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PREFACE 

The California Energy Commission’s Energy Research and Development Division 

supports energy research and development programs to spur innovation in energy 

efficiency, renewable energy and advanced clean generation, energy-related 

environmental protection, energy transmission and distribution and transportation. 

In 2012, the Electric Program Investment Charge (EPIC) was established by the 

California Public Utilities Commission to fund public investments in research to create 

and advance new energy solutions, foster regional innovation and bring ideas from the 

lab to the marketplace. The California Energy Commission and the state’s three largest 

investor-owned utilities—Pacific Gas and Electric Company, San Diego Gas & Electric 

Company and Southern California Edison Company—were selected to administer the 

EPIC funds and advance novel technologies, tools, and strategies that provide benefits 

to their electric ratepayers. 

The Energy Commission is committed to ensuring public participation in its research and 

development programs that promote greater reliability, lower costs, and increase safety 

for the California electric ratepayer and include: 

• Providing societal benefits.

• Reducing greenhouse gas emission in the electricity sector at the lowest possible

cost.

• Supporting California’s loading order to meet energy needs first with energy

efficiency and demand response, next with renewable energy (distributed

generation and utility scale), and finally with clean, conventional electricity

supply.

• Supporting low-emission vehicles and transportation.

• Providing economic development.

• Using ratepayer funds efficiently.

High-Fidelity Solar Power Monitoring and Forecasting for Utility-scale Solar Farms is the 

final report for the High-Fidelity Solar Power Forecasting Systems for the 392 MW 

Ivanpah Solar Plant (CSP) and the 250 MW California Valley Solar Ranch (PV) project 

(CEC-EPC-14-008) conducted by University of California San Diego. The information 

from this project contributes to the Energy Research and Development Division’s EPIC 

Program. 

For more information about the Energy Research and Development Division, please visit 

the Energy Commission’s research website (www.energy.ca.gov/research/) or contact 

the Energy Commission at 916-327-1551. 

http://www.energy.ca.gov/research/
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ABSTRACT 

This project introduced novel forecasting methods for the solar resource and solar 

power generation by addressing critical gaps in the current forecasting methods. The 

project focused on technologies that rely on solar irradiance such as concentrated solar 

power, concentrated photovoltaics and tracking photovoltaics. Power generation for 

these technologies relies on direct normal irradiance, which is the component of 

irradiance that requires the most specific development due to high sensitivity to cloud 

cover and aerosol content in the atmosphere. The critical need for accurate direct 

normal irradiance forecasting tools is evident by the relative scarcity of native 

forecasting algorithms for this irradiance component in the scientific literature and its 

absence from most numerical weather prediction models. 

Researchers developed tools to monitor cloud cover that cause solar irradiance 

fluctuations across the solar plant field. The project team designed and used a new 

generation of low-cost solar instruments for monitoring and forecasting the solar 

resource for utility-scale solar farms. The team designed the instruments to provide 

reliable low-cost telemetry for real-time forecasts and covering detailed patches of the 

solar field nonintrusively. 

The project team created several forecasting models depending on the forecast horizon 

(such as intrahour, day-ahead) and operational target (for example, reducing monthly 

imbalances) for two utility-scale solar farms in California. The project demonstrated that 

the forecasting accuracy for direct normal irradiance and plane-of-array irradiance 

across all time scales is improved using forecasting models that blend local and remote 

telemetry. The project results demonstrated the importance of having a rich set of input 

data to improve forecasting. This effect was especially important for the intrahour time 

scale, for which the use of multiple solar sensors, sky images, and high-resolution 

satellite images was found to be essential to reducing forecasting errors. 

This report outlines the development and performance of the models. Furthermore, the 

report also addresses the applicability of the tools to other solar projects of different 

sizes and weather patterns. 

Keywords: DNI, POA irradiance forecasting, solar generation forecasting, CSP, PV 

tracking, sensor network 

Coimbra, Carlos F. M., Hugo T. C. Pedro, David P. Larson, Mengying Li and Jeremy 

Orosco. 2020. High-Fidelity Solar Power Monitoring and Forecasting for Utility-

Scale Solar Farms . California Energy Commission. Publication Number: 

CEC-500-2020-010.
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EXECUTIVE SUMMARY  

Introduction  
Solar energy is an abundant and renewable resource that can be harnessed to meet 

California’s demand for electrical energy and reduce the electric grid carbon footprint. 

Mandates like the Renewables Portfolio Standard as well as decreasing costs for solar 

panels have accelerated the use of systems that convert solar energy into useful 

electrical energy.  

As more variable renewable generation such as solar and wind comes on-line, the 

probability of unwanted and disruptive fluctuations in voltage and frequency increases 

for the electric power grid. Integrating solar resources successfully into the grid requires 

coordination among solar farm managers, utility companies, and independent system 

operators. In California, such efforts resulted in operational strategies like the 

requirements for solar plants to provide day-ahead generation forecasts for scheduling. 

It has also resulted in new market structures, such as the Western Energy Imbalance 

Market. This is a recent real-time bulk power trading market that allows the broader 

dispatch of power to consumers in western states in case of renewable overproduction. 

The success of these measures relies, in large part, on using forecasting models for this 

variable generation. Solar and wind forecasts are the lowest-cost, enabling technologies 

for addressing grid reliability and stability when there is a large amount of variable 

renewable electricity generation. Forecasting is also critical to reducing the need to 

overbuild energy storage or keep high levels of spinning resources online. These 

forecasts allow effective real-time management of supply. Various prediction models for 

solar power generation developed in recent years have improved forecasting accuracy, 

but despite these efforts, the state-of-the-art solar forecasting models still lack the 

accuracy to optimally integrate the levels of renewable resources required to meet 

California’s energy and climate goals.  

Project Purpose 
Weather—particularly cloud cover, ground wind speeds, and atmospheric aerosols—can 

suddenly and significantly affect power generated by centralized solar farms.  

Therefore, in the past years, solar forecasting, has emerged as one of the main tools to 

deal with weather-related solar generation variability. Accurate forecasts reduce 

requirements for reserves, ancillary resources, and energy storage systems. Such 

“insurance” expenses associated with resource variability increase the cost of adding 

solar energy resources to the electric power grid. Increasing the accuracy of solar 

forecasting models for variable generation helps California to achieve statutory goals for 

renewable energy generation. In addition, high-fidelity forecasts decrease the likelihood 

of curtailment from large central plants substantially, thus increasing the effective 

amount of renewables. High-fidelity forecasts are useful for power plant siting, 

planning, and operations; utility scheduling; and real-time system operations and 

dispatching.  
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While forecasting models for fixed photovoltaics (PV) technologies are relatively well 

developed, the same is not true for directional components of the solar irradiance (the 

power per unit area received from the Sun in the form of radiation) that are critical for 

concentrating solar technologies, such as concentrated solar power or concentrated 

photovoltaics. In these technologies, sunlight is concentrated to increase the radiant 

energy available for conversion into electricity. Power generation for concentrated and 

tracking technologies relies on the direct normal irradiance and plane-of-array 

components of the total irradiance. These components are substantially more difficult to 

forecast because of the associated sensitivity to cloud and aerosol transmittance 

effects. The small number of irradiance forecasting algorithms published in the scientific 

literature readily illustrates the unavailability of forecasting models for these quantities.  

This project addressed critical technological gaps in forecasting that rely on direct 

normal irradiance and plane-of-array irradiance, and it substantially increased the 

existing knowledge and resources available to continued improvement of solar 

forecasting. The major technological needs addressed in this project are high-fidelity 

direct normal irradiance and plane-of-array irradiance forecasting models for time 

horizons ranging from 5 minutes to 48 hours, and accurate resource-to-power models 

for utility-scale central power plants.  

In addition to improving modeling and software, this project designed, manufactured, 

and installed low-cost, nonintrusive, scalable, and autonomous solar sensors for 

analyzing solar variability within utility-scale solar fields. The researchers used this low-

cost hardware to accurately monitor solar irradiance and provide data for the spatially 

resolved forecasting algorithms. The nonintrusive aspect of this solution is essential, as 

physical modifications to the infrastructure (such as digging trenches for power and 

Ethernet connections) would discourage the deployment of these sensors in grid-

connected solar farms. 

The improvements developed by this project promote the integration of new 

concentrated solar power (CSP) power plants in areas of high direct normal irradiance 

resource such as the U.S. Southwest, including the southeast and Central Valley 

portions of California. Furthermore, the tools developed in this project apply to any 

solar harvesting system and are suitable for addressing issues related to the uncertainty 

of solar energy at several spatial and temporal time scales. 

Project Approach  
This project used accurate forecasting tools for two main variables: the solar irradiance, 

also called the solar resource, and the solar plant power output. It also considered 

several ancillary or additional variables (such as ground wind speed, temperature, 

humidity, and atmospheric aerosols) as inputs. The forecast horizons considered range 

from 5 minutes to 48 hours. In general, the models used evolutionary machine learning 

as a multilayered framework capable of incorporating and processing diverse forms of 

data inputs to generate adaptive predictions enhanced for each solar microclimate.  
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Much of the research developed in this project directed efforts to the 392 megawatt 

(MW) Ivanpah Solar Energy Generation Systems (Ivanpah), one of the largest CSP 

plants in the world. The portion of the project dedicated to Ivanpah focused on 

developing and validating tools capable of monitoring and forecasting the local solar 

resource accurately so that resource-to-power models are suitable for operation, 

scheduling, and market participation. These are models that estimate the plant’s 

production as a function of the measured or forecasted solar irradiance. The accuracy 

of the resource-to-power models is especially critical and challenging during times when 

the solar resource is highly variable due to the presence of cloud and aerosol effects. 

The proposed forecasting tool considers the position of the sun, clouds, and solar plant 

such that the forecast of solar resources is accurate even when weather conditions 

induce high variability for the solar resource. This complex system sought to reduce 

uncertainties associated with operating, regulating, and scheduling for solar plants. The 

researchers used lessons learned from the Ivanpah phase of the project to produce a 

forecast system for the single-axis 250 MW California Valley Solar Ranch. This forecast 

system was an important project component given that single-axis PV tracking plants 

are common in the United States. The model is appropriate as the foundation for 

building similar models of other single-axis tracking PV plants and was adapted for 

fixed-PV plants.   

The success of the project is measured by increasing levels of accuracy of the existing 

forecasting system for all horizons, using standard error metrics (mean absolute error, 

mean bias error, root mean square error, and forecasting skill) and ramp rate, ramp 

intensity, and ramp-following metrics.  Ramp metrics are important, because they 

quantify the forecast’s ability to predict weather-dependent steep changes (the ramps) 

in the solar resource. In this evaluation, ramp rate and intensity quantify the magnitude 

of the irradiance change whereas ramp-following metrics quantify the forecast’s ability 

to anticipate ramps at the correct time. 

A second research direction in this project is the design, fabrication, and testing of a 

low-cost wireless sensor network. This design is a solution for the lack of direct solar 

resource measurements often encountered in larger grid-connected solar farms. 

Project Results  
Overall, the project demonstrated that the forecasting accuracy for direct normal 

irradiance and plane-of-array irradiance across all time scales (intrahour, intraday, day-

ahead) is improved using forecasting models that blend local and remote telemetry. The 

project results demonstrated the importance of having a rich set of input data to 

improve forecasting. This effect was especially important for the intrahour time scale, 

for which the use of multiple solar sensors, sky images, and high-resolution satellite 

images was found to be essential to reducing forecasting errors. 

The project team used the tools developed in this project in two testbeds (Ivanpah and 

California Valley Solar Ranch) to predict direct normal irradiance, point of array 
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irradiance, and power generation. In both cases, the forecasting accuracy improved 

relative to baseline models. Furthermore, the researchers successfully applied those 

models to other locations, such as a 1MW PV solar farm in southern California. This 

showed that these models are of general applicability and suitable for other grid-

connected solar farms.  

In addition, the team demonstrated a successful design of a low-cost, nonintrusive, 

scalable, and autonomous wireless sensor network. The team designed and built the 

wireless sensor network at the University of California, San Diego and installed it at 

California Valley Solar Ranch. A yearlong test of the wireless sensor network revealed 

that the proposed design meets the success criteria for data accuracy, data availability 

and data coverage. It also revealed an important limitation, namely, the need of good 

line-of-sight between nodes. Nevertheless, the proposed wireless sensor network can 

be readily adopted by other solar projects with minimal changes. 

Recommendations 
Based on the work performed during this project, the project team identified a few 

research areas for renewable energy forecasting with the potential of promoting higher 

penetrations of carbon-neutral, weather-dependent renewable resources into the 

California power grid. These recommendations include:  

• The inclusion of detailed analysis of resource and generation predictability on the 

solar assessment for plant siting.  

• A study of scenarios with multiple penetrations of solar and wind in different 

microclimates and how new solar and wind capacity in these regions can 

contribute to offset atmospheric carbon emissions. 

• The integration of new satellite imagery provided by the new generation of 

geostationary operational environmental satellite in solar resource and 

generation forecasts. 

• The development of smart and hybrid remote-sensing/numerical weather-

prediction models that cover the entire state of California in real time for the 

short-term prediction (0-6 hours) of solar and wind resources. 

General Conclusion 
The main project conclusions are the following: 

• The wireless sensor network designed for this project was found to be a low-cost 

solution for obtaining spatially resolved irradiance over solar farms. 

• Accurate direct normal irradiance forecasts are more difficult to obtain than 

plane-of-array irradiance forecasts. Rapidly changing weather patterns and cloud 

formation/dissipation affect direct normal irradiance more than plane-of-array 

irradiance. 
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• Higher forecasting skill for intrahour power output predictions require careful and 

innovative feature engineering - a process that extracts new data from the 

original raw values. The new features can then be used as predictors to in 

machine learning tools, such as XGBoost. 

• The tools developed in this project are suitable to be easily and effectively 

implemented in other solar projects. 

• Successful forecasting of potentially dangerous wind conditions for heliostats and 

PV panels can be achieved based on numerical weather prediction outputs that 

are calibrated against historical ground telemetry using machine-learning tools.  

Technology/Knowledge Transfer/Market Adoption  
The project team developed algorithms that address gaps in solar harvesting 

technologies that rely on direct normal irradiance and plane-of-array irradiance. These 

technologies include CSP, concentrated PV, and tracking PV solar plants. The project 

team continues to promote the forecasting algorithms through journal papers, 

conference presentations, and direct communication with researchers and industry.  

High-resolution monitoring of solar irradiance over a solar farm is frequently prevented 

by the sparsity of local telemetry available. Often just a few irradiance sensors monitor 

a solar field with areas in the tens of square kilometers. The low-cost, autonomous, and 

wireless sensor developed in this project can be easily used over a large solar field. The 

team collaborated with the industry at California Valley Solar Ranch to test the sensors 

in a real-world scenario.  

The models developed in this project relate closely to the overall goal of a U.S. 

Department of Energy (U.S. DOE) Solar Forecasting II funding program in which the 

research team is also participating. The U.S. DOE project aims to obtain significant 

forecasting error reductions for direct normal irradiance and global horizontal irradiance 

forecasts for intraday and day-ahead temporal horizons. Lessons learned in the Energy 

Commission’s project will contribute to substantially reducing the risk in accomplishing 

the goals for the U.S. DOE Solar Forecasting II program. Moreover, solar resource and 

generation forecasting is moving from point forecasts to probabilistic forecasts. The 

former provide a single value for the prediction, whereas the latter also provide a 

probabilistic score for the likelihood of the forecast (similar to the cone of uncertainty 

used in hurricane forecasting). These models often rely on large ensembles of point 

forecasts. The models developed in this work naturally find a place in this framework, 

and the team will use the acquired knowledge in developing new probabilistic forecasts. 

Benefits to California  
The research team successfully demonstrated tools to increase the forecasting reliability 

for CPS and PV tracking solar generation. These tools have the potential to simplify and 

accelerate the integration of carbon-free technologies into the existing California power 

grid and market structure. Accurate solar generation forecasting has the potential to 
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help ensure a reliable power supply and higher quality power and enable the growth 

and integration of grid-connected solar energy resources into the electric grid. The 

project team identified several areas that will benefit from this project: 

• Enhanced capacity of utility-scale CSP plants due to improved prediction of 

resource and power output.  

• Improved integration of solar assets with utility and California Independent 

System Operator operations. 

• Increased ability of solar plants to absorb short-term ramps and maintain solar 

production, leading to lower overall operation costs and lower consumer cost per 

solar kilowatt-hour (kWh). 

• Decreased number of unscheduled power outages because of inaccurate 

forecasting of solar variability. 

• Improved use of ancillary generation resources (for example, services dispatched 

to ensure that there is sufficient energy generation to meet load) including lower 

use of peak fossil fuel-powered plants. 

• Improved public health from increased levels of renewable generation displacing 

the use of fossil fuel-based generation over the lifetime of higher-capacity solar 

plants. 

• Reduced renewable energy curtailment and resulting lower consumer cost per 

solar kWh. 
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CHAPTER 1:  
Introduction 

Weather, particularly cloud cover, ground wind speeds and atmospheric aerosol, can 

suddenly and significantly affect power generated by centralized solar farms. The 

electricity market system requires higher commitment of ancillary or additional 

resources, storage systems and spinning reserves to offset the variability of the solar 

resource. Such “insurance” costs associated with resource variability compromise the 

increase in penetration of solar energy resources in the electric grid. Thus, there is a 

direct relationship between increasing the accuracy of solar forecasting models for 

variable generation and the ability of California to achieve statutory goals for renewable 

energy penetration. In addition, high-fidelity forecasts decrease the chance of forced 

outages from large central plants substantially, thus increasing the effective penetration 

of renewables. This project implemented the first large-scale, high-fidelity solar 

forecasting models for large capacity central plants in the world, which will directly 

improve the ability of utilities and grid regulators to incorporate the output of these 

plants with reduced ancillary costs and increased confidence.  

This project introduced a new generation of forecasting methods for the solar resource 

(global horizontal irradiance (GHI); direct normal irradiance (DNI); and plane-of-array 

irradiance (POA)) and solar power generation (MW), which addresses critical gaps in 

state-of-the-art in solar forecasting. The project focused on technologies as 

concentrated solar power (CSP), concentrated photovoltaics (CPV) and tracking PV. 

Power generation for these technologies relies either solely or strongly on the DNI, 

which is the most difficult component of the solar resource to predict. DNI is also the 

component of irradiance that requires the most specific development due to its high 

sensitivity to cloud cover and aerosol content in the atmosphere. This critical need is 

evident by the relative scarcity of native DNI forecasting algorithms discussed in the 

scientific literature, and the absence of DNI information from the majority of the 

numerical weather prediction (NWP) models. In contrast, forecast algorithms for GHI 

for fixed PV applications abound in the literature, and are not only well developed but 

also well-funded at state and federal levels. 

A large portion of the applied research activities proposed in this project centered on 

the 392 MW Ivanpah Solar Thermal plant, currently the largest CSP plant in the world, 

and responsible for 30 percent of all the CSP capacity in the United States. The 

activities focused primarily on the development and validation of tools capable of 

monitoring and forecasting the local solar resource and the power generation of each of 

Ivanpah’s three towers accurately, from five minutes out to 48 hours in the future. In 

addition to developing accurate solar resource and ground wind forecasting, the 

comprehensive forecasting platform forecasts total power generation. The primary goal 

of this complex system was to reduce uncertainties associated with operation, 
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regulation and scheduling for the Ivanpah plant. A direct outcome of integrating DNI 

forecasting in the plant control system was that the DNI forecasts would be used as a 

feed-forward input to the Solar Field Controls System (SFINCS) that enables the 

heliostat field to position itself ahead of transients caused by weather variability.  This 

integration enhances the ability of plant managers to keep the steam generation online 

during periods of weather transients that cause the plant to trip, thus maximizing 

generation capacity and improving grid stability.  

Because PV solar farms are more common than CSP plants in the United States, this 

project also developed forecasting and RTP models for a large-scale, single-axis PV 

tracking plant. UCSD and NRG implemented and used an operational forecast system 

for the 250 MW California Valley Solar Ranch (CVSR).  

Achieving the objectives of this project required close monitoring of cloud cover, 

aerosols that result in solar irradiance fluctuations across the solar plant field. 

Therefore, the project team installed a new generation of low-cost solar instruments 

recently developed at UCSD by the Coimbra Energy Group for the monitoring and 

forecasting of the solar resource for utility-scale solar farms. These instruments 

designed had the explicit goals of providing low-cost reliable telemetry for real-time 

forecasts, and covering detailed patches of the solar field non-intrusively. 

In summary, this project aimed to: 

1. Improve DNI and POA irradiance forecasting accuracy  

2. Improve the power output (PO) forecasts for the Ivanpah CSP and CVSR plants  

3. Install and test a new generation of forecasting systems at these two plants to 

enable better control strategies for partially cloudy conditions (allowing operators 

to “ride” the transients without tripping the plants, particularly at Ivanpah Solar 

Thermal)  

4. Develop and install PO forecast models for Ivanpah and CVSR 

5. Generalize the lessons learned to other/future CSP plants and to other solar 

technologies (CPV, PV), and  

6. Assess the benefits of these new tools to the California ratepayers.  
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CHAPTER 2: 
Project Approach 

The success of this project required using accurate forecasting tools for two main 

variables: the solar resource (DNI, POA irradiance) and the solar plant power 

generation, plus several ancillary variables (ground wind speed, temperature, humidity, 

atmospheric aerosol, etc.). The forecast horizons range from five minutes out to 48 

hours. The team built the new generation models on the comprehensive forecasting 

algorithms developed by the Coimbra research group. The models use evolutionary 

stochastic learning as a multi-layered framework capable of ingesting and processing 

diverse forms of data inputs in order to generate adaptive predictions that are 

optimized for each solar microclimate.  The forecasting skill of these hybrid stochastic 

methods (ANN = Artificial Neural Networks; KNN = k-Nearest Neighbors, SVM = 

Support Vector Machines, etc.) depends on several free parameters: the ANN 

architecture (number of layers, number of neurons per layer, neuron connectivity), the 

number of neighbors and the distance function for KNNs, the selection of input 

variables and input preprocessing, among others. In the data rich scenario for the two 

testbeds, where irradiation, meteorological, and cloud data are available, it is not 

always evident which variables to include as inputs for the forecasting engine. To 

address this difficulty, the project team developed an approach where stand-alone 

forecasting engines evolved to be optimal regardless of the size of the parameter space. 

This is done with genetic algorithms as master controllers of the evolutionary method.  

This general framework has been tried and tested for many different and widely diverse 

solar microclimates in the past eight years and has been the basis for over many 

scientific publications, including more than 20 journal papers in the last three years. 

This adaptive approach was applied to all forecast horizons to produce a fully 

integrated, concatenated forecasting system. 

Model Development 
The workflow to prepare a forecasting model was the following: 

1. Feature development, selection, and assessment (i.e., feature engineering), 

2. As a starting point, the team chose a statistical or machine learning (ML) model. 

This project considers models such as Ordinary Least Squares (OLS), Support 

Vector Regression, Artificial Neural Networks, etc. 

3. Using historical data, the free parameters or hyperparameters are determined in 

the training stage. The data used in the training is known as the training dataset. 

The goal of this task is to tune the models’ structure for least forecasting error.  

4. Once the models are trained, they are tested using an independent dataset. That 

is, data that the models were not exposed to in the training stage. This dataset is 
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known as the testing dataset and it is used to assess the models' performance as 

they are exposed to new data. Error metrics for the testing data are very 

important because they anticipate the models’ performance in real-time. 

The innovation of this project was mainly included in items 1 and 2 in the list.  
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CHAPTER 3:  
Testbeds and Data 

Testbeds 
The tools and algorithms developed in this project were tested for several solar farms of 

different size and harvesting technology (e.g. CSP, PV, PV tracking). Two reasons 

motivate this approach. Firstly, CSP plants rely on DNI and the forecasting models for 

this variable are not as mature as the ones for GHI. Secondly, this allows showing that 

the work here presented can be replicable in many other solar projects. 

Grid-Connected Solar Plants Greater than 100 Megawatts 

For this scale, the project team collaborated with NRG that operates two large-scale 

solar farms in California: the 250 MW California Valley Solar Ranch and the 392 MW 

Ivanpah Solar Electric Generating Systems (Figure 1). Ivanpah Solar Thermal plant is 

one of the largest CSP plants in the world, and responsible for 30 percent of all the CSP 

capacity in the United States in 2015. Because photovoltaics (PV) solar farms are more 

common than CSP plants, this project also developed PO forecasting models for a large-

scale, single-axis PV tracking plant. The solar farm used in this case was the 250 MW 

California Valley Solar Ranch. 

Figure 1: Grid-Connected Solar Plants 

 

Left: The 392 MW CSP Ivanpah Solar Thermal power plant. Right: The 250 MW tracking PV 

California Valley Solar Ranch (CVSR) power plant.  

Photo Credit: NRG  

Medium-Sized Solar Plants (About 1 Megawatt) 

This project demonstrated the applicability of the models developed for Ivanpah and 

CVSR for other locations. The project team obtained several years’ worth of irradiance 

and PO data from two PV installations in southern California. These are: Canyon Crest 

Academy (CCA) in San Diego and La Costa Canyon (LCC) in Carlsbad. Both plants have 
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non-tracking PV panels at a fixed 5° incline, with AC nameplate capacities of 1 MW 

each.  

Data Sources 
Once the testbeds were determined, the project team procured the data necessary for 

the forecasting algorithms. The approach for data collection aimed at creating a data-

rich scenario that can be leveraged with machine learning algorithms to improve 

forecasting. The data used in this project consisted of time-series data for several 

variables (e. g. irradiance, power), images from local sky cameras and satellites, 

publicly available data, etc.   

Telemetry from Solar Farms 

The most important data set consisted of telemetry from the solar farms. These data 

are essential to train the forecasting algorithms and to validate the resulting models. In 

general, telemetry data are in the form of time series, that is, a value associated with a 

time stamp. The two utility-scale solar farms have several weather sensors and 

irradiance sensors that log data in to a PI server1 from OSIsoft. The PI server collects, 

stores, and organizes data from the solar farms and can be queried to retrieve any data 

logged. For both solar farms, UCSD collaborated with NRG’s IT personnel to establish 

automatic data retrieval. At Ivanpah, this project took advantage of a preexisting 

connection that transfers data from the PI server at Ivanpah to a MySQL database at 

UCSD via an intermediate virtual machine and an attendant task that runs every 5 

minutes. Although this solution worked for Ivanpah, the team decided to follow a more 

direct approach for CSVR. To this end, UCSD acquired its own PI server to establish a 

PI-to-PI connection. Once the two servers were connected, data logged at CVSR was 

immediately available at UCSD.  

Using these data handshakes, the project team collected a large set of time series for 

both locations: 

• Power output from the three towers are Ivanpah and from the whole CSVR. At 

CVSR is was possible to obtain PO data from each one of the nine separate 

circuits that form the plant. These data were collected at minute and sub-minute 

resolutions. 

• Irradiance data from multiple sensors. At Ivanpah, DNI (GHI) was available from 

nine (three) sensors, three (one) for each one of the three towers. For CVSR, 

POA irradiance data was collected from three weather stations. GHI data was 

also available from one the weather stations. 

• Weather data was also collected from the two locations. These include wind 

speed and direction, precipitation, humidity, pressure, etc. 

                                        
1 https://techsupport.osisoft.com/Products/PI-Server 
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Sensor Network  

The project team conducted an exploration of a dense network of irradiance sensors to 

improve PO monitoring and forecasting. To achieve this goal, the project team 

designed, built and tested a wireless sensor network (WSN). Using this tool, the project 

team obtained POA irradiance for ~20 nodes over CVSR. These data were recorded at 

15 second resolution. 

Sky Images 

The short-term fluctuations in the solar irradiance, which include large and steep 

ramps, are dictated almost exclusively by cloud cover. A single optically thick cloud can 

bring the power output of a concentrated solar farm from full capacity to zero and back 

in a matter of minutes. Some of the intrahour models for DNI and POA irradiance use 

ground telemetry and sky images. The images are used to provide features, such as 

image color and texture, which are then used as predictors for a ML model. For this 

purpose, the project team installed four cameras at the two solar farms. Three cameras 

were installed at Ivanpah (one for each tower). Figure 2 shows one image per camera 

and a map of the cameras’ location. The fourth camera was installed at CVSR on top of 

the Operations and Management (O&M) building. These cameras capture 3-megapixel 

(MP) sky images at 1-minute resolution. These are network cameras that were 

configured to transfer the images via File Transfer Protocal (FTP) to the UCSD servers 

in real-time. 

Figure 2: Sky Images at Ivanpah. 

 

Sky images from the three heliostats fields in Ivanpah. These images are processed to extract 

cloud cover information to generate the shortest-term intrahour DNI forecasts. 

Source: Elaborated by the authors of University of California, San Diego (2019). 

Satellite Images 
For horizons longer than 30 minutes, sky cameras provide little information due to the 

limited field-of-view. In that case, the forecasting models capitalize on combining the 

strengths of Machine Lerning (ML) for time series predictions with the relevance of 

information available in satellite images. To this end, the project team acquired images 

from the Geostationary Operational Environmental Satellite system (GOES), which are 
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operated by the United States' National Environmental Satellite, Data, and Information 

Service (NESDIS). More specifically, visible wavelength images from GOES-15, which is 

currently designated as GOES-WEST. The visible image channel is centered at 0.63 𝜇m, 

with a spatial resolution of 1 km and a temporal resolution of one image per 30 

minutes. Figure 3 shows an example of one such image with the location of the two 

solar farms annotated. 

Figure 3: Satellite Images for CVSR and Ivanpah. 

 

An example of a satellite image obtained from the GOES-West website. Historical satellite images 

were obtained for the same period as the DNI ground data. Images such as this one will be 

processed to extract cloud cover information to assist in the intraday forecast for Ivanpah and 

CVSR. 

Source: Elaborated by the authors of University of California, San Diego (2019). Satellite image from 

GOES-West. 

Numerical Weather Prediction 

Forecasting models for several hours ahead to day(s) ahead require information about 

future weather conditions. For these horizons, ground telemetry and satellite images 

are not enough to anticipate irradiance and solar generation behavior. Thus, in order to 

have some idea of next day(s) weather, the models use publicly available information 

from numerical weather prediction (NWP) models. Specifically, data from the North 

American Mesoscale Forecast System (NAM). The NAM is an NWP model provided by 

the National Oceanic and Atmospheric Administration (NOAA) on a 12 km × 12 km 

spatial grid that covers the continental United States. Forecasts are generated four 
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times daily at 00Z, 06Z, 12Z and 18Z, with hourly temporal resolution for 1 to 36-hour 

horizons and 3 h resolution for 39 to 84 h horizons. Several variables are extracted from 

the NAM files and used in the forecasts for this project:  

• Downward shortwave radiative flux (DSWRF) [W/m2] at the surface, a synonym 

for GHI and denoted as 𝐺NAM(𝑡); 

• Total cloud cover (TCDC) [%] denoted as 𝐶NAM(𝑡) where the entire atmosphere 

is treated as a single layer. 

• Surface Wind speed and wind gusts forecasts. 

These variables are obtained for the grid points in the vicinity of the locations of 

interest.  Figure 4 identifies the nodes near Ivanpah and CVSR. 

Figure 4: NAM Nodes Near Ivanpah and CVSR 

 

The NAM forecasted data from these nodes is used in the day-ahead forecasts for these locations.  

Source: Elaborated by the authors of University of California, San Diego (2019) using Google Earth. 
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CHAPTER 4:  
Wireless Sensor Network 

The devices developed under this project provide a solution to the need for high-density 

ground telemetry at low cost, with each unit costing less than $500 in components. 

Each device is solar powered and communicates wirelessly, thereby removing the need 

for modifying or expanding the power and networking infrastructure of the site. 

Additionally, the wireless network topology and device design enable rapid 

reconfiguration of the sensor deployment, e.g., the addition of more device nodes. The 

sections below detail the design requirements that guided the development of the 

sensors and the design iterations from proof-of-concept to a final product and the field-

testing operations at CVSR.  

Design Requirements 
The design of the wireless sensor network focused on five main requirements: low-cost, 

wireless, solar powered, automated and scalable. 

Low-cost: Current options for irradiance measurement systems are prohibitively 

expensive for many interested parties. Prices for even the most basic systems start at 

several thousands of dollars, which restricts the number of systems installed at a site. 

By reducing the cost of the network, one can ensure that 1) the devices are affordable 

to be installed at more sites and 2) the number of devices installed increase at each 

site. 

Wireless: Although all power plants have some form of standard internet connectivity, 

networking is rarely available across the entire site. Using wireless communication 

means it is possible to install devices at more locations without the need for additional 

network infrastructure. 

Solar powered: As with networking, not all areas of a site will have power outlets. 

Powering the devices using solar opens up more options for where to install the devices 

and makes the devices robust to issues at the ground, e.g., maintenance work that 

disrupts power access. 

Automated: Although power plants such as CVSR have staff on site, for forecasting 

applications, latency between data measurement and collection needs to be minimized. 

By automating the operation of the devices, latency is minimized. 

Scalable: A major goal of the project in developing a network of sensors is the ability to 

grow the density of sensors as needed. Therefore, the design of the network should 

minimize the difficulty in adding sensor nodes and enable a high density of sensors. 

Design Components 
The design requirements identified guided the choices in components for the system. 
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• Irradiance sensor: To balance cost versus performance, the WSN uses an off-

the-shelf pyranometer. Specifically, the Licor LI-200, a photodiode-based 

pyranometer (see Figure 5A). Retailing for less than $300, the LI-200 provides 

an economical option for irradiance measurement. Additionally, compared to 

other options, e.g., the Eppley PSP, the LI-200 is compact in size. 

• Wireless communication: The distance between the sensor nodes and the central 

receiver is likely to exceed 100 meters. To meet this distance requirement, the 

sensor nodes use XBee-PRO ZigBee radio frequency (RF) modules from Digi. The 

XBee modules provide a maximum range of 3.2 km (2 miles) line-of-sight and 

data rates up to 250 Kbps. The modules have a standard serial data interface 

and can be programmed via USB with an adaptor board (Fig. 5B).  

Figure 5: WSN Components and Deployment 

 

(A) Licor LI-200 pyranometer with a custom aluminum mounting base. (B) final WSN PCB design, 

featuring a Global Positioning System (GPS) module for automatic positioning data and a 16-bit 

analog-to-digital (ADC) chip for high-resolution irradiance measurements. A quarter is included in 

the photo as a size reference. (C) The central receiver node, consisting of a BeagleBone Black 

mounted with a custom PCB (purple board) that provides an interface for the XBee wireless 

module (blue board; top left). (D) A WSN node ready to be installed at the filed. (E) The sensor 

nodes attach to the PV tracking systems using pre-existing mounting points on the face plates at 

the end of each row. The weatherproof enclosure protects the electronics, while still providing 

easy access for maintenance and repair. The solar panel on top of the enclosure provides power 

to the node, but the panel is positioned so that it does not interfere with the pyranometer used for 

the POA irradiance measurements. 

Photo Credit: University of California, San Diego (2019). 
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• Computation: Each sensor node requires a computing device to measure the 

irradiance and transmit the data via the XBee module. As the nodes only need to 

push data, a microcontroller is sufficient. Thus, the sensor nodes are equipped 

with the Adafruit Trinket line of microcontrollers (see Fig. 5B). The Trinket 

devices provide the same functionality and support as Arduino devices, but in a 

lower cost, size and energy usage format. Additionally, the Trinket devices are 

Arduino compatible and have the full support of Adafruit, a well-known 

electronics manufacturing company based in the United States. 

• Power: The sensor nodes are powered using a combination of a photovoltaic 

(PV) panel and a backup battery. Due to low power requirements of the other 

components, the sensor nodes can be powered off of a single 3.4 W, 6V PV 

panel (approximately 4.72 in × 8.7 in, Fig. 5D). A 3.7 V, 2500 mAh Lithium Ion 

Polymer (LiPo) battery provides backup energy usage. 

Design Iterations 
After an initial proof-of-concept using commodity off-the-shelf (COTS) components, the 

design was converted to a printed circuit board (PCB) form-factor. The conversion to 

PCBs was necessary to further reduce costs, energy usage and size, while also enabling 

future mass production of the devices. The final version of the sensor is equipped with 

Adafruit Trinket Pro. This microcontroller provides additional input/output (I/O) options 

as compared to the Adafruit Trinket (the microcontroller used in the proof-of-concept 

devices).  Additionally, to enable rapid debugging and repair, the PCB was designed 

such that the microcontroller and XBee module are mounted using header pins.  

The final version, denoted as v2, has two main differences as compared to the original 

(v1) PCB: the addition of a Global Positioning System (GPS) module and a high-

resolution (16-bit) analog-to-digital (ADC) chip. The GPS provides automatic positioning 

of the devices, which enables re-arranging of the physical locations of the devices 

without needing to manually log their information. By adding the 16-bit ADC, the 

devices can measure irradiance with greater precision, approximately 0.1 Wm-2 instead 

of the 10 Wm-2 from the microcontroller's built-in ADC. 

Table 1 provides a breakdown of the costs of the WSN PCB. Note that the costs are 

approximate values, as prices decrease as with bulk purchases and manufacturing. 

Also, if a larger PV panel and/or battery becomes necessary, the cost of components 

included in the WSN devices will still be under $500 per unit. 
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Table 1: Components of Each WSN Device  

Component Purpose Approx. price 

Pyranometer irradiance sensor $200 

Microcontroller computation/control $10 

XBee wireless communication $30 

PV panel power $40 

Battery power $15 

GPS positioning data $40 

Custom PCB WSN base $5 

Other components WSN base $20 

 Subtotal $360 

“WSN base” refers the core portion of the WSN device, which ties together the entire system. Note 

that the costs are approximate values. Prices decrease for bulk orders and manufacturing. 

Source: Elaborated by the authors of University of California, San Diego (2019). 

Central Receiver Node 
In the system design, the network of WSN devices push their data to a central receiver 

node. The central receiver node is based on a BeagleBone Black minicomputer running 

a Linux operating system. A custom PCB provides an interface between the BeagleBone 

and an XBee wireless module, as well as an optional connection for a pyranometer. As 

data is received through the XBee wireless network, the data is logged to the filesystem 

of the BeagleBone. The data is then forwarded to a remote server or database at UCSD. 

The current configuration uses the BeagleBone's built-in ethernet port for external 

network connectivity. 

Deployment at CVSR 
The WSN field test deployment at CVSR occurred in three phases. Figure 5E shows one 

of the sensors installed in CVSR. To best assess the performance of the WSN design, 

the sensors were installed with a focus on the 40 MW Circuit 8 near the center of CVSR. 

Figure 6 shows the physical locations of the sensor nodes installed during Phases 1 to 

3. The team installed the master node, which receives data from the sensor nodes, on 

the roof of the Operations and Management (O&M) building near the center of the site. 
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Figure 6: Using the WSN at CVSR 

 

The master node was installed on the roof of the Operations and Management (O&M) building to 

ensure optimal wireless performance, while also enabling easy access to CVSR’s internal wired 

network. The sensor nodes markers denote locations where a sensor node was initially installed 

during either Phase 1 (red circle) or Phase 2 (blue triangle). To avoid confusion, locations where a 

node was replaced during Phase 2 and 3 are not shown.  

Source: Elaborated by the authors of University of California, San Diego (2019) using Google Earth. 

Phase 1 

The first use of the WSN to CVSR occurred in July 2016. A total of 12 nodes were 

installed to CVSR, with a master receiver node installed on the roof of the O&M 

building. The sensor nodes were configured for 1 second sampling in order to 

benchmark the communication and operational performance of the WSN at CVSR.  

Phase 2 

In December 2016, the UCSD team visited CVSR and installed an additional 10 nodes to 

the WSN. Based on the analysis of data from the nodes installed in Phase 1, the 

sampling period was decreased from every 1 second to every 15 seconds. Additionally, 

the nodes were retrofitted to use external antennas with the XBee wireless transmitters, 

which helped improve the wireless performance and reliability. During this trip, the 

UCSD team also performed maintenance the previously installed sensor nodes and 

installed a sky camera to provide images of the sky for monitoring and forecasting 

applications.  
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Phase 3 

The UCSD team traveled to CVSR in May 2017 to install software changes and perform 

maintenance on the pre-existing nodes. The software changes were related to 

improving the wireless performance of the XBee modules and to decreasing the energy 

consumption of the nodes. Specifically, the changes enabled the nodes to enter a low-

power mode at nighttime, thus saving battery power for daytime cloudy periods. Sensor 

nodes from Phase 1 and 2 which did not exhibit energy consumption or wireless issues 

were not modified during this trip. 

WSN Performance 

Weatherproofing 

Despite an uncommonly wet winter season in 2017, no sensor nodes have sustained 

weather-related damage. Moisture was discovered inside a single node during the May 

2017 visit to CVSR, but the device was otherwise operating normally. Several nodes 

were dirtied by bird droppings and dust, but the contaminants did not penetrate inside 

the weatherproof enclosure and had a negligible effect on operations.  

Energy Usage 

On sunny or partly cloudy days, the PV panel on each node provides sufficient power 

for the on-board electronics. However, extended periods of sustained overcast weather 

(> 5 days), as observed during Winter 2017, led to some nodes experiencing occasional 

periods of power loss. In order to prevent loss of data during the early hours of the 

day, the nodes installed during phase 3 were configured to enter a low-power mode 

during the night. 

Wireless Communication 

The performance of the XBee wireless modules varied between nodes based on their 

position within the PV arrays. Part of the variation in performance was due to 

obstructions in the line-of-sight of the XBee modules, e.g., hills and PV panels. In an 

attempt to improve wireless performance, the nodes installed during phase 2 and 3 

included external antennas for the XBee modules. Additionally, the density of sensor 

nodes was increased to enable additional multi-hop paths for the XBee wireless 

modules to reach the master node on the O&M building. 

Data Storage 

The WSN was designed such that the sensor nodes push their data at regular intervals 

to the master node, which collects, organizes and temporarily stores the data. Due to 

the design decisions outlined above, the individual sensors nodes do not have local 

backup storage, but the master node contains enough storage space to retain over 2 

months of sensor node measurements. At the time of this report, the WSN master node 

has been operating for over two years and has not had a data storage related failure. 
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Data Quality 

Figure 7 shows four days of measured power output (PO) from the 40 MW Circuit 8 and 

POA irradiance measurements from a subset of five of the WSN nodes. The POA from 

the WSN nodes exhibits the same dynamics as the PO time-series, while also providing 

a finer grain viewpoint on the intra-site variability. It should be noted that no post-

processing was applied to the PO or POA time-series in the plot. 

Figure 7: Correlation Between Measured PO and WSN Irradiance Data 

 

Sample time-series of the power output (PO) of the 40 MW Circuit 8 subset of CVSR compared to 

the plane-of-array (POA) irradiance measured by five WSN nodes. The POA irradiance measured 

by the WSN nodes exhibits the same dynamics as the PO time-series. 

Source: Elaborated by the authors of University of California, San Diego (2019). 

A study performed with data from 2017 revealed that the WSN POA irradiance data 

shows much higher correlation with Circuit 8 PO than any of the three POA 

measurements from the preexisting weather stations (installed and maintained by 

CVRS's personnel) as seen in Figure 8. The left panel in the figure shows that the 

correlation values between Circuit 8 PO and the POA irradiance from several WSN 

nodes (blue) are almost two times higher than the correlation values between power 

generation and POA irradiance from the weather stations. These results are a 

consequence of the distance from the sensors and Circuit 8 and demonstrate that a 

proper irradiance monitoring in large solar farms requires more than a few sensors. The 

right panel plots daily correlation values that again show much higher correlation 

between WSN POA irradiance and PO. 
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Figure 8: Correlation Between PO Irradiance and PO (Circuit 8) 

 

Left: Correlation values between Circuit 8 power generation and POA irradiance measurements 

obtained from the WSN (blue) and the weather stations (yellow). The values for the WSN nodes 

nearer Circuit 8 show much higher correlation. Right: Correlation values for met. Station 3 and 

sensor 5 of the WSN.   

Source: Elaborated by the authors of University of California, San Diego (2019). 

WSN Cost Reduction 

As stated, the goal for this task was to develop a low-cost solution for the acquisition of 

spatially resolved solar irradiance over the solar plant. Based on the values listed in 

Table 1, the deployment of 25 sensors over CVSR amounted to approximately 

$500 × 25 = $12,500 in equipment and materials. Commercial alternatives for a single 

sensor with datalogger, start at approximately $1,000 and can run up to $3,900 (Lave 

et al (2015)). Thus, the solution found in this project represents a cost reduction of at 

least 50 percent relative to commercial alternatives. This value is very conservative 

given that alternatives require both power and ethernet. The low-cost WSN does not, as 

reported above. Therefore, the deployment of commercial alternatives would be limited 

to points, in the power plant, where both are available, or, it would require significant 

investment to extend the power and ethernet infrastructure to the selected locations. 
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CHAPTER 5:  
Resource and Generation Forecasting 

Intrahour Forecasting  
The intrahour forecast includes the shortest forecast horizons in this work, but it is the 

most challenging type of forecast in solar energy applications. This stems from the fact 

that at these very short horizons it necessary to predict the average behavior of the 

solar irradiance, and also to predict large and sudden changes: the ramps. Given that, 

clouds moving in and out of the solar field are the key factor in determining these 

ramps, the intrahour models rely on sky images. These images are essential to track 

the cloud motion, estimate the shadowing of the solar field, and predict fluctuations in 

the solar generation. 

DNI Forecast for Ivanpah 

There are three power generation towers at Ivanpah, each of which has three DNI 

sensors and one fisheye sky camera. Two global horizontal irradiance (GHI) sensors are 

installed on Tower 1 and Tower 3. The high-resolution data was averaged into five-

minute windows across the three towers. This operation results into a five minute-

resolution time series of solar irradiance for the whole solar plant. Night values (solar 

elevation angle smaller than 0°) and abnormal measurements such as negative values 

that result from erroneous sensor readings were filtered out. Irradiance data for short 

periods with no measurements are interpolated from existing data. 

The forecasting model forecasts the clear-sky index of DNI instead of DNI irradiance. 

The clear-sky index 𝑘𝑡(𝑡) is defined as the ratio of DNI and clear-sky DNI, 𝑘𝑡(𝑡) =
 𝐵(𝑡) 𝐵𝑐(𝑡)⁄ , where 𝐵(𝑡) is the actual irradiance and 𝐵𝑐(𝑡) is the clear-sky irradiance. 

The clear-sky irradiance 𝐵𝑐(𝑡) is calculated from selected clear-sky models, which are 

presented in Appendix A. 

Different forecasting schemes are applied to different sky conditions (as shown in Fig. 

9).  For cloud-free (clear) and overcast periods, the smart persistence model is applied. 

For partly-cloudy periods, a pre-trained MLP is applied (Appendix A). The sky 

classification methods are presented below in more detail. 

Sky Classification 

The key component of this forecasting model is the accurate sky classification, in terms 

of cloud cover, that allows switching between the different sub-models. In this model 

the sky is classified as clear, partly-cloudy (patches of clear sky and isolated clouds) and 

overcast (sky mostly covered by clouds). The model first determines the sky class based 

on the latest irradiance data available, since clear-sky instances are easily identifiable 

by comparing the measured data against the clear-sky model. If a data section is 

classified as not clear the model uses the corresponding sky image to assess the cloud 
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coverage. Using that information these periods are classified as one of the two non-

clear classes: overcast or partly-cloudy. 

Figure 9: Schematic for the Intrahour DNI Forecast Based on Sky 
Classification 

 

Different models are applied depending on cloud cover. The model produces the irradiance 

forecasts for different intrahour forecast horizons (FH). 

Source: Elaborated by the authors of University of California, San Diego (2019). 

Clear-Sky Detection 

The clear-sky periods are identified based on a statistical model originally developed by 

Reno and Hansen (2012) for GHI observations. This method uses five criteria to 

compare a period of 𝑁 GHI measurements to a corresponding clear-sky GHI for the 

same period. The time period is deemed clear if threshold values for all the five criteria 

are met. By expanding the work of Reno and Hansen (2012) to include thresholds for 

both GHI and DNI, the project team worked on a more reliable clear-sky detection 

model. This expansion results in a total of 10 criteria (5 for GHI plus 5 for DNI) that 

must be met for a period to be classified as clear sky. These criteria are applied to a 10-

min sliding window as suggested by Reno and Hansen. The threshold values for GHI 

and DNI are listed in Table 2. A detail description of each criterion can be found in Reno 

and Hansen (2012). 
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Table 2: Clear-Sky Criteria Threshold Values for GHI and DNI 

Criterion GHI DNI 

Difference of mean value  100 W/m2 200 W/m2 

Difference of max value  100 W/m2 200 W/m2 

Difference of length of the line 50     100  

Difference of the variance of step-

changes 

0.01   0.015  

Maximum deviation from the clear-sky 

slope 

10 W/m2 15 W/m2  

Source: Elaborated by the authors of University of California, San Diego (2019). 

Overcast Period Detection 

Overcast periods are detected based on the sky images. From each image the algorithm 

extracts the red and blue color channels and computes the normalized red to blue ratio 

or NRBR. NRBR is calculated as (R − B)/(R + B) where 𝑅 and 𝐵 denote the Red and 

Blue components of the RGB image. Tests have shown that overcast sky images have a 

unimodal histogram of NRBR with a relatively small standard deviation (Li et al 2011). 

Using this fact, a data point is denoted as overcast if the corresponding sky image has a 

standard deviation of NRBR smaller than 0.085. 

Partly-cloudy Period Detection and Cloud Detection 

Partly-cloudy periods are simply those periods that fail the tests described above for 

clear and overcast periods. However, for these periods it is very important to identify 

clouds from the sky images since they will determine the fluctuations in the irradiance. 

For this purpose, this project uses Minimum Cross Entropy method (MCE). The MCE is 

an adaptive image processing method based on a simple thresholding image 

segmentation algorithm (see Chu et al (2014)). The value of the MCE threshold is based 

on the histogram of the (R − B) distribution of the sky image to achieve minimum cross 

entropy. Once the threshold is determined, pixels with higher (R − B) than that value 

are classified as cloud and the remaining are classified as clear sky. 

Using this cloud cover classification algorithm, the model describe in Fig. 9 is then 

applied to the data from Ivanpah. The forecasting metrics for the testing set are listed 

in Table 3. 
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Table 3: Performance of Intrahour DNI Forecast for Ivanpah (W/m2) 

Forecast 

Horizon 

(mins) 

SPM – 

MBE 

SPM – 

MAE 

SPM – 

RMSE 

HM – 

MBE 

HM – 

MAE 

HM – 

RMSE 

HM – 

Forecast 

Skill 

(%) 

AP: 5 0.5 27.3 67.5 0.0 27.7 61.9 8.3 

AP: 10 0.9 40.3 94.2 -1.0 39.8 83.1 11.8 

AP: 15 1.4 47.6 109.3 -1.2 46.9 97.3 11.0 

AP: 20 1.9 53.3 119.6 -2.3 53.5 108.0 9.8 

CP: 5 -0.3 34.8 78.2 -1.0 35.6 70.3 10.1 

CP: 10 -1.0 49.0 105.7 -4.2 48.3 88.6 16.2 

CP: 15 -1.6 55.1 118.1 -5.9 54.0 98.8 16.4 

CP: 20 -1.6 59.7 125.8 -8.8 60.0 106.4 15.4 

AP = all periods; CP = cloudy periods; SPM = Smart Persistence Model; HM = Hybrid Model. 

Source: Elaborated by the authors of University of California, San Diego (2019). 

POA Irradiance Forecast for CVSR 

Intrahour forecast models developed for POA irradiance for CVSR are based on 

meteorological data collected from the weather stations installed at the solar farm. 

These instruments collect POA irradiance, temperature and wind speed every minute. 

These variables are used to train a Support Vector Regression model (Appendix A) to 

predict POA irradiance 5, 10, 15, and 30 minutes ahead of time. The error metrics for 

this model and the persistence model applied to the testing set are listed in Table 4. 

The table shows good forecasting skills for all the intrahour horizons studied. 
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Table 4: Forecast Performance of Intrahour POA Irradiance Forecast for 
CVSR 

Forecast: 

Model Var. 

Forecast: 

FH 

Error 

Metrics: 

MBE 

(Wm-2) 

Error 

Metrics: 

MAE 

(Wm-2) 

Error 

Metrics: 

RMSE 

(Wm-2) 

Skill (%) 

Pers. POA 5 min 2.60 35.70 84.27 - 

SVR. POA 5 min -11.12 56.73 68.73 19 

Pers. POA 10 min 5.78 53.23 112.84 - 

SVR POA 10 min -9.81 64.82 77.12 32 

Pers. POA 15 min 9.52 65.13 127.81 - 

SVR POA 15 min -14.86 65.53 79.17 38 

Pers. POA 30 min 23.65 94.73 162.63 - 

SVR POA 30 min -7.67 72.28 83.98 49 

Source: Elaborated by the authors of University of California, San Diego (2019). 

PO Forecast for CVSR 

Intrahour power output forecasts for CVSR were focused on the 40WM circuit 8 with 

the goal to participate in the intrahour energy market (power from other circuits is 

traded differently). 

The baseline feature set used for the development and analysis of the intrahour 

forecasts is comprised of current and historical (lagged) values: POA irradiance 

measurements from telemetry station 2, and PO for circuit 8. 

The fidelity realized by the intrahour forecasts depends critically on two enhancements 

to the baseline feature set that can be utilized both independently to achieve differing 

degrees of forecast performance. These are 

1. features derived from memory operators, and 

2. satellite-derived features. 

The former is obtained as numerically evaluated fractional derivatives of a 

corresponding time series (see Appendix A) while the latter are products of the 

Geostationary Operational Environmental Satellite (GOES) system. Each feature set is 

compiled as 5-minute backward (i.e., causal) averages of the raw data. The feature 

vectors include historical (i.e., lagged) values as well as a most-recent-minute column. 

The latter—a 1-minute causal average of the most recent raw data—is included because 

it was found to provide a significant benefit beyond the 5-minute averaged data, 

especially at shorter (<15 minute) horizons. 
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The satellite-derived feature sets are products of the GOES-West and GOES-East 

satellites. These features include:  

• GHI derived from GOES-West images using the NOAA/NESDIS Operational Cloud 

Processing System (CLAVR-x) (Heidinger et al. (2014)) that are publicly available 

in real-time2.  

• Cloud and Moisture Imagery Product (CMIP)3 from the new satellite GOES-EAST. 

Figure 10 shows a CMIP map and it illustrates its relationship with POA at CVSR. 

Figure 10: CMIP Data Versus POA Ground Measurements 

 

Relationship between GOES-R CMIP data and POA data at CVSR. Left: the CMIP map over CVSR 

(white dot). Right: POA and CMIP time series for Jan 20, 2018. The black vertical line indicates the 

time at which the map on the left was captured. Large CMIP values indicate clouds over CVSR and 

low values indicate clear-sky. This relationship is clearly evident in the time series variations 

between 18:00 and 20:00 in Coordinated Universal Time (UTC). 

Source: Elaborated by the authors of University of California, San Diego (2019). 

A brief feasibility analysis immediately revealed that using satellite features for the node 

closest to CVSR does not provide any substantial benefit beyond the ground telemetry 

features. However, features derived from the first and second statistical moments of 

the nearest-geographical-neighbor (NGN) node distribution do yield a substantial 

benefit. This is an expected result, since the effect of the NGN data is to increase the 

topological “reach” of the model, which is realized in terms of an increase in 

performance at longer horizons.  

                                        
2 https://cimss.ssec.wisc.edu/clavrx/google_earth_main.html 

3 https://www.goes-r.gov/products/ATBDs/baseline/Imagery_v2.0_no_color.pdf 
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The final model selected for forecasts in this task is that obtained when utilizing a 

machine learning technique known as gradient boosting, which is explained in more 

detail in Appendix A. The team selected the gradient boosting method for this work 

since the more traditional MPL structure struggled to extract benefits from some of the 

input data. It was observed that by placing multiple MPLs into a naïve boosting 

configuration, and then cascading the differing memory features in at each round, an 

independent performance increase was obtained for each fractional order. The gradient 

boosting technique is an obvious candidate for capitalizing on this result, since it has 

recently received great notoriety and wide adoption within the machine learning 

community due to its robust performance with both regression and classification tasks. 

Robustness Analysis 

Since the forecasting fidelity is dependent on the model, which is itself dependent on 

input data having a stochastic component, the performance at each time horizon is best 

characterized as a distribution of skills. It is in this spirit the analysis of model 

robustness was undertaken. 

To facilitate the analysis, distributions were developed in the following way: 

1. Validation data set is randomly shuffled into two disjoint sets: 

a. training (70 percent) 

b. testing (30 percent) 

2. Model is trained utilizing training data 

3. Forecast skill is computed and stored 

4. Steps 1-3 are repeated 100 times. 

The resulting set of 100 forecast skills then represents a performance distribution 

associated with the validation data set. It should be noted that model hyperparameters 

were obtained on data that is entirely independent from the validation data. This 

analysis was performed at each time horizon. Figure 11 provides analysis results for 

models utilizing ground telemetry features and the corresponding memory operator 

features. Figure 12 provides analysis results for models utilizing ground telemetry 

features, satellite features, as well as memory operator features corresponding to both. 
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Figure 11: Robustness Analysis With Ground Telemetry Features 

 

The box and swarm plots demonstrate performance distributions for forecasts with the XGB 

model structure utilizing ground telemetry and corresponding memory operator features. The 

forecast skill “levels off” at longer horizons, indicating that a fixed performance enhancement 

(i.e., beyond a smart persistence model) is realized at horizons greater than 10 minutes. 

Source: Elaborated by the authors of University of California, San Diego (2019). 

Figure 12: Robustness Analysis with Ground Telemetry and Satellite Features 

 

The box and swarm plots demonstrate performance distributions for forecasts with the XGB 

model structure utilizing ground telemetry features, satellite-derived features, and memory 

operator features corresponding to both. For horizons greater than 5 minutes, the results indicate 

a substantial additional benefit beyond those produced with ground telemetry. 

Source: Elaborated by the authors of University of California, San Diego (2019). 

A general trend that can be observed in Figures 11 and 12 is the improvement in 

forecast fidelity obtained at longer horizons when the satellite-derived features are 

included. This benefit is diminishing for the 5-10-minute horizons. In Figure 13, plotting 

the mean skills from the previous two figures has delineated this trend. 
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Figure 13: Comparative Mean Performance for Ground and Ground + Satellite 
Features 

 

The plots of mean forecast skill (obtained from the distributions in the previous two figures) 

demonstrate the performance enhancement achieved with the use of satellite-derived feature sets. 

In each case, the corresponding memory operator features have also been used. 

Source: Elaborated by the authors of University of California, San Diego (2019). 

The trend observed in the figure makes sense, since the satellite-derived features 

provide NGN statistics for the temporal evolution of the weather system, which is 

expected to be useful primarily at longer horizons. If the information provided locally by 

ground telemetry is consistent with that provided by the satellite, then the performance 

augmentation should vanish at shorter horizons, which is precisely the empirical result. 

Furthermore, the mean skills at the 5-minute horizon were obtained from performance 

distributions resulting from independently randomized training-testing splits, so that the 

asymptotic agreement at shorter horizons also reinforces the consistency and 

robustness of the method used to optimize the hyperparameters. 

Intraday Forecast 

Similar to intrahour forecast the intraday solar forecast also targets the forecasting of 

large ramps in the solar resource. However, for these horizons the cloud information in 

sky images is too short-lived (sky images are useful for horizons below 30 minutes). An 

alternative to sky images that allows for a much larger field of view are the images 

acquired by the GOES-West satellites as explained in Chapter 3. Using these images the 

forecasting models learn a mapping 𝑓(∘) between a set of real-valued satellite-derived 

features at the current time 𝑡 and ground conditions at some future time 𝑡 + ∆𝑡 (Figure 

14).  
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Figure 14: A Diagram of the Overall Forecast Method Using Satellite Images 

 

First, a 𝟒𝟖𝟎 × 𝟔𝟖𝟎 pixel satellite image at time 𝒕 is cropped down to a 𝒘 × 𝒘 region of interest, 

centered around the target site. The cropped image is then transformed into a 𝒏-length feature 

vector 𝒙(𝒕) and fed into a forecast model, e. g., SVR, to produce a prediction of the target output 

𝒚̂(𝒕 + ∆𝒕). 

Source: Elaborated by the authors of University of California, San Diego (2019). 

To accomplish these goals, two mapping functions are considered: a linear model based 

on Ordinary Least-Squares (OLS) and a non-linear model based on Support Vector 

Regression (SVR) (Appendix A). 

The satellite image inputs are derived from the GOES geosynchronous satellite system. 

A 𝑤 × 𝑤 square region, centered on the target site, is extracted from each image and 

then flattened into a vector 𝒙 with 𝑛 = 𝑤2 elements. Each image is then normalized to 

remove brightness and contrast variations that depend on the time of the day at which 

the image was captured. 

𝒙 =
𝒙̃ − avg(𝒙̃)

√var(𝒙̃) + 10
 

where 𝒙̃ is the unprocessed 8-bit gray scale image vector, avg is the arithmetic mean 

value, and var is the variance. After normalization, the image vectors are stacked to 

create a matrix 𝑿 that is used as input to the forecasting models. 

The forecast models (OLS and SVR) are trained to predict backwards-averaged, hourly 

values for horizons of one to six hours. For each model, the optimal hyperparameters 

are chosen using cross-validation on the training set. The forecast performance of the 

models for both DNI at Ivanpah and POA at CVSR are summarized below (Table 5). 
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Table 5: Forecast Performance for Intraday Forecast for DNI and POA 
Irradiance  

Forecast: 
Mod. 
Var. 

Forecast: 
FH 

(hour) 

Forecast: 
Loc. 

Error 
Metrics: 

MAE 
(Wm-2) 

Error 
Metrics: 

MBE  
(Wm-2) 

Error 
Metrics: 

RMSE 
(Wm-2) 

Skill (%) 

OLS DNI 1 Ivp 173.5 26.1 222.1 35.2 

SVR DNI 1 Ivp 144.5 -5.4 201.6 41.2 

OLS DNI 2 Ivp 197.9 37.2 251.4 31.4 

SVR DNI 2 Ivp 167.2 -2.2 228.0 37.8 

OLS DNI 3 Ivp 216.9 49.7 272.4 31.9 

SVR DNI 3 Ivp 188.4 4.2 248.7 37.8 

OLS DNI 4 Ivp 233.0 59.4 284.5 34.2 

SVR DNI 4 Ivp 205.1 14.0 263.5 39.1 

OLS DNI 5 Ivp 240.9 66.0 289.9 37.6 

SVR DNI 5 Ivp 216.9 25.1 272.9 41.3 

OLS DNI 6 Ivp 243.8 71.8 290.6 41.7 

SVR DNI 6 Ivp 222.9 36.5 275.0 44.9 

OLS POA 1 CVSR 165.7 -15.0 211.2 5.1 

SVR POA 1 CVSR 135.3 -12.7 184.5 17.1 

OLS POA 2 CVSR 172.0 -25.2 220.2 25.7 

SVR POA 2 CVSR 145.8 -18.0 198.1 33.1 

OLS POA 3 CVSR 179.2 -36.1 230.3 36.4 

SVR POA 3 CVSR 159.6 -51.9 217.9 39.9 

OLS POA 4 CVSR 183.3 -34.5 237.7 42.9 

SVR POA 4 CVSR 174.1 -43.2 235.1 43.5 

OLS POA 5 CVSR 187.3 -38.3 242.7 47.2 

SVR POA 5 CVSR 180.9 -50.3 244.4 46.8 

OLS POA 6 CVSR 192.4 -42.4 246.8 51.0 

SVR POA 6 CVSR 179.4 -59.0 243.0 51.7 

Source: Elaborated by the authors of University of California, San Diego (2019). 

For all OLS and SVR models, the input satellite images are cropped to 64 × 64 square 

pixel regions, centered on the target sites. The image size of 64 × 64  was found to be 

the optimal based on forecast performance metrics. Larger image sizes (such as 

128 × 128) require more storage and computational time, but do not provide significant 

increases in forecast accuracy. The SVR-based forecasts achieve the overall best 

performance across the intraday horizons, with forecast skill scores up to 45 percent 

and 52 percent for Ivanpah and CVSR, respectively. 
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Day-Ahead Forecast 

The last category of models developed in this task are models that predict the solar 

resource for the next day or days. The goal for these models is not to predict the solar 

irradiance to a fine granularity, instead the models predict longer trends in the solar 

resource. For instance, forecast what is the aggregated level of irradiance for the 

following day, the onset and length of cloudy periods for the next day, etc. Such 

predictions are very important to determine the expected power generation for the next 

day(s) as requested by the regulating entities whose job is to schedule resources to 

balance the electric grid in California. 

The day-ahead forecast models use the NAM data and ground telemetry (Chapter 3) to 

predict hourly irradiance for forecast horizons ranging from 24 to 48 hours. Four 

different day-ahead forecasts models were tested in this project: 

• Smart persistence model as defined in Appendix A. 

• A non-linear model based on the NAM cloud cover forecast to predict DNI for 

Ivanpah defined as: 

𝐵̂𝑁𝐿(𝑡 + ∆𝑡) = (1 − 𝐶NAM,nearest(𝑡 + ∆𝑡) )0.76 𝐵𝑐(𝑡 + ∆𝑡). 

For CVSR the best non-linear model is obtained by using the NAM forecasted GHI: 

𝑃̂𝑁𝐿(𝑡 + ∆𝑡) = 𝐺NAM,nearest(𝑡 + ∆𝑡)1.17 𝑃𝑐(𝑡 + ∆𝑡). 

In these equations the subscript nearest indicates the NAM node closest to the power 

plant. That is node six and eight for CVSR and Ivanpah, respectively (Fig. 4 in Chapter 

3). 

• An MLP forecast model similar to the one introduced above for the intrahour DNI 

forecast that uses as inputs the two NAM variables and the current irradiance 

measurement. 

𝐼𝑀𝑃𝐿(𝑡 + ∆𝑡) =  MPL(𝐺⃗NAM(𝑡 + ∆𝑡), 𝐶NAM(𝑡 + ∆𝑡), 𝐼(𝑡)). 

• An optimized nearest neighbor (KNN) forecast model that uses as inputs the two 

NAM variables for the NAM nodes in the vicinity of the solar farm. 

𝐼𝐾𝑁𝑁(𝑡 + ∆𝑡) =  KNN (𝐺⃗NAM(𝑡 + ∆𝑡), 𝐶NAM(𝑡 + ∆𝑡)). 

In the MPL and KNN models 𝐼 denotes DNI in the case of Ivanpah and POA irradiance 

in the case of CVSR. The vectors 𝐺⃗NAM and 𝐶NAM contain the GHI and cloud cover NAM 

forecast for the all the nodes extracted. 

The exponents in non-linear models and the MLP free parameters are determined using 

the training dataset for Ivanpah and CVSR. The KNN model has no free parameters 

and, as such, requires no training. All models are then validated with an independent 

test dataset. The error metrics for the forecast horizons ranging from 24 h to 48 h are 

listed in Table 6 for the DNI forecast for Ivanpah. 
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Table 6: Forecast Performance for Day-Ahead DNI Forecast for Ivanpah 

Forecast: 
Mod. 

Forecast: 
Var. 

Forecast: 
FH (hour) 

Error 
Metrics: 

MBE 
(Wm-2) 

Error 
Metrics: 

MAE  
(Wm-2) 

Error 
Metrics: 

RMSE 
(Wm-2) 

Skill 
(%) 

Pers. DNI 24-27 34.19 227.29 337.72 - 

NL DNI 24-27 -70.48 147.09 225.46 33.2 

MLP DNI 24-27 30.11 142.75 198.17 41.3 

Pers. DNI 28-31 35.00 249.58 357.64 - 

NL DNI 28-31 -74.31 154.18 235.00 34.3 

MLP DNI 28-31 38.22 156.10 207.95 41.9 

Pers. DNI 32-35 45.04 232.11 325.12 - 

NL DNI 32-35 -103.50 165.57 237.96 26.8 

MLP DNI 32-35 42.13 160.31 208.11 36.0 

Pers. DNI 36-39 79.51 159.45 235.30 - 

NL DNI 36-39 -69.18 116.29 163.79 30.4 

MLP DNI 36-39 18.10 82.49 123.42 47.5 

Pers. DNI 40-43 83.75 212.73 313.74 - 

NL DNI 40-43 -54.35 121.00 182.31 41.9 

MLP DNI 40-43 19.98 99.51 155.49 50.4 

Pers. DNI 44-48 58.20 219.75 333.55 - 

NL DNI 44-48 -54.93 130.49 204.97 38.6 

MLP DNI 44-48 21.17 119.62 178.30 46.5 

Source: Elaborated by the authors of University of California, San Diego (2019). 

Table 7 shows the same results for the POA irradiance forecast for CVSR. The values in 

these tables show that substantial forecast skills (above 50 percent) are achieved by 

the machine learning models (MPL and KNN). Figure 15 (top) shows nine days in the 

testing set that illustrate the output from the Persistence model and the KNN model 

when predicting the POA irradiance for CVSR 24 hours ahead. The shaded area shows 

the measured data. The figure illustrates the benefits from the KNN model. For 

instance, the KNN model can predict well the overall behavior of the POA irradiance 24 

hours ahead of time. Such performance is very useful for cloudy days, such as days 

eight and night. The persistence model, shows the expect behavior: it performs well for 

extended periods of clear sky but shows no forecast skill once the weather becomes 

unstable. Day five in the figure, illustrates well the poor behavior of the persistence 

model. The KNN model does not suffer from this issue since it uses the forecasted 

weather from NAM. For a quantitative analysis of the forecast performance, the bottom 

panel in Figure 15 shows the daily values of RMSE for the two forecast models and for 

the NL and MPL. This figure shows that the KNN model produces the best forecast for 

most days. The same information is also conveyed by Table 7. 
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Table 7: Forecast Performance for the Day-Ahead POA Irradiance Forecast 
for CVSR 

Forecast: 
Mod. 

Forecast: 
Var. 

Forecast: 
FH (hour) 

Error 
Metrics: 

MBE 
(Wm-2) 

Error 
Metrics: 

MAE  
(Wm-2) 

Error 
Metrics: 

RMSE 
(Wm-2) 

Skill 
(%) 

Pers. POA 24-27 -3.19 147.82 245.56 - 

KNN POA 24-27 -0.11 58.02 98.37 59.94 

MLP POA 24-27 -.038 60.75 102.10 58.42 

NL POA 24-27 10.86 92.35 155.57 36.65 

Pers. POA 28-31 13.56 186.96 285.59 - 

KNN POA 28-31 5.89 59.49 102.09 64.25 

MLP POA 28-31 10.64 60.11 101.45 64.48 

NL POA 28-31 8.16 98.40 160.22 43.90 

Pers. POA 32-35 32.22 202.01 289.68 - 

KNN POA 32-35 4.17 65.94 108.54 62.53 

MLP POA 32-35 8.39 65.31 105.22 63.68 

NL POA 32-35 23.56 113.87 165.40 42.90 

Pers. POA 36-39 16.82 142.84 206.39 - 

KNN POA 36-39 -32.66 53.65 77.94 62.24 

MLP POA 36-39 -44.07 59.25 88.15 57.29 

NL POA 32-35 -61.66 84.18 142.66 30.88 

Pers. POA 40-43 17.90 164.43 247.61 - 

KNN POA 40-43 -19.12 53.91 88.19 64.39 

MLP POA 40-43 -22.47 59.31 97.47 60.63 

NL POA 32-35 -44.51 81.37 145.25 41.34 

Pers. POA 44-48 -3.01 149.85 242.01 - 

KNN POA 44-48 -6.63 56.86 94.79 60.83 

MLP POA 44-48 -8.15 60.77 100.13 58.63 

NL POA 44-48 -22.64 86.73 149.37 38.28 

Source: Elaborated by the authors of University of California, San Diego (2019). 
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Figure 15: Example of the POA Irradiance Forecast for Several Days 

 

The top figure shows the measured data, the Persistence and the KNN forecast for the 24 ahead 

forecast. The bottom figure shows the RMSE for four forecast models for the same days in the top 

figure. 

Source: Elaborated by the authors of University of California, San Diego (2019). 

Real-Time Implementation 
To turn the forecasting models useful for the solar farms, its real-time deployment is 

necessary. The real time implementation relies on the having live data from the two 

solar farms. During this project, the research team created an online platform that: 

1. received real time data from the sensors at the solar farms; 

2. computed the solar resource predictions for the different forecast horizons using 

the models described above; 
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3. updated the forecasting plots in the web portal and transmit the forecast to the 

solar farms. 

The team create a web portal that allows tracking several of the forecasts in real-time 

as means to demonstrate this technology. To access the portal, please go to 

http://coimbra-server3.dynamic. ucsd.edu/index.html. Figure 16 shows a snapshot of 

the portal’s homepage and Figure 17 shows a snapshot of the real time day-ahead DNI 

forecast for Ivanpah’s tower 1.  

Figure 16: Project Website 

 

Snapshot of the web portal that display real time telemetry and forecasts for this project. 

Source: Elaborated by the authors of University of California, San Diego (2019). 
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Figure 17: Snapshot of the Real Time Day-ahead DNI Forecast for Ivanpah’s 
Tower 1 

 

Source: Elaborated by the authors of University of California, San Diego (2019). 

Applicability to Other Solar Projects 
One of the goals for this project was to demonstrate the applicability of the tools 

developed in this project (for Ivanpah and CVSR) to other solar locations. The project 

team applied these tools and models to three cases:  

• The short-term PO production forecast for a 1 MW solar farm. 

• The intrahour DNI and GHI forecasts using sky image information. 

• The intraday PO production forecast for two 1 MW solar farms. 

Each case-study resulted in a peer-reviewed publication supported by the project: 

1. H. T. C. Pedro, E. Lim and C. F. M. Coimbra (2018) “A Database Infrastructure 

to Implement Real-Time Solar and Wind Power Generation Intra-Hour 

Forecasts,” Renewable Energy (123), pp. 513–525. 

2. H. T. C. Pedro, C. F. M. Coimbra, M. David and P. Lauret (2018) “Assessment of 

Machine Learning Techniques for Deterministic and Probabilistic Intra-Hour Solar 

Forecasts,” Renewable Energy (123), pp. 191–203. 

3. D. P. Larson and C. F. M. Coimbra (2018) “Direct Power Output Forecasts from 

Remote Sensing Image Processing,” ASME Journal of Solar Energy Engineering–

Transactions of the ASME 140(2), Article Number: 021011. 

The two cases related to the forecasting of power output (papers 1 and 3) from 1 MW 

plants were carried out in the medium size testbeds described in Chapter 2. The work 

for paper 2 was done with data from Folsom, California. This section summarizes the 

results and conclusions from those case-studies. A detailed description of the models 
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can be found in the three references listed and in the interim project report Applicability 
of the Developed Tools for Other Solar Power Plants. 

A Database Infrastructure to Implement Real-Time Solar and Wind 
Power Generation Intrahour Forecasts 

This study presents a simple forecasting database infrastructure implemented using the 

open-source database management system MySQL. This proposal aims at advancing 

the myriad of solar forecast models present in the literature into a production stage by 

implementing a MySQL infrastructure that collects the raw data, filters unrealistic 

values, classifies the data, and produces forecasts automatically and without the 

assistance of any other computational tools. 

The performance of this method is demonstrated by creating intrahour (15-, 30-, 45-, 

and 60-minutes) power output forecasts for a 1MW photovoltaic installation in Southern 

California. Several machine learning forecast models are implemented (persistence, 

auto-regressive and nearest neighbors) and tested. Both point forecasts and prediction 

intervals (PIs) are generated with this methodology. Quantitative and qualitative 

analyses of solar power forecasts were performed for an extended testing period of four 

years. Results show a good and robust performance for the proposed forecasts. This 

test case leverages two of the technologies used in this project: the machine-learning 

methodology K-Nearest-Neighbors (kNN) and the open-source database management 

system MySQL. 

This work demonstrated a MySQL database infrastructure to acquire, filter, classify, and 

forecast solar power generation data. It can be concluded that MySQL can be used for 

much more than just storing data for solar forecast models. Any forecast model that 

can be expressed in an algebraic form can be implemented in this manner. By adapting 

the data classification and forecast procedures presented in this work, it is possible to 

deploy many of the forecast models present in the literature in real-time. This can be 

very relevant in the production of stand-alone forecasting units that provide local 

monitoring and forecast renewable generation. For instance, in the case of solar 

generation, a simple hardware configuration consisting of a portable computing unit 

(such as BeagleBone) and photodiode sensor (similar to the central node for the WSN) 

could host the proposed methodology. 

Assessment of Machine Learning Techniques for Deterministic and 
Probabilistic Intrahour Solar Forecasts 

This work compares the performance of machine learning methods kNN and gradient 

boosting (GB) in intrahour forecasting GHI and DNI.  The models predict the GHI and 

DNI and the corresponding prediction intervals.  The data used in this work include 

pyranometer measurements of GHI and DNI and sky images. Point forecasts are 

evaluated using bulk error metrics such as RMSE and forecasting skill. 
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Results show that the machine learning models achieve significant forecast 

improvements over the reference smart persistence model.  The reduction in the RMSE 

translates into forecasting skills ranging between eight percent and 24 percent, and 10 

percent and 30 percent for the GHI and DNI testing set, respectively.  Regarding the 

point forecasts, the GB method performs better than the kNN method when sky image 

features are included in the model. These observations are in line with what was 

observed in the development of intrahour forecasts for CVSR, as reported. 

Direct Power Output Forecasts from Remote Sensing Image Processing 

A direct method for intraday forecasts (1–6h ahead) of power output (PO) from 

photovoltaic (PV) solar plants is proposed and tested. The forecasting method uses 

publicly available images from geosynchronous satellites to predict PO directly without 

resorting to intermediate irradiance (resource) forecasting. Forecasts are evaluated 

using four years (January 2012–December 2015) of hourly PO data from two non-

tracking, 1 MW PV plants in California. For both sites, the proposed method achieves 

forecasting skills ranging from 24 percent to 69 percent relative to reference 

persistence model results, with root mean square error (RMSE) values ranging from 90 

to 136kW across the studied horizons. 

The presented method enables direct prediction of PO of operational solar farms from 

satellite imagery. This has two major benefits: first, by directly forecasting PO, it avoids 

the need for intermediate irradiance forecasts and resource-to-power modeling, which 

are typically site specific; second, by removing the need for additional data 

dependencies, such as meteorological telemetry, it ensures that the method is 

generalizable to power plants with varying levels of pre-existing instrumentation. 

Together, these two features make the proposed forecasting method well posed to be 

applied to a range of operational PV power plants. 
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CHAPTER 6: 
Short-Term Forecast for Market Preparedness 

California is the leading solar state in the country of installed grid-connected solar 

capacity to date, with projections to achieve even higher renewable penetration in the 

next decades. In the pursuit of this goal the grid operator, California Independent 

System Operator or California ISO, has created the Participating Intermittent Resource 

Program (PIRP) to facilitate the integration of grid-connected variable energy resources 

(VERs) such as wind and solar. Recognizing that the prediction of generation from VERS 

entails a level of irreducible error, PIRP nets positive and negative deviations over each 

month and charges intermittent generators based on this value (deviation between 

generated and scheduled or forecasted energy). Monthly imbalances between the 

scheduled energy (based on the forecast) and the generated energy are settled based 

on locational marginal prices (LMP): 

𝐶 = ∑(𝐸𝑠𝑐ℎ,ℎ − 𝐸𝑔𝑒𝑛,ℎ) ∗ 𝐿𝑀𝑃 ℎ
ℎ

  

where 𝐸𝑠𝑐ℎ,ℎ is the scheduled energy production (usually in MWh) and 𝐸𝑔𝑒𝑛,ℎ is the 

generated value for hour ℎ and 𝐿𝑀𝑃ℎ is the respective locational marginal price. The 

summation in the previous equation is taken over all hours in a given month. This 

settlement strategy was designed to minimize penalties to the PIPR participants since it 

is based on the bias between the forecasted and actual values, which should approach 

0 when averaged over the month for accurate forecasts. 

PIRP participants without the capability to generate their own generation forecast use 

California ISO’s centralized solar forecasting service (Letendre et al. (2014)) for large 

utility-scale plants and are charged a forecasting fee of $0.10 per MWh. The centralized 

forecast was introduced in 2011 and is provided by AWS Truepower. It uses satellite-

derived data, data from NWP models and recent measurements from the solar farm. 

Figure 18 illustrates the California ISO real-time market schedules, along with the 

publishing time for centralized solar forecasts. The centralized hour-ahead forecast is 

delivered 105 minutes before the operating hour (OH) and the hour-ahead scheduling 

and bids must be submitted 75 minutes before the respective OH. At the time of this 

project, CVSR participated in the PIRP program and was charged both the forecasting 

fee and monthly imbalances. Thus, the purpose of the market preparedness activities 

was to develop an alternative to California ISO’s centralized solar forecasting for CVSR. 

An alternative accurate forecast would have two immediate advantages: 

• Reduce the net monthly imbalances;  

• Waive the forecasting fee. 
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Figure 18: California ISO hour-ahead market timeline. 

 

Forecasts for the operating hour (OH) t must be delivered 75 minutes before the start of the hour 

and cover the whole hour. The centralized hour-ahead forecast is delivered 105 minutes before the 

operating hour. 

Source: Elaborated by the authors of University of California, San Diego (2019). 

The first goal is the most important one, since the alternative forecast must be able to 

reduce imbalances with respect to California ISO’s forecast otherwise there is no 

incentive to modify current operations. To asses this criterion CVSR provided to UCSD 

relative net monthly imbalances from April to November 2016 (Figure 19). 

Figure 19: Forecast Imbalances for April to November 2016  

 

The figure shows the monthly imbalances between the centralized hour-ahead forecast delivered 

105 minutes before OH and the generated power output at CVSR. A negative imbalance indicates 

that the forecasted PO was less than what was generated. The dashed line indicates the average 

imbalance for the testing period. 

Source: Elaborated by the authors of University of California, San Diego (2019). 
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The values plotted in the figure are computed as follows, for each month 𝑖: 

𝑟IMB𝑖 =
(𝐸𝑠𝑐ℎ,𝑖 − 𝐸𝑔𝑒𝑛,𝑖)

𝐸𝑔𝑒𝑛,𝑖
× 100 [%]  

where the generated and scheduled energy for that month are, respectively  

𝐸𝑔𝑒𝑛 = ∫ 𝑃(𝑡)𝑑𝑡 = ∑ 𝑃ℎ

𝑁ℎ𝑜𝑢𝑟𝑠

ℎ=1

𝑡2

𝑡1

 

𝐸𝑠𝑐ℎ = ∫ 𝑃̂(𝑡)𝑑𝑡 = ∑ 𝑃̂ℎ

𝑁ℎ𝑜𝑢𝑟𝑠

ℎ=1

𝑡2

𝑡1

  

where 𝑃ℎ and 𝑃̂ℎ are the measured and the forecasted power for a given OH. The figure 

illustrates that the monthly imbalances fluctuate considerably between close to zero 

percent for October and above four percent in April. On average there is a -1.73 

percent imbalance. Thus, the main goal was to demonstrate an alternative forecasting 

model that can achieve lower monthly net imbalances. Given that the LMPs for this 

period are not available, the forecasting objective concerns only in reducing the 

imbalance (𝐸𝑠𝑐ℎ,𝑖 − 𝐸𝑔𝑒𝑛,𝑖). Not knowing the LMP does not prevent a comparison 

between the different forecast since LMP are set by California ISO ahead of time and 

are not depend on the generation forecast of a single market participant.  

Data used consists of data collected from CVSR through the PI-to-PI connection set-up 

previously. To access the benefits to CVSR, the forecasting imbalance is compared 

against imbalances reported by CVSR for April to November 2015. Data from December 

2016 onwards was used for training the models. 

Several forecasting models were trained and tested with the goal to minimize monthly 

imbalances for CVSR. A key tool was the accurate clear-sky model explained in 

Appendix A for the power output of the solar farm. Using this model (𝑃𝑐), the metered 

power output is normalized as 𝑘𝑃(𝑡) = 𝑃(𝑡) 𝑃𝑐(𝑡)⁄ . Although simple, this normalization 

technique can improve the accuracy of the predictions since the forecast model is left to 

predict the deviation with respect to the deterministic clear-sky model. Researchers 

used the normalized power as the dependent variable several forecast models: 

• Persistence forecasts:  

𝑃̂𝑝𝑒𝑟,𝑤(𝑡 + 80 min) = 𝑘𝑃,𝑤(𝑡) × 𝑃𝑐𝑠(𝑡 + 80 min)  

where 𝑘𝑃,𝑤(𝑡) is the average of 𝑘𝑃 over a window with length 𝑤 that precedes 

time 𝑡. As shown in (Pedro and Coimbra, 2015) optimizing this averaging window 

can result in better persistence forecasts. This approach also takes advantage of 

the fact that the PO data is available at a high granularity of 1-minute.  
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• NAM-derived forecast: 

𝑃̂𝑁𝐴𝑀(𝑡 + 80 min) = 𝑘G,NAM(𝑡 + 80 min) × 𝑃𝑐(𝑡 + 80 min)  

This model takes advantage of the GHI forecasts produced by NAM (an NWP 

model) produced and at 12 pm Coordinated Universal Time (UTC) or 4 am Pacific 

Standard Time (PST) (CVSR’s time zone). The model uses GHI values with a 

resolution of 1h to produce PO forecast for the next OH by multiplying GHI’s 
clear-sky index (𝑘G,NAM) by the respective PO clear-sky value. 

• ANN forecast model:  

𝑃̂𝐴𝑁𝑁(𝑡 + 80 min) = 𝑘𝑃,𝐴𝑁𝑁(𝑓𝑒𝑎𝑡𝑢𝑟𝑒𝑠(𝑡), 𝑁𝐴𝑀(𝑡 + 80 min), geometry) × 𝑃𝑐(𝑡 + 80 min)  

In this model, an MPL is trained to predict the deviation with respect to the clear-
sky model 𝑘𝑃,𝐴𝑁𝑁 for the next OH. In order to predict this value, the ANN use 

data features derived from the most current PO, the NAM forecasts and also 

solar geometry. 

• Hybrid model: Preliminary study of the forecasting performance showed that, as 

anticipated, the forecasting error reduces when ground data is available. 

However, models that do not use ground data, such as the ones derived from 

NAM forecasts, can be more accurate in some cases. One of those cases is in the 

forecasting of generation at the first hours of the day. For these forecasts there 

is none or very little daytime ground data available, thus reducing the accuracy 

of the models. An improved forecast can be obtained by merging the two types 

of forecasts. Here, that is accomplished by using the following model: 

𝑃̂𝐻𝑌𝐵(𝑡 + 80 min) = {
𝑃̂NAM(𝑡 + 80 min)   if   𝛼𝑠 <  𝛼𝑠0 ,     𝜑𝑠 < 180°

𝑃̂base(𝑡 + 80 min)              otherwise                    
 

where 𝛼𝑠 is the solar elevation, 𝜑𝑠 is the solar azimuth, and 𝛼𝑠0 is the threshold 

that controls when the forecast switches between ground data forecasts and 

NAM data forecasts. The condition 𝜑𝑠 < 180° simply guarantees that the NAM 

correction is only applied in the morning. 

Note that, the ANN model used is an MPL as described in Appendix A. The same 

appendix also provides more information about the persistence model. 

Results 
All the candidate models were tested using training data. The best performing model is 

then selected and applied to the testing period between April and November of 2015.  
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Model Training and Development 

The team developed four different persistence models in this work to take advantage of 

the 1-minute data available. The models simply differ in how much data is used to 

define the value that persists into the future. In mathematical terms, that affects how 
𝑘𝑃,𝑤(𝑡) in the persistence model is computed. Four backward averages of increasing 

window size were implemented here with  𝑤 = {15, 30, 45, 60} minutes. NAM-derived 

forecast was created using the 4 am GHI NAM forecast for the whole day. The GHI 

from NAM was converted to the respective clear-sky index by dividing its value by a 

clear-sky model for GHI by Ineichen and Perez that is explained in the Appendix A. With 

that value, PO can be readily computed. This model requires no training and is always 

available when NAM data is available. The MPL forecast was trained with two different 

sets of inputs: 

• Features from 𝑘𝑃,𝑤(𝑡) including backward averages and standard deviation, solar 

geometry (𝛼𝑠 and 𝜑𝑠). This model is designated as ANN1 in the figures below. 

• The same as above plus NAM-derived forecasts. This model is designated as 

ANN2. 

The ANNs used here are MPLs with a single hidden layer with 30 neurons. Due to the 

random nature of the ANN training (ANN parameters are initialized randomly), each 

ANN is trained 10 times separately. The final ANN forecast is the average of the 10 

runs.  

Finally, the hybrid model is also computed using for 𝑃̂𝐻𝑌𝐵. Its accuracy depends on the 

base model and the solar elevation threshold 𝛼𝑠0. Figure 20 was created to determine 

the best base model and 𝛼𝑠0 based on results for the training data. The figure was 

created by changing the base model and 𝛼𝑠0 independently and computing the average 

relative imbalance for the resulting hybrid model. Figure 20 shows these values in the 

form of a heatmap where the best models (the ones with the lowest average relative 

imbalance) show in dark blue. For each base model (x-axis) the figure also shows the 

𝛼𝑠0 that results in the lowest imbalance and the respective value. 

The figure shows that the hybrid model imbalance is sensitive to the 𝛼𝑠0 value, 

especially when the base model is persistence. Hybrid models based on the ANN 

forecasts show lower sensitivity. Regardless, the figure indicates that the best hybrid 

model is based on the fourth persistence model (𝑤 = 60 minutes) with 𝛼𝑠0 = 19°. Thus, 

the equation for the hybrid model becomes: 

𝑃̂𝐻𝑌𝐵(𝑡 + 80 min) = {
𝑃̂NAM(𝑡 + 80 min)   if   𝛼𝑠 <  𝛼𝑠0 ,     𝜑𝑠 < 180°

𝑃̂𝑝𝑒𝑟,60(𝑡 + 80 min)              otherwise                    
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Figure 20: Hybrid Model Selection 

 

Heatmap used to select the hybrid model based on training data relative imbalance between 

forecasted and generated PO. The x-axis indicates the base model modified with NAM forecasts 

and the y-axis indicates the solar elevation threshold. The with circles and respective label 

indicate the lowest imbalance obtained for the respective base model. 

Source: Elaborated by the authors of University of California, San Diego (2019). 

Once all these models are determined and trained there are eight candidate models. 

The selection of the model to be compared against California ISO forecast imbalance 

was done based on Figure 21. The figure shows the average monthly imbalance on the 

y-axis and the sum of the absolute monthly imbalances on the x-axis for all candidate 

models applied to training dataset. The best model is the one that minimizes these 

quantities; thus, it is the one closer to the origin (0,0). The figure clearly shows that, as 

anticipated, that model is the hybrid model. 
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Figure 21: Model Selection 

 

Model selection based on training data. The scatter plot shows the total absolute monthly 

imbalance (x-axis) and the average monthly imbalance (y-axis) for the candidate models 

(P=Persistence, HB=hybrid). 

Source: Elaborated by the authors of University of California, San Diego (2019). 

The hybrid model was then applied to the testing data between April and November 

2015. After producing the power output forecast 𝑃̂𝐻𝑌𝐵 the relative monthly imbalance is 

computed with the equations provided at the top of this chapter and compared to the 

California ISO forecast imbalances reported by CVSR. Figure 22 compares the 

imbalances that results from these two forecasts. The figure shows that the 𝑃̂𝐻𝑌𝐵 

forecasts reduces large imbalances (e.g. April, July and November) and only 

underperforms in a few cases where the imbalances are small (e.g. June and October). 

The figure also shows the average imbalance for the whole period incurred by the two 

forecasts (dashed lines and annotation); these are -0.57 percent and -1.73 percent for 

UCSD’s and California ISO’s forecasts, respectively. 
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Figure 22: Forecast Imbalance Comparison 

 

Monthly imbalances for the centralized hour-ahead forecast (blue) and UCSD’s forecast (orange). 

The dashed line and respective label indicate the average monthly imbalances for the validation 

period. 

Source: Elaborated by the authors of University of California, San Diego (2019). 

These results clearly indicate that it is possible to reduce imbalances for PIRP 

participating solar farms. This conclusion is based primarily on the results shown in 

Figure 22 that indicate a 67 percent reduction in the monthly imbalance for the period 

between April and November of 2015. This result is based a single bulk error metric. A 

more granular error inspection would be necessary to validate fully the forecast 

improvement. Unfortunately, such study was not possible given that non-disclosure 

agreements prevented the research team from having access to the time-resolved 

California ISO centralized forecast. Nevertheless, given that the economic burden for 

CVSR is determined based on the monthly imbalance presented in the previous section, 

the model attained the goal of preparing CVSR to the California ISO real-time market.   

As mentioned above, without having access to California ISO’s forecast and 

methodology is not possible to pinpoint accurately the reason to the forecast 

improvement. However, some explanations are below: 

• The use of the most up-to-date ground telemetry:  California ISO’s forecast is 

published 105 minutes before the OH, which dictates that the latest data is at 

least 105 minutes old. This value is probably even higher to account for data 

transmission and forecast creation. UCSD’s forecast takes advantage from using 

data as recent as 80 minutes before the OH. The 5-minute gap between the 80 

minutes and 75 minutes is included in this study to account for time necessary to 

retrieve data from the PI server, compute the forecast and transmit the data 
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back to the PI server. With some care this gap could be reduce to under 1 

minute, which could lead to further (but small) reduction of the imbalances. 

• The use of a properly calibrated clear-sky model for the solar farm power plant: 

To participate in the PIRP solar producers must deliver 30 days of telemetry to 

the forecasting provider (Blatchford and Zack (2004)). This is a small sample to 

create a properly calibrated clear sky model (for instance, it does not contain 

data for every season). The UCSD forecast takes advantage of more than one-

year’ worth of data to create the clear sky model for the power produced at 

CVSR. 
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CHAPTER 7:  
Wind Surface Forecasting 

Surface wind speed is a key variable for the operation of the solar farms studied in this 

project. High winds cause forces and moments on the irradiance collecting surfaces (PV 

panels or heliostats) and support and tracking structure. For this reason, surface wind 

velocity must be monitored and forecasted. In the event that a user-specified maximum 

wind speed is reached, the collecting surfaces move into a protective stowed position - 

usually parallel to the ground. These events effectively shut down the plant and their 

prediction is determinant to the accurate power production forecast aimed at in this 

project. 

Although the collecting surfaces and structure are designed to sustain extreme weather 

events with wind gusts larger than 50 ms-1 (Strachan and Houser (1993)), in practice 

the systems are moved into a stowed position at conservative wind speeds around 20 

ms-1. The effect of wind gusts larger than 20 ms-1 on the power produced at Ivanpah 

can be seen in Figure 23.  

Figure 23: Power Reduction due to High Wind 

 

Power reduction at Ivanpah's Tower 1 due to heliostat stowing during days with high wind speeds. 

The first day illustrates a day with calm wind as reference. The percentage values indicate the 

capacity factor for the respective day. DNI and PO curves are scaled for comparison. 

Source: Elaborated by the authors of University of California, San Diego (2019). 

The first day shown in the figure illustrates a day with low wind speed in which the 

plant operates normally. The following three days illustrate clear-sky days (in which one 

would expect full power production) with reduced power due to the high wind speeds. 

This simple analysis shows the importance of properly forecasting wind gust at the solar 

farm. Without this information, the most accurate forecast models that rely on solar 

irradiation will predict full power production for the last three days in the figure. To 

improve the power output forecast models, and more importantly, to improve the 
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prediction of large wind gust that may damage the heliostats the project team have 

developed several wind forecast models based on local telemetry and numerical 

weather prediction (NWP) wind forecasts. 

The first step in this task was to study the accuracy of the NWP wind forecasts, namely 

the North American Mesoscale (NAM) Forecast. Wind speed and wind gusts forecasts 

were obtained from the NAM repositories available daily at 4 am Pacific Time (PST). 

These forecasts consist of hourly values for average wind speed and wind gusts out to 

24 hours ahead of time. 

As discussed in Chapter 3 shows, the project uses data from the 13 nodes around 

Ivanpah. The eighth node is used as the reference or baseline forecast since it is the 

closest to Ivanpah. The other nodes provide additional input data to the forecast 

models that, as demonstrate below, help reducing the forecast error. The forecast 

performance is measured in reference to the ground data. In this case, data from the 

wind speed sensors installed at Ivanpah and synchronized with the NAM forecasts.  

Histograms for the two data sets are compared in Figure 24. These histograms indicate 

the relative frequency of the daily averaged wind speed and daily wind gust in 1 m/s 

bins. The histograms for the average wind speed (Fig. 24 (left)) are similar but the 

histograms for the wind gust (right) are not. In particular, NAM forecast has just one 

day (indicated by the orange color) for which the wind gust reaches 20 m/s, whereas 

the sensors on the ground measured 74 days in the same period.  

Figure 24: Histograms for Wind Data  

 

Histograms for the daily averaged wind speed (left) and daily wind gust (right). The side-by-side 

plots compare the histogram for ground data against the histogram for the NAM forecasts. The 

orange color indicates the critical instance for which the wind speed or wind gusts surpass 20 

m/s. 

Source: Elaborated by the authors of University of California, San Diego (2019). 
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In summary, the NAM forecast is a promising baseline forecast since it predicts well the 

average wind speed at the solar farm. It severely under predicts the critical large wind 

gusts but that can be corrected with some advanced machine learning tools as 

explained below. 

Figure 25 shows the mean bias error (MBE), and root mean square error (RMSE) for the 

NAM wind average and wind gust as a function of the hour of the day. These figures 

were obtained with the validation dataset. The bottom plot in the figures shows the 

measured data for the same period. The heat map and whiskers allow observing how 

the measured data varies as a function of the hour of the day. In general, the wind 

speed varies quite substantially at any time of the day resulting in larger errors. The 

goal of the forecast models developed in this project was to reduce these errors for all 

hours of the day. These models ingest the NAM data to produce a new wind forecast 

that takes into account localized effects via the use of local ground data in the training 

stage. 

Figure 25: NAM Wind Speed and Wind Gust Forecast 

 

MBE (top) and RMSE (middle) for the NAM hourly average wind speed (left) and hourly wind gust 

(right) as a function of the hour of the day at Ivanpah for the validation set. The bottom panels 

show the measured average hourly wind speed (left) and wind gust (right) . The heat map 

indicates the density of the measured data and the whiskers identify the 0, 25, 50, 75 and 100 

percentiles. The vertical black bar indicates when the forecasts is produced (4 am daily PST). 

Source: Elaborated by the authors of University of California, San Diego (2019). 

Given that the baseline forecast model follows the trend of the measured data but 

substantially under predicts it, the first model developed consists of a global bias 

correction based on the hour of the day. In this model the forecasted average wind 

speed (𝑊̂), and wind gust (𝐺̂)  are given by: 

𝑊̂𝑏(HOD) =  𝑊NAM(HOD) − 𝐵W(HOD) 

and 

𝐺̂𝑏(HOD) =  𝐺NAM(HOD) − 𝐵G(HOD) 
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where HOD is the hour of the day (HOD = {0, 1, …, 23}), 𝑊NAM and 𝐺NAM are the NAM 

average wind and wind gust forecast, and 𝐵𝑊  and 𝐵𝐺 are the bias errors computed 

with the whole training dataset as a function of HOD. 

The second type of model developed for this problem is based on the well-established 

machine learning algorithm K-nearest neighbors (KNN) explained in Appendix A. In this 

case, the nearest neighbors are identified by computing the distance between the 

current NAM forecast and the historical NAM forecast. Given that there is data from 

several NAM nodes available for this operation, an optimization algorithm is used to find 

the set of inputs that best describes the similarity between current and past data. Once 

the list of nearest neighbors is determined the model assesses how the NAM forecast 

performed in the past for the selected conditions and corrects the new forecast based 

on that information. 

Figure 26 illustrates how the KNN forecast for the wind gust is computed. The left 

figure shows the NAM gust forecast (red line) which under predicts the measured wind 

gust by a large amount. The dots indicate the NAM forecast from the nearest-

neighbors. These values do not improve the forecast, however each one of these values 

is associated with a measured wind gust in the training data set. Those values are 

shown as the green dots on the plot on the right. By averaging those values for each 

hour of the day the model obtains the green curve which is much closer to the actual 

wind gust than the NAM forecast.  

Figure 26: Example of kNN Correction for Wind Forecast 

 

Left: the current NAM forecast (red line), the NAM forecast from the nearest-neighbors ( red dots), 

and the measured wind gust (blue line). Right: the corrected wind gust based on all the nearest-

neighbors  (green dots), and the final adjusted forecast (green line). 

Source: Elaborated by the authors of University of California, San Diego (2019). 

Based on this idea the KNN forecasts for the average wind speed and wind gust are 

computed as: 

𝑊̂𝑘(HOD) =  
1

𝐾
∑ 𝑊NAM(HOD) − (𝑊NAM(𝑡k) − 𝑊(𝑡k))

𝐾

𝑖=1
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and 

𝐺̂𝑘(HOD) =  
1

𝐾
∑ 𝐺NAM(HOD) − (𝐺NAM(𝑡k) − 𝐺(𝑡k))

𝐾

𝑖=1

 

where 𝐾 is the number of nearest-neighbors and (𝑊NAM(𝑡k) − 𝑊(𝑡k)) and 

(𝐺NAM(𝑡k) − 𝐺(𝑡k)) are bias errors in the training dataset associated with the nearest-

neighbors identified by the time stamps 𝑡k. This model is similar to the first type of 

models but instead of using error information from all the training set it uses only the 

information from the nearest-neighbors. This way the model learns from the past 

performance under similar conditions and corrects the NAM forecast accordingly. 

Results  

The results in Table 8 are calculated using validation data since that reflects more 

accurately the real time performance of the models. The initial performance analysis for 

the forecast models developed in this work is based on the error metrics given in 

Appendix A and listed in the table.  

Table 8: Error Metrics for the Forecasted Mean Wind Speed and Wind Gust 
(ms-1) 

 

Avg 

Wind 

Speed: 

NAM 

Avg 

Wind 

Speed: 

𝑾̂𝒃 

Avg 

Wind 

Speed: 

𝑾̂𝒌 

Wind 

Gust: 

NAM 

Wind 

Gust: 

𝑮̂𝒃 

Wind 

Gust: 

𝑮̂𝒌 

MBE -0.033 -0.11 -0.040 -3.84 -1.00 -0.45 

MAE 1.38 1.32 1.21 4.31 2.72 2.37 

RMSE 1.91 1.83 1.70 5.42 3.73 3.23 

Skill (%) - 4.28 10.97 - 31.27 40.50 

𝑾̂𝒃 and 𝑮̂𝒃 refer to the models corrected with bias from the whole training set. 𝑾̂𝒌 and 𝑮̂𝒌 refer to 

the KNN forecast models. NAM refers to the error metrics for the baseline NAM model. 

Source: Elaborated by the authors of University of California, San Diego (2019). 

The results show that the forecast models implemented in this work improved the 

baseline forecast in almost all metrics. In terms of forecast skill, the wind speed 

forecasts show modest improvements of around 10 percent for the KNN model on 

average. This was expected since, as the analysis above showed, the NAM forecast is 

accurate in predicting this variable. In terms of wind gust, which is the key variable in 

identifying dangerous events for the power plant, the models developed under this 

project showed much higher forecasting skills. The bias correction results in an 

improvement of 31 percent and the KNN forecast reaches 41 percent skill. Figure 27 

shows the improvements for the KNN forecasts as a function of the hour of the day. 
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Figure 27 depicts the daily wind gust histogram, which is another way to illustrate the 

improvements in the KNN gust forecast. Figure 28 compares the histogram for the KNN 

forecast against the histogram for the measured data. The histograms are very similar 

and the improvement relative the results for the NAM baseline gust forecast shown in 

Fig. 24 (right) is clear.  

Figure 27: KNN Wind Forecast Errors as a Function of the Hour of the Day 

 

Left: MBE (top) and RMSE (bottom) for the KNN hourly average wind speed forecast as a function 

of the hour of the day at Ivanpah for the validation set. Right: same but for the KNN hourly wind 

gust forecast. 

Source: Elaborated by the authors of University of California, San Diego (2019). 

Figure 28: Histogram Comparison for the Measured and Forecasted Wind 
Gusts 

 

Histogram for the daily wind gust. The side-by-side plot compares the ground data against the 

KNN gust forecast. The orange color indicates the critical instance for which wind gusts surpass 

20 m/s. 

Source: Elaborated by the authors of University of California, San Diego (2019). 
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A final analysis of the wind forecast consisted in analyzing days for which the measured 

wind gusts surpass the 20 m/s critical value. Figure 29 shows the measured wind gusts, 

the baseline NAM forecast, the KNN gust forecast, and the maximum KNN gust forecast 

for 25 days with wind gusts above 20 m/s. The improvement in the forecasting of wind 

gusts is clear for most days. The large bias shown by the baseline NAM forecast is 

reduced, and more importantly, the maximum gust predicted by the KNN gust forecast 

matches the measured gust closely in most days. With these models, it is possible to 

create an accurate warning system that can flag potentially dangerous wind conditions 

for the heliostats at Ivanpah. 

Figure 29: Measured and Forecasted Wind Gust for Days with High Wind  

 

Several days for in which the wind gusts surpassed the critical value of 20m/s. The colors identify 

different data: measured data (blue line), NAM forecast (red line), KNN MOS forecast (dark green 

line) and max. value for the KNN MOS forecast (light green line). 

Source: Elaborated by the authors of University of California, San Diego (2019). 
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CHAPTER 8:  
Technology/Knowledge/Market Transfer 
Activities 

The key technologies developed under this contract are in the area of solar forecasting 

and low-cost sensors for solar irradiance monitoring.  

Solar Forecasting 
The project team developed algorithms that address gaps in solar harvesting 

technologies that rely on Direct Normal Irradiance (DNI) and plane of array (POA) 

irradiance. These include concentrated solar power (CSP), concentrated PV (CPV) and 

tracking PV solar plants. To demonstrate these tools, the project team has collaborated 

with two larger solar producers in California: 

• Ivanpah Solar Energy Generation Systems (Ivanpah), the largest CSP plant in the 

world. 

• The 250 MW California Valley Solar Ranch (CVSR) which is a single axis PV 

tracking plant that represents the majority of solar plants in the United States. 

The project team is continuing to promote the forecasting algorithms through journal 

papers, conference presentations, and direct communication with researchers and 

industry.  

Low-Cost Sensors 
Currently, high resolution monitoring of solar irradiance over a solar farm is frequently 

prevented by the sparsity of local telemetry available. Often just a few irradiance 

sensors monitor a solar field with areas in the tens of square kilometers. In this project, 

the project team developed a low-cost, autonomous and wireless sensor that are 

suitable to be install easily over a large solar field. The team collaborated with the 

industry at CVSR to test the sensors in a real-world scenario. 

Technical Reports and Publications 
Journal publications are technical reports that are peer-reviewed to ensure high quality 

and visibility through the journal database. Work associated DNI and POA irradiance 

forecast intrahour forecast models, advancement in the use of forecasting tools, and 

application of the developed tools to other solar plants (Non-Concentrating) generated 

10 peer reviewed papers during the project. Appendix B contains the paper abstracts of 

the peer-reviewed papers. 

These papers addressed major research questions in the field of solar energy 

forecasting: 
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• Real time solar power generation forecasting implementation: 

o H. T. C. Pedro, E. Lim and C. F. M. Coimbra (2018) A Database 

Infrastructure to Implement Real-Time Solar and Wind Power Generation 

Intra-Hour Forecasts, Renewable Energy (123), pp. 513–525. 

• Machine learning tools for solar irradiance forecasting: 

o H. T. C. Pedro, C. F. M. Coimbra, M. David and P. Lauret (2018) 

Assessment of Machine Learning Techniques for Deterministic and 

Probabilistic Intra-Hour Solar Forecasts, Renewable Energy (123), pp. 

191–203. 

o Y. Chu and C. F. M. Coimbra (2017) Short-Term Probabilistic Forecasts for 

Direct Normal Irradiance, Renewable Energy (101), pp. 526-536. 

o Y. Chu, M. Li and C. F. M. Coimbra (2016) Sun-Tracking Imaging System 

for Intra Hour DNI Forecasts. Renewable Energy (96), Part A, pp. 792-

799. 

o H. T. C. Pedro and C. F. M. Coimbra (2015), Nearest-Neighbor 

Methodology for Prediction of Intra-Hour Global Horizontal and Direct 

Normal Irradiances, Renewable Energy (80) pp. 770-782.  

• Solar power generation from satellite images: 

o D. P. Larson and C. F. M. Coimbra (2018), Direct Power Output Forecasts 
from Remote Sensing Image Processing, ASME Journal of Solar Energy 

Engineering-Transactions of the ASME 140(2), Article Number: 021011. 

• Clear-sky solar irradiance: 

o M. Li, Y. Jiang, and C. F. M. Coimbra (2017), On the Determination of 
Atmospheric Longwave Irradiance under All-Sky Conditions, Solar Energy 

(144), pp. 40–48. 

o R. H. Inman, J. G. Edson and C. F. M. Coimbra (2015), Impact of Local 
Turbidity Estimation on Clear Sky Models for Direct Normal Irradiance, 

Solar Energy (117) pp. 125-138. 

• Solar resource characterization and forecasting benchmarking: 

o H. T. C. Pedro and C. F. M. Coimbra (2015) “Short-Term Irradiance 

Forecastability for Various Solar Micro-Climates,” Solar Energy (122), pp. 

587–602. 

• Cloud optical depth evaluation and forecasting: 

o M. Li, Y. Chu, H. T. C. Pedro and C. F. M. Coimbra (2016), Quantitative 
Evaluation of the Impact of Cloud Transmittance and Cloud Velocity on 
the Accuracy of Short-Term DNI Forecasts, Renewable Energy (86) pp. 

1362–1371. 
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General Outreach 
UCSD receives frequent visits from industry stakeholders, funding agency directors, 

educators and researchers (national and international). The project team conducts brief 

outreach sessions (30 minutes to 1 hour) where the team promote the work done in 

this project. For this purpose, the project team prepared a series of dynamic TV 

displays (Figure 30), where several of the deliverables for this project are presented 

and disseminated.   

Figure 30: Dynamic TV Display of the Project Data and Results 

 

Photo Credit: University of California, San Diego (2019). 

Conference Presentations 
The project team presented several posters and conference papers in several technical 

conferences: American Geophysical Union Fall Meeting, International Heat Transfer 

Conference, and American Meteorological Society (AMS) Conferences and Symposiums. 

American Geophysical Union (AGU) Fall Meeting 

The AGU Fall Meeting is the largest Earth and space science meeting in the world. “The 

meeting offers a unique mix of more than 20,000 oral and poster presentations, a 

broad range of keynote lectures, various types of formal and informal networking and 

career advancement opportunities, and an exhibit hall packed with hundreds of 

exhibitors showcasing new and relevant research tools and services that meet the 

professional needs of our attendees year after year.”4 

                                        
4 https://fallmeeting.agu.org/2016/welcome/ 
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In the 2016 AGU Fall Meeting Hugo Pedro presented a poster about the forecasting for 

large centralized solar farms such as CVSR and Ivanpah. In the same conference the 

PhD student Yinghao Chu presented a poster about the intrahour forecasting of DNI. 

International Heat Transfer Conference  

“The International Heat Transfer Conferences (IHTC) are the world’s premier 

conferences for scientists and engineers in the heat and mass transfer research 

community. The conferences are convened every four years to exchange the latest heat 

and mass transfer information. IHTC-16 asked important questions about how we can 

better serve society and make this world a better place for all people. We face major 

issues such as ensuring sustainable development, healthy ageing, sufficient food for all, 

and economic growth that need scientific and technological solutions.”5 

At the 2018 IHTC conference in Beijing, PhD student Mengying Li presented a new 

model, related to work for task 5, to evaluated clear sky radiation: 

M. Li, Z. Liao and C. F. M. Coimbra (2018), An Efficient Spectral Model for Evaluation of 

Clear-Sky Atmospheric Longwave Radiation, International Heat Transfer 

Conference 16, Beijing, China.  

American Meteorological Society (AMS) Conferences and Symposiums 

“Founded in 1919, the American Meteorological Society (AMS) is the nation’s premier 

scientific and professional organization promoting and disseminating information about 

the atmospheric, oceanic, and hydrologic sciences. Our more than 13,000 members 

include researchers, educators, students, enthusiasts, broadcasters and other 

professionals in weather, water, and climate.”6 

AMS organizes regular conferences and symposiums to disseminate the latest work in 

scientific areas related to solar forecasting. PhD students Mengying Li and Zhouyi Liao 

presented two papers in 2018 in AMS events: 

M. Li, Z. Liao and C. F. M. Coimbra (2018) “Spectral Model for Clear-Sky Longwave 

Surface Irradiance,” American Meteorological Society 31st Conference on Climate 

Variability and Change, Austin, TX. 

Z. Liao, M. Li and C. F. M. Coimbra (2018) “Nonisotropic Aerosol Scattering Effects on 

Longwave Irradiance,” American Meteorological Society 10th Symposium on 

Aerosol–Cloud–Climate Interactions, Austin, TX. 

  

                                        
5 https://www.ihtc16.org/index.php 

6 https://www.ametsoc.org/index.cfm/ams/about-ams 
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2018 Electric Program Investment Charge (EPIC) Symposium 

The Epic Symposium is a one-day event that highlights research projects using 

innovative energy technologies. This event also offers informative poster sessions and 

networking opportunities with high-powered speakers, industry leaders, and 

researchers. One member of the research team participated in the panel “Accurate 

Forecasting to Support the Modern Grid”. The panel addressed questions such as: What 

instrumentation was the most beneficial to forecast accuracy? What is the optimal 

instrumentation set for different power plant locations and characteristics? 
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CHAPTER 9:  
Benefits to Ratepayers 

The research team successfully demonstrated tools to increase the forecasting reliability 

for CPS and PV tracking solar generation. These tools have the potential to facilitate 

and accelerate the integration of carbon-free technologies into the existing California 

power grid and market structure. Accurate solar generation forecasting could help 

ensure a reliable power supply and higher quality power and enable the growth and 

integration of grid-connected solar energy resources into the electric grid. The project 

team has identified several areas that will benefit from this project: 

• Enhanced capacity of utility-scale CSP power plants due to improved prediction 

of resource and power output; better integration of solar assets with utility and 

ISO operations; 

• Increased ability to absorb short-term ramps and maintain solar production lead 

to lower overall operation costs and lower consumer cost per solar kWh;  

• Decreased number of unscheduled power outages due to solar variability; 

• Better use of ancillary generation resources (for example, services dispatched to 

ensure that there is sufficient energy generation to meet load) including lower 

utilization of peak fossil fuel powered plants;  

• Improved health effects from increased levels of renewable generation displacing 

fossil fuel-based generation over the lifetime of higher capacity solar plants; and 

• Reduced renewable energy curtailment. 

In 2018, the solar power capacity at utility scale in California was more than 15 percent 

of the total power capacity of the state. This means that, on average, the power 

consumption of more than 6 million California residents is entirely provided by solar 

power plants. This figure includes a compensation for additional spinning reserves to 

take into account the variability of both solar and wind power plants. This project was 

sponsored by the Energy Commission at ~$1 million over three years, which means 

that the total cost to the average ratepayer (considering only the equivalent fraction 

that is entirely covered by solar year-round) was less than 6 cents for the entire 3-year 

project, or less than the cost of 1kWh by any energy source.  

Clearly, forecasting research not only can substantially affect the ability of power plant 

managers, utility companies and the California ISO to reduce solar costs to all 

ratepayers, but it can also allow for much higher penetration of renewables. In addition, 

according to the cost estimates, even developing new forecasting methods and 

techniques at the most fundamental level (the most expensive part), is a great 

investment to ratepayers. A single ramping event in a large-scale power plant that is 
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predicted correctly (for example, a DNI ramp of 800Wm-2/minute) can return the 

investment of a whole year, if the power plant is warned early enough to avoid tripping. 

The same is true with curtailment management. 

  



66 

CHAPTER 10:  
Conclusions/Recommendations 

The following conclusions are drawn from the work: 

• This project demonstrated the design, assembling, deployment and testing of a 

low-cost wireless sensor network (WSN). The project team evaluated the 

performance of the sensor network of sensors over approximately one year of 

data. The results show strong performance in terms of data quality and data 

availability. This technology is suitable for deployment at any solar farm to 

supplement local data acquisition, which often has been limited to just a few 

sensors. 

• Accurate DNI forecasts are more difficult to obtain than POA irradiance forecasts. 

This results from the fact that DNI is much more sensitive to clouds and aerosols 

than POA irradiance, resulting in a higher variability. Rapidly changing weather 

patterns and cloud formation and dissipation lead to changes in solar irradiance 

and generation that can exceed 60-80 percent over a few minutes. Sudden 

fluctuations of large magnitude are challenging for the forecasting algorithms. 

Additionally, the results demonstrated that, for most forecast horizons the 

models developed in this project show large forecasting skills (above 30 percent 

reduction in forecast error relative to reference models). For POA irradiance, 

several forecasts show skills above 50 percent. 

• The intrahour PO forecasting at CVSR shows that higher forecasting skills require 

careful and innovative feature engineering - a process that extracts new data 

from the original raw values. The new features can then be used as predictors to 

in machine learning tools, such as XGBoost. 

• The researchers applied the tools developed for the two utility-scale solar farms 

(Ivanpah and CVSR) in smaller (1MW) testbeds. From these results, all 

algorithms and tools developed are suitable to implement easily and effectively in 

other solar projects. 

• A tailor-made solution for CVSR using the most up-to-date data available and a 

carefully calibrated clear-sky model results in forecasts that substantially reduce 

the net imbalances relative to the centralized California ISO forecast.  

• The baseline NAM forecast (the NAM forecast for the node closest to Ivanpah) 

severely under predicts the wind gust magnitude. Results for the forecast models 

developed by this project overcome this deficiency in most cases. With these 

forecasts, it is possible to create an accurate warning system that can flag 

potentially dangerous wind conditions for the heliostats at Ivanpah. These 

models are general and are suitable for any other locations. 
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Based in this work, the project team offers the following recommendations for future 

work: 

1. Development of a map of predictability ("forecastability") for different solar 

microclimates in California. Such a map, when combined with other constraints 

(distance to distribution lines, distance to populations, etc.), is critical for siting 

and proper integration of large-scale solar power plants into the grid. 

2. A study of scenarios with multiple penetrations of solar and wind in different 

regions, with an analysis of how new solar and wind capacity in these regions 

can contribute to offset atmospheric carbon emissions. 

3. Integration of the new NOAA/NASA satellite (GOES 17) images into the 

forecasting engines described in this work. The GOES-17 images started 

streaming in late 2018 and represent a substantial improvement over the GOES-

West images, both in terms of refreshing rates and spatial resolution. 

4. A study of the optimal distribution of low-cost sensors and the potential of using 

the sensors outside of the solar fields for early cloud detection. 

5. Finally, the development of smart and hybrid remote sensing/numerical weather 

prediction models that cover the entire state of California in real time for the 

short-term prediction (0-6 hours) of solar and wind resources, with local 

optimization for regions with high concentration of solar and/or wind power 

plants. 
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GLOSSARY AND ACRONYMS 

Term/Acronym  Definition 

EPIC Electric Program Investment Charge 

Smart Grid Smart Grid is the thoughtful integration of intelligent technologies 
and innovative services that produce a more efficient, sustainable, 
economic, and secure electrical supply for California communities. 

CVSR  California Valley Solar Ranch  

MSE, MAE, MBE Mean Squared Error, Mean Absolute Error, Mean Biased Error. 
Common error metrics used to assess the accuracy of the 
forecasted values. These values quantify the forecast error. Lower 
values indicate better forecasts.  

s Forecasting skill. Metric that compares the forecasting accuracy of 
a new model relative to some benchmark result. s>0 indicates a 
model that performs better than the benchmark (s=1 indicates a 
perfect forecast); s=0 indicates a model that perform as well as 
the benchmark; s<0 indicates a model that performs worse than 
the benchmark. 

DNI, B Direct Normal or Beam Irradiance. The irradiance component that 
takes into account only light rays that come in a straight line from 
the direction of the sun at its current position in the sky. 

GHI, G Global Horizontal Irradiance. The amount of terrestrial irradiance 
falling on a surface horizontal to the surface of the earth.  

POA, I Plan of array Irradiance. Similar to GHI but in this case the surface 
can be at any angle. For a horizontal surface it is equal to GHI. 

CSP Concentrated Solar Power. A system to generate solar power that 
uses mirrors or lenses to concentrate a large area of sunlight onto 
a small area. 

CPV Concentrated Photovoltaics. A photovoltaic technology to generate 
solar power. It uses lenses or curved mirrors to focus sunlight 
onto small, highly efficient solar cells. 

NWP Numerical Weather Prediction. Algorithms that use mathematical 
models of the atmosphere and oceans to predict the weather 
based on current weather conditions. 

SFINCS Solar Field Controls System 

PO Power Output. The electric power generated by the solar plant. 

NAM North America Mesoscale forecast system. A numerical weather 
prediction model run by National Centers for Environmental 
Prediction for short-term weather forecasting. 

ML Machine Learning. A method of data analysis that automates 
analytical model building. 
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Term/Acronym  Definition 

ANN Artificial Neural Network. One of the main tools used in machine 
learning. They are tools for finding patterns which are too complex 
or numerous for a human programmer to extract and teach the 
machine to recognize. 

KNN K-Nearest Neighbors. A classical machine learning algorithm that 
relies in finding similar conditions in the historical data to produce 
the forecasting. 

MLP Model Multilayer Perceptron. A type of ANN. 

SVR, SVM Support Vector Regression, Support Vector Machines. Machine 
learning algorithms that analyze data for classification and 
regression analysis. 

OLS Ordinary Least Squares. A type of linear least squares method for 
estimating the unknown parameters in a linear regression model. 

XGBoost Open-source software library that provides a gradient boosting 
framework. An implementation of a popular machine learning 
algorithm for classification and regression. 

WSN Wireless Sensor Network. A collections of irradiance sensors 
installed over the solar plant, connected wirelessly to a central 
node that collects the data. 

O&M Operations and Management 

GOES Geostationary Operational Environmental Satellite system. 
Satellites that support weather forecasting, severe storm tracking, 
and meteorology research. 

𝑘𝑡, 𝑘𝑝 Clear-sky index. The ratio between actual solar irradiance and the 
solar irradiance under clear sky conditions. 

𝐵𝑐, 𝐼𝑐, 𝑃𝑐 Clear-sky value for DNI, irradiance, PO. Models that estimate the 
clear sky values at a certain time of the day.  

RGB, NRBR Red Green Blue, normalized red to blue ratio. Color data from sky 
images. 

∆𝑡, 𝐹𝐻 Forecasts Horizon. The length of time into the future for which 
forecasts are to be prepared. 

𝐵̂, 𝑃̂, ⋯ Forecasted data. The data produced by the forecasting models.  

W, G Average wind speed, wind gust. 

Heliostat An instrument consisting of a mirror mounted on an axis moved 
by clockwork by which a sunbeam is steadily reflected in one 
direction. 

 

  



70 

REFERENCES 

Blatchford, J., & Zack, J. W. (2004). California ISO’s Participating Intermittent Resource 

Program (PIRP): Description and Initial Results. Proc. Global WINDPOWER. 

Braun, J.E., and Mitchell, J.C. (1983). Solar geometry for fixed and tracking surfaces. 

Solar Energy 31, 439–444. 

Chang, C.-C., and Lin, C.-J. (2011). LIBSVM: A Library for Support Vector Machines. 

ACM Trans. Intell. Syst. Technol. 2, 27:1–27:27. 

Chen, T., and Guestrin, C. (2016). XGBoost: A Scalable Tree Boosting System. In 

Proceedings of the 22Nd ACM SIGKDD International Conference on Knowledge 

Discovery and Data Mining, (New York, NY, USA: ACM), pp. 785–794. 

Chu, Y., Pedro, H.T.C., Nonnenmacher, L., Inman, R.H., Liao, Z., and Coimbra, C.F.M. 

(2014). A Smart Image-Based Cloud Detection System for Intrahour Solar 

Irradiance Forecasts. J. Atmos. Oceanic Technol. 31, 1995–2007. 

Heidinger, A.K., Foster, M.J., Walther, A. and Zhao, X., (2014). The pathfinder 

atmospheres–extended AVHRR climate dataset. Bulletin of the American 

Meteorological Society, 95(6), pp.909-922. 

Hoff, T.E., Perez, R., Kleissl, J., Renne, D., and Stein, J. (2012). Reporting of irradiance 

modeling relative prediction errors. Progress in Photovoltaics: Research and 

Applications  

Ineichen, P., and Perez, R. (2002). A new airmass independent formulation for the 

Linke turbidity coefficient. Solar Energy 73, 151–157. 

Lave, M., Reno, M.J., Stein, J., and Smith, R. (2015). Low-cost solar variability sensors 

for ubiquitous deployment. In 2015 IEEE 42nd Photovoltaic Specialist Conference 

(PVSC) 

Letendre, S., Makhyoun, M., & Taylor, M. (2014). Predicting solar power production: 

irradiance forecasting models, applications and future prospects. Solar Electric 

Power Association, Tech. Rep. 

Marquez, R., and Coimbra, C.F.M. (2012). Proposed Metric for Evaluation of Solar 

Forecasting Models. J. Sol. Energy Eng. 135, 011016–011016. 

Pedro, H.T.C., and Coimbra, C.F.M. (2012). Assessment of forecasting techniques for 

solar power production with no exogenous inputs. Solar Energy 86, 2017–2028. 



71 

Pedro, H.T.C., and Coimbra, C.F.M. (2015). Nearest-neighbor methodology for 

prediction of intra-hour global horizontal and direct normal irradiances. 

Renewable Energy 80, 770–782. 

Perez, R., Ineichen, P., Seals, R., Michalsky, J., and Stewart, R. (1990). Modeling 

daylight availability and irradiance components from direct and global irradiance. 

Solar Energy 44, 271–289. 

Remund, J., Wald, L., Lefèvre, M., Ranchin, T., and Page, J.H. (2003). Worldwide Linke 

turbidity information. In Proceedings of ISES Solar World Congress 2003 

Reno, M.J., and Hansen, C.W. (2016). Identification of periods of clear sky irradiance in 

time series of GHI measurements. Renewable Energy 90, 520–531. 

Strachan, J.W., and Houser, R.M. (1993). Testing and evaluation of large-area 

heliostats for solar thermal applications (Albuquerque, NM: Sandia National 

Laboratories). 



A-1 

 

APPENDIX A: 
FORECASTING TOOLS 

This appendix details several of the tools used in this project.  

Clear-Sky Models  
A good clear-sky model for the irradiance has a big impact in the forecast error. These 

models remove well predicted variations in the irradiance (such as seasonal and daily 

cycles) leaving the forecast tools to deal with the challenge of predicting variations due 

to localized weather conditions. In this project, clear-sky normalization is applied to 

several data: irradiance (GHI, DNI and POA irradiance) and power generation.  

General Irradiance Clear-Sky Model 

In several cases this project uses a well know irradiance clear-sky model for GHI and 

DNI. This model is the implementation of the algorithm proposed in the work of 

Ineichen and Perez (2002), which requires Linke Turbidity as an input. Turbidity 

measures the haziness of the atmosphere due to suspended particles or aerosols. Maps 

of monthly average Linke Turbidity developed by Remund et al. (2003). In other cases, 

clear-sky models are developed specifically for a location or variable.  These are 

explained next. 

DNI Clear-Sky Model for Ivanpah 

In the case of DNI at Ivanpah, the general model explained above was deemed not 

accurate enough. For this reason, the project team developed an empirical model to 

compute the clear-sky irradiances based on data collected at the solar farm. Data was 

selected based on the irradiance measurements and sky images, as the clearest days in 

the historical data. A polynomial curve fit is then used to estimate clear-sky DNI as a 
function of the solar elevation angle 𝛼𝑠: 𝐵𝑐 =  ∑ 𝑎𝑛 𝛼𝑠

𝑛6
𝑖=1  with the following coefficients 

𝑎𝑛 ={-8.859×10-4, 8.026×10-2, -3.726 × 10-3, 1.039×10-4 , -1.671×10-6, 1.42×10-8, -

4.916×10-11}.  

Given that, even during cloudless days, the irradiance (GHI and DNI) can be attenuated 
by aerosols, the previous equations is by including a turbidity correction coefficient 𝐶𝑇,𝐵. 

The larger the turbidity, the greater is the irradiance attenuation and the smaller will be 
the correction factor 𝐶𝑇,𝐵. With this correction, the final clear-sky model for DNI 

becomes  

𝐵𝑐 =  𝐶𝑇,𝐵 ∑ 𝑎𝑛 𝛼𝑠
𝑛6

𝑖=1 . 

The factor 𝐶𝑇,𝐵 is estimated daily from periods of clear sky. If no such periods exist 

𝐶𝑇,𝐵=1. 
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For Ivanpah, clear-sky GHI is estimated in a similar way. In this case, with a fourth 

order polynomial  

𝐺𝑐 =  𝐶𝑇,𝐺 ∑ 𝑏𝑛 𝛼𝑠
𝑛4

𝑖=1 , 

with 𝑏𝑛 = {-5.266× 10-3, 1.025×10-2, 3.478×10-4, -5.982×10-6, 2.703×  10-8}. The 

turbidity correction coefficient for GHI (𝐶𝑇,𝐺) is estimated the same way as the one for 

DNI. 

POA Irradiance and PO Clear-Sky Model for CVSR 

The development of a power output clear sky model for CVSR involves the modeling of 

clear sky irradiance components that can then be projected onto the tilted surface of an 

optimally oriented solar panel. These values are computed with the work of Ineichen 

and Perez (2002), mentioned above. After the clear sky model has been calculated, 

optimal orientation of the panel must be determined. It is well known that the DNI on a 

panel is maximized when the angle of incidence is minimized, within the constraints of 

the tracking apparatus. In the case of CVSR, see Fig. A1, the constraints are such that 

the single axis of rotation is parallel to a vector pointing due south, which greatly 

simplifies the expressions for the incidence angle as a function of surface tilt and 

azimuth angles for optimally tracking single-axis panels provided by Braun and Mitchell 

(1983).  

Figure A1: Single Axis Tracking Geometry 

 

Geometry necessary for determining plane of array (POA) irradiance for the single axis tracking 

panels at CVSR. 

The minimization of the angle of incidence is performed in two steps: first, determine 

the optimal surface slope; and second, determine the angle of incidence using the solar 

zenith and azimuth angles. 

For the geometry illustrated in Fig. A1, the incidence angle is minimized when 
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𝑑(cos𝜃)

𝑑𝛽
= sin𝜃𝑠 cos(𝛾𝑠 − 𝛾)cos𝛽 − cos𝜃𝑠sin𝛽 = 0  

where 𝜃 is the angle of incidence, 𝛽 is the surface slope, 𝜃𝑠 is the solar zenith angle, 𝛾𝑠 

is the solar azimuth angle, and 𝛾 is the surface azimuth angle. As a result of the 

tracking constraints at CVSR, the surface azimuth 𝛾 = ±90° . Substituting this value and 

solving for the surface slope gives 

𝛽 = tan−1[tan𝜃𝑠sin𝛾𝑠]  

which relates the surface slope to the solar geometry. Many sources contain the 

following trigonometric relationship for the angle of incidence 𝜃 and solar and surface 

angles  

𝜃 = cos−1[cos𝛽cos𝜃𝑠 + sin𝛽sin𝜃𝑠sin𝛾𝑠]  

Once the clear sky irradiance components have been modeled and the angle of 

incidence is known, the plane of array irradiance is calculated by projecting the 

irradiance components onto the optimally oriented surface. This is accomplished using 

the work of Perez et al. (1990), which presents several models to estimate DHI 

impinging on tilted surfaces of arbitrary orientation. Using the results from the Perez 

model for plane of array DHI in conjunction with the clear sky DNI calculated from the 

Ineichen model and angle of incidence, the plane of array irradiance can be calculated 

as 

𝐼POA = 𝐼Dcos𝜃 + 𝐼d,POA  

where 𝐼POA is the plane of array irradiance, 𝐼D is the clear-sky DNI, and 𝐼d,POA is the 

diffuse clear sky plane of array irradiance. As a final step, the plane of array irradiance 

is transformed into power output by linearly scaling by a factor of equal to the 

nameplate capacity of the solar farm in W; i.e., 2.5× 105  and curtailed for values that 

exceed the capacity. Figure A2 shows the clear-sky model for the 250MW solar farm. 

The figure also shows the measured PO for some clear-sky and cloudy days to 

demonstrate the clear-sky model accuracy. 
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Figure A2: Power Output Clear-Sky Model for CVSR 

 

The gray surface indicates the clear-sky power output as a function of the day of the year and the 

time of the day (solar time). The colored lines show actual measurements from the solar plant. The 

new model accounts for the tracking of the sun by the solar panels. This model is a fully 

deterministic model (only requires the date and time as inputs) and is used to improve the power 

output forecast at CVSR. 

Error Metrics  
The forecast performance is established by analyzing the forecast error, that is the 

difference between the measured and forecasted data. In this project, the models are 

evaluated using error metrics recommended in forecast literature: mean absolute error 

(MAE), mean bias error (MBE), root mean square error (RMSE), and forecast skill (s) 
(see Marquez and Coimbra (2012) and Hoff et al. (2012)). 

MBE is a measure of systematic errors (or bias). An unbiased forecast model, that is, 

one that on average does not under or over predicts irradiance will have an MBE value 

close to 0. It is an important metric because understanding the overall forecast bias 

(over or under-forecasting) would allow power system operators to better allocate 

resources for compensating forecast errors in the dispatch process.  

MAE is the magnitude of the forecasting error. In this metric all errors contribute 

equally regardless of their magnitude. 

RMSE is a measure of random errors and, unlike MAE, it penalizes larger errors. In this 

sense this is a very important metric since one of the goals of this project is to reduce 

the instances of large error.  

Forecast skill s is a convenient way to benchmark new forecast models. It measures 

their performance relative to the persistence model. It is a good metric to compare 

models applied to different variables (DNI, POA irradiance, solar generation, etc.) since 
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the intrinsic variability of the data is reflected in the RMSE for the persistence model. 

For example, a model that returns very low RMSE for a dataset comprised of only clear-

sky days will have a very low skill since the RMSE for the persistence model will also be 

very low. The ideal forecast will have a low RMSE and high forecast skill. 

Mathematically these error metrics are defined as: 

MBE =
1

𝑁
∑(𝑦𝑖 − 𝑦̂𝑖)

𝑁

𝑖=1

 

 

MAE =
1

𝑁
∑|𝑦𝑖 − 𝑦̂𝑖|

𝑁

𝑖=1

 

RMSE = √
1

𝑁
∑(𝑦𝑖 − 𝑦̂𝑖)2

𝑁

𝑖=1

 

 

s = 1 −  
RMSE

RMSE𝑝
 

where 𝑦𝑖 is the true value, 𝑦̂𝑖 is the forecasted value and RMSE𝑝 is the RMSE of the 

reference forecast model persistence forecast. In all the results presented in this report 

nighttime values are discarded. These metrics can be applied to any subset of the data. 

In the results presented they are applied to the testing dataset, since those are the 

results representative of the model’s performance when applied to live data. 

Forecasting Models 

Smart Persistence 

As mentioned above, forecast skill is evaluated against the smart persistence model. 

The smart persistence model assumes the clear-sky index 𝑘𝑡 (the ratio of measured 

irradiance or power generation to the clear-sky value) persists over the forecast horizon 

(∆𝑡). Therefore, the predicted value is given by, 

𝑦̂𝑝(𝑡 + ∆𝑡) = 𝑘𝑡(𝑡) × 𝑦𝑐(𝑡 + ∆𝑡) 

where the subscript 𝑝 denotes the persistence model and 𝑦𝑐 is the one of the clear-sky 

models introduced above. The variable 𝑦 denotes any of the irradiance components or 

power generation used in this work. It should be noted that this is the general form for 

the persistence model. In the work presented above a few simple variations are used 

(for instance, 𝑘𝑡(𝑡) can be defined with the latest data point available or it can use 
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several of the last values). In those cases, the differences relative to this model are 

clearly stated. 

Linear and Non-Linear Least-Squares 

These models are explored in this project as forecasting models. Generically, the 

forecast is produced from a linear or non-linear combination of the input variables. For 

the linear model, this means that the forecast is calculated as  

𝑦̂𝑝(𝑡 + ∆𝑡) = 𝑎0 + 𝑎1𝑥1(𝑡) + ⋯ + 𝑎𝑛𝑥𝑛(𝑡) 

where 𝑥1, 𝑥2, ⋯ , 𝑥𝑛 are the input data (current telemetry, sky images, etc.), The linear 

regression fits a linear model with coefficients 𝑎0, 𝑎1, ⋯ , 𝑎𝑛 to minimize the residual sum 

of squares between the observed data, and the predicted data by the linear 

approximation. The non-linear version of this model is very similar, however in the 

right-hand-side of the previous equation there are non-linear terms such as 𝑎1𝑥1(𝑡)𝑏1. 

In this case the minimization problem must determine the free-coefficients 𝑎 and 𝑏. 

MPL Models 

Multi-layer perceptron (MLP) is a type of artificial neural network that consists of one 

input layer, several hidden layers and one output layer. Each hidden layer consists of 

several neurons - the processing elements. The model used in this project, follows from 

previous work done by members of the project team, in which the MPL structure is 

optimized using a genetic algorithm (Pedro and Coimbra (2012), Chu et al (2014)). 

The MLP models are trained against historical data with the goal minimize the RMSE 

between the MLP outputs training measured data for the target variable (DNI, PO 

irradiance, PO). To obtain new prediction the model simply uses new measured data as 

input. A cross-validation method is implemented with the MLP to generate more 

accurate predictions. The training dataset is divided into 𝑁 subsets (10 in this case).  

Then, one subset is used for validation and the rest subsets are used to train the MLP. 

The trained model is assessed on the validation subset and a RMSE is computed by 

comparing the predictions and the validation targets.  This process is repeated 𝑁 times, 

each time a different subset is used as the validation set. The final prediction is the 

average of the 𝑁 trained models. 

Support Vector Regression (SVR) 

SVR is a form of Support Vector Machines (SVM) used for non-linear regression tasks. 

SVMs are a set of supervised learning methods used for classification, regression and 

outlier’s detection. The advantages of SVMs are: 

• Effective in high dimensional spaces as in the cases where there are multiple 

predictors for one forecast (e.g. telemetry, sky images, NWP to predict DNI). 

• Still effective in cases where number of dimensions is greater than the number of 

samples, although that does not occur in this project. 
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• Uses a subset of training points in the decision function (called support vectors), 

so it is also memory efficient. 

• Versatile: different Kernel functions can be specified for the decision function. 

This project used this tool as implemented in LIBSVM (Chang and Lin (2011)) in several 

tasks. SVR models are trained in the same way as MPL models, as indicated in the 

previous section. 

K-Nearest Neighbors (KNN)  

Figure A3: KNN Model Schematic  

 

The blue circle on the left represents a new forecast instance. In this case it represents the NAM 

forecast. The red circles represent the 3 nearest neighbors. The forecast - the hatched blue circle, 

is computed as the average of the 3 classes, in this case the measured historical irradiance 

corresponding to the 3 blue circles. 

The KNN method is one of the simplest and most robust methods of pattern recognition 

in machine learning.  In contrast to the MPL models that use the training data to 

estimate the free parameters in the model, the KNN uses the training data as the model 

and no free parameters need to be determined. The KNN forecast is based on 

identifying similarities between current data and historical data (Figure A3). This 

forecast is computed in three steps: 

1. Identification of the list of the nearest neighbors; 

2. Retrieval of historical irradiance data corresponding to those neighbors; 

3. Aggregation of those data to produce a forecast. 

In this work the nearest neighbors are identified but computing the distance between 

the current data (telemetry, NWP forecast, etc.) and historical data. Once the list of 

nearest neighbors is determined the model selects the corresponding irradiance or PO 

values and aggregates those values using a simple arithmetic average. 

Gradient Boosting 

The final type of forecast models used in this project is that obtained when utilizing a 

machine learning technique known as boosting. Boosting is achieved by training many 

Figure 9: KNN model schematic. The blue circle on the left represents the a new forecast

instance. In this case it represent the NAM forecast. The red circles represent the 3 nearest

neighbors. The forecast - the hatched blue circle, is computed as the average of the 3

classes, in this case the measured historical irradiance corresponding to the 3 blue circles.

the free parameters in the model, the KNN uses the training data as the model and no free

parameters need to be determined.

The KNN forecast is based on identifying similarities between current data and histor-

ical data. This forecast is computed in three steps:

1. identification of the list of the nearest neighbors;

2. retrieval of historical irradiance data corresponding to those neighbors;

3. aggregation of those data.

In this case the nearest neighbors are identified but computing the distance between

the current NAM forecast and the historical NAM forecast. Given that we have data from

several NAM nodes available for this operation we use the optimization model described

in section 5.1 to find thebest set of inputs. Once the list of nearest neighbors isdetermined

we select the corresponding irradiance values and aggregate those values using a simple

arithmetic average.

8.2 Results

The exponents in Equations 29 and 30 and the MLP free parameters are determined using

thetraining dataset for Ivanpah and CVSR. TheKNN model hasno freeparameters and, as

such, requires no training. All models are then validated with an independent test dataset.

The error metrics for the forecast horizons ranging from 24 h to 48 h are listed in Table 7

for the DNI forecast for Ivanpah.

26
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weak learners—simple models yielding high bias predictions—in succession: each new 

learner is trained based on the results of the previous learner. The overall model is then 

defined as a weighted ensemble of the weak learners. The ensemble constitutes a 

strong learner since its predictions yield a bias much lower than those of the individual 

weak learners. A general representation of this idea may be written as the recursion 

𝐹𝑚+1(𝑥) = 𝐹𝑚(𝑥) + 𝛾𝑚ℎ𝑚(𝑥), 

where 𝐹𝑚 is the model at iteration (also, “round”) 𝑚, 𝛾𝑚 is the weighting attached to 

weak learner ℎ𝑚, and 𝑥 is a vector of features at a given time step. If a prediction is 

𝑦̂𝑚 = 𝐹𝑚(𝑥), then the corresponding residual is 𝑟𝑚 = 𝑦 − 𝑦̂𝑚, where 𝑦 is the true 

observation. In theory, the recursion is terminated and the final model 𝐹𝑀 is obtained 

when a time series vector of corresponding residuals 𝑟𝑀 is approximately white (i.e., 

uncorrelated with itself for nonzero lags). In practice, the final model is obtained when 

the addition of weak learners worsens the model performance on a testing data set, 

which is a stricter requirement that reduces the tendency to overfit the model to noise 

dynamics. 

When the weak learners are trained on the negative gradient of the loss function (i.e., 

in a direction that minimizes the loss function), the method is known as gradient 

boosting. To illustrate this idea, consider a standard quadratic loss function (1/2)(𝑦 −
𝐹𝑚(𝑥))2, which has the negative gradient −(𝑦 − 𝐹𝑚(𝑥)) = −(𝑦 − 𝑦̂𝑚) = −𝑟𝑚. Chen and 

Guestrin (2016) recently developed a highly optimized backend for the efficient 

implementation of gradient boost models. This framework, leveraged in this work, is 

known as eXtreme Gradient Boosting (XGB) or XGBoost. 

Features Derived Using Memory Operators for PO at CVSR 
The features derived using fractional derivatives are best understood from an 

abstracted viewpoint. Whereas a standard derivative provides information about the 

instantaneous change behaviors of a given system, a fractional derivative provides 

information about historical behaviors of a system. Accordingly, it may be thought of as 

a derivative that possesses memory, or more simply, as a memory operator. If 𝐷( ∙ ) 

denotes differentiation to order ( ∙ ), then the appropriate fractional derivative definition 

is the Caputo derivative: 

 

 
𝐷𝑝𝑓(𝑡) ≈  ∫

(𝑡 − 𝑠)𝑚−𝑝−1

Γ(𝑚 − 𝑝)
 𝐷𝑚𝑓(𝑠) 𝑑𝑠

𝑡

𝑡0

,  

where 𝑓(𝑡) represents a time series evaluated at the timestamp 𝑡, the derivative order 

𝑝 ≥ 0 is a real number, and 𝑚 is an integer such that 𝑚 − 1 < 𝑝 < 𝑚. The gamma 

function Γ is a generalization of the factorial function. The expression is generally 

approximate since a true memory operator should be evaluated for all times since the 

system was last quiescent. For irradiance time series, this implies that a true memory 

operator should be evaluated over all historical values since the last true nighttime 
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value, 𝑡𝑑𝑎𝑤𝑛 (i.e., just before daybreak). However, since this is not computationally 

practical, a “finite memory” approximation is implemented: 

 

 
𝑡0 = max (𝑡𝑑𝑎𝑤𝑛, 𝑡 − Δ),  

where Δ is the desired evaluation interval cutoff (i.e., the length of the finite memory). 

A brief analysis revealed that for Δ ≥ 180 minutes, the error in the approximation is 

negligible. Numerical evaluation of the Caputo derivative is achieved by weighted 

summation 

 

 
𝐷𝑝𝑓𝑁 ≈  ∑ 𝑎𝑛 𝑓𝑛

𝑁

𝑛=0

,  

where 𝑓𝑛 = 𝑓(𝑡𝑛) and the historical weighting factors 𝑎𝑛 are determined by an 

appropriate numerical differintegration algorithm. Fractionally integrated feature sets 

were computed using a similar method applied to the Riemann-Liouville fractional 

integral. 

The numerical weighting algorithm was developed proprietarily for this work based on 

the requirement that the accuracy must be congruent with the characteristic dynamical 

timescales being observed. Since the primary feature sets used in this work are based 

on a 5-minute backward-averaged discretization the method should provide a 

commensurate level of accuracy at this timescale. An analysis of the dynamical 

timescale resolution, sampling rate, and convergence accuracy of the algorithm is given 

in Figure A4. 

Figure A4: Timescale Resolution Analysis 

The plots show the alignment of three relevant timescales when evaluating the 𝒑 = 𝟎. 𝟓 order 

derivative of a sinusoid: simulated dynamics being observed (actual), sensor sampling (sampled), 

and convergence of the numerical algorithm (numerical). The characteristic frequency of the 

dynamics is halved in each plot from left to right, top to bottom. The upper right plot represents 

sampling in accordance with the Nyquist-Shannon sampling theorem, for which the periodicity of 

the dynamics is accurately recovered. Sampling at roughly 1/5 the rate of the dynamics resolves 

both the periodicity and the amplitude of the signal. In each case, it is demonstrated that the 

accuracy of the memory operator is commensurate with that of the sampled signal. 
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The figure demonstrates that the algorithm for numerically evaluating the memory 

operator provides accuracy commensurate with the sensor sampling under for 

simulated sinusoidal dynamics having a period 𝑤. It is also shown that the frequency 

dependence of the dynamics is completely recovered when they are sampled at least as 

fast as 𝑤/2, which is a consequence of the Nyquist-Shannon sampling theorem. The 

amplitude is also accurately reproduced for sampling at least as fast as ≈ 𝑤/5. This is 

important, since the baseline feature sets are computed from 5-minute backward 

averages of the raw data. Thus, the analysis in Figure A4 indicates that the memory 

operator features should be evaluated from data having at least 1-minute resolution. 

The necessary data was obtained by taking 1-minute backward averages of the raw 

telemetry. 

In order to assess the effects of operator memory and order of differentiation or 

integration on the forecast performance, a case study was undertaken wherein 

forecasts were generated for all combinations of Δ and 𝑝 generated from the baseline 

features with 

• Δ 𝜖 {10, 30, 60, 120, 180} minutes, and 

• 𝑝 𝜖 [−2, 2] in increments of 0.1. 

Sample results of this analysis for the 5-minute forecast horizon are demonstrated in 

Figure A5.  

Among the many conclusions that can be drawn from the figure it can be said that: 

1. integrated features do not generally yield a significant additional benefit, 

2. integer order operators (i.e., simple finite differences) do not generally yield a 

significant additional benefit, 

3. no apparent systematic improvement in performance is obtained by variation of 

the finite memory parameter Δ, and 

4. there are evidently two distinct regions of fidelity at 𝑝 = 0.9 and 𝑝 = 1.3. 

An identical analysis performed on the 10-30 minute forecast horizons produced similar 

results, with diminishing performance enhancements at increasing time horizons. The 

results of these analyses helped to inform both the feature set and model structure 

selection used further on. 
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Figure A5: Memory Feature Set Performance Analysis 

 

Each contiguous cell in the diagram represents the performance of an individual forecast as 

determined by a naïve (or “dull”) persistence model with a 5-minute forecast horizon. Forecast 

performance resulting from a model utilizing only the baseline feature set determines the 

minimum on the performance scale and is represented in the diagram by the zero-order cell. All 

other cells represent baseline features along with the indicated feature set combination. Gray-

colored cells designate feature set combinations for which no increase in performance was 

obtained
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APPENDIX B: 
PAPER ABSTRACTS 

Abstracts for the journal papers based on this project: 

H. T. C. Pedro, E. Lim and C. F. M. Coimbra (2018) “A Database Infrastructure 

to Implement Real-Time Solar and Wind Power Generation Intra-Hour 

Forecasts,” Renewable Energy (123), pp. 513–525. 

Abstract: This paper presents a simple forecasting database infrastructure 

implemented using the open-source database management system MySQL. This 

proposal aims at advancing the myriad of solar and wind forecast models present in the 

literature into a production stage. The paper gives all relevant details necessary to 

implement a MySQL infra-structure that collects the raw data, filters unrealistic values, 

classifies the data, and produces forecasts automatically and without the assistance of 

any other computational tools. The performance of this methodology is demonstrated 

by creating intra-hour power output forecasts for a 1 MW photovoltaic installation in 

Southern California and a 10 MW wind power plant in Central California. Several 

machine learning forecast models are implemented (persistence, auto-regressive and 

nearest neighbors) and tested. Both point forecasts and prediction intervals are 

generated with this methodology. Quantitative and qualitative analyses of solar and 

wind power forecasts were performed for an extended testing period (4 years and 6 

years, respectively). Results show an acceptable and robust performance for the 

proposed forecasts. 

 

H. T. C. Pedro, C. F. M. Coimbra, M. David and P. Lauret (2018) “Assessment 

of Machine Learning Techniques for Deterministic and Probabilistic Intra-

Hour Solar Forecasts,” Renewable Energy (123), pp. 191–203. 

Abstract: This work compares the performance of machine learning methods (k-

nearest-neighbors (kNN) and gradient boosting (GB)) in intra-hour forecasting of global 

(GHI) and direct normal (DNI) irradiances. The models predict the GHI and DNI and the 

corresponding prediction intervals. The data used in this work include pyranometer 

measurements of GHI and DNI and sky images. Point forecasts are evaluated using 

bulk error metrics while the performance of the probabilistic forecasts are quantified 

using metrics such as Prediction Interval Coverage Probability (PICP), Prediction 

Interval Normalized Averaged Width (PINAW) and the Continuous Ranked Probability 

Score (CRPS). Graphical verification displays like reliability diagram and rank histogram 

are used to assess the probabilistic forecasts. Results show that the machine learning 

models achieve significant forecast improvements over the reference model. The 

reduction in the RMSE translates into forecasting skills ranging between 8 percent and 

24 percent, and 10 percent and 30 percent for the GHI and DNI testing set, 
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respectively. CRPS skill scores of 42 percent and 62 percent are obtained respectively 

for GHI and DNI probabilistic forecasts. Regarding the point forecasts, the GB method 

performs better than the kNN method when sky image features are included in the 

model. Conversely, for probabilistic forecasts the kNN exhibits rather good performance. 

 

D. P. Larson and C. F. M. Coimbra (2018) “Direct Power Output Forecasts 

from Remote Sensing Image Processing,” ASME Journal of Solar Energy 

Engineering–Transactions of the ASME 140(2), Article Number: 021011. 

Abstract: A direct methodology for intra-day forecasts (1–6 h ahead) of power output 

(PO) from photovoltaic (PV) solar plants is proposed. The forecasting methodology uses 

publicly available images from geosynchronous satellites to predict PO directly without 

resorting to intermediate irradiance (resource) forecasting. Forecasts are evaluated 

using four years (January 2012–December 2015) of hourly PO data from 2 nontracking, 

1 MWp PV plants in California. For both sites, the proposed methodology achieves 

forecasting skills ranging from 24 percent to 69 percent relative to reference 

persistence model results, with root-mean-square error (RMSE) values ranging from 90 

to 136 kW across the studied horizons. Additionally, we consider the performance of the 

proposed methodology when applied to imagery from the next generation of 

geosynchronous satellites, e.g., Himawari-8 and geostationary operational 

environmental satellite (GOES-R). 

 

M. Li, Y. Jiang, and C. F. M. Coimbra (2017) “On the Determination of 

Atmospheric Longwave Irradiance Under All-Sky Conditions,” Solar Energy 

(144), pp. 40–48.  

Abstract: In this work we review and recalibrate existing models and present a novel 

comprehensive model for estimation of the downward atmospheric longwave (LW) 

radiation for clear and cloudy sky conditions. LW radiation is an essential component of 

thermal balances in the atmosphere, playing also a substantial role in the design and 

operation of solar power plants. Unlike solar irradiance, LW irradiance is not measured 

routinely by meteorological or solar irradiance sensor networks. In most cases, it must 

be calculated indirectly from meteorological variables using simple parametric models. 

Under clear skies, fifteen parametric models for calculating LW irradiance are compared 

and recalibrated. All models achieve higher accuracy after grid search recalibration, and 

we show that many of the previously proposed LW models collapse into only a few 

different families of models. A recalibrated Brunt-family model is recommended for 

future use due to its simplicity and high accuracy (rRMSE = 4.37 percent). To account 

for the difference in nighttime and daytime clear-sky emissivities, nighttime and 

daytime Brunt-type models are proposed. Under all sky conditions, the information of 

clouds is represented by cloud cover fraction (CF) or cloud modification factor (CMF, 

available only during daytime). Three parametric models proposed in the bibliography 

are compared and calibrated, and a new model is proposed to account for the 
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alternation of vertical atmosphere profile by clouds. The proposed all-sky model has 

3.8–31.8 percent lower RMSEs than the other three recalibrated models. If GHI 

irradiance measurements are available, using CMF as a parameter yields 7.5 percent 

lower RMSEs than using CF. For different applications that require LW information 

during daytime and/or nighttime, coefficients of the proposed models are corrected for 

diurnal and nocturnal use. 

 

Y. Chu and C. F. M. Coimbra (2017) “Short-Term Probabilistic Forecasts for 

Direct Normal Irradiance,” Renewable Energy (101), pp. 526–536. 

Abstract: A k-nearest neighbor (kNN) ensemble model has been developed to 

generate Probability Density Function (PDF) forecasts for intra-hour Direct Normal 

Irradiance (DNI). This probabilistic forecasting model, which uses diffuse irradiance 

measurements and cloud cover information as exogenous feature inputs, adaptively 

provides arbitrary PDF forecasts for different weather conditions. The proposed models 

have been quantitatively evaluated using data from different locations characterized by 

different climates (continental, coastal, and island). The performance of the forecasts is 

quantified using metrics such as Prediction Interval Coverage Probability (PICP), 

Prediction Interval Normalized Averaged Width (PINAW), Brier Skill Score (BSS), and 

the Continuous Ranked Probability Score (CRPS), and other standard error metrics. A 

persistence ensemble probabilistic forecasting model and a Gaussian probabilistic 

forecasting model are employed to benchmark the performance of the proposed kNN 

ensemble model. The results show that the proposed model significantly outperform 

both reference models in terms of all evaluation metrics for all locations when the 

forecast horizon is greater than 5-min. In addition, the proposed model shows superior 

performance in predicting DNI ramps. 

 

Y. Chu, M. Li and C. F. M. Coimbra (2016) “Sun-Tracking Imaging System for 

Intra-Hour DNI Forecasts” Renewable Energy (96), Part A, pp. 792–799. 

Abstract: A Sun-tracking imaging system is implemented for minimizing circumsolar 

image distortion for improved short-term solar irradiance forecasts. This sky-imaging 

system consists of a fisheye digital camera mounted on an automatic solar tracker that 

follows the diurnal pattern of the Sun. The Sun is located at the geometric center of the 

sky images where the fisheye distortion is minimized. Images from this new system 

provide more information about the circumsolar sky cover, which provides critical 

information for intra-hour solar forecasts, particularly for direct normal irradiance. An 

automatic masking algorithm has been developed to separate the sky area from ground 

obstacles and the image edges for each image that is collected. Then numerical image 

features are extracted from the segmented sky area and are used as exogenous inputs 

to MultiLayer Perceptron (MLP) models for direct normal irradiance forecasts. Sixty-

seven days of irradiance and image measurements are used to train, optimize, and 

assess the MLP-based forecast models for solar irradiance. The results show that the 
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MLP forecasts based on the newly proposed sky-imaging system significantly 

outperform the reference models in terms of statistical metrics and forecast skill, 

particularly for shorter horizons, achieving forecast skills 18 percent–50 percent higher 

than the skills of a reference MLP-based model that is based on a zenith-pointed, 

stationary sky-imaging system. 

 

M. Li, Y. Chu, H. T. C. Pedro and C. F. M. Coimbra (2016) “Quantitative 

Evaluation of the Impact of Cloud Transmittance and Cloud Velocity on the 

Accuracy of Short-Term DNI Forecasts,” Renewable Energy (86) pp. 1362–

1371 

Abstract: Ground based sky imaging and irradiance sensors are used to quantitatively 

evaluate the impact of cloud transmittance and cloud velocity on the accuracy of short-

term direct normal irradiance (DNI) forecasts. Eight representative partly-cloudy days 

are used as an evaluation dataset. Results show that incorporating real-time sky and 

cloud transmittances as inputs reduces the root mean square error (RMSE) of forecasts 

of both the Deterministic model (Det) (16.3 percent∼ 17.8 percent reduction) and the 

multi-layer perceptron network model (MLP) (0.8 percent ∼ 6.2 percent reduction). 

Four computer vision methods: the particle image velocimetry method, the optical flow 

method, the x-correlation method and the scale-invariant feature transform method 

have accuracies of 83.9 percent, 83.5 percent, 79.2 percent and 60.9 percent in 

deriving cloud velocity, with respect to manual detection. Analysis also shows that the 

cloud velocity has significant impact on the accuracy of DNI forecasts: underestimating 

the cloud velocity magnitude by 50 percent results in 30.2 percent (Det) and 24.2 

percent (MLP) increase of forecast RMSE; a 50 percent overestimate results in 7.0 

percent (Det) and 8.4 percent (MLP) increase of RMSE; a ±30∘ deviation of cloud 

velocity direction increases the forecast RMSE by 6.2 percent (Det) and 6.6 percent 

(MLP). 

 

H. T. C. Pedro and C. F. M. Coimbra (2015) “Short-Term Irradiance 

Forecastability for Various Solar Micro-Climates,” Solar Energy (122), pp. 

587–602. 

Abstract: The purpose of this work is to present a simple global solar irradiance 

forecasting framework based on the optimization of the k-nearest-neighbors (kNN) and 

artificial neural networks algorithms (ANN) for time horizons ranging from 15 min to 2 

h. We apply the proposed forecasting models to irradiance from five locations and 

assessed the impact of different micro-climates on forecasting performance. We also 

propose two metrics, the density of large irradiance ramps and the time series 

determinism, to characterize the irradiance forecastability. Both measures are computed 

from the irradiance time series and provide a good indication for the forecasting 

performance before any predictions are produced. Results show that the proposed kNN 

and ANN models achieve substantial improvements relative to simpler forecasting 
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models. The results also show that the optimal parameters for the kNN and ANN 

models are highly dependent on the different micro-climates. Finally, we show that the 

density of large irradiance ramps and time series determinism can successfully explain 

the forecasting performance for the different locations and time horizons. 

 

R. H. Inman, J. G. Edson and C. F. M. Coimbra (2015) “Impact of Local 

Turbidity Estimation on Clear Sky Models for Direct Normal Irradiance,” Solar 

Energy (117) pp. 125–138. 

Abstract: Clear-sky modeling is of critical importance for the accurate determination of 

Direct Normal Irradiance (DNI), which is the relevant component of the solar irradiance 

for concentrated solar energy applications. Accurate clear-sky modeling of DNI is 

typically best achieved through the separate consideration of water vapor and aerosol 

concentrations in the atmosphere. Highly resolved temporal measurements of such 

quantities is typically not available unless a meteorological station is located in close 

proximity. When this type of data is not available, attenuating effects on the direct 

beam are modeled by Linke turbidity-equivalent factors, which can be obtained from 

broadband observations of DNI under cloudless skies. We present a novel algorithm 

that allows for a time-resolved estimation of the average daily Linke turbidity factor 

from ground-based DNI observations under cloudless skies. This requires a method of 

identifying clear-sky periods in the observational time series (in order to avoid cloud 

contamination) as well as a broadband turbidity-based clear-sky model for implicit 

turbidity calculations. While the method can be applied to the correction of historical 

clear-sky models for a given site, the true value lies in the forecasting of DNI under 

cloudless skies through the assumption of a persistence of average daily turbidity. This 

technique is applied at seven stations spread across the states of California, 

Washington, and Hawaii while using several years of data from 2010 to 2014. 

Performance of the forecast is evaluated by way of the relative Root Mean Square Error 

(rRMSE) and relative Mean Bias Error (rMBE), both as a function of solar zenith angle, 

and benchmarked against monthly climatologies of turbidity information. Results 

suggest that rRMSE and rMBE of the method are typically smaller than 5 percent for 

both historical and forecasted CSMs, which compare favorably against the 10–20 

percent range that is typical for monthly climatologies. 

 

H. T. C. Pedro and C. F. M. Coimbra (2015) “Nearest-Neighbor Methodology 

for Prediction of Intra-Hour Global Horizontal and Direct Normal 

Irradiances,” Renewable Energy (80) pp. 770-782 

Abstract: This work proposes a novel forecast methodology for intra-hour solar 

irradiance based on optimized pattern recognition from local telemetry and sky imaging. 

The model, based on the k-nearest-neighbors (kNN) algorithm, predicts the global 

(GHI) and direct (DNI) components of irradiance for horizons ranging from 5 min up to 

30 min, and the corresponding uncertainty prediction intervals. An optimization 



B-6 

 

algorithm determines the best set of patterns and other free parameters in the model, 

such as the number of nearest neighbors. Results show that the model achieves 

significant forecast improvements (between 10 percent and 25 percent) over a 

reference persistence forecast. The results show that large ramps in the irradiance time 

series are not very well capture by the point forecasts, mostly because those events are 

underrepresented in the historical dataset. The inclusion of sky images in the pattern 

recognition results in a small improvement (below 5 percent) relative to the kNN 

without images, but it helps in the definition of the uncertainty intervals (especially in 

the case of DNI). The prediction intervals determined with this method show good 

performance, with high probability coverage (≈90 percent for GHI and ≈85 percent for 

DNI) and narrow average normalized width (≈8 percent for GHI and ≈17 percent for 

DNI). 
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