.1.3 Reduced PV Requirement

Checking this box activates the exceptions, most of which are based on prescriptive exceptions in Section 150.1(c)14. Some may result in a reduced PV requirement. Other than AB 178, these are summaries only and you need to refer to the Energy Code for the full requirements of the exception. AB 178 is explained in full below:

1. Limited solar access due to shading from adjacent permanent manmade or natural barriers.
2. In climate zone 15, if solar access is limited, enter the value that can be accommodated, but no less than 1.5 kWdc per square foot.
3. In all climate zones for two-story dwelling units. The required PV size may be smaller than the roof area allows (no less than 1 kWdc).
4. In all climate zones for three-story dwelling units. The required PV size may be smaller than the roof area allows (no less than 0.8 kWdc).
5. Plans approved prior to 01/01/2020.
6. AB 178 is an exception to PV for buildings damaged or destroyed in a declared emergency area. The repaired or rebuilt building is only required to meet the PV requirements in effect when it was originally constructed. The criteria for meeting this exemption is the emergency declaration was made prior to 1/1/2020 and one of four income or insurance requirements (confirmed by the enforcement agency) is met:
A. Income of the owner of the building is at or below the median income for the county in which the residential building is located, as determined by Department of Housing and Community Development state income limits.
B. Construction does not exceed the square footage of the damaged property.
C. New construction is located on the site of the damaged home.
D. Owner of the building did not have code upgrade insurance at the time the damage occurred.

4.4.1.4 Photovoltaic System(s)
Inputs options include Simplified or Detailed.

4.4.1.5 PV System Scaling
Options available are:

- User specified size: Models the specified PV size. As explained earlier, the 2019 Residential ACM Reference Manual limits the size of PV systems to approximately the amount of PV needed to meet the building’s electric needs (excluding heating and water heating). Setting this value does not mean you will get credit for that value. See User tip below.

- Standard Design PV: The software will automatically scale the PV size to meet the standard design PV size, disregarding the input system size.

- [Research mode only] Maximum PV for compliance credit: This option will automatically scale the PV size to the maximum Total EDR credit based on the proposed design, regardless of the input system size. For buildings without a battery storage system, the maximum credit is equal to the PV kWh output that matches the annual kWh load of the building. For buildings with a battery storage system, the maximum credit is 1.6 times the annual kWh load of the building. However, when PV kWh output exceeds the annual electricity use, it may violate Net Energy Metering (NEM) rules and the homeowner/builder should contact the local utility before checking this option.

- [Research mode only] Specify PV System Scaling: This option will model the input PV system size with any value for scaling from 1 (no battery) to 1.6 (if a battery is modeled).

**USER TIP:** Check the CF1R carefully. You may believe you are modeling a certain size system, but CBECC applies limits set out in the ACM Reference Manual. For example, you could put in 20, but because you cannot build an inefficient building and make up for it with PV, you are only receiving the benefit of 2.8 kWdc. Or with a battery modeled, your total EDR might be very large with very little benefit to the efficiency EDR (for example efficiency EDR margin = 0.9, total EDR margin = 26.3) in which case you could reduce the PV size. To determine the PV size being simulated, check two areas on the CF1R:
1. The notes below the under the Energy Design Rating results; and

<table>
<thead>
<tr>
<th>RESULT:</th>
<th>COMPLIES</th>
</tr>
</thead>
<tbody>
<tr>
<td>1: Efficiency EDR includes improvements to the building envelope and more efficient equipment</td>
<td></td>
</tr>
<tr>
<td>2: Total EDR includes efficiency and demand response measures such as photovoltaic (PV) systems and batteries</td>
<td></td>
</tr>
<tr>
<td>3: Building complies when efficiency and total compliance margins are greater than or equal to zero</td>
<td></td>
</tr>
</tbody>
</table>

- Standard Design PV Capacity: 2.83 kWdc

2. Required PV System.

<table>
<thead>
<tr>
<th>REQUIRED PV SYSTEMS - SIMPLIFIED</th>
</tr>
</thead>
<tbody>
<tr>
<td>01</td>
</tr>
<tr>
<td>DC System Size (kWdc)</td>
</tr>
<tr>
<td>3</td>
</tr>
</tbody>
</table>

![Figure 4-8: PV Array Inputs](image)

**4.4.1.6 DC System Size (kW)**

Enter the PV system size in kW.

**4.4.1.7 Module Type**

Select the most appropriate option based on information on the module data sheet:

- **Standard** is a typical poly- or mono-crystalline silicon module, with efficiencies of 14-17 percent.
- **Premium** is appropriate for modeling high efficiency (approximately 18-20 percent) monocrystalline silicon modules that have anti-reflective coatings and lower temperature coefficients.
- **Thin film** assumes a low efficiency (about 11 percent), and a significantly lower temperature coefficient which is representative of most installed thin film modules.

**4.4.1.8 Array Type**

Options are Fixed (open rack), Tracking (one axis), and Tracking (two axis).
4.4.1.9 Solar Access (%)
This input is to account for the effect of shading on the building’s PV system effectiveness. For example, shading from adjacent buildings, chimneys, or other permanent obstructions may mean the output is only 97 percent effective. Horizon shading is already accounted for in the standard design. This value is confirmed during installation by an approved third-party PV sizing/shading tool (see JA11.4a). This input has a significant effect on the total EDR score.

4.4.1.10 CFI
When California Flexible Installation (CFI1 or CFI2) is selected (more fully described in Section 4.4.2), inputs are simplified, with no requirement to include the specific orientation, tilt and shading conditions (typically an option for subdivision builders). When CFI is selected, the performance of the PV system is based on an average orientation and tilt.

- CFI1 allows the PV installation anywhere from 150 to 270 degrees.
- CFI2 allows the PV installation anywhere from 105 to 300 degrees.

4.4.1.11 Azimuth (deg)
For a fixed array, the azimuth angle is the angle clockwise from true north describing the direction that the array faces. An azimuth angle of 180 degrees is for a south-facing array, and an azimuth angle of zero degrees is for a north-facing array.

For an array with one-axis tracking, the azimuth angle is the angle clockwise from true north of the axis of rotation. The azimuth angle does not apply to arrays with two-axis tracking.

4.4.1.12 Tilt Input
Select the input type as either degrees or pitch (x in 12). When pitch is selected as the input, CBECC-Res determines the degrees (for example, a 4:12 pitch roof has an 18.43-degree angle).

4.4.1.13 Array Angle/Tilt
The tilt angle is the angle from horizontal of the photovoltaic modules in the array. For a fixed array, the tilt angle is the angle from horizontal of the array where 0 degrees = horizontal and 90 degrees = vertical. For arrays with one-axis tracking, the tilt is the angle from horizontal of the tracking axis. The tilt angle is ignored for arrays with two-axis tracking.

4.4.2 California Flexible Installation (CFI)
When performance of the PV system is based on CFI, the HERS rater will verify that the modules are installed with any azimuth and any tilt within the acceptable range. Additionally, each system on each site must meet the “minimal shading” criterion.
4.4.2.1 CFI1

With CFI1 selected, the performance is based on a PV system installed with an azimuth of 170° on a 5:12 roof pitch. Installation ranges allowed are from 150° to 270° on a roof with a pitch from 0:12 to 7:12.

4.4.2.2 CFI2

With CFI2 selected, the performance of the proposed system is derated by approximately 10 percent, with Installation ranges allowed are from 105° to 300° on a roof with a pitch from 0:12 to 7:12.

4.4.2.3 Minimal Shading

The “minimal shading” criterion is that no obstruction is closer than a distance (“D”) of twice the height (“H”) it extends above the PV modules (see Figure 4-9 for a depiction of “H” and “D”). As the figure illustrates, the distance “D” must be at least two times greater than the distance “H.” Any obstruction that projects above any portion of the PV array must meet this criterion for the PV array to be considered minimally shaded.

Obstructions that are subject to this criterion include any:

1. Vent, chimney, architectural feature, mechanical equipment, or other obstruction that projects above the roof of the residential building with the installed solar system,
2. Part of the neighboring terrain that projects above the roof of the residential building,
3. Tree that is mature at the time of installation of the solar system or any tree that is planted or planned to be planted as part of the landscaping for the residential building (the expected performance must be based on the expected mature height of any tree planted or planned to be planted as part of the landscaping for the residential building),
4. Existing or planned residential building or other structure neighboring the residential building with the solar system and
5. Telephone or other utility pole that is closer than thirty feet from the nearest point of the array.
Battery requirements are a powerful compliance option but get to know the requirements you are specifying. Reference Appendices, Joint Appendix 12 (Qualification Requirements for Battery Storage System) is a good place to start. Also, consider providing your client with a copy of the [CF2R-PVB-02-E Battery storage form](https://www.energy.ca.gov/programs-and-topics/programs/building-energy-efficiency-standards/2019-building-energy-efficiency).

Once a battery capacity is entered, press tab to reveal additional inputs.

Net Energy Metering (NEM) sets rules for compensating PV generated electricity. NEM sizing rules limit the PV to a size equal to the site annual kWh. Compensation varies by (1) behind the meter self-utilized kWh, (2) hourly exports, and (3) net annual surplus. In most cases, PV generation is capped at 1.6 times the proposed design electric use (meaning the home cannot become a mini solar power plant). For more detail, see the ACM Reference Manual.
4.5.1.1  Total Rated Battery Capacity

Batteries must comply with Appendix JA12, Qualification Requirements for Battery Storage System in the ACM Reference Appendices. Approved battery storage systems are listed at the Go Solar California website at https://www.gosolarcalifornia.ca.gov/equipment/battery-and-energy-storage-systems.php.

The software EDR credit for a battery storage system coupled with a PV array requires a with 5 kWh storage capacity or larger. For Energy Code compliance this credit has no impact on energy efficiency components (this means the effects of a larger PV size will likely not change the energy use summary). The reason this cannot be stated more definitively is because including a battery storage system allows downsizing the PV system, in which case there could be a slight effect.

PV generation is capped at 1.6 times proposed design electric use to meet NEM rules. The user can check box to allow credit for above code programs.

4.5.1.2  Allow Excess PV Generation EDR Credit for above code programs

PV generation is capped due to something known as NEM limits (see above). NEM sets the rules for compensating excess PV generated by residential customers. By including battery storage, it is possible to increase the EDR credit for PV generation.

4.5.1.3  Take self-utilization credit

Checking this box allows any excess credit from battery storage to be applied to the efficiency EDR (increases run time).

4.5.1.4  Control

- **Basic.** The default basic control is a simple control strategy that provides a modest EDR credit. This option assumes batteries are charged anytime PV generation is greater than the house load, and batteries are discharged when load exceeds generation. This control strategy does not allow the batteries to discharge into the grid.

- **Time of use [TOU].** The battery storage system begins discharging during the highest priced TOU hours of the day.

- **Advanced DR Control.** To qualify for the advanced demand response (DR) control, the battery storage control must meet the DR control requirements specified in Section 110.12(a). The battery storage system also has the ability to change the charging and discharging periods in response to signals from the local utility or a third-party aggregator. This option allows discharging directly to the grid.
4.5.1.5 Efficiency
Charging and discharging efficiency values from manufacturer’s data (or default values).

4.5.1.6 Rate
Charging and discharging rate (in kW) from manufacturer’s data (or default values).

4.6 Notes
Include any project notes to appear on the Certificate of Compliance (CF1R). Information will appear prior to the signature page. The maximum space available is 10 lines. The font size allows for about 155-160 characters per row. To paste text from another document, use Control-V.

The project remarks field is for the program user. Text in this field is not printed on the CF1R.

4.7 Building
Inputs for the building tab vary based on the run scope selected on the analysis tab.

Figure 4-11: Building Information

4.7.1 Building Description
The building description is a field for the software user’s own notes or project information. The information will not appear on the CF1R. It can be used to identify information such as a compliance variable being considered (e.g., “w/ high efficiency HVAC”).
4.7.2 Use PreCooling

Precooling will cool a building well below the typical comfort range when energy rates are low. The building temperature then floats up during peak energy cost periods. This allows building occupants to be comfortable while using no electricity during peak TOU rates.

This demand response measure requires controls meeting Section 110.12(a).

4.7.3 Air Leakage

Input as Air Changes per Hour @ 50 Pascal (ACH50), the CF1R reports CFM50.

Default value (no blower door test) for single family buildings with space conditioning ducts in unconditioned space, and the default condition for no cooling, is 5 ACH50. When there are no heating and/or cooling system ducts in unconditioned space, the default is 4.4 for single family buildings and townhomes. If a single family or town home will have HERS verified infiltration testing (blower door test), model an achievable target leakage area value.

For multifamily buildings there is no compliance option for infiltration testing. The default value that is assumed by CBECC-Res is 7 ACH.

This input represents the air flow through a blower door at 50 Pascal (Pa) of pressure measured in cubic feet per minute, called CFM50 or ACH50. CFM50 x 60 minutes divided by the volume of conditioned space is the air changes per hour at 50 Pa, called ACH50. When a value lower than default is modeled, diagnostic testing for reduced infiltration, with the details and target values modeled, is reported as a HERS Required Verification on the CF1R.

4.7.4 Quality Insulation Installation

Quality Insulation Installation (QII) is indicated as either yes or no. The default value is no, however, in most cases the standard design is yes, so there is a penalty for not including QII.

Yes, means a HERS rater will verify insulation installation complies with RA3.5. Including QII should be communicated to the client because it involves multiple inspections and the consequences of failing one of these inspections could become an insurmountable problem. If one of the inspections fails and QII must be removed, it could be difficult to comply. Verification is applicable to all insulated assemblies in a newly constructed building or all new surfaces in an addition—ceilings/attics, knee walls, exterior walls, and exterior floors. See Reference Appendices, Residential Appendix RA3.5.

With the exception of multifamily buildings in Climate Zone 7, the standard design includes QII for all newly constructed buildings and additions greater than 700 ft\(^2\).
4.7.5 **Perform Multiple Orientation Analysis**

Multiple orientation (or cardinal compliance) is a valid selection for subdivisions where homes will be built in any orientation. The building must comply with the same energy features in all orientations. A single CF1R will display the compliance results for the four cardinal orientations—north, east, south, and west.

4.7.6 **Front Orientation**

If the project is not a subdivision, indicate the front orientation in degrees, accurate within 5 degrees. This value is from the site plan. North is 0, east is 90, south is 180, and west is 270 degrees. While this input is typically the side of the building where the front door is located, if the front door, front façade, or the side of the building facing the street are different, any choice is acceptable as long as the end result is a CF1R with windows facing the correct actual azimuth.

**NOTE:** The front orientation or actual azimuth establishes the orientation of walls and windows, which are modeled using either labels such as “front” or “left,” or the orientation with respect to the front and not the actual orientation. See Orientation in Section 7.1 and carefully review the CF1R to ensure the correct information appears for azimuth of opaque surfaces and windows.

4.7.6.1 **Single Family or Multifamily**

Use the check box to indicate if the building is a single family dwelling (R-3 occupancy group), or is a multifamily building (R-1 or R-2 occupancy group) with three stories or less.

4.7.6.2 **Includes Accessory Dwelling Unit**

This selection is only picked if the accessory dwelling unit (ADU) is part of an addition (addition alone, or existing plus addition (Section 10.2), or if the main dwelling and ADU are complying as one Title 24 report). A yes response enables the additional inputs on the ADU tab to establish indoor air quality requirements. Input choices are:

- Attached (if the ADU shares a common wall with the main dwelling unit),
- Detached (if there are no common walls with the dwelling unit), or
- No (if it is newly constructed or is not an ADU).

ADUs must meet indoor air quality requirements (new for 2019), regardless of their size.

**NOTE:** If a project is a duplex or townhome (an R-3 occupancy), this requires checking an input on the IAQ tab (Section 4.10.1.1) for each of the individual dwelling unit input files.

Because an ADU has the input “attached” above, it is not necessary to also check the attached to another dwelling unit option on the IAQ tab.
For more on modeling a multifamily building, see Sections 5.2 and 5.6.

4.7.6.3 **Number of Bedrooms**

For single family dwellings and additions, indicate the number of bedrooms to establish mechanical ventilation requirements and determine if a building qualifies as a compact building for purposes of incentive programs.

4.7.6.4 **Gas Type**

Select whether the fuel type being used in the building for heating, cooking, or water heating is natural gas or propane. If natural gas or propane are not used, leave as natural gas.

NOTE: For an all-electric building, change the clothes dryer and cooking appliances fuel types on the *appliances/DHW* tab to electric.

4.7.6.5 **Zonal Control Credit**

Checking this box enables modeling a building that meets the criteria for zonal control requirements of the heating system, including separately modeled living and sleeping zones. This compliance option is not available with heat pump or combined hydronic space conditioning. Zonal control credit requires compliance with several eligibility criteria (see *Residential Compliance Manual*, Chapter 4, Section 4.5.2 for the complete list). This credit requires that the living and sleeping areas are modeled and conditioned separately. The conditioning is either with zonally controlled equipment or separate space conditioning equipment with separate thermostat settings for living and sleeping zones. See Section 8.1.3 for more information on modeling zonal control.

CBECC-Res also has modeling capabilities for zonal cooling (Section 8.3.3).

4.7.6.6 **Has Attached Garage**

This check box is used to indicate if there is an attached garage, which must be modeled. While there are no minimum requirements for the garage construction, it is modeled to accurately represent the building to be constructed and typically improves compliance due to the buffering effect of an enclosed attached space. To remove the garage zone, uncheck this box.

4.7.6.7 **Central Laundry**

If modeling a multifamily building, indicate if the laundry facilities are in a central location rather than within each dwelling unit. If the laundry facilities are central, define the zone in which the facilities are located.
4.8 Lighting

For energy compliance, lighting is assumption (meaning the same assumptions used for the proposed building are used in the standard design building).

4.9 Appliances/DHW

For single family buildings, check the box to indicate if an appliance is located within a conditioned zone of the dwelling unit. The fuel type choices for the clothes dryer and cooking appliances is gas (based on the selection made on the building tab, this is either natural gas or propane) or electricity.

For multifamily buildings, the appliance/DHW information is provided as part of the dwelling unit type (Section 5.6.1.4).

4.9.1 Compact Distribution

There are two options for compact distribution—basic credit, or an expanded credit, which requires HERS verification. Once selected the DHW system (Section 9.3.1) will require inputs for the distance from the water heater to the master bathroom fixture, kitchen, and a third room other than the master bath or kitchen.

Alternatively, if the distance from fixtures to water heater is unknown, the program allows a user to temporarily specify a custom compactness factor by checking the box and entering a value, such as 0.6 or 0.7 (actual equation is from RA4.4.6). Before a valid CF1R can be obtained or uploaded, the checkbox must be replaced with the required distances on the DHW system data tab.

For multifamily buildings, see Section 5.6.1.6.
4.10 ADU

An accessory dwelling unit (ADU), sometimes called a granny flat, in-law unit, or secondary unit, are a popular trend. In determining the approach to compliance, if the ADU is detached and newly constructed, it is treated the same as any newly constructed residential building and does not use this ADU tab.

NOTE: References in CBECC-Res to an ADU are for ADUs complying as either addition alone or existing plus addition (to facilitate indoor air quality (IAQ) requirements that are unique to ADU additions). Section 10.2 describes in greater detail how to determine which approach to compliance is allowed.

Often built after the main residence, if attached to the main residence or if converting an existing unconditioned space into a dwelling unit, there are IAQ requirements applicable without regard to the addition being 1,000 ft2 or less (when IAQ requirements become triggered for a typical addition).

For other requirements or information, the California Department of Housing and Community Development has more information at their website, http://www.hcd.ca.gov/policy-research/AccessoryDwellingUnits.shtml.

4.10.1 Setting up the ADU Addition

If the ADU is being constructed as an addition or converting existing unconditioned space, be sure to check Chapter 10, Sections 10.2 and 10.7, for guidance on approaches to compliance and exceptions to continuous wall insulation.

When the building tab input value “includes accessory dwelling unit” is set to attached or detached, the values on this screen will determine the IAQ requirements. If the input file includes other zones (such as for an existing plus addition), this tab is strictly for the ADU.
4.10.1.1 Number of ADU Bedrooms
This is the number of bedrooms in the ADU itself, regardless of any other additions or existing bedrooms. It is used for the IAQ requirements for the ADU only.

4.10.1.2 ADU Conditioned Area
The conditioned floor area of the ADU is entered here.

4.10.1.3 Model as
Select method of ventilation as either default minimum IAQ fan or specify individual fans (as described in Section 8.6).

4.10.1.4 Zone
Assign to the zone that contains the ADU.

4.11 IAQ

For single family dwelling units (Section 5.6.1.6 for multifamily dwellings) the mandatory indoor air quality (IAQ) ventilation rate and the means for supplying that ventilation is specified here. The minimum rate is determined from conditioned floor area, number of bedrooms, and other (see also Section 8.6). For more information on this mandatory requirement, see Residential Compliance Manual, Section 4.6.

4.11.1.1 Dwelling Attached
If this input file is for a duplex or townhome, check this box. 4.7.1.8

NOTE: If this input file is for an accessory dwelling unit (ADU), on the Building tab select “attached” for the input “Includes Accessory Dwelling Unit.” This is used as a variable in determining IAQ required CFM.
4.11.1.2 Maximum Vertical Distance
Enter the uppermost height of the zone. This value is used to determine infiltration rates that affect the indoor air quality requirements. The default value is the zone height. Because that is an average height, you may need to be increased for cathedral ceilings.

4.11.1.3 Model as
Select method of ventilation as either default minimum IAQ fan or specify individual fans (as described in Section 8.6).

4.11.1.4 Zone
Assign to one of the conditioned zones.

4.12 Cooling Ventilation (Whole House Fan)

Figure 4-15: Cooling Ventilation

Figure 4-16: Whole House Fan with Cathedral Roof

Cooling ventilation systems use fans to bring in outside air to cool the house when this could reduce cooling loads and save energy. The most commonly used method is a whole house fan. The standard design in climate zones 8-14, where the evenings may cool down enough provide an effective means of cooling the house, includes a whole house fan. Table 4-1 includes all types of cooling ventilation. Additional inputs are discussed in Section 8.7.

USER TIP: Find whole house fans by conducting an advanced search of the CEC’s appliance directory, https://cacertappliances.energy.ca.gov/Pages/Search/AdvancedSearch.aspx. Select a directory of fans and dehumidifiers. Check the fields of data desired and export the results to an excel
spreadsheet. This will enable you to find an appropriate size fan and exclude exhaust fans from your search.

### 4.12.1.1 Cooling Ventilation

Default value is none. Other options are a default prescriptive whole house fan (set to exactly 1.5 CFM/ft²), specify individual fans, whole house fan exhausting to outside (a new option that does not require an attic for exhausting air), or a central fan integrated system which uses the space conditioning duct system to provide outside air for cooling. Additional inputs are discussed in Chapter 8, Section 8.7.

#### Table 4-1: Cooling Ventilation Fans

<table>
<thead>
<tr>
<th>Measure</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Whole House Fan</td>
<td>Traditional whole house fan is mounted in the ceiling to exhaust air from the house to the attic or through ducting, bringing outside air in through open windows. Whole house fans are assumed to operate between dawn and 11 PM only at 25% of rated CFM to reflect manual operation of fan and windows by occupant. Fans must be listed in the CEC’s Whole House Fan directory. If multiple fans are used, enter the total CFM.</td>
</tr>
</tbody>
</table>

| CFI (Central Fan Integrated) cool vent (fixed or variable speed) | These systems use the furnace or air handler fan to deliver outdoor air to conditioned space. With an automated damper, outside air duct, temperature sensors and controls, these systems can automatically deliver filtered outdoor air to occupant set comfort levels when outdoor conditions warrant the use of ventilation. |

### 4.12.1.2 HERS Cool Vent Verification

To receive full credit for cooling ventilation, select HERS verification. Without HERS verification, the fan capacity is derated by one-third.

### 4.12.1.3 Zone

Assign to any conditioned zone.

### 4.13 CSE Simulation Reports

The CSE reports are very detailed tables included in the project folder. These tables are not compliance reports. They can be opened in Excel.
NOTE: Some of these reports significantly increase the size of files stored on your computer, so use discretion.

Figure 4-17: CSE Reports

<table>
<thead>
<tr>
<th>CSE Simulation Reporting</th>
<th>HVAC System Characteristics</th>
</tr>
</thead>
<tbody>
<tr>
<td>Zone Details (ZDD)</td>
<td></td>
</tr>
<tr>
<td>Zone Energy Balance (monthly)</td>
<td></td>
</tr>
<tr>
<td>Meters (monthly):</td>
<td>All</td>
</tr>
</tbody>
</table>

Cooling Design Day (hourly):

<table>
<thead>
<tr>
<th>Zone Energy Balance</th>
</tr>
</thead>
<tbody>
<tr>
<td>Meter Reports: All</td>
</tr>
</tbody>
</table>

Extreme Cooling Day (hourly):

<table>
<thead>
<tr>
<th>Zone Energy Balance</th>
</tr>
</thead>
<tbody>
<tr>
<td>Meter Reports: All</td>
</tr>
</tbody>
</table>

Extreme Heating Day (hourly):

<table>
<thead>
<tr>
<th>Zone Energy Balance</th>
</tr>
</thead>
<tbody>
<tr>
<td>Meter Reports: All</td>
</tr>
</tbody>
</table>
Chapter 5  Zones

Zones are the main component in which the conditioned floor area, space conditioning, and water heating systems are defined. Under the zone are listed ceilings, walls, windows, and floors.

An attic zone is only created when a ceiling below attic is defined. The area cannot be edited; it is determined by any of the ceilings associated with the attic zone.

A crawl space zone is created when a floor over crawl space surface is defined. The area is determined by the area of crawl space above the zone and cannot be edited, however, the perimeter length is editable.

**USER TIP:** If the area of a floor over crawl space area is modified, it can result in an invalid perimeter length. A quick and easy fix is to delete the “crawl space zone” which forces CBECC to recreate the crawl space zone and recalculate the perimeter length.

The garage zone is created when the check box “has attached garage” (on the building tab) is checked. The zone type “unconditioned” is not implemented. Therefore, any attached unconditioned space can be modeled as, or combined with, the garage zone (the name garage can be modified).

**USER TIP 1:** To delete an existing garage, the checkbox on the building tab must be unchecked first, then the garage zone can be deleted.

**USER TIP 2:** A garage typically needs five surfaces (ceiling/roof, slab floor, three walls), however, the surface that connects the conditioned space to the garage must be modeled in the conditioned space.

5.1  Conditioned Zones

**USER TIP:** The names of zones, surfaces, and systems are within your control. Because of all the necessary information on the CF1R, the longer the names, the longer your CF1R.

To create the house or dwelling unit, right-click on project, and pick create zone (or edit an existing file that has a conditioned zone) (see Figure 5-1). Decide early how many zones are needed to adequately define a building because it is difficult (not technically but practically) to increase the number of zones.
Multiple zones are required for:

- Existing vs. new zones in an addition.
- Zonal control (living and sleeping zones separately controlled) [this is not the same as zonally controlled HVAC equipment and has specific criteria that may be difficult to meet, see Section 8.1.3];
- Spaces served by different types of heating/cooling equipment (such as a heat pump and a gas furnace);
- Different duct conditions or locations; or

A more complex building model does not necessarily yield better compliance results.

**5.1.1 Conditioned Zone Data**

![Conditioned Zone Data](image)

**5.1.1.1 Name**

User-defined name. This name appears frequently on the CF1R.

**5.1.1.2 Zone Status**

When shown as an input, the default status is new for new construction or for the new zone of an addition. New also applies to spaces and surfaces in a previously unconditioned space that is converted to a conditioned space. Other options include new and existing.

**5.1.1.3 Type**

The default zone type is conditioned. If the building specifies zonal control (on building tab), the type is defined as either living or sleeping. For more information on zonal control see Section 8.1.3.
Unconditioned spaces are modeled as garage or included with the garage (see Section 5.5). Unconditioned is not a valid choice.

5.1.1.4  **Floor Area**
Specify the floor area of the zone.

5.1.1.5  **Number of Stories**
Enter the number of stories *in the zone, not the building*. Limited to 3.

A 2-story single zone file will enter 2. A 2-zone model with each floor as a separate zone will enter 1 story for each of the zones (see Figure 5-2). CBECC will reflect 2 stories on the CF1R if the zone bottom for the second zone is correctly input (see 5.1.1.8).

**USER TIP:** The limit to 3 stories is to avoid confusion on when CBECC-Res can be used for compliance on multifamily projects. A multifamily building (R-1 or R-2 occupancy group) with 4 stories or more above grade *cannot* use CBECC-Res. That is a high-rise residential project. However, a single-family building (R-3 occupancy group) is not limited to three stories. (See definition of “low-rise residential building” in Section 100.1 of the standards.) Plan checkers can be informed that as long as the building’s floor areas, surfaces and window areas are input correctly, the number of stories reflecting 3 rather than 4 (or more) is not significant.

![Figure 5-2: Stories and Zone Bottom (for a 2-zone, 2-story building)](image)

5.1.1.6  **Ceiling Height**
Average ceiling height, in feet.

5.1.1.7  **Floor to Floor**
Distance between the floor being modeled and any floor above. Default value is average ceiling height plus one foot.

---

5-26
5.1.1.8  **Bottom**  
Typical values are 0.7 for a slab on grade floor or 2 for a crawl space floor. The default 0 is almost never the correct input.

The value depends on how the building is zoned and whether there are below grade surfaces. It is the distance above grade for the surface of the floor (if below grade it is a negative value). For multi-story buildings, if the upper floor is a separate zone, the bottom for that zone is the total distance from grade to the inside surface of the upper floor (see Figure 5-2). In other words, add the values for “Floor to Floor” plus “Bottom” from the first-floor zone and enter that as the zone bottom for the second floor.

5.1.1.9  **Window Head Height**  
Default value is based on the average ceiling height (program will establish this value based on ceiling height.

5.1.1.10  **HVAC System**  
Identify the name of the heating, ventilating, and air conditioning (HVAC) system by picking a defined system or creating a new system. The system consists of the heating, cooling and distribution systems, and a furnace fan. See more in Chapter 8, Mechanical Systems.

5.1.1.11  **DHW System 1**  
Identify the name of the domestic water heating (DHW) system by picking a defined system or creating a new system. Multiple water heaters can be modeled as one system. See more in Chapter 9, Domestic Hot Water.

5.1.1.12  **DHW System 2**  
If a water heater has a different distribution system, identify that as a second DHW system.

5.2  **Multifamily Dwelling Unit Zone**  
Multifamily buildings (not duplexes or townhomes) with single story dwelling units are either modeled with each floor as a separate zone or with each dwelling unit as a separate zone. Because of the dwelling unit type structure, if a dwelling unit is two or three stories, each dwelling unit must be modeled as a separate zone. Two multifamily example files are included with the program using the less detailed approach. Both have four dwelling units per zone/floor, and one has central water heating. A duplex or townhome (an R-3 occupancy) is multiple single-family building input files.

When modeling a multifamily building, the data that is included in the zone is defined as part of the dwelling unit type). The dwelling unit type includes HVAC, water heating, indoor air quality, and is
one of the inputs used to build the zone information (see Figure 5-3 or one of the sample files). Whether you choose to first set up the dwelling unit type or the zone is up to you.

**NOTE - HVAC limitation 1:** Within a given zone, the worst-case efficiency is modeled. For example, if the 1-bedroom dwelling unit has an 80 AFUE/14 SEER system and the 3-bedroom dwelling unit has 90 AFUE/15 SEER, you must model each dwelling unit as a separate zone to receive credit for the high efficiency HVAC system. If both dwelling units are modeled in a single zone (such as 1st floor) the worst case is assumed in calculating the energy compliance.

**NOTE – HVAC limitation 2:** Dwelling units in a multifamily building are limited to one zone and one system type. This means there is no way to model a gas furnace and a heat pump in a single dwelling unit. See Section 8.1.3 for multiple systems within a single zone.

An overview of the end result and how the dwelling unit type is included in the zone is shown in Figure 5-3. The dwelling unit type is created first (Figure 5-5), then from the zone tab, right-click and pick create dwelling unit.

![Figure 5-3: Multifamily Input File Structure](image-url)
5.2.1.1 Name

Use very brief names to describe the zone or dwelling unit. This name is combined with other information to define space conditioning and water heating names on the CF1R.

5.2.1.2 Dwelling Unit Type

Indicate which dwelling unit type contains the appliance data, HVAC, water heating and indoor air quality (IAQ) information for these dwelling units.

5.2.1.3 Count

This input specifies how many of this dwelling unit type are included in the zone. If multiple dwelling units are included, this number is limited to one floor. In the above figure, the bottom floor has 780 x 2 = 1560 ft².

5.2.1.4 Conditioned Area

Either enter or right-click and pick “restore default” to capture the area from the dwelling unit type.

5.3 Dwelling Unit Types (for multifamily buildings only)

_USER TIP:_ When defining the space conditioning system, use short descriptive names. Due to reporting requirements for HERS raters, the report uses a combination of the heating, cooling, distribution, and fan system names to identify systems and their association to the dwelling unit. The auto-created names can become very long.
Each dwelling unit type is created based on its characteristics (see Figure 5-5). For example, 1-bedroom units with 780 ft$^2$, 2-bedroom units with 960 ft$^2$ are created defining the HVAC equipment, water heating conditions, and IAQ ventilation. Once created, the dwelling unit types are used in defining the zone (see Section 5.2).

5.3.1.1 Name
Brief descriptive information for the dwelling unit.

5.3.1.2 Conditioned Area
The number of square feet in the one dwelling unit type being defined.

5.3.1.3 # Bedrooms
Number of bedrooms in the dwelling unit. This is used to establish the minimum ventilation requirements.

5.3.1.4 Appliance Data
The appliance information has a minimal effect on compliance. It primarily affects “appliances and miscellaneous energy use” as reported on the CF1R.
Check the box to indicate if an appliance is located within a conditioned zone of the dwelling unit. The fuel type choices for the clothes dryer and cooking appliances is gas (the type depends on the input on the building tab) or electricity.

5.3.1.5 HVAC Equipment

With the exception that the equipment is defined from the dwelling unit type data screen, space conditioning equipment is entered as described in Chapter 8. If multiple pieces of equipment with identical characteristics are used, enter that in the “count” field. If multiple pieces of different equipment are modeled (the worst case will be assumed), enter that as “unique . . .” types or systems and enter the specifications under the tab called Additional HVAC Equipment Assignments.

As noted previously, keep system names as short as possible to accommodate CF1R reporting requirements.

5.3.1.6 Water Heating Equipment

With the exception that the equipment is defined from the dwelling unit type data screen, water heating equipment is entered as described in Chapter 8 and 9. If multiple pieces of equipment with identical characteristics are used, enter that in the “count” field. If multiple pieces of different equipment are modeled (the worst case will be assumed), enter that as “unique . . .” types or systems and enter the specifications under the tab called Additional DHW System Details.

Compact distribution is entered by selecting the type of credit (basic credit or expanded credit (HERS required)). If each floor is a zone, enter 1 for the number of floors served by DHW. If each dwelling unit is a zone, enter the number of floors in the dwelling unit. As noted in Section 9.3.1, select “Fixtures, Compact Distribution and Drain Water Heat Recovery” to specify the distance to fixture values.

Drain water heat recovery is specified by selecting “Fixtures, Compact Distribution and Drain Water Heat Recovery” and defining the drain water heat recovery device. See Section 9.6.

5.3.1.7 IAQ (Indoor Air Quality) Ventilation Tab (multifamily)

This input identifies the fan type and size being modeled to meet mandatory IAQ requirements. Required minimum IAQ ventilation based on conditioned floor area and number of bedrooms is displayed as CFM/dwelling unit. To model an indoor air quality system other than default size, pick specify individual IAQ Fans. More information is included in Section 8.6.

5.3.1.8 Additional HVAC Equipment Assignments

If the number of unique heating or cooling system types is greater than 1, this tab is where the multiple pieces of equipment are specified.
5.3.1.9 Additional DHW System Details

If the number of unique DHW systems is greater than 1, this tab is where the multiple pieces of equipment are specified.

5.4 Attic

The attic zone is created when a ceiling below attic is modeled in the conditioned zone (Figure 5-6). This is where everything above the ceiling insulation is defined. This includes roofing material (tile, asphalt shingles), radiant barrier, above and below deck insulation (as defined in the specified construction), as well as roofing characteristics (i.e., default or cool roof) are assigned.

Figure 5-6. Attic Zone Data

![Attic Zone Data]

The compliance software models attics (up to two) as a separate thermal zone and includes the interaction with the air distribution ducts, infiltration exchange between the attic and the house, the solar gains on the roof deck and other factors. These interactions are illustrated in Figure 5-7.
5.4.1 Roof Deck Insulation

The standard design is Option B from §150.1, Table 150.1-A (single family) or 150.1-B (multifamily). In Climate Zones 4 and 8-16 below deck insulation is included (typically R-19 installed between the roof rafters). This insulation is modeled in the attic zone, while the ceiling insulation is modeled in the conditioned zone (as ceiling below attic) (see Figure 5-8). This distinction is important to receive the full benefit of this insulation. This construction (with R-19 below deck) is sometimes called a high performance attic and the sample files assume this construction. If you build in zones other than 4 and 8-16 be sure to modify the sample file to use a different construction. The CF1R special features section includes above or below deck insulation.

**USER TIP:** In Climate Zones 4 and 8-16, the standard design roof includes below roof deck insulation. Without this insulation, ducts in the attic are assumed to be exposed to temperatures ranging from 130-150 degrees. It is extremely difficult to achieve compliance without this insulation when ducts are in the attic. Many default assumptions are modeling attic ducts even though it may not be obvious. Depending on other variables, this may include no cooling equipment and ductless minisplit equipment.
**USER TIP**: Ceiling insulation and roof deck insulation are not modeled as part of one construction assembly. Figure 5-9 is an example of an incorrectly modeled attic. It includes R-30 ceiling insulation with R-8 roof deck insulation. The R-30 should be part of a ceiling below attic construction assembly. Clue: If you see the roofing material and have the option to check radiant barrier, this is the attic. Do not model ceiling insulation in the attic.

Above deck insulation (Figure 5-10) is continuous and modeled in the attic construction not as part of the ceiling.
5.4.2 Unventilated Attic/Sealed Attic

An unvented, unventilated or sealed attic is modeled by creating an attic roof construction (not a cathedral roof). If using spray foam insulation with a non-standard R-value (see Section 6.4), check the non-standard check box. This will result in a HERS requirement to verify the R-value. If the thickness of the insulation will cover the attic framing, check the thick cavity insulation covers framing box. Include the inside finish as gypsum board (see Figure 5-11).

The *attic conditioning* field should be set to “unventilated” (see Figure 5-12).

There is no ceiling insulation and the duct location is “... attic (ventilated and unventilated).” This combination of features captures the benefits of this construction technique.
USER TIP: This user guide is merely how to model sealed attics. This is a complex topic. Outside resources should be consulted if you have concerns about moisture issues. Alternatively, roof deck insulation is modeled in a ventilated attic and likely achieves similar results.

5.4.2.1 Attic Zone Data
The software automatically creates an attic zone once you define a ceiling below an attic as part of the conditioned space or garage.

To create a second attic zone, when defining the ceiling below attic, choose “create new attic zone.”

5.4.2.2 Name
User-defined name. If the building plans have a unique identifier, that should be used here to assist in the plan checking and inspection processes.

5.4.2.3 Attic Conditioning
The conditioning type is set to either ventilated (typical attic) or unventilated. Ventilated or vented attic is typical construction.
5.4.2.4 Roof Rise
Specify the roof rise or roof pitch, which is the number of feet the roof rises in a span of 12 feet (shown on elevations as 4:12 or 4 in 12). If there are multiple roof pitches enter the roof rise of the largest area of roof.

5.4.2.5 Area
The area is not a user input. The area is derived from the area of any ceilings assigned to the attic.

5.4.2.6 Attic Status
Default is new. Other options (for addition and/or alteration scope) are existing, altered, and altered roof surface.

5.4.2.7 Construction
The roof construction is the connection to an assembly that contains the roofing material (such as tile or asphalt shingles), radiant barrier, and other construction details, including above and below deck insulation, but not ceiling insulation (see more in Chapter 6, Construction Assemblies).

5.4.2.8 Solar Reflectance
The default aged solar reflectance for a non-cool roof is 0.10 for all roof types. When a value of 0.20 or higher is modeled, the CF1R reflects that a cool roof is modeled. When the reflectance is greater than 0.10 but less than 0.20, the CF1R reflects a non-standard roof reflectance special features message.

The aged solar reflectance for a roof product is either published by the Cool Roof Rating Council (CRRC) product directory (www.coolroofs.org) or calculated from the initial value using the equation in 3.7.1 of the 2019 Residential Compliance Manual. The aged solar reflectance measures the roofing product’s ability to reflect solar heat. A higher value is better for warmer climates, so if a specific product color is unknown use a lower value among options to avoid having to recalculate compliance during construction.

If the roof membrane has a mass of at least 25 lb/ft² or any roof area that incorporates integrated solar collectors, the roof may assume the prescriptive solar reflectance value (see Section 5.3.2).

If the roof is a cathedral ceiling or rafter roof, the solar reflectance is defined as part of the roof (Chapter 7, Building Envelope).

The roofing material and roof structure is specified via the Roof Deck/Surface: Construction, which is accessed under construction assemblies or by creating a new roof construction assembly as discussed in Chapter 6, Construction Assemblies.
5.4.2.9  IR Emittance
The default infrared or thermal emittance (or emissivity) for all roofing materials is 0.85. Otherwise, enter the emittance value published by CRRC (www.coolroofs.org).

If the roof membrane has a mass of at least 25 lb/ft² or for any roof area that incorporates integrated solar collectors, the roof may assume the prescriptive emittance value (see Section 5.3.2).

If the roof is a cathedral ceiling or rafter roof, the emittance is defined as part of the roof (Chapter 7, Building Envelope).

The roofing material and roof structure is specified via the Roof Deck/Surface: Construction which is accessed under construction assemblies or by creating a new roof construction assembly which is discussed in Chapter 6, Construction Assemblies.

5.4.3  Cool Roof
The CF1R reflects that a cool roof is modeled when a reflectance of 0.20 or greater is modeled, and a thermal emittance of higher than 0.85. If a reflectance value greater than 0.10 (the default value) but less than 0.20 is modeled, the CF1R reflects a special features message that the building contains a non-standard roof reflectance.

Cool roof is a term that refers to the ability of roofing materials to both reflect and absorb solar heat. It typically means a high solar reflectance and a high emittance, or it is a low emittance and a very high solar reflectance. Product ratings are from the CRRC (www.coolroofs.org).

Prescriptive requirements (the basis of the standard design) contains a minimum requirement for solar reflectance and emittance that varies by climate zone and roof slope. A low slope roof has a ratio of rise to run (or pitch) of 2 in 12 or less (≤9.5 degrees from the horizontal). In Climate Zones 13 and 15 a low slope roof is compared to a roof with 0.63 aged solar reflectance and 0.85 emittance. A steep slope roof has a ratio of rise to run of greater than 2:12 (>9.5 degrees from the horizontal). In Climate Zones 10 through 15 a steep slope roof is compared to a roof with 0.20 aged solar reflectance and 0.85 emittance.

5.5  Crawl Space
The software creates a crawl space zone when a floor over crawl space is defined. For floor construction details see Chapter 6, Construction Assemblies. The crawl space zone (Figure 5-11) is created using the user-specified area of raised floor (not an editable field) and floor elevation to set the area, perimeter, and height.
**USER TIP:** If the floor area is modified on an existing file, deleting the crawl space zone forces CBECC-Res to recreate this zone assigning an appropriate perimeter value.

Figure 5-13: Crawl Space Zone

5.5.1 **Crawl Space Zone Data**

5.5.1.1 **Crawl Space Name**
User-defined name. If the building plans have a unique identifier, that should be used here to assist in the plan checking and inspection processes.

5.5.1.2 **Crawl Space Type**
The default type (and only option implemented) is a vented crawl space.

5.5.1.3 **Area**
The area is not a user input. The value is based on all floors over crawl space in the building.

5.5.1.4 **Crawl Perimeter**
The length (in feet) of the perimeter. When initially creating the floor over crawl space, CBECC determines this value.

5.5.1.5 **Crawl Height**
The depth/height of the crawl space, in feet (minimum of 2 feet). The same value is used for the floor elevation and the zone bottom. If the height varies enter the average height.

5.6 **Garage**
An attached unconditioned space or garage is modeled as a separate zone (zone type “unconditioned” is not enable). When the project was defined as having an attached garage, the software created this zone (see Figure 5-14). The buffering effect of this zone is modeled to accurately represent the building.

Important to note that the surfaces connecting the conditioned space and garage are modeled in the conditioned space as an interior wall (or floor). These demising surfaces (different from party surfaces) must be insulated. For details on modeling the surfaces, see Chapter 6 and Chapter 7.
When a multifamily building has an attached garage, the software creates only one garage zone. To represent a garage attached to each unit, model the total combined area of garage, and model the appropriate interior surfaces connecting it to the building in each dwelling unit. Detached garages and unconditioned spaces are not modeled.

5.6.1 Deleting a Garage

To delete a garage zone, first uncheck (on the building tab) that the building has an attached garage, then the garage zone can be deleted.

5.6.2 Garage Zone Data

Figure 5-14: Garage Zone Data

<table>
<thead>
<tr>
<th>Garage Data</th>
</tr>
</thead>
<tbody>
<tr>
<td>Garage Name: Garage</td>
</tr>
<tr>
<td>Area: 440 ft²</td>
</tr>
<tr>
<td>Volume: 3,960 ft³</td>
</tr>
<tr>
<td>Bottom: 0.67 ft</td>
</tr>
</tbody>
</table>

5.6.2.1 Garage Name
User-defined name.

5.6.2.2 Area
The area of the garage or unconditioned space, in square feet (ft²).

5.6.2.3 Volume
Volume of the space, in cubic feet (ft³). The default volume (right-click/restore default) is based on a 10-foot ceiling.

5.6.2.4 Bottom
Floor elevation or distance above grade of the surface of the floor (in feet). This can be a negative value for surfaces below grade.
Chapter 6  Construction Assemblies

CBECC-Res does not use Reference Appendices, Joint Appendix 4. Instead, the assembly is created inside the program. As you build an assembly, the screen displays a U-factor merely as an informational guide for the user to see how the assembly compares to the standard design assembly (standards, §150.1(c)). For cavity insulation, model the closest insulation R-value without exceeding the product’s R-value. For continuous insulation, you may pick whole R-values or specify a value with one decimal place.

NOTE: CBECC does not enforce mandatory minimum insulation requirements. It is the user’s responsibility to ensure compliance with §150.0.

In addition to typical wood-frame construction, CBECC-Res can model advanced wall framing (AWF), steel-frame wall construction, concrete, masonry, insulated concrete form (ICF), brick, below grade, log, strawbale, and structurally insulated panels (SIPs).

**USER TIP – How to change construction names or details:**

Change details or rename a construction from the Construction Assemblies folder. For example, to update the wall construction from R-13+R-4 to R-21+R-5:

- Identify which construction name is assigned to the walls (such as Ext Wall R-13+4),
- Access the Construction Assemblies folder, find the one to change, double-click to expose the details,
- Change its characteristics as needed (cavity R-value, framing size, sheathing R-value, exterior finish), and
- Change the Construction Name (a brief but descriptive name) [depending on where you are in the program, you can also right-click and choose “rename”].
Do not forget about interior walls (between house and garage). This concept applies to any constructions and enables a quick change without having to access every surface.

To rename a construction (such as from Construction Assembly 8 to something meaningful) right-click on the construction assembly name and pick rename. The change occurs to any surface that referenced that construction name. **END USER TIP**

### 6.1 Metal Frame Construction Workaround

Currently, only metal framed wall assemblies can be modeled in CBECC-Res. If the roof/ceiling or floor of a building is constructed with metal or steel, you will need to use the following workaround to account for the less efficient performance of the framing material. Make sure you have downloaded a copy of the Reference Residential Appendices (400-2018-021). Also note the required maximum mandatory U-factor from Section 150.0 is 0.043 for a roof, 0.102 (2x4) or 0.071 (2x6) for walls, and 0.037 for a floor (equal or lower). NOTE: Any references to a minimum R-value are for wood framing only.

1. In the Reference Residential Appendices find the U-factor of the proposed construction. For example, Table 4.2.5 is for a metal framed rafter roof. The only assemblies that achieve 0.043 require continuous insulation.
2. You have a 2x12 roof and you find an R-30 2x12 plus R-7 continuous insulation has the required 0.043 U-factor (Figure 6-2).
3. Find a comparable (e.g., rafter roof) construction assembly that can be modeled in CBECC that has that U-factor (or higher).
4. To find a construction to use as your starting point in CBECC, notice that Table 4.2.5 has a 2x10 with R-22 (Figure 6-3). This construction will be substituted for the metal framed roof.

5. Create a cathedral ceiling, naming it what it needs to be constructed as, which is metal 2x12, R-30 + R-7.

6. Set the framing to 2x10 24” o.c., with R-22 cavity. Notice the U-factor is too high, so try R-23 cavity. That has the correct U-factor (see Figure 6-4).

7. Make very explicit notes for your CF1R.

If it was not clear that metal performs very differently than wood, this should make it clear.

Figure 6-2: Joint Appendix Table for Metal Rafter Roof

### Table 4.2.5 – U-factors of Metal Framed Rafter Roofs

<table>
<thead>
<tr>
<th>Spacing</th>
<th>R-Value of Insulation Between Framing</th>
<th>Nominal Framing Size</th>
<th>R-0</th>
<th>R-2</th>
<th>R-4</th>
<th>R-6</th>
<th>R-7</th>
</tr>
</thead>
<tbody>
<tr>
<td>R-30</td>
<td>2x10</td>
<td>34</td>
<td>0.063</td>
<td>0.056</td>
<td>0.050</td>
<td>0.046</td>
<td>0.044</td>
</tr>
<tr>
<td>R-30</td>
<td>2x12</td>
<td>36</td>
<td>0.061</td>
<td>0.054</td>
<td>0.049</td>
<td>0.045</td>
<td><strong>0.043</strong></td>
</tr>
<tr>
<td>R-36</td>
<td>2x12</td>
<td>36</td>
<td>0.055</td>
<td>0.050</td>
<td>0.045</td>
<td>0.041</td>
<td>0.040</td>
</tr>
<tr>
<td>R-38</td>
<td>2x14</td>
<td>37</td>
<td>0.053</td>
<td>0.048</td>
<td>0.044</td>
<td>0.040</td>
<td>0.039</td>
</tr>
</tbody>
</table>

Figure 6-3: Joint Appendix Table for Wood Rafter Roof

### Appendix JA4-12

### Table 4.2.2 – U-factors of Wood Framed Rafter Roof

<table>
<thead>
<tr>
<th>Rafter Spacing</th>
<th>R-value of Cavity Insulation</th>
<th>Nominal Framing Size</th>
<th>None</th>
</tr>
</thead>
<tbody>
<tr>
<td>24 in. OC</td>
<td>None</td>
<td>Any</td>
<td>25</td>
</tr>
<tr>
<td>R-22</td>
<td>2x10</td>
<td>38</td>
<td><strong>0.043</strong></td>
</tr>
<tr>
<td>R-25</td>
<td>2x10</td>
<td>39</td>
<td>0.039</td>
</tr>
<tr>
<td>R-30</td>
<td>2x10</td>
<td>40</td>
<td>0.034</td>
</tr>
</tbody>
</table>
6.2 Cavity R-Value

When defining construction assemblies, pick either compressed (effective R-value) or non-compressed (such as high density insulation) values (Table 6-1). To accommodate for the effects of compression, there are multiple entries for some R-values:

- R-19 in 5-1/2-inch cavity (R-18)
- R-30 in 7-1/4-inch cavity (R-25)
- R-38 in 9-1/4-inch cavity (R-35)
- R-38 in 11-1/4-inch cavity (R-37)
Table 6-1: Compressed Insulation R-values

<table>
<thead>
<tr>
<th>Lumber Size</th>
<th>Cavity Depth</th>
<th>38</th>
<th>38C</th>
<th>30</th>
<th>30C</th>
<th>25</th>
<th>22</th>
<th>21C</th>
<th>19</th>
<th>15C</th>
<th>13</th>
<th>11</th>
</tr>
</thead>
<tbody>
<tr>
<td>2x12</td>
<td>11-1/4”</td>
<td>37</td>
<td>38</td>
<td>30</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2x10</td>
<td>9-1/4”</td>
<td>32</td>
<td>35</td>
<td>30</td>
<td>30</td>
<td>25</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2x8</td>
<td>7-1/4”</td>
<td>27</td>
<td>30</td>
<td>25</td>
<td>27</td>
<td>24</td>
<td>22</td>
<td>21</td>
<td>19</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2x6</td>
<td>5-1/2”</td>
<td>21</td>
<td>22</td>
<td>20</td>
<td>19</td>
<td>21</td>
<td>18</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2x4</td>
<td>3-1/2”</td>
<td></td>
<td></td>
<td>14</td>
<td>15</td>
<td>13</td>
<td>15</td>
<td>13</td>
<td>11</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2x3</td>
<td>2-1/2”</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>11</td>
<td>10</td>
<td>8.9</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2x2</td>
<td>1-1/2”</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>6.6</td>
<td>6.2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2x1</td>
<td>3/4”</td>
<td></td>
</tr>
<tr>
<td>Standard Product Thickness</td>
<td>12”</td>
<td>10-1/4”</td>
<td>9-1/2”</td>
<td>8-1/4”</td>
<td>8”</td>
<td>6-3/4”</td>
<td>5-1/2”</td>
<td>6-1/4”</td>
<td>3-1/2”</td>
<td>3-1/2”</td>
<td>3-1/2”</td>
<td>3-1/2”</td>
</tr>
</tbody>
</table>

6.3 Assembly Types

The types of assemblies that can be created in the program are:

- Exterior wall
- Interior wall (used for both demising surfaces between conditioned and unconditioned space, and party surfaces between two conditioned spaces)
- Underground wall
- Attic roof
- Cathedral roof
- Ceiling below attic
- Interior ceiling (used for both demising surfaces between conditioned and unconditioned space, and party surfaces between two conditioned spaces)
- Interior floor (used for both demising surfaces between conditioned and unconditioned space, and party surfaces between two conditioned spaces)
- Exterior floor
- Floor over crawl space
- Interior floor (used for both demising surfaces between conditioned and unconditioned space, and party surfaces between two conditioned spaces)
6.4 Mandatory Envelope Requirements

The mandatory insulation requirements (standards Section 150.0(a)-(d)) for new construction are based on wood framing:

- Ceilings and rafter roofs with R-22, or a weighted average U-factor of 0.043.
- Framed wall insulation is either (1) R-13 in a wood-framed 2x4 wall or an overall U-factor not to exceed 0.102, or (2) R-20 in a wood-framed 2x6 wall or a U-factor not to exceed 0.071.
- Opaque non-framed assemblies with R-13 or a U-factor not to exceed 0.102.
- Bay or bow window roofs and floors must meet table 150.1-A or B.
- Mass walls must meet table 150.1-A or B.
- Raised floor insulation with R-19 or a weighted average U-factor of 0.037.

The software does not enforce minimum mandatory requirements. Pay close attention when modeling metal framing, which will require sheathing insulation to meet the mandatory requirement.

6.5 Spray Foam Insulation (SPF)

The R-values for spray applied polyurethane foam insulation differ depending on whether the product is closed cell (default R-5.8/inch) or open cell (default R-3.6/inch). When completing a construction assembly for the roof/ceiling, walls, or floor, use the values shown in Table 6-2 to determine the default R-value for the cavity size. With HERS verification and additional documentation requirements, a higher than default value may be used, as indicated by checking the box for non-standard spray foam in cavity as part of the construction assembly (see Reference Appendices, Residential Appendix RA3.5.6). Additional documentation is an ICC Evaluation Service Report (ESR) (Residential Compliance Manual, Section 3.5.1.3.).
Table 6-2: Required Thickness Spray Foam Insulation (in inches)

<table>
<thead>
<tr>
<th>Required R-values for SPF insulation</th>
<th>R-11</th>
<th>R-13</th>
<th>R-15</th>
<th>R-19</th>
<th>R-21</th>
<th>R-22</th>
<th>R-25</th>
<th>R-30</th>
<th>R-38</th>
</tr>
</thead>
<tbody>
<tr>
<td>Required thickness closed cell @</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>R5.8/inch</td>
<td>2.00</td>
<td>2.25</td>
<td>2.75</td>
<td>3.50</td>
<td>3.75</td>
<td>4.00</td>
<td>4.50</td>
<td>5.25</td>
<td>6.75</td>
</tr>
<tr>
<td>Required thickness open cell @</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>R3.6/inch</td>
<td>3.00</td>
<td>3.50</td>
<td>4.20</td>
<td>5.30</td>
<td>5.80</td>
<td>6.10</td>
<td>6.90</td>
<td>8.30</td>
<td>10.60</td>
</tr>
</tbody>
</table>

To receive the most credit, spray foam insulation may be combined with QII, which is modeled at the project level (see Section 4.7.1.4) and requires HERS verification.

6.5.1 Medium Density Closed-Cell SPF Insulation

The default R-value for spray foam insulation with a closed cellular structure is R-5.8 per inch, based on the installed nominal thickness of insulation. If the proposed insulation has an R-value greater than 5.8, include the documentation noted in Section 6.5 with your plan check submittal to verify the value modeled. Closed cell insulation has an installed nominal density of 1.5 to less than 2.5 pounds per cubic foot (pcf).

6.5.2 Low Density Open-Cell SPF Insulation

The default R-value for spray foam insulation with an open cellular structure is calculated as an R-3.6 per inch, calculated based on the nominal required thickness of insulation. If the proposed insulation has an R-value greater than 5.8, include documentation noted in Section 6.5 with your plan check submittal to verify the value modeled. Open cell insulation has an installed nominal density of 0.4 to 1.5 pounds pcf.

6.6 Advanced Wall Framing

Advanced wall framing (AWF) is applicable to wood framed walls that meet the installation criteria from Reference Appendices, Joint Appendix JA 4.1.6 to reduce the amount of wood used for framing. The construction technique, referred to as an advanced wall system, incorporates the following construction techniques:

- 24-inch on center framing,
- Eliminates intermediate framing for cripple and king studs,
• Uses single top plates, double stud corners, and in-line (i.e., stack) framing to maintain continuity of transferring live loads of roof framing to wall framing (which allows roof sheathing and exterior siding to be installed at full widths),
• Reduces framing for connections at interior partition walls (i.e., T-walls), and
• Reduces window and door header sizes.

6.7 Attic Roof Terminology

Figure 6-5. Attic insulation locations

6.7.1 Attic

Attic is an enclosed space directly below the roof deck and above the ceiling beams. The attic component of the building contains the roof and attic, and any insulation that occurs at the roof deck. In CBECC-Res, the attic is a separate zone. A typical ventilated attic does not include the ceiling or ceiling insulation, which is modeled as part of the ceiling below attic. Up to two attics can be defined in a building.

6.7.2 Cathedral Ceiling

A cathedral ceiling or rafter roof is modeled when there is no attic with a ceiling below (or to model a skylight (Section 7.7)). A cathedral ceiling typically has insulation between the rafters and may be flat or sloped. The insulation is in contact with the ceiling and there may be a one-inch air gap above the insulation to vent moisture or accommodate a radiant barrier. Whether an air space is required above the insulation, or the entire cavity is filled with insulation with no venting, is up to the local building official.
6.7.3 Ceiling Below Attic

The ceiling is defined as the interior upper surface of a space separating it from an attic, plenum, indirectly or directly conditioned space or the roof assembly, which has a slope less than 60 degrees from horizontal (definition from Reference Appendices, JA1).

6.7.4 Cool Roof

The CF1R reflects that a cool roof is modeled when a reflectance of 0.20 or greater is modeled, and a thermal emittance of higher than 0.85. If a reflectance value greater than 0.10 (the default value) but less than 0.20 is modeled, the CF1R reflects a special features message that the building contains a non-standard roof reflectance.

Cool roof is a term that refers to the ability of roofing materials to both reflect and absorb solar heat. Product ratings are from the CRRC (www.coolroofs.org).

6.7.5 Unventilated Attic

An unventilated attic (also called a sealed or unvented attic) is not typical. The insulation is installed at the roof, there is a ceiling but that is not insulated, and the ducts are likely located in the attic. An example file is included (1StoryExample3Unvented.ribd19). For more see Section 5.4.2.

6.7.6 Knee Wall

A knee wall or crawl space wall separates conditioned space from an unconditioned attic or crawl space. These walls are modeled in CBECC-Res as an interior wall (a demising surface) and are insulated as an exterior wall with no continuous insulation or exterior finish.

6.7.7 Low Slope Roof

A low slope roof has a ratio of rise to run (or pitch) of 2 in 12 or less (<9.5 degrees from the horizontal). Although a cool roof is not mandatory, the standard design for a low slope roof in climate zones 13 and 15 is an aged solar reflectance of 0.63 or higher.

If the roof membrane has a mass of at least 25 lb/ft² or includes solar collectors, the roof may assume the standard design value for solar reflectance (exceptions to Section 150.1(c)11).

6.7.8 Radiant Barrier

Modeled by checking the box on the attic or cathedral roof construction data, a radiant barrier installed below the roof decking reduces radiant heat to any ducts and insulation below it. While not a mandatory requirement, the standard design used to establish a building’s energy budget may have a radiant barrier if there is no roof deck insulation.
An air space is required for a radiant barrier (installation requirements for a radiant barrier are listed in the RA4 (or see CF2R form)). The radiant barrier is modeled as part of either the attic zone or cathedral construction (see Section 6.8.2 or 6.10.2). NOTE: Installing both a radiant barrier and roof deck insulation is not typical. Be sure to check the CF1R’s attic table for the presence of a radiant barrier.

6.7.9 Roof

A roof is defined as the outside cover of a building or structure including the structural supports, decking, and top layer that is exposed to the outside with a slope less than 60 degrees from the horizontal.

When the prescriptive tables (150.1-A or B), which are the basis of the standard design, contain a minimum requirement for solar reflectance and emittance, the values vary by roof slope. A low slope roof has a ratio of rise to run (or pitch) of 2 in 12 or less (<9.5 degrees from the horizontal). A steep slope roof has a ratio of rise to run of greater than 2:12 (>9.5 degrees from the horizontal). There will be an energy penalty if default roof values are used in a climate with cool roof requirements in the standard design.

6.7.10 Steep Slope Roof

A steep slope roof has a ratio of rise to run of greater than 2:12 (>9.5 degrees from the horizontal). Although a specific value is not mandatory, the standard design for climate zones 10 through 15 is an aged solar reflectance of 0.20.

If the roof membrane has a mass of at least 25 lb/ft² or the roof area incorporates integrated solar collectors, the roof may assume the standard design value for solar reflectance (exceptions to Section 150.1(c)11).

6.8 Attic Construction

An attic zone is created directly or will be created when a ceiling below attic is created. The attic construction is what contains the roofing material (e.g., tile, asphalt), above or below deck insulation, and the radiant barrier. A typical attic does not include the ceiling or ceiling insulation modeled as the ceiling below attic. There is no orientation associated with an attic roof.
6.8.1 Attic Construction Data

Figure 6-6: Attic Construction Data/Roof Deck Insulation

6.8.1.1 Construction Name
User-defined name.

6.8.1.2 Can Assign To
This is a fixed field. To create a new assembly type, at the zone level, select <create> and pick the appropriate construction assembly type.

6.8.1.3 Construction Type
Options are wood framed, built-up roof, and SIP Ceiling. Steel framed is not implemented.

6.8.1.4 Roofing Type
Pick the appropriate roof type: (1) steep slope roof tile, metal tile, or wood shakes; or (2) all other. Options available for the construction layer “Roofing” vary based on this selection. Both options include a tile roof. The selection under steep slope is for a tile roof with an air gap. The selection under low slope roof is for tile without an air gap.

6.8.2 Attic Construction Layers

Working from the top to the bottom of the construction layers:
6.8.2.1 Roofing
The available types will depend on the roofing type specified above. Types include light roof, roof tile, asphalt, gravel, tile with an air gap, tile with no air gap, heavy ballast or pavers, very heavy ballast or pavers, metal tile, and green hybrid roofing tile. The “10 PSF” tile roof selection under steep slope is for a tile roof with an air gap. The selection under low slope roof is for tile without an air gap.

6.8.2.2 Above Deck Insulation
If above deck insulation is shown as part of the attic details, model either whole numbers of R1 to R60 sheathing insulation, or pick “specify R-value” and enter a value that can include one decimal place.

6.8.2.3 Roof Deck
The default is wood siding/sheathing/decking.

6.8.2.4 Cavity/Frame (below deck insulation)
List the compressed R-value of below deck insulation (see Section 6.2) in the cavity column. This is the insulation installed at the roof, not on the ceiling. The framing column is to indicate the size and spacing of the framing. Options are 2x4 to 2x12 with 16- or 24-inch on center framing).

6.8.2.5 Inside Finish
This is the inside finish (if any), of the attic space, and does not include the ceiling below the attic. A layer of gypsum is not typically included.

6.8.2.6 Non-Standard Spray Foam in Cavity
This check box identifies additional documentation and HERS verification requirements due a claimed R-value that exceeds the default assumption of R-5.8 per inch for closed cell and R-3.6 per inch for open cell (see also Section 6.5).

6.8.2.7 Thick Cavity Insulation Covers Framing
When below roof deck cavity insulation is greater than the size of the cavity, check this box and the program will assume any insulation greater than the selected frame size will cover the frame.

6.8.2.8 Radiant Barrier Exposed on the Inside
This check box identifies whether a radiant barrier will be installed in the attic. It is not typical construction to include both roof deck insulation and a radiant barrier.
6.9 Ceiling Below Attic and Interior Ceilings

The ceiling below attic is typically where insulation is installed when it separates conditioned space from a ventilated attic zone (Figure 6-7).

Interior ceilings are used to define surfaces separating conditioned space from another conditioned space or an enclosed unconditioned space.

6.9.1 Ceiling Construction Data

6.9.1.1 Construction Name
User-defined name.

6.9.1.2 Can Assign To
This is a fixed field. To create a different assembly type, at the zone level, pick create and select the appropriate construction assembly type.

6.9.1.3 Construction Type
Wood framed is the only option available.
6.9.2 Ceiling Construction Layers

6.9.2.1 Attic Floor
The available types include no attic floor and wood siding/sheathing/decking.

6.9.2.2 Cavity/Frame
List the compressed R-value of cavity insulation (see Section 6.1) in the cavity column. In the framing column select the size of the framing and the spacing, such as 2x12 with 24-inch on center framing, or 2x4 roof truss at 24-inches on center.

6.9.2.3 Sheathing/Insulation
List the sheathing or insulation layer. Options are none, gypsum board, wood sheathing, and R1 to R60 insulation, or specify R-value (allows an entry that includes one decimal place).

6.9.2.4 Inside Finish
This is the inside finish (if any), of the attic space. A layer of gypsum is typical.

6.9.2.5 Non-Standard Spray Foam in Cavity
This check box identifies additional documentation and HERS verification requirements due a claimed R-value that exceeds the default assumption of R-5.8 per inch for closed cell and R-3.6 per inch for open cell (see Section 6.4).

6.9.2.6 Raised Heel Truss
Check box to indicate if there is a raised heel truss and its height (in inches). With a standard roof truss, the depth of the ceiling insulation is restricted to the space left between the roof deck and the wall top plate for the insulation path and the space between the bottom and top chord of the truss in the framing path. If the modeled insulation completely fills this space, there is no attic air space at the edge of the roof. Heat flow through the ceiling in this attic edge area is directly to the outside both horizontally and vertically, instead of to the attic space.
A raised heel truss provides additional height at the attic edge that, depending on the height and the ceiling insulation, can either reduce or eliminate the attic edge area and its thermal impact.

6.10 Cathedral Ceilings

6.10.1 Cathedral Ceiling Construction Data

Each surface facing a different orientation is modeled as a separate surface (see Figure 7-3 and Section 7.2.2).

6.10.1.1 Construction Name

User-defined name.
6.10.1.2 Can Assign To
This is a fixed field. To create a new assembly type, at the zone level, pick create and select the appropriate construction assembly type.

6.10.1.3 Construction Type
Options are wood framed, built up roof, steel framed [not yet implemented], and SIP ceiling.

6.10.1.4 Roofing Type
Pick the appropriate roof type: (1) steep slope roof tile, metal tile, or wood shakes; or (2) all other. Options available for this construction layer vary based on this selection.

Figure 6-10: Cathedral Ceiling with Radiant Barrier

6.10.2 Cathedral Ceiling Construction Layers

6.10.2.1 Roofing
The available types will depend on the roofing type specified above. Types include light roof, roof tile, asphalt, gravel, tile, heavy ballast or pavers, very heavy ballast or pavers, metal tile, and green hybrid roofing tile.
6.10.2.2 Above Deck Insulation
Options range from no insulation to R60.

6.10.2.3 Roof Deck
The default is wood siding/sheathing/decking.

6.10.2.4 Cavity/Frame
List the compressed R-value of cavity insulation (see Section 6.1) in the cavity column. The framing column is to indicate the size of the framing and the spacing (e.g., 2x12 with 24-inch on center framing). Also included is an option for a 2x4 bottom chord of truss at 24-inches on center.

6.10.2.5 Sheathing/Insulation
List the sheathing or insulation layer. Options are no sheathing/insulation, gypsum board, wood sheathing, and R1 to R60 insulation, or specify R-value (allows an entry that includes one decimal place).

6.10.2.6 Inside Finish
This is the inside finish (if any), of the roof. A layer of gypsum is typically included.

6.10.2.7 Non-Standard Spray Foam in Cavity
This check box identifies additional documentation and HERS verification requirements due a claimed R-value that exceeds the default assumption of R-5.8 per inch for closed cell and R-3.6 per inch for open cell (see Section 6.4).

6.10.2.8 Radiant Barrier
Model a radiant barrier by checking the box “Radiant barrier on bottom of roof deck (with minimum 1-inch air space below).” The air space is a required component of radiant barrier installation criteria found in the Residential Compliance Manual, Appendix D. While not a mandatory requirement, the standard design for a building has a radiant barrier if there is no roof deck insulation.

6.11 Walls
Wall construction details are accessible by either creating a new wall assembly or creating/modifying an assembly in the list of Construction Assemblies. Wall details (Figure 6-11) are defined from the inside surface to the outside (as shown on the screen for construction layers). For a description of when a wall is modeled as interior (for example, demising or walls separating the house from the garage), see Section 6.10.6.

CBECC-Res can currently model wood or steel-framed, advanced wall framing, SIP, mass, straw bale, log, and underground walls.
6.11.1 Interior and Exterior Wall Construction Data

6.11.1.1 Construction Name
User-defined name.

6.11.1.2 Can Assign To
This is a fixed field. To create a new assembly type, at the zone level pick <create> and select the appropriate construction assembly type.

6.11.1.3 Construction Type
Options available include wood framed and steel framed (Section 6.10.2), unframed wall types are concrete, Insulated Concrete Form (ICF), brick, hollow unit masonry, adobe, strawbale, log (Section 6.10.3) and structurally insulated panels (SIPs) (Section 6.10.4).

Figure 6-11: Wood-Framed Wall Construction Data

6.11.2 Framed Wall Construction Layers (inside to outside)

6.11.2.1 Inside Finish
Default value gypsum board.

6.11.2.2 Sheathing/Insulation
List the sheathing or insulation layer in a wall on the inside surface (conditioned space side) of the framed wall, or the size and material of furring on the inside surface. Options are none, gypsum board, wood sheathing, and R 1 to R 60 insulation, or specify R-value (allowing an entry that includes one decimal place).
6.11.2.3 **Cavity/Frame**
List the compressed R-value of cavity insulation (see Section 6.1) in the cavity column. The framing column is to indicate the size of the framing and the spacing (e.g., 2x6 with 16-inch on center framing), or advanced wall framing (AWF), see Section 6.5.

6.11.2.4 **Sheathing/Insulation**
List the sheathing or insulation layer that will be added to the outside of the framing (such as 1-coat stucco). Options are none, gypsum board, wood, R1 to R60 insulation, or specify R-value (allows an entry that includes one decimal place).

6.11.2.5 **Exterior Finish**
Exterior finish options are 3 coat stucco, or 1 coat stucco (often modeled with sheathing insulation), wood siding, and all other siding.

6.11.2.6 **Non-Standard Spray Foam in Cavity**
This check box identifies that additional documentation and HERS verification requirements apply because the claimed R-value exceeds the default assumption of R-5.8 per inch for closed cell and R-3.6 per inch for open cell (see Section 6.4).

6.11.3 **Mass or Other Unframed Walls**

6.11.3.1 **Inside Finish**
Default value gypsum board.

6.11.3.2 **Insulation/Furring**
List the insulation installed if the walls are furred on the inside. Select the thickness and type of furring which is 0.5-inch to 5.5-inch thick wood or metal.

6.11.3.3 **Mass Layer**
List the material which varies based on the construction type and includes concrete, brick, light weight (LW), medium weight (MW) or normal weight (NW) concrete masonry units (CMU) with solid grout, insulated cores, or empty cores. Select the thickness.

6.11.3.4 **Insulation/Furring**
List the insulation installed if the walls are furred on the outside. Select the thickness and type of furring which is 0.5-inch to 5.5-inch thick wood or metal.
6.11.3.5 Exterior Finish
Exterior finish options are wood siding, 3 coat stucco, or synthetic stucco (also known as 1-coat stucco), wood siding/sheathing/decking, and all other siding.

6.11.3.6 Non-Standard Spray Foam in Cavity
This check box identifies that additional documentation and HERS verification requirements apply because the claimed R-value exceeds the default assumption of R-5.8 per inch for closed cell and R-3.6 per inch for open cell (see Section 6.4).

6.11.4 Below Grade Walls
Underground or below grade walls that are concrete/ICF/Brick can be created using the right-click/create underground walls option on the construction assemblies list. With the exception of the exterior surface (which is assumed to be soil), the inputs are the same above grade walls (Section 6.10.3).

Figure 6-12: Below Grade Walls

6.11.5 Structurally Insulated Panels (SIPs)

6.11.5.1 Inside Finish
Default value gypsum board.

6.11.5.2 Sheathing/Insulation
List the continuous insulation layer on the inside surface (conditioned space side) of the SIP wall. Options are R1 to R60 insulation.
6.11.5.3 Panel Rated R (@ 75 F)
Specify the panel’s rated R-value at 75 degrees in the cavity path (R14 to R55). In the frame path list the thickness of the panel and whether it is or is not OSB.

6.11.5.4 Sheathing/Insulation
List the continuous insulation layer on the outside surface of the SIP wall. Options are R1 to R60 insulation or specify R-value (allows an entry that includes one decimal place).

6.11.5.5 Exterior Finish
Exterior finish options are wood siding, 3 coat stucco, or synthetic stucco (also known as 1-coat stucco), wood siding/sheathing/decking, and all other siding.

6.11.6 Demising and Interior Walls
Walls separating conditioned space from unconditioned space (e.g., from house to garage, knee walls) are modeled in the conditioned space as interior, although actually demising walls. In creating the building envelope, the wall will have conditioned space on one side and unconditioned space or zone on the other side.

When defining multifamily buildings, party walls separating zones are defined as part of both zones in which they occur. The box indicating that there is a dwelling unit on the other side is checked.

When the wall is an interior or demising wall, both the inside and outside surfaces are gypsum board, and there will be no solar gains on the unconditioned side. Knee walls are insulated as a wall.

Figure 6-13: Interior Walls
6.11.7 Garage Exterior Walls

The outermost walls of the garage wall or unconditioned storage space, which are modeled as part of an unconditioned zone, typically do not have insulation (see Figure 6-13).

![Figure 6-14: Uninsulated Exterior Wall](image)

<table>
<thead>
<tr>
<th>Construction Data</th>
</tr>
</thead>
<tbody>
<tr>
<td>Currently Active Construction: Garage Ext. Wall</td>
</tr>
</tbody>
</table>

| Construction Name: Garage Ext. Wall |
| Can Assign To: Exterior Walls |
| Construction Type: Wood Framed Wall |

<table>
<thead>
<tr>
<th>Construction Layers (Inside to outside)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Insulation / Insulation: - no insulation</td>
</tr>
<tr>
<td>Gypsum Board</td>
</tr>
<tr>
<td>Exterior Finish: 3 Cost Stucco</td>
</tr>
</tbody>
</table>

6.12 Floors

Raised floor types that can be created include wood framed, SIPs or concrete/ICF/brick constructions.

Floors may be located over a crawl space or exterior. Interior raised floors may be over an unconditioned attached space (such as a garage) or over another conditioned space (party surface). Steel framed floor construction is not implemented. See Figure 6-15 and Figure 6-16.

Slab on grade and below grade slab floors are not created using a construction assembly (see Section 6.12.4).
### 6.12.1 Raised Floor Construction Data

**6.12.1.1 Construction Name**
User-defined name.

**6.12.1.2 Can Assign To**
This is a fixed field. To create a new assembly type, at the zone level, pick create and make the appropriate construction assembly type.
6.12.1.3 Construction Type
Options include wood and steel frame [not yet implemented] construction, or SIPs.

6.12.2 Raised Floor Construction Layers (top to bottom)

6.12.2.1 Floor Surface
The available floor surface types are carpeted, hardwood, tile, and vinyl.

6.12.2.2 Concrete Fill
Default is no concrete fill. Select no concrete fill, or concrete fill.

6.12.2.3 Floor Deck
Select (1) no floor deck or (2) wood siding, sheathing, decking

Figure 6-17: Interior Floor

6.12.2.4 Cavity/Frame
List the compressed R-value of cavity insulation (see Section 6.1) in the cavity column. The framing column is to indicate the size of the framing and the spacing (e.g., 2x6 with 16-inch on center framing) or panel size for SIPs.

6.12.2.5 Sheathing/Insulation
List the sheathing or insulation layer on the outside of the framing. Options are none, gypsum board, and R1 to R60 insulation.
6.12.2.6 **Exterior Finish or Ceiling Below Finish**

Optional input.

6.12.2.7 **Non-Standard Spray Foam in Cavity**

This check box identifies additional documentation and HERS verification requirements due a claimed R-value that exceeds the default assumption of R-5.8 per inch for closed cell and R-3.6 per inch for open cell (see Section 6.4).

6.12.3 **Floor Over Garage**

A floor over a garage is modeled as an interior floor. When defining the building envelope, the outside surface will be set to garage rather than another conditioned zone. By modeling it as an interior floor, the ceiling below can be set to gypsum board or be left undefined (“- select inside finish –”).

6.12.4 **Slab and Below Grade Slab**

There are no construction assemblies for slab and below grade slab floors. See Sections 7.5 and 7.6.

NOTE: On the CF1R, below grade slab floor area is not included in the general information total for slab area (which only includes the area of slab on grade). The below grade slab floor area is listed in the slab floor table.

6.13 **Window Types**

The window types (but only if set up correctly) can be used to update window efficiencies in an entire building in one or two steps. Do not include any details other than the U-factor and SHGC values. Be sure to enter the values, even when accepting the default values (text changes from blue to red).

Leave size, overhang or fin fields blank and create as few different window types as possible (see Figure 6-18). When you create the building’s walls and windows (see Section 7.6) then you will specify the window sizes and any overhang/fin details.

6.13.1 **Window Type Data**

6.13.1.1 **Window Name**

User defined name (does not appear on the CF1R). Use a brief description of the type of window or the efficiency values (30/23).
6.13.1.2 Specification Method
Window dimension or overall window area. NOTE: This value can be changed when defining the individual windows in the building.

![Figure 6-18: Window Type](image)

6.13.1.3 Model Window Fins and/or Overhangs
Check box is available only when the previous field is set to window dimensions. When defining the window library, do not define an overhang. Overhangs are added when defining the windows in the building.

6.13.1.4 Window Area
Leave blank. This value is specified when defining the windows in the building.

6.13.1.5 NFRC U-factor
Enter the value rather than accepting the default. U-factor is either from National Fenestration Rating Council (NFRC) for the window product (do not use the center of glass value) ([www.nfrc.org](http://www.nfrc.org)) or the default value from standards Section 110.6, Table 110.6-A.

6.13.1.6 Solar Heat Gain Coefficient
Enter the value rather than accepting the default. SHGC is either from NFRC for the fenestration product ([www.nfrc.org](http://www.nfrc.org)) or the default value from standards Section 110.6, Table 110.6-B.
6.13.1.7 Exterior Shade

Default is insect (bug) screens. As with overhangs, as you enter windows in the building you can change this to none.
Chapter 7  Building Envelope

Once the conditioned zone is defined (Figure 7-1) the different components of the building envelope can be created or modified. If using a sample file or previously created file, you will have a library of construction assemblies from which to choose.

**Figure 7-1: Conditioned Zone**

### 7.1 Surface Orientation

Distinct from the building front orientation from the site plan, wall surfaces (and any windows) use the plan orientation or plan view. (Try not to think about whether it faces west, simply determine if the surface is facing the front, left, back or right from the floor plan.) Numeric values are only specified when the wall is at an angle and the value is where the wall is relative to the front. When you must specify an angled wall, the “plan orientation” values are the same for every building—front is 0, left is 90, back is 180, and right is 270. If there is a breakfast nook on the back of the building, the angled walls are entered as (180-45) 135 and (180+45) 225 (see Figure 7-2). The software adjusts these values based on the entry on the building tab for front orientation and reports the actual azimuth.

**USER TIP:** When you enter the actual orientation of a wall, the software models the “specified” value plus the front orientation. This means if the front of the building faces 90 degrees and you identify the front wall as 90 rather than front, the output will reflect 180 (user specified + building front). The CF1R report includes both the plan orientation and the actual azimuth. If you are unsure, carefully check the CF1R for accuracy.
7.2 Opaque Surfaces

Working from top down, add any ceilings below attic and any cathedral ceilings, followed by walls and floors.

7.2.1 Defining Surfaces Surrounding a Zone

CBECC-Res applies logic that requires a modeled space to have a ceiling/roof, floor and sometimes four walls. If a space/zone is adjacent to another space being modeled, the connection between these two zones is achieved by modeling an interior surface (wall, floor, or ceiling) in one of the zones. When connections are missing the file will not run. **NOTE:** When the wall from the house to the garage (interior or demising wall) is incorrectly modeled in the garage, an error will occur. Move the surface to the conditioned space and set the zone on the other side as the garage to get the file to successfully run.

An interior surface may be a demising surface (between conditioned and unconditioned space), a party surface is a surface (the other conditioned space is not modeled), or an interior surface (both conditioned zones are modeled).
7.2.2  Addition Alone Connecting Surfaces (“Party” Surface)
If the adjacent space is not modeled, an interior surface is modeled where the new space connects to the existing space. Check the option for a “party surface” when the adjacent zone is not being modeled.

7.2.3  Ceiling below attic

7.2.3.1  Ceiling Name
User-defined name. If the building plans have a unique identifier, that should be used here to assist in the plan checking and inspection processes.

7.2.3.2  Belongs to Zone
Select any appropriate zone already included in the building model. When copying components of one zone to another, this field automatically changes.

7.2.3.3  Surface Status (if shown)
The default is new for new construction. Other options include existing and altered.

7.2.3.4  Attic Zone
Select any appropriate attic zone or define a new zone. A separate attic zone would be needed if any of the characteristics of the attic are different, including the roofing material, above or below deck insulation, or radiant barrier.

7.2.3.5  Construction
If an appropriate construction assembly is not available, pick create (discussed in depth in Chapter 6, Construction Assemblies).

7.2.3.6  Ceiling Area
Area of the ceiling, in square feet.

User Tip: Check the details of the attic associated with this ceiling. The construction types can be difficult to distinguish. The attic zone will include the type of roof (such as asphalt or tile), whether there is roof deck insulation, a radiant barrier, a cool roof, and roof pitch (see Figure 5-6 and Figure 5-7).

7.2.4  Cathedral Ceiling
The information needed to define a cathedral ceiling is shown in Figure 7-3). Because the orientation is entered for cathedral ceilings, the ceiling will be modeled in multiple entries, with a typical cathedral ceiling having two or more parts (e.g., left, and right).
7.2.4.1 Ceiling Name
User-defined name.

7.2.4.2 Belongs to Zone
Select any appropriate zone already included in the building model. When copying components of one zone to another, this field automatically changes.

7.2.4.3 Surface Status (if shown)
The default is new for new construction. Other options include existing and altered.

7.2.4.4 Construction
If no appropriate construction assembly is available, pick create (discussed in depth in Chapter 6, Construction Assemblies).

7.2.4.5 Ceiling Area
The area of the ceiling (in square feet) that meets all the same specified criteria. The area should be adjusted for the roof pitch (see Table 7-3). If parts of the roof face different orientations, model separately.
### Table 7-3 Roof Pitch Multiplier

<table>
<thead>
<tr>
<th>Roof Pitch</th>
<th>Angle</th>
<th>Roof Pitch Multiplier</th>
</tr>
</thead>
<tbody>
<tr>
<td>1:12</td>
<td>4.76</td>
<td>1.0035</td>
</tr>
<tr>
<td>2:12</td>
<td>9.46</td>
<td>1.0138</td>
</tr>
<tr>
<td>3:12</td>
<td>14.04</td>
<td>1.0308</td>
</tr>
<tr>
<td>4:12</td>
<td>18.43</td>
<td>1.0541</td>
</tr>
<tr>
<td>5:12</td>
<td>22.62</td>
<td>1.0833</td>
</tr>
<tr>
<td>6:12</td>
<td>26.57</td>
<td>1.1180</td>
</tr>
<tr>
<td>7:12</td>
<td>30.26</td>
<td>1.1577</td>
</tr>
<tr>
<td>8:12</td>
<td>33.69</td>
<td>1.2019</td>
</tr>
<tr>
<td>9:12</td>
<td>36.37</td>
<td>1.2500</td>
</tr>
<tr>
<td>10:12</td>
<td>39.81</td>
<td>1.3017</td>
</tr>
<tr>
<td>11:12</td>
<td>42.51</td>
<td>1.3566</td>
</tr>
<tr>
<td>12:12</td>
<td>45.00</td>
<td>1.4142</td>
</tr>
</tbody>
</table>

### 7.2.4.6 Roof Rise

Specify the roof rise or roof pitch, which is the number of feet the roof rises in a span of 12 feet (e.g., shown on plans as 4:12 or 4 feet in 12 feet). If there are multiple pitches you can enter the roof rise of the largest area of roof.

### 7.2.4.7 Orientation

The plan view using labels front, left back and right. If specifying a value, it is based on front = 0, left = 90, back = 180, and right = 270. If the cathedral ceiling is on a part of the building facing an angle, match the orientation of the walls. See Section 7.1.

### 7.2.4.8 Solar Reflectance

The default aged solar reflectance is 0.10 for all roof types. Alternatively, enter the aged solar reflectance for a roof product, as published by the CRRC [www.coolroofs.org](http://www.coolroofs.org). A higher value is better, so if a specific product color is unknown use a lower value among options to avoid having to regenerate compliance documentation during construction. See also Section 5.3.1.7.
7.2.4.9  IR Emittance
The default thermal emittance (or emissivity) for all roofing materials is 0.85. Alternatively, enter the emittance value published by CRRC (www.coolroofs.org). See also Section 5.3.1.8.

7.2.5  Knee Walls
Model any knee walls (a sidewall separating conditioned space from attic space under a pitched roof or where ceiling heights change), as an interior wall with the outside surface as attic, with insulation value typical for a wall.

7.2.6  Exterior Walls
Add the walls in a clockwise or counterclockwise direction and in the order you would like them to appear.

7.2.6.1  Exterior Wall Name
If the building plans use a unique tag or ID, use that for the name, otherwise a simple name such as front or front wall is sufficient. Each name within a zone or on a surface must be unique.

7.2.6.2  Belongs to Zone
The name of the zone in which the wall is being modeled.

7.2.6.3  Surface Status (if shown)
Surface status is used to identify an existing, altered, or new wall. Any surfaces that are part of a new building or addition are new.

Figure 7-4: Exterior Wall
7.2.6.4 Construction

Either pick an existing construction assembly or create a new one (see Section 6.10).

7.2.6.5 Wall Area

Gross wall area, in square feet (the area of windows and doors associated with the wall will be subtracted).

7.2.6.6 Wall Tilt

A wall typically has a tilt of 90 degrees but may range from greater than 60 degrees to less than 120 degrees (see Figure 7-5).

7.2.6.7 Orientation

The plan view orientation. Use front, left, back and right. If specifying a value, it is based on front being equal to 0, left is 90, back is 180, and right is 270, rather than the actual building orientation. The software will add the front orientation and this plan orientation to determine the actual orientation of the modeled surface. See Section 7.1.

7.2.7 Party Walls and Surfaces

When a building includes multiple zones, model any interior surfaces between the zones. Both zones are identified, as well as checking the box that the zone on the other side is modeled (see Figure 7-6).
7.2.8 Below Grade Overview

This is an overview of the inputs scattered throughout this user manual that are related to modeling below grade surfaces, also known as basements or underground surfaces.

In the zone information, if there are below grade surfaces, determine the depth of the below grade walls and floor and enter the zone bottom as the negative of that number. For example, if the walls are 6 feet 4 inches below grade, the wall and floor depths are 6.33 feet, and the zone depth is -6.33 feet.

Some modeling decisions to consider: (1) Because the orientation is not an input and it is not possible to have doors or windows on below grade walls, you may be able to combine walls (as long as this does not result in a “not enough surfaces” error. (2) If the ground is sloped, use your professional judgment as to how detailed to break out the surfaces. You could either select an average, model all at the lowest level (conservative), or somewhere in between. (3) The zone type “unconditioned” cannot be modeled. An unconditioned basement would not be modeled.

7.2.9 Below Grade Walls

Create below grade and slab floors using the right-click, create underground wall or floor. Below grade floors are described in Section 7.5.

7.2.9.1 Depth of Bottom of Wall Below Grade

Measurement from grade to the bottom surface of the wall (entered as a positive number, in feet).
7.2.9.2 Wall Area

Because wall orientation is not an input, enter the combined area of walls that share the same characteristics (in feet).

Figure 7-7: Underground Walls

![Underground Wall Data](image)

7.2.9.3 Construction Assembly

Pick one of the construction assemblies or create a new underground wall assembly (see Section 6.10). Construction assemblies are limited to concrete/ICF/Brick. With the exception of the exterior surface (which is assumed to be soil), for other wall inputs see Section 6.11.3 for wall inputs.

7.2.10 Garage Surfaces

When there is a garage or attached unconditioned space (check on the building tab “has attached garage”), any surfaces between these zones are modeled in the conditioned zone. These surfaces are modeled as interior walls and interior floors (see Sections 6.11.1 and 6.12.3).

No surface is modeled more than once, so if the garage ceiling is a floor in the conditioned space zone, it is not modeled in the garage. The garage exterior surfaces are not typically insulated, and there is no need to model windows in a garage/unconditioned space. Model the area and type of ceiling, slab floor (perimeter length is only to exterior), any walls, the large metal roll-up or wood door (U-factor 1.00), and the door to outside.
**USER TIP:** If there are not enough surfaces, be sure you have modeled a floor, a roof (or interior floor from the house to the garage if there is conditioned space above), and all exterior walls. Make sure the connecting surface from the house to the garage is in the house. If there is still an adequate number of surfaces, model one of exterior walls in two parts.

### 7.2.11 Opaque Doors

![Figure 7-8: Opaque Door](image)

Doors (opaque) and windows (fenestration) are modeled separately under the wall surface with which they are associated. For doors with glass, first determine if only part of the door or the entire door is a fenestration product. If 25 percent or more of the door area is glass, the entire door area is modeled as a fenestration product using either default or NFRC-rated values.

When a door is less than 25 percent glass, calculate the glass area plus two inches on all sides (to account for a frame) and model that as a window. The opaque door area is the total door area minus the calculated glass area. The standard design building has the same area of opaque door (U-factor 0.20) as the proposed design building.

#### 7.2.11.1 Door Name

User defined name.

#### 7.2.11.2 Belongs to Exterior Wall

Default is the existing wall. When copying window data to another zone, the program changes this to the new exterior wall.

#### 7.2.11.3 Door Status

The default is new for new construction or if part of an addition. Other options include altered and existing.
7.2.11.4 Door Area
Enter the door area, in square feet.

7.2.11.5 U-factor
Default value is 0.20 for opaque doors. Fire-rated doors (from the house to the garage) may have a maximum U-factor of 0.50. Other values allowed are from Joint Appendix 4, Table 4.5.1.

7.2.12 Garage Door
When modeling a garage zone, the large garage doors (metal roll-up or wood) are modeled with a 1.00 U-factor.

7.3 Raised Floor
When creating a raised floor over a crawl space, the software creates the crawl space zone. When a raised floor is over an unconditioned space, such as a garage, this surface is modeled in the conditioned zone as an interior (or demising) floor. The adjacent zone is the garage.

A raised floor over exterior is when there is no crawl space and no unconditioned space underneath the floor (for example, a second floor balcony).

7.3.1 Floor over Exterior or Crawl Space

Figure 7-9: Raised Floor

7.3.1.1 Exterior Floor Name
User-defined name.
7.3.1.2 Belongs to Zone
Select any appropriate zone already included in the building model. When copying components of one zone to another, this field automatically changes.

7.3.1.3 Surface Status (if shown)
Select new, altered, or existing.

7.3.1.4 Construction
Raised floor over crawl space, exterior floor, or interior floor. If an appropriate construction assembly is not available, pick create (discussed in depth in Chapter 6, Construction Assemblies).

7.3.1.5 Floor Area
Area of the floor, in square feet.

7.3.1.6 Floor Elevation
Height above grade or the depth of crawl space, in feet. This value must be consistent with the zone information. If the crawl space height is 2 feet, the zone bottom is 2, this value is also 2. If this is a second floor, and the first-floor zone has a bottom of 2, with a floor to floor height of 10, then this value for the second floor is 12. If the first and second floors are modeled as separate zones (user’s choice) this value will match the zone input for bottom. See more in Section 5.1.1 and Figure 5-2.

7.3.2 Interior Floor/Floor Over Garage
A raised floor over a garage or over another conditioned space is modeled as an interior floor, but with either the garage or another zone on the other side.

USER TIP: A garage floor is not a party surface. Party surface means there is conditioned space underneath.
7.3.2.1 Interior Floor Name
User-defined name.

7.3.2.2 Belongs to Zone
Select any appropriate zone already included in the building model. When copying components of one zone to another, this field automatically changes.
7.3.2.3 Surface Status (if shown)
Select new, altered, or existing.

7.3.2.4 Is a Party Surface / Zone on Other Side Is Modeled
If the surface connects two conditioned spaces, check party surface (see Figure 7-11). Indicate if the adjacent zone is modeled as part of this input file.

7.3.2.5 Zone on Other Side
Identify the name of the adjacent zone.

7.3.2.6 Construction
Interior raised floor. If an appropriate construction assembly is not available, right-click and pick create (discussed in depth in Chapter 6, Construction Assemblies).

7.3.2.7 Floor Area
Area of the floor, in square feet.

7.3.2.8 Floor Elevation
Height above grade, in feet. This value must be consistent with the zone information. If the bottom of the zone is 0.7 and the floor to floor height is 10, this value is 10.7.

7.4 Slab Floor
Slab on grade floors are modeled in conditioned spaces, unconditioned spaces, heated slab floors, slab floors with mandatory or optional slab edge insulation, floors with 20% exposed and 80% covered, or some other combination of exposed and covered slab.
7.4.1.1 Slab Floor Name
If the building plans use a unique tag or ID, use that for the name. Each name within a zone or on a surface must be unique.

7.4.1.2 Belongs to Zone
The name of the zone in which the slab is being modeled.

7.4.1.3 Slab Floor Status
Select New, Existing, or Altered (for other than new construction).

7.4.1.4 Floor Area
Area in square feet measured from the outside of the exterior surface of the zone.

7.4.1.5 Perimeter
Length of slab edge (in feet) between the space modeled and exterior only. Do not include the length of edge that occurs between the house and garage (an area that cannot be insulated if the edge is being insulated).

7.4.1.6 Heated slab
Check box to indicate that the slab is heated, in which case mandatory insulation requirements apply. See standards Section 110.8.
7.4.1.7 Surface
Default for conditioned spaces is 20% exposed/80% covered, otherwise specify exposed or covered slab (modeled separately). Covered slab includes carpet, cabinets, and walls. Garages must be modeled as exposed. A conditioned zone with greater than 20% exposed is reported as a special feature.

7.4.1.8 Slab Has Edge Insulation
Check box to indicate that the slab edge will be insulated.

7.4.1.9 R-value & Depth (or Length)
When slab edge insulation is indicated in the check box, the R-value and depth of the proposed slab edge insulation is identified. Depth of insulation installed vertically is specified in inches. Horizontally installed insulation is specified in feet. A fully insulated slab is not yet implemented.

7.5 Below Grade Slab/Underground Floor
When a slab floor is below grade, create an underground floor by right-clicking on the zone. There are no edge losses for the below grade slab.

![Figure 7-13: Underground Floor Data](image)

7.5.1.1 Slab Floor Name
If the building plans use a unique tag or ID, use that for the name. Each name within a zone or on a surface must be unique.

7.5.1.2 Belongs to Zone
The name of the zone in which the below grade slab is being modeled.

7.5.1.3 Slab Floor Status
Select New, Existing, or Altered (for other than new construction).
7.5.1.4  Floor Area
Area in square feet measured from the outside of the exterior surface of the zone.

7.5.1.5  Depth Below Grade
This is the depth of the floor below grade (positive number, in feet). With the exception that this value is expressed as a positive number, this value should match the value for the zone bottom (see Section 5.1.1.8).

7.6  Windows
The standards establish a maximum weighted average U-factor of 0.58 (Section 150.0(q)) for fenestration, including skylights. The exception allows the greatest of 10 ft² or 0.5 percent of the conditioned floor area to exceed the maximum 0.58 U-factor.

Using window types before defining the windows is a very important and time-saving step. As explained in Section 6.13, create a library of window types using only the U-factor and SHGC. Be sure to enter the value directly, even if keeping the default values (or it will not work). Because you must model each window individually, using window types in this way gives you the flexibility to update the efficiencies in one or two steps.

*USER TIP:* To update window efficiencies, access the window type, update the efficiency (and even the name) and every window that references that type is updated.

7.6.1  Window Data
Right-click on the wall to which you will add windows and pick <create> and select window. The screen shown in Figure 7-14 is displayed.

7.6.1.1  Window Name
User defined name. If the plans use a window schedule or unique identifier, that identifier can be used for the window name. Each window on a given surface must have a unique name.

7.6.1.2  Belongs to Exterior Wall
Defaults to the wall on which the window was created. When copying window data to another zone, the program changes this to the new exterior wall.

7.6.1.3  Surface Status (if shown)
Select new, altered, or existing.
7.6.1.4 Window Type

If using a window type from the library you created, select from the valid options. See Section 6.13 for setting up and updating the window types.

If this field is “none,” the window U-factor and SHGC of each window is entered directly.

7.6.1.5 Specification Method

Select either Window Dimensions (required for fins and overhangs) or Overall Window Area.

7.6.1.6 Model Window Fins and/or Overhangs

Check box is available only when the specification method is set to window dimensions.

USER TIP: Whether you model overhangs or not, if this box is checked a full row in the overhangs and fins table appears on the CF1R. To save room on the CF1R, uncheck this box for any windows without an overhang.

7.6.1.7 Window Area

If using the overall window area, enter the area of a window (in square feet). If using window dimensions once the width and height are entered, this value will autofill.
**USER TIP:** If using a multiplier with window dimensions, the window area is only for one window, however, the CF1R will show the width, height, multiplier, and total area for the entry.

7.6.1.8 **Width**
Enter the window width (in feet), if using the window dimensions method.

7.6.1.9 **Height**
Enter the window height (in feet), if using the window dimensions method.

7.6.1.10 **Multiplier**
The number of identical windows (NOTE: must also have identical overhang and fin conditions).

7.6.1.11 **NFRC U-factor**
If a window type was selected above, this value is auto-completed using the U-factor previously entered. If window type is “none,” enter either the product U-factor (not the center of glass value) from NFRC (www.nfrc.org) or the default value from standards Section 110.6, Table 110.6-A.

7.6.1.12 **Solar Heat Gain Coefficient**
If a window type was selected above, this value is auto completed using the Solar Heat Gain Coefficient (SHGC) previously entered. If window type is “none,” enter either the product SHGC from NFRC (www.nfrc.org) or the default value from standards Section 110.6, Table 110.6-B.

7.6.1.13 **Source of U-factor/SHGC**
The three valid sources are NFRC, default, or Alternate Default Fenestration Procedure (ADFP). A rarely used provision in the standards is for unrated site-built fenestration, which requires use of Reference Appendix NA6 to calculate both the U-factor and SHGC. Whichever source is used, the standards require a temporary label on every window. See References Appendices (CEC-400-20012-005), p. NA6-1 through 6-5 for further information and responsibilities associated with this calculation procedure.

7.6.1.14 **Exterior Shade**
The default selection is insect screens for windows, none for skylights.

7.6.2 **Window Overhang**
Under the window overhang tab enter the overhang dimensions and position.
7.6.2.1 Depth
Distance the overhang projects out from the wall (in feet).

7.6.2.2 Distance Up
The distance (as viewed from elevations) from the top of the window to the bottom of the overhang (in feet).

7.6.2.3 Extends Left
Distance (in feet) the overhang extends from the left edge of the window to the end of the overhang.

7.6.2.4 Extends Right
Distance (in feet) the overhang extends from the right edge of the window to the end of the overhang.

7.6.2.5 Flap Height
Default 0 feet. If the overhang has a flap that extends lower than the bottom of the overhang, thereby increasing the potential shading of the overhang, this added length is modeled as the flap height.
7.6.3  **Window Fins**

A window fin is a building feature that provides shading benefit to a window (for example, a recessed entry area). Figure 7-16 shows inputs found in the Window Fins tab.

7.6.3.1  **Left Fin Depth**

Depth (in feet) of the wall (fin) to the left of the window that provides shading to the window.

7.6.3.2  **Distance Left**

Distance (in feet) from the left edge of the window to the left fin.

7.6.3.3  **Top Up**

Distance (in feet) from the top of the window to the top of the wall (fin).

7.6.3.4  **Bottom Up**

Distance (in feet) from the bottom of the window to the bottom of the left fin.

7.6.3.5  **Right Fin Depth**

Depth (in feet) of the wall (fin) to the right of the window that provides shading to the window.

7.6.3.6  **Distance Right**

Distance (in feet) from the right edge of the window to the right fin.
7.6.3.7  Top Up  
Distance (in feet) from the top of the window to the top of the wall (fin).

7.6.3.8  Bottom Up  
Distance (in feet) from the bottom of the window to the bottom of the right fin.

7.6.4  Glass Doors  
For a door with 50 percent or more glass area, or a door with an NFRC rating, the entire door area is modeled as a window.

The glass area (in square feet) of a door with less than 50 percent glass is the sum of all glass surfaces plus two inches on all sides of the glass (to account for a frame). This area is modeled as a window. The remaining area of the door is modeled as opaque door (see Section 7.2.11).

7.7  Skylights  
To create a skylight, create a section of cathedral ceiling with an area slightly larger than the skylight. Right-click on the cathedral ceiling surface and pick <create> and skylight.

Figure 7-17: Skylight

7.7.1.1  Skylight Name  
User defined name. If the plans use a window schedule or unique identifier, that identifier can be used for the window name. Each skylight on a given surface must have a unique name.

7.7.1.2  Belongs to Cathedral Ceiling  
Defaults to the cathedral ceiling on which you picked create.
7.7.1.3  Skylight Area
Area of the skylight (in square feet).

7.7.1.4  Skylight Status (if shown)
Select new, existing, or altered.

7.7.1.5  Multiplier
The number of identical skylights.

7.7.1.6  NFRC U-factor
U-factor from National Fenestration Rating Council for the skylight (www.nfrc.org), or default from Section 110.6, Table 110.6-A.

7.7.1.7  Solar Heat Gain Coefficient
Solar Heat Gain Coefficient (SHGC) from National Fenestration Rating Council for the skylight (www.nfrc.org), or default from Section 110.6, Table 110.6-B.

7.7.1.8  Source of U-factor/SHGC
The three valid sources are NFRC, default, or Alternate Default Fenestration Procedure (ADFP). A rarely used provision in the standards is for unrated site-built fenestration, which requires use of Reference Appendix NA6 to calculate both the U-factor and SHGC. Whichever source is used, the standards require a temporary label on every window. See References Appendices (CEC-400-2012-005), p. NA6-1 through 6-5 for further information and responsibilities associated with this calculation procedure.
Chapter 8  Mechanical Systems

8.1  Overview

The heating, cooling, duct/distribution system and space conditioning fans are assigned at the zone level of the building (see Figure 5-1 and Section 5.1.1.10) by name, such as HVAC system 1. The details of those systems assigned to the building are on the mechanical tab (see Figure 8-1) as explained in this chapter.

The information in this chapter is from the point of view of the mechanical tab. If changes to the system assigned to the zone are needed, it is easiest to make those changes from this area, leaving the system name intact.

Figure 8-1: Mechanical Tab

Equipment can be added to an input file for any of the systems types, however, a specific system or piece of equipment is only modeled when it is assigned to the HVAC (or water heating) system specified in the zone (see Figure 8-2).

**USER TIP:** Indoor air quality ventilation and cooling ventilation equipment defined on the mechanical tab are only modeled in the building if they are specified on the indoor air quality ventilation or cooling ventilation tabs at the project level (see Sections 4.9 and 4.10).

8.1.1  Newly Added Equipment Types

New equipment types are added to CBECC-Res in versions 1.2 and 1.3:
• Minisplit and multisplit heat pumps and air conditioners now include both ducted and ductless types. NOTE: This equipment provides no credit (for other compliance options, see the next bullet). For this reason, changing the SEER from 14 to 20 will not change compliance results. This limit is consistent with specifications in the 2019 ACM Reference Manual, Section 2.4.5.

![Figure 8-2: Equipment Assigned at Zone](image)

• Variable capacity heat pumps are modeled using a newly approved compliance option (see Section 8.4.3). Low-static ducted, partially ducted, and ductless systems can be modeled. While there is a lot to learn about this equipment, if your system is ducted or partially ducted, it could be worth your time. See the 2019 Frequently Asked Questions for more information about the HERS requirements ([https://www.energy.ca.gov/programs-and-topics/programs/building-energy-efficiency-standards/2019-building-energy-efficiency-standards-2](https://www.energy.ca.gov/programs-and-topics/programs/building-energy-efficiency-standards/2019-building-energy-efficiency-standards-2)).

• Single packaged vertical air conditioners and heat pumps.
• Packaged terminal air conditioners (PTAC) and heat pumps (PTHP).
• Packaged gas furnace (modeled with packaged air conditioning).

**USER TIP:** Insufficiently defined equipment (such as a heat pump with no capacity), systems that would cause an error (such as ducts in attic for a building with no attic), or systems with missing components, will cause errors even if not used in the building. Consider deleting unused HVAC systems and equipment.

### 8.1.2 Multiple HVAC Systems

When multiple systems of the same type serve different areas of a building, it is the user’s option to separately zone the systems. However, if modeled as one zone with multiple systems, the compliance program will use the lowest efficiency.
When multiple systems of different equipment or fuel types serve the building, each type must be modeled as a separate zone to accommodate the different equipment types.

When multiple systems serve the same floor area, only one system can be modeled. The system modeled depends on the size and types of systems. If the capacity of the secondary system does not exceed 2 kW or 7,000 Btu/hr and is controlled by a time-limiting device of 30 minutes or less, the system is considered supplemental and may be ignored (Residential Compliance Manual, Section 8.7.3, and §150.1(c)6). If the system does not meet these criteria, the system that is modeled is the one that consumes the most TDV energy (least efficient). For spaces with electric resistance heat in addition to another heating system, the electric resistance heat is the system that must be modeled.

8.1.3 **Zonal Control (Living/Sleeping Zones)**

CBECC-Res includes two different features using the phrase “zonal control.” For information on zonal cooling, multi-speed compressors, meeting a lower target CFM/ton, and the presence of a bypass duct, see Zonal Cooling, Section 8.5.3. This credit is set in cooling system data.

The remainder of this section is describing the zonal control credit with living and sleeping zones modeled separately. Zonal control credit requires:

- Each habitable room must have a source of space conditioning,
- The sleeping and living zones must be separately controlled,
- A non-closeable opening between the zones cannot exceed 40 ft²,
- Each zone must have a temperature sensor and a setback thermostat, and
- The return air for the zone must be located within the zone.

A full list of eligibility criteria for this measure is in the Residential Compliance Manual, Section 4.5.2.

To model zonal control credit, check the zonal control feature on the Building tab (Figure 8-3). Once specified, the zone type can be set to Living or Sleeping (see Figure 8-4) which changes the setback thermostat settings for the heating system. Zonal control credit is not available if space heating is provided by a heat pump or combined hydronic system. Zonal control credit is not a HERS verified credit.
8.2 HVAC System Data

8.2.1.1 System Name
User-defined name.

8.2.1.2 System Type
Select the correct system type as:

- Heat pump heating and cooling system,
- Variable outdoor air ventilation central heat/cool system (NOTE: this option is only for central fan integrated night ventilation cooling - *variable* speed (for example, NightBreeze™), which is activated by selecting CFI on the Cool Vent Tab (Section 4.12)) or
- Other heating and cooling system, for typical HVAC systems.

8.2.1.3 Unique Heating Unit Types
Indicate the number of unique system types. Not the same as “count” which is the number of identical systems. When modeling multiple efficiencies in a single zone, the worst-case efficiency is assumed in the compliance analysis.
8.2.1.4 Heating Unit
Name of the heating system.

8.2.1.5 Count
Number of specified heating units to be installed. This value is also noted by the HERS provider when a project is uploaded.

8.2.1.6 Ducted Heating
For equipment types that allow either ducted or non-ducted equipment, check the box if the system is ducted (for example, combined hydronic).

8.2.1.7 Autosize Capacity
Not a user input.

8.2.1.8 Unique Cooling Unit Types
Indicate the number of unique system types. Not the same as “count” which is the number of systems. When modeling multiple efficiencies in a single zone, the worst-case efficiency is assumed in the compliance analysis.
8.2.1.9 **Cooling Unit**
Name of the cooling system.

8.2.1.10 **Count**
Number of specified cooling units to be installed. This value is also noted by the HERS provider when a project is uploaded.

8.2.1.11 **Ducted Cooling**
For equipment types that allow either ducted or non-ducted equipment, check the box if the system is ducted.

8.2.1.12 **Autosize Capacity**
Not a user input.

8.2.1.13 **Distribution**
Name of the duct or distribution system. For ductless systems, including no cooling with ductless heating, pick “none.”

8.2.1.14 **Fan**
Name of the HVAC fan system. If a system type does not have a fan (e.g., combined hydronic, wall furnace), or if there is no cooling system, a value of “none” may be modeled.

If using central fan integrated night ventilation cooling, this is the fan that operates in ventilation mode.

8.2.2 **Central Fan Integrated Cooling**

8.2.2.1 **Cooling Vent**
When displayed for a central fan integrated night ventilation cooling system, select fixed flow. See Section 8.9.3 for variable speed.

8.2.2.2 **Fixed Flow (CFM)**
When displayed, specify the fixed flow CFM for the system (or let the program set the default value).

8.2.2.3 **Watts/CFM**
When displayed, specify the Watts/CFM for the proposed central fan integrated night ventilation cooling system. The default value is 0.45 Watts/CFM. For heat pumps, the value is 0.58.
8.2.2.4 Attic (relief zone)
When displayed, specify the attic zone in which the CFI fan is located.

8.3 Heating Systems
The heating system is the equipment that supplies heat to an HVAC System. Heating systems are categorized by the types shown in Table 8-1.

8.3.1 Heating System Data (other than heat pump)

Figure 8-6: Heating System Data

Heating system data inputs vary slightly by equipment type.

8.3.1.1 Name
User-defined name for the heating system.

8.3.1.2 Type
Heating system type (see Table 8-1).

8.3.1.3 Efficiency
Enter an appropriate efficiency for the equipment type (e.g., 80.2 AFUE). The software will include the minimum efficiency for typical system types. Efficiency information for a specific model number of heating and cooling equipment is found by performing an “advanced search” in the CEC’s appliance directories, https://cacertappliances.energy.ca.gov/Pages/Search/AdvancedSearch.aspx, or from the Air-Conditioning, Heating, and Refrigeration Institute (AHRI) Certified Products Directory, https://www.ahridirectory.org/ahridirectory/pages/home.aspx.
Table 8-1: Heating Equipment

<table>
<thead>
<tr>
<th>Descriptor</th>
<th>Heating Equipment Reference</th>
</tr>
</thead>
<tbody>
<tr>
<td>Central Furnace</td>
<td>Gas- or oil-fired central furnaces, propane furnaces or heating equipment considered equivalent to a gas-fired central furnace. Gas fan-type central furnaces have a minimum AFUE=80%. Distribution can be gravity flow or use any of the ducted systems.</td>
</tr>
<tr>
<td>Wall Furnace Fan</td>
<td>Wall furnace, fan type. Minimum AFUE=75%. Distribution is ductless</td>
</tr>
<tr>
<td>Boiler</td>
<td>Gas or oil boilers. Distribution systems can be Radiant, Baseboard or any of the ducted systems. Boiler is specified for dedicated hydronic systems. Systems in which the boiler provides space heating and fires an indirect gas water heater (IndGas) may be listed as Boiler/CombHydro Boiler and shall be listed under “Equipment Type” in the HVAC Systems listing.</td>
</tr>
<tr>
<td>Wood Heat</td>
<td>Wood-fired stove. In areas with no natural gas available, a wood heating system with any back-up heating system may be installed if exceptional method criteria described in the Residential Compliance Manual are met.</td>
</tr>
<tr>
<td>Packaged Gas Furnace</td>
<td>Packaged gas furnace. The furnace side of a packaged air-conditioning system. Packaged gas or propane furnaces have a minimum AFUE=81%. Distribution can be any of the ducted systems.</td>
</tr>
<tr>
<td>Electric</td>
<td>All electric heating systems other than space conditioning heat pumps. Included are electric resistance heaters, electric boilers and storage water heat pumps (air-water) (StoHP). Distribution system can be Radiant, Baseboard or any of the ducted systems.</td>
</tr>
<tr>
<td>Combined Hydronic</td>
<td>Water heating system can be a boiler, storage or instantaneous gas, propane, or electric water heater. Distribution systems can be ducted or non-ducted.</td>
</tr>
<tr>
<td>Wall Furnace Gravity</td>
<td>Wall furnace, gravity flow. Minimum AFUE=65%. Distribution is ductless.</td>
</tr>
<tr>
<td>Floor Furnace</td>
<td>Floor furnace. Minimum AFUE=57%. Distribution is ductless.</td>
</tr>
<tr>
<td>Room Heater</td>
<td>Room heater. Minimum AFUE=61%. Distribution is ductless.</td>
</tr>
</tbody>
</table>

8.3.2 Non-central Heating

Specify the appropriate system type as electric, floor furnace, room heater, fan type wall furnace, or gravity flow wall furnace.

It is important to look in AHRI or the CEC directory for the actual efficiency for the equipment type selected because 80% AFUE may not be an achievable efficiency for a gravity wall furnace or a floor furnace (see Section 8.3.1.3 for links to available directories). The minimum efficiency for the product type (also displayed on the CBECC-Res screen) is:
<table>
<thead>
<tr>
<th>System Type</th>
<th>Minimum AFUE %</th>
</tr>
</thead>
<tbody>
<tr>
<td>Wall furnace, fan type</td>
<td>75</td>
</tr>
<tr>
<td>Wall furnace, gravity flow</td>
<td>65</td>
</tr>
<tr>
<td>Floor furnace</td>
<td>57</td>
</tr>
<tr>
<td>Room heater</td>
<td>61</td>
</tr>
</tbody>
</table>

Assuming the cooling is also ductless, model both the distribution system and fan as “none.” If there is no cooling system see Section 8.3.2 for the proper way to model no cooling (“none” or blank will not run).

**NOTE:** If electric heating is selected, the default efficiency assumed by the program is 3.413 HSPF. This equipment is not required to be certified.

### 8.3.3 Wood Heat

When all of the qualifications for the wood heat exceptional method are met (see *Residential Compliance Manual*, Section 4.7.7), the heating system (which includes any back-up heating system) receives neither a penalty nor a credit. A hypothetical heating system that meets prescriptive requirements is simulated by the program and the back-up heating system is ignored.

### 8.3.4 Hydronic Distribution Systems and Terminals

The only combined hydronic systems currently implemented are those that have 10 feet or less of piping in unconditioned space.

When hydronic systems have more than 10 feet of piping (plan view) located in unconditioned space, additional information about the distribution system is needed.

Other information reported includes:

- **Piping Run Length (ft).** The length (plan view) of distribution pipe located in unconditioned space, in feet, between the primary heating/cooling source and the point of distribution.
- **Nominal Pipe Size (in.).** The nominal (as opposed to true) pipe diameter in inches.
- **Insulation Thickness (in.).** The thickness of the insulation in inches. Enter "none" if the pipe is uninsulated.
- **Insulation R-value (hr-ft²·°F/Btu).** The installed R-value of the pipe insulation. Minimum pipe insulation for hydronic systems is as specified in §150.1(j).
8.3.5 Combined Hydronic

A combined hydronic system uses the same device to provide both space heating and water heating. If the system is a hydronic system with separate water heating, model the space heating as “boiler.”

**USER TIP**: A heat pump water heater cannot currently be modeled as the heat source in a combined hydronic system. Consider an air to water system (Section 8.4.5).

Define the system type from the type option as ‘CombHydro’. In the field labeled Combined Hydronic Water Heater, specify the device that is providing the source for the space and water heating (currently limited to large gas water heater or gas boiler). Figure 8-7 shows the heat source as a commercial storage (100-gallon) water heater (see also example file 2Story Example3CombHydNoCool.ribd19).

![Figure 8-7: Combined Hydronic Heating Data](image)

**NOTE**: For the water heating system, define a system using the same water-heating device (such as the large water heater) as the water heating system.

8.4 Heat Pumps

Heat pump options appear when the System Type (Section 8.2.1.2) is set to Heat Pump Heating and Cooling System. Data inputs vary by equipment type.
Figure 8-8: Heat Pump Data

8.4.1  Heat Pump Inputs

8.4.1.1  Name
User-defined name for the system.

8.4.1.2  Type
Heat pump system type (see Table 8-2).

8.4.1.3  Heating Performance HSPF
Enter the heating seasonal performance Factor (HSPF). Find efficiency information for a specific model number by performing an “advanced search” in the CEC’s appliance directories, or from the AHRI Certified Products Directory.

8.4.1.4  Capacity @ 47 Degrees F
This is a required value (from AHRI). CBECC-Res uses the capacities to determine the energy use of the backup electric resistance heat. In a multifamily building indicate the capacity and specify the number of units of that given capacity assigned to the zone (see Section 8.1.1.5).

8.4.1.5  Capacity @ 17 Degrees F
When displayed, this is a value from AHRI. For VCHP equipment, this is an optional input.
### Table 8-2: Heat Pump Equipment

<table>
<thead>
<tr>
<th>Descriptor</th>
<th>Heating Pump Equipment Reference</th>
</tr>
</thead>
<tbody>
<tr>
<td>Split Heat Pump</td>
<td>Central split system heat pump heating systems. Distribution system shall be one of the ducted systems. [Efficiency Metric: HSPF]</td>
</tr>
<tr>
<td>Packaged Terminal Heat Pump</td>
<td>A packaged terminal air conditioner that uses reverse cycle refrigeration as its prime heat source, that has a supplementary heating source available, with the choice of electric resistant heat. [Efficiency Metric: EER, COP47]</td>
</tr>
<tr>
<td>Single Packaged Vertical Heat Pump</td>
<td>A single package vertical air conditioner that uses reverse cycle refrigeration as its prime heat source, may include secondary supplemental heating by means of electrical resistance. [Efficiency Metric: EER, COP47]</td>
</tr>
<tr>
<td>SDHV Split Heat Pump</td>
<td>Small Duct, High Velocity, Central split system that produces at least 1.2 inches of external static pressure when operated at the certified air volume rate of 220–350 CFM per rated ton of cooling and uses high velocity room outlets generally greater than 1,000 fpm that have less than 6.0 square inches of free area. [Efficiency Metric: HSPF]</td>
</tr>
<tr>
<td>Ductless Mini-Split Heat Pump</td>
<td>A heat pump system that has single outdoor section and one or more ductless indoor sections. The indoor section(s) cycle on and off in unison in response to a single indoor thermostat. [Efficiency Metric: HSPF]</td>
</tr>
<tr>
<td>Ductless Multi-Split Heat Pump</td>
<td>A heat pump system that has a single outdoor section and two or more ductless indoor sections. The indoor sections operate independently and can be used to condition multiple zones in response to multiple indoor thermostats. [Efficiency Metric: HSPF]</td>
</tr>
<tr>
<td>Ductless VRF Heat Pump</td>
<td>A variable refrigerant flow (VRF) heat pump system that has one or more outdoor sections and two or more ductless indoor sections. The indoor sections operate independently and can be used to condition multiple zones in response to multiple indoor thermostats. [Efficiency Metric: HSPF]</td>
</tr>
<tr>
<td>Ducted Mini-Split Heat Pump</td>
<td>A heat pump system that has single outdoor section and one or more ductless indoor sections. The indoor section(s) cycle on and off in unison in response to a single indoor thermostat. [Efficiency Metric: HSPF]</td>
</tr>
<tr>
<td>Ducted Multi-Split Heat Pump</td>
<td>A system that has a single outdoor section, and two or more ductless indoor sections. The indoor sections operate independently and can be used to condition multiple zones in response to multiple indoor thermostats. [Efficiency Metric: SEER, HSPF]</td>
</tr>
<tr>
<td>Descriptor</td>
<td>Heating Pump Equipment Reference</td>
</tr>
<tr>
<td>------------</td>
<td>----------------------------------</td>
</tr>
<tr>
<td><strong>Ducted + Ductless Multi-Split Heat pump</strong></td>
<td>A system with both ducted and ductless multi-split heat pumps. A multi-split heat pump being a system that has a single outdoor section, and two or more ductless indoor sections. The indoor sections operate independently and can be used to condition multiple zones in response to multiple indoor thermostats. [Efficiency Metric: SEER, HSPF]</td>
</tr>
<tr>
<td><strong>Packaged Heat Pump</strong></td>
<td>Central packaged heat pump systems. Central packaged heat pumps are heat pumps in which the blower, coils and compressor are contained in a single package, powered by single phase electric current, air-cooled, rated below 65,000 Btuh. Distribution system shall be one of the ducted systems. [Efficiency Metric: HSPF]</td>
</tr>
<tr>
<td><strong>Large Package Heat Pump</strong></td>
<td>[Not enabled] Large packaged units rated at or above 65,000 Btu/hr (heating mode). Distribution system shall be one of the ducted systems. These include water source and ground source heat pumps. [Efficiency Metric: COP]</td>
</tr>
<tr>
<td><strong>Room Heat Pump</strong></td>
<td>Non-central room air conditioning systems. These include packaged terminal (commonly called “through-the-wall”) units and any other ductless heat pump system. [Efficiency Metric: CEER]</td>
</tr>
<tr>
<td><strong>Air to Water Heat Pump</strong></td>
<td>An indoor conditioning coil, a compressor, and a refrigerant-to-water heat exchanger that provides heating and cooling functions. Also able to heat domestic hot water. [Efficiency Metric: COP, EER]</td>
</tr>
<tr>
<td><strong>Ground Source Heat Pump</strong></td>
<td>An indoor conditioning coil with air moving means, a compressor, and a refrigerant-to-ground heat exchanger that provides heating, cooling, or heating and cooling functions. Also able to heat domestic hot water. [Efficiency Metric: COP, EER]</td>
</tr>
<tr>
<td><strong>VCHP</strong></td>
<td>Meets all the requirements of the VCHP Compliance Option.</td>
</tr>
</tbody>
</table>

### 8.4.1.6 Cooling Performance - SEER

Cooling equipment Seasonal Energy Efficiency Ratio (SEER). For equipment tested only with an EER, enter the EER as the SEER. When a value higher than 14 SEER for “Compliance 2020” is modeled, it triggers a HERS Verification of High SEER. Find efficiency information from an advanced search of the CEC’s [appliance directories](http://example.com) or from the [AHRI Certified Products Directory](http://example.com).

### 8.4.1.7 EER

Cooling equipment Energy Efficiency Ratio (EER). CBECC-Res has default values for the EER based on the SEER value modeled. An EER higher than 11.7 requires verification by a HERS Rater. EER ratings are from [AHRI](http://example.com).
8.4.1.8  CFM per Ton

The mandatory requirement for cooling airflow is 350 CFM/ton for ducted cooling systems (also assumed for dwellings with no cooling), or 150 CFM/ton for Zonal Single Speed systems. Users may model a higher airflow. All cooling systems require HERS verified system airflow using diagnostic testing procedures from Reference Appendices, Residential Appendix RA3.

8.4.1.9  AC Charge

Verified refrigerant charge. Select Not Verified, Verified, or Fault Indicator Display (FID). There is no mandatory requirement for verified refrigerant charge, however, the standard design in climate zones 2 and 8-15 includes proper refrigerant charge for most equipment types (see standards §150.1(c)8).

8.4.1.10  Refrigerant Type

Default R410A assumed for all refrigerant containing equipment.

8.4.1.11  Multi-Speed Compressor

Use this field to indicate if the cooling system is a zonally controlled multi-speed compressor. An exception for single speed compressors would leave this box unchecked and specify 150 CFM/ton (see Section 8.3.1.5).

8.4.1.12  Zonally Controlled

Checkbox to indicate zonally controlled cooling equipment. A HERS rater will verify the modeling assumptions associated with a bypass duct, CFM/ton, and single- or multi-speed compressor (Section 8.5.3).

8.4.2  Mini-Split, Multi-Split, and VRF Heat Pump

**NOTE:** Ducted and ductless mini-split, multi-split and variable refrigerant flow equipment is assumed to have minimum efficiency regardless of the efficiency modeled. This is consistent with requirements of Section 2.4.5 of the 2019 ACM Reference Manual.

**USER TIP:** Ducted or partially ducted equipment may achieve better compliance results using the new variable capacity heat pump compliance option (Section 8.4.3)

Ducted, ductless, and combinations of distribution systems can be modeled for minisplit, multisplit, and variable refrigerant flow heat pumps. The systems are modeled as minimum efficiency systems. When higher than minimum SEER or EER values are modeled, although reported on the CF1R, they have no effect on compliance. Ducted systems are required to meet mandatory requirements for airflow (default 350 CFM/ton) and fan efficacy (0.58 W/CFM).
An example file (1StoryExample3HVAC.ribd19) is included in the projects folder. For ductless equipment, the distribution system and fan can be set to “none” on the HVAC System Data screen.

See Section 8.4 for input values.

### 8.4.3 Variable Capacity Heat Pump

Performance for variable capacity heat pumps (VCHP) is based on the compliance option approved by the CEC in December 2019. Results will vary depending on ducts and fan choices. VCHP inputs are similar to other heat pumps with the exception that all inputs are included with the heat pump data. Ducts and fan are not included on the HVAC system data screen (see Figure 8-10).

Compliance includes meeting unique HERS verified measures developed specifically for the VCHP. A detailed list of the Eligibility Verification Protocols can be found at the [Ducted Variable Capacity Heat Pump](https://www.energy.ca.gov/rules-and-regulations/building-energy-efficiency/manufacturer-certification-building-equipment-2) website.

Certified ducted equipment is listed at this same website (ductless equipment is not required to certified). The certification includes the default setting for the fan.
An overview of the requirements listed on the CF1R include:

- SC3.1.4.1.7 Verification of Space-Conditioning System Airflow Supply to All Habitable Spaces
- SC3.1.4.1.8 Verification of Ductless Space-Conditioning System Indoor Units Located Entirely in Conditioned Space
- SC3.1.4.2.2 Nominal Air Handler Airflow
- SC3.1.4.7 Verification of Air Filter Sizing According to Face Velocity Specification
- SC3.1.4.8 Verification of Air Filter Pressure Drop Rating
- SC3.3.3.4.1 Airflow Calculation (cfm/ton)
- SC3.4.5 Verification of Wall-Mounted Thermostat

8.4.3.1 HSPF, SEER, EER

As noted in Figure 8-10, the efficiency values default to 8.2 HSPF, 14 SEER, and 11.6 EER.
8.4.3.2 Capacity @ 47 Degrees F
This is a required value from AHRI. Capacity is used to determine the energy use of the backup electric resistance heat. In a multifamily building, you will indicate the capacity for the defined system and specify the number of units of that given capacity assigned to the zone (see Section 8.1.1.5).

8.4.3.3 Capacity @ 17 Degrees F
This is an optional value from AHRI.

8.4.3.4 AC Charge
Verified refrigerant is always required.

8.4.3.5 Ducts
Select Unducted, Ducted, or Partially Ducted.

8.4.3.6 Certified Auto-Fan
Optional input for ducted equipment. As part of their certification, the manufacturer specifies the default setting for the fan. If no, the fan does not operate continuously by default, check the box for the certified auto-fan. If yes, the fan does operate continuously by default, do not check the box for a certified auto-fan.

8.4.4 Package Terminal Heat Pumps / Single Package Vertical Heat Pumps
Package terminal heat pumps (PTAC) (a ductless system) and single package vertical heat pumps (a ducted system) are rated with COP and EER. The capacity at 47 degrees is a required input. See also Section 8.4 for input values.

Figure 8-11: Package Terminal Heat Pump
### 8.4.5 Small Duct High Velocity Split Heat Pump

**Figure 8-12: SDHV Split Heat Pump**

<table>
<thead>
<tr>
<th>Heat Pump Data</th>
</tr>
</thead>
<tbody>
<tr>
<td>Currently Active Heating System: <strong>Heat Pump System 1</strong></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Name: <strong>Heat Pump System 1</strong></th>
</tr>
</thead>
<tbody>
<tr>
<td>Type: <strong>SDHVSplitHeatPump - Small duct, high velocity, central split heat</strong></td>
</tr>
</tbody>
</table>

**SDHVSplitHeatPump:** Small Duct, High Velocity, Central split system that produces at least 1.2 inches of external static pressure when operated at the certified air volume rate of 250–350 CFM per rated ton of cooling and uses high velocity room outlets generally greater than 1,000 fpm that have less than 6.0 square inches of free area. [Efficiency Metric: HSPF]

<table>
<thead>
<tr>
<th>Heating Performance:</th>
<th>Cooling Performance:</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>HSPF:</strong> 7.2 ratio</td>
<td><strong>SEER:</strong> 12</td>
</tr>
<tr>
<td><strong>EER:</strong> 10</td>
<td></td>
</tr>
<tr>
<td>Use this EER in compliance analysis</td>
<td></td>
</tr>
<tr>
<td>CFM per Ton: 250 CFM/ton</td>
<td></td>
</tr>
<tr>
<td>AC Charge: Verified</td>
<td>Refrigerant: R410A</td>
</tr>
<tr>
<td>Multi-Speed Compressor</td>
<td>Zonally Controlled</td>
</tr>
</tbody>
</table>

See Section 8.4 for input values.
8.4.6 Air to Water Source Heat Pump

An example file included with the program (1StoryExample3HVAC.ribd19) contains an air to water source heat pump system. If the system provides water heating, see Section 9.10. These appliances are listed in the CEC’s appliance directory as central heat pumps, heat pump water heating packages.
8.4.6.1 Name
User-defined name for the system.

8.4.6.2 Type
Heat pump system type (see Table 8-2).

8.4.6.3 Heating Performance - COP
Enter the Coefficient of Performance (COP). Efficiency information for a specific model number is found by performing an “advanced search” in the CEC’s appliance directories or from the AHRI Certified Products Directory.

8.4.6.4 Capacity @ 47 Degrees F
This is a required value from AHRI. Capacity is used to determine the energy use of the backup electric resistance heat. In a multifamily building, you will indicate the capacity for the defined system and specify the number of units of that given capacity assigned to the zone (see Section 8.1.1.5).

8.4.6.5 Capacity @ 17 Degrees F
This is a value from AHRI.

8.4.6.6 EER
Cooling equipment Energy Efficiency Ratio (EER).

There are two additional options on the HVAC System Data screen (one level higher on the input screen). If the system is ducted, check the Ducted Ht Pump(s) box before specifying a distribution system. If the system also provides water heating, check the box “System Heats DHW” (see Figure 8-13) and enter the tank volume, insulation R-value and ambient conditions.

8.4.7 Ground Source Heat Pump
An example file included with the program (1StoryExample3HVAC.rbd19) contains a ground source heat pump system. If the system provides water heating, see Section 9.13.

8.4.7.1 Name
User-defined name for the system.

8.4.7.2 Type
Heat pump system type is Ground Source Heat Pump (as shown in Table 8-2).
8.4.7.3 EER
Cooling equipment Energy Efficiency Ratio (EER). Check “use this EER in compliance analysis” to change the default value.

8.4.7.4 Capacity
Enter the capacity of the proposed heat pump model.

8.4.7.5 COP
Enter the COP. Efficiency information for a specific model number found by performing an “advanced search” in the CEC’s appliance directories or from the AHRI Certified Products Directory.

There are two additional options on the HVAC System Data screen (one level higher on the input screen). If the system is ducted, check the Ducted Ht Pump(s) box before specifying a distribution system. If the system also provides water heating, check the box “System Heats DHW” and enter the tank volume, insulation R-value and ambient conditions.

8.4.8 Room Heat Pumps

![Room Heat Pump Data]

8.4.8.1 Name
User-defined name for the system.

8.4.8.2 Type
Select Room Heat Pump as the system type (see Table 8-2).
8.4.8.3 Heating Performance Power (Watts)
Power in watts (available from the CEC appliance directory.

8.4.8.4 Capacity @ 47 Degrees F
This is a required value.

8.4.8.5 Cooling Performance - CEER
Enter the Combined Energy Efficiency Ratio (CEER).

8.5 Cooling Systems
The cooling system is the equipment that supplies cooled air to an HVAC System. Cooling systems are categorized according as shown in Table 8-3. See Table 8-4 for which measures (some of which are mandatory) require HERS verification.

8.5.1 Cooling System Data

Figure 8-15: Cooling System Data

8.5.1.1 Name
User-defined name for the cooling system.

8.5.1.2 Type
Cooling system type (see Table 8-3).

8.5.1.3 SEER
Cooling equipment Seasonal Energy Efficiency Ratio (SEER). For equipment tested only with an EER, enter the EER as the SEER. When a value higher than 14 SEER for “Compliance 2020” is modeled, it triggers a HERS Verification of High SEER. Efficiency information can be obtained from the CEC’s appliance directories, or from AHRI Certified Products Directory.
8.5.1.4 EER

Cooling equipment Energy Efficiency Ratio (EER). CBECC-Res has default values for the EER based on the SEER value modeled. An EER higher than 11.7 requires verification by a HERS Rater. EER ratings are from AHRI.

8.5.1.5 AC Charge

Verified refrigerant charge. Select not verified, verified, or Fault Indicator Display (FID). There is no mandatory requirement for verified refrigerant charge, however, the standard design in climate zones 2 and 8-15 includes proper refrigerant charge in the standard design for most equipment types (see standards §150.1(c)8.).

Table 8-3: Cooling Equipment

<table>
<thead>
<tr>
<th>Descriptor</th>
<th>Cooling Equipment Reference</th>
</tr>
</thead>
<tbody>
<tr>
<td>No Cooling</td>
<td>No cooling equipment. Distribution is ducted (either the same system as heating or default ducts in attic). (See also section 8.3.2).</td>
</tr>
<tr>
<td>Split Air Conditioner</td>
<td>Split air conditioning systems. Distribution is ducted.</td>
</tr>
<tr>
<td>Packaged Terminal Air</td>
<td>Packaged terminal air conditioner (PTAC). Distribution is ductless [Efficiency Metric: EER]</td>
</tr>
<tr>
<td>Conditioner</td>
<td></td>
</tr>
<tr>
<td>Single Packaged Vertical</td>
<td>Single packaged vertical air conditioner. Distribution is ducted or ductless [Efficiency Metric: EER]</td>
</tr>
<tr>
<td>Air Conditioner</td>
<td></td>
</tr>
<tr>
<td>Package Air Conditioner</td>
<td>Central packaged air conditioning systems less than 65,000 Btu/hr cooling capacity. Distribution is ducted.</td>
</tr>
<tr>
<td>Large Package Air Conditioner</td>
<td>[Not enabled] Systems rated at or above 65,000 Btu/hr (cooling capacity). Distribution is ducted.</td>
</tr>
<tr>
<td>SDHV Split Air Conditioner</td>
<td>Small duct, high velocity, split A/C system.</td>
</tr>
<tr>
<td>Ductless Mini-Split Air</td>
<td>Ductless mini-split A/C.</td>
</tr>
<tr>
<td>Conditioner</td>
<td></td>
</tr>
<tr>
<td>Ductless Multi-Split Air</td>
<td>Ductless multi-split A/C.</td>
</tr>
<tr>
<td>Conditioner</td>
<td></td>
</tr>
<tr>
<td>Ductless VRF Air Conditioner</td>
<td>Ductless Variable Refrigerant Charge A/C.</td>
</tr>
<tr>
<td>Ducted Mini-Split Air</td>
<td>Air conditioner system that has single outdoor section and one or more ductless indoor sections. The indoor section(s) cycle on and off in unison in response to a single indoor thermostat. [Efficiency Metric: SEER, EER]</td>
</tr>
<tr>
<td>Conditioner</td>
<td></td>
</tr>
<tr>
<td>Ducted Multi-Split Air</td>
<td>Air conditioner system that has a single outdoor section and two or more ductless indoor sections. The indoor sections operate independently and</td>
</tr>
<tr>
<td>Descriptor</td>
<td>Cooling Equipment Reference</td>
</tr>
<tr>
<td>------------</td>
<td>----------------------------</td>
</tr>
<tr>
<td>Ducted + Ductless Multi-Split Air Conditioner</td>
<td>Air conditioner system that has a single outdoor section and two or more ductless indoor sections. The indoor sections operate independently and can be used to condition multiple zones in response to multiple indoor thermostats. [Efficiency Metric: SEER, EER]</td>
</tr>
<tr>
<td>Room Air Conditioner</td>
<td>A factory encased air conditioner that is designed as a unit for mounting in a window, through a wall, or as a console. Distribution is ductless. [Efficiency Metric: CEER]</td>
</tr>
<tr>
<td>EvapCondenser</td>
<td>Evaporatively-cooled condenser. The default distribution system is duct in attic; evaporatively cooled condenser duct insulation requirements are the same as those for air conditioner ducts. EER verification, and compliance with RA4.3.1. [Efficiency metric: EERa and EERb]</td>
</tr>
</tbody>
</table>

### 8.5.1.6 Refrigerant Type

Default R410A assumed for all refrigerant containing equipment.

### 8.5.1.7 Multi-Speed Compressor

Use this field to indicate if the system is a multi-speed compressor. Zonally controlled multi-speed compressors must meet 350 CFM/ton. The exception for zonally controlled single speed compressors would leave this box unchecked and specify a value as low as 150 CFM/ton (see Section 8.3.1.5).

### 8.5.1.8 Zonally Controlled

Checkbox to indicate zonally controlled cooling equipment. A HERS rater will verify the modeling assumptions associated with a bypass duct, CFM/ton, and single- or multi-speed compressor (Section 8.5.3).

### 8.5.2 No Cooling

![Figure 8-16: No Cooling System](Image)
When there is no cooling system in a dwelling, create a cooling system using the system type NoCooling. The distribution system is the same as the heating system (if any). If the heating system has no ducts, set the distribution and fan system for the HVAC system to “none.” Ignore the remaining inputs. There are no CFM/ton or refrigerant charge requirements.

### 8.5.3 Zonal Cooling

![Zonal Control (Cooling)](image)

CBECC can model zonally controlled cooling equipment (different than the compliance option that involves living and sleeping zones). Some of the choices with this modeling option include the ability to specify if the equipment is a single-speed or multi-speed compressor. A single-speed compressor with a bypass duct has an exception that allows modeling a cooling airflow as low as 150 CFM/ton (an energy penalty). It is important to know the details of the system because in some cases it may not be possible to meet 350 CFM/ton when in zonal mode. See Sections 8.3.1.5, 8.3.1.8 and 8.3.1.9. Specify a bypass duct as shown in Section 8.6.1.3. See also Reference Appendices, Residential Appendix RA3.1.4.6.
<table>
<thead>
<tr>
<th>Measure</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Refrigerant Charge</td>
<td>Air-cooled air conditioners and air-source heat pumps must be diagnostically tested to verify that the system has the correct refrigerant charge.</td>
</tr>
<tr>
<td>Fault Indicator Display</td>
<td>A Fault Indicator Display (FID), alternative to refrigerant charge testing.</td>
</tr>
<tr>
<td>System Airflow</td>
<td>Ducted systems require a verified system airflow greater than or equal to 350 CFM/ton (mandatory requirement) or another specified value.</td>
</tr>
<tr>
<td>Air-handling Unit Fan Efficacy</td>
<td>To verify that fan efficacy is less than or equal to 0.45 Watts/CFM (a mandatory requirement) or other specified criterion.</td>
</tr>
<tr>
<td>EER</td>
<td>Credit for higher than minimum EER by installation of specific air conditioner or heat pump models.</td>
</tr>
<tr>
<td>SEER</td>
<td>Credit for higher than minimum SEER.</td>
</tr>
<tr>
<td>Rated Heat Pump Capacity</td>
<td>When using performance compliance, the rated capacity is verified to be greater than or equal to the values specified on the CF1R.</td>
</tr>
<tr>
<td>Evaporatively Cooled Condensers</td>
<td>Compliance credit for installation of evaporatively cooled condensers. Field verification of duct leakage, refrigerant charge, and EERa is reported as EER and is required if ≥ 14 EER, EERb is reported as SEER and is required if &gt; 16 SEER.</td>
</tr>
<tr>
<td>HSPF</td>
<td>Credit for higher than minimum HSPF.</td>
</tr>
<tr>
<td>Whole House Fan</td>
<td>When using performance compliance with a whole house fan the CFM and fan efficacy are verified to be equal to or better than specified (optional to receive full credit).</td>
</tr>
<tr>
<td>Central Fan Ventilation Cooling System</td>
<td>When using performance compliance uses a central fan ventilation cooling system (CFVCS), the installed CFVCS ventilation airflow rate (cfm) and fan efficacy (W/ cfm) are verified to be equal to or better than the specified values.</td>
</tr>
</tbody>
</table>

### 8.5.4 Package Terminal Air Conditioners

Package terminal air conditioners (PTAC) are a ductless system rated with an EER. If a value higher than the default minimum 9.5 EER is modeled, HERS verification of the EER is required.
8.5.5 **Single Package Vertical Air Conditioners**

Single package vertical air conditioners are a ducted system rated with an EER. They are simulated as a minimum efficiency cooling system.

![Single Package Vertical Air Conditioners](image)
8.5.6 Minisplit, Multisplit, VRF Air Conditioners

Figure 8-20: Minisplit System

NOTE: Ducted and ductless mini-split, multi-split and variable refrigerant flow equipment is assumed to have minimum efficiency regardless of the efficiency modeled. This is consistent with requirements of Section 2.4.5 of the 2019 ACM Reference Manual.

Ducted, ductless, and combinations of distribution systems can be modeled for minisplit, multisplit, and variable refrigerant flow air conditioners. The systems are modeled as minimum efficiency systems. When higher than minimum SEER or EER values are modeled, although reported on the CF1R, they have no effect on compliance. Ducted systems are required to meet mandatory requirements for airflow (default 350 CFM/ton) and fan efficacy (0.45 W/CFM).

8.5.7 Evaporatively Cooled Condenser

This type of air conditioning is suited for hot dry climates. The efficiencies are reported as multiple EER values at different conditions. More information can be obtained from the 2019 Residential Manual, Section 4.7.9 and a full list of compliance requirements is included in the 2019 Residential Appendices, Residential Appendix RA4.3.1. This system type requires HERS verification of EER, refrigerant charge, and duct leakage testing.

An example file (1StoryExample3EvapCond.ribd19) is included in the projects folder.

8.5.7.1 EERa

EER at 95°F dry bulb and 75°F wet bulb, obtained from AHRI Certified Products Directory.
8.5.7.2 **EERb**

EER at 82°F dry bulb and 65°F wet bulb. This value must be tested and published by the manufacturer according to AHRI guidelines.

8.5.8 **Room Air Conditioners**

8.5.8.1 **Name**

User-defined name for the cooling system.

8.5.8.2 **Type**

Cooling system type is selected from Table 8-3.

8.5.8.3 **CEER**

Enter the CEER for the proposed equipment, minimum efficiency is 9.0.

8.5.9 **Evaporative Cooling**

*NOT IMPLEMENTED*

8.6 **Distribution System Data**

Model the distribution system (ducts) associated with the HVAC system within a given zone. When modeled as one system, assume the worst case conditions.

For systems without ducts, the most reliable method is to set the Distribution to “none” on the HVAC system data screen rather than define a “distribution system without ducts.”

When modeling a multi-story building, the computer model already assumes that some ductwork is between floors and inside the conditioned space.
8.6.1 **Duct System Inputs**

8.6.1.1 **Name**
User-defined name.

8.6.1.2 **Type**
Indicate the type of duct system and location (see Table 8-5).

Table 8-6 summarizes the duct conditions that require HERS verification, including sealed and tested ducts, which are a mandatory requirement.

Proposed HVAC systems with ducts in the crawl space or a basement must have supply registers within two feet of the floor and show the appropriate locations for the ducts. Ducts in a crawl space or basement can be verified by the local enforcement agency (no HERS verification or duct design).

8.6.1.3 **Has Bypass Duct**
If the system is zonally controlled, indicate if the system has a bypass duct. This is a HERS verified feature (*Reference Appendices*, Residential Appendix RA3.1.4.6).

8.6.1.4 **Use defaults for all inputs below**
By checking this option, the detailed information about the supply and return ducts is completed based on other building inputs, including climate zone. NOTE: If you change the climate zone to one with a different prescriptive duct insulation value, the program will change to match the prescriptive requirement, which may not match the plans.
Table 8-5: Distribution Type

<table>
<thead>
<tr>
<th>Descriptor</th>
<th>Distribution Type and Location</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ducts located in attic (Ventilated and Unventilated)</td>
<td>Ducts located overhead in the attic space, whether the attic is ventilated or unventilated (and default condition for no cooling).</td>
</tr>
<tr>
<td>Ducts located in a crawl space</td>
<td>Ducts located in crawl space.</td>
</tr>
<tr>
<td>Ducts located in a garage</td>
<td>Ducts located in garage space.</td>
</tr>
<tr>
<td>Ducts located within the conditioned space (except &lt; 12 lineal feet)</td>
<td>Less than 12 linear feet of duct is outside of the conditioned space.</td>
</tr>
<tr>
<td>Ducts located entirely in conditioned space</td>
<td>HVAC equipment and all ducts (supply and return), furnace cabinet and plenums, located within the conditioned space. Location of ducts in conditioned space eliminates conduction losses but does not change losses due to leakage. Leakage from either ducts that are not tested for leakage or from sealed ducts is modeled as leakage to outside the conditioned space.</td>
</tr>
<tr>
<td>Distribution system without ducts</td>
<td>Air distribution systems without ducts such as window air conditioners, wall furnaces, floor furnaces, radiant electric panels or combined hydronic heating equipment.</td>
</tr>
<tr>
<td>None</td>
<td>Same as above. Specified at the HVAC System Data screen.</td>
</tr>
<tr>
<td>Ducts located in outdoor locations</td>
<td>Ducts located in exposed locations outdoors.</td>
</tr>
<tr>
<td>Verified low-leakage ducts entirely in conditioned space</td>
<td>Verified Low Leakage Ducts in Conditioned Space - defined as duct systems for which air leakage to outside conditions is equal to or less than 25 CFM when measured in accordance with Reference Appendices, Residential Appendix RA3.1.</td>
</tr>
<tr>
<td>Ducts located in multiple places</td>
<td>Allows a different location for supply and return ducts.</td>
</tr>
<tr>
<td>Measure</td>
<td>Description</td>
</tr>
<tr>
<td>----------------------------------------------</td>
<td>-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------</td>
</tr>
<tr>
<td>Duct Sealing</td>
<td>Mandatory measures require that space conditioning ducts be sealed. Field verification and diagnostic testing is required.</td>
</tr>
<tr>
<td>Supply Duct Location, Reduced Surface Area</td>
<td>Compliance credit for improved supply duct location, reduced surface area and R-value. Field verification that duct system was installed according to the duct design, including location, size and length of ducts, duct insulation R-value and installation of buried ducts. For buried ducts, this measure also requires improved construction quality or QII and duct sealing.</td>
</tr>
<tr>
<td>Low Leakage Ducts in Conditioned Space</td>
<td>When space conditioning ducts are located entirely in directly conditioned space, this is verified by diagnostic testing. Compliance credit can be taken for verified duct systems with low air leakage to the outside. Field Verification for ducts in conditioned space and duct sealing are required <em>(Reference Appendices, Residential Appendix RA3.1.4.3.8).</em></td>
</tr>
</tbody>
</table>
8.6.1.5 **Low Leakage Air Handler**
Checking the option for a low leakage air handler enables specifying a lower leakage target value.

8.6.1.6 **Duct Leakage**
Select sealed and tested. To specify a target leakage number, select Low Leakage Air Handler (see Figure 8-22). HERS verification is required for this mandatory measure.

8.6.1.7 **Duct Insulation R-value**
Specify the R-value of HVAC system ducts. The mandatory minimum R-value allowed is 6. Valid options are 0, 2.1, 4.2, 6.0 and 8.0. For new construction, the default value is based on the climate zone and attic option B, which is R-6 in climate zones 3, and 5-7 and R-8 for all other climate zones.

8.6.1.8 **Verified Duct Design**
If Section 8.6.1.4 is unchecked the option for verified duct design becomes available. See Section 8.6.2 for verified duct design inputs.

8.6.1.9 **Supply Duct Attic**
If Section 8.6.1.4 is unchecked the supply and return duct locations may be specified.

8.6.1.10 **Return Duct Attic**
Enter the location of the return duct. If verified duct design is selected, also enter the area and R-value of return ducts.

The calculations assume that the return duct is located entirely in the attic, unless it meets one of two conditions:

(a) The return duct is located entirely in the basement, in which case the calculation shall assume basement conditions for the return duct efficiency calculation, or

(b) The return duct is located entirely in conditioned space and the system meets the requirements for *Verified Low Leakage Ducts in Conditioned Space*, in which case the return duct is assumed to be in conditioned space.
8.6.2 **Verified Duct Design/Buried Ducts**

Ducts partly or completely buried under blown attic insulation may take credit for increased effective duct insulation. Requirements that apply include a duct design, verification of the duct design/layout, QII, duct leakage testing, and HERS verification at specific points during construction (see Reference Appendix 3.1.4).

![Verified Duct Design](image)

Figure 8-23: Verified Duct Design

To enter duct system details, uncheck the box labeled “use defaults for all inputs below,” select verified duct design, and pick enter duct design. Based on the details input the area and R-value for supply and return ducts are determined by CBECC-Res based on the information input in the duct design grid (see Figure 8-24).

Activate the grid by clicking in the first box, and either selecting from the pull down menu, or entering data in each field of the grid. Add rows by clicking on the +DuctSeg (bottom left); delete rows by clicking on the Del – X field for the row to be deleted.

Based on the inputs, CBECC determines if the duct is fully or partially buried (if applicable) and the effective duct R-value. When all of the various entries for the duct segments are included, close the grid by clicking on the X in the upper right corner. When it returns to the CBECC Distribution System Data screen, the supply and return duct values are displayed, including the effective R-value. For details about how the buried duct calculations are determined, see the *ACM Reference Manual*, Section 2.4.6.10.)
8.6.3 Low Leakage Air Handlers

Credit can be taken for installation of a factory sealed air handling unit tested by the manufacturer and certified to the CEC to meet the requirements for a low leakage air-handler. Field verification of the air handler’s model number is required.

A low leakage air handler is reported on the compliance report and field verified in accordance with the procedures specified in Reference Appendices.

8.6.4 Ducts in Conditioned Space

While there are varying amounts of credit based on attic construction and duct location, the only time ducts are inside the conditioned space is when they are installed on the conditioned space side of the ceiling insulation. It should be noted that if the standard and proposed design roof assembly includes roof deck insulation (more extreme climates), the attic temperature is very close to conditioned space temperature (a high of 85 degrees).

There are two categories (1) ducts in conditioned space and (2) low leakage ducts in conditioned space. Ducts in conditioned space involve a visual verification of duct location and duct leakage testing. Low leakage ducts are assumed to have no leakage and no conduction losses, which is verified by measurements showing duct leakage to outside conditions is equal to or less than 25 CFM when measured in accordance with Reference Appendices, Residential Appendix RA3.
8.7 HVAC Fan System

The HVAC fan system moves air for the air conditioning and heating systems.

Figure 8-25: HVAC Fan

8.7.1.1 Name
User-defined name.

8.7.1.2 Type
Default single speed furnace fan.

8.7.1.3 Watts/CFM Cooling

The mandatory requirement is an air-handling unit fan efficacy less than or equal to these values from §150.0(m)13 as verified by a HERS rater:

- ≤ 0.45 Watts/CFM as for most equipment with gas heating
- ≤ 0.58 Watts/CFM for heat pumps
- ≤ 0.62 W/CFM for small duct high velocity

The alternative to HERS verification of watts/CFM is HERS verification of a return duct design that conforms to the specification given in Table 150.0-C or D. However, if a value less than the mandatory requirement is modeled for compliance credit, the fan efficacy value must be verified and the alternative is not allowed.
8.8 Indoor Air Quality (IAQ) Fans

Mechanical ventilation is required to meet minimum indoor air quality (IAQ) requirements of ASHRAE Standard 62.2 (see Residential Compliance Manual, Section 4.6, and CF2R-MCH-27) for single- or multifamily dwelling units. The IAQ system requires HERS verification meeting Reference Appendices, Residential Appendix RA3.7.

The simplest IAQ fan system is an exhaust fan, such as a bathroom fan that meets the criteria in ASHRAE Standard 62.2 for air delivery and low noise, and that operates continuously. More advanced IAQ fan systems are a supply fan or a balanced (with both supply and exhaust fans).

The energy impact of this mandatory requirement depends primarily on the fan efficacy of the proposed system, which is compared against a 0.3 W/CFM standard design for single family or 0.6 W/CFM for multifamily dwellings.

8.8.1 HRV/ERV Fans

When a heat recovery ventilator (HRV) or energy recovery ventilator (ERV) is modeled in CBECC-Res, the fan type is “balanced.” Performance data for these fans is published in a directory from the Home Ventilating Institute (HVI) https://www.hvi.org/hvi-certified-products-directory/.
8.8.1.1 Name
User-defined name. In order for the program to recognize an IAQ fan defined on the mechanical tab, the name must be specified on the IAQ tab (Figure 8-28) (see Section 4.9 for more information).

8.8.1.2 IAQ CFM
Enter the design airflow rate of the IAQ system in CFM, which must meet or exceed the mandatory ventilation requirements (found under Building in Section 4.5). Only one fan per zone may be modeled. For a balanced fan, this value is the net airflow in CFM.

**NOTE**: Balanced fans meet a different IAQ requirement. You can check whether you have met the requirement on the IAQ tab. For example, a 2100 ft² home requires a 90.3 CFM exhaust fan, but only 77 CFM for a balanced fan.

8.8.1.3 W/CFM IAQ Vent
For single family, the default value and standard design is 0.3 W/CFM. For multifamily, the default value and standard design is 0.6 W/CFM. IAQ W/CFM is calculated based on the design wattage divided by the design CFM. For example, 74 watts divided by 54 CFM = 1.37 W/CFM.
8.8.1.4 IAQ Fan Type
Select exhaust, supply, or balanced (both exhaust and supply). If multiple fans types are installed, model exhaust or the building must be zoned.

8.8.1.5 IAQ Recovery Effectiveness
When the fan type includes heat recovery, enter a sensible recovery efficiency (SRE) from the manufacturer or HVI.

8.9 Whole House Fans/Cooling Ventilation

Although not a mandatory requirement, a whole house fan (WHF) (one of the types of cooling ventilation) is included in the standard design building in climate zones 8-14. Options for a WHF include attic venting or venting directly to outside (meaning that a WHF can be modeled for a building with only cathedral ceilings). Whether or not additions include a WHF depends on the compliance approach (see Chapter 10). A slightly reduced amount of credit is available if HERS verification is not selected. RA 3.9 contains the verification requirements for a whole house fan and RA 3.3.4 contains the verification requirements for a central fan ventilation cooling system.

How these systems save energy is they bring in outside air to cool the house, reduce cooling loads, and thereby save cooling energy. Whole house fans involve window operation and either attic venting or direct venting. Central fan integrated (CFI) systems use the HVAC duct system to distribute ventilation air similar to an economizer in a commercial building. If the system exhausts air through the attic it requires a minimum of 1 ft² of free attic ventilation area per 750 CFM of rated capacity for relief (based on §150.1(c)12 of the standards). The amount of attic venting is not a user input.

As noted in Table 4-1, CBECC-Res can model system types:

1. Whole house fan,
2. Central fan ventilation cooling (fixed speed), and
3. Central fan ventilation cooling (variable speed).
8.9.1 Whole House Fan

There are two methods for modeling a whole house fan. From the cool vent drop down menu (see Section 4.10), select “default prescriptive whole house fan” or “default WHF exhausting to outside.” This fan size exactly meets the prescriptive requirement of 1.5 CFM/ft². To include the full benefit of the WHF check HERS verification. No further details are needed.

Alternatively, from the cool vent drop down menu, select “specify individual whole house fan.” Either pick a fan defined on the mechanical tab or create one with the data shown. When this option is selected, HERS verification is required.

Figure 8-29: Cooling Ventilation

A useful resource for WHF details is the CEC’s appliance directory. An advanced search allows you to export the contents of your search to an excel file for sorting and selecting. From the directory of fans and dehumidifiers check the fields of data needed (air flow CFM) and export the results to an excel spreadsheet. This resource will have the details about available fan sizes.

8.9.1.1 Name
User defined name. Unless none or the default fan is specified, this name must match the input in Section 4.10.

8.9.1.2 Fan Exports to
Select Attic or Outside.

8.9.1.3 Use all fan system defaults
Sets the default minimum to 1.5 CFM/ft².
8.9.1.4  **Cooling Vent CFM**
Select either system default (for whole house fans) or enter the actual CFM of the proposed fan.

8.9.1.5  **W/CFM Cooling Vent**
Enter the Watts/CFM of the proposed system.

8.9.2  **CFI Fixed Flow**
For central fan integrated (CFI) night ventilation, fixed flow (e.g., SmartVent™), select CFI (central fan integrated) on the Cool Vent tab (see Section 4.10). This exposes fields on the HVAC System data screen. Inputs are described in Sections 8.1.1.11 through 8.1.1.14.

![Figure 8-30: CFI Fixed Flow](image)

8.9.3  **CFI Variable Speed**
For central fan integrated (CFI) night ventilation, variable speed (such as Night Breeze™), select CFI (central fan integrated) on the Cool Vent tab (see Section 4.10). Define the HVAC System Type (see Section 8.2.1.2) as a variable outdoor air ventilation system (versus the typical “other heating and cooling system.”

![Figure showing CFI Variable Speed](image)
This exposes additional fields. Inputs are described in Section 8.2.2.

Figure 8-31: CFI Variable Flow
Chapter 9  Domestic Hot Water (DHW)

The water heating system is defined at the zone level (see Section 5.1.1.11), or as part of the dwelling unit details of a multifamily building, while the details of the systems are contained under the mechanical tab.

The standard design for single-family construction, and for multifamily dwellings served by a non-central water heating system, is a small instantaneous gas water heater. For details on the standard design for central water heating, see the ACM Reference Manual, Section 2.9.2.

The 2019 standards establish the standard design using the proposed design fuel type. If the proposed water heater is electric (a heat pump water heater), the standard design is a heat pump water heater with a 2.0 UEF, compact distribution basic credit, and drain water heat recovery system.

New for 2019:

- Compact distribution, which uses the distance from the water heater and two or three fixtures (Section 9.4.1) to determine credit for a compact design.
- Drain water heat recovery saves water heating energy expended during showers to preheat the cold water by recycling warmed water (Section 9.10).
- Central heat pump water heating for multifamily buildings with more than eight dwelling units (Section 9.8). Information specific to the distribution systems for central water heating is included in Sections 9.4.3 and 9.5.1.3.
- Solar thermal water heating (Section 9.6).

9.1 Multiple water heaters

The correct way to model multiple water heaters depends on the distribution system. If the water heaters share the same distribution system, they are modeled as one system with multiple water heaters (see Figure 9-1). If the water heaters are the same type, enter the appropriate count.

Figure 9-1: Multiple Water Heaters, one distribution

If there are multiple distribution systems, at the zone level define a DHW System 2 (see Figure 9-2).
**NOTE:** DHW System 1 and 2 must have different names, otherwise CBECC-Res does not recognize this as multiple water heaters.

Figure 9-2: Multiple Distribution Systems (2 Systems)

**USER TIP:** The current water heating analysis includes electrical energy for tankless water heaters. While in previous codes, the number of tankless water heaters made no difference in compliance results. That is no longer the case.

### 9.2 Efficiency Information

For 2019 compliance, use the new designations and ratings, such as consumer instantaneous with a UEF rating, for compliance. Only existing water heaters may use the previous types such as small storage gas.

Water heaters must be certified to the CEC or Air-Conditioning, Heating and Refrigeration Institute (AHRI). Inputs are found by conducting an advanced search in the certified appliance directory, (https://cacertappliances.energy.ca.gov/Pages/Search/AdvancedSearch.aspx) based on any number of variables (type, manufacturer, brand). Results can be exported to a spreadsheet format for sorting and searching. For heat pump water heaters, see also Section 9.7.

To search the AHRI directory, visit https://www.ahridirectory.org/ahridirectory/pages/home.aspx.

Heat pump water heaters rated by the Northwest Energy Efficiency Alliance (NEEA) can be found by searching for “qualified products” at the NEEA website (https://neea.org/resources-reports/browse?q=list+of+heat+pump+water+heater).
### 9.3 Water Heater and Tank Types

In 2017, the appliance certification program began using the new designations shown in Table 9-1 and Table 9-2. Only additions and alterations using older equipment can use the old designations.

#### Table 9-1: Gas Water Heater Types

<table>
<thead>
<tr>
<th>Old Designation</th>
<th>New Designation</th>
<th>Input</th>
<th>Rating</th>
<th>Storage Volume</th>
<th>Standby Loss</th>
<th>Recovery Efficiency</th>
</tr>
</thead>
<tbody>
<tr>
<td>Small Instantaneous</td>
<td>Consumer Instantaneous</td>
<td>≤ 200,000</td>
<td>UEF</td>
<td>&lt; 2 gallons</td>
<td>N/A</td>
<td>80 to 99</td>
</tr>
<tr>
<td>Large Instantaneous</td>
<td>Commercial Instantaneous</td>
<td>&gt; 200,000</td>
<td>Thermal Efficiency</td>
<td>≥ 0 gallons</td>
<td>N/A</td>
<td>N/A</td>
</tr>
<tr>
<td>Small Storage</td>
<td>Consumer Storage</td>
<td>≤ 75,000</td>
<td>UEF</td>
<td>20 to ≤ 100 gallons</td>
<td>N/A</td>
<td>70 to 99</td>
</tr>
<tr>
<td>Large Storage</td>
<td>Commercial Storage</td>
<td>&gt; 75,000</td>
<td>Thermal Efficiency + Standby Loss</td>
<td>See Input</td>
<td>&lt; 0.1</td>
<td>N/A</td>
</tr>
<tr>
<td>Residential-Duty</td>
<td>Commercial Storage (Gas only)</td>
<td>&gt; 75,000 to ≤ 105,000</td>
<td>UEF</td>
<td>≤ 120 gallons</td>
<td>N/A</td>
<td>80 to 99</td>
</tr>
</tbody>
</table>

#### Table 9-2: Electric/Heat Pump Water Heaters

<table>
<thead>
<tr>
<th>Old Designation</th>
<th>New Designation</th>
<th>Input</th>
<th>Rating</th>
<th>Storage Range</th>
<th>Standby Loss</th>
<th>Recovery Efficiency</th>
</tr>
</thead>
<tbody>
<tr>
<td>Small Instantaneous</td>
<td>Consumer Instantaneous</td>
<td>≤ 12 kW</td>
<td>UEF</td>
<td>&lt; 2 gallons</td>
<td>N/A</td>
<td>90 to 99</td>
</tr>
<tr>
<td>Large Instantaneous</td>
<td>Commercial Instantaneous</td>
<td>&gt; 12 kW</td>
<td>Thermal Efficiency</td>
<td>≥ 0 gallons</td>
<td>N/A</td>
<td>N/A</td>
</tr>
<tr>
<td>Small Storage</td>
<td>Consumer Storage</td>
<td>≤ 12 kW</td>
<td>UEF</td>
<td>20 to ≤ 100 gallons</td>
<td>N/A</td>
<td>90 to 99</td>
</tr>
<tr>
<td>Large Storage</td>
<td>Commercial Storage</td>
<td>&gt; 12 kW</td>
<td>Thermal Efficiency + Standby Loss</td>
<td>See Input</td>
<td>&lt; 0.1</td>
<td>N/A</td>
</tr>
<tr>
<td>Residential-Duty</td>
<td>Commercial</td>
<td>≤ 58.6 kW</td>
<td>UEF</td>
<td>&lt; 2 gallons</td>
<td>N/A</td>
<td>N/A</td>
</tr>
</tbody>
</table>
### Other equipment types include:

- **Boiler** is a hot water supply boiler (not a space heating boiler intended for space heating).
- **Indirect** is a water heater consisting of a storage tank with no heating elements or combustion devices, connected via piping and recirculating pump to a heat source consisting of a boiler.
- **Mini-tank** is an electric water heater used with instantaneous water heaters to regulate temperature fluctuations (see 9.6.1.5).

### 9.4 Distribution

#### 9.4.1 Compact Distribution System

On the Appliances/DHW tab (see Section 4.9) select one of the compact distribution credits for single family buildings. That selection results in the distance inputs shown in Figure 9-3 being displayed. For multifamily, the selection is made on the dwelling unit type screen (see Section 9.4.1.3).

The specifications listed under the “Specify Distances to Fixtures” establish the amount of credit. For multifamily, these specifications are listed under “Fixtures, Compact Distribution and Drain Water Heat Recovery.”

#### 9.4.1.1 Specify Distances to Fixtures

Plan view distance (in feet) from the center of the water heater to the master bathroom, kitchen, and furthest fixture other than the master bath or kitchen (if any).

According to the eligibility criteria from RA 4.4.6, the measurements are from the center of the water heater to the center of the use point.
NOTE: In a small building with no third room, uncheck the “serves third room” box.

Installation requirements are found in RA 4.4.6 (basic credit) and RA 3.6.5/4.4.16 (expanded credit). The HERS credit also requires:

1. No piping greater than 1” diameter,
2. Length of 1” diameter piping is limited to 8 feet or less,
3. Unless the water heater is located in the attic, no piping in 2- and 3-story buildings can be in the attic, and
4. If there is a recirculation system, it must be a HERS-verified demand recirculation: manual control (RA4.4.17).

The inputs for distribution compactness are part of the DHW system data (see Section 9.4.1.1).
9.4.1.2 Enter custom compactness factor (optional)

If the optional compactness factor is checked, it must be replaced with the actual distances to obtain a valid CF1R.

9.4.1.3 Compact distribution in a multifamily building

Once the basic or expanded credit is selected, select the “Fixtures, Compact Dist and Drain Water Heat Recovery” option to display the fields to enter distances.
9.4.2 **Dwelling Unit Distribution Type**

The standard design distribution system for single-family dwelling units includes pipe insulation (as required by the Plumbing Code).

See Table 9-3 for all distribution system options and a comparison of the multiplier (the lower the number the more efficient the system). More information about distribution types is in *Residential Compliance Manual* and *Reference Appendices*. When compact distribution is specified, some options from Table 9-3 are not available (for example, point of use).

For recirculation systems, the recirculation pump can be located external to or integral to the water heater. Pick the appropriate recirculation distribution system based on the control strategy. Systems that do not meet the criteria for Demand Control Push Button, or Demand Control Occupancy/Motion must be modeled using the Non-Demand Control option.

9.4.3 **Multifamily Distribution Type**

When central water heating is used in a multifamily building, the options for the distribution system within the dwelling unit are limited to:

- Standard (includes the pipe insulation required by Plumbing Code),
- Pipe Insulation, All Lines (HERS verification)

The multifamily distribution types available for the central system are:

- No loops or central system pump
- Recirculating with no control (continuous pumping)

More information about distribution types is in *Residential Compliance Manual*, Section 5.3 and *Reference Appendices*, Residential Appendix RA3.6 and RA4.4.
Table 9-3: Water Heater Distribution System Multipliers

<table>
<thead>
<tr>
<th>Distribution System</th>
<th>Multiplier</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>NO HERS INSPECTION REQUIRED</strong></td>
<td></td>
</tr>
<tr>
<td>Standard</td>
<td>1.00</td>
</tr>
<tr>
<td>Central Parallel Piping</td>
<td>1.10</td>
</tr>
<tr>
<td>Point of Use</td>
<td>0.30</td>
</tr>
<tr>
<td>Recirculation, Demand Control Push Button</td>
<td>1.75*</td>
</tr>
<tr>
<td>Recirculation, Demand Control Occupancy/Motion Sensor</td>
<td>2.60*</td>
</tr>
<tr>
<td>Recirculation, Non-demand Control (continuous pumping)</td>
<td>9.80*</td>
</tr>
<tr>
<td><strong>OPTIONAL CASES: HERS INSPECTION REQUIRED</strong></td>
<td></td>
</tr>
<tr>
<td>Pipe Insulation, All Lines</td>
<td>0.85</td>
</tr>
<tr>
<td>Central Parallel Piping</td>
<td>1.00</td>
</tr>
<tr>
<td>Compact Distribution System</td>
<td>0.70</td>
</tr>
<tr>
<td>Recirculation, Demand Control Push Button</td>
<td>1.60*</td>
</tr>
<tr>
<td>Recirculation, Demand Control Occupancy/Motion Sensor</td>
<td>2.40*</td>
</tr>
</tbody>
</table>

*Reduced hot water consumption is reflected in the DSM for recirculation systems.

9.5 Water Heating System Data

The water heating system is identified on the conditioned zone data tab for single family (see Section 5.1.1) and the dwelling unit type tab for multifamily dwellings (see Section 5.6 and see Section 9.8 for central water heating).

9.5.1.1 System Name

User defined name. This is the same name that was provided under the zone data tab.

9.5.1.2 Dwelling Unit Distribution (type)

Specify one distribution system from the drop-down menu (see Section 9.4.2 and Table 9-3). For installation and compliance requirements see Residential Compliance Manual Chapter 5 and Reference Appendices, Residential Appendix RA3.6 and 4.4.

In a multifamily building with central water heating, the distribution type within the dwelling unit is limited to one of two types: standard or pipe insulation with HERS verification.
9.5.1.3 Central System Distribution (for Multifamily)
Drop-down menu with options for the level of control on the recirculating system serving the
dwelling units, based on the building and water heater type being specified (see Section 9.4.3). An
input for the recirculation loops is also required (see Figure 9-7).

9.5.1.4 Recirculation Pump Power (bhp)
Multifamily recirculation pump power (brakehorse power). Typical value is less than 1.00.

9.5.1.5 Efficiency (fraction)
Multifamily recirculation motor efficiency (fraction). Typical value is less than 1.00. See Table 9-4 for
default efficiencies.

9.5.1.6 Water Heater(s)
The name of the water heater (this name holds the details about the water heater.

9.5.1.7 Count
The number of water heaters named in the adjacent field. Include different water heater types or
different water heater efficiencies on a different row.

Table 9-4: Default Recirculating Pump Motor Efficiency

<table>
<thead>
<tr>
<th>Nameplate or Brake Horsepower</th>
<th>Standard Fan Motor Efficiency</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.050 (1/20)</td>
<td>0.40</td>
</tr>
<tr>
<td>0.083 (1/12)</td>
<td>0.49</td>
</tr>
<tr>
<td>0.125 (1/8)</td>
<td>0.55</td>
</tr>
<tr>
<td>0.167 (1/6)</td>
<td>0.60</td>
</tr>
<tr>
<td>0.250 (1/4)</td>
<td>0.64</td>
</tr>
<tr>
<td>0.333 (1/3)</td>
<td>0.66</td>
</tr>
<tr>
<td>0.500 (1/2)</td>
<td>0.70</td>
</tr>
<tr>
<td>0.750 (3/4)</td>
<td>0.72</td>
</tr>
</tbody>
</table>

Source: Reference Appendices, Nonresidential Appendix NA3
9.6 **Water Heater Data (Gas and Electric Resistance)**

Inputs for the water heater data vary by the tank type selected. See Section 9.2 for links to product directories from which all inputs can be obtained.

Tank types include boiler, indirect, consumer instantaneous (UEF), commercial instantaneous (TE), consumer storage (UEF), commercial storage (TE & SBL), residential duty commercial storage (UEF) (gas only), and residential duty commercial instantaneous (UEF) (electric only).

Additional tank types are allowed only for existing water heaters. They are small or large storage and small or large instantaneous.

**USER TIP:** The rated input of a water heater is used to determine which tank type to model (see Table 9-1 or Table 9-2). However, the CF1R reports the maximum rated input for that tank type, but typically no specific input value (the exception is “commercial storage”). This change was made to prevent inconsistencies between the value modeled and the value installed for a characteristic that makes no difference.
9.6.1 Consumer Instantaneous

Figure 9-8: Consumer Instantaneous Water Heater Data (gas)

Figure 9-9: Consumer Instantaneous Water Heater Data (electric)

9.6.1.1 Name
User-defined name that is specified in the water heating system data.

9.6.1.2 Heater Type
Choose gas (natural gas, propane, or oil), or electric resistance (for heat pump water heater see Section 9.7).

9.6.1.3 Tank Type
Choose consumer instantaneous (UEF).

9.6.1.4 Uniform Energy Factor (UEF)
Value entered as a decimal, such as 0.81. Certified efficiency from one of the sources listed in Section 9.2. Once the tank type is selected, the input values are customized to that category.
9.6.1.5 **Includes Electric Mini Tank**
For instantaneous water heaters, check if the system includes a mini tank which helps regulate temperature fluctuations.

9.6.1.6 **Tank Power (standby)**
Mini tank watts from the appliance directory (see Section 9.2).

9.6.1.7 **Tank Volume**
The volume (in gallons) from one of the listed sources in Section 9.2.

9.6.1.8 **Flow Rate**
The flow rate in gallons per minute (GPM) from one of the listed sources in Section 9.2.

9.6.1.9 **Recovery Efficiency**
Enter the recovery efficiency (or thermal efficiency or AFUE) for water heating type. Entered as a percent, such as 80, 95. The value comes from one of the listed sources in Section 9.2.

9.6.2 **Consumer Storage**

Figure 9-10: Consumer Storage (gas)
9.6.2.1 **Name**
User-defined name that is specified in the water heating system data.

9.6.2.2 **Heater Type**
Choose gas (natural gas, propane, or oil), or electric resistance (for heat pump water heater see Section 9.7).

9.6.2.3 **Tank Type**
Choose consumer storage (UEF).

9.6.2.4 **Uniform Energy Factor (UEF)**
Value entered as a decimal, such as 0.81. Certified efficiency from one of the sources listed in Section 9.2.

9.6.2.5 **Tank Volume**
The volume (in gallons) from one of the listed sources in Section 9.2.

9.6.2.6 **First Hour Rating**
The first hour rating (in gallons) from one of the listed sources in Section 9.2.

9.6.2.7 **Recovery Efficiency**
Enter the recovery efficiency as a percent, such as 79 or 81. The value comes from one of the listed sources in Section 9.2.

9.6.2.8 **Tank Outside or in Exterior Closet / Location**
For electric resistance water heaters, indicate if the tank is outside, or its location in the building.
9.6.3 Residential-Duty Commercial

To find products, the CEC’s appliance directory allows a search of the category “residential-duty commercial water heaters” which contains both gas storage products and electric instantaneous.

![Residential Duty Commercial Storage (gas)](image1)

![Residential Duty Commercial Instantaneous (electric)](image2)

**9.6.3.1 Name**

User-defined name that is specified in the water heating system data.

**9.6.3.2 Heater Type**

Choose gas (natural gas, propane, or oil), or electric resistance (for heat pump water heater see Section 9.7).
9.6.3.3  **Tank Type**
Choose residential duty commercial storage (UEF) (gas only) or residential duty commercial instantaneous (UEF) (electric only).

9.6.3.4  **Uniform Energy Factor (UEF)**
Value entered as a decimal, such as 0.81. Certified efficiency from one of the sources listed in Section 9.2.

9.6.3.5  **Tank Volume**
The volume (in gallons) from one of the listed sources in Section 9.2.

9.6.3.6  **First Hour Rating**
For storage water heaters, the first hour rating (in gallons) from one of the listed sources in Section 9.2.

9.6.3.7  **Flow Rate**
For instantaneous water heaters, the flow rate in gallons per minute (GPM) from one of the listed sources in Section 9.2.

9.6.3.8  **Recovery Efficiency**
Enter the recovery efficiency (or thermal efficiency or AFUE) for water heating type. Entered as a percent, such as 80, 95. The value comes from one of the listed sources in Section 9.2.

9.6.4  **Commercial**

![Figure 9-14: Commercial Storage Water Heater Data](image)

9.6.4.1  **Name**
User-defined name that is specified in the water heating system data.
9.6.4.2 Heater Type
Choose gas (natural gas, propane, or oil) or electric resistance (for heat pump water heaters see Section 9.7).

9.6.4.3 Tank Type
Choose commercial storage (TE & SBL).

9.6.4.4 Thermal Efficiency
Value entered as a decimal, such as 0.76 or 0.81. Certified efficiency from one of the sources listed in Section 9.2.

9.6.4.5 Input Rating
The input rating (consistent with the tank type from Table 9-1 or Table 9-2) from one of the listed sources from Section 9.2.

9.6.4.6 Tank Volume
The volume (in gallons) from one of the listed sources in Section 9.2.

9.6.4.7 Recovery Efficiency
Enter the recovery efficiency (or thermal efficiency or AFUE) for water heating type. Entered as a percent, such as 80, 95. The value comes from one of the listed sources in Section 9.2.

9.6.4.8 Standby Loss Fraction
Required input for large storage water heaters. Find the standby loss by conducting an advanced search in the CEC’s appliance efficiency database of water heating equipment (see Section 9.2). The input into the software depends on what is available for the specified equipment based on the search as follows:

For large storage water heaters where the standby loss is reported in percent per hour, the standby loss fraction is calculated by dividing the percent by 100 (3% is entered as 0.03).

For large storage water heaters where the standby loss is reported in Btu/hr, the standby loss fraction is calculated as:

\[
\text{Standby Loss Fraction} = \frac{\text{standby loss Btu/hr}}{8.25 \times \text{volume} \times 70}
\]

For gas and oil large storage water heaters that do not have a reported standby loss, the standby loss fraction is calculated as:

\[
\text{Standby Loss Fraction} = \frac{\text{rated input}}{800} + \frac{110 \times (\text{volume})^{0.5}}{8.25 \times \text{Volume} \times 70}
\]
For electric large storage water heaters that do not have a reported standby loss, the standby loss fraction is calculated as:

\[
\text{Standby Loss Fraction} = \frac{0.3 + (27/\text{volume})}{100}
\]

9.6.5 **Boiler**

**Figure 9-15: Boiler**

9.6.5.1 **Name**
User-defined name that is specified in the water heating system data.

9.6.5.2 **Heater Type**
Choose gas (natural gas, propane, or oil).

9.6.5.3 **Tank Type**
Choose boiler.

9.6.5.4 **Thermal Efficiency**
Value entered as a decimal, such as 0.76 or 0.81. Certified efficiency from one of the sources listed in Section 9.2.
9.6.5.5  Tank Volume
The volume (in gallons) from one of the listed sources in Section 9.2.

9.6.5.6  Recovery Efficiency
Enter the recovery efficiency (or thermal efficiency or AFUE) for water heating type. Entered as a percent, such as 80, 95. The value comes from one of the listed sources in Section 9.2.

9.6.5.7  Pilot Energy
Required input for boiler, large instantaneous and indirect water heaters. Find the pilot energy by conducting an advanced search in the CEC’s appliance efficiency database (see Section 9.2) or in manufacturer’s literature.

The value input may need to be modified. If pilot energy is in Btu/hr, model that value. If pilot energy is in percent, convert as:

\[
\text{Pilot energy} = \left(\frac{\text{pilot energy percent}}{100}\right) \times (8.25 \times \text{Volume} \times 70) \text{ Btu/hr}
\]

If no pilot energy information is found, calculate the value using the applicable equation as described in Table 9-5 (based on Table F-2 of the 2015 Appliance Efficiency Standards).

For electric powered water heaters, where Table F-2 reports the maximum standby loss as a percent, convert to Btu/hr using the following calculation:

\[
\text{Pilot energy} = \left(\frac{0.3 + (27/\text{Volume})}{100}\right) \times (8.25 \times \text{Volume} \times 70) \text{ Btu/hr}
\]

9.6.5.8  Tank Insulation R-values
For boilers (and indirect water heaters), enter exterior and interior tank insulation R-values.

9.6.6  Indirect or unfired tanks
Efficiency and performance information for indirect tanks comes from the device which is heating the water for which the indirect tank is serving as storage.
9.6.6.1 Name
User-defined name that is specified in the water heating system data.

9.6.6.2 Heater Type
Choose gas (natural gas, propane, or oil).

9.6.6.3 Tank Type
Choose indirect.

9.6.6.4 Thermal Efficiency
Value entered as a decimal, such as 0.76 or 0.81. Certified efficiency from one of the sources listed in Section 9.2.

9.6.6.5 Tank Volume
The volume (in gallons) from one of the listed sources in Section 9.2.

9.6.6.6 Ambient Conditions
For an indirect water heater, specify whether it is installed in unconditioned or conditioned space.
9.6.6.7 Recovery Efficiency
Enter the recovery efficiency (or thermal efficiency or AFUE) for water heating type. Entered as a percent, such as 80, 95. The value comes from one of the listed sources in Section 9.2.

9.6.6.8 Pilot Energy
Required input for indirect water heaters. See also Section 9.6.5.7.

9.6.6.9 Tank Insulation R-values
For boilers, or indirect water heaters, enter exterior and interior tank insulation R-values.

<table>
<thead>
<tr>
<th>Appliance</th>
<th>Input to Volume Ratio</th>
<th>Size (Volume)</th>
<th>Maximum Standby Loss $^{1,2}$</th>
</tr>
</thead>
<tbody>
<tr>
<td>Gas storage water heater</td>
<td>&lt; 4,000 Btu/hr/gal</td>
<td>Any</td>
<td>Q/800 + 110(Vr)$^{1/2}$Btu/hr</td>
</tr>
<tr>
<td>Gas instantaneous water heaters</td>
<td>≥ 4,000 Btu/hr/gal</td>
<td>&lt; 10 gal</td>
<td>--</td>
</tr>
<tr>
<td></td>
<td></td>
<td>≥ 10 gal</td>
<td>Q/800 + 110(Vr)$^{1/2}$Btu/hr</td>
</tr>
<tr>
<td>Gas hot water supply boilers</td>
<td>≥ 4,000 Btu/hr/gal</td>
<td>&lt; 10 gal</td>
<td>--</td>
</tr>
<tr>
<td></td>
<td></td>
<td>≥ 10 gal</td>
<td>Q/800 + 110(Vr)$^{1/2}$Btu/hr</td>
</tr>
<tr>
<td>Oil storage water heaters</td>
<td>&lt; 4,000 Btu/hr/gal</td>
<td>&lt; 10 gal</td>
<td>--</td>
</tr>
<tr>
<td></td>
<td></td>
<td>≥ 10 gal</td>
<td>Q/800 + 110(Vr)$^{1/2}$Btu/hr</td>
</tr>
<tr>
<td>Oil instantaneous water heaters</td>
<td>≥ 4,000 Btu/hr/gal</td>
<td>&lt; 10 gal</td>
<td>--</td>
</tr>
<tr>
<td></td>
<td></td>
<td>≥ 10 gal</td>
<td>Q/800 + 110(Vr)$^{1/2}$Btu/hr</td>
</tr>
<tr>
<td>Oil hot water supply boilers</td>
<td>≥ 4,000 Btu/hr/gal</td>
<td>&lt; 10 gal</td>
<td>--</td>
</tr>
<tr>
<td></td>
<td></td>
<td>≥ 10 gal</td>
<td>Q/800 + 110(Vr)$^{1/2}$Btu/hr</td>
</tr>
<tr>
<td>Electric storage water heaters</td>
<td>&lt; 4,000 Btu/hr/gal</td>
<td>Any</td>
<td>0.3 + 27/Vm%/hr</td>
</tr>
</tbody>
</table>

$^{1}$ Vr is rated volume in gallons, Vm is measured volume in gallons, and Q is the nameplate input rate in Btu/hr.

$^{2}$ Water heaters and boilers > 140 gallons of storage capacity are not required to meet the standby loss requirement if the tank surface is thermally insulated to R-12.5, if a standing pilot light is not installed, and for gas- or oil-fired storage water heaters, there is a flue damper or fan-assisted combustion.
9.7 Individual Heat Pump Water Heater Data

Heat pump water heaters (HPWH) are a viable option for electric water heating, unlike electric resistance for which is very difficult to overcome the negative effect on water heating compliance. When an electric resistance or HPWH is modeled, the standard design is a HPWH (see Standards §150.1(c)8Av for the full list of criteria which varies by climate zone).

CBECC-Res includes two options for modeling heat pump water heaters. A UEF rated heat pump certified to the CEC or AHRI (Figure 9-16), or products rated by the Northwest Energy Efficiency Alliance (NEEA) (Figure 9-17). CBECC-Res uses a different calculation method to simulate the NEEA water heaters which includes benefits beyond their UEF rating. Equipment is rated from Tier 1 to Tier 4 (higher equals better). To model NEEA rated equipment, find a brand and model number from the list of qualified products (see Section 9.2), check the NEEA rated box and select the brand and model.

NOTE: For NEEA water heaters, the installer will either confirm the model number shown on the CF1R is installed or select from a list of products previously determined to be equivalent. This list is maintained by the HERS providers.
9.7.1.1  **Name**  
User-defined name for the water heater.

**9.7.1.2  Heater Type**  
Choose heat pump. For electric resistance or gas see Section 9.7.

**9.7.1.3  NEEA Rated**  
If the heat pump water heater is rated by the Northwest Energy Efficiency Alliance (NEEA) check this box and identify a brand and model from the list.

**9.7.1.4  Brand and Model**  
Select from the list of water heaters brands and model numbers.

**9.7.1.5  UEF Rated**  
A checkbox to indicate if the rated efficiency is an EF or UEF.

**9.7.1.6  Energy Factor or Uniform Energy Factor**  
Unless NEEA rated, enter the certified EF or UEF, such as 2.33, from one of the sources listed in Section 9-2. Heat pump water heaters typically have an EF of 2 or higher (limited to 4).

**9.7.1.7  Tank Volume**  
The volume (in gallons) from one of the sources listed in Section 9-2.

**9.7.1.8  First Hour Rating**  
The first hour rating (in gallons) for the specified water heater.

**9.7.1.9  Tank Outside or in Exterior Closet / Location**  
For heat pump and electric resistance water heaters only, indicate if the tank is located outside, or specify the location in the building.

**9.8  Central Water Heater/Heat Pump Water Heater**  
Water heating for multifamily buildings is defined through the dwelling unit types. Once the dwelling unit is created, pick create DHW system and identify it as central water heating. For water heating systems other than heat pumps (Type: Other), the inputs are primarily made on the DHW system data tab (Figure 9-18).
The options for heat pump water heaters (HPWH) include small, integrated package systems (Section 9.8.2) and large single pass primary (Section 9.8.3). The specifics for the HPWH are specified in the Central HPWH tab.

9.8.1 Central Water Heating

9.8.1.1 Type
Select Other or HPWH.

9.8.1.2 Take Solar Thermal Flexibility Credit
This option appears for HPWHs only and only if DHW solar system is set to none.
9.8.1.3  DHW Solar System
See Section 9.9.

9.8.1.4  Dwelling Unit Distribution (type)
Specify one distribution system from the drop-down menu (see Section 9.3 and Table 9-3). For installation and compliance requirements see Residential Compliance Manual Chapter 5 and Reference Appendices, Residential Appendix RA3.6 and 4.4.

In a multifamily building with central water heating, the distribution type within the dwelling unit is limited to one of two types: standard or pipe insulation with HERS verification.

9.8.1.5  Central System Distribution (for Multifamily)
Drop-down menu with options for the level of control on the recirculating system serving the dwelling units, based on the building and water heater type being specified (see Sections 9.3.2). An input for the recirculation loops is also required (see Figure 9-7).

9.8.1.6  Recirculation Pump Power (bhp)
Multifamily recirculation pump power (brakehorse power) if applicable.

9.8.2  Central HPWH Inputs/Small Integrated Package
Pick the Central HPWH tab to identify the features of the water heating system.

Figure 9-21: Small, Integrated Package System Inputs
9.8.2.1 Central HPWH System Type
Select small, integrated package systems or large single pass primary (Section 9.8.3).

9.8.2.2 NEEA HPWH Brand/Model
Identify the brand name and model of NEEA HPWH from the drop-down menu.

9.8.2.3 NEEA HPWH Count
Enter the number of water heaters in the system (noting if each floor is using the same system or a different system).

9.8.2.4 Tank Location
Select a zone (and identify from available zones) or select outside.

9.8.2.5 Source Air From
Select a zone (and identify from available zones) or select outside.

9.8.3 Central HPWH Inputs/Large Single Pass Primary
Pick the Central HPWH tab to identify the features of the water heating system.

Figure 9-22: Large Single Pass Primary Inputs

9.8.3.1 Central HPWH System Type
Select large single pass primary (for small, integrated package systems see Section 9.8.2).

9.8.3.2 HPWH/Compressor type
Select from the available systems, identified by name and model number.

9.8.3.3 Compressors/Heater Count
Enter a value of 1 or greater.
9.8.3.4 Total Tank Volume
Enter the total across all tanks.

9.8.3.5 Tank R-value
Identify the tank R-value

9.8.3.6 Tank Location
Select a zone (and identify from available zones) or select outside.

9.8.3.7 Source Air From
Select a zone (and identify from available zones) or select outside.

9.8.4 Central HPWH Loop Tank
Inputs will vary based on the loop tank type selected.

Figure 9-23: Central HPWH Loop Tank Inputs

9.8.4.1 Loop Tank Type
Select Electric resistance, NEEA HPWH (for small, integrated package systems), or large HPWH compressor (for large single pass primary).

9.8.4.2 HPWH/Compressor type
Select from the available systems, identified by name and model number.

9.8.4.3 Compressor/Heater Count
Enter a value of 1 or greater.
9.8.4.4 Tank R-value
Identify the tank R-value

9.8.4.5 Total Tank Volume
Enter the total across all tanks.

9.8.4.6 Tank Count
Enter the number of loop tanks.

9.8.4.7 Tank Location
Select a zone (and identify from available zones) or select outside.

9.8.4.8 Source Air From
Select a zone (and identify from available zones) or select outside.

9.9 Solar Water Heating Data
When credit for a solar water heating system is specified, the specifics about the system are modeled on the DHW Solar System Data tab. CBECC-Res can model either OG-100 or OG-300 systems (rated by the Solar Rating and Certification Corporation (SRCC)). OG-300 is limited to single family buildings. Click on the “…” to define the system.

![Figure 9-24: Solar Data](image)

9.9.1 Solar Water Heating Data (OG-100)
SRCC OG-100 systems may be used in single- or multifamily buildings.
9.9.1.1  Rating Program
SRCC OG-100 (solar collectors).

9.9.1.2  Collector Count
Enter a value of 1 or greater.

9.9.1.3  Tank Volume
Rated systems include this value as part of the solar collector details. Once the solar collector is identified, this value will be completed. If there is no value, right-click and pick restore default.

9.9.1.4  Azimuth (from N)
Enter the azimuth (in degrees from North) of the solar collector panel(s).

9.9.1.5  Tilt (from horizontal)
Enter the roof or solar collector panel tilt. Typical values of various roof pitches are:

- 1:12 = 4.8
- 2:12 = 9.5
- 3:12 = 14
- 4:12 = 18.4
- 5:12 = 22.6
- 6:12 = 26.6
- 7:12 = 30.3
- 8:12 = 33.7
9.9.1.6 Manufacturer
Select from the list of approved manufacturers.

9.9.1.7 Brand
Select from the list of approved brands for the specific manufacturer.

9.9.1.8 Model
Select the model number of the Solar Rating and Certification Corporation (SRCC) certified collector. The SRCC certification number and collector area are automatically entered.

9.9.1.9 Cert. ID
Certification ID is automatically completed for certified systems.

9.9.1.10 Area
Area is automatically completed for certified systems.

9.9.2 Solar Water Heating Data (OG-300)
SRCC OG-300 systems cannot be modeled in a multifamily building.

Figure 9-26: Solar System (OG-300)

<table>
<thead>
<tr>
<th>Name: DHW Solar System</th>
</tr>
</thead>
<tbody>
<tr>
<td>Rating Program: SRCC OG-300 (entire system)</td>
</tr>
<tr>
<td>Rated SSF: 0.4 frac</td>
</tr>
<tr>
<td>System Name: Heliodyne</td>
</tr>
</tbody>
</table>

9.9.2.1 Rating Program
SRCC OG-300 (entire system).

9.9.2.2 Rated SSF
Rated solar savings fraction (SSF) for the proposed or installed system.

9.9.2.3 System Name
This user-defined field is reported on the CF1R. Include any specific identifying information.
9.10 Drain Water Heat Recovery

A drain water heat recovery (DWHR) device takes waste heat from shower drains and uses that water to preheat the cold inlet water. The preheated water is routed to the shower, water heater, or both.

Access the tab for drain water heat recovery. For multifamily buildings, in the dwelling unit, pick “Fixtures, Compact Distribution and Drain Water Heat Recovery.” Specify the Canadian Standards Association (CSA) rated effectiveness, obtained from manufacturer’s literature. The required value is 42 percent or higher.
As shown in Figure 9-29 indicate the number of showers and baths served by a drain water heat recovery device. Multiple DWHR devices can be used for a water heater system if there is more than one shower served. Enter the total number of showers that are serve by a drain water heat recovery system and enter the details for the system configuration.

**Figure 9-30: Drain Water Heat Recovery Configurations**

The configuration choices include:

- **Equal Flow**: Showers (cold-side feed) value is greater than 0, and water heater checked. This configuration indicates the potable-side output of the heat exchanger feeds the shower cold water inlet(s) and the water heater inlet. Equal flow indicates the potable and drain flow rates are equal assuming no other simultaneous hot water draws. This scheme recovers more heat than the other configurations.

- **Unequal flow to shower**: Showers (cold-side feed) value is greater than 0 and water heater is not checked. This configuration indicates the potable-side output of the heat exchanger feeds only the shower cold water inlet(s). All pipe runs are local to the shower(s).

- **Unequal flow to water heater**: Showers (cold-side feed) is 0 and water heater is checked. This configuration indicates the potable-side output of the heat exchanger feeds the water heater inlet.

Specify the DHWR device for the water heating system and showers. HERS verification is required to meet the criteria, which comes from RA3.6.9.
9.11 Recirculation Loops for a Central DHW System

9.11.1 Number of Recirculation Loops
Enter the number of recirculation loops.

9.11.2 Loop Insulation Thickness
Enter the thickness in inches of the insulation.

9.11.3 Recirculation Loop Location
Options include conditioned, semi-conditioned, unconditioned, and underground.

9.12 Combined Hydronic
A combined hydronic system uses a device such as a boiler, large storage, or instantaneous water heater to provide both space heating and water heating. Heat pumps are not allowed as the heating source for a combined hydronic system. For the space heating system inputs, see Section 8.3.5. See Figure 8-7 for the proper way to model the water heating portion of a combined hydronic system.

To receive the full credit for a combined hydronic system, rather than leaving the water heating field as “none,” list the same device providing the space heating as the water heating system (for example, large storage 100 gallon water heater).

9.13 Ground Source Heat Pump and Air to Water Heat Pump
The water heating portion of a ground source heat pump or air to water heat pump is modeled by first defining the HVAC system, as described in Section 8.2.3 and checking the box “System Heats DHW” or domestic hot water.
The inputs for the water heating equipment data are:

9.13.1.1 Tank Volume
Enter the tank volume (in gallons).

9.13.1.2 Insulation R-value
R-value of external tank insulation.

9.13.1.3 Ambient Conditions
Specify whether installed in unconditioned or conditioned space.

**NOTE**: The final step is to connect the HVAC system to the DHW system. In this example, an HVAC system named Ground Source HP was specified and can be selected to serve as the water heating system for the zone. Once this connection is made, the mechanical tab will look like Figure 9-32.

**Figure 9-32: Water Heater from an HVAC System**

**Figure 9-33: Water Heating Correctly Connected to HVAC**
Chapter 10 Additions and Alterations

10.1 Overview

Additions are very complex. It can take years to know which approach is most suitable for the specific project for which you are preparing compliance documentation. If you are the homeowner, picking the wrong compliance approach could cost you more in construction costs than hiring a good consultant. If you are a consultant, you need to know the differences between prescriptive, performance addition alone, and performance existing plus addition. Every job is unique and usually one approach is better suited to a job. Before modeling a project, become familiar with the limits of a given approach. It is highly recommended that before beginning a project, you read §150.2(a)1 and possibly this chapter and determine if performance compliance (modeling the building) is the best option. Appropriate questions are: what is the climate zone? How big is the addition? Are there plans for the existing house? What prescriptive requirements could be a problem?

NOTE: Converting unconditioned space into living space is an addition.

10.1.1 Prescriptive

Prescriptive compliance allows more glazing area and has exceptions based on the size of a project that can often make it a better fit if you are considering modeling the addition alone. Forms for the prescriptive approach (if no HERS requirements apply) can be found at the CEC’s website for alterations and additions non-HERS verified forms. Even better are the interactive forms available at the Energy Code Ace website https://energycodeace.com/residentialforms. If HERS requirements apply, complete the forms at the HERS provider’s website (https://www.energy.ca.gov/programs-and-topics/programs/home-energy-rating-system-her-program/home-energy-rating-system).

10.1.2 Performance, Addition Alone

While addition alone may be easier to model, it is the most difficult to comply. Unlike existing plus addition performance compliance, most of the exceptions for prescriptive compliance do not apply to addition alone. Compliance requirements are mostly identical to new construction.

As required by §150.2(a)2A an addition alone generally meets the same requirements as new construction (hint: the run scope is “newly constructed” and you check “addition alone”). The only exceptions are (from §150.2(a)):

1. Continuous insulation for wall extensions (see Section 10.7.2) and existing walls where siding is not removed (see Section 10.7.1) [NOTE: A previous Blueprint allowed these exceptions for any addition, regardless of compliance approach].
(2) Cool roof requirements (if any) when the addition is 300 ft\(^2\) or less.
(3) QII requirements if addition is 700 ft\(^2\) or less.
(4) Whole house fan requirements (if any) for an addition that is 1,000 ft\(^2\) or less.
(5) Indoor air quality requirements for an addition that is not a new dwelling unit or for an addition that is 1,000 ft\(^2\) or less. (If an addition increases the number of dwelling units, such as an accessory dwelling unit (ADU), IAQ compliance applies to the addition, regardless of size.
(6) PV requirements.

10.1.3 Performance, Existing+Addition+Alteration

This compliance approach requires modeling the existing building. There is no penalty for the existing building that might have no insulation, or old windows. The status of existing ensures you are not penalized for existing building features. However, if you are converting an unconditioned space into conditioned space, this space is an addition and all surfaces in the addition are treated as new. Without violating any mandatory minimum requirements, you can keep the old characteristics if you can still comply. For example, if you have one unique single pane window you do not wish to change, if you can comply you can keep that single pane window.

Compliance tips:

- Removed/deleted surfaces are not modeled.
- When altering a feature, the existing characteristics are not specified unless using verified existing conditions (see Section 10.8.1) which requires verification by a HERS rater before obtaining a permit.
- Pay careful attention to the status. “New” means it did not previously exist, “altered” means it is being replaced. This is extremely important for windows and water heating, and less important for HVAC equipment (the same requirements apply in either case for HVAC equipment).
- Use one of the example files – addition alone is AAExample . . . or existing plus addition plus alteration is EAAExample . . .
- Change the name of the file, modify it to fit your project.

Prescription exceptions that apply (per §150.2(a)2B) when using existing plus addition are listed in §150.2(a)1:

- Attic roof deck insulation (a requirement in Climate Zones 4, 8-16) is not required for additions ≤ 700 ft\(^2\),
- Higher glazing allowances (up to 30 percent depending on size),
- Exception to QII for additions ≤ 700 ft\(^2\).
They only apply when using the existing plus addition compliance approach.

### 10.2 Accessory Dwelling Units

Sample files are include for several options for modeling an ADU:

- ADU as an addition alone (ADUExample3AdditionAlone.ribd19)
- ADU as an existing plus addition (EAAExample3ADU.ribd19)
- An ADU as well as an addition (EAAExample3LrgAddADU.ribd19)

#### 10.2.1 Scope

ADUs are secondary dwelling units built on residential lots. The exceptions to continuous insulation for additions (discussed in detail in Section 10.7) often apply to ADUs, so the CEC provided the guidance in for determining the scope of an ADU construction project.

- Addition:
  - Converting an existing structure that is attached to the existing dwelling unit
  - Converting an existing structure that is detached from the existing dwelling
  - Constructing an addition or ADU that is attached to the existing dwelling

- New constructed (not an addition)
  - Constructing an ADU that is detached from the existing dwelling unit

The exceptions to continuous insulation apply to wood-framed walls in an addition. See Section 10.7.

#### 10.2.2 IAQ

If complying as an addition, see Chapter 4 for where relevant details are entered. All ADUs must comply with §150.0(o) indoor air quality requirements. Projects complying as an addition alone provide information that is used to determine the minimum CFM requirements, if any.

**NOTE:** The existing square feet and bedrooms required for addition alone projects is not relevant to an ADU which is always required to meet IAQ requirements. The information is needed to determine the minimum CFM requirements when an addition exceeds 1,000 ft². Even so, the entries should reflect the square feet and bedrooms of the existing dwelling unit which can be found by a simple web search of the property description.
10.3 Addition Alone

10.3.1 Overview

Addition alone is the most stringent compliance approach. Compliance requirements are virtually the same as new construction. The only exceptions that apply to all additions are found in Energy Code §150.2(a):

- IAQ (other than for ADUs) only applies when the addition is greater than (> ) 1,000 ft².
- Whole house fan (where applicable) is only included in the standard design when the addition is > 1,000 ft².
- Cool roof (where applicable) is included in the standard design for additions > 300 ft².
- PV.
- Wall exceptions 2x4 walls need only R-15/2x6 walls need R-21 (2019 Code requirement) allowed for existing walls with siding not removed and wall extensions was allowed in any addition by Blueprint No. 122.
The exceptions that do not apply to existing plus addition, and not addition alone, are roof deck insulation, more generous glazing percentages, no QII until > 700 ft². See Energy Code §150.2(a)2A.

10.3.2 Specifying addition alone

To model an addition alone, (1) set the run scope to Newly Constructed, (2) check the box for Addition Alone, (3) check the box to indicate if the addition includes a kitchen, (4) enter the floor area of the existing house, and (5) enter the floor area of the addition (see Figure 10-2).

![Figure 10-2: Addition Alone](image)

The total area existing so that the total area represents the conditioned floor area after the addition is constructed (if you have already created the zone, you can use the program’s default function to capture the existing floor area). The reason for the existing square footage is so the internal gains (from mass, cooking, people) are accounted for properly (80 ft² within 3,000 ft² is quite different than 400 ft² within 1400 ft²).

If existing HVAC equipment will serve an addition, follow the guidelines in Section 10.6 for setting the status flag of both the equipment and ducts.

All interior surfaces have an option that allows checking “is a party surface” meaning the zone on the other side of the surface is not being modeled.

10.4 Existing + Addition

For existing plus addition plus alteration compliance, the standard design is based on sometimes modified prescriptive requirements as follows:

10.4.1 Attics/roofs

For additions of 700 ft² or less, the attic standard design assumes only the mandatory insulation requirement of R-22. Radiant barrier requirements for this size addition are based on prescriptive requirements for attic option C. For additions greater than 700 ft², the standard design is based on prescriptive requirements, attic option B (see Section 1.3.1 for more details).

10.4.2 Walls

The 2019 standard design wall in all additions is the same as new construction prescriptive requirement. See Section 10.7 for the exceptions.
10.5 Existing Building

If the existing building will be modeled as part of an existing plus addition/alteration analysis, model the entire existing building. The user has the option of specifying the status of a component as existing, altered, or new. Deleted or removed surfaces are not modeled. Section 10.4 below contains guidance for determining if a feature is altered or new.

The zone status is always existing, even if features of the zone are altered.

Model an interior wall connecting the existing building to the addition. If an addition (not an entire dwelling unit) is detached, model a hypothetical interior wall connecting the two buildings.

Specify the characteristics of all existing, altered, or new components (for example, a new window in an existing wall) associated with the existing part of the building.

If an existing garage is being converted to conditioned space, do not model the unconditioned garage. The garage is the addition because it is becoming conditioned space.

If existing features are unknown, a table of default assumptions (vintage table values) is included in Appendix B of the 2019 Residential Manual. Features that are being altered will follow the guidelines found in Section 10.4. Although credit is reduced without verification of existing conditions, a pre-construction inspection is not required (see Section 10.5.1). For details on how to model altered components, see Section 10.7.

Figure 10-3: Existing Surface
10.6 Status Fields

The status field identifies a feature as *Existing, New, or Altered* (and the attic includes an *altered roof surface*) and affects the standard design. For the HVAC and DHW equipment, the status needs to be set at the zone level.

NOTE: If you find that the status of an HVAC or water heating system is incorrect on the CF1R, it is best to access the building zone, set the status, and redefine the system from the zone screen.

10.6.1 Zone Status

Status for the zone is either *existing* or *new*. Only characteristics of the zone are altered, not the zone itself.

**NOTE**: An existing unconditioned space that being converted to a living space is an addition. The zone status and all surfaces in the zone are new. Although the building/structure currently exists conditioning an unconditioned space is an addition (see definitions, Energy Code Section 100.1, ADDITION). All envelope components of a new zone are set as new.

10.6.2 Surface Status

Surfaces (windows, walls, floors, ceilings) in an existing zone are either (a) *existing* (if not being altered), (b) *altered* (with or without verified existing conditions), or (c) *new* if the surface did not previously exist.

Surfaces in the new zone are always *new* (if the surface previously existed, it is still considered new if it is in the new zone).

**NEW**: *Altered roof surface* status is available for alteration projects where the roof is replaced. The difference between *altered* and *altered roof surface* is important for climate zones with roof deck insulation as part of the standard design. Altered assumes the entire attic zone is being altered (which includes the roof deck insulation) while *altered roof surface* assumes only the cool roofing requirements apply to the roof surface being altered. This option eliminates the need for a prescriptive CF1R-ALT-05E because modeling an altered attic made compliance fail.

**NOTE**: If creating a new project rather than using an existing or example file, pay close attention to the status as the default status is always new. This can negatively impact your compliance results. Check the CF1R for accuracy with regard to the status.

10.6.3 Space Conditioning Status

In an existing zone, the space conditioning status should not be new. It is either existing or altered.
**Existing** is the correct status for space conditioning equipment in the existing or new zone if it will not be changed.

**Altered** is the correct status for space conditioning equipment that is replaced or changed. If the same equipment will condition the existing and new zones, the HVAC system status is set to altered in the existing and new zones.

**New** is different than altered and applies only to new zones with equipment that serves only the new zone. New means space conditioning equipment did not previously exist for the floor area.

**NOTES:**

1. Because the status of an HVAC system cannot be changed once it is created, begin at the Zone Data tab, select the appropriate status, and if necessary, define the system.

2. Check the status of the ducts to be sure it is set correctly.

![Figure 10-4: EAA HVAC System Status](image)

### 10.6.4 Duct Status

The status of the distribution system can be defined as a distinct entry from the rest of the HVAC system. Be sure to check the status after defining the HVAC system because the default status is new, which triggers HERS verified duct leakage testing. The duct status is set to:

**Existing** when the existing ducts are remaining in the existing zone only (such as a separately defined HVAC system for an addition).

**Existing + new** when the same space conditioning equipment is conditioning both the existing and new zones, the existing ducts will remain, and new ducts are added for the addition. An exception to duct leakage testing (Exception 2 to §150.2(b)1E) applies if less than 40 feet of duct in unconditioned space is added. Check the box if that condition applies (see Figure 10-5).

**Altered** when all the existing ductwork is replaced, and new ducts are being added for the addition.
New (or altered) when an existing non-ducted system is being replaced with a ducted system.

Figure 10-5: Less than 40 feet of new duct

### 10.6.5 Water Heating Status

Water heating is assigned to the dwelling unit, not to specific floor area. In the existing zone, the water heating status is either existing or altered, and is never new.

Existing status is used if no water heating changes are being made (it is also acceptable to model none for the Existing DHW System name).

Altered status is modeled if the water heater is being replaced.

New status is only used in the new zone if an additional water heating system is being added to supplement the existing water heater.

**NOTE:** Because the status of a DHW system cannot be changed once it is created, begin at the Zone Data tab (see Figure 10-4), select the appropriate status, and define the system.

### 10.7 Exceptions to Continuous Wall Insulation

These exceptions to continuous wall insulation apply whether using addition alone or existing plus addition compliance. This is unusual because the prescriptive exceptions normally only apply to existing plus addition compliance.

#### 10.7.1 Existing Walls with Siding

As shown in Figure 10-6Figure 10-1 when converting an attached or detached unconditioned space into conditioned space and siding is not removed there is no compliance penalty for not meeting the wall construction requirements of §150.1. The minimum requirement for this provision is existing wood framed walls with cavity insulation of R-15 in 2x4 walls or R-21 in 2x6 walls.
In defining the wall for a project that is an addition alone or existing plus addition, if the proposed wall construction meets these requirements the wall exception field will appear, and you can select “existing wall w/ siding.” If the proposed wall does not meet these criteria, the exception field will not appear.

![Wall with Siding Inputs](image)

**Surface Status:** New

**Construction:** R-19 Wall

**Wall Exception:** Existing Wall w/ Siding

**Wall Area:** 200 ft²

**Wall Tilt:** 90 deg

**Orientation:** Right

### 10.7.2 Wall Extensions

When an addition is built with a connection to an existing wood-framed wall, the new wall (which would otherwise need continuous insulation to avoid an energy penalty) is allowed to be built with the same frame size as the existing wall and without continuous insulation.

![Identifying a Wall Extension](image)
10.8 Standard Design (Energy Budget)

The standard design (energy budget) can vary significantly depending on the compliance type selected. The budget will depend on if: (1) the project is an addition alone, (2) the project includes the existing building and the size of the addition, (3) any existing conditions will be verified by a HERS rater, and (3) individual altered components meet or exceed a minimum efficiency threshold (see Section 10.8.2 or Table 150.2-C).

NOTE: Verifying existing conditions is optional (see Section 10.8.1). You will not be able to obtain a registered CF1R until the inspection by the HERS rater is complete.

10.8.1 Third Party Verification

While not required, the amount of credit for proposed alterations depends on whether the existing conditions are verified by a HERS rater. It is feasible to comply without this added step.

As an example, if windows that are single-pane, metal frame, with clear glass are altered with dual-pane, wood frame, Low-E windows, the standard design without HERS rater verification is windows having a 0.40 U-factor and 0.35 SHGC (or 0.50 in zones with no SHGC requirement). The amount of credit for this alteration depends on how much lower than 0.40 is the U-factor of the proposed windows, or how much lower than 0.35 is the SHGC. If verified by a HERS rater, the standard design is set using the actual efficiency of the existing windows, which is 1.28 U-factor and 0.80 SHGC.

10.8.2 Efficiency Threshold

Another factor in determining the amount of credit or even a penalty that is achieved by an alteration is the proposed efficiency of the alteration. If an altered component does not meet the mandatory or prescriptive requirement in §150.2, the standard design will be based on the higher level. For example, if a ceiling has a verified insulation level of R-11, but the proposed alteration is to achieve R-19, the standard design is based on the standards’ requirement of R-30, and the proposed ceiling alteration will receive an energy penalty.
10.9 Addition

The addition is modeled as a separate zone, identified by a zone status of new. Set the surface status to “new” for all envelope components in the addition including existing components in a previously unconditioned space. The exception is an existing HVAC system being extended for the addition. Pay special attention to the status fields for the HVAC (see Section 10.6.3), and particularly the ducts (see Section 10.6.4). Water heating is limited to existing or new (meaning an additional water heater).

Define the connection to the existing dwelling with an interior surface and check the option “☑️ is a party surface.”

10.9.1 QII in an Addition

Modeling improved insulation quality (on the Analysis tab) will apply the credit to surfaces in new zones only. All surfaces in the new zone(s) must comply with the requirements of Reference Appendices, Residential Appendix RA3.5 for the ceiling/attic, knee walls, exterior walls, and exterior floors. QII credit will not be applied to any surfaces in the existing zone(s).

NOTE: Because a construction that does not meet QII is degraded to account for the lower quality construction, any assemblies used in the new zone must be unique from those in the existing zone. For example, For example, if walls in both the existing and addition walls are R-19 with wood siding, you will need to create a second copy of the R-19 wall (use the Copy Data From option) giving it a unique name (R-19 Wall Exist).
10.10 Alterations

Altered components are modeled with the new characteristics. You will only specify the existing characteristics if the existing conditions are verified by a HERS rater (see Figure 10-10 and Figure 10-11). The “verified” check box opens additional fields to define the existing conditions.

Because only one surface status can be selected, model components that are being altered separately from those that will not be altered.

If a surface did not previously exist, it is modeled with a status of “new.”

Deleted or removed surfaces are not modeled.

Figure 10-10: Altered with Verified Existing Conditions
10.10.1 Re-Roofing

When an existing roof is altered (such as re-roofing as part of an existing plus addition), pick the status “altered roof surface.” This option affects only the cool roof requirements for applicable climate zones. Alternatively, picking “altered” is interpreted as meaning the entire attic is altered. The effect of an altered attic in Climate Zones 4 and 8-16 is that the standard design includes roof deck insulation which results in a large penalty.

10.10.2 Radiant Barrier

Create a new attic over an addition. When creating the ceiling below attic for the addition, create a second attic zone with the appropriate features (radiant barrier, cool roof).
10.10.3 HVAC

First determine (1) if an existing system will be extended to serve an addition, (2) if a replacement (altered) system (including ducts) will be installed for the whole house, or (3) if a supplemental system will be added for the addition only. Existing equipment does not need to meet current standards (Exception 4 to §150.2(a)).

10.10.3.1 Existing equipment to serve addition.

For the existing and new zones, set the system status to “existing” and model the actual values for the existing system (Figure 10-14). The distribution system data will have both existing and new sections of the system defined (Figure 10-15).

10.10.3.2 Replacement system for whole house.

For the existing and new zones, set the system status to “altered” and model the proposed conditions for the equipment (if selecting Verify Existing System, also specify the existing conditions that were verified by the HERS rater). Model the appropriate conditions for the ducts, which may be altered if the existing ducts are being altered (this includes new ducts in the addition, as altered ducts will require duct leakage testing), new (if ducts did not previously exist) or existing + new if only the ducts in the addition are new.
10.10.3.3 Adding a system for the addition.

For the addition zone, define a separate system with the system status “new” with the proposed conditions of the new/supplemental system and duct conditions.

10.10.4 Water heating

If altering a water heater, define the altered specifications. If existing conditions were verified, check the box, and include the specifications of the existing equipment. If the distribution system is being altered and the existing conditions are verified set the dwelling unit distribution type to an appropriate value (see Section 9.3).
If adding a water heater, define both the existing water heater in the existing zone, and the added water heater in the addition zone.

10.10.5 **Mechanical Ventilation**

Alterations and additions of 1,000 square feet or less are not required to meet the mechanical ventilation requirements of §150.0(o).

10.10.6 **Cooling Ventilation/Whole House Fan**

It is not feasible to model ventilation cooling that serves only the addition.

Alterations and additions of 1,000 square feet or less are not required to meet the requirements of §150.1(c)12, which is part of the standard design in climate zones 8-14.
INDEX

2019 standards effective date .................................1-1
AC Charge ......................................................... See Refrigerant charge
Accessory dwelling units ................................ See ADU
ACH50 .....................................................................4-15
Addition alone .................................................... 10-1, 10-5
Addition Alone
  Party surface .....................................................10-5
Addition, existing plus .........................................10-2
Addition/alteration
  Alteration ...........................................................10-13
  Deleted surfaces .................................................10-13
  Duct scenarios ..................................................10-8
  Existing building ................................................10-6
  HVAC scenarios .............................................. 10-8, 10-15
  Party wall ..........................................................10-12
QII10-12
  standard design ..................................................10-11
  Standard design ...............................................10-5
  Status fields ......................................................10-7
  Water heating scenarios .................................... 10-9, 10-16
Additions
  Continuous insulation exceptions .....................10-9
ADU ................................................................. 4-4, 4-19
  Attached or detached .......................................4-16
  Compliance approaches ..................................10-3
IAQ ................................................................. 4-16, 10-3
  Sample Files ......................................................10-3
Air leakage ..........................................................4-15
Air to water heat pump
  Water heating inputs ........................................9-32
Air to water source heat pump
  Ducts ...............................................................8-20
Altered roof surface ......................................... 5-37
Analysis tab, accessing ......................................4-1
Appliance directory ..........................................9-2
Appliance energy use
  Multifamily ..........................................................5-30
Attached garage ..............................................4-17
Attic .................................................................5-32, 6-8
Area .....................................................................5-37
High performance ..............................................5-33
  Roof deck insulation .........................................5-33
Sealed ...............................................................5-36
  Second .............................................................5-36
Unvented ..........................................................5-35
  Unventilated ....................................................6-9
  Venting ...........................................................5-36
Attic roof terminology .......................................6-8
Automated defaults ............................................2-8
Basements ......................................................... See Below Grade
Batch processing ..............................................2-17
Battery inputs ....................................................4-12
Bedrooms .........................................................4-17
Below grade ......................................................4-17
  Overview ...........................................................7-8
  Slab ...............................................................7-16
  Walls ............................................................6-20, 7-8
  Zone bottom ....................................................5-27
Blower door test .................................................4-15
Bottom .............................................................5-27
Building description ..........................................4-14
Building tab, accessing ......................................4-1
Built-up roof ....................................................6-11, 6-16
Buried ducts ......................................................8-34
EDR
  Efficiency and Total.................................................1-14
  EER verified..........................................................2-8
  EER Verified ......................................................8-23
  Electric heat..........................................................8-8
  Electric heating.....................................................8-9
  Emissivity ......................................................... 5-38, 7-6
  Emittance default .............................................. 5-38, 7-6
  Energy Design Rating..............................................4-6
  Energy use results..................................................2-13
  Errors ..........................................................................2-14, 2-15
  Log file.........................................................................2-5
  Evaporatively cooled condenser...............................8-28
  Example files..........................................................2-2
  Fan efficacy
  Mandatory requirement............................................8-36
  Fenestration ............................................................7-18
  Efficiency source .....................................................7-23
  Fins............................................................................7-21
  Files
  Blank project............................................................4-1
  Example input files..................................................4-1
  Floor
  Mandatory insulation ...............................................6-6
  Over exterior ............................................................7-11
  Over garage ............................................................6-25
  Raised .........................................................................6-22
  Floor elevation ..........................................................5-27, 7-12, 7-14
  Floor furnace ............................................................8-8
  Floor to floor ............................................................5-26
  Frequently Asked Questions......................................2-6
  Front orientation ........................................................4-16
  Garage ........................................................................4-17
  deleting .................................................................5-40
  Multifamily ..............................................................5-40
  Zone ..........................................................................5-39
  Garage door ..............................................................7-11
  Ground source heat pump
  Ducts .........................................................................8-21
  Water heating inputs ..................................................9-32
  Heat pump
  Air to water source ....................................................8-13, 8-20
  Efficiency .................................................................8-11
  Ground source ..........................................................8-13
  VCHP ........................................................................8-2
  Heat Pump
  EER ............................................................................8-13
  Mini-split ...............................................................8-14, 8-28
  Multi-split .............................................................8-14, 8-28
  VCHP ........................................................................8-15
  Heat pump equipment types........................................8-12
  Heat pump water heater
  NEEA .........................................................................9-21
  Heat pump water heaters ............................................9-21
  NEEA rated ...............................................................9-2
  Heated slab ..............................................................7-15
  Heating
  Electric .................................................................8-9
  Wood heat ..............................................................8-9
  HERS
  Providers ...............................................................1-10, 1-14
  Registering CF1R .....................................................1-10
  HERS registration
  File for upload ..........................................................1-10
  HERS Verification .....................................................1-10
  HERS XML file ..........................................................4-4
  high performance attic ..............................................5-33
  HVAC
  Different efficiencies ...............................................8-3
  Different equipment types ........................................5-25
  Different fuel types ....................................................8-3
<table>
<thead>
<tr>
<th>Topic</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mini-split</td>
<td>8-2</td>
</tr>
<tr>
<td>Multiple duct conditions</td>
<td>5-25</td>
</tr>
<tr>
<td>Multiple systems</td>
<td>8-2</td>
</tr>
<tr>
<td>Multi-split</td>
<td>8-2</td>
</tr>
<tr>
<td>Supplemental heat</td>
<td>8-3</td>
</tr>
<tr>
<td>Zonal control</td>
<td>5-25</td>
</tr>
<tr>
<td>HVAC Equipment</td>
<td></td>
</tr>
<tr>
<td>Status fields</td>
<td>10-8</td>
</tr>
<tr>
<td>HVAC System</td>
<td>5-27</td>
</tr>
<tr>
<td>HVAC system type</td>
<td>8-4</td>
</tr>
<tr>
<td>IAQ</td>
<td></td>
</tr>
<tr>
<td>Attached dwelling unit</td>
<td>4-20</td>
</tr>
<tr>
<td>Maximum vertical distance</td>
<td>4-21</td>
</tr>
<tr>
<td>Peak Height</td>
<td>4-21</td>
</tr>
<tr>
<td>Single family</td>
<td>4-20</td>
</tr>
<tr>
<td>Indoor air quality</td>
<td></td>
</tr>
<tr>
<td>indoor air quality ventilation</td>
<td></td>
</tr>
<tr>
<td>Multi family</td>
<td>5-31</td>
</tr>
<tr>
<td>Infiltration</td>
<td>4-15</td>
</tr>
<tr>
<td>Installation</td>
<td>2-1</td>
</tr>
<tr>
<td>Insulation quality</td>
<td>4-15</td>
</tr>
<tr>
<td>Interior ceiling</td>
<td>6-13</td>
</tr>
<tr>
<td>Interior surface</td>
<td></td>
</tr>
<tr>
<td>party surface</td>
<td>7-3</td>
</tr>
<tr>
<td>Interior surfaces</td>
<td>7-2</td>
</tr>
<tr>
<td>Keyboard navigation w/o mouse</td>
<td>2-10</td>
</tr>
<tr>
<td>Kitchen</td>
<td>1-3</td>
</tr>
<tr>
<td>Kitchen Ventilation</td>
<td>4-5</td>
</tr>
<tr>
<td>Knee wall</td>
<td>6-9, 6-21, 7-6</td>
</tr>
<tr>
<td>Log file</td>
<td>2-5</td>
</tr>
<tr>
<td>Low leakage air handler</td>
<td>8-33</td>
</tr>
<tr>
<td>Low slope roof</td>
<td>5-38, 6-9</td>
</tr>
<tr>
<td>Aged solar reflectance</td>
<td>6-9</td>
</tr>
<tr>
<td>Mandatory requirements</td>
<td>1-14</td>
</tr>
<tr>
<td>Metal framed assemblies</td>
<td>6-2</td>
</tr>
<tr>
<td>Multifamily</td>
<td></td>
</tr>
<tr>
<td>Bedrooms</td>
<td>5-30</td>
</tr>
<tr>
<td>DHW</td>
<td>5-31</td>
</tr>
<tr>
<td>HVAC</td>
<td>5-31</td>
</tr>
<tr>
<td>IAQ</td>
<td>5-31</td>
</tr>
<tr>
<td>Multifamily building</td>
<td>4-16</td>
</tr>
<tr>
<td>Defining the building</td>
<td>5-27</td>
</tr>
<tr>
<td>Natural gas availability</td>
<td>1-4, 4-17</td>
</tr>
<tr>
<td>Net Energy Metering (NEM)</td>
<td>4-12</td>
</tr>
<tr>
<td>No cooling</td>
<td>8-25</td>
</tr>
<tr>
<td>Air leakage</td>
<td>4-15</td>
</tr>
<tr>
<td>Notes on CF1R</td>
<td>4-14</td>
</tr>
<tr>
<td>Number of stories</td>
<td>5-26</td>
</tr>
<tr>
<td>Open cell spray foam insulation</td>
<td>6-6</td>
</tr>
<tr>
<td>Orientation</td>
<td></td>
</tr>
<tr>
<td>Building front</td>
<td>4-16</td>
</tr>
<tr>
<td>Walls</td>
<td>7-1</td>
</tr>
<tr>
<td>Party surface</td>
<td>7-7</td>
</tr>
<tr>
<td>Perform analysis</td>
<td>2-5</td>
</tr>
<tr>
<td>Photovoltaic</td>
<td></td>
</tr>
<tr>
<td>Precooling</td>
<td>4-15</td>
</tr>
<tr>
<td>Print CF1R</td>
<td>2-6</td>
</tr>
<tr>
<td>Project</td>
<td></td>
</tr>
<tr>
<td>Zip code</td>
<td>4-2</td>
</tr>
<tr>
<td>Project name</td>
<td>4-2</td>
</tr>
<tr>
<td>Proposed design</td>
<td>1-14, 1-15</td>
</tr>
<tr>
<td>Proxy server settings</td>
<td>2-5</td>
</tr>
<tr>
<td>PV</td>
<td></td>
</tr>
<tr>
<td>Credit</td>
<td>4-6</td>
</tr>
<tr>
<td>Exceptions</td>
<td>4-7</td>
</tr>
<tr>
<td>Orientation and tilt</td>
<td>4-10</td>
</tr>
<tr>
<td>Scaling</td>
<td>4-8</td>
</tr>
<tr>
<td>System size</td>
<td>4-9</td>
</tr>
<tr>
<td>PV shading</td>
<td>4-10</td>
</tr>
<tr>
<td>PV Standard Design</td>
<td>4-8</td>
</tr>
<tr>
<td>QII4-15</td>
<td></td>
</tr>
<tr>
<td>In additions</td>
<td>10-12</td>
</tr>
</tbody>
</table>
## Index

<table>
<thead>
<tr>
<th>Topic</th>
<th>Page(s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Spray foam insulation</td>
<td>6-7</td>
</tr>
<tr>
<td>Quality insulation installation</td>
<td>4-15</td>
</tr>
<tr>
<td>Quick Start Guide</td>
<td>2-6</td>
</tr>
<tr>
<td>Radiant barrier</td>
<td>6-9, 6-12</td>
</tr>
<tr>
<td>Rafter roof</td>
<td>6-8</td>
</tr>
<tr>
<td>Raised floor</td>
<td>6-22, 7-12</td>
</tr>
<tr>
<td>Crawl space zone</td>
<td>5-38</td>
</tr>
<tr>
<td>Over exterior</td>
<td>7-12</td>
</tr>
<tr>
<td>Over garage</td>
<td>7-12</td>
</tr>
<tr>
<td>Refrigerant charge</td>
<td>8-14, 8-23</td>
</tr>
<tr>
<td>Renaming</td>
<td></td>
</tr>
<tr>
<td>Construction assembly</td>
<td>6-1</td>
</tr>
<tr>
<td>Report manager</td>
<td>1-15</td>
</tr>
<tr>
<td>Restore default</td>
<td>2-8</td>
</tr>
<tr>
<td>Return ducts</td>
<td>8-33</td>
</tr>
<tr>
<td>Roof</td>
<td>6-10</td>
</tr>
<tr>
<td>Above deck insulation</td>
<td>6-12</td>
</tr>
<tr>
<td>Aged solar reflectance</td>
<td>5-37, 7-5</td>
</tr>
<tr>
<td>Altered surface</td>
<td>5-37</td>
</tr>
<tr>
<td>Cathedral ceiling</td>
<td>6-8</td>
</tr>
<tr>
<td>Cool roof</td>
<td>5-38, 6-9</td>
</tr>
<tr>
<td>Emittance</td>
<td>5-38, 7-6</td>
</tr>
<tr>
<td>Exceptions for emittance</td>
<td>5-38</td>
</tr>
<tr>
<td>Exceptions for solar reflectance</td>
<td>5-37</td>
</tr>
<tr>
<td>Insulation</td>
<td>6-12</td>
</tr>
<tr>
<td>Low slope</td>
<td>6-10</td>
</tr>
<tr>
<td>Mandatory insulation</td>
<td>6-6</td>
</tr>
<tr>
<td>No attic</td>
<td>6-8</td>
</tr>
<tr>
<td>Pitch</td>
<td>7-5</td>
</tr>
<tr>
<td>Rafter roof</td>
<td>6-8</td>
</tr>
<tr>
<td>Raised heel truss</td>
<td>6-14</td>
</tr>
<tr>
<td>Rise</td>
<td>7-5</td>
</tr>
<tr>
<td>Solar reflectance</td>
<td>7-5</td>
</tr>
<tr>
<td>Steep slope</td>
<td>6-10</td>
</tr>
<tr>
<td>Roof construction</td>
<td>5-37</td>
</tr>
<tr>
<td>Roof pitch</td>
<td>5-37</td>
</tr>
<tr>
<td>Roof rise</td>
<td>5-37</td>
</tr>
<tr>
<td>Room air</td>
<td>8-29</td>
</tr>
<tr>
<td>Room heater</td>
<td>8-8</td>
</tr>
<tr>
<td>Run title</td>
<td>4-3</td>
</tr>
<tr>
<td>Sample files</td>
<td>2-2</td>
</tr>
<tr>
<td>Sealed attic</td>
<td>5-35, 6-9</td>
</tr>
<tr>
<td>SEER verified</td>
<td>8-22</td>
</tr>
<tr>
<td>Self-utilization credit</td>
<td>1-15</td>
</tr>
<tr>
<td>Simulation reports</td>
<td>4-22</td>
</tr>
<tr>
<td>Single family dwelling</td>
<td>4-16</td>
</tr>
<tr>
<td>Single package vertical air conditioners</td>
<td>8-27</td>
</tr>
<tr>
<td>SIP ceiling</td>
<td>6-16</td>
</tr>
<tr>
<td>SIP Walls</td>
<td>6-21</td>
</tr>
<tr>
<td>Skylight</td>
<td>7-22</td>
</tr>
<tr>
<td>Slab</td>
<td>7-14</td>
</tr>
<tr>
<td>Below grade</td>
<td>7-16</td>
</tr>
<tr>
<td>Covered/exposed</td>
<td>7-16</td>
</tr>
<tr>
<td>Edge insulation</td>
<td>7-16</td>
</tr>
<tr>
<td>SMUD community solar</td>
<td>4-6</td>
</tr>
<tr>
<td>Software updates</td>
<td>1-8</td>
</tr>
<tr>
<td>Solar access</td>
<td>4-10</td>
</tr>
<tr>
<td>Solar reflectance default</td>
<td>5-37, 7-5</td>
</tr>
<tr>
<td>Solar shading</td>
<td>4-10</td>
</tr>
<tr>
<td>SPF</td>
<td></td>
</tr>
<tr>
<td>Closed cell</td>
<td>6-6</td>
</tr>
<tr>
<td>Default R-values</td>
<td>6-7</td>
</tr>
<tr>
<td>Non-standard check box</td>
<td>6-6</td>
</tr>
<tr>
<td>Open cell</td>
<td>6-6</td>
</tr>
<tr>
<td>Verified insulation quality</td>
<td>6-7</td>
</tr>
<tr>
<td>Spray foam insulation</td>
<td>See SPF</td>
</tr>
<tr>
<td>Standard design</td>
<td>1-15</td>
</tr>
<tr>
<td>PV 4-8</td>
<td></td>
</tr>
<tr>
<td>Standards documents</td>
<td>1-12</td>
</tr>
<tr>
<td>Status fields</td>
<td>10-7</td>
</tr>
<tr>
<td>Steep slope roof</td>
<td>5-38, 6-10</td>
</tr>
<tr>
<td>Supply duct</td>
<td>8-33</td>
</tr>
</tbody>
</table>
Surface status ......................................................... 7-6
Target EDR .............................................................. 4-7
Tile
  Air gap ................................................................ 6-12
  Townhome ............................................................ 5-27
Underground .............................. See Below grade
Unvented attic ........................ 5-35, 5-36
Unventilated attic ....................... 6-9
Variable capacity heat pump ........ See VCHP
VCHP ............................................................. 8-2, 8-15
Ventilation Cooling .................. See Cooling ventilation
Verified duct design ..................... 8-33, 8-34
Verified insulation quality .............. 4-15
Wall area ............................................................ 7-7
Wall furnace ....................................................... 8-8
Wall orientation .................................................... 7-7
Walls ................................................................. 6-17
  Advanced Wall Framing ................................. 6-7
  Below grade ...................................................... 6-20, 7-8
  Between house and garage ......................... 6-21
  Demising .......................................................... 6-21
  Exceptions to continuous insulation ............ 10-9
Garage exterior .............................. 6-22
Interior ............................................................. 6-21
Knee walls ........................................ 6-9, 6-21, 7-6
Mandatory insulation ...................... 6-6
Mass ................................................................. 6-19
SIP ................................................................. 6-21
Uninsulated ...................................................... 6-22
Water heater
  multiple penalty .............................................. 9-10
Water heater data ........................................ 9-10
water heating ............................................. 9-8
Water heating
  Additions and Alterations .................... 10-9
  Central ........................................................... 9-22
Central heat pump ........................................ 9-24
Combined hydronic ....................................... 9-32
Commercial storage .............................. 9-15
compact distribution ......................... 4-18
Compact distribution .......................... 9-4
compact distribution, multifamily .......... 9-6
Different types in same zone ............. 5-25
Distribution ...................................................... 9-7
Distribution type ................................. 9-8, 9-24
Drain Water Heat Recovery .... See also Drain Water Heat Recovery
Efficiency ...................................................... 9-2
Heat pump ..................................................... 9-22
HPWH large single pass primary .......... 9-25
HPWH loop tank .......................................... 9-26
HPWH small integrated package .......... 9-24
Indirect/unfired ......................................... 9-18
Instantaneous/tankless ......................... 9-11
mini tank ......................................................... 9-4
Mini tank ......................................................... 9-12
Multiple heaters ........................................ 9-1
Pilot energy .................................................... 9-18
Residential-Duty Commercial ............. 9-14
Solar .............................................................. 9-27
Solar OG-100 ................................................... 9-28
Solar OG-300 ................................................... 9-29
standard design ..................................... 1-4
Standby loss ................................................. 9-16
Storage ........................................................ 9-12
System data .................................................... 9-8
Tank type ...................................................... 9-10
Tank types ..................................................... 9-3
water heater data .................................... 9-10
Watermark
  Not useable ................................................... 2-5
  Not Useable For Compliance ............ 4-3, See
Removing .........................................................1-10
Watts/CFM
  Mandatory requirement ..................................8-36
Whole house fan ........................................ 4-21, 8-40
Window
  Dimensions ......................................................7-18
  Glass doors .......................................................7-22
  Head height .....................................................5-27
  Mandatory maximum U-factor .........................7-17
  Multiplier .........................................................7-19
  Overall area .....................................................7-18
  SHGC ..............................................................7-19
  Skylight ............................................................7-22
  Type ............................................................. 6-25, 7-17, 7-18
  U-factor .......................................................... 6-26, 7-19
  XML file ............................................................. 4-4
  Zip code ............................................................ 4-2
  Zonal control ................................................... 4-17, 5-25
    Bypass duct ................................................... 8-30
    Cooling ........................................................... 8-25
    Credit .............................................................. 5-25
    Multi-speed compressor ................................... 8-24
    Zonal heating control ...................................... 8-3
    Zone status fields ........................................... 10-7
    Zone type
      Conditioned .................................................. 5-25
      Living or sleeping .......................................... 5-25